Dynamic effective connectivity in resting state fMRI
Context-sensitive and activity-dependent fluctuations in connectivity underlie functional integration in the brain and have been studied widely in terms of synaptic plasticity, learning and condition-specific (e.g., attentional) modulations of synaptic efficacy. This dynamic aspect of brain connecti...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 180; no. Pt B; pp. 594 - 608 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.10.2018
Elsevier Limited Academic Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Context-sensitive and activity-dependent fluctuations in connectivity underlie functional integration in the brain and have been studied widely in terms of synaptic plasticity, learning and condition-specific (e.g., attentional) modulations of synaptic efficacy. This dynamic aspect of brain connectivity has recently attracted a lot of attention in the resting state fMRI community. To explain dynamic functional connectivity in terms of directed effective connectivity among brain regions, we introduce a novel method to identify dynamic effective connectivity using spectral dynamic causal modelling (spDCM). We used parametric empirical Bayes (PEB) to model fluctuations in directed coupling over consecutive windows of resting state fMRI time series. Hierarchical PEB can model random effects on connectivity parameters at the second (between-window) level given connectivity estimates from the first (within-window) level. In this work, we used a discrete cosine transform basis set or eigenvariates (i.e., expression of principal components) to model fluctuations in effective connectivity over windows. We evaluated the ensuing dynamic effective connectivity in terms of the consistency of baseline connectivity within default mode network (DMN), using the resting state fMRI from Human Connectome Project (HCP). To model group-level baseline and dynamic effective connectivity for DMN, we extended the PEB approach by conducting a multilevel PEB analysis of between-session and between-subject group effects. Model comparison clearly spoke to dynamic fluctuations in effective connectivity – and the dynamic functional connectivity these changes explain. Furthermore, baseline effective connectivity was consistent across independent sessions – and notably more consistent than estimates based upon conventional models. This work illustrates the advantage of hierarchical modelling with spDCM, in characterizing the dynamics of effective connectivity.
•We describe efficient estimation of dynamics in resting state effective connectivity.•Spectral DCM and PEB are used to model fluctuations in neuronal coupling over time.•Dynamics in responses are explained in terms of its causes (effective connectivity).•Baseline and dynamic components of the default mode connectivity are identified. |
---|---|
AbstractList | Context-sensitive and activity-dependent fluctuations in connectivity underlie functional integration in the brain and have been studied widely in terms of synaptic plasticity, learning and condition-specific (e.g., attentional) modulations of synaptic efficacy. This dynamic aspect of brain connectivity has recently attracted a lot of attention in the resting state fMRI community. To explain dynamic functional connectivity in terms of directed effective connectivity among brain regions, we introduce a novel method to identify dynamic effective connectivity using spectral dynamic causal modelling (spDCM). We used parametric empirical Bayes (PEB) to model fluctuations in directed coupling over consecutive windows of resting state fMRI time series. Hierarchical PEB can model random effects on connectivity parameters at the second (between-window) level given connectivity estimates from the first (within-window) level. In this work, we used a discrete cosine transform basis set or eigenvariates (i.e., expression of principal components) to model fluctuations in effective connectivity over windows. We evaluated the ensuing dynamic effective connectivity in terms of the consistency of baseline connectivity within default mode network (DMN), using the resting state fMRI from Human Connectome Project (HCP). To model group-level baseline and dynamic effective connectivity for DMN, we extended the PEB approach by conducting a multilevel PEB analysis of between-session and between-subject group effects. Model comparison clearly spoke to dynamic fluctuations in effective connectivity - and the dynamic functional connectivity these changes explain. Furthermore, baseline effective connectivity was consistent across independent sessions - and notably more consistent than estimates based upon conventional models. This work illustrates the advantage of hierarchical modelling with spDCM, in characterizing the dynamics of effective connectivity. Context-sensitive and activity-dependent fluctuations in connectivity underlie functional integration in the brain and have been studied widely in terms of synaptic plasticity, learning and condition-specific (e.g., attentional) modulations of synaptic efficacy. This dynamic aspect of brain connectivity has recently attracted a lot of attention in the resting state fMRI community. To explain dynamic functional connectivity in terms of directed effective connectivity among brain regions, we introduce a novel method to identify dynamic effective connectivity using spectral dynamic causal modelling (spDCM). We used parametric empirical Bayes (PEB) to model fluctuations in directed coupling over consecutive windows of resting state fMRI time series. Hierarchical PEB can model random effects on connectivity parameters at the second (between-window) level given connectivity estimates from the first (within-window) level. In this work, we used a discrete cosine transform basis set or eigenvariates (i.e., expression of principal components) to model fluctuations in effective connectivity over windows. We evaluated the ensuing dynamic effective connectivity in terms of the consistency of baseline connectivity within default mode network (DMN), using the resting state fMRI from Human Connectome Project (HCP). To model group-level baseline and dynamic effective connectivity for DMN, we extended the PEB approach by conducting a multilevel PEB analysis of between-session and between-subject group effects. Model comparison clearly spoke to dynamic fluctuations in effective connectivity - and the dynamic functional connectivity these changes explain. Furthermore, baseline effective connectivity was consistent across independent sessions - and notably more consistent than estimates based upon conventional models. This work illustrates the advantage of hierarchical modelling with spDCM, in characterizing the dynamics of effective connectivity.Context-sensitive and activity-dependent fluctuations in connectivity underlie functional integration in the brain and have been studied widely in terms of synaptic plasticity, learning and condition-specific (e.g., attentional) modulations of synaptic efficacy. This dynamic aspect of brain connectivity has recently attracted a lot of attention in the resting state fMRI community. To explain dynamic functional connectivity in terms of directed effective connectivity among brain regions, we introduce a novel method to identify dynamic effective connectivity using spectral dynamic causal modelling (spDCM). We used parametric empirical Bayes (PEB) to model fluctuations in directed coupling over consecutive windows of resting state fMRI time series. Hierarchical PEB can model random effects on connectivity parameters at the second (between-window) level given connectivity estimates from the first (within-window) level. In this work, we used a discrete cosine transform basis set or eigenvariates (i.e., expression of principal components) to model fluctuations in effective connectivity over windows. We evaluated the ensuing dynamic effective connectivity in terms of the consistency of baseline connectivity within default mode network (DMN), using the resting state fMRI from Human Connectome Project (HCP). To model group-level baseline and dynamic effective connectivity for DMN, we extended the PEB approach by conducting a multilevel PEB analysis of between-session and between-subject group effects. Model comparison clearly spoke to dynamic fluctuations in effective connectivity - and the dynamic functional connectivity these changes explain. Furthermore, baseline effective connectivity was consistent across independent sessions - and notably more consistent than estimates based upon conventional models. This work illustrates the advantage of hierarchical modelling with spDCM, in characterizing the dynamics of effective connectivity. Context-sensitive and activity-dependent fluctuations in connectivity underlie functional integration in the brain and have been studied widely in terms of synaptic plasticity, learning and condition-specific (e.g., attentional) modulations of synaptic efficacy. This dynamic aspect of brain connectivity has recently attracted a lot of attention in the resting state fMRI community. To explain dynamic functional connectivity in terms of directed effective connectivity among brain regions, we introduce a novel method to identify dynamic effective connectivity using spectral dynamic causal modelling (spDCM). We used parametric empirical Bayes (PEB) to model fluctuations in directed coupling over consecutive windows of resting state fMRI time series. Hierarchical PEB can model random effects on connectivity parameters at the second (between-window) level given connectivity estimates from the first (within-window) level. In this work, we used a discrete cosine transform basis set or eigenvariates (i.e., expression of principal components) to model fluctuations in effective connectivity over windows. We evaluated the ensuing dynamic effective connectivity in terms of the consistency of baseline connectivity within default mode network (DMN), using the resting state fMRI from Human Connectome Project (HCP). To model group-level baseline and dynamic effective connectivity for DMN, we extended the PEB approach by conducting a multilevel PEB analysis of between-session and between-subject group effects. Model comparison clearly spoke to dynamic fluctuations in effective connectivity – and the dynamic functional connectivity these changes explain. Furthermore, baseline effective connectivity was consistent across independent sessions – and notably more consistent than estimates based upon conventional models. This work illustrates the advantage of hierarchical modelling with spDCM, in characterizing the dynamics of effective connectivity. •We describe efficient estimation of dynamics in resting state effective connectivity.•Spectral DCM and PEB are used to model fluctuations in neuronal coupling over time.•Dynamics in responses are explained in terms of its causes (effective connectivity).•Baseline and dynamic components of the default mode connectivity are identified. Context-sensitive and activity-dependent fluctuations in connectivity underlie functional integration in the brain and have been studied widely in terms of synaptic plasticity, learning and condition-specific (e.g., attentional) modulations of synaptic efficacy. This dynamic aspect of brain connectivity has recently attracted a lot of attention in the resting state fMRI community. To explain dynamic functional connectivity in terms of directed effective connectivity among brain regions, we introduce a novel method to identify dynamic effective connectivity using spectral dynamic causal modelling (spDCM). We used parametric empirical Bayes (PEB) to model fluctuations in directed coupling over consecutive windows of resting state fMRI time series. Hierarchical PEB can model random effects on connectivity parameters at the second (between-window) level given connectivity estimates from the first (within-window) level. In this work, we used a discrete cosine transform basis set or eigenvariates (i.e., expression of principal components) to model fluctuations in effective connectivity over windows. We evaluated the ensuing dynamic effective connectivity in terms of the consistency of baseline connectivity within default mode network (DMN), using the resting state fMRI from Human Connectome Project (HCP). To model group-level baseline and dynamic effective connectivity for DMN, we extended the PEB approach by conducting a multilevel PEB analysis of between-session and between-subject group effects. Model comparison clearly spoke to dynamic fluctuations in effective connectivity – and the dynamic functional connectivity these changes explain. Furthermore, baseline effective connectivity was consistent across independent sessions – and notably more consistent than estimates based upon conventional models. This work illustrates the advantage of hierarchical modelling with spDCM, in characterizing the dynamics of effective connectivity. • We describe efficient estimation of dynamics in resting state effective connectivity. • Spectral DCM and PEB are used to model fluctuations in neuronal coupling over time. • Dynamics in responses are explained in terms of its causes (effective connectivity). • Baseline and dynamic components of the default mode connectivity are identified. |
Author | Razi, Adeel Pae, Chongwon Park, Bumhee Park, Hae-Jeong Friston, Karl J. |
AuthorAffiliation | f Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan e Department of Statistics, Hankuk University of Foreign Studies, Yong-In, Republic of Korea d The Wellcome Trust Centre for Neuroimaging, University College London, London, UK g Monash Biomedical Imaging and Monash Institute of Cognitive & Clinical Neurosciences, Monash University, Clayton, Australia a Department of Nuclear Medicine, Radiology and Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea c BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea b Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea |
AuthorAffiliation_xml | – name: e Department of Statistics, Hankuk University of Foreign Studies, Yong-In, Republic of Korea – name: f Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan – name: g Monash Biomedical Imaging and Monash Institute of Cognitive & Clinical Neurosciences, Monash University, Clayton, Australia – name: a Department of Nuclear Medicine, Radiology and Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea – name: d The Wellcome Trust Centre for Neuroimaging, University College London, London, UK – name: b Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea – name: c BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea |
Author_xml | – sequence: 1 givenname: Hae-Jeong surname: Park fullname: Park, Hae-Jeong email: parkhj@yonsei.ac.kr organization: Department of Nuclear Medicine, Radiology and Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea – sequence: 2 givenname: Karl J. surname: Friston fullname: Friston, Karl J. organization: The Wellcome Trust Centre for Neuroimaging, University College London, London, UK – sequence: 3 givenname: Chongwon surname: Pae fullname: Pae, Chongwon organization: BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea – sequence: 4 givenname: Bumhee surname: Park fullname: Park, Bumhee organization: Department of Statistics, Hankuk University of Foreign Studies, Yong-In, Republic of Korea – sequence: 5 givenname: Adeel surname: Razi fullname: Razi, Adeel organization: The Wellcome Trust Centre for Neuroimaging, University College London, London, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29158202$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAUhS1URB_wF1AkNmwSfO3EsTcIWl6VipAQrC3HuRk8ZOxiJyPNv8dhyhS6mpWP5HM_3XPPOTnxwSMhBdAKKIhX68rjHIPbmBVWjEJbAVSU80fkDKhqStW07GTRDS8lgDol5ymtKaUKavmEnDIFjWSUnZH63c6bjbMFDgPayW2xsMH7P9JNu8L5ImKanF8VaTITFsPnr9dPyePBjAmf3b0X5PuH99-uPpU3Xz5eX729Ka3gdCoNreteiB4ZWNOpjjGqqDW1ZFZ2DJWtbY-8FbTDBnhW_SAarAH7lhrVc35BXu-5t3O3wd6in6IZ9W3MweNOB-P0_z_e_dCrsNUCuFTNAnh5B4jh15xz6I1LFsfReAxz0qCEUEoBk9n64oF1Heboczyd125Vy2S9uJ7_u9Fhlb8HzQa5N9gYUoo4HCxA9dKdXuv77vTSnQbQubv7tIdR6_LJXViyufEYwOUegLmTrcOok3XoLfYu5kJ1H9wxkDcPIHZ03lkz_sTdcYjfulXSlw |
CitedBy_id | crossref_primary_10_3389_fnins_2019_00268 crossref_primary_10_3389_fnins_2021_820641 crossref_primary_10_1016_j_ecosta_2020_04_004 crossref_primary_10_3389_fnhum_2023_1001848 crossref_primary_10_1016_j_neuroimage_2019_01_055 crossref_primary_10_1109_ACCESS_2020_2974997 crossref_primary_10_1111_cns_70234 crossref_primary_10_3390_brainsci13070995 crossref_primary_10_1002_hbm_26750 crossref_primary_10_1109_ACCESS_2019_2963070 crossref_primary_10_1038_s41366_021_00918_y crossref_primary_10_1016_j_neuroimage_2019_116007 crossref_primary_10_3389_fnagi_2023_1039496 crossref_primary_10_1002_hbm_26751 crossref_primary_10_1007_s00234_020_02497_7 crossref_primary_10_3389_fncir_2021_719364 crossref_primary_10_1109_TNNLS_2021_3106299 crossref_primary_10_1016_j_heliyon_2024_e31746 crossref_primary_10_1186_s40708_020_00116_y crossref_primary_10_3389_fnins_2023_1200029 crossref_primary_10_1016_j_media_2024_103290 crossref_primary_10_3389_fnins_2018_00287 crossref_primary_10_1038_s41467_022_29775_7 crossref_primary_10_1002_brb3_1698 crossref_primary_10_1016_j_seizure_2023_04_004 crossref_primary_10_1162_netn_a_00266 crossref_primary_10_1016_j_neuroscience_2021_06_024 crossref_primary_10_3389_fncir_2021_608655 crossref_primary_10_1126_sciadv_abm9898 crossref_primary_10_1007_s11682_024_00923_5 crossref_primary_10_1016_j_pscychresns_2021_111356 crossref_primary_10_1016_j_neuroimage_2021_118533 crossref_primary_10_1007_s11336_023_09908_7 crossref_primary_10_3389_fnhum_2022_971062 crossref_primary_10_1016_j_bbr_2024_115255 crossref_primary_10_1002_hbm_24999 crossref_primary_10_1038_s41593_020_00726_z crossref_primary_10_1016_j_neuroimage_2019_03_019 crossref_primary_10_1002_hbm_24991 crossref_primary_10_1002_hbm_25442 crossref_primary_10_1186_s40359_024_02051_7 crossref_primary_10_1111_psyp_14630 crossref_primary_10_1016_j_nicl_2022_103005 crossref_primary_10_3389_fnins_2019_00973 crossref_primary_10_1016_j_jad_2022_02_052 crossref_primary_10_1088_1741_2552_ad0c5f crossref_primary_10_3389_fnins_2023_1163111 crossref_primary_10_1016_j_bpsc_2022_11_002 crossref_primary_10_1007_s00234_023_03135_8 crossref_primary_10_1212_WNL_0000000000200060 crossref_primary_10_1109_TIM_2023_3336748 crossref_primary_10_1038_s41467_021_25876_x crossref_primary_10_1016_j_autneu_2024_103182 crossref_primary_10_1016_j_yebeh_2024_109751 crossref_primary_10_3389_fnins_2022_852799 crossref_primary_10_1016_j_neuroimage_2021_118190 crossref_primary_10_1002_hbm_25751 crossref_primary_10_1016_j_neuroimage_2021_118635 crossref_primary_10_1016_j_nic_2023_01_005 crossref_primary_10_1080_13546805_2019_1606706 crossref_primary_10_1038_s41398_024_03083_8 crossref_primary_10_1002_hbm_24539 crossref_primary_10_1162_imag_a_00442 crossref_primary_10_3389_fnins_2021_704079 crossref_primary_10_3389_fnagi_2022_911513 crossref_primary_10_1016_j_irbm_2021_02_007 crossref_primary_10_1007_s10548_018_0666_3 crossref_primary_10_1162_netn_a_00239 crossref_primary_10_1002_hbm_24376 crossref_primary_10_1007_s11682_023_00835_w crossref_primary_10_1016_j_nicl_2021_102916 crossref_primary_10_1162_neco_a_01401 crossref_primary_10_1162_netn_a_00116 crossref_primary_10_1162_netn_a_00117 crossref_primary_10_3389_fendo_2022_1117735 crossref_primary_10_1016_j_neuroimage_2023_120161 crossref_primary_10_1016_j_ynpai_2022_100100 crossref_primary_10_1016_j_neuroscience_2024_11_024 crossref_primary_10_1016_j_bbr_2020_112498 crossref_primary_10_1002_hbm_26667 crossref_primary_10_1016_j_neuroimage_2021_118243 crossref_primary_10_1002_hbm_24562 crossref_primary_10_1016_j_knosys_2024_112856 crossref_primary_10_1016_j_brainresbull_2023_110794 crossref_primary_10_1016_j_compbiomed_2025_109898 crossref_primary_10_1162_netn_a_00348 crossref_primary_10_1371_journal_pone_0276419 crossref_primary_10_1038_s41598_021_93190_z crossref_primary_10_1162_imag_a_00381 crossref_primary_10_1002_jmri_29597 crossref_primary_10_3389_fnmol_2022_999605 crossref_primary_10_1162_netn_a_00182 crossref_primary_10_1109_TASE_2024_3425949 crossref_primary_10_3389_fnagi_2020_584863 crossref_primary_10_1016_j_jpsychires_2019_10_018 crossref_primary_10_1016_j_nicl_2020_102431 crossref_primary_10_1016_j_brainresbull_2025_111312 crossref_primary_10_3389_fnins_2019_00657 crossref_primary_10_1016_j_neuroimage_2023_119915 crossref_primary_10_1016_j_bbr_2021_113188 crossref_primary_10_3389_fnhum_2024_1363125 crossref_primary_10_1016_j_neuroimage_2018_08_053 |
Cites_doi | 10.1016/j.neuroimage.2015.07.063 10.1016/j.neuron.2014.10.015 10.1002/mrm.1910340409 10.1016/S1053-8119(03)00202-7 10.1016/j.neuroimage.2009.11.015 10.1152/jn.00338.2011 10.1002/1097-0193(200102)12:2<61::AID-HBM1004>3.0.CO;2-W 10.1080/10618600.2015.1064434 10.3389/fnhum.2016.00528 10.1126/science.164.3881.828 10.1073/pnas.0135058100 10.1016/j.neuroimage.2012.02.018 10.1016/j.neuroimage.2012.06.078 10.1016/j.neuroimage.2014.11.027 10.1016/j.neuroimage.2012.03.070 10.1016/j.neuroimage.2007.02.041 10.1109/MSP.2015.2482121 10.1016/j.neuron.2010.04.020 10.1016/j.neuroimage.2016.02.074 10.1002/hbm.22058 10.1016/j.neuroimage.2007.07.040 10.1089/brain.2011.0008 10.1016/j.neuroimage.2004.10.044 10.1016/j.neuroimage.2006.08.035 10.1016/j.neuroimage.2016.08.062 10.3389/fnhum.2016.00014 10.3389/fnhum.2015.00670 10.1016/j.neuroimage.2014.07.033 10.1073/pnas.1317424111 10.3389/fpsyg.2012.00206 10.1126/science.1238411 10.1073/pnas.98.2.676 10.1016/j.neuroimage.2014.10.044 10.1016/j.neuroimage.2015.11.055 10.1016/j.neuroimage.2006.01.021 10.1016/j.neuroimage.2015.11.015 10.1073/pnas.1523980113 10.1016/j.neuroimage.2013.07.071 10.1016/j.neuroimage.2013.04.127 10.1006/nimg.1997.0315 10.1016/j.neuroimage.2013.03.004 10.1093/cercor/bhs352 10.1016/j.neuroimage.2009.12.011 10.1016/j.neuroimage.2016.09.019 10.3389/fnsys.2015.00164 10.1016/j.neuroimage.2013.12.009 |
ContentType | Journal Article |
Copyright | 2017 The Authors Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. Copyright Elsevier Limited Oct 15, 2018 2017 The Authors 2017 |
Copyright_xml | – notice: 2017 The Authors – notice: Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Oct 15, 2018 – notice: 2017 The Authors 2017 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1016/j.neuroimage.2017.11.033 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest One Psychology MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 608 |
ExternalDocumentID | PMC6138953 29158202 10_1016_j_neuroimage_2017_11_033 S1053811917309606 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: U54 MH091657 – fundername: Wellcome Trust |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c630t-a044d66de21cab9b22090ca482c8b2e9c4cde3760be513e37df65e41ed70a9d33 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 18:12:45 EDT 2025 Fri Jul 11 03:16:31 EDT 2025 Wed Aug 13 07:48:07 EDT 2025 Mon Jul 21 05:48:03 EDT 2025 Thu Apr 24 23:00:59 EDT 2025 Tue Jul 01 03:01:54 EDT 2025 Fri Feb 23 02:36:56 EST 2024 Tue Aug 26 20:08:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt B |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c630t-a044d66de21cab9b22090ca482c8b2e9c4cde3760be513e37df65e41ed70a9d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811917309606 |
PMID | 29158202 |
PQID | 2097972848 |
PQPubID | 2031077 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6138953 proquest_miscellaneous_1966999128 proquest_journals_2097972848 pubmed_primary_29158202 crossref_primary_10_1016_j_neuroimage_2017_11_033 crossref_citationtrail_10_1016_j_neuroimage_2017_11_033 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2017_11_033 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2017_11_033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-15 |
PublicationDateYYYYMMDD | 2018-10-15 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier Limited Academic Press |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Academic Press |
References | Razi, Friston (bib36) 2016 Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zollei, Polimeni, Fischl, Liu, Buckner (bib48) 2011; 106 Di, Biswal (bib9) 2014; 86 Sharaev, Zavyalova, Ushakov, Kartashov, Velichkovsky (bib39) 2016; 10 Zeng, Wang, Fox, Sabuncu, Hu, Ge, Buckner, Liu (bib49) 2014; 111 Friston, Kahan, Biswal, Razi (bib14) 2014; 94 Friston, Mattout, Trujillo-Barreto, Ashburner, Penny (bib10) 2007; 34 Desikan, Segonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman, Albert, Killiany (bib8) 2006; 31 Greicius, Krasnow, Reiss, Menon (bib18) 2003; 100 Chang, Glover (bib5) 2010; 50 Wang, Ong, Patanaik, Zhou, Chee (bib46) 2016; 113 Friston, Harrison, Penny (bib13) 2003; 19 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, Van Essen, Jenkinson (bib17) 2013; 80 Yan, Cheung, Kelly, Colcombe, Craddock, Di Martino, Li, Zuo, Castellanos, Milham (bib47) 2013; 76 He, Zempel, Snyder, Raichle (bib20) 2010; 66 Stephan, Weiskopf, Drysdale, Robinson, Friston (bib43) 2007; 38 Li, Shen, Huang (bib25) 2016; 25 Papadopoulou, Cooray, Rosch, Moran, Marinazzo, Friston (bib31) 2017; 146 Sharaev, Zavyalova, Ushakov, Kartashov, Velichkovsky (bib40) 2016; 10 Bullmore, Long, Suckling, Fadili, Calvert, Zelaya, Carpenter, Brammer (bib3) 2001; 12 Friston, Litvak, Oswal, Razi, Stephan, van Wijk, Ziegler, Zeidman (bib15) 2016; 128 Gerstein, Perkel (bib16) 1969; 164 Hutchison, Womelsdorf, Gati, Everling, Menon (bib22) 2013; 34 Shakil, Lee, Keilholz (bib38) 2016; 133 Li, Wang, Yao, Hu, Friston (bib24) 2012; 3 Cooray, Sengupta, Douglas, Friston (bib6) 2016; 125 Allen, Damaraju, Plis, Erhardt, Eichele, Calhoun (bib1) 2014; 24 Razi, Kahan, Rees, Friston (bib37) 2015; 106 Maxim, Sendur, Fadili, Suckling, Gould, Howard, Bullmore (bib28) 2005; 25 Monti, Hellyer, Sharp, Leech, Anagnostopoulos, Montana (bib30) 2014; 103 Power, Schlaggar, Petersen (bib33) 2015; 105 Raichle, Snyder (bib35) 2007; 37 Cribben, Haraldsdottir, Atlas, Wager, Lindquist (bib7) 2012; 61 Lowe, Mock, Sorenson (bib27) 1998; 7 McGuire, Paulesu, Frackowiak, Frith (bib29) 1996; 7 Handwerker, Roopchansingh, Gonzalez-Castillo, Bandettini (bib19) 2012; 63 Friston (bib12) 2011; 1 Stephan, Penny, Moran, den Ouden, Daunizeau, Friston (bib42) 2010; 49 Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Chang, Chen, Corbetta, Curtiss, Della Penna, Feinberg, Glasser, Harel, Heath, Larson-Prior, Marcus, Michalareas, Moeller, Oostenveld, Petersen, Prior, Schlaggar, Smith, Snyder, Xu, Yacoub (bib45) 2012; 62 Friston, Zeidman, Litvak (bib11) 2015; 9 Raichle, MacLeod, Snyder, Powers, Gusnard, Shulman (bib34) 2001; 98 Ushakov, Sharaev, Kartashov, Zavyalova, Verkhlyutov, Velichkovsky (bib44) 2016; 10 Hindriks, Adhikari, Murayama, Ganzetti, Mantini, Logothetis, Deco (bib21) 2016; 127 Biswal, Yetkin, Haughton, Hyde (bib2) 1995; 34 Litvak, Garrido, Zeidman, Friston (bib26) 2015; 9 Park, Friston (bib32) 2013; 342 Jeong, Pae, Park (bib23) 2016; 143 Calhoun, Miller, Pearlson, Adali (bib4) 2014; 84 Li (10.1016/j.neuroimage.2017.11.033_bib24) 2012; 3 Desikan (10.1016/j.neuroimage.2017.11.033_bib8) 2006; 31 Shakil (10.1016/j.neuroimage.2017.11.033_bib38) 2016; 133 Allen (10.1016/j.neuroimage.2017.11.033_bib1) 2014; 24 Calhoun (10.1016/j.neuroimage.2017.11.033_bib4) 2014; 84 Monti (10.1016/j.neuroimage.2017.11.033_bib30) 2014; 103 Greicius (10.1016/j.neuroimage.2017.11.033_bib18) 2003; 100 Gerstein (10.1016/j.neuroimage.2017.11.033_bib16) 1969; 164 Papadopoulou (10.1016/j.neuroimage.2017.11.033_bib31) 2017; 146 Friston (10.1016/j.neuroimage.2017.11.033_bib14) 2014; 94 Wang (10.1016/j.neuroimage.2017.11.033_bib46) 2016; 113 Jeong (10.1016/j.neuroimage.2017.11.033_bib23) 2016; 143 Maxim (10.1016/j.neuroimage.2017.11.033_bib28) 2005; 25 McGuire (10.1016/j.neuroimage.2017.11.033_bib29) 1996; 7 Yeo (10.1016/j.neuroimage.2017.11.033_bib48) 2011; 106 Glasser (10.1016/j.neuroimage.2017.11.033_bib17) 2013; 80 Chang (10.1016/j.neuroimage.2017.11.033_bib5) 2010; 50 Stephan (10.1016/j.neuroimage.2017.11.033_bib42) 2010; 49 Raichle (10.1016/j.neuroimage.2017.11.033_bib35) 2007; 37 Razi (10.1016/j.neuroimage.2017.11.033_bib37) 2015; 106 Ushakov (10.1016/j.neuroimage.2017.11.033_bib44) 2016; 10 Cooray (10.1016/j.neuroimage.2017.11.033_bib6) 2016; 125 Lowe (10.1016/j.neuroimage.2017.11.033_bib27) 1998; 7 Zeng (10.1016/j.neuroimage.2017.11.033_bib49) 2014; 111 Handwerker (10.1016/j.neuroimage.2017.11.033_bib19) 2012; 63 Yan (10.1016/j.neuroimage.2017.11.033_bib47) 2013; 76 Friston (10.1016/j.neuroimage.2017.11.033_bib15) 2016; 128 Bullmore (10.1016/j.neuroimage.2017.11.033_bib3) 2001; 12 Razi (10.1016/j.neuroimage.2017.11.033_bib36) 2016 Friston (10.1016/j.neuroimage.2017.11.033_bib13) 2003; 19 Friston (10.1016/j.neuroimage.2017.11.033_bib11) 2015; 9 Raichle (10.1016/j.neuroimage.2017.11.033_bib34) 2001; 98 Biswal (10.1016/j.neuroimage.2017.11.033_bib2) 1995; 34 Hindriks (10.1016/j.neuroimage.2017.11.033_bib21) 2016; 127 Friston (10.1016/j.neuroimage.2017.11.033_bib10) 2007; 34 He (10.1016/j.neuroimage.2017.11.033_bib20) 2010; 66 Litvak (10.1016/j.neuroimage.2017.11.033_bib26) 2015; 9 Stephan (10.1016/j.neuroimage.2017.11.033_bib43) 2007; 38 Friston (10.1016/j.neuroimage.2017.11.033_bib12) 2011; 1 Van Essen (10.1016/j.neuroimage.2017.11.033_bib45) 2012; 62 Cribben (10.1016/j.neuroimage.2017.11.033_bib7) 2012; 61 Li (10.1016/j.neuroimage.2017.11.033_bib25) 2016; 25 Di (10.1016/j.neuroimage.2017.11.033_bib9) 2014; 86 Park (10.1016/j.neuroimage.2017.11.033_bib32) 2013; 342 Power (10.1016/j.neuroimage.2017.11.033_bib33) 2015; 105 Sharaev (10.1016/j.neuroimage.2017.11.033_bib39) 2016; 10 Hutchison (10.1016/j.neuroimage.2017.11.033_bib22) 2013; 34 Sharaev (10.1016/j.neuroimage.2017.11.033_bib40) 2016; 10 |
References_xml | – volume: 9 start-page: 670 year: 2015 ident: bib26 article-title: Empirical Bayes for group (DCM) studies: a reproducibility study publication-title: Front. Hum. Neurosci. – volume: 25 start-page: 141 year: 2005 end-page: 158 ident: bib28 article-title: Fractional Gaussian noise, functional MRI and Alzheimer's disease publication-title: Neuroimage – volume: 146 start-page: 518 year: 2017 end-page: 532 ident: bib31 article-title: Dynamic causal modelling of seizure activity in a rat model publication-title: Neuroimage – volume: 10 start-page: 14 year: 2016 ident: bib40 article-title: Effective connectivity within the default mode network: dynamic causal modeling of resting-state fMRI data publication-title: Front. Hum. Neurosci. – volume: 113 start-page: 9653 year: 2016 end-page: 9658 ident: bib46 article-title: Spontaneous eyelid closures link vigilance fluctuation with fMRI dynamic connectivity states publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 31 start-page: 968 year: 2006 end-page: 980 ident: bib8 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage – volume: 125 start-page: 1142 year: 2016 end-page: 1154 ident: bib6 article-title: Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating publication-title: Neuroimage – volume: 3 start-page: 206 year: 2012 ident: bib24 article-title: Task-dependent modulation of effective connectivity within the default mode network publication-title: Front. Psychol. – volume: 10 year: 2016 ident: bib39 article-title: Effective connectivity within the default mode network: dynamic causal modeling of resting-state fMRI data publication-title: Front. Hum. Neurosci. – volume: 62 start-page: 2222 year: 2012 end-page: 2231 ident: bib45 article-title: The Human Connectome Project: a data acquisition perspective publication-title: Neuroimage – volume: 24 start-page: 663 year: 2014 end-page: 676 ident: bib1 article-title: Tracking whole-brain connectivity dynamics in the resting state publication-title: Cereb. Cortex – volume: 19 start-page: 1273 year: 2003 end-page: 1302 ident: bib13 article-title: Dynamic causal modelling publication-title: Neuroimage – volume: 63 start-page: 1712 year: 2012 end-page: 1719 ident: bib19 article-title: Periodic changes in fMRI connectivity publication-title: Neuroimage – volume: 38 start-page: 387 year: 2007 end-page: 401 ident: bib43 article-title: Comparing hemodynamic models with DCM publication-title: Neuroimage – volume: 66 start-page: 353 year: 2010 end-page: 369 ident: bib20 article-title: The temporal structures and functional significance of scale-free brain activity publication-title: Neuron – volume: 37 start-page: 1083 year: 2007 end-page: 1090 ident: bib35 article-title: A default mode of brain function: a brief history of an evolving idea publication-title: NeuroImage – volume: 76 start-page: 183 year: 2013 end-page: 201 ident: bib47 article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics publication-title: Neuroimage – volume: 86 start-page: 53 year: 2014 end-page: 59 ident: bib9 article-title: Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging publication-title: Neuroimage – volume: 50 start-page: 81 year: 2010 end-page: 98 ident: bib5 article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI publication-title: Neuroimage – volume: 105 start-page: 536 year: 2015 end-page: 551 ident: bib33 article-title: Recent progress and outstanding issues in motion correction in resting state fMRI publication-title: Neuroimage – volume: 342 start-page: 1238411 year: 2013 ident: bib32 article-title: Structural and functional brain networks: from connections to cognition publication-title: Science – volume: 164 start-page: 828 year: 1969 end-page: 830 ident: bib16 article-title: Simultaneously recorded trains of action potentials: analysis and functional interpretation publication-title: Science – volume: 25 start-page: 859 year: 2016 end-page: 878 ident: bib25 article-title: Supervised sparse and functional principal component analysis publication-title: J. Comput. Graph. Statistics – volume: 84 start-page: 262 year: 2014 end-page: 274 ident: bib4 article-title: The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery publication-title: Neuron – volume: 94 start-page: 396 year: 2014 end-page: 407 ident: bib14 article-title: A DCM for resting state fMRI publication-title: Neuroimage – volume: 34 start-page: 537 year: 1995 end-page: 541 ident: bib2 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn. Reson Med. – volume: 1 start-page: 13 year: 2011 end-page: 36 ident: bib12 article-title: Functional and effective connectivity: a review publication-title: Brain Connect. – volume: 61 start-page: 907 year: 2012 end-page: 920 ident: bib7 article-title: Dynamic connectivity regression: determining state-related changes in brain connectivity publication-title: Neuroimage – start-page: 14 year: 2016 end-page: 35 ident: bib36 article-title: The Connected Brain: causality, models, and intrinsic dynamics publication-title: IEEE Signal Process. Mag. – volume: 98 start-page: 676 year: 2001 end-page: 682 ident: bib34 article-title: A default mode of brain function publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 34 start-page: 220 year: 2007 end-page: 234 ident: bib10 article-title: Variational free energy and the Laplace approximation publication-title: Neuroimage – volume: 7 start-page: 119 year: 1998 end-page: 132 ident: bib27 article-title: Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations publication-title: NeuroImage – volume: 133 start-page: 111 year: 2016 end-page: 128 ident: bib38 article-title: Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states publication-title: Neuroimage – volume: 128 start-page: 413 year: 2016 end-page: 431 ident: bib15 article-title: Bayesian model reduction and empirical Bayes for group (DCM) studies publication-title: Neuroimage – volume: 106 start-page: 1125 year: 2011 end-page: 1165 ident: bib48 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. – volume: 10 start-page: 528 year: 2016 ident: bib44 article-title: Dynamic causal modeling of hippocampal links within the human default mode network: lateralization and computational stability of effective connections publication-title: Front. Hum. Neurosci. – volume: 103 start-page: 427 year: 2014 end-page: 443 ident: bib30 article-title: Estimating time-varying brain connectivity networks from functional MRI time series publication-title: Neuroimage – volume: 100 start-page: 253 year: 2003 end-page: 258 ident: bib18 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 127 start-page: 242 year: 2016 end-page: 256 ident: bib21 article-title: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? publication-title: Neuroimage – volume: 9 start-page: 164 year: 2015 ident: bib11 article-title: Empirical Bayes for DCM: a group inversion scheme publication-title: Front. Syst. Neurosci. – volume: 111 start-page: 6058 year: 2014 end-page: 6062 ident: bib49 article-title: Neurobiological basis of head motion in brain imaging publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 106 start-page: 1 year: 2015 end-page: 14 ident: bib37 article-title: Construct validation of a DCM for resting state fMRI publication-title: Neuroimage – volume: 12 start-page: 61 year: 2001 end-page: 78 ident: bib3 article-title: Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains publication-title: Hum. Brain Mapp. – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bib17 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage – volume: 7 start-page: 2095 year: 1996 end-page: 2099 ident: bib29 article-title: Brain activity during stimulus independent thought publication-title: Neuroreport – volume: 49 start-page: 3099 year: 2010 end-page: 3109 ident: bib42 article-title: Ten simple rules for dynamic causal modeling publication-title: Neuroimage – volume: 143 start-page: 353 year: 2016 end-page: 363 ident: bib23 article-title: Connectivity-based change point detection for large-size functional networks publication-title: Neuroimage – volume: 34 start-page: 2154 year: 2013 end-page: 2177 ident: bib22 article-title: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques publication-title: Hum. Brain Mapp. – volume: 125 start-page: 1142 year: 2016 ident: 10.1016/j.neuroimage.2017.11.033_bib6 article-title: Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.063 – volume: 84 start-page: 262 year: 2014 ident: 10.1016/j.neuroimage.2017.11.033_bib4 article-title: The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery publication-title: Neuron doi: 10.1016/j.neuron.2014.10.015 – volume: 34 start-page: 537 year: 1995 ident: 10.1016/j.neuroimage.2017.11.033_bib2 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn. Reson Med. doi: 10.1002/mrm.1910340409 – volume: 19 start-page: 1273 year: 2003 ident: 10.1016/j.neuroimage.2017.11.033_bib13 article-title: Dynamic causal modelling publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00202-7 – volume: 49 start-page: 3099 year: 2010 ident: 10.1016/j.neuroimage.2017.11.033_bib42 article-title: Ten simple rules for dynamic causal modeling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.11.015 – volume: 106 start-page: 1125 year: 2011 ident: 10.1016/j.neuroimage.2017.11.033_bib48 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. doi: 10.1152/jn.00338.2011 – volume: 12 start-page: 61 year: 2001 ident: 10.1016/j.neuroimage.2017.11.033_bib3 article-title: Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains publication-title: Hum. Brain Mapp. doi: 10.1002/1097-0193(200102)12:2<61::AID-HBM1004>3.0.CO;2-W – volume: 25 start-page: 859 year: 2016 ident: 10.1016/j.neuroimage.2017.11.033_bib25 article-title: Supervised sparse and functional principal component analysis publication-title: J. Comput. Graph. Statistics doi: 10.1080/10618600.2015.1064434 – volume: 10 start-page: 528 year: 2016 ident: 10.1016/j.neuroimage.2017.11.033_bib44 article-title: Dynamic causal modeling of hippocampal links within the human default mode network: lateralization and computational stability of effective connections publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2016.00528 – volume: 164 start-page: 828 year: 1969 ident: 10.1016/j.neuroimage.2017.11.033_bib16 article-title: Simultaneously recorded trains of action potentials: analysis and functional interpretation publication-title: Science doi: 10.1126/science.164.3881.828 – volume: 100 start-page: 253 year: 2003 ident: 10.1016/j.neuroimage.2017.11.033_bib18 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0135058100 – volume: 62 start-page: 2222 year: 2012 ident: 10.1016/j.neuroimage.2017.11.033_bib45 article-title: The Human Connectome Project: a data acquisition perspective publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.018 – volume: 63 start-page: 1712 year: 2012 ident: 10.1016/j.neuroimage.2017.11.033_bib19 article-title: Periodic changes in fMRI connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.078 – volume: 106 start-page: 1 year: 2015 ident: 10.1016/j.neuroimage.2017.11.033_bib37 article-title: Construct validation of a DCM for resting state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.11.027 – volume: 61 start-page: 907 year: 2012 ident: 10.1016/j.neuroimage.2017.11.033_bib7 article-title: Dynamic connectivity regression: determining state-related changes in brain connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.070 – volume: 37 start-page: 1083 year: 2007 ident: 10.1016/j.neuroimage.2017.11.033_bib35 article-title: A default mode of brain function: a brief history of an evolving idea publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.041 – start-page: 14 year: 2016 ident: 10.1016/j.neuroimage.2017.11.033_bib36 article-title: The Connected Brain: causality, models, and intrinsic dynamics publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2015.2482121 – volume: 66 start-page: 353 year: 2010 ident: 10.1016/j.neuroimage.2017.11.033_bib20 article-title: The temporal structures and functional significance of scale-free brain activity publication-title: Neuron doi: 10.1016/j.neuron.2010.04.020 – volume: 133 start-page: 111 year: 2016 ident: 10.1016/j.neuroimage.2017.11.033_bib38 article-title: Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.02.074 – volume: 34 start-page: 2154 year: 2013 ident: 10.1016/j.neuroimage.2017.11.033_bib22 article-title: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22058 – volume: 38 start-page: 387 year: 2007 ident: 10.1016/j.neuroimage.2017.11.033_bib43 article-title: Comparing hemodynamic models with DCM publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.07.040 – volume: 1 start-page: 13 year: 2011 ident: 10.1016/j.neuroimage.2017.11.033_bib12 article-title: Functional and effective connectivity: a review publication-title: Brain Connect. doi: 10.1089/brain.2011.0008 – volume: 25 start-page: 141 year: 2005 ident: 10.1016/j.neuroimage.2017.11.033_bib28 article-title: Fractional Gaussian noise, functional MRI and Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.10.044 – volume: 34 start-page: 220 year: 2007 ident: 10.1016/j.neuroimage.2017.11.033_bib10 article-title: Variational free energy and the Laplace approximation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.08.035 – volume: 146 start-page: 518 year: 2017 ident: 10.1016/j.neuroimage.2017.11.033_bib31 article-title: Dynamic causal modelling of seizure activity in a rat model publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.08.062 – volume: 10 year: 2016 ident: 10.1016/j.neuroimage.2017.11.033_bib39 article-title: Effective connectivity within the default mode network: dynamic causal modeling of resting-state fMRI data publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2016.00014 – volume: 9 start-page: 670 year: 2015 ident: 10.1016/j.neuroimage.2017.11.033_bib26 article-title: Empirical Bayes for group (DCM) studies: a reproducibility study publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2015.00670 – volume: 103 start-page: 427 year: 2014 ident: 10.1016/j.neuroimage.2017.11.033_bib30 article-title: Estimating time-varying brain connectivity networks from functional MRI time series publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.07.033 – volume: 111 start-page: 6058 year: 2014 ident: 10.1016/j.neuroimage.2017.11.033_bib49 article-title: Neurobiological basis of head motion in brain imaging publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1317424111 – volume: 3 start-page: 206 year: 2012 ident: 10.1016/j.neuroimage.2017.11.033_bib24 article-title: Task-dependent modulation of effective connectivity within the default mode network publication-title: Front. Psychol. doi: 10.3389/fpsyg.2012.00206 – volume: 342 start-page: 1238411 year: 2013 ident: 10.1016/j.neuroimage.2017.11.033_bib32 article-title: Structural and functional brain networks: from connections to cognition publication-title: Science doi: 10.1126/science.1238411 – volume: 98 start-page: 676 year: 2001 ident: 10.1016/j.neuroimage.2017.11.033_bib34 article-title: A default mode of brain function publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.98.2.676 – volume: 105 start-page: 536 year: 2015 ident: 10.1016/j.neuroimage.2017.11.033_bib33 article-title: Recent progress and outstanding issues in motion correction in resting state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.044 – volume: 10 start-page: 14 year: 2016 ident: 10.1016/j.neuroimage.2017.11.033_bib40 article-title: Effective connectivity within the default mode network: dynamic causal modeling of resting-state fMRI data publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2016.00014 – volume: 127 start-page: 242 year: 2016 ident: 10.1016/j.neuroimage.2017.11.033_bib21 article-title: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.11.055 – volume: 31 start-page: 968 year: 2006 ident: 10.1016/j.neuroimage.2017.11.033_bib8 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 128 start-page: 413 year: 2016 ident: 10.1016/j.neuroimage.2017.11.033_bib15 article-title: Bayesian model reduction and empirical Bayes for group (DCM) studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.11.015 – volume: 113 start-page: 9653 year: 2016 ident: 10.1016/j.neuroimage.2017.11.033_bib46 article-title: Spontaneous eyelid closures link vigilance fluctuation with fMRI dynamic connectivity states publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1523980113 – volume: 86 start-page: 53 year: 2014 ident: 10.1016/j.neuroimage.2017.11.033_bib9 article-title: Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.07.071 – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.neuroimage.2017.11.033_bib17 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 7 start-page: 119 year: 1998 ident: 10.1016/j.neuroimage.2017.11.033_bib27 article-title: Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations publication-title: NeuroImage doi: 10.1006/nimg.1997.0315 – volume: 7 start-page: 2095 year: 1996 ident: 10.1016/j.neuroimage.2017.11.033_bib29 article-title: Brain activity during stimulus independent thought publication-title: Neuroreport – volume: 76 start-page: 183 year: 2013 ident: 10.1016/j.neuroimage.2017.11.033_bib47 article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.004 – volume: 24 start-page: 663 year: 2014 ident: 10.1016/j.neuroimage.2017.11.033_bib1 article-title: Tracking whole-brain connectivity dynamics in the resting state publication-title: Cereb. Cortex doi: 10.1093/cercor/bhs352 – volume: 50 start-page: 81 year: 2010 ident: 10.1016/j.neuroimage.2017.11.033_bib5 article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.12.011 – volume: 143 start-page: 353 year: 2016 ident: 10.1016/j.neuroimage.2017.11.033_bib23 article-title: Connectivity-based change point detection for large-size functional networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.09.019 – volume: 9 start-page: 164 year: 2015 ident: 10.1016/j.neuroimage.2017.11.033_bib11 article-title: Empirical Bayes for DCM: a group inversion scheme publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2015.00164 – volume: 94 start-page: 396 year: 2014 ident: 10.1016/j.neuroimage.2017.11.033_bib14 article-title: A DCM for resting state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.12.009 |
SSID | ssj0009148 |
Score | 2.5815146 |
Snippet | Context-sensitive and activity-dependent fluctuations in connectivity underlie functional integration in the brain and have been studied widely in terms of... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 594 |
SubjectTerms | Adult Bayes Theorem Bayesian analysis Brain - physiology Brain mapping Brain research Connectome - methods Female Fourier transforms Functional magnetic resonance imaging Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Male Models, Neurological Nerve Net - physiology Neural networks Neural Pathways - physiology Neurosciences Rest - physiology Studies Synaptic plasticity Synaptic strength Time series |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66gngR364vKnittM2jDR5EfLAK60EU9haaNMUV7aq7_n9nmrTrA2XPzUAznUy-Zr58Q8gRhUjROqOhoZSHLNYilBkzWH2kUWayjGk87-jfit4DuxnwgT9wG3taZZMT60RdjAyekcNPukxlCsk0O319C7FrFFZXfQuNebKA0mUY1ekgnYruxsxdheM0zGCAZ_I4fletFzl8gVWLBK_0GLU8Kf1re_oNP3-yKL9sS1crZNnjyeDMBcAqmbPVGlns-4r5OmEXruV84IgbkNsCg9wW47pGBMMqwO4csIEF9d2ioOzfXW-Qh6vL-_Ne6DslhEbQaBLmEWOFEIVNYpNrqRPwVoR65YnJdGKlYaawSH_RluOxZ1qUglsW2yKNcllQukk61aiy2yQooxIglRFxCWAl5zJnGkt3prQlDCxNl6SNg5TxMuLYzeJZNXyxJzV1rULXwl-GAtd2SdxavjopjRlsZPMNVHNVFJKbgnw_g-1Ja-vhhIMJM1rvNZ9c-WU9VtMg7JLD9jEsSKyy5JUdfYwVpDSBqDuBMVsuQtrpJjLmALkScOK32GkHoNj39yfV8LEW_RZYUeZ05__X2iVLMIdasDfme6Qzef-w-4CaJvqgXhqf0PcXyQ priority: 102 providerName: ProQuest |
Title | Dynamic effective connectivity in resting state fMRI |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811917309606 https://dx.doi.org/10.1016/j.neuroimage.2017.11.033 https://www.ncbi.nlm.nih.gov/pubmed/29158202 https://www.proquest.com/docview/2097972848 https://www.proquest.com/docview/1966999128 https://pubmed.ncbi.nlm.nih.gov/PMC6138953 |
Volume | 180 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEF_EQulLsa225xcp9DVekv3K4pNelbPtHXIq3NuS3WwwpUbR89W_3ZnsJvZaCgd9SUh2B5LJ7Mxs5jczhHyhICnG5DS2lPKYpUbEKmcWo480yW2eM4P_OyZTMb5i3-Z8vkZGXS4MwiqD7vc6vdXW4c4wcHN4V9fDC_AMwNzgfoO2fjhmsDOJUn7w9ALzUCnz6XCcxjg7oHk8xqutGVnfwMpFkJc8wHqelP7LRP3tgv6JpPzNNJ1ukLfBp4yO_GO_I2uueU9eT0LU_ANhX33b-ciDN0C_RRbxLdZ3jojqJsIOHWDEoja_KKoms7NNcnV6cjkax6FbQmwFTRZxkTBWClG6LLWFUSbLEpVgzfLM5iZzyjJbOoTAGMfx16csK8EdS10pk0KVlG6R9ea2cZ9IVCUVuFVWpBU4LAVXBTMYvrOVq2BiZQdEdgzSNpQSx44Wv3SHGfupX1irkbWw09DA2gFJe8o7X05jBRrVfQPdpYuCgtOg81egPexpl8RqRerd7pPrsLQfYFxJJcGq5wPyuR-GRYmRlqJxt48PGtSaQM87gzkfvYT0r5uplIPblQETl2Snn4AFv5dHmvq6LfwtMKrM6fZ_vdQOeQNXbU3flO-S9cX9o9sDx2ph9tuVA0c5l_vk1dFo9uMcz2ffx1M4H59Mz2fPY2Yosg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhUuFZTXQilGgmNQ_EysCiHUh3ZptwfUSnszseOIRTRb2K0Qf6q_kZk4ydIi0F56tidKxpNvxp7PM4S8FmApzuUi8UKoRDKnE5NLj9lHkeY-z6XD847xiR6eyY8TNVkjV91dGKRVdpjYAHU583hGDpt0k5kMwDR_f_E9wa5RmF3tWmhEszgKv37Clm3-brQP6_uG88OD071h0nYVSLwW6SIpUilLrcvAmS-ccRyenGJtb-5zx4Px0pcBqSIuKDwizMpKqyBZKLO0MCUegALk3wHHm-JmL5tkyyK_TMard0okOWOmZQ5FPllTn3J6DiiBhLLsLdYOFeJf7vDvcPcma_MPN3h4n2y28Sv9EA3uAVkL9RbZGLcZ-odE7scW9zQSRQBLqUcujY9dKui0ptgNBBwmbe4y0Wr8afSInN2KDh-T9XpWh6eEVmkFIZzXrILgqFCmkA5Thb4KFUys_IBknYKsb8uWY_eMb7bjp321S9VaVC3saiyodkBYL3kRS3esIGO6NbDd1VQAUwv-ZQXZ3V62DV9iWLKi9Ha35LaFkbldGv2AvOqHAQAwq1PUYXY5twChGqN8DnOeRAvpP5cbpiDE46DEa7bTT8Di4tdH6umXpsi4xgy2Es_-_1ovyd3h6fjYHo9Ojp6Te_A9TbFgprbJ-uLHZXgBEdvC7TS_CSWfb_u__A1YmlVg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnTTxgvimMCBI8BiIP_JhIYSArloZraaJSXszseNoRZAO2gnxr_HXcRc7KQOB-rJn-5T4fP757Pv5DuCJQEsxphCxFSKNJTNZrAppKfooksIWhTR03zGdZfvH8t1JerIFP7u3MESr7DCxBepqYemOHA_pKlc5gmnxvA60iMPR-NXZ15gqSFGktSun4U3kwP34jse35cvJCOf6KefjvQ9v9-NQYSC2mUhWcZlIWWVZ5TizpVGG41cSyvPNbWG4U1bayhFtxLiUrgvzqs5SJ5mr8qRUFV2GIvxv53QqGsD2m73Z4dE65S-T_iFeKuKCMRV4RJ5d1marnH9BzCB6Wf6MMokK8a_N8W_n908O52-b4vgaXA3ebPTam9912HLNDdiZhnj9TZAjX_A-8rQRRNbIErPG-poV0byJqDYIbp9R-7IpqqdHk1twfClavA2DZtG4uxDVSY0Onc1Yja5SmapSGgoc2trV2LG2Q8g7BWkbkphTLY3PumOrfdJr1WpSLZ5xNKp2CKyXPPOJPDaQUd0c6O6hKkKrxt1mA9kXvWxwZryTsqH0bjflOoDKUq-XwBAe980IBxTjKRu3OF9qBNSMfH6Ofe54C-mHyxVL0eHjqMQLttN3oFTjF1ua-WmbcjyjeHYq7v3_tx7BDq5J_X4yO7gPV3A4beZglu7CYPXt3D1A921lHoZ1EsHHy16avwDjhVr7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+effective+connectivity+in+resting+state+fMRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Park%2C+Hae-Jeong&rft.au=Friston%2C+Karl+J&rft.au=Pae%2C+Chongwon&rft.au=Park%2C+Bumhee&rft.date=2018-10-15&rft.eissn=1095-9572&rft.volume=180&rft.issue=Pt+B&rft.spage=594&rft_id=info:doi/10.1016%2Fj.neuroimage.2017.11.033&rft_id=info%3Apmid%2F29158202&rft.externalDocID=29158202 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |