Dynamic effective connectivity in resting state fMRI

Context-sensitive and activity-dependent fluctuations in connectivity underlie functional integration in the brain and have been studied widely in terms of synaptic plasticity, learning and condition-specific (e.g., attentional) modulations of synaptic efficacy. This dynamic aspect of brain connecti...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 180; no. Pt B; pp. 594 - 608
Main Authors Park, Hae-Jeong, Friston, Karl J., Pae, Chongwon, Park, Bumhee, Razi, Adeel
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.10.2018
Elsevier Limited
Academic Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Context-sensitive and activity-dependent fluctuations in connectivity underlie functional integration in the brain and have been studied widely in terms of synaptic plasticity, learning and condition-specific (e.g., attentional) modulations of synaptic efficacy. This dynamic aspect of brain connectivity has recently attracted a lot of attention in the resting state fMRI community. To explain dynamic functional connectivity in terms of directed effective connectivity among brain regions, we introduce a novel method to identify dynamic effective connectivity using spectral dynamic causal modelling (spDCM). We used parametric empirical Bayes (PEB) to model fluctuations in directed coupling over consecutive windows of resting state fMRI time series. Hierarchical PEB can model random effects on connectivity parameters at the second (between-window) level given connectivity estimates from the first (within-window) level. In this work, we used a discrete cosine transform basis set or eigenvariates (i.e., expression of principal components) to model fluctuations in effective connectivity over windows. We evaluated the ensuing dynamic effective connectivity in terms of the consistency of baseline connectivity within default mode network (DMN), using the resting state fMRI from Human Connectome Project (HCP). To model group-level baseline and dynamic effective connectivity for DMN, we extended the PEB approach by conducting a multilevel PEB analysis of between-session and between-subject group effects. Model comparison clearly spoke to dynamic fluctuations in effective connectivity – and the dynamic functional connectivity these changes explain. Furthermore, baseline effective connectivity was consistent across independent sessions – and notably more consistent than estimates based upon conventional models. This work illustrates the advantage of hierarchical modelling with spDCM, in characterizing the dynamics of effective connectivity. •We describe efficient estimation of dynamics in resting state effective connectivity.•Spectral DCM and PEB are used to model fluctuations in neuronal coupling over time.•Dynamics in responses are explained in terms of its causes (effective connectivity).•Baseline and dynamic components of the default mode connectivity are identified.
AbstractList Context-sensitive and activity-dependent fluctuations in connectivity underlie functional integration in the brain and have been studied widely in terms of synaptic plasticity, learning and condition-specific (e.g., attentional) modulations of synaptic efficacy. This dynamic aspect of brain connectivity has recently attracted a lot of attention in the resting state fMRI community. To explain dynamic functional connectivity in terms of directed effective connectivity among brain regions, we introduce a novel method to identify dynamic effective connectivity using spectral dynamic causal modelling (spDCM). We used parametric empirical Bayes (PEB) to model fluctuations in directed coupling over consecutive windows of resting state fMRI time series. Hierarchical PEB can model random effects on connectivity parameters at the second (between-window) level given connectivity estimates from the first (within-window) level. In this work, we used a discrete cosine transform basis set or eigenvariates (i.e., expression of principal components) to model fluctuations in effective connectivity over windows. We evaluated the ensuing dynamic effective connectivity in terms of the consistency of baseline connectivity within default mode network (DMN), using the resting state fMRI from Human Connectome Project (HCP). To model group-level baseline and dynamic effective connectivity for DMN, we extended the PEB approach by conducting a multilevel PEB analysis of between-session and between-subject group effects. Model comparison clearly spoke to dynamic fluctuations in effective connectivity - and the dynamic functional connectivity these changes explain. Furthermore, baseline effective connectivity was consistent across independent sessions - and notably more consistent than estimates based upon conventional models. This work illustrates the advantage of hierarchical modelling with spDCM, in characterizing the dynamics of effective connectivity.
Context-sensitive and activity-dependent fluctuations in connectivity underlie functional integration in the brain and have been studied widely in terms of synaptic plasticity, learning and condition-specific (e.g., attentional) modulations of synaptic efficacy. This dynamic aspect of brain connectivity has recently attracted a lot of attention in the resting state fMRI community. To explain dynamic functional connectivity in terms of directed effective connectivity among brain regions, we introduce a novel method to identify dynamic effective connectivity using spectral dynamic causal modelling (spDCM). We used parametric empirical Bayes (PEB) to model fluctuations in directed coupling over consecutive windows of resting state fMRI time series. Hierarchical PEB can model random effects on connectivity parameters at the second (between-window) level given connectivity estimates from the first (within-window) level. In this work, we used a discrete cosine transform basis set or eigenvariates (i.e., expression of principal components) to model fluctuations in effective connectivity over windows. We evaluated the ensuing dynamic effective connectivity in terms of the consistency of baseline connectivity within default mode network (DMN), using the resting state fMRI from Human Connectome Project (HCP). To model group-level baseline and dynamic effective connectivity for DMN, we extended the PEB approach by conducting a multilevel PEB analysis of between-session and between-subject group effects. Model comparison clearly spoke to dynamic fluctuations in effective connectivity - and the dynamic functional connectivity these changes explain. Furthermore, baseline effective connectivity was consistent across independent sessions - and notably more consistent than estimates based upon conventional models. This work illustrates the advantage of hierarchical modelling with spDCM, in characterizing the dynamics of effective connectivity.Context-sensitive and activity-dependent fluctuations in connectivity underlie functional integration in the brain and have been studied widely in terms of synaptic plasticity, learning and condition-specific (e.g., attentional) modulations of synaptic efficacy. This dynamic aspect of brain connectivity has recently attracted a lot of attention in the resting state fMRI community. To explain dynamic functional connectivity in terms of directed effective connectivity among brain regions, we introduce a novel method to identify dynamic effective connectivity using spectral dynamic causal modelling (spDCM). We used parametric empirical Bayes (PEB) to model fluctuations in directed coupling over consecutive windows of resting state fMRI time series. Hierarchical PEB can model random effects on connectivity parameters at the second (between-window) level given connectivity estimates from the first (within-window) level. In this work, we used a discrete cosine transform basis set or eigenvariates (i.e., expression of principal components) to model fluctuations in effective connectivity over windows. We evaluated the ensuing dynamic effective connectivity in terms of the consistency of baseline connectivity within default mode network (DMN), using the resting state fMRI from Human Connectome Project (HCP). To model group-level baseline and dynamic effective connectivity for DMN, we extended the PEB approach by conducting a multilevel PEB analysis of between-session and between-subject group effects. Model comparison clearly spoke to dynamic fluctuations in effective connectivity - and the dynamic functional connectivity these changes explain. Furthermore, baseline effective connectivity was consistent across independent sessions - and notably more consistent than estimates based upon conventional models. This work illustrates the advantage of hierarchical modelling with spDCM, in characterizing the dynamics of effective connectivity.
Context-sensitive and activity-dependent fluctuations in connectivity underlie functional integration in the brain and have been studied widely in terms of synaptic plasticity, learning and condition-specific (e.g., attentional) modulations of synaptic efficacy. This dynamic aspect of brain connectivity has recently attracted a lot of attention in the resting state fMRI community. To explain dynamic functional connectivity in terms of directed effective connectivity among brain regions, we introduce a novel method to identify dynamic effective connectivity using spectral dynamic causal modelling (spDCM). We used parametric empirical Bayes (PEB) to model fluctuations in directed coupling over consecutive windows of resting state fMRI time series. Hierarchical PEB can model random effects on connectivity parameters at the second (between-window) level given connectivity estimates from the first (within-window) level. In this work, we used a discrete cosine transform basis set or eigenvariates (i.e., expression of principal components) to model fluctuations in effective connectivity over windows. We evaluated the ensuing dynamic effective connectivity in terms of the consistency of baseline connectivity within default mode network (DMN), using the resting state fMRI from Human Connectome Project (HCP). To model group-level baseline and dynamic effective connectivity for DMN, we extended the PEB approach by conducting a multilevel PEB analysis of between-session and between-subject group effects. Model comparison clearly spoke to dynamic fluctuations in effective connectivity – and the dynamic functional connectivity these changes explain. Furthermore, baseline effective connectivity was consistent across independent sessions – and notably more consistent than estimates based upon conventional models. This work illustrates the advantage of hierarchical modelling with spDCM, in characterizing the dynamics of effective connectivity. •We describe efficient estimation of dynamics in resting state effective connectivity.•Spectral DCM and PEB are used to model fluctuations in neuronal coupling over time.•Dynamics in responses are explained in terms of its causes (effective connectivity).•Baseline and dynamic components of the default mode connectivity are identified.
Context-sensitive and activity-dependent fluctuations in connectivity underlie functional integration in the brain and have been studied widely in terms of synaptic plasticity, learning and condition-specific (e.g., attentional) modulations of synaptic efficacy. This dynamic aspect of brain connectivity has recently attracted a lot of attention in the resting state fMRI community. To explain dynamic functional connectivity in terms of directed effective connectivity among brain regions, we introduce a novel method to identify dynamic effective connectivity using spectral dynamic causal modelling (spDCM). We used parametric empirical Bayes (PEB) to model fluctuations in directed coupling over consecutive windows of resting state fMRI time series. Hierarchical PEB can model random effects on connectivity parameters at the second (between-window) level given connectivity estimates from the first (within-window) level. In this work, we used a discrete cosine transform basis set or eigenvariates (i.e., expression of principal components) to model fluctuations in effective connectivity over windows. We evaluated the ensuing dynamic effective connectivity in terms of the consistency of baseline connectivity within default mode network (DMN), using the resting state fMRI from Human Connectome Project (HCP). To model group-level baseline and dynamic effective connectivity for DMN, we extended the PEB approach by conducting a multilevel PEB analysis of between-session and between-subject group effects. Model comparison clearly spoke to dynamic fluctuations in effective connectivity – and the dynamic functional connectivity these changes explain. Furthermore, baseline effective connectivity was consistent across independent sessions – and notably more consistent than estimates based upon conventional models. This work illustrates the advantage of hierarchical modelling with spDCM, in characterizing the dynamics of effective connectivity. • We describe efficient estimation of dynamics in resting state effective connectivity. • Spectral DCM and PEB are used to model fluctuations in neuronal coupling over time. • Dynamics in responses are explained in terms of its causes (effective connectivity). • Baseline and dynamic components of the default mode connectivity are identified.
Author Razi, Adeel
Pae, Chongwon
Park, Bumhee
Park, Hae-Jeong
Friston, Karl J.
AuthorAffiliation f Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan
e Department of Statistics, Hankuk University of Foreign Studies, Yong-In, Republic of Korea
d The Wellcome Trust Centre for Neuroimaging, University College London, London, UK
g Monash Biomedical Imaging and Monash Institute of Cognitive & Clinical Neurosciences, Monash University, Clayton, Australia
a Department of Nuclear Medicine, Radiology and Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
c BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
b Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea
AuthorAffiliation_xml – name: e Department of Statistics, Hankuk University of Foreign Studies, Yong-In, Republic of Korea
– name: f Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan
– name: g Monash Biomedical Imaging and Monash Institute of Cognitive & Clinical Neurosciences, Monash University, Clayton, Australia
– name: a Department of Nuclear Medicine, Radiology and Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
– name: d The Wellcome Trust Centre for Neuroimaging, University College London, London, UK
– name: b Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea
– name: c BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
Author_xml – sequence: 1
  givenname: Hae-Jeong
  surname: Park
  fullname: Park, Hae-Jeong
  email: parkhj@yonsei.ac.kr
  organization: Department of Nuclear Medicine, Radiology and Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
– sequence: 2
  givenname: Karl J.
  surname: Friston
  fullname: Friston, Karl J.
  organization: The Wellcome Trust Centre for Neuroimaging, University College London, London, UK
– sequence: 3
  givenname: Chongwon
  surname: Pae
  fullname: Pae, Chongwon
  organization: BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
– sequence: 4
  givenname: Bumhee
  surname: Park
  fullname: Park, Bumhee
  organization: Department of Statistics, Hankuk University of Foreign Studies, Yong-In, Republic of Korea
– sequence: 5
  givenname: Adeel
  surname: Razi
  fullname: Razi, Adeel
  organization: The Wellcome Trust Centre for Neuroimaging, University College London, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29158202$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URB_wF1AkNmwSfO3EsTcIWl6VipAQrC3HuRk8ZOxiJyPNv8dhyhS6mpWP5HM_3XPPOTnxwSMhBdAKKIhX68rjHIPbmBVWjEJbAVSU80fkDKhqStW07GTRDS8lgDol5ymtKaUKavmEnDIFjWSUnZH63c6bjbMFDgPayW2xsMH7P9JNu8L5ImKanF8VaTITFsPnr9dPyePBjAmf3b0X5PuH99-uPpU3Xz5eX729Ka3gdCoNreteiB4ZWNOpjjGqqDW1ZFZ2DJWtbY-8FbTDBnhW_SAarAH7lhrVc35BXu-5t3O3wd6in6IZ9W3MweNOB-P0_z_e_dCrsNUCuFTNAnh5B4jh15xz6I1LFsfReAxz0qCEUEoBk9n64oF1Heboczyd125Vy2S9uJ7_u9Fhlb8HzQa5N9gYUoo4HCxA9dKdXuv77vTSnQbQubv7tIdR6_LJXViyufEYwOUegLmTrcOok3XoLfYu5kJ1H9wxkDcPIHZ03lkz_sTdcYjfulXSlw
CitedBy_id crossref_primary_10_3389_fnins_2019_00268
crossref_primary_10_3389_fnins_2021_820641
crossref_primary_10_1016_j_ecosta_2020_04_004
crossref_primary_10_3389_fnhum_2023_1001848
crossref_primary_10_1016_j_neuroimage_2019_01_055
crossref_primary_10_1109_ACCESS_2020_2974997
crossref_primary_10_1111_cns_70234
crossref_primary_10_3390_brainsci13070995
crossref_primary_10_1002_hbm_26750
crossref_primary_10_1109_ACCESS_2019_2963070
crossref_primary_10_1038_s41366_021_00918_y
crossref_primary_10_1016_j_neuroimage_2019_116007
crossref_primary_10_3389_fnagi_2023_1039496
crossref_primary_10_1002_hbm_26751
crossref_primary_10_1007_s00234_020_02497_7
crossref_primary_10_3389_fncir_2021_719364
crossref_primary_10_1109_TNNLS_2021_3106299
crossref_primary_10_1016_j_heliyon_2024_e31746
crossref_primary_10_1186_s40708_020_00116_y
crossref_primary_10_3389_fnins_2023_1200029
crossref_primary_10_1016_j_media_2024_103290
crossref_primary_10_3389_fnins_2018_00287
crossref_primary_10_1038_s41467_022_29775_7
crossref_primary_10_1002_brb3_1698
crossref_primary_10_1016_j_seizure_2023_04_004
crossref_primary_10_1162_netn_a_00266
crossref_primary_10_1016_j_neuroscience_2021_06_024
crossref_primary_10_3389_fncir_2021_608655
crossref_primary_10_1126_sciadv_abm9898
crossref_primary_10_1007_s11682_024_00923_5
crossref_primary_10_1016_j_pscychresns_2021_111356
crossref_primary_10_1016_j_neuroimage_2021_118533
crossref_primary_10_1007_s11336_023_09908_7
crossref_primary_10_3389_fnhum_2022_971062
crossref_primary_10_1016_j_bbr_2024_115255
crossref_primary_10_1002_hbm_24999
crossref_primary_10_1038_s41593_020_00726_z
crossref_primary_10_1016_j_neuroimage_2019_03_019
crossref_primary_10_1002_hbm_24991
crossref_primary_10_1002_hbm_25442
crossref_primary_10_1186_s40359_024_02051_7
crossref_primary_10_1111_psyp_14630
crossref_primary_10_1016_j_nicl_2022_103005
crossref_primary_10_3389_fnins_2019_00973
crossref_primary_10_1016_j_jad_2022_02_052
crossref_primary_10_1088_1741_2552_ad0c5f
crossref_primary_10_3389_fnins_2023_1163111
crossref_primary_10_1016_j_bpsc_2022_11_002
crossref_primary_10_1007_s00234_023_03135_8
crossref_primary_10_1212_WNL_0000000000200060
crossref_primary_10_1109_TIM_2023_3336748
crossref_primary_10_1038_s41467_021_25876_x
crossref_primary_10_1016_j_autneu_2024_103182
crossref_primary_10_1016_j_yebeh_2024_109751
crossref_primary_10_3389_fnins_2022_852799
crossref_primary_10_1016_j_neuroimage_2021_118190
crossref_primary_10_1002_hbm_25751
crossref_primary_10_1016_j_neuroimage_2021_118635
crossref_primary_10_1016_j_nic_2023_01_005
crossref_primary_10_1080_13546805_2019_1606706
crossref_primary_10_1038_s41398_024_03083_8
crossref_primary_10_1002_hbm_24539
crossref_primary_10_1162_imag_a_00442
crossref_primary_10_3389_fnins_2021_704079
crossref_primary_10_3389_fnagi_2022_911513
crossref_primary_10_1016_j_irbm_2021_02_007
crossref_primary_10_1007_s10548_018_0666_3
crossref_primary_10_1162_netn_a_00239
crossref_primary_10_1002_hbm_24376
crossref_primary_10_1007_s11682_023_00835_w
crossref_primary_10_1016_j_nicl_2021_102916
crossref_primary_10_1162_neco_a_01401
crossref_primary_10_1162_netn_a_00116
crossref_primary_10_1162_netn_a_00117
crossref_primary_10_3389_fendo_2022_1117735
crossref_primary_10_1016_j_neuroimage_2023_120161
crossref_primary_10_1016_j_ynpai_2022_100100
crossref_primary_10_1016_j_neuroscience_2024_11_024
crossref_primary_10_1016_j_bbr_2020_112498
crossref_primary_10_1002_hbm_26667
crossref_primary_10_1016_j_neuroimage_2021_118243
crossref_primary_10_1002_hbm_24562
crossref_primary_10_1016_j_knosys_2024_112856
crossref_primary_10_1016_j_brainresbull_2023_110794
crossref_primary_10_1016_j_compbiomed_2025_109898
crossref_primary_10_1162_netn_a_00348
crossref_primary_10_1371_journal_pone_0276419
crossref_primary_10_1038_s41598_021_93190_z
crossref_primary_10_1162_imag_a_00381
crossref_primary_10_1002_jmri_29597
crossref_primary_10_3389_fnmol_2022_999605
crossref_primary_10_1162_netn_a_00182
crossref_primary_10_1109_TASE_2024_3425949
crossref_primary_10_3389_fnagi_2020_584863
crossref_primary_10_1016_j_jpsychires_2019_10_018
crossref_primary_10_1016_j_nicl_2020_102431
crossref_primary_10_1016_j_brainresbull_2025_111312
crossref_primary_10_3389_fnins_2019_00657
crossref_primary_10_1016_j_neuroimage_2023_119915
crossref_primary_10_1016_j_bbr_2021_113188
crossref_primary_10_3389_fnhum_2024_1363125
crossref_primary_10_1016_j_neuroimage_2018_08_053
Cites_doi 10.1016/j.neuroimage.2015.07.063
10.1016/j.neuron.2014.10.015
10.1002/mrm.1910340409
10.1016/S1053-8119(03)00202-7
10.1016/j.neuroimage.2009.11.015
10.1152/jn.00338.2011
10.1002/1097-0193(200102)12:2<61::AID-HBM1004>3.0.CO;2-W
10.1080/10618600.2015.1064434
10.3389/fnhum.2016.00528
10.1126/science.164.3881.828
10.1073/pnas.0135058100
10.1016/j.neuroimage.2012.02.018
10.1016/j.neuroimage.2012.06.078
10.1016/j.neuroimage.2014.11.027
10.1016/j.neuroimage.2012.03.070
10.1016/j.neuroimage.2007.02.041
10.1109/MSP.2015.2482121
10.1016/j.neuron.2010.04.020
10.1016/j.neuroimage.2016.02.074
10.1002/hbm.22058
10.1016/j.neuroimage.2007.07.040
10.1089/brain.2011.0008
10.1016/j.neuroimage.2004.10.044
10.1016/j.neuroimage.2006.08.035
10.1016/j.neuroimage.2016.08.062
10.3389/fnhum.2016.00014
10.3389/fnhum.2015.00670
10.1016/j.neuroimage.2014.07.033
10.1073/pnas.1317424111
10.3389/fpsyg.2012.00206
10.1126/science.1238411
10.1073/pnas.98.2.676
10.1016/j.neuroimage.2014.10.044
10.1016/j.neuroimage.2015.11.055
10.1016/j.neuroimage.2006.01.021
10.1016/j.neuroimage.2015.11.015
10.1073/pnas.1523980113
10.1016/j.neuroimage.2013.07.071
10.1016/j.neuroimage.2013.04.127
10.1006/nimg.1997.0315
10.1016/j.neuroimage.2013.03.004
10.1093/cercor/bhs352
10.1016/j.neuroimage.2009.12.011
10.1016/j.neuroimage.2016.09.019
10.3389/fnsys.2015.00164
10.1016/j.neuroimage.2013.12.009
ContentType Journal Article
Copyright 2017 The Authors
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Oct 15, 2018
2017 The Authors 2017
Copyright_xml – notice: 2017 The Authors
– notice: Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Oct 15, 2018
– notice: 2017 The Authors 2017
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1016/j.neuroimage.2017.11.033
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest One Psychology
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 608
ExternalDocumentID PMC6138953
29158202
10_1016_j_neuroimage_2017_11_033
S1053811917309606
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: Wellcome Trust
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c630t-a044d66de21cab9b22090ca482c8b2e9c4cde3760be513e37df65e41ed70a9d33
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 18:12:45 EDT 2025
Fri Jul 11 03:16:31 EDT 2025
Wed Aug 13 07:48:07 EDT 2025
Mon Jul 21 05:48:03 EDT 2025
Thu Apr 24 23:00:59 EDT 2025
Tue Jul 01 03:01:54 EDT 2025
Fri Feb 23 02:36:56 EST 2024
Tue Aug 26 20:08:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Pt B
Language English
License This is an open access article under the CC BY license.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-a044d66de21cab9b22090ca482c8b2e9c4cde3760be513e37df65e41ed70a9d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811917309606
PMID 29158202
PQID 2097972848
PQPubID 2031077
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6138953
proquest_miscellaneous_1966999128
proquest_journals_2097972848
pubmed_primary_29158202
crossref_primary_10_1016_j_neuroimage_2017_11_033
crossref_citationtrail_10_1016_j_neuroimage_2017_11_033
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2017_11_033
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2017_11_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-15
PublicationDateYYYYMMDD 2018-10-15
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Limited
Academic Press
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Academic Press
References Razi, Friston (bib36) 2016
Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zollei, Polimeni, Fischl, Liu, Buckner (bib48) 2011; 106
Di, Biswal (bib9) 2014; 86
Sharaev, Zavyalova, Ushakov, Kartashov, Velichkovsky (bib39) 2016; 10
Zeng, Wang, Fox, Sabuncu, Hu, Ge, Buckner, Liu (bib49) 2014; 111
Friston, Kahan, Biswal, Razi (bib14) 2014; 94
Friston, Mattout, Trujillo-Barreto, Ashburner, Penny (bib10) 2007; 34
Desikan, Segonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman, Albert, Killiany (bib8) 2006; 31
Greicius, Krasnow, Reiss, Menon (bib18) 2003; 100
Chang, Glover (bib5) 2010; 50
Wang, Ong, Patanaik, Zhou, Chee (bib46) 2016; 113
Friston, Harrison, Penny (bib13) 2003; 19
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, Van Essen, Jenkinson (bib17) 2013; 80
Yan, Cheung, Kelly, Colcombe, Craddock, Di Martino, Li, Zuo, Castellanos, Milham (bib47) 2013; 76
He, Zempel, Snyder, Raichle (bib20) 2010; 66
Stephan, Weiskopf, Drysdale, Robinson, Friston (bib43) 2007; 38
Li, Shen, Huang (bib25) 2016; 25
Papadopoulou, Cooray, Rosch, Moran, Marinazzo, Friston (bib31) 2017; 146
Sharaev, Zavyalova, Ushakov, Kartashov, Velichkovsky (bib40) 2016; 10
Bullmore, Long, Suckling, Fadili, Calvert, Zelaya, Carpenter, Brammer (bib3) 2001; 12
Friston, Litvak, Oswal, Razi, Stephan, van Wijk, Ziegler, Zeidman (bib15) 2016; 128
Gerstein, Perkel (bib16) 1969; 164
Hutchison, Womelsdorf, Gati, Everling, Menon (bib22) 2013; 34
Shakil, Lee, Keilholz (bib38) 2016; 133
Li, Wang, Yao, Hu, Friston (bib24) 2012; 3
Cooray, Sengupta, Douglas, Friston (bib6) 2016; 125
Allen, Damaraju, Plis, Erhardt, Eichele, Calhoun (bib1) 2014; 24
Razi, Kahan, Rees, Friston (bib37) 2015; 106
Maxim, Sendur, Fadili, Suckling, Gould, Howard, Bullmore (bib28) 2005; 25
Monti, Hellyer, Sharp, Leech, Anagnostopoulos, Montana (bib30) 2014; 103
Power, Schlaggar, Petersen (bib33) 2015; 105
Raichle, Snyder (bib35) 2007; 37
Cribben, Haraldsdottir, Atlas, Wager, Lindquist (bib7) 2012; 61
Lowe, Mock, Sorenson (bib27) 1998; 7
McGuire, Paulesu, Frackowiak, Frith (bib29) 1996; 7
Handwerker, Roopchansingh, Gonzalez-Castillo, Bandettini (bib19) 2012; 63
Friston (bib12) 2011; 1
Stephan, Penny, Moran, den Ouden, Daunizeau, Friston (bib42) 2010; 49
Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Chang, Chen, Corbetta, Curtiss, Della Penna, Feinberg, Glasser, Harel, Heath, Larson-Prior, Marcus, Michalareas, Moeller, Oostenveld, Petersen, Prior, Schlaggar, Smith, Snyder, Xu, Yacoub (bib45) 2012; 62
Friston, Zeidman, Litvak (bib11) 2015; 9
Raichle, MacLeod, Snyder, Powers, Gusnard, Shulman (bib34) 2001; 98
Ushakov, Sharaev, Kartashov, Zavyalova, Verkhlyutov, Velichkovsky (bib44) 2016; 10
Hindriks, Adhikari, Murayama, Ganzetti, Mantini, Logothetis, Deco (bib21) 2016; 127
Biswal, Yetkin, Haughton, Hyde (bib2) 1995; 34
Litvak, Garrido, Zeidman, Friston (bib26) 2015; 9
Park, Friston (bib32) 2013; 342
Jeong, Pae, Park (bib23) 2016; 143
Calhoun, Miller, Pearlson, Adali (bib4) 2014; 84
Li (10.1016/j.neuroimage.2017.11.033_bib24) 2012; 3
Desikan (10.1016/j.neuroimage.2017.11.033_bib8) 2006; 31
Shakil (10.1016/j.neuroimage.2017.11.033_bib38) 2016; 133
Allen (10.1016/j.neuroimage.2017.11.033_bib1) 2014; 24
Calhoun (10.1016/j.neuroimage.2017.11.033_bib4) 2014; 84
Monti (10.1016/j.neuroimage.2017.11.033_bib30) 2014; 103
Greicius (10.1016/j.neuroimage.2017.11.033_bib18) 2003; 100
Gerstein (10.1016/j.neuroimage.2017.11.033_bib16) 1969; 164
Papadopoulou (10.1016/j.neuroimage.2017.11.033_bib31) 2017; 146
Friston (10.1016/j.neuroimage.2017.11.033_bib14) 2014; 94
Wang (10.1016/j.neuroimage.2017.11.033_bib46) 2016; 113
Jeong (10.1016/j.neuroimage.2017.11.033_bib23) 2016; 143
Maxim (10.1016/j.neuroimage.2017.11.033_bib28) 2005; 25
McGuire (10.1016/j.neuroimage.2017.11.033_bib29) 1996; 7
Yeo (10.1016/j.neuroimage.2017.11.033_bib48) 2011; 106
Glasser (10.1016/j.neuroimage.2017.11.033_bib17) 2013; 80
Chang (10.1016/j.neuroimage.2017.11.033_bib5) 2010; 50
Stephan (10.1016/j.neuroimage.2017.11.033_bib42) 2010; 49
Raichle (10.1016/j.neuroimage.2017.11.033_bib35) 2007; 37
Razi (10.1016/j.neuroimage.2017.11.033_bib37) 2015; 106
Ushakov (10.1016/j.neuroimage.2017.11.033_bib44) 2016; 10
Cooray (10.1016/j.neuroimage.2017.11.033_bib6) 2016; 125
Lowe (10.1016/j.neuroimage.2017.11.033_bib27) 1998; 7
Zeng (10.1016/j.neuroimage.2017.11.033_bib49) 2014; 111
Handwerker (10.1016/j.neuroimage.2017.11.033_bib19) 2012; 63
Yan (10.1016/j.neuroimage.2017.11.033_bib47) 2013; 76
Friston (10.1016/j.neuroimage.2017.11.033_bib15) 2016; 128
Bullmore (10.1016/j.neuroimage.2017.11.033_bib3) 2001; 12
Razi (10.1016/j.neuroimage.2017.11.033_bib36) 2016
Friston (10.1016/j.neuroimage.2017.11.033_bib13) 2003; 19
Friston (10.1016/j.neuroimage.2017.11.033_bib11) 2015; 9
Raichle (10.1016/j.neuroimage.2017.11.033_bib34) 2001; 98
Biswal (10.1016/j.neuroimage.2017.11.033_bib2) 1995; 34
Hindriks (10.1016/j.neuroimage.2017.11.033_bib21) 2016; 127
Friston (10.1016/j.neuroimage.2017.11.033_bib10) 2007; 34
He (10.1016/j.neuroimage.2017.11.033_bib20) 2010; 66
Litvak (10.1016/j.neuroimage.2017.11.033_bib26) 2015; 9
Stephan (10.1016/j.neuroimage.2017.11.033_bib43) 2007; 38
Friston (10.1016/j.neuroimage.2017.11.033_bib12) 2011; 1
Van Essen (10.1016/j.neuroimage.2017.11.033_bib45) 2012; 62
Cribben (10.1016/j.neuroimage.2017.11.033_bib7) 2012; 61
Li (10.1016/j.neuroimage.2017.11.033_bib25) 2016; 25
Di (10.1016/j.neuroimage.2017.11.033_bib9) 2014; 86
Park (10.1016/j.neuroimage.2017.11.033_bib32) 2013; 342
Power (10.1016/j.neuroimage.2017.11.033_bib33) 2015; 105
Sharaev (10.1016/j.neuroimage.2017.11.033_bib39) 2016; 10
Hutchison (10.1016/j.neuroimage.2017.11.033_bib22) 2013; 34
Sharaev (10.1016/j.neuroimage.2017.11.033_bib40) 2016; 10
References_xml – volume: 9
  start-page: 670
  year: 2015
  ident: bib26
  article-title: Empirical Bayes for group (DCM) studies: a reproducibility study
  publication-title: Front. Hum. Neurosci.
– volume: 25
  start-page: 141
  year: 2005
  end-page: 158
  ident: bib28
  article-title: Fractional Gaussian noise, functional MRI and Alzheimer's disease
  publication-title: Neuroimage
– volume: 146
  start-page: 518
  year: 2017
  end-page: 532
  ident: bib31
  article-title: Dynamic causal modelling of seizure activity in a rat model
  publication-title: Neuroimage
– volume: 10
  start-page: 14
  year: 2016
  ident: bib40
  article-title: Effective connectivity within the default mode network: dynamic causal modeling of resting-state fMRI data
  publication-title: Front. Hum. Neurosci.
– volume: 113
  start-page: 9653
  year: 2016
  end-page: 9658
  ident: bib46
  article-title: Spontaneous eyelid closures link vigilance fluctuation with fMRI dynamic connectivity states
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  ident: bib8
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
– volume: 125
  start-page: 1142
  year: 2016
  end-page: 1154
  ident: bib6
  article-title: Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating
  publication-title: Neuroimage
– volume: 3
  start-page: 206
  year: 2012
  ident: bib24
  article-title: Task-dependent modulation of effective connectivity within the default mode network
  publication-title: Front. Psychol.
– volume: 10
  year: 2016
  ident: bib39
  article-title: Effective connectivity within the default mode network: dynamic causal modeling of resting-state fMRI data
  publication-title: Front. Hum. Neurosci.
– volume: 62
  start-page: 2222
  year: 2012
  end-page: 2231
  ident: bib45
  article-title: The Human Connectome Project: a data acquisition perspective
  publication-title: Neuroimage
– volume: 24
  start-page: 663
  year: 2014
  end-page: 676
  ident: bib1
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cereb. Cortex
– volume: 19
  start-page: 1273
  year: 2003
  end-page: 1302
  ident: bib13
  article-title: Dynamic causal modelling
  publication-title: Neuroimage
– volume: 63
  start-page: 1712
  year: 2012
  end-page: 1719
  ident: bib19
  article-title: Periodic changes in fMRI connectivity
  publication-title: Neuroimage
– volume: 38
  start-page: 387
  year: 2007
  end-page: 401
  ident: bib43
  article-title: Comparing hemodynamic models with DCM
  publication-title: Neuroimage
– volume: 66
  start-page: 353
  year: 2010
  end-page: 369
  ident: bib20
  article-title: The temporal structures and functional significance of scale-free brain activity
  publication-title: Neuron
– volume: 37
  start-page: 1083
  year: 2007
  end-page: 1090
  ident: bib35
  article-title: A default mode of brain function: a brief history of an evolving idea
  publication-title: NeuroImage
– volume: 76
  start-page: 183
  year: 2013
  end-page: 201
  ident: bib47
  article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics
  publication-title: Neuroimage
– volume: 86
  start-page: 53
  year: 2014
  end-page: 59
  ident: bib9
  article-title: Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging
  publication-title: Neuroimage
– volume: 50
  start-page: 81
  year: 2010
  end-page: 98
  ident: bib5
  article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI
  publication-title: Neuroimage
– volume: 105
  start-page: 536
  year: 2015
  end-page: 551
  ident: bib33
  article-title: Recent progress and outstanding issues in motion correction in resting state fMRI
  publication-title: Neuroimage
– volume: 342
  start-page: 1238411
  year: 2013
  ident: bib32
  article-title: Structural and functional brain networks: from connections to cognition
  publication-title: Science
– volume: 164
  start-page: 828
  year: 1969
  end-page: 830
  ident: bib16
  article-title: Simultaneously recorded trains of action potentials: analysis and functional interpretation
  publication-title: Science
– volume: 25
  start-page: 859
  year: 2016
  end-page: 878
  ident: bib25
  article-title: Supervised sparse and functional principal component analysis
  publication-title: J. Comput. Graph. Statistics
– volume: 84
  start-page: 262
  year: 2014
  end-page: 274
  ident: bib4
  article-title: The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery
  publication-title: Neuron
– volume: 94
  start-page: 396
  year: 2014
  end-page: 407
  ident: bib14
  article-title: A DCM for resting state fMRI
  publication-title: Neuroimage
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  ident: bib2
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Reson Med.
– volume: 1
  start-page: 13
  year: 2011
  end-page: 36
  ident: bib12
  article-title: Functional and effective connectivity: a review
  publication-title: Brain Connect.
– volume: 61
  start-page: 907
  year: 2012
  end-page: 920
  ident: bib7
  article-title: Dynamic connectivity regression: determining state-related changes in brain connectivity
  publication-title: Neuroimage
– start-page: 14
  year: 2016
  end-page: 35
  ident: bib36
  article-title: The Connected Brain: causality, models, and intrinsic dynamics
  publication-title: IEEE Signal Process. Mag.
– volume: 98
  start-page: 676
  year: 2001
  end-page: 682
  ident: bib34
  article-title: A default mode of brain function
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 34
  start-page: 220
  year: 2007
  end-page: 234
  ident: bib10
  article-title: Variational free energy and the Laplace approximation
  publication-title: Neuroimage
– volume: 7
  start-page: 119
  year: 1998
  end-page: 132
  ident: bib27
  article-title: Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations
  publication-title: NeuroImage
– volume: 133
  start-page: 111
  year: 2016
  end-page: 128
  ident: bib38
  article-title: Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states
  publication-title: Neuroimage
– volume: 128
  start-page: 413
  year: 2016
  end-page: 431
  ident: bib15
  article-title: Bayesian model reduction and empirical Bayes for group (DCM) studies
  publication-title: Neuroimage
– volume: 106
  start-page: 1125
  year: 2011
  end-page: 1165
  ident: bib48
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
– volume: 10
  start-page: 528
  year: 2016
  ident: bib44
  article-title: Dynamic causal modeling of hippocampal links within the human default mode network: lateralization and computational stability of effective connections
  publication-title: Front. Hum. Neurosci.
– volume: 103
  start-page: 427
  year: 2014
  end-page: 443
  ident: bib30
  article-title: Estimating time-varying brain connectivity networks from functional MRI time series
  publication-title: Neuroimage
– volume: 100
  start-page: 253
  year: 2003
  end-page: 258
  ident: bib18
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 127
  start-page: 242
  year: 2016
  end-page: 256
  ident: bib21
  article-title: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?
  publication-title: Neuroimage
– volume: 9
  start-page: 164
  year: 2015
  ident: bib11
  article-title: Empirical Bayes for DCM: a group inversion scheme
  publication-title: Front. Syst. Neurosci.
– volume: 111
  start-page: 6058
  year: 2014
  end-page: 6062
  ident: bib49
  article-title: Neurobiological basis of head motion in brain imaging
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 106
  start-page: 1
  year: 2015
  end-page: 14
  ident: bib37
  article-title: Construct validation of a DCM for resting state fMRI
  publication-title: Neuroimage
– volume: 12
  start-page: 61
  year: 2001
  end-page: 78
  ident: bib3
  article-title: Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains
  publication-title: Hum. Brain Mapp.
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib17
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
– volume: 7
  start-page: 2095
  year: 1996
  end-page: 2099
  ident: bib29
  article-title: Brain activity during stimulus independent thought
  publication-title: Neuroreport
– volume: 49
  start-page: 3099
  year: 2010
  end-page: 3109
  ident: bib42
  article-title: Ten simple rules for dynamic causal modeling
  publication-title: Neuroimage
– volume: 143
  start-page: 353
  year: 2016
  end-page: 363
  ident: bib23
  article-title: Connectivity-based change point detection for large-size functional networks
  publication-title: Neuroimage
– volume: 34
  start-page: 2154
  year: 2013
  end-page: 2177
  ident: bib22
  article-title: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques
  publication-title: Hum. Brain Mapp.
– volume: 125
  start-page: 1142
  year: 2016
  ident: 10.1016/j.neuroimage.2017.11.033_bib6
  article-title: Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.063
– volume: 84
  start-page: 262
  year: 2014
  ident: 10.1016/j.neuroimage.2017.11.033_bib4
  article-title: The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.10.015
– volume: 34
  start-page: 537
  year: 1995
  ident: 10.1016/j.neuroimage.2017.11.033_bib2
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Reson Med.
  doi: 10.1002/mrm.1910340409
– volume: 19
  start-page: 1273
  year: 2003
  ident: 10.1016/j.neuroimage.2017.11.033_bib13
  article-title: Dynamic causal modelling
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00202-7
– volume: 49
  start-page: 3099
  year: 2010
  ident: 10.1016/j.neuroimage.2017.11.033_bib42
  article-title: Ten simple rules for dynamic causal modeling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.11.015
– volume: 106
  start-page: 1125
  year: 2011
  ident: 10.1016/j.neuroimage.2017.11.033_bib48
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00338.2011
– volume: 12
  start-page: 61
  year: 2001
  ident: 10.1016/j.neuroimage.2017.11.033_bib3
  article-title: Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/1097-0193(200102)12:2<61::AID-HBM1004>3.0.CO;2-W
– volume: 25
  start-page: 859
  year: 2016
  ident: 10.1016/j.neuroimage.2017.11.033_bib25
  article-title: Supervised sparse and functional principal component analysis
  publication-title: J. Comput. Graph. Statistics
  doi: 10.1080/10618600.2015.1064434
– volume: 10
  start-page: 528
  year: 2016
  ident: 10.1016/j.neuroimage.2017.11.033_bib44
  article-title: Dynamic causal modeling of hippocampal links within the human default mode network: lateralization and computational stability of effective connections
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2016.00528
– volume: 164
  start-page: 828
  year: 1969
  ident: 10.1016/j.neuroimage.2017.11.033_bib16
  article-title: Simultaneously recorded trains of action potentials: analysis and functional interpretation
  publication-title: Science
  doi: 10.1126/science.164.3881.828
– volume: 100
  start-page: 253
  year: 2003
  ident: 10.1016/j.neuroimage.2017.11.033_bib18
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0135058100
– volume: 62
  start-page: 2222
  year: 2012
  ident: 10.1016/j.neuroimage.2017.11.033_bib45
  article-title: The Human Connectome Project: a data acquisition perspective
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.018
– volume: 63
  start-page: 1712
  year: 2012
  ident: 10.1016/j.neuroimage.2017.11.033_bib19
  article-title: Periodic changes in fMRI connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.078
– volume: 106
  start-page: 1
  year: 2015
  ident: 10.1016/j.neuroimage.2017.11.033_bib37
  article-title: Construct validation of a DCM for resting state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.11.027
– volume: 61
  start-page: 907
  year: 2012
  ident: 10.1016/j.neuroimage.2017.11.033_bib7
  article-title: Dynamic connectivity regression: determining state-related changes in brain connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.070
– volume: 37
  start-page: 1083
  year: 2007
  ident: 10.1016/j.neuroimage.2017.11.033_bib35
  article-title: A default mode of brain function: a brief history of an evolving idea
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.041
– start-page: 14
  year: 2016
  ident: 10.1016/j.neuroimage.2017.11.033_bib36
  article-title: The Connected Brain: causality, models, and intrinsic dynamics
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2015.2482121
– volume: 66
  start-page: 353
  year: 2010
  ident: 10.1016/j.neuroimage.2017.11.033_bib20
  article-title: The temporal structures and functional significance of scale-free brain activity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.04.020
– volume: 133
  start-page: 111
  year: 2016
  ident: 10.1016/j.neuroimage.2017.11.033_bib38
  article-title: Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.02.074
– volume: 34
  start-page: 2154
  year: 2013
  ident: 10.1016/j.neuroimage.2017.11.033_bib22
  article-title: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22058
– volume: 38
  start-page: 387
  year: 2007
  ident: 10.1016/j.neuroimage.2017.11.033_bib43
  article-title: Comparing hemodynamic models with DCM
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.07.040
– volume: 1
  start-page: 13
  year: 2011
  ident: 10.1016/j.neuroimage.2017.11.033_bib12
  article-title: Functional and effective connectivity: a review
  publication-title: Brain Connect.
  doi: 10.1089/brain.2011.0008
– volume: 25
  start-page: 141
  year: 2005
  ident: 10.1016/j.neuroimage.2017.11.033_bib28
  article-title: Fractional Gaussian noise, functional MRI and Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.10.044
– volume: 34
  start-page: 220
  year: 2007
  ident: 10.1016/j.neuroimage.2017.11.033_bib10
  article-title: Variational free energy and the Laplace approximation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.08.035
– volume: 146
  start-page: 518
  year: 2017
  ident: 10.1016/j.neuroimage.2017.11.033_bib31
  article-title: Dynamic causal modelling of seizure activity in a rat model
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.08.062
– volume: 10
  year: 2016
  ident: 10.1016/j.neuroimage.2017.11.033_bib39
  article-title: Effective connectivity within the default mode network: dynamic causal modeling of resting-state fMRI data
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2016.00014
– volume: 9
  start-page: 670
  year: 2015
  ident: 10.1016/j.neuroimage.2017.11.033_bib26
  article-title: Empirical Bayes for group (DCM) studies: a reproducibility study
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2015.00670
– volume: 103
  start-page: 427
  year: 2014
  ident: 10.1016/j.neuroimage.2017.11.033_bib30
  article-title: Estimating time-varying brain connectivity networks from functional MRI time series
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.07.033
– volume: 111
  start-page: 6058
  year: 2014
  ident: 10.1016/j.neuroimage.2017.11.033_bib49
  article-title: Neurobiological basis of head motion in brain imaging
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1317424111
– volume: 3
  start-page: 206
  year: 2012
  ident: 10.1016/j.neuroimage.2017.11.033_bib24
  article-title: Task-dependent modulation of effective connectivity within the default mode network
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2012.00206
– volume: 342
  start-page: 1238411
  year: 2013
  ident: 10.1016/j.neuroimage.2017.11.033_bib32
  article-title: Structural and functional brain networks: from connections to cognition
  publication-title: Science
  doi: 10.1126/science.1238411
– volume: 98
  start-page: 676
  year: 2001
  ident: 10.1016/j.neuroimage.2017.11.033_bib34
  article-title: A default mode of brain function
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.98.2.676
– volume: 105
  start-page: 536
  year: 2015
  ident: 10.1016/j.neuroimage.2017.11.033_bib33
  article-title: Recent progress and outstanding issues in motion correction in resting state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.044
– volume: 10
  start-page: 14
  year: 2016
  ident: 10.1016/j.neuroimage.2017.11.033_bib40
  article-title: Effective connectivity within the default mode network: dynamic causal modeling of resting-state fMRI data
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2016.00014
– volume: 127
  start-page: 242
  year: 2016
  ident: 10.1016/j.neuroimage.2017.11.033_bib21
  article-title: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.11.055
– volume: 31
  start-page: 968
  year: 2006
  ident: 10.1016/j.neuroimage.2017.11.033_bib8
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 128
  start-page: 413
  year: 2016
  ident: 10.1016/j.neuroimage.2017.11.033_bib15
  article-title: Bayesian model reduction and empirical Bayes for group (DCM) studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.11.015
– volume: 113
  start-page: 9653
  year: 2016
  ident: 10.1016/j.neuroimage.2017.11.033_bib46
  article-title: Spontaneous eyelid closures link vigilance fluctuation with fMRI dynamic connectivity states
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1523980113
– volume: 86
  start-page: 53
  year: 2014
  ident: 10.1016/j.neuroimage.2017.11.033_bib9
  article-title: Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.07.071
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.neuroimage.2017.11.033_bib17
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 7
  start-page: 119
  year: 1998
  ident: 10.1016/j.neuroimage.2017.11.033_bib27
  article-title: Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations
  publication-title: NeuroImage
  doi: 10.1006/nimg.1997.0315
– volume: 7
  start-page: 2095
  year: 1996
  ident: 10.1016/j.neuroimage.2017.11.033_bib29
  article-title: Brain activity during stimulus independent thought
  publication-title: Neuroreport
– volume: 76
  start-page: 183
  year: 2013
  ident: 10.1016/j.neuroimage.2017.11.033_bib47
  article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.004
– volume: 24
  start-page: 663
  year: 2014
  ident: 10.1016/j.neuroimage.2017.11.033_bib1
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhs352
– volume: 50
  start-page: 81
  year: 2010
  ident: 10.1016/j.neuroimage.2017.11.033_bib5
  article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.011
– volume: 143
  start-page: 353
  year: 2016
  ident: 10.1016/j.neuroimage.2017.11.033_bib23
  article-title: Connectivity-based change point detection for large-size functional networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.09.019
– volume: 9
  start-page: 164
  year: 2015
  ident: 10.1016/j.neuroimage.2017.11.033_bib11
  article-title: Empirical Bayes for DCM: a group inversion scheme
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2015.00164
– volume: 94
  start-page: 396
  year: 2014
  ident: 10.1016/j.neuroimage.2017.11.033_bib14
  article-title: A DCM for resting state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.12.009
SSID ssj0009148
Score 2.5815146
Snippet Context-sensitive and activity-dependent fluctuations in connectivity underlie functional integration in the brain and have been studied widely in terms of...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 594
SubjectTerms Adult
Bayes Theorem
Bayesian analysis
Brain - physiology
Brain mapping
Brain research
Connectome - methods
Female
Fourier transforms
Functional magnetic resonance imaging
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Male
Models, Neurological
Nerve Net - physiology
Neural networks
Neural Pathways - physiology
Neurosciences
Rest - physiology
Studies
Synaptic plasticity
Synaptic strength
Time series
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66gngR364vKnittM2jDR5EfLAK60EU9haaNMUV7aq7_n9nmrTrA2XPzUAznUy-Zr58Q8gRhUjROqOhoZSHLNYilBkzWH2kUWayjGk87-jfit4DuxnwgT9wG3taZZMT60RdjAyekcNPukxlCsk0O319C7FrFFZXfQuNebKA0mUY1ekgnYruxsxdheM0zGCAZ_I4fletFzl8gVWLBK_0GLU8Kf1re_oNP3-yKL9sS1crZNnjyeDMBcAqmbPVGlns-4r5OmEXruV84IgbkNsCg9wW47pGBMMqwO4csIEF9d2ioOzfXW-Qh6vL-_Ne6DslhEbQaBLmEWOFEIVNYpNrqRPwVoR65YnJdGKlYaawSH_RluOxZ1qUglsW2yKNcllQukk61aiy2yQooxIglRFxCWAl5zJnGkt3prQlDCxNl6SNg5TxMuLYzeJZNXyxJzV1rULXwl-GAtd2SdxavjopjRlsZPMNVHNVFJKbgnw_g-1Ja-vhhIMJM1rvNZ9c-WU9VtMg7JLD9jEsSKyy5JUdfYwVpDSBqDuBMVsuQtrpJjLmALkScOK32GkHoNj39yfV8LEW_RZYUeZ05__X2iVLMIdasDfme6Qzef-w-4CaJvqgXhqf0PcXyQ
  priority: 102
  providerName: ProQuest
Title Dynamic effective connectivity in resting state fMRI
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811917309606
https://dx.doi.org/10.1016/j.neuroimage.2017.11.033
https://www.ncbi.nlm.nih.gov/pubmed/29158202
https://www.proquest.com/docview/2097972848
https://www.proquest.com/docview/1966999128
https://pubmed.ncbi.nlm.nih.gov/PMC6138953
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEF_EQulLsa225xcp9DVekv3K4pNelbPtHXIq3NuS3WwwpUbR89W_3ZnsJvZaCgd9SUh2B5LJ7Mxs5jczhHyhICnG5DS2lPKYpUbEKmcWo480yW2eM4P_OyZTMb5i3-Z8vkZGXS4MwiqD7vc6vdXW4c4wcHN4V9fDC_AMwNzgfoO2fjhmsDOJUn7w9ALzUCnz6XCcxjg7oHk8xqutGVnfwMpFkJc8wHqelP7LRP3tgv6JpPzNNJ1ukLfBp4yO_GO_I2uueU9eT0LU_ANhX33b-ciDN0C_RRbxLdZ3jojqJsIOHWDEoja_KKoms7NNcnV6cjkax6FbQmwFTRZxkTBWClG6LLWFUSbLEpVgzfLM5iZzyjJbOoTAGMfx16csK8EdS10pk0KVlG6R9ea2cZ9IVCUVuFVWpBU4LAVXBTMYvrOVq2BiZQdEdgzSNpQSx44Wv3SHGfupX1irkbWw09DA2gFJe8o7X05jBRrVfQPdpYuCgtOg81egPexpl8RqRerd7pPrsLQfYFxJJcGq5wPyuR-GRYmRlqJxt48PGtSaQM87gzkfvYT0r5uplIPblQETl2Snn4AFv5dHmvq6LfwtMKrM6fZ_vdQOeQNXbU3flO-S9cX9o9sDx2ph9tuVA0c5l_vk1dFo9uMcz2ffx1M4H59Mz2fPY2Yosg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhUuFZTXQilGgmNQ_EysCiHUh3ZptwfUSnszseOIRTRb2K0Qf6q_kZk4ydIi0F56tidKxpNvxp7PM4S8FmApzuUi8UKoRDKnE5NLj9lHkeY-z6XD847xiR6eyY8TNVkjV91dGKRVdpjYAHU583hGDpt0k5kMwDR_f_E9wa5RmF3tWmhEszgKv37Clm3-brQP6_uG88OD071h0nYVSLwW6SIpUilLrcvAmS-ccRyenGJtb-5zx4Px0pcBqSIuKDwizMpKqyBZKLO0MCUegALk3wHHm-JmL5tkyyK_TMard0okOWOmZQ5FPllTn3J6DiiBhLLsLdYOFeJf7vDvcPcma_MPN3h4n2y28Sv9EA3uAVkL9RbZGLcZ-odE7scW9zQSRQBLqUcujY9dKui0ptgNBBwmbe4y0Wr8afSInN2KDh-T9XpWh6eEVmkFIZzXrILgqFCmkA5Thb4KFUys_IBknYKsb8uWY_eMb7bjp321S9VaVC3saiyodkBYL3kRS3esIGO6NbDd1VQAUwv-ZQXZ3V62DV9iWLKi9Ha35LaFkbldGv2AvOqHAQAwq1PUYXY5twChGqN8DnOeRAvpP5cbpiDE46DEa7bTT8Di4tdH6umXpsi4xgy2Es_-_1ovyd3h6fjYHo9Ojp6Te_A9TbFgprbJ-uLHZXgBEdvC7TS_CSWfb_u__A1YmlVg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnTTxgvimMCBI8BiIP_JhIYSArloZraaJSXszseNoRZAO2gnxr_HXcRc7KQOB-rJn-5T4fP757Pv5DuCJQEsxphCxFSKNJTNZrAppKfooksIWhTR03zGdZfvH8t1JerIFP7u3MESr7DCxBepqYemOHA_pKlc5gmnxvA60iMPR-NXZ15gqSFGktSun4U3kwP34jse35cvJCOf6KefjvQ9v9-NQYSC2mUhWcZlIWWVZ5TizpVGG41cSyvPNbWG4U1bayhFtxLiUrgvzqs5SJ5mr8qRUFV2GIvxv53QqGsD2m73Z4dE65S-T_iFeKuKCMRV4RJ5d1marnH9BzCB6Wf6MMokK8a_N8W_n908O52-b4vgaXA3ebPTam9912HLNDdiZhnj9TZAjX_A-8rQRRNbIErPG-poV0byJqDYIbp9R-7IpqqdHk1twfClavA2DZtG4uxDVSY0Onc1Yja5SmapSGgoc2trV2LG2Q8g7BWkbkphTLY3PumOrfdJr1WpSLZ5xNKp2CKyXPPOJPDaQUd0c6O6hKkKrxt1mA9kXvWxwZryTsqH0bjflOoDKUq-XwBAe980IBxTjKRu3OF9qBNSMfH6Ofe54C-mHyxVL0eHjqMQLttN3oFTjF1ua-WmbcjyjeHYq7v3_tx7BDq5J_X4yO7gPV3A4beZglu7CYPXt3D1A921lHoZ1EsHHy16avwDjhVr7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+effective+connectivity+in+resting+state+fMRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Park%2C+Hae-Jeong&rft.au=Friston%2C+Karl+J&rft.au=Pae%2C+Chongwon&rft.au=Park%2C+Bumhee&rft.date=2018-10-15&rft.eissn=1095-9572&rft.volume=180&rft.issue=Pt+B&rft.spage=594&rft_id=info:doi/10.1016%2Fj.neuroimage.2017.11.033&rft_id=info%3Apmid%2F29158202&rft.externalDocID=29158202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon