Radiological images and machine learning: Trends, perspectives, and prospects
The application of machine learning to radiological images is an increasingly active research area that is expected to grow in the next five to ten years. Recent advances in machine learning have the potential to recognize and classify complex patterns from different radiological imaging modalities...
Saved in:
Published in | Computers in biology and medicine Vol. 108; pp. 354 - 370 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.05.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The application of machine learning to radiological images is an increasingly active research area that is expected to grow in the next five to ten years. Recent advances in machine learning have the potential to recognize and classify complex patterns from different radiological imaging modalities such as x-rays, computed tomography, magnetic resonance imaging and positron emission tomography imaging. In many applications, machine learning based systems have shown comparable performance to human decision-making. The applications of machine learning are the key ingredients of future clinical decision making and monitoring systems. This review covers the fundamental concepts behind various machine learning techniques and their applications in several radiological imaging areas, such as medical image segmentation, brain function studies and neurological disease diagnosis, as well as computer-aided systems, image registration, and content-based image retrieval systems. Synchronistically, we will briefly discuss current challenges and future directions regarding the application of machine learning in radiological imaging. By giving insight on how take advantage of machine learning powered applications, we expect that clinicians can prevent and diagnose diseases more accurately and efficiently. |
---|---|
AbstractList | The application of machine learning to radiological images is an increasingly active research area that is expected to grow in the next five to ten years. Recent advances in machine learning have the potential to recognize and classify complex patterns from different radiological imaging modalities such as x-rays, computed tomography, magnetic resonance imaging and positron emission tomography imaging. In many applications, machine learning based systems have shown comparable performance to human decision-making. The applications of machine learning are the key ingredients of future clinical decision making and monitoring systems. This review covers the fundamental concepts behind various machine learning techniques and their applications in several radiological imaging areas, such as medical image segmentation, brain function studies and neurological disease diagnosis, as well as computer-aided systems, image registration, and content-based image retrieval systems. Synchronistically, we will briefly discuss current challenges and future directions regarding the application of machine learning in radiological imaging. By giving insight on how take advantage of machine learning powered applications, we expect that clinicians can prevent and diagnose diseases more accurately and efficiently. The application of machine learning to radiological images is an increasingly active research area that is expected to grow in the next five to ten years. Recent advances in machine learning have the potential to recognize and classify complex patterns from different radiological imaging modalities such as x-rays, computed tomography, magnetic resonance imaging and positron emission tomography imaging. In many applications, machine learning based systems have shown comparable performance to human decision-making. The applications of machine learning are the key ingredients of future clinical decision making and monitoring systems. This review covers the fundamental concepts behind various machine learning techniques and their applications in several radiological imaging areas, such as medical image segmentation, brain function studies and neurological disease diagnosis, as well as computer-aided systems, image registration, and content-based image retrieval systems. Synchronistically, we will briefly discuss current challenges and future directions regarding the application of machine learning in radiological imaging. By giving insight on how take advantage of machine learning powered applications, we expect that clinicians can prevent and diagnose diseases more accurately and efficiently.The application of machine learning to radiological images is an increasingly active research area that is expected to grow in the next five to ten years. Recent advances in machine learning have the potential to recognize and classify complex patterns from different radiological imaging modalities such as x-rays, computed tomography, magnetic resonance imaging and positron emission tomography imaging. In many applications, machine learning based systems have shown comparable performance to human decision-making. The applications of machine learning are the key ingredients of future clinical decision making and monitoring systems. This review covers the fundamental concepts behind various machine learning techniques and their applications in several radiological imaging areas, such as medical image segmentation, brain function studies and neurological disease diagnosis, as well as computer-aided systems, image registration, and content-based image retrieval systems. Synchronistically, we will briefly discuss current challenges and future directions regarding the application of machine learning in radiological imaging. By giving insight on how take advantage of machine learning powered applications, we expect that clinicians can prevent and diagnose diseases more accurately and efficiently. |
Author | Sejdić, Ervin Zhang, Zhenwei |
Author_xml | – sequence: 1 givenname: Zhenwei surname: Zhang fullname: Zhang, Zhenwei – sequence: 2 givenname: Ervin surname: Sejdić fullname: Sejdić, Ervin email: esejdic@ieee.org |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31054502$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URKeFv4AisWFBwrUd58ECAVV5SEVIqKwtx76Zekjs1M6M1H9fh7YUZjUry_bxd8-9xyfkyHmHhGQUCgq0ersptB-nzvoRTcGAtgWwAmj9hKxoU7c5CF4ekRUAhbxsmDgmJzFuAKAEDs_IMacgSgFsRb7_VMb6wa-tVkNmR7XGmClnslHpK-swG1AFZ936XXYZ0Jn4JpswxAn1bHeYdot2Cv7PSXxOnvZqiPjifj0lvz6fX559zS9-fPl29vEi1xWHOW-bugZhOl02uim16Vpema4GqHuthKK8FGXVo9GtEtT0QitQVaeQt50RIICfkvd33GnbpRFodHNQg5xCaiDcSK-s_P_G2Su59jtZCU55VSbA63tA8NdbjLMcbdQ4DMqh30bJGGsZ503DkvTVnnTjt8Gl9hZVnaZO2wX48l9Hf608TPrRsk7DigF7qe2sZusXg3aQFOQSrdzIx2jlEq0EJlORBGj2AA81Dnj66e4ppkx2FoOM2qLTaGxIsUnj7SGQD3sQPVi3fJvfeHMY4hZnudua |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3523519 crossref_primary_10_1016_j_jddst_2024_106210 crossref_primary_10_1016_j_ejmp_2024_104834 crossref_primary_10_3390_bioengineering11070679 crossref_primary_10_4103_1735_3327_369629 crossref_primary_10_1002_jum_15684 crossref_primary_10_1016_j_compbiomed_2020_103884 crossref_primary_10_3390_medicina59030487 crossref_primary_10_1002_smtd_202400305 crossref_primary_10_1016_j_compbiomed_2020_103767 crossref_primary_10_3390_diagnostics11050742 crossref_primary_10_1109_TGRS_2020_2976896 crossref_primary_10_3233_JIFS_231345 crossref_primary_10_1109_JBHI_2020_2991043 crossref_primary_10_3389_fmed_2022_945698 crossref_primary_10_1038_s41746_022_00712_8 crossref_primary_10_3390_bdcc6010002 crossref_primary_10_1007_s12559_023_10175_y crossref_primary_10_1016_j_rpor_2020_03_015 crossref_primary_10_1016_j_health_2022_100096 crossref_primary_10_1109_JIOT_2022_3144127 crossref_primary_10_32604_cmes_2024_057889 crossref_primary_10_1186_s12890_025_03588_y crossref_primary_10_1097_MD_0000000000039343 crossref_primary_10_1016_j_compbiomed_2020_103751 crossref_primary_10_3390_diagnostics13071212 crossref_primary_10_3389_fncom_2024_1418546 crossref_primary_10_1109_ACCESS_2023_3285115 crossref_primary_10_3390_diagnostics15020168 crossref_primary_10_47836_pjst_31_1_33 crossref_primary_10_1016_j_isci_2024_110159 crossref_primary_10_1109_JSEN_2021_3109629 crossref_primary_10_5624_isd_2020_50_2_81 crossref_primary_10_1016_j_compbiomed_2024_108844 crossref_primary_10_1002_ima_22873 crossref_primary_10_1016_j_compmedimag_2024_102491 crossref_primary_10_1007_s00330_023_10181_6 crossref_primary_10_1186_s12859_020_03647_7 crossref_primary_10_1016_j_compbiomed_2022_106374 crossref_primary_10_1016_j_ebiom_2025_105642 crossref_primary_10_1002_jmri_29708 crossref_primary_10_1002_jum_15413 crossref_primary_10_1007_s12539_024_00620_3 crossref_primary_10_1038_s41598_024_71420_4 crossref_primary_10_3390_jpm12101579 crossref_primary_10_7759_cureus_46124 crossref_primary_10_7759_cureus_48307 crossref_primary_10_1002_cam4_70069 crossref_primary_10_1088_1361_6560_ab843e crossref_primary_10_1097_MD_0000000000038513 crossref_primary_10_3390_antibiotics13080788 crossref_primary_10_58600_eurjther1842 crossref_primary_10_3390_info15100623 crossref_primary_10_1016_j_media_2021_102218 crossref_primary_10_5624_isd_20240038 crossref_primary_10_3390_jpm11111150 crossref_primary_10_1007_s11517_021_02495_8 crossref_primary_10_1088_1742_6596_1948_1_012057 crossref_primary_10_3390_ijerph19031728 crossref_primary_10_1007_s13042_024_02411_0 crossref_primary_10_1109_ACCESS_2023_3260027 crossref_primary_10_14366_usg_20179 crossref_primary_10_1016_j_jmrt_2023_09_280 crossref_primary_10_1007_s42979_022_01642_8 crossref_primary_10_3390_diagnostics13182963 crossref_primary_10_1007_s11886_020_01299_w crossref_primary_10_1016_j_mattod_2021_11_027 crossref_primary_10_1007_s13735_023_00279_4 crossref_primary_10_1016_j_compbiomed_2020_103677 crossref_primary_10_1109_ACCESS_2024_3487784 crossref_primary_10_1016_j_cmpb_2021_105971 crossref_primary_10_1007_s11042_024_18358_x crossref_primary_10_3390_electronics13234684 crossref_primary_10_1016_j_mtcomm_2024_110290 crossref_primary_10_1063_5_0173720 crossref_primary_10_1186_s12911_022_01985_5 crossref_primary_10_1016_j_aej_2024_01_043 crossref_primary_10_7759_cureus_72646 crossref_primary_10_1016_j_jhsa_2019_11_019 crossref_primary_10_1016_j_bspc_2021_102954 crossref_primary_10_1155_2020_6789306 crossref_primary_10_3390_cancers15061750 crossref_primary_10_3390_e23040382 crossref_primary_10_37394_23205_2023_22_37 crossref_primary_10_1016_j_clinimag_2022_04_007 crossref_primary_10_1007_s00261_024_04512_4 crossref_primary_10_1002_jor_25761 crossref_primary_10_4103_srmjrds_srmjrds_106_23 crossref_primary_10_1016_j_compbiomed_2019_103579 crossref_primary_10_3389_frai_2021_798962 crossref_primary_10_1007_s00247_021_05057_0 crossref_primary_10_1049_iet_ipr_2020_1048 crossref_primary_10_1093_bib_bbac437 crossref_primary_10_3390_cancers16172988 crossref_primary_10_1007_s13353_023_00826_z crossref_primary_10_1136_annrheumdis_2020_217160 crossref_primary_10_3389_fonc_2023_1089998 crossref_primary_10_1155_2022_9699612 crossref_primary_10_3390_jimaging8080205 crossref_primary_10_1016_j_lungcan_2022_12_002 crossref_primary_10_1038_s44172_025_00345_1 crossref_primary_10_1007_s10489_021_02196_7 crossref_primary_10_1016_j_cmpb_2021_106320 crossref_primary_10_1080_26415275_2022_2114479 crossref_primary_10_1002_cdt3_27 crossref_primary_10_1093_gigascience_giaf016 crossref_primary_10_3233_JIFS_220628 crossref_primary_10_7759_cureus_59507 crossref_primary_10_17776_csj_691683 crossref_primary_10_1016_j_ostima_2024_100250 crossref_primary_10_1007_s10462_025_11146_5 crossref_primary_10_1007_s10489_022_04329_y crossref_primary_10_1049_iet_ipr_2019_1690 |
Cites_doi | 10.1109/TPAMI.2007.70714 10.1016/S0140-6736(12)60815-0 10.1007/978-3-319-24471-6_8 10.1016/j.eswa.2015.10.015 10.1109/TITB.2011.2165076 10.1016/j.neucom.2015.05.036 10.1016/j.media.2012.09.004 10.1016/j.neuroimage.2014.04.056 10.1007/s11682-015-9356-x 10.1016/j.jneumeth.2015.09.019 10.1016/j.eswa.2005.11.016 10.1016/j.neuroimage.2016.05.029 10.1007/s10916-010-9518-8 10.1109/TMI.2016.2526687 10.1016/j.media.2012.02.005 10.1109/TMI.2013.2258030 10.1186/1475-925X-14-S2-S7 10.1109/TMI.2016.2535865 10.1148/radiol.2533081632 10.1016/j.compmedimag.2016.07.004 10.1016/j.neucom.2015.08.048 10.1109/TMI.2006.886812 10.1016/j.media.2016.07.007 10.1016/j.compmedimag.2014.03.001 10.1016/j.csbj.2014.11.005 10.1542/peds.112.4.951 10.1001/jamainternmed.2015.5231 10.1016/j.media.2014.04.006 10.1007/s10278-015-9857-6 10.1016/j.neucom.2013.03.018 10.1016/j.jbi.2014.02.018 10.1016/j.neuroimage.2009.02.013 10.1016/j.neuroimage.2014.01.033 10.1016/j.jneumeth.2015.12.005 10.1016/j.neuroimage.2016.01.024 10.1016/j.neuroimage.2014.12.061 10.1016/j.neuroimage.2017.04.041 10.1148/radiol.2312021185 10.1186/s12938-015-0003-y 10.1038/s41598-017-00239-z 10.1016/j.ijrobp.2013.05.015 10.1038/nature14539 10.1016/j.neuroimage.2014.04.048 10.1016/j.compbiomed.2015.06.012 10.1053/snuc.2003.127314 10.1016/j.mcm.2010.11.044 10.1016/j.nicl.2015.01.008 10.1016/j.media.2016.10.010 10.4236/jcc.2015.311023 10.1038/srep27327 10.1016/j.neuroimage.2009.02.018 10.1109/TIP.2015.2493446 10.1088/0031-9155/58/13/R97 10.1016/j.neuroimage.2011.09.012 10.1016/j.yebeh.2015.04.055 10.1016/j.media.2016.06.023 10.1016/j.jvcir.2007.05.003 10.1016/j.media.2016.01.005 10.1007/s00521-012-1196-7 10.1016/j.media.2014.06.009 10.1023/A:1007515423169 10.1016/j.cviu.2016.04.002 10.1016/j.artmed.2014.12.004 10.1016/j.neucom.2017.06.048 10.1088/1361-6560/61/24/8676 10.1007/978-3-319-07269-2_5 10.1016/j.neuroimage.2017.03.025 10.1016/j.neuroimage.2011.03.080 10.1016/j.jvcir.2015.08.015 10.1016/j.neuroimage.2017.07.008 10.1016/j.neuroimage.2011.09.069 10.1148/rg.2017160130 10.1093/brain/awm319 10.1016/S1076-6332(03)00671-8 10.1186/s12938-016-0146-5 10.1016/j.ijrobp.2008.07.001 10.2214/AJR.09.3522 10.18383/j.tom.2016.00211 10.3233/IDA-2002-6504 10.1007/s00038-011-0315-z 10.1016/j.neucom.2016.02.060 10.5815/ijigsp.2016.06.02 10.2217/iim.10.24 10.1148/radiol.2423060260 10.1007/s11517-015-1412-6 10.1118/1.4922681 10.1088/0031-9155/61/2/791 10.1016/j.cmpb.2016.10.021 10.1023/A:1018628609742 10.1038/s41598-017-15720-y 10.1016/j.media.2016.05.004 10.1007/s10916-014-0171-5 10.1016/j.compmedimag.2014.04.007 10.1016/j.neuroimage.2011.11.066 10.1001/archinternmed.2009.427 10.1002/hbm.22254 10.1002/jmri.24913 10.1016/j.media.2015.04.015 10.1118/1.4928400 10.1111/jon.12443 10.1007/s13246-015-0389-7 10.1016/j.neuroscience.2016.06.025 10.1371/journal.pone.0077810 10.1371/journal.pmed.1002683 10.5120/cae2016652096 10.1007/BF00361657 10.1109/TMI.2014.2321024 10.1109/TMI.2016.2548501 10.1016/j.jacr.2009.09.022 10.1111/insr.12016 10.1007/s11682-015-9448-7 10.1118/1.4919772 10.1016/j.cmpb.2014.01.014 10.1016/j.acra.2010.11.013 10.1148/radiol.2015142346 10.1016/j.jneumeth.2015.08.011 10.1016/j.patcog.2015.09.009 10.1109/TMI.2015.2508280 10.1016/j.neuroimage.2013.11.040 10.1016/j.jneumeth.2013.11.016 10.1016/S1076-6332(99)80058-0 10.1007/s11432-016-9008-0 10.1016/j.patcog.2017.08.004 10.1016/j.jneumeth.2014.11.011 10.1016/j.compbiomed.2016.11.003 10.1371/journal.pone.0153043 10.1016/j.cmpb.2015.12.014 10.1212/WNL.0000000000000543 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. 2019. Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. – notice: 2019. Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1016/j.compbiomed.2019.02.017 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database ProQuest Health & Medical Collection Medical Database Research Collection Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 370 |
ExternalDocumentID | PMC6531364 31054502 10_1016_j_compbiomed_2019_02_017 S0010482519300642 |
Genre | Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: R01 HD074819 – fundername: NICHD NIH HHS grantid: R01 HD092239 – fundername: NIA NIH HHS grantid: K07 AG052668 |
GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- 3V. AACTN AAIAV ABLVK ABYKQ AFKWA AHPSJ AJBFU AJOXV AMFUW EFLBG LCYCR M0N RIG AAYXX AFCTW AGRNS ALIPV CITATION CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c630t-987705dbc48c84cdb936db7007fca5a134546fedc9a51df5ca0a6bae39bd50503 |
IEDL.DBID | 7X7 |
ISSN | 0010-4825 1879-0534 |
IngestDate | Thu Aug 21 14:04:26 EDT 2025 Mon Jul 21 09:19:08 EDT 2025 Wed Aug 13 11:03:15 EDT 2025 Thu Apr 03 06:59:22 EDT 2025 Thu Apr 24 23:06:37 EDT 2025 Tue Jul 01 03:28:32 EDT 2025 Fri Feb 23 02:24:55 EST 2024 Tue Aug 26 16:33:59 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Deep neural network Imaging modalities Machine learning |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c630t-987705dbc48c84cdb936db7007fca5a134546fedc9a51df5ca0a6bae39bd50503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doi.org/10.1016/j.compbiomed.2019.02.017 |
PMID | 31054502 |
PQID | 2227017194 |
PQPubID | 1226355 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6531364 proquest_miscellaneous_2229233882 proquest_journals_2227017194 pubmed_primary_31054502 crossref_citationtrail_10_1016_j_compbiomed_2019_02_017 crossref_primary_10_1016_j_compbiomed_2019_02_017 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_02_017 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_02_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Lee, Chang, Hsieh (bib49) 2016; 54 Tong, Wolz, Wang, Gao, Misawa, Fujiwara, Mori, Hajnal, Rueckert (bib105) 2015; 23 Cruz-Roa, Arevalo Ovalle, Madabhushi, González Osorio (bib81) 2013 Shiraishi, Pesce, Metz, Doi (bib82) 2009; 253 Yao, Burns, Munoz, Summers (bib127) 2012; vol. 15 Mitchell, Blum (bib28) 1998 Li, Jia, Hu (bib115) 2015; 3 Arias, Martínez-Gómez, Gámez, Seco de Herrera, Müller (bib55) 2016; 151 University of Wisconsin School of Medicine and Public Health (bib21) 2016 Dayan (bib27) 2009 Iyer, Lee (bib5) 2010; 194 Wang, Nie, Yap, Li, Shi, Geng, Guo, Shen (bib108) 2014; 9 Guerrero, Ledig, Rueckert (bib190) 2014 Cheplygina, van Opbroek, Ikram, Vernooij, de Bruijne (bib221) 2016 Kloppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (bib171) 2008; 131 Banaem, Dehnavi, Shahnazi (bib157) 2015; 12 Dubey, Singh, Singh (bib203) 2015; 24 Mehrtasha, Sedghic, Ghafooriana, Taghipoura, Tempanya, Kapura, Mousavic, Abolmaesumib, Fedorova (bib147) 2017 Wang, Yang, Weinreb, Han, Li, Kong, Yan, Ke, Luo, Liu (bib165) 2017; 7 Mena, Gonzalez (bib226) 2006 Cheplygina, de Bruijne, Pluim (bib225) 2018 Wang, Khosla, Gargeya, Irshad, Beck (bib162) 2016 Ramirez, Sprechmann, Sapiro (bib204) 2010; vol. 1 Singh, Samavedham (bib179) 2015; 256 Ahmed, Brodley, Blackmon, Kuzniecky, Barash, Carlson, Quinn, Doyle, French, Devinsky, Thesen (bib185) 2015; 48 Kourou, Exarchos, Exarchos, Karamouzis, Fotiadis (bib18) 2015; 13 Bron, Smits, Van Swieten, Niessen, Klein (bib177) 2014 Sammouda, Jomaa, Mathkour (bib73) 2012 Wei, Li, Wilson (bib199) 2005 Larroza, Moratal, Paredes-Sánchez, Soria-Olivas, Chust, Arribas, Arana (bib31) 2015; 42 Griffis, Allendorfer, Szaflarski (bib107) 2016; 257 Zhang, Li, Deng, Wang, Lin, Ji, Shen (bib94) 2015; 108 Hsieh, Lo, Hsiao (bib151) 2017; 139 Chao, Ahluwalia, Barnett, Stevens, Murphy, Stockham, Shiue, Suh (bib30) 2013; 87 Novelline, Squire (bib1) 2004 Bauer, Wiest, Nolte, Reyes (bib16) 2013; 58 Zou, Warfield, Bharatha, Tempany, Kaus, Haker, Wells, Jolesz, Kikinis (bib85) 2004; 11 Liu, Zhang, S B (bib180) 2015 Ebsim, Naqvi, Cootes (bib143) 2016 Miki, Muramatsu, Hayashi, Zhou, Hara, Katsumata, Fujita (bib146) 2017; 80 Arevalo, González, Ramos-Pollán, Oliveira, Guevara Lopez (bib158) 2015 Roth, Lu, Farag, Shin, Liu, Turkbey, Summers (bib116) 2015 Liu, Zhang, Shen (bib175) 2014; 35 Havaei, Davy, Warde-Farley, Biard, Courville, Bengio, Pal, Jodoin, Larochelle (bib121) 2017; 35 Yao, Dwyer, Summers, Mollura (bib130) 2011; 18 Cao, Steffey, Jianbiao, Xiao, Tao, Chen, Müller (bib210) 2015; 13 Lan, Zhong, Liu, Shi, Luo (bib212) 2018 Kurtz, Beaulieu, Napel, Rubin (bib202) 2014; 49 Salvatore, Cerasa, Castiglioni, Gallivanone, Augimeri, Lopez, Arabia, Morelli, Gilardi, Quattrone (bib24) 2014; 222 Gelb, Oliver, Gilman (bib178) 1999; 56 Chen, Pope, Ott (bib2) 2010 Prasoon, Petersen, Igel, Lauze, Dam, Nielsen (bib80) 2013 Roy, Carass, Prince, Pham (bib114) 2014 Schouten, Koini, de Vos, Seiler, de Rooij, Lechner, Schmidt, van den Heuvel, van der Grond, Rombouts (bib197) 2017; 152 Emrich, Graf, Kriegel, Schubert, Thoma (bib201) 2010 Jin, Shi, Zhan, Gutman, de Zubicaray, McMahon, Wright, Toga, Thompson (bib109) 2014; 100 Lindner, Thiagarajah, Wilkinson, Consortium, Wallis, Cootes (bib99) 2013; 32 Luo, Cheng (bib154) 2012; 36 Tong, Wolz, Gao, Guerrero, Hajnal, Rueckert (bib111) 2014; 18 Wang, Yang, Cai, Tan, Jin, Li (bib228) 2016; 6 Samek, Wiegand, Müller (bib229) 2017 Sarraf, Anderson, Tofighi (bib192) 2016 Smyser, Dosenbach, Smyser, Snyder, Rogers, Inder, Schlaggar, Neil (bib181) 2016; 136 Song, Zhang, Chen, Ni, Lei, Wang (bib76) 2015; 62 Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, van der Laak, van Ginneken, Sánchez (bib19) 2017 Anthimopoulos, Christodoulidis, Ebner, Christe, Mougiakakou (bib166) 2016; 35 Dhara, Mukhopadhyay, Dutta, Garg, Khandelwal (bib45) 2016; 29 Frush, Donnelly, Rosen (bib8) 2003; 112 Lee, Lee, Han (bib56) 2016; 11 Sarraf, Tofighi (bib196) 2016 O'Connor, Yao, Summers (bib124) 2007; 242 Sun, Tseng, Zhang, Qian (bib167) 2017; 57 Chupin, Hammers, Liu, Colliot, Burdett, Bardinet, Duncan, Garnero, Lemieux (bib172) 2009; 46 Liu, Wang, Zhang, Gao, Shen (bib102) 2015 Li, Wang, Shi, Lin, Shen (bib92) 2013 Zhou, Khosla, Lapedriza, Oliva, Torralba (bib233) 2016 Dhahbi, Barhoumi, Zagrouba (bib51) 2015; 64 García-Lorenzo, Francis, Narayanan, Arnold, Collins (bib17) 2013; 17 Thung, Wee, Yap, Shen (bib128) 2014; 91 Srinivas, Roy, Mohan (bib59) 2016 Cheng, Ni, Chou, Qin, Tiu, Chang, Huang, Shen, Chen (bib140) 2016; 6 de Brebisson, Montana (bib96) 2015 Paul, Hawkins, Balagurunathan, Schabath, Gillies, Hall, Goldgof (bib224) 2016; 2 Rajpurkar, Irvin, Zhu, Yang, Mehta, Duan, Ding, Bagul, Langlotz, Shpanskaya (bib150) 2017 Burns, Yao, Muñoz, Summers (bib142) 2016; 278 Lehman, Wellman, Buist, Kerlikowske, Tosteson, Miglioretti (bib129) 2015; 175 Thelisson, Padh, Celis (bib230) 2017 Sun, Zheng, Lure, Wu, Zhang, Wang, Saltzstein, Qian (bib156) 2014; 38 Wang, Peng, Lu, Lu, Bagheri, Summers (bib149) 2017 Bauer, Kohavi, Chan, Stolfo, Wolpert (bib68) 1999; 36 Liu, Pattanaik, Yao, Turkbey, Zhang, Zhang, Summers (bib126) 2014; 38 Speybroeck (bib67) 2012; 57 Armananzas, Iglesias, Morales, Alonso-Nanclares (bib195) 2016; 99 Zech, Badgeley, Liu, Costa, Titano, Oermann (bib231) 2018; 15 Townsend, Beyer, Blodgett (bib25) 2003; 33 Wang, Zhang, An, Ma, Kang, Shi, Wu, Zhou, Lalush, Lin, Shen (bib11) 2016; 61 Arevalo, González, Ramos-Pollán, Oliveira, Guevara Lopez (bib138) 2016; 127 Suk, Shen (bib79) 2013 Ibrahim, Mukhtar (bib14) 2016; 4638 Huynh, Yaozong, Jiayin, Li, Pei, Dinggang, Alzheimer’s Disease Neuroimaging Initiative (bib70) 2015 Shin, Roth, Gao, Lu, Xu, Nogues, Yao, Mollura, Summers (bib75) 2016; 99 Zikic, Glocker, Konukoglu, Criminisi, Demiralp, Shotton, Thomas, Das, Jena, Price (bib71) 2012; 15 Mitra, Bourgeat, Fripp, Ghose, Rose, Salvado, Connelly, Campbell, Palmer, Sharma, Christensen, Carey (bib90) 2014; 98 Herrera, Markonis, Joyseeree, Schaer, Foncubierta-rodr (bib113) 2015 Chen, Belavy, Zheng (bib103) 2014 Yao, Burns, Summers (bib13) 2015 Suykens, Vandewalle (bib62) 1999; 9 Yoo, Brosch, Traboulsee, Li, Tam (bib88) 2014 Huang, Chen, Liu (bib9) 2004 Yu, Amores, Sebe, Radeva, Tian (bib200) 2008; 30 Shan (bib10) 2011 Ahn, Kumar, Kim, Li, Feng, Fulham, Medicine, Prince, Hospital (bib207) 2016 Choi (bib84) 2015 Salakhutdinov, Hinton (bib77) 2009; vol. 3 Avendi, Kheradvar, Jafarkhani (bib118) 2016; 30 Srinivas, Naidu, Sastry, Mohan (bib42) 2015; 168 Cerasa (bib219) 2015; 266 Si, De, Kumar (bib91) 2016; 4 van Tulder, de Bruijne (bib119) 2016; 35 Meng, Jiang, Xu, Priananda (bib38) 2016 Abdel-Zaher, Eldeib (bib161) 2016; 46 Jin, Luk, Cheung, Hu (bib160) 2016 Chen, Shi, Smith, Liu (bib174) 2015 Erickson, Korfiatis, Akkus, Kline (bib23) 2017; 37 Guo, Gao, Shen (bib117) 2016; 35 Sundaram, Mcguire (bib12) 1988; 17 Keserwani, Pammi, Prakash, Khare, Jeon (bib47) 2016; 8 Reed, Woodward, Zhang, Strom, Perkins, Tereffe, Oh, Yu, Bedrosian, Whitman, Buchholz, Dong (bib86) 2009; 73 Jiao, Gao, Wang, Li (bib159) 2016; 197 LeCun, Kavukcuoglu, Farabet (bib78) 2010 Rani, Mittal (bib141) 2016; 3 Kang, Gao, Shi, Lalush, Lin, Shen (bib214) 2015; 42 Herring (bib3) 2015 Pass, Zabih (bib40) 1996 Zhu (bib29) 2011 Bishop (bib60) 2006 Torheim, Malinen, Kvaal, Lyng, Indahl, Andersen, Futsaether (bib63) 2014; 33 Spampinato, Palazzo, Giordano, Aldinucci, Leonardi (bib148) 2017; 36 Verma, Raman (bib211) 2015; 32 Huang, Gao, Jin, Thung, Shen (bib187) 2015 Rokach, Maimon (bib65) 2010 Van Ginneken, Setio, Jacobs, Ciompi (bib83) 2015 Azar, El-Metwally (bib66) 2013; 23 Aljabar, Heckemann, Hammers, Hajnal, Rueckert (bib106) 2009; 46 Geremia, Clatz, Menze, Konukoglu, Criminisi, Ayache (bib72) 2011; 57 Wang, Summers (bib15) 2013; 16 Lombaert, Zikic, Criminisi, Ayache (bib100) 2014 Yang, Chang, Kuo, Li (bib34) 2008; 19 Zhu, He, Wang, He, Gao, Cheng, Wu (bib48) 2016; 15 Maier, Wilms, von der Gablentz, Krämer, Münte, Handels (bib89) 2015; 240 Hong, Kim, Schrader, Bernasconi, Bernhardt, Bernasconi (bib186) 2014; 83 Faria, Oishi, Yoshida, Hillis, Miller, Mori (bib208) 2015; 7 Tsai (bib32) 2007; 32 Hu, Wu, Peng, Liang, Kong (bib122) 2016; 61 Chu, Hsu, Chou, Bandettini, Lin (bib176) 2012; 60 Khazaee, Ebrahimzadeh, Babajani-Feremi (bib194) 2016; 10 Kleesiek, Urban, Hubert, Schwarz, Maier-Hein, Bendszus, Biller (bib95) 2016; 129 Suresh, Dash, Panigrahi (bib46) 2015; 324 Wang, Zhu, Wang (bib135) 2015; 39 Singh, Urooj (bib139) 2016; 40 Cheng, Liu, Zhang (bib191) 2015 Kooi, Litjens, van Ginneken, Gubern-Mérida, Sánchez, Mann, den Heeten, Karssemeijer (bib144) 2017; 35 Paredes, Saha, Mazurowski (bib123) 2017; vol. 10134 Bailey, Huisman, de Jong, Hwang (bib22) 2017; 27 Sethi, Saini (bib52) 2015; 38 Jiang, Zhang, Metaxas (bib132) 2014 Srinivas, Mohan (bib205) August, 2014 Zhang, Daoqiuang, Shen (bib110) 2013; 59 Jiang, Nishikawa, Schmidt, Metz, Giger, Doi (bib155) 1999; 6 Li, Tran, Thung, Ji, Shen, Li (bib183) 2014 Ayer, Ayvaci, Liu, Alagoz, Burnside (bib170) 2010; 2 Kurtz, Depeursinge, Napel, Beaulieu, Rubin (bib209) 2014; 18 Alkhawlani, Elmogy (bib57) 2015; 6 Gopalakrishnan, Menon, Madan (bib137) 2015; 14 Yang, Kwitt, Styner, Niethammer (bib218) 2017; 158 Xie, Li, Ma (bib36) 2016; 173 Li, Jin, Zhou (bib87) 2014 Rasti, Teshnehlab, Phung (bib164) 2017; 72 Cheng, Liu, Suk, Shen, Zhang, Initiative (bib223) 2015; 9 Xiang, Qiao, Nie, An, Lin, Wang, Shen (bib215) 2017; 267 Pérez, Guevara López, Silva, Ramos (bib134) 2015; 63 Pereira, Ramos, do Nascimento (bib53) 2014; 114 Sedai, Roy, Garnavi (bib104) 2015 Murala, Jonathan Wu (bib50) 2013; 119 Eskildsen, Coupé, Fonov, Manjón, Leung, Guizard, Wassef, Østergaard, Collins (bib112) 2012; 59 Kontschieder, Bulò, Bischof, Pelillo (bib216) 2011 Manniesing, Marcel, Oei, Oostveen, Melendez, Smit, Platel, Sánchez, Frederick, Meijer (bib120) 2017; 7 Kumar, Senthilmurugan (bib198) 2013; 2 Rastghalam, Pourghassem (bib37) 2016; 51 Madero Orozco, Vergara Villegas, Cruz Sánchez, Ochoa Domínguez, Nandayapa Alfaro (bib54) 2015; 14 Swensen, Jett, Hartman, Midthun, Mandrekar, Hillman, Sykes, Aughenbaugh, Bungum, Allen (bib4) 2005 Bar, Diamant, Wolf, Greenspan (bib163) 2015; vol. 9414 LeCun, Bengio, Hinton (bib26 Wang (10.1016/j.compbiomed.2019.02.017_bib162) 2016 Gopalakrishnan (10.1016/j.compbiomed.2019.02.017_bib137) 2015; 14 Juan (10.1016/j.compbiomed.2019.02.017_bib41) 2009; 3 Yao (10.1016/j.compbiomed.2019.02.017_bib130) 2011; 18 Rasti (10.1016/j.compbiomed.2019.02.017_bib164) 2017; 72 Azar (10.1016/j.compbiomed.2019.02.017_bib66) 2013; 23 Keserwani (10.1016/j.compbiomed.2019.02.017_bib47) 2016; 8 Jiao (10.1016/j.compbiomed.2019.02.017_bib159) 2016; 197 Litjens (10.1016/j.compbiomed.2019.02.017_bib19) 2017 García-Lorenzo (10.1016/j.compbiomed.2019.02.017_bib17) 2013; 17 Abdel-Zaher (10.1016/j.compbiomed.2019.02.017_bib161) 2016; 46 Chao (10.1016/j.compbiomed.2019.02.017_bib30) 2013; 87 Chen (10.1016/j.compbiomed.2019.02.017_bib2) 2010 Wang (10.1016/j.compbiomed.2019.02.017_bib165) 2017; 7 Sarraf (10.1016/j.compbiomed.2019.02.017_bib192) 2016 Komlagan (10.1016/j.compbiomed.2019.02.017_bib184) 2014 Cheplygina (10.1016/j.compbiomed.2019.02.017_bib221) 2016 Wang (10.1016/j.compbiomed.2019.02.017_bib11) 2016; 61 Fan (10.1016/j.compbiomed.2019.02.017_bib173) 2007; 26 Hong (10.1016/j.compbiomed.2019.02.017_bib186) 2014; 83 Zhu (10.1016/j.compbiomed.2019.02.017_bib29) 2011 Pearce (10.1016/j.compbiomed.2019.02.017_bib6) 2012; 380 Yingying (10.1016/j.compbiomed.2019.02.017_bib44) 2016 Speybroeck (10.1016/j.compbiomed.2019.02.017_bib67) 2012; 57 Bailey (10.1016/j.compbiomed.2019.02.017_bib22) 2017; 27 Chen (10.1016/j.compbiomed.2019.02.017_bib98) 2018; 170 Ayer (10.1016/j.compbiomed.2019.02.017_bib170) 2010; 2 Alzheimer’s Association (10.1016/j.compbiomed.2019.02.017_bib182) 2015; 12 Havaei (10.1016/j.compbiomed.2019.02.017_bib121) 2017; 35 Chupin (10.1016/j.compbiomed.2019.02.017_bib172) 2009; 46 Townsend (10.1016/j.compbiomed.2019.02.017_bib25) 2003; 33 Long (10.1016/j.compbiomed.2019.02.017_bib193) 2016; 331 Li (10.1016/j.compbiomed.2019.02.017_bib183) 2014 Kang (10.1016/j.compbiomed.2019.02.017_bib214) 2015; 42 Chen (10.1016/j.compbiomed.2019.02.017_bib103) 2014 Bauer (10.1016/j.compbiomed.2019.02.017_bib68) 1999; 36 Wang (10.1016/j.compbiomed.2019.02.017_bib135) 2015; 39 Ramirez (10.1016/j.compbiomed.2019.02.017_bib204) 2010; vol. 1 Lee (10.1016/j.compbiomed.2019.02.017_bib49) 2016; 54 Cruz-Roa (10.1016/j.compbiomed.2019.02.017_bib81) 2013 Herring (10.1016/j.compbiomed.2019.02.017_bib3) 2015 Antani (10.1016/j.compbiomed.2019.02.017_bib136) 2015 Bauer (10.1016/j.compbiomed.2019.02.017_bib16) 2013; 58 Lan (10.1016/j.compbiomed.2019.02.017_bib212) 2018 Ibrahim (10.1016/j.compbiomed.2019.02.017_bib14) 2016; 4638 Liaw (10.1016/j.compbiomed.2019.02.017_bib69) 2002; 2 Kontschieder (10.1016/j.compbiomed.2019.02.017_bib216) 2011 Gelb (10.1016/j.compbiomed.2019.02.017_bib178) 1999; 56 Verma (10.1016/j.compbiomed.2019.02.017_bib211) 2015; 32 Shiraishi (10.1016/j.compbiomed.2019.02.017_bib82) 2009; 253 Huang (10.1016/j.compbiomed.2019.02.017_bib187) 2015 Cerasa (10.1016/j.compbiomed.2019.02.017_bib219) 2015; 266 Rani (10.1016/j.compbiomed.2019.02.017_bib141) 2016; 3 Paul (10.1016/j.compbiomed.2019.02.017_bib224) 2016; 2 Pérez (10.1016/j.compbiomed.2019.02.017_bib131) 2014; vol. 2 Srinivas (10.1016/j.compbiomed.2019.02.017_bib59) 2016 Yu (10.1016/j.compbiomed.2019.02.017_bib200) 2008; 30 Xie (10.1016/j.compbiomed.2019.02.017_bib36) 2016; 173 Jiang (10.1016/j.compbiomed.2019.02.017_bib155) 1999; 6 Cheng (10.1016/j.compbiomed.2019.02.017_bib140) 2016; 6 Li (10.1016/j.compbiomed.2019.02.017_bib87) 2014 Wei (10.1016/j.compbiomed.2019.02.017_bib199) 2005 Frush (10.1016/j.compbiomed.2019.02.017_bib8) 2003; 112 Lindner (10.1016/j.compbiomed.2019.02.017_bib99) 2013; 32 Loh (10.1016/j.compbiomed.2019.02.017_bib64) 2014; 82 Tong (10.1016/j.compbiomed.2019.02.017_bib105) 2015; 23 Caruana (10.1016/j.compbiomed.2019.02.017_bib232) 2015 Dhara (10.1016/j.compbiomed.2019.02.017_bib45) 2016; 29 Zhang (10.1016/j.compbiomed.2019.02.017_bib94) 2015; 108 Kurtz (10.1016/j.compbiomed.2019.02.017_bib209) 2014; 18 Islam (10.1016/j.compbiomed.2019.02.017_bib33) 2008; vol. 3 Zhou (10.1016/j.compbiomed.2019.02.017_bib233) 2016 Samek (10.1016/j.compbiomed.2019.02.017_bib229) 2017 Yang (10.1016/j.compbiomed.2019.02.017_bib34) 2008; 19 Salakhutdinov (10.1016/j.compbiomed.2019.02.017_bib77) 2009; vol. 3 Hu (10.1016/j.compbiomed.2019.02.017_bib122) 2016; 61 Manniesing (10.1016/j.compbiomed.2019.02.017_bib120) 2017; 7 Wang (10.1016/j.compbiomed.2019.02.017_bib93) 2014; 89 Erickson (10.1016/j.compbiomed.2019.02.017_bib23) 2017; 37 Zikic (10.1016/j.compbiomed.2019.02.017_bib71) 2012; 15 Van Ginneken (10.1016/j.compbiomed.2019.02.017_bib83) 2015 Geremia (10.1016/j.compbiomed.2019.02.017_bib72) 2011; 57 Shen (10.1016/j.compbiomed.2019.02.017_bib20) 2017; 0 LeCun (10.1016/j.compbiomed.2019.02.017_bib78) 2010 Rohren (10.1016/j.compbiomed.2019.02.017_bib213) 2004; 231 Nithya (10.1016/j.compbiomed.2019.02.017_bib153) 2011; 28 Exarchos (10.1016/j.compbiomed.2019.02.017_bib168) 2012; 16 Guo (10.1016/j.compbiomed.2019.02.017_bib117) 2016; 35 LeCun (10.1016/j.compbiomed.2019.02.017_bib26) 2015; 521 Dayan (10.1016/j.compbiomed.2019.02.017_bib27) 2009 Xiang (10.1016/j.compbiomed.2019.02.017_bib215) 2017; 267 Pass (10.1016/j.compbiomed.2019.02.017_bib40) 1996 Paredes (10.1016/j.compbiomed.2019.02.017_bib123) 2017; vol. 10134 Sedai (10.1016/j.compbiomed.2019.02.017_bib104) 2015 van Tulder (10.1016/j.compbiomed.2019.02.017_bib119) 2016; 35 Yao (10.1016/j.compbiomed.2019.02.017_bib127) 2012; vol. 15 Zech (10.1016/j.compbiomed.2019.02.017_bib231) 2018; 15 Song (10.1016/j.compbiomed.2019.02.017_bib76) 2015; 62 Rajpurkar (10.1016/j.compbiomed.2019.02.017_bib150) 2017 Roth (10.1016/j.compbiomed.2019.02.017_bib116) 2015 Mitchell (10.1016/j.compbiomed.2019.02.017_bib28) 1998 O'Connor (10.1016/j.compbiomed.2019.02.017_bib124) 2007; 242 Ebsim (10.1016/j.compbiomed.2019.02.017_bib143) 2016 Wang (10.1016/j.compbiomed.2019.02.017_bib228) 2016; 6 Salvatore (10.1016/j.compbiomed.2019.02.017_bib24) 2014; 222 Suykens (10.1016/j.compbiomed.2019.02.017_bib62) 1999; 9 Zhu (10.1016/j.compbiomed.2019.02.017_bib48) 2016; 15 Lempitsky (10.1016/j.compbiomed.2019.02.017_bib74) 2009 Sun (10.1016/j.compbiomed.2019.02.017_bib167) 2017; 57 Moeskops (10.1016/j.compbiomed.2019.02.017_bib97) 2016; 35 University of Wisconsin School of Medicine and Public Health (10.1016/j.compbiomed.2019.02.017_bib21) 2016 Lee (10.1016/j.compbiomed.2019.02.017_bib152) 2010; 7 Alkhawlani (10.1016/j.compbiomed.2019.02.017_bib57) 2015; 6 Lee (10.1016/j.compbiomed.2019.02.017_bib56) 2016; 11 Novelline (10.1016/j.compbiomed.2019.02.017_bib1) 2004 Chu (10.1016/j.compbiomed.2019.02.017_bib176) 2012; 60 Roy (10.1016/j.compbiomed.2019.02.017_bib114) 2014 Meng (10.1016/j.compbiomed.2019.02.017_bib38) 2016 Khazaee (10.1016/j.compbiomed.2019.02.017_bib194) 2016; 10 Dubey (10.1016/j.compbiomed.2019.02.017_bib203) 2015; 24 Gundreddy (10.1016/j.compbiomed.2019.02.017_bib43) 2015; 42 Sarraf (10.1016/j.compbiomed.2019.02.017_bib196) 2016 Liu (10.1016/j.compbiomed.2019.02.017_bib180) 2015 Schouten (10.1016/j.compbiomed.2019.02.017_bib197) 2017; 152 Sundaram (10.1016/j.compbiomed.2019.02.017_bib12) 1988; 17 Eskildsen (10.1016/j.compbiomed.2019.02.017_bib112) 2012; 59 Sun (10.1016/j.compbiomed.2019.02.017_bib156) 2014; 38 Suresh (10.1016/j.compbiomed.2019.02.017_bib46) 2015; 324 Banaem (10.1016/j.compbiomed.2019.02.017_bib157) 2015; 12 Smith-Bindman (10.1016/j.compbiomed.2019.02.017_bib7) 2009; 169 Chen (10.1016/j.compbiomed.2019.02.017_bib174) 2015 (10.1016/j.compbiomed.2019.02.017_bib206) 2016 Kumar (10.1016/j.compbiomed.2019.02.017_bib198) 2013; 2 Srinivas (10.1016/j.compbiomed.2019.02.017_bib205) 2014 Zhang (10.1016/j.compbiomed.2019.02.017_bib110) 2013; 59 Yao (10.1016/j.compbiomed.2019.02.017_bib13) 2015 Larroza (10.1016/j.compbiomed.2019.02.017_bib31) 2015; 42 Faria (10.1016/j.compbiomed.2019.02.017_bib208) 2015; 7 Srinivas (10.1016/j.compbiomed.2019.02.017_bib42) 2015; 168 Zhu (10.1016/j.compbiomed.2019.02.017_bib188) 2014 Bron (10.1016/j.compbiomed.2019.02.017_bib177) 2014 Tian (10.1016/j.compbiomed.2019.02.017_bib35) 2013; 8 Liu (10.1016/j.compbiomed.2019.02.017_bib102) 2015 Liu (10.1016/j.compbiomed.2019.02.017_bib145) 2017; 60 Murala (10.1016/j.compbiomed.2019.02.017_bib50) 2013; 119 Armananzas (10.1016/j.compbiomed.2019.02.017_bib195) 2016; 99 Liu (10.1016/j.compbiomed.2019.02.017_bib175) 2014; 35 Tong (10.1016/j.compbiomed.2019.02.017_bib111) 2014; 18 Lehman (10.1016/j.compbiomed.2019.02.017_bib129) 2015; 175 de Brebisson (10.1016/j.compbiomed.2019.02.017_bib96) 2015 Cheng (10.1016/j.compbiomed.2019.02.017_bib191) 2015 Suk (10.1016/j.compbiomed.2019.02.017_bib79) 2013 Singh (10.1016/j.compbiomed.2019.02.017_bib139) 2016; 40 Herrera (10.1016/j.compbiomed.2019.02.017_bib113) 2015 Cao (10.1016/j.compbiomed.2019.02.017_bib210) 2015; 13 Guerrero (10.1016/j.compbiomed.2019.02.017_bib190) 2014 Rokach (10.1016/j.compbiomed.2019.02.017_bib65) 2010 Yoo (10.1016/j.compbiomed.2019.02.017_bib88) 2014 Ahn (10.1016/j.compbiomed.2019.02.017_bib207) 2016 Singh (10.1016/j.compbiomed.2019.02.017_bib179) 2015; 256 Bar (10.1016/j.compbiomed.2019.02.017_bib163) 2015; vol. 9414 Rastghalam (10.1016/j.compbiomed.2019.02.017_bib37) 2016; 51 Griffis (10.1016/j.compbiomed.2019.02.017_bib107) 2016; 257 Li (10.1016/j.compbiomed.2019.02.017_bib115) 2015; 3 Emrich (10.1016/j.compbiomed.2019.02.017_bib201) 2010 Kourou (10.1016/j.compbiomed.2019.02.017_bib18) 2015; 13 Mehrtasha (10.1016/j.compbiomed.2019.02.017_bib147) 2017 Mitra (10.1016/j.compbiomed.2019.02.017_bib90) 2014; 98 Li (10.1016/j.compbiomed.2019.02.017_bib92) 2013 R B (10.1016/j.compbiomed.2019.02.017_bib101) 2015 Yue (10.1016/j.compbiomed.2019.02.017_bib39) 2011; 54 Deng (10.1016/j.compbiomed.2019.02.017_bib61) 1998 Mena (10.1016/j.compbiomed.2019.02.017_bib226) 2006 Kurtz (10.1016/j.compbiomed.2019.02.017_bib202) 2014; 49 Swensen (10.1016/j.compbiomed.2019.02.017_bib4) 2005 Maier (10.1016/j.compbiomed.2019.02.017_bib89) 2015; 240 Patel (10.1016/j.compbiomed.2019.02.017_bib169) 2016 Shen (10.1016/j.compbiomed.2019.02.017_bib222) 2016 Wang (10.1016/j.compbiomed.2019.02.017_bib149) 2017 Madero Orozco (10.1016/j.compbiomed.2019.02.017_bib54) 2015; 14 Prasoon (10.1016/j.compbiomed.2019 |
References_xml | – start-page: 215 year: 2016 end-page: 224 ident: bib44 article-title: Combined density, texture and shape features of multi-phase contrast-enhanced CT images for CBIR of focal liver lesions: a preliminary study publication-title: Innovation in Medicine and Healthcare 2015 – volume: 54 start-page: 1409 year: 2016 end-page: 1422 ident: bib49 article-title: Unsupervised segmentation of lung fields in chest radiographs using multiresolution fractal feature vector and deformable models publication-title: Med. Biol. Eng. Comput. – volume: 6 start-page: 22 year: 1999 end-page: 33 ident: bib155 article-title: Improving breast cancer diagnosis with computer-aided diagnosis publication-title: Acad. Radiol. – volume: 64 start-page: 79 year: 2015 end-page: 90 ident: bib51 article-title: Breast cancer diagnosis in digitized mammograms using curvelet moments publication-title: Comput. Biol. Med. – volume: 33 start-page: 1339 year: 2016 end-page: 1351 ident: bib220 article-title: Four challenges in medical image analysis from an industrial perspective publication-title: Med. Image Anal. – start-page: 2957 year: 2004 end-page: 2960 ident: bib9 article-title: Breast cancer diagnosis using image retrieval for different ultrasonic systems publication-title: International Conference on Image Processing – volume: 23 start-page: 92 year: 2015 end-page: 104 ident: bib105 article-title: Discriminative dictionary learning for abdominal multi-organ segmentation publication-title: Med. Image Anal. – start-page: 85 year: 2015 end-page: 98 ident: bib113 article-title: Semi supervised learning for image modality classification publication-title: Multimodal Retrieval in the Medical Domain – volume: 91 start-page: 386 year: 2014 end-page: 400 ident: bib128 article-title: And the Alzheimer's Disease Neuroimaging Initiative, “Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion publication-title: Neuroimage – volume: 197 start-page: 1 year: 2016 end-page: 11 ident: bib159 article-title: A deep feature based framework for breast masses classification publication-title: Neurocomputing – year: 2010 ident: bib2 article-title: Basic Radiology – start-page: 253 year: 2010 end-page: 256 ident: bib78 article-title: Convolutional networks and applications in vision publication-title: IEEE International Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems – start-page: 2190 year: 2011 end-page: 2197 ident: bib216 article-title: Structured class-labels in random forests for semantic image labelling publication-title: IEEE International Conference on Computer Vision – volume: 168 start-page: 880 year: 2015 end-page: 895 ident: bib42 article-title: Content based medical image retrieval using dictionary learning publication-title: Neurocomputing – volume: 10 start-page: 799 year: 2016 end-page: 817 ident: bib194 article-title: “Application of advanced machine learning methods on resting-state fmri network for identification of mild cognitive impairment and alzheimer's disease publication-title: Brain imaging and behavior – volume: 3 start-page: 143 year: 2009 end-page: 152 ident: bib41 article-title: A comparison of SIFT, PCA-SIFT and SURF publication-title: Int. J. Image Process. – year: 1998 ident: bib61 article-title: OMEGA : On-Line Memory-Based General Purpose System Classifier – start-page: 51 year: 2014 end-page: 60 ident: bib125 article-title: Computer aided detection of spinal degenerative osteophytes on sodium fluoride PET/CT publication-title: Computational Methods and Clinical Applications for Spine Imaging – volume: 119 start-page: 399 year: 2013 end-page: 412 ident: bib50 article-title: Local ternary co-occurrence patterns: a new feature descriptor for MRI and CT image retrieval publication-title: Neurocomputing – volume: 324 start-page: 109 year: 2015 end-page: 117 ident: bib46 article-title: Artificial intelligence and evolutionary algorithms in engineering systems publication-title: Advances in Intelligent Systems and Computing – volume: 87 start-page: 449 year: 2013 end-page: 457 ident: bib30 article-title: Challenges with the diagnosis and treatment of cerebral radiation necrosis publication-title: Int. J. Radiat. Oncol. Biol. Phys. – volume: 56 start-page: 368 year: 1999 end-page: 376 ident: bib178 article-title: Diagnostic criteria for Parkinson disease publication-title: Arch. Neurol. – volume: 9 start-page: 1 year: 2014 end-page: 23 ident: bib108 article-title: Knowledge-guided robust MRI brain extraction for diverse large-scale neuroimaging studies on humans and non-human primates publication-title: PLoS One – volume: 4638 year: 2016 ident: bib14 article-title: Content based image retrieval in mammograms: a survey publication-title: Int. J. Eng. Sci. – start-page: 3462 year: 2017 end-page: 3471 ident: bib149 article-title: Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases publication-title: Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on. IEEE – start-page: 273 year: 2016 end-page: 277 ident: bib221 article-title: “Asymmetric similarity-weighted ensembles for image segmentation,” in publication-title: 2016 IEEE 13th International Symposium on. IEEE – start-page: 77 year: 2014 end-page: 84 ident: bib190 article-title: Manifold alignment and transfer learning for classification of Alzheimer's disease publication-title: International Workshop on Machine Learning in Medical Imaging – start-page: 248 year: 2014 end-page: 255 ident: bib114 article-title: Subject specific sparse dictionary learning for atlas based brain MRI segmentation publication-title: International Workshop on Machine Learning in Medical Imaging – volume: 60 start-page: 59 year: 2012 end-page: 70 ident: bib176 article-title: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images publication-title: Neuroimage – volume: 169 start-page: 2078 year: 2009 end-page: 2086 ident: bib7 article-title: Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer publication-title: Arch. Intern. Med. – volume: 35 start-page: 1077 year: 2016 end-page: 1089 ident: bib117 article-title: Deformable mr prostate segmentation via deep feature learning and sparse patch matching publication-title: IEEE Trans. Med. Imaging – volume: 7 start-page: 18 year: 2010 end-page: 27 ident: bib152 article-title: Breast cancer screening with imaging: recommendations from the society of breast imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer publication-title: J. Am. Coll. Radiol. – year: 2016 ident: bib162 article-title: Deep Learning for Identifying Metastatic Breast Cancer – start-page: 58 year: 2013 end-page: 65 ident: bib92 article-title: Multi-atlas based simultaneous labeling of longitudinal dynamic cortical surfaces in infants publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 246 year: 2013 end-page: 253 ident: bib80 article-title: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 157 year: 2014 end-page: 164 ident: bib188 article-title: “Sparse discriminative feature selection for multi-class Alzheimer's disease classification publication-title: International Workshop on Machine Learning in Medical Imaging – year: 2006 ident: bib60 article-title: Pattern Recognition and Machine Learning – volume: 61 start-page: 8676 year: 2016 ident: bib122 article-title: Automatic 3d liver segmentation based on deep learning and globally optimized surface evolution publication-title: Phys. Med. Biol. – start-page: 2921 year: 2016 end-page: 2929 ident: bib233 article-title: Learning deep features for discriminative localization publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 304 year: 2015 end-page: 312 ident: bib174 article-title: “Nonlinear feature transformation and deep fusion for Alzheimer's disease staging analysis publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – start-page: 259 year: 2005 end-page: 265 ident: bib4 article-title: Radiology CT screening for lung cancer : five-year prospective publication-title: Cancer – volume: 16 start-page: 933 year: 2013 end-page: 951 ident: bib15 article-title: Machine learning and radiology publication-title: Med. Image Anal. – volume: 89 start-page: 152 year: 2014 end-page: 164 ident: bib93 article-title: Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation publication-title: Neuroimage – volume: 194 start-page: 311 year: 2010 end-page: 321 ident: bib5 article-title: MRI, CT, and PET/CT for ovarian cancer detection and adnexal lesion characterization publication-title: Am. J. Roentgenol. – year: 2015 ident: bib136 article-title: Automated Detection of Lung Diseases in Chest X-Rays – volume: 42 start-page: 4241 year: 2015 end-page: 4249 ident: bib43 article-title: Assessment of performance and reproducibility of applying a content-based image retrieval scheme for classification of breast lesions publication-title: Med. Phys. – volume: 42 start-page: 1362 year: 2015 end-page: 1368 ident: bib31 article-title: Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in mri publication-title: J. Magn. Reson. Imaging – start-page: 20 year: 2015 end-page: 28 ident: bib96 article-title: Deep neural networks for anatomical brain segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops – volume: 30 start-page: 451 year: 2008 end-page: 462 ident: bib200 article-title: Distance learning for similarity estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 35 start-page: 1252 year: 2016 end-page: 1261 ident: bib97 article-title: Automatic segmentation of mr brain images with a convolutional neural network publication-title: IEEE Trans. Med. Imaging – volume: 51 start-page: 176 year: 2016 end-page: 186 ident: bib37 article-title: Breast cancer detection using MRF-based probable texture feature and decision-level fusion-based classification using HMM on thermography images publication-title: Pattern Recogn. – volume: 170 start-page: 446 year: 2018 end-page: 455 ident: bib98 article-title: Voxresnet: deep voxelwise residual networks for brain segmentation from 3d mr images publication-title: Neuroimage – volume: 6 start-page: 429 year: 2002 end-page: 449 ident: bib227 article-title: The class imbalance problem: a systematic study publication-title: Intell. Data Anal. – start-page: 583 year: 2013 end-page: 590 ident: bib79 article-title: Deep learning-based feature representation for AD/MCI classification publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 32 start-page: 135 year: 2007 end-page: 142 ident: bib32 article-title: Image mining by spectral features: a case study of scenery image classification publication-title: Expert Syst. Appl. – year: 2017 ident: bib147 article-title: Classification of clinical significance of mri prostate findings using 3d convolutional neural networks publication-title: SPIE Medical Imaging – volume: 35 start-page: 1207 year: 2016 end-page: 1216 ident: bib166 article-title: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network publication-title: IEEE Trans. Med. Imaging – start-page: 96 year: 1996 end-page: 102 ident: bib40 article-title: Histogram refinement for content-based image retrieval publication-title: IEEE Workshop on Applications of Computer Vision – start-page: 321 year: 2015 end-page: 329 ident: bib70 article-title: Multi-source information gain for random forest: an application to CT image prediction from MRI data publication-title: International Workshop on Machine Learning in Medical Imaging – volume: 11 start-page: 178 year: 2004 end-page: 189 ident: bib85 article-title: Statistical validation of image segmentation quality based on a spatial overlap index publication-title: Acad. Radiol. – volume: 4 start-page: 1 year: 2016 end-page: 5 ident: bib91 article-title: Artificial neural network based lesion segmentation of brain MRI publication-title: Communications on Applied Electronics – volume: 11 start-page: 1 year: 2011 end-page: 4 ident: bib58 article-title: Content-based image retrieval using SURF and colour moments publication-title: Glob. J. Comput. Sci. Technol. – volume: 30 start-page: 108 year: 2016 end-page: 119 ident: bib118 article-title: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac mri publication-title: Med. Image Anal. – volume: 46 start-page: 139 year: 2016 end-page: 144 ident: bib161 article-title: Breast cancer classification using deep belief networks publication-title: Expert Syst. Appl. – volume: 6 year: 2016 ident: bib140 article-title: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in us images and pulmonary nodules in ct scans publication-title: Sci. Rep. – volume: 12 start-page: 88 year: 2015 ident: bib182 article-title: Alzheimer's disease facts and figures publication-title: Alzheimer's Dementia – start-page: 240 year: 2014 end-page: 247 ident: bib183 article-title: Robust deep learning for improved classification of AD/MCI patients publication-title: International Workshop on Machine Learning in Medical Imaging – volume: 32 start-page: 1462 year: 2013 end-page: 1472 ident: bib99 article-title: Fully automatic segmentation of the proximal femur using random forest regression voting publication-title: Med. Image Anal. – volume: 240 start-page: 89 year: 2015 end-page: 100 ident: bib89 article-title: Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences publication-title: J. Neurosci. Methods – volume: 331 start-page: 169 year: 2016 end-page: 176 ident: bib193 article-title: A support vector machine based method to identify mild cognitive impairment with multi-level characteristics of magnetic resonance imaging publication-title: Neuroscience – volume: 100 start-page: 75 year: 2014 end-page: 90 ident: bib109 article-title: Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics publication-title: Neuroimage – start-page: 3 year: 2012 end-page: 8 ident: bib73 article-title: Heart region extraction and segmentation from chest CT images using Hopfield Artificial Neural Networks publication-title: International Conference on Information Technology and e-Services – volume: 112 start-page: 951 year: 2003 end-page: 957 ident: bib8 article-title: Computed tomography and radiation risks: what pediatric health care providers should know publication-title: Pediatrics – volume: 83 start-page: 48 year: 2014 end-page: 55 ident: bib186 article-title: Automated detection of cortical dysplasia type II in MRI-negative epilepsy publication-title: Neurology – volume: 114 start-page: 88 year: 2014 end-page: 101 ident: bib53 article-title: Segmentation and detection of breast cancer in mammograms combining wavelet analysis and genetic algorithm publication-title: Comput. Methods Progr. Biomed. – start-page: 892 year: 2011 end-page: 897 ident: bib29 article-title: Semi-supervised learning publication-title: Encyclopedia of Machine Learning – start-page: 117 year: 2014 end-page: 124 ident: bib88 article-title: Deep Learning of Image Features from Unlabeled Data for Multiple Sclerosis Lesion Segmentation – start-page: 855 year: 2016 end-page: 858 ident: bib207 article-title: X-ray image classification using domain transferred convolutional neural networks and local sparse spatial pyramid publication-title: 2016 IEEE 13th International Symposium on Biomedical Imaging – volume: 42 start-page: 2853 year: 2015 end-page: 2862 ident: bib133 article-title: Using multiscale texture and density features for near-term breast cancer risk analysis publication-title: Med. Phys. – volume: 15 start-page: 369 year: 2012 end-page: 376 ident: bib71 article-title: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR publication-title: Medical Image Computing and Computer-Assisted Intervention – start-page: 1841 year: 2013 end-page: 1848 ident: bib217 article-title: Structured forests for fast edge detection publication-title: IEEE International Conference on Computer Vision – volume: 8 start-page: 385 year: 2013 end-page: 395 ident: bib35 article-title: A review on image feature extraction and representation techniques publication-title: International Journal of Multimedia and Ubiquitous Engineering – start-page: 50 year: 2014 end-page: 58 ident: bib103 article-title: 3D intervertebral disc localization and segmentation from MR images by data-driven regression and classification publication-title: International Workshop on Machine Learning in Medical Imaging – year: 2011 ident: bib10 article-title: A Fully Automatic Segmentation Method for Breast Ultrasound Images – year: 2016 ident: bib21 article-title: Neuroradiology Learning Module – volume: vol. 1 start-page: 3501 year: 2010 end-page: 3508 ident: bib204 article-title: Classification and clustering via dictionary learning with structured incoherence and shared features publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition – start-page: 97 year: 2015 end-page: 130 ident: bib13 article-title: Computer aided detection of bone metastases in the thoracolumbar spine publication-title: Spinal Imaging and Image Analysis – volume: 15 start-page: 32 year: 2016 ident: bib48 article-title: A method of localization and segmentation of intervertebral discs in spine MRI based on Gabor filter bank publication-title: Biomed. Eng. Online – start-page: 33 year: 2014 end-page: 41 ident: bib132 article-title: Detection of mammographic masses by content-based image retrieval publication-title: International Workshop on Machine Learning in Medical Imaging – start-page: 149 year: 2010 end-page: 174 ident: bib65 article-title: Classification trees publication-title: Data Mining and Knowledge Discovery Handbook – start-page: 212— year: 2015 end-page: 219 ident: bib101 article-title: Semi-automatic liver tumor segmentation in dynamic contrast-enhanced CT scans using random forests and supervoxels publication-title: International Workshop on Machine Learning in Medical Imaging – volume: 38 start-page: 671 year: 2015 end-page: 688 ident: bib52 article-title: Abdomen disease diagnosis in CT images using flexiscale curvelet transform and improved genetic algorithm publication-title: Australas. Phys. Eng. Sci. Med. – start-page: 496 year: 2014 end-page: 504 ident: bib100 article-title: Laplacian forests: semantic image segmentation by guided bagging publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 39 start-page: 171 year: 2015 ident: bib135 article-title: Three-dimensional SVM with latent variable: application for detection of lung lesions in CT images publication-title: J. Med. Syst. – volume: 127 start-page: 248 year: 2016 end-page: 257 ident: bib138 article-title: Representation learning for mammography mass lesion classification with convolutional neural networks publication-title: Comput. Methods Progr. Biomed. – volume: 13 start-page: 8 year: 2015 end-page: 17 ident: bib18 article-title: Machine learning applications in cancer prognosis and prediction publication-title: Comput. Struct. Biotechnol. J. – volume: vol. 10134 start-page: 101341P year: 2017 ident: bib123 article-title: Deep learning for segmentation of brain tumors: can we train with images from different institutions? publication-title: Medical Imaging 2017: Computer-Aided Diagnosis – start-page: 816 year: 2016 end-page: 820 ident: bib196 article-title: “Deep learning-based pipeline to recognize alzheimer's disease using fmri data publication-title: Future Technologies Conference (FTC) – volume: 33 start-page: 1648 year: 2014 end-page: 1656 ident: bib63 article-title: Classification of dynamic contrast enhanced MR images of cervical cancers using texture analysis and support vector machines publication-title: IEEE Trans. Med. Imaging – start-page: 917 year: 2016 end-page: 921 ident: bib59 article-title: Discriminative feature extraction of X-ray images using deep convolutional neural networks publication-title: Icassp – volume: 38 start-page: 348 year: 2014 end-page: 357 ident: bib156 article-title: Prediction of near-term risk of developing breast cancer using computerized features from bilateral mammograms publication-title: Comput. Med. Imag. Graph. – volume: 36 start-page: 569 year: 2012 end-page: 577 ident: bib154 article-title: Diagnosing breast masses in digital mammography using feature selection and ensemble methods publication-title: J. Med. Syst. – start-page: 92 year: 1998 end-page: 100 ident: bib28 article-title: Combining labeled and unlabeled data with co-training publication-title: 11th Annual Conference on Computational Learning Theory – volume: 26 start-page: 93 year: 2007 end-page: 105 ident: bib173 article-title: COMPARE: classication of morphological patterns using adaptive regional elements publication-title: IEEE Trans. Med. Imaging – volume: 8 start-page: 13 year: 2016 end-page: 20 ident: bib47 article-title: Classification of Alzheimer disease using gabor texture feature of hippocampus region publication-title: Int. J. Image Graph. Signal Process. – volume: 242 start-page: 811 year: 2007 end-page: 816 ident: bib124 article-title: “Lytic metastases in thoracolumbar spine: computer-aided detection at CT–preliminary study publication-title: Radiology – volume: 12 year: 2015 ident: bib157 article-title: Ensemble supervised classification method using the regions of interest and grey level co-occurrence matrices features for mammograms Data publication-title: Iran. J. Radiol. – volume: 380 start-page: 499 year: 2012 end-page: 505 ident: bib6 article-title: Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study publication-title: Lancet – volume: 23 start-page: 2387 year: 2013 end-page: 2403 ident: bib66 article-title: Decision tree classifiers for automated medical diagnosis publication-title: Neural Comput. Appl. – volume: 57 start-page: 243 year: 2012 end-page: 246 ident: bib67 article-title: Classification and regression trees publication-title: Int. J. Public Health – volume: 82 start-page: 329 year: 2014 end-page: 348 ident: bib64 article-title: Fifty years of classification and regression trees publication-title: Int. Stat. Rev. – start-page: 1 year: 2016 end-page: 4 ident: bib160 article-title: A machine learning based prognostic prediction of cervical myelopathy using diffusion tensor imaging publication-title: Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), 2016 IEEE International Conference on. IEEE – volume: 24 start-page: 5892 year: 2015 end-page: 5903 ident: bib203 article-title: Local wavelet pattern: a new feature descriptor for image retrieval in medical CT databases publication-title: IEEE Trans. Image Process. – volume: 131 start-page: 681 year: 2008 end-page: 689 ident: bib171 article-title: “Automatic classification of MR scans in Alzheimer's disease publication-title: Brain – start-page: 1 year: 2016 end-page: 8 ident: bib169 article-title: Correlating mammographic and pathologic findings in clinical decision support using natural language processing and data mining methods publication-title: Cancer – volume: 11 start-page: e0153043 year: 2016 ident: bib56 article-title: Possibility study of scale invariant feature transform (SIFT) algorithm application to spine magnetic resonance imaging publication-title: PLoS One – volume: 2 start-page: 388 year: 2016 ident: bib224 article-title: Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma publication-title: Tomography: a journal for imaging research – volume: 37 start-page: 505 year: 2017 end-page: 515 ident: bib23 article-title: Machine learning for medical imaging publication-title: Radiographics – volume: vol. 3 start-page: 1521 year: 2008 end-page: 1524 ident: bib33 article-title: A geometric method to compute directionality features for texture images publication-title: IEEE International Conference on Multimedia and Expo – year: 2017 ident: bib230 article-title: Regulatory mechanisms and algorithms towards trust in ai/ml publication-title: Proceedings of the IJCAI 2017 Workshop on Explainable Artificial Intelligence (XAI), Melbourne, Australia – volume: 14 start-page: S7 year: 2015 ident: bib137 article-title: cmri-bed: a novel informatics framework for cardiac mri biomarker extraction and discovery applied to pediatric cardiomyopathy classification publication-title: Biomed. Eng. Online – volume: 257 start-page: 97 year: 2016 end-page: 108 ident: bib107 article-title: Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans publication-title: J. Neurosci. Methods – volume: 98 start-page: 324 year: 2014 end-page: 335 ident: bib90 article-title: Lesion segmentation from multimodal MRI using random forest following ischemic stroke publication-title: Neuroimage – volume: 7 start-page: 15415 year: 2017 ident: bib165 article-title: Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning publication-title: Sci. Rep. – start-page: 556 year: 2015 end-page: 564 ident: bib116 article-title: Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: bib62 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. – volume: vols. 255–262 start-page: 255 year: 2015 end-page: 262 ident: bib189 article-title: “Multi-view classification for identification of Alzheimer's Disease publication-title: International Workshop on Machine Learning in Medical Imaging – start-page: 286 year: 2015 end-page: 289 ident: bib83 article-title: Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans publication-title: 12th IEEE International Symposium on Biomedical Imaging – volume: 17 start-page: 393 year: 1988 end-page: 401 ident: bib12 article-title: Computed tomography or magnetic resonance for evaluating the solitary tumor or tumor-like lesion of bone? publication-title: Skeletal Radiol. – start-page: 912 year: 2016 end-page: 916 ident: bib206 article-title: Classification of medical images using edge-based features and sparse representation publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing – start-page: 296 year: 2015 end-page: 303 ident: bib180 article-title: “Inherent structure-guided multi-view learning for Alzheimer's disease and mild cognitive impairment classification publication-title: International Workshop on Machine Learning in Medical Imaging – start-page: 194 year: 2015 end-page: 202 ident: bib187 article-title: Soft-split sparse regression based random forest for predicting future clinical scores of Alzheimer's disease publication-title: International Workshop on Machine Learning in Medical Imaging – volume: 108 start-page: 214 year: 2015 end-page: 224 ident: bib94 article-title: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation publication-title: Neuroimage – volume: 59 start-page: 2362 year: 2012 end-page: 2373 ident: bib112 article-title: BEaST: brain extraction based on nonlocal segmentation technique publication-title: Neuroimage – start-page: 141 year: 2014 end-page: 148 ident: bib184 article-title: “Anatomically constrained weak classifier fusion for early detection of Alzheimer's disease publication-title: International Workshop on Machine Learning in Medical Imaging – start-page: 447 year: 2009 end-page: 456 ident: bib74 article-title: Random forest classication for automatic delineation of myocardium in real-time 3D echocardiography publication-title: International Conference on Functional Imaging and Modeling of the Heart – year: 2017 ident: bib150 article-title: Chexnet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning – volume: 73 start-page: 1493 year: 2009 end-page: 1500 ident: bib86 article-title: Automatic segmentation of whole breast using atlas approach and deformable image registration publication-title: Int. J. Radiat. Oncol. Biol. Phys. – volume: 15 start-page: e1002683 year: 2018 ident: bib231 article-title: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study publication-title: PLoS Med. – start-page: 238 year: 2015 end-page: 245 ident: bib191 article-title: Multimodal multi-label transfer learning for early diagnosis of Alzheimer's disease publication-title: International Workshop on Machine Learning in Medical Imaging – start-page: 1 year: 2016 end-page: 8 ident: bib143 article-title: Detection of wrist fractures in x-ray images publication-title: Workshop on Clinical Image-Based Procedures – start-page: 1 year: 2009 end-page: 7 ident: bib27 article-title: Unsupervised Learning – volume: 175 start-page: 1 year: 2015 end-page: 10 ident: bib129 article-title: Diagnostic accuracy of digital screening mammography with and without computer-aided detection publication-title: JAMA Internal Medicine – volume: 6 start-page: 27327 year: 2016 ident: bib228 article-title: Discrimination of breast cancer with microcalcifications on mammography by deep learning publication-title: Sci. Rep. – start-page: 272 year: 2014 end-page: 279 ident: bib177 article-title: Feature selection based on SVM significance maps for classification of dementia publication-title: International Workshop on Machine Learning in Medical Imaging – year: 2017 ident: bib19 article-title: A Survey on Deep Learning in Medical Image Analysis – volume: 2 year: 2013 ident: bib198 article-title: Content-based image retrieval system in medical applications publication-title: Int. J. Eng. Res. Technol. – volume: 136 start-page: 1 year: 2016 end-page: 9 ident: bib181 article-title: Prediction of brain maturity in infants using machine-learning algorithms publication-title: Neuroimage – volume: 99 start-page: 1 year: 2016 end-page: 7 ident: bib195 article-title: “Voxel-based diagnosis of Alzheimer's disease using classifier ensembles publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 59 start-page: 895 year: 2013 end-page: 907 ident: bib110 article-title: “Multi modal multi task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease publication-title: Neuroimage – year: 2018 ident: bib225 article-title: Not-so-supervised: a Survey of Semi-supervised, Multi-Instance, and Transfer Learning in Medical Image Analysis – volume: 42 start-page: 5301 year: 2015 end-page: 5309 ident: bib214 article-title: Prediction of standard-dose PET image by low-dose PET and MRI images publication-title: Med. Phys. – volume: 46 start-page: 726 year: 2009 end-page: 738 ident: bib106 article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy publication-title: Neuroimage – volume: 6 start-page: 212 year: 2015 end-page: 219 ident: bib57 article-title: Content-based image retrieval using local features descriptors and bag-of-visual words publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 33 start-page: 193 year: 2003 end-page: 204 ident: bib25 article-title: Pet/ct scanners: a hardware approach to image fusion publication-title: Semin. Nucl. Med. – start-page: 621 year: August, 2014 end-page: 625 ident: bib205 article-title: Medical images modality classification using multi-scale dictionary learning publication-title: International Conference on Digital Signal Processing – volume: 278 start-page: 64 year: 2016 end-page: 73 ident: bib142 article-title: Automated detection, localization, and classification of traumatic vertebral body fractures in the thoracic and lumbar spine at CT publication-title: Radiology – year: 2016 ident: bib192 article-title: Deepad: alzheimer’ s disease classification via deep convolutional neural networks using mri and fmri publication-title: bioRxiv – volume: 57 start-page: 378 year: 2011 end-page: 390 ident: bib72 article-title: Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images publication-title: Neuroimage – volume: vol. 2 start-page: 209 year: 2014 end-page: 217 ident: bib131 article-title: Improving the performance of machine learning classifiers for breast cancer diagnosis based on feature selection publication-title: Federated Conference on Computer Science and Information Systems – volume: 63 start-page: 19 year: 2015 end-page: 31 ident: bib134 article-title: Improving the Mann-Whitney statistical test for feature selection: an approach in breast cancer diagnosis on mammography publication-title: Artif. Intell. Med. – volume: 267 start-page: 406 year: 2017 end-page: 416 ident: bib215 article-title: Deep auto-context convolutional neural networks for standard-dose pet image estimation from low-dose pet/mri publication-title: Neurocomputing – volume: 28 start-page: 21 year: 2011 end-page: 25 ident: bib153 article-title: Classification of normal and abnormal patterns in digital mammograms for diagnosis of breast cancer publication-title: Int. J. Comput. Appl. – volume: 61 start-page: 791 year: 2016 ident: bib11 article-title: Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation publication-title: Phys. Med. Biol. – volume: 151 start-page: 61 year: 2016 end-page: 71 ident: bib55 article-title: Medical image modality classification using discrete Bayesian networks publication-title: Comput. Vis. Image Understand. – start-page: 797 year: 2015 end-page: 800 ident: bib158 article-title: Convolutional neural networks for mammography mass lesion classification publication-title: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society – year: 2017 ident: bib229 article-title: Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models – volume: 99 start-page: 1 year: 2016 ident: bib75 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging – volume: 60 year: 2017 ident: bib145 article-title: A cade system for nodule detection in thoracic ct images based on artificial neural network publication-title: Sci. China Inf. Sci. – volume: 27 start-page: 437 year: 2017 end-page: 441 ident: bib22 article-title: Contrast-enhanced ultrasound and elastography imaging of the neonatal brain: a review publication-title: J. Neuroimaging – volume: 17 start-page: 1 year: 2013 end-page: 18 ident: bib17 article-title: Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging publication-title: Med. Image Anal. – start-page: 403 year: 2013 end-page: 410 ident: bib81 article-title: A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 40 start-page: 1 year: 2016 end-page: 13 ident: bib139 article-title: An improved CAD system for breast cancer diagnosis based on generalized pseudo-zernike moment and Ada-DEWNN classifier publication-title: J. Med. Syst. – volume: 36 start-page: 41 year: 2017 end-page: 51 ident: bib148 article-title: Deep learning for automated skeletal bone age assessment in x-ray images publication-title: Med. Image Anal. – volume: 16 start-page: 1127 year: 2012 end-page: 1134 ident: bib168 article-title: Multiparametric decision support system for the prediction of oral cancer reoccurrence publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib26 article-title: Deep learning publication-title: Nature – volume: 129 start-page: 460 year: 2016 end-page: 469 ident: bib95 article-title: Deep MRI brain extraction: a 3D convolutional neural network for skull stripping publication-title: Neuroimage – volume: 80 start-page: 24 year: 2017 end-page: 29 ident: bib146 article-title: Classification of teeth in cone-beam ct using deep convolutional neural network publication-title: Comput. Biol. Med. – volume: 18 start-page: 1082 year: 2014 end-page: 1100 ident: bib209 article-title: On combining image-based and ontological semantic dissimilarities for medical image retrieval applications publication-title: Med. Image Anal. – volume: 253 year: 2009 ident: bib82 article-title: Experimental design and data analysis in receiver operating characteristic studies : lessons learned from reports in radiology from 1997 to 2006 publication-title: Radiology – volume: 35 start-page: 303 year: 2017 end-page: 312 ident: bib144 article-title: Large scale deep learning for computer aided detection of mammographic lesions publication-title: Med. Image Anal. – volume: 139 start-page: 31 year: 2017 end-page: 38 ident: bib151 article-title: Computer-aided grading of gliomas based on local and global mri features publication-title: Comput. Methods Progr. Biomed. – start-page: 1 year: 2015 end-page: 8 ident: bib104 article-title: Segmentation of right ventricle in cardiac MR images using shape regression publication-title: International Workshop on Machine Learning in Medical Imaging – volume: 54 start-page: 1121 year: 2011 end-page: 1127 ident: bib39 article-title: Content-based image retrieval using color and texture fused features publication-title: Math. Comput. Model. – start-page: 124 year: 2016 end-page: 131 ident: bib222 article-title: Learning from experts: developing transferable deep features for patient-level lung cancer prediction publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: vol. 15 start-page: 509 year: 2012 end-page: 516 ident: bib127 article-title: Detection of vertebral body fractures based on cortical shell unwrapping publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 35 start-page: 1262 year: 2016 end-page: 1272 ident: bib119 article-title: Combining generative and discriminative representation learning for lung ct analysis with convolutional restricted Boltzmann machines publication-title: IEEE Trans. Med. Imaging – volume: 152 start-page: 476 year: 2017 end-page: 481 ident: bib197 article-title: “Individual classification of alzheimer's disease with diffusion magnetic resonance imaging publication-title: Neuroimage – volume: 72 start-page: 381 year: 2017 end-page: 390 ident: bib164 article-title: Breast cancer diagnosis in dce-mri using mixture ensemble of convolutional neural networks publication-title: Pattern Recogn. – volume: 49 start-page: 227 year: 2014 end-page: 244 ident: bib202 article-title: A hierarchical knowledge-based approach for retrieving similar medical images described with semantic annotations publication-title: J. Biomed. Inform. – volume: 7 start-page: 367 year: 2015 end-page: 376 ident: bib208 article-title: Content-based image retrieval for brain MRI: an image-searching engine and population-based analysis to utilize past clinical data for future diagnosis publication-title: Neuroimage: Clinic – volume: 3 start-page: 21 year: 2016 ident: bib141 article-title: Detection and classification of focal liver lesions using support vector machine classifiers publication-title: Journal of Biomedical Engineering and Medical Imaging – volume: 18 start-page: 306 year: 2011 end-page: 314 ident: bib130 article-title: Computer-aided diagnosis of pulmonary infections using texture analysis and support vector machine classification publication-title: Acad. Radiol. – volume: 29 start-page: 466 year: 2016 end-page: 475 ident: bib45 article-title: A combination of shape and texture features for classification of pulmonary nodules in lung CT images publication-title: J. Digit. Imaging – start-page: 6 year: 2015 end-page: 8 ident: bib84 article-title: X-ray image body part clustering using deep convolutional neural network publication-title: ImageCLEF 2015 Medical Clustering Task – volume: 57 start-page: 4 year: 2017 end-page: 9 ident: bib167 article-title: Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data publication-title: Comput. Med. Imag. Graph. – volume: 32 start-page: 224 year: 2015 end-page: 236 ident: bib211 article-title: Center symmetric local binary co-occurrence pattern for texture , face and bio-medical image retrieval publication-title: J. Vis. Commun. Image Represent. – volume: 18 start-page: 808 year: 2014 end-page: 818 ident: bib111 article-title: Multiple instance learning for classification of dementia in brain MRI publication-title: Med. Image Anal. – volume: 173 start-page: 930 year: 2016 end-page: 941 ident: bib36 article-title: Breast mass classification in digital mammography based on extreme learning machine publication-title: Neurocomputing – volume: 19 start-page: 92 year: 2008 end-page: 105 ident: bib34 article-title: A fast MPEG-7 dominant color extraction with new similarity measure for image retrieval publication-title: J. Vis. Commun. Image Represent. – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bib69 article-title: Classification and regression by randomForest publication-title: R. News – volume: 2 start-page: 313 year: 2010 end-page: 323 ident: bib170 article-title: Computer-aided diagnostic models in breast cancer screening publication-title: Imaging Med. – volume: 7 year: 2017 ident: bib120 article-title: White matter and gray matter segmentation in 4d computed tomography publication-title: Sci. Rep. – volume: 222 start-page: 230 year: 2014 end-page: 237 ident: bib24 article-title: Machine learning on brain MRI data for differential diagnosis of Parkinson's disease and Progressive Supranuclear Palsy publication-title: J. Neurosci. Methods – start-page: 1721 year: 2015 end-page: 1730 ident: bib232 article-title: Intelligible models for healthcare: predicting pneumonia risk and hospital 30-day readmission publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 158 start-page: 378 year: 2017 end-page: 396 ident: bib218 article-title: Quicksilver: fast predictive image registration–a deep learning approach publication-title: Neuroimage – start-page: 186 year: 2015 end-page: 193 ident: bib102 article-title: Multi-atlas context forests for knee MR image segmentation publication-title: International Workshop on Machine Learning in Medical Imaging – volume: 36 start-page: 105 year: 1999 end-page: 139 ident: bib68 article-title: An empirical comparison of voting classification algorithms: bagging, Boosting, and variants publication-title: Mach. Learn. – start-page: 1 year: 2018 end-page: 14 ident: bib212 article-title: A simple texture feature for retrieval of medical images publication-title: Multimed. Tool. Appl. – start-page: 258 year: 2005 end-page: 291 ident: bib199 article-title: A content–based approach to medical image database retrieval publication-title: Database Modeling for Industrial Data Management: Emerging Technologies and Applications – volume: vol. 9414 start-page: 94140V year: 2015 ident: bib163 article-title: Deep learning with non-medical training used for chest pathology identification publication-title: Medical Imaging 2015: Computer-Aided Diagnosis – year: 2015 ident: bib3 article-title: Learning Radiology: Recognizing the Basics – volume: 62 start-page: 2421 year: 2015 end-page: 2433 ident: bib76 article-title: Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 256 start-page: 30 year: 2015 end-page: 40 ident: bib179 article-title: Unsupervised learning based feature extraction for differential diagnosis of neurodegenerative diseases: a case study on early-stage diagnosis of Parkinson disease publication-title: J. Neurosci. Methods – volume: 231 start-page: 305 year: 2004 end-page: 332 ident: bib213 article-title: Clinical applications of PET in oncology publication-title: Radiology – start-page: 537 year: 2010 end-page: 554 ident: bib201 article-title: Similarity estimation using Bayes ensembles publication-title: International Conference on Scientific and Statistical Database Management – volume: 13 start-page: 125 year: 2015 end-page: 136 ident: bib210 article-title: Medical image retrieval: a multimodal approach publication-title: Canc. Inf. – volume: 38 start-page: 606 year: 2014 end-page: 612 ident: bib126 article-title: Computer aided detection of epidural masses on computed tomography scans publication-title: Comput. Med. Imag. Graph. – start-page: 574 year: 2006 end-page: 579 ident: bib226 article-title: Machine learning for imbalanced datasets: application in medical diagnostic publication-title: Breast – volume: 58 start-page: R97 year: 2013 end-page: R129 ident: bib16 article-title: A survey of MRI-based medical image analysis for brain tumor studies publication-title: Phys. Med. Biol. – volume: 0 year: 2017 ident: bib20 article-title: Deep learning in medical image analysis publication-title: Annu. Rev. Biomed. Eng. – year: 2004 ident: bib1 article-title: Squire's Fundamentals of Radiology – volume: 35 start-page: 1305 year: 2014 end-page: 1319 ident: bib175 article-title: “Hierarchical fusion of features and classifier decisions for Alzheimer's disease diagnosis publication-title: Hum. Brain Mapp. – volume: 14 start-page: 9 year: 2015 ident: bib54 article-title: Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine publication-title: Biomed. Eng. Online – volume: 266 start-page: 161 year: 2015 end-page: 162 ident: bib219 article-title: “Machine learning on Parkinson's disease? Let's translate into clinical practice publication-title: J. Neurosci. Methods – start-page: 1 year: 2014 end-page: 9 ident: bib87 article-title: Top rank optimization in linear time publication-title: Adv. Neural Inf. Process. Syst. – volume: vol. 3 start-page: 448 year: 2009 end-page: 455 ident: bib77 article-title: Deep Boltzmann machines publication-title: 12th International Conference on Artificial Intelligence and Statics – volume: 3 start-page: 146 year: 2015 ident: bib115 article-title: Automatic segmentation of liver tumor in ct images with deep convolutional neural networks publication-title: J. Comput. Commun. – volume: 48 start-page: 21 year: 2015 end-page: 28 ident: bib185 article-title: “Cortical feature analysis and machine learning improves detection of “MRI-negative” focal cortical dysplasia publication-title: Epilepsy Behav. – start-page: 1 year: 2016 end-page: 10 ident: bib38 article-title: Support top irrelevant machine: learning similarity measures to maximize top precision for image retrieval publication-title: Neural Comput. Appl. – volume: 9 start-page: 913 year: 2015 end-page: 926 ident: bib223 article-title: Multimodal manifold-regularized transfer learning for mci conversion prediction publication-title: Brain imaging and behavior – volume: 35 start-page: 18 year: 2017 end-page: 31 ident: bib121 article-title: Brain tumor segmentation with deep neural networks publication-title: Med. Image Anal. – volume: 46 start-page: 749 year: 2009 end-page: 761 ident: bib172 article-title: Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: method and validation publication-title: Neuroimage – year: 2011 ident: 10.1016/j.compbiomed.2019.02.017_bib10 – volume: 8 start-page: 385 issue: 4 year: 2013 ident: 10.1016/j.compbiomed.2019.02.017_bib35 article-title: A review on image feature extraction and representation techniques publication-title: International Journal of Multimedia and Ubiquitous Engineering – start-page: 212— year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib101 article-title: Semi-automatic liver tumor segmentation in dynamic contrast-enhanced CT scans using random forests and supervoxels – volume: 30 start-page: 451 issue: 3 year: 2008 ident: 10.1016/j.compbiomed.2019.02.017_bib200 article-title: Distance learning for similarity estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.70714 – start-page: 194 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib187 article-title: Soft-split sparse regression based random forest for predicting future clinical scores of Alzheimer's disease – start-page: 855 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib207 article-title: X-ray image classification using domain transferred convolutional neural networks and local sparse spatial pyramid – volume: 380 start-page: 499 issue: 9840 year: 2012 ident: 10.1016/j.compbiomed.2019.02.017_bib6 article-title: Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study publication-title: Lancet doi: 10.1016/S0140-6736(12)60815-0 – start-page: 2957 year: 2004 ident: 10.1016/j.compbiomed.2019.02.017_bib9 article-title: Breast cancer diagnosis using image retrieval for different ultrasonic systems – start-page: 85 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib113 article-title: Semi supervised learning for image modality classification publication-title: Multimodal Retrieval in the Medical Domain doi: 10.1007/978-3-319-24471-6_8 – volume: 46 start-page: 139 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib161 article-title: Breast cancer classification using deep belief networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.10.015 – start-page: 240 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib183 article-title: Robust deep learning for improved classification of AD/MCI patients – start-page: 296 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib180 article-title: “Inherent structure-guided multi-view learning for Alzheimer's disease and mild cognitive impairment classification – volume: 16 start-page: 1127 issue: 6 year: 2012 ident: 10.1016/j.compbiomed.2019.02.017_bib168 article-title: Multiparametric decision support system for the prediction of oral cancer reoccurrence publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2011.2165076 – volume: 4638 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib14 article-title: Content based image retrieval in mammograms: a survey publication-title: Int. J. Eng. Sci. – year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib230 article-title: Regulatory mechanisms and algorithms towards trust in ai/ml – volume: 168 start-page: 880 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib42 article-title: Content based medical image retrieval using dictionary learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.05.036 – volume: 13 start-page: 125 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib210 article-title: Medical image retrieval: a multimodal approach publication-title: Canc. Inf. – volume: 17 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.compbiomed.2019.02.017_bib17 article-title: Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging publication-title: Med. Image Anal. doi: 10.1016/j.media.2012.09.004 – volume: 98 start-page: 324 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib90 article-title: Lesion segmentation from multimodal MRI using random forest following ischemic stroke publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.04.056 – volume: 9 start-page: 913 issue: 4 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib223 article-title: Multimodal manifold-regularized transfer learning for mci conversion prediction publication-title: Brain imaging and behavior doi: 10.1007/s11682-015-9356-x – volume: 257 start-page: 97 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib107 article-title: Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.09.019 – start-page: 2921 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib233 article-title: Learning deep features for discriminative localization – start-page: 583 year: 2013 ident: 10.1016/j.compbiomed.2019.02.017_bib79 article-title: Deep learning-based feature representation for AD/MCI classification – volume: 40 start-page: 1 issue: 4 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib139 article-title: An improved CAD system for breast cancer diagnosis based on generalized pseudo-zernike moment and Ada-DEWNN classifier publication-title: J. Med. Syst. – volume: 32 start-page: 135 issue: 1 year: 2007 ident: 10.1016/j.compbiomed.2019.02.017_bib32 article-title: Image mining by spectral features: a case study of scenery image classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.11.016 – start-page: 238 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib191 article-title: Multimodal multi-label transfer learning for early diagnosis of Alzheimer's disease – volume: 136 start-page: 1 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib181 article-title: Prediction of brain maturity in infants using machine-learning algorithms publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.05.029 – volume: 36 start-page: 569 issue: 2 year: 2012 ident: 10.1016/j.compbiomed.2019.02.017_bib154 article-title: Diagnosing breast masses in digital mammography using feature selection and ensemble methods publication-title: J. Med. Syst. doi: 10.1007/s10916-010-9518-8 – volume: 35 start-page: 1262 issue: 5 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib119 article-title: Combining generative and discriminative representation learning for lung ct analysis with convolutional restricted Boltzmann machines publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2526687 – start-page: 2190 year: 2011 ident: 10.1016/j.compbiomed.2019.02.017_bib216 article-title: Structured class-labels in random forests for semantic image labelling – volume: 16 start-page: 933 issue: 5 year: 2013 ident: 10.1016/j.compbiomed.2019.02.017_bib15 article-title: Machine learning and radiology publication-title: Med. Image Anal. doi: 10.1016/j.media.2012.02.005 – start-page: 1 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib104 article-title: Segmentation of right ventricle in cardiac MR images using shape regression – volume: 32 start-page: 1462 issue: 8 year: 2013 ident: 10.1016/j.compbiomed.2019.02.017_bib99 article-title: Fully automatic segmentation of the proximal femur using random forest regression voting publication-title: Med. Image Anal. doi: 10.1109/TMI.2013.2258030 – volume: 14 start-page: S7 issue: 2 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib137 article-title: cmri-bed: a novel informatics framework for cardiac mri biomarker extraction and discovery applied to pediatric cardiomyopathy classification publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-14-S2-S7 – volume: vol. 15 start-page: 509 year: 2012 ident: 10.1016/j.compbiomed.2019.02.017_bib127 article-title: Detection of vertebral body fractures based on cortical shell unwrapping – volume: vol. 9414 start-page: 94140V year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib163 article-title: Deep learning with non-medical training used for chest pathology identification – start-page: 77 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib190 article-title: Manifold alignment and transfer learning for classification of Alzheimer's disease – start-page: 1721 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib232 article-title: Intelligible models for healthcare: predicting pneumonia risk and hospital 30-day readmission – volume: 0 year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib20 article-title: Deep learning in medical image analysis publication-title: Annu. Rev. Biomed. Eng. – year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib162 – volume: 35 start-page: 1207 issue: 5 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib166 article-title: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2535865 – volume: 253 issue: 3 year: 2009 ident: 10.1016/j.compbiomed.2019.02.017_bib82 article-title: Experimental design and data analysis in receiver operating characteristic studies : lessons learned from reports in radiology from 1997 to 2006 publication-title: Radiology doi: 10.1148/radiol.2533081632 – start-page: 20 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib96 article-title: Deep neural networks for anatomical brain segmentation – volume: 57 start-page: 4 year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib167 article-title: Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data publication-title: Comput. Med. Imag. Graph. doi: 10.1016/j.compmedimag.2016.07.004 – volume: 173 start-page: 930 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib36 article-title: Breast mass classification in digital mammography based on extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.048 – volume: 26 start-page: 93 issue: 1 year: 2007 ident: 10.1016/j.compbiomed.2019.02.017_bib173 article-title: COMPARE: classication of morphological patterns using adaptive regional elements publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.886812 – volume: 35 start-page: 303 year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib144 article-title: Large scale deep learning for computer aided detection of mammographic lesions publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.07.007 – volume: 38 start-page: 348 issue: 5 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib156 article-title: Prediction of near-term risk of developing breast cancer using computerized features from bilateral mammograms publication-title: Comput. Med. Imag. Graph. doi: 10.1016/j.compmedimag.2014.03.001 – volume: 13 start-page: 8 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib18 article-title: Machine learning applications in cancer prognosis and prediction publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2014.11.005 – start-page: 6 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib84 article-title: X-ray image body part clustering using deep convolutional neural network – volume: 112 start-page: 951 issue: 4 year: 2003 ident: 10.1016/j.compbiomed.2019.02.017_bib8 article-title: Computed tomography and radiation risks: what pediatric health care providers should know publication-title: Pediatrics doi: 10.1542/peds.112.4.951 – start-page: 58 year: 2013 ident: 10.1016/j.compbiomed.2019.02.017_bib92 article-title: Multi-atlas based simultaneous labeling of longitudinal dynamic cortical surfaces in infants – volume: 175 start-page: 1 issue: 11 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib129 article-title: Diagnostic accuracy of digital screening mammography with and without computer-aided detection publication-title: JAMA Internal Medicine doi: 10.1001/jamainternmed.2015.5231 – volume: 18 start-page: 808 issue: 5 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib111 article-title: Multiple instance learning for classification of dementia in brain MRI publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.04.006 – volume: vols. 255–262 start-page: 255 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib189 article-title: “Multi-view classification for identification of Alzheimer's Disease – volume: 29 start-page: 466 issue: 4 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib45 article-title: A combination of shape and texture features for classification of pulmonary nodules in lung CT images publication-title: J. Digit. Imaging doi: 10.1007/s10278-015-9857-6 – volume: 119 start-page: 399 year: 2013 ident: 10.1016/j.compbiomed.2019.02.017_bib50 article-title: Local ternary co-occurrence patterns: a new feature descriptor for MRI and CT image retrieval publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.03.018 – volume: 49 start-page: 227 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib202 article-title: A hierarchical knowledge-based approach for retrieving similar medical images described with semantic annotations publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2014.02.018 – volume: 46 start-page: 749 issue: 3 year: 2009 ident: 10.1016/j.compbiomed.2019.02.017_bib172 article-title: Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: method and validation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.02.013 – volume: 91 start-page: 386 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib128 article-title: And the Alzheimer's Disease Neuroimaging Initiative, “Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.01.033 – volume: 266 start-page: 161 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib219 article-title: “Machine learning on Parkinson's disease? Let's translate into clinical practice publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.12.005 – start-page: 286 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib83 article-title: Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans – volume: 129 start-page: 460 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib95 article-title: Deep MRI brain extraction: a 3D convolutional neural network for skull stripping publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.01.024 – year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib136 – volume: 108 start-page: 214 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib94 article-title: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.12.061 – volume: 170 start-page: 446 year: 2018 ident: 10.1016/j.compbiomed.2019.02.017_bib98 article-title: Voxresnet: deep voxelwise residual networks for brain segmentation from 3d mr images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.04.041 – start-page: 1 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib143 article-title: Detection of wrist fractures in x-ray images – start-page: 3 year: 2012 ident: 10.1016/j.compbiomed.2019.02.017_bib73 article-title: Heart region extraction and segmentation from chest CT images using Hopfield Artificial Neural Networks – volume: 231 start-page: 305 year: 2004 ident: 10.1016/j.compbiomed.2019.02.017_bib213 article-title: Clinical applications of PET in oncology publication-title: Radiology doi: 10.1148/radiol.2312021185 – volume: 14 start-page: 9 issue: 1 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib54 article-title: Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine publication-title: Biomed. Eng. Online doi: 10.1186/s12938-015-0003-y – start-page: 50 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib103 article-title: 3D intervertebral disc localization and segmentation from MR images by data-driven regression and classification – volume: 7 issue: 1 year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib120 article-title: White matter and gray matter segmentation in 4d computed tomography publication-title: Sci. Rep. doi: 10.1038/s41598-017-00239-z – volume: 87 start-page: 449 issue: 3 year: 2013 ident: 10.1016/j.compbiomed.2019.02.017_bib30 article-title: Challenges with the diagnosis and treatment of cerebral radiation necrosis publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2013.05.015 – start-page: 96 year: 1996 ident: 10.1016/j.compbiomed.2019.02.017_bib40 article-title: Histogram refinement for content-based image retrieval – volume: 12 start-page: 88 issue: 4 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib182 article-title: Alzheimer's disease facts and figures publication-title: Alzheimer's Dementia – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib26 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 100 start-page: 75 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib109 article-title: Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.04.048 – year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib147 article-title: Classification of clinical significance of mri prostate findings using 3d convolutional neural networks – year: 2004 ident: 10.1016/j.compbiomed.2019.02.017_bib1 – year: 2018 ident: 10.1016/j.compbiomed.2019.02.017_bib225 – start-page: 259 year: 2005 ident: 10.1016/j.compbiomed.2019.02.017_bib4 article-title: Radiology CT screening for lung cancer : five-year prospective publication-title: Cancer – volume: 99 start-page: 1 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib75 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging – start-page: 33 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib132 article-title: Detection of mammographic masses by content-based image retrieval – volume: 64 start-page: 79 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib51 article-title: Breast cancer diagnosis in digitized mammograms using curvelet moments publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.06.012 – volume: 33 start-page: 193 issue: 3 year: 2003 ident: 10.1016/j.compbiomed.2019.02.017_bib25 article-title: Pet/ct scanners: a hardware approach to image fusion publication-title: Semin. Nucl. Med. doi: 10.1053/snuc.2003.127314 – volume: 54 start-page: 1121 issue: 3 year: 2011 ident: 10.1016/j.compbiomed.2019.02.017_bib39 article-title: Content-based image retrieval using color and texture fused features publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2010.11.044 – volume: 7 start-page: 367 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib208 article-title: Content-based image retrieval for brain MRI: an image-searching engine and population-based analysis to utilize past clinical data for future diagnosis publication-title: Neuroimage: Clinic doi: 10.1016/j.nicl.2015.01.008 – volume: 36 start-page: 41 year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib148 article-title: Deep learning for automated skeletal bone age assessment in x-ray images publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.10.010 – volume: 3 start-page: 146 issue: 11 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib115 article-title: Automatic segmentation of liver tumor in ct images with deep convolutional neural networks publication-title: J. Comput. Commun. doi: 10.4236/jcc.2015.311023 – volume: 324 start-page: 109 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib46 article-title: Artificial intelligence and evolutionary algorithms in engineering systems publication-title: Advances in Intelligent Systems and Computing – volume: vol. 10134 start-page: 101341P year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib123 article-title: Deep learning for segmentation of brain tumors: can we train with images from different institutions? – volume: 6 start-page: 27327 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib228 article-title: Discrimination of breast cancer with microcalcifications on mammography by deep learning publication-title: Sci. Rep. doi: 10.1038/srep27327 – volume: 46 start-page: 726 issue: 3 year: 2009 ident: 10.1016/j.compbiomed.2019.02.017_bib106 article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.02.018 – volume: 24 start-page: 5892 issue: 12 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib203 article-title: Local wavelet pattern: a new feature descriptor for image retrieval in medical CT databases publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2493446 – start-page: 574 year: 2006 ident: 10.1016/j.compbiomed.2019.02.017_bib226 article-title: Machine learning for imbalanced datasets: application in medical diagnostic publication-title: Breast – volume: 58 start-page: R97 issue: 13 year: 2013 ident: 10.1016/j.compbiomed.2019.02.017_bib16 article-title: A survey of MRI-based medical image analysis for brain tumor studies publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/13/R97 – volume: 59 start-page: 2362 issue: 3 year: 2012 ident: 10.1016/j.compbiomed.2019.02.017_bib112 article-title: BEaST: brain extraction based on nonlocal segmentation technique publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.012 – volume: 48 start-page: 21 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib185 article-title: “Cortical feature analysis and machine learning improves detection of “MRI-negative” focal cortical dysplasia publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2015.04.055 – volume: 33 start-page: 1339 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib220 article-title: Four challenges in medical image analysis from an industrial perspective publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.06.023 – start-page: 496 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib100 article-title: Laplacian forests: semantic image segmentation by guided bagging – start-page: 186 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib102 article-title: Multi-atlas context forests for knee MR image segmentation – volume: 19 start-page: 92 issue: 2 year: 2008 ident: 10.1016/j.compbiomed.2019.02.017_bib34 article-title: A fast MPEG-7 dominant color extraction with new similarity measure for image retrieval publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2007.05.003 – volume: 30 start-page: 108 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib118 article-title: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac mri publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.01.005 – volume: 2 issue: 3 year: 2013 ident: 10.1016/j.compbiomed.2019.02.017_bib198 article-title: Content-based image retrieval system in medical applications publication-title: Int. J. Eng. Res. Technol. – start-page: 917 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib59 article-title: Discriminative feature extraction of X-ray images using deep convolutional neural networks publication-title: Icassp – start-page: 248 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib114 article-title: Subject specific sparse dictionary learning for atlas based brain MRI segmentation – start-page: 816 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib196 article-title: “Deep learning-based pipeline to recognize alzheimer's disease using fmri data – volume: 23 start-page: 2387 issue: 7–8 year: 2013 ident: 10.1016/j.compbiomed.2019.02.017_bib66 article-title: Decision tree classifiers for automated medical diagnosis publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-1196-7 – volume: 18 start-page: 1082 issue: 7 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib209 article-title: On combining image-based and ontological semantic dissimilarities for medical image retrieval applications publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.06.009 – volume: 2 start-page: 18 year: 2002 ident: 10.1016/j.compbiomed.2019.02.017_bib69 article-title: Classification and regression by randomForest publication-title: R. News – volume: 36 start-page: 105 year: 1999 ident: 10.1016/j.compbiomed.2019.02.017_bib68 article-title: An empirical comparison of voting classification algorithms: bagging, Boosting, and variants publication-title: Mach. Learn. doi: 10.1023/A:1007515423169 – start-page: 321 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib70 article-title: Multi-source information gain for random forest: an application to CT image prediction from MRI data – start-page: 1 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib87 article-title: Top rank optimization in linear time publication-title: Adv. Neural Inf. Process. Syst. – volume: 6 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib140 article-title: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in us images and pulmonary nodules in ct scans publication-title: Sci. Rep. – volume: 151 start-page: 61 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib55 article-title: Medical image modality classification using discrete Bayesian networks publication-title: Comput. Vis. Image Understand. doi: 10.1016/j.cviu.2016.04.002 – start-page: 3462 year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib149 article-title: Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases – volume: 63 start-page: 19 issue: 1 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib134 article-title: Improving the Mann-Whitney statistical test for feature selection: an approach in breast cancer diagnosis on mammography publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2014.12.004 – start-page: 892 year: 2011 ident: 10.1016/j.compbiomed.2019.02.017_bib29 article-title: Semi-supervised learning – volume: 267 start-page: 406 year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib215 article-title: Deep auto-context convolutional neural networks for standard-dose pet image estimation from low-dose pet/mri publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.06.048 – volume: 61 start-page: 8676 issue: 24 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib122 article-title: Automatic 3d liver segmentation based on deep learning and globally optimized surface evolution publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/61/24/8676 – start-page: 258 year: 2005 ident: 10.1016/j.compbiomed.2019.02.017_bib199 article-title: A content–based approach to medical image database retrieval – start-page: 51 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib125 article-title: Computer aided detection of spinal degenerative osteophytes on sodium fluoride PET/CT publication-title: Computational Methods and Clinical Applications for Spine Imaging doi: 10.1007/978-3-319-07269-2_5 – volume: 152 start-page: 476 year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib197 article-title: “Individual classification of alzheimer's disease with diffusion magnetic resonance imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.03.025 – volume: 57 start-page: 378 issue: 2 year: 2011 ident: 10.1016/j.compbiomed.2019.02.017_bib72 article-title: Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.03.080 – volume: 32 start-page: 224 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib211 article-title: Center symmetric local binary co-occurrence pattern for texture , face and bio-medical image retrieval publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2015.08.015 – volume: 158 start-page: 378 year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib218 article-title: Quicksilver: fast predictive image registration–a deep learning approach publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.008 – volume: 59 start-page: 895 issue: 2 year: 2013 ident: 10.1016/j.compbiomed.2019.02.017_bib110 article-title: “Multi modal multi task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.069 – volume: 37 start-page: 505 issue: 2 year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib23 article-title: Machine learning for medical imaging publication-title: Radiographics doi: 10.1148/rg.2017160130 – start-page: 304 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib174 article-title: “Nonlinear feature transformation and deep fusion for Alzheimer's disease staging analysis – volume: 131 start-page: 681 issue: 3 year: 2008 ident: 10.1016/j.compbiomed.2019.02.017_bib171 article-title: “Automatic classification of MR scans in Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awm319 – volume: 11 start-page: 178 issue: 2 year: 2004 ident: 10.1016/j.compbiomed.2019.02.017_bib85 article-title: Statistical validation of image segmentation quality based on a spatial overlap index publication-title: Acad. Radiol. doi: 10.1016/S1076-6332(03)00671-8 – volume: vol. 3 start-page: 448 year: 2009 ident: 10.1016/j.compbiomed.2019.02.017_bib77 article-title: Deep Boltzmann machines – volume: 15 start-page: 32 issue: 1 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib48 article-title: A method of localization and segmentation of intervertebral discs in spine MRI based on Gabor filter bank publication-title: Biomed. Eng. Online doi: 10.1186/s12938-016-0146-5 – volume: 73 start-page: 1493 issue: 5 year: 2009 ident: 10.1016/j.compbiomed.2019.02.017_bib86 article-title: Automatic segmentation of whole breast using atlas approach and deformable image registration publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2008.07.001 – volume: vol. 2 start-page: 209 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib131 article-title: Improving the performance of machine learning classifiers for breast cancer diagnosis based on feature selection – start-page: 157 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib188 article-title: “Sparse discriminative feature selection for multi-class Alzheimer's disease classification – year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib192 article-title: Deepad: alzheimer’ s disease classification via deep convolutional neural networks using mri and fmri publication-title: bioRxiv – volume: 56 start-page: 368 issue: 4 year: 1999 ident: 10.1016/j.compbiomed.2019.02.017_bib178 article-title: Diagnostic criteria for Parkinson disease publication-title: Arch. Neurol. – volume: vol. 1 start-page: 3501 year: 2010 ident: 10.1016/j.compbiomed.2019.02.017_bib204 article-title: Classification and clustering via dictionary learning with structured incoherence and shared features – volume: 194 start-page: 311 issue: 2 year: 2010 ident: 10.1016/j.compbiomed.2019.02.017_bib5 article-title: MRI, CT, and PET/CT for ovarian cancer detection and adnexal lesion characterization publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.09.3522 – start-page: 149 year: 2010 ident: 10.1016/j.compbiomed.2019.02.017_bib65 article-title: Classification trees – year: 2006 ident: 10.1016/j.compbiomed.2019.02.017_bib60 – start-page: 447 year: 2009 ident: 10.1016/j.compbiomed.2019.02.017_bib74 article-title: Random forest classication for automatic delineation of myocardium in real-time 3D echocardiography – volume: 2 start-page: 388 issue: 4 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib224 article-title: Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma publication-title: Tomography: a journal for imaging research doi: 10.18383/j.tom.2016.00211 – start-page: 1 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib160 article-title: A machine learning based prognostic prediction of cervical myelopathy using diffusion tensor imaging – volume: 6 start-page: 429 issue: 5 year: 2002 ident: 10.1016/j.compbiomed.2019.02.017_bib227 article-title: The class imbalance problem: a systematic study publication-title: Intell. Data Anal. doi: 10.3233/IDA-2002-6504 – volume: 57 start-page: 243 issue: 1 year: 2012 ident: 10.1016/j.compbiomed.2019.02.017_bib67 article-title: Classification and regression trees publication-title: Int. J. Public Health doi: 10.1007/s00038-011-0315-z – start-page: 1841 year: 2013 ident: 10.1016/j.compbiomed.2019.02.017_bib217 article-title: Structured forests for fast edge detection – volume: 197 start-page: 1 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib159 article-title: A deep feature based framework for breast masses classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.02.060 – volume: 11 start-page: 1 issue: 10 year: 2011 ident: 10.1016/j.compbiomed.2019.02.017_bib58 article-title: Content-based image retrieval using SURF and colour moments publication-title: Glob. J. Comput. Sci. Technol. – volume: 8 start-page: 13 issue: 6 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib47 article-title: Classification of Alzheimer disease using gabor texture feature of hippocampus region publication-title: Int. J. Image Graph. Signal Process. doi: 10.5815/ijigsp.2016.06.02 – volume: 2 start-page: 313 issue: 3 year: 2010 ident: 10.1016/j.compbiomed.2019.02.017_bib170 article-title: Computer-aided diagnostic models in breast cancer screening publication-title: Imaging Med. doi: 10.2217/iim.10.24 – volume: 242 start-page: 811 issue: 3 year: 2007 ident: 10.1016/j.compbiomed.2019.02.017_bib124 article-title: “Lytic metastases in thoracolumbar spine: computer-aided detection at CT–preliminary study publication-title: Radiology doi: 10.1148/radiol.2423060260 – year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib21 – start-page: 273 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib221 article-title: “Asymmetric similarity-weighted ensembles for image segmentation,” in Biomedical Imaging (ISBI) – volume: 28 start-page: 21 issue: 6 year: 2011 ident: 10.1016/j.compbiomed.2019.02.017_bib153 article-title: Classification of normal and abnormal patterns in digital mammograms for diagnosis of breast cancer publication-title: Int. J. Comput. Appl. – volume: 54 start-page: 1409 issue: 9 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib49 article-title: Unsupervised segmentation of lung fields in chest radiographs using multiresolution fractal feature vector and deformable models publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-015-1412-6 – year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib19 – start-page: 215 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib44 article-title: Combined density, texture and shape features of multi-phase contrast-enhanced CT images for CBIR of focal liver lesions: a preliminary study – start-page: 797 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib158 article-title: Convolutional neural networks for mammography mass lesion classification – volume: 42 start-page: 4241 issue: 7 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib43 article-title: Assessment of performance and reproducibility of applying a content-based image retrieval scheme for classification of breast lesions publication-title: Med. Phys. doi: 10.1118/1.4922681 – start-page: 92 year: 1998 ident: 10.1016/j.compbiomed.2019.02.017_bib28 article-title: Combining labeled and unlabeled data with co-training – start-page: 97 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib13 article-title: Computer aided detection of bone metastases in the thoracolumbar spine – year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib150 – start-page: 912 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib206 article-title: Classification of medical images using edge-based features and sparse representation – volume: 61 start-page: 791 issue: 2 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib11 article-title: Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/61/2/791 – volume: 139 start-page: 31 year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib151 article-title: Computer-aided grading of gliomas based on local and global mri features publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2016.10.021 – start-page: 253 year: 2010 ident: 10.1016/j.compbiomed.2019.02.017_bib78 article-title: Convolutional networks and applications in vision – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 10.1016/j.compbiomed.2019.02.017_bib62 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. doi: 10.1023/A:1018628609742 – volume: 3 start-page: 21 issue: 1 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib141 article-title: Detection and classification of focal liver lesions using support vector machine classifiers publication-title: Journal of Biomedical Engineering and Medical Imaging – volume: 7 start-page: 15415 issue: 1 year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib165 article-title: Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning publication-title: Sci. Rep. doi: 10.1038/s41598-017-15720-y – volume: 35 start-page: 18 year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib121 article-title: Brain tumor segmentation with deep neural networks publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.05.004 – volume: 39 start-page: 171 issue: 1 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib135 article-title: Three-dimensional SVM with latent variable: application for detection of lung lesions in CT images publication-title: J. Med. Syst. doi: 10.1007/s10916-014-0171-5 – volume: 38 start-page: 606 issue: 7 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib126 article-title: Computer aided detection of epidural masses on computed tomography scans publication-title: Comput. Med. Imag. Graph. doi: 10.1016/j.compmedimag.2014.04.007 – volume: 60 start-page: 59 issue: 1 year: 2012 ident: 10.1016/j.compbiomed.2019.02.017_bib176 article-title: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.066 – volume: 169 start-page: 2078 issue: 22 year: 2009 ident: 10.1016/j.compbiomed.2019.02.017_bib7 article-title: Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer publication-title: Arch. Intern. Med. doi: 10.1001/archinternmed.2009.427 – volume: 35 start-page: 1305 issue: 4 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib175 article-title: “Hierarchical fusion of features and classifier decisions for Alzheimer's disease diagnosis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22254 – volume: 42 start-page: 1362 issue: 5 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib31 article-title: Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in mri publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.24913 – volume: 23 start-page: 92 issue: 1 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib105 article-title: Discriminative dictionary learning for abdominal multi-organ segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2015.04.015 – volume: 42 start-page: 5301 issue: 9 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib214 article-title: Prediction of standard-dose PET image by low-dose PET and MRI images publication-title: Med. Phys. doi: 10.1118/1.4928400 – volume: 27 start-page: 437 issue: 5 year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib22 article-title: Contrast-enhanced ultrasound and elastography imaging of the neonatal brain: a review publication-title: J. Neuroimaging doi: 10.1111/jon.12443 – start-page: 272 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib177 article-title: Feature selection based on SVM significance maps for classification of dementia – volume: 38 start-page: 671 issue: 4 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib52 article-title: Abdomen disease diagnosis in CT images using flexiscale curvelet transform and improved genetic algorithm publication-title: Australas. Phys. Eng. Sci. Med. doi: 10.1007/s13246-015-0389-7 – volume: 62 start-page: 2421 issue: 10 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib76 article-title: Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – start-page: 124 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib222 article-title: Learning from experts: developing transferable deep features for patient-level lung cancer prediction – start-page: 1 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib169 article-title: Correlating mammographic and pathologic findings in clinical decision support using natural language processing and data mining methods publication-title: Cancer – volume: 331 start-page: 169 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib193 article-title: A support vector machine based method to identify mild cognitive impairment with multi-level characteristics of magnetic resonance imaging publication-title: Neuroscience doi: 10.1016/j.neuroscience.2016.06.025 – volume: 9 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib108 article-title: Knowledge-guided robust MRI brain extraction for diverse large-scale neuroimaging studies on humans and non-human primates publication-title: PLoS One doi: 10.1371/journal.pone.0077810 – volume: 15 start-page: e1002683 issue: 11 year: 2018 ident: 10.1016/j.compbiomed.2019.02.017_bib231 article-title: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study publication-title: PLoS Med. doi: 10.1371/journal.pmed.1002683 – start-page: 537 year: 2010 ident: 10.1016/j.compbiomed.2019.02.017_bib201 article-title: Similarity estimation using Bayes ensembles – volume: 6 start-page: 212 issue: 9 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib57 article-title: Content-based image retrieval using local features descriptors and bag-of-visual words publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 4 start-page: 1 issue: 5 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib91 article-title: Artificial neural network based lesion segmentation of brain MRI publication-title: Communications on Applied Electronics doi: 10.5120/cae2016652096 – start-page: 556 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib116 article-title: Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation – volume: 17 start-page: 393 issue: 6 year: 1988 ident: 10.1016/j.compbiomed.2019.02.017_bib12 article-title: Computed tomography or magnetic resonance for evaluating the solitary tumor or tumor-like lesion of bone? publication-title: Skeletal Radiol. doi: 10.1007/BF00361657 – start-page: 246 year: 2013 ident: 10.1016/j.compbiomed.2019.02.017_bib80 article-title: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network – start-page: 141 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib184 article-title: “Anatomically constrained weak classifier fusion for early detection of Alzheimer's disease – start-page: 117 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib88 – volume: 33 start-page: 1648 issue: 8 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib63 article-title: Classification of dynamic contrast enhanced MR images of cervical cancers using texture analysis and support vector machines publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2321024 – volume: 35 start-page: 1252 issue: 5 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib97 article-title: Automatic segmentation of mr brain images with a convolutional neural network publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2548501 – start-page: 403 year: 2013 ident: 10.1016/j.compbiomed.2019.02.017_bib81 article-title: A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection – volume: 7 start-page: 18 issue: 1 year: 2010 ident: 10.1016/j.compbiomed.2019.02.017_bib152 article-title: Breast cancer screening with imaging: recommendations from the society of breast imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer publication-title: J. Am. Coll. Radiol. doi: 10.1016/j.jacr.2009.09.022 – volume: 82 start-page: 329 issue: 3 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib64 article-title: Fifty years of classification and regression trees publication-title: Int. Stat. Rev. doi: 10.1111/insr.12016 – volume: vol. 3 start-page: 1521 year: 2008 ident: 10.1016/j.compbiomed.2019.02.017_bib33 article-title: A geometric method to compute directionality features for texture images – volume: 99 start-page: 1 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib195 article-title: “Voxel-based diagnosis of Alzheimer's disease using classifier ensembles publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 10 start-page: 799 issue: 3 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib194 article-title: “Application of advanced machine learning methods on resting-state fmri network for identification of mild cognitive impairment and alzheimer's disease publication-title: Brain imaging and behavior doi: 10.1007/s11682-015-9448-7 – volume: 42 start-page: 2853 issue: 6 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib133 article-title: Using multiscale texture and density features for near-term breast cancer risk analysis publication-title: Med. Phys. doi: 10.1118/1.4919772 – start-page: 621 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib205 article-title: Medical images modality classification using multi-scale dictionary learning – volume: 114 start-page: 88 issue: 1 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib53 article-title: Segmentation and detection of breast cancer in mammograms combining wavelet analysis and genetic algorithm publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2014.01.014 – volume: 18 start-page: 306 issue: 3 year: 2011 ident: 10.1016/j.compbiomed.2019.02.017_bib130 article-title: Computer-aided diagnosis of pulmonary infections using texture analysis and support vector machine classification publication-title: Acad. Radiol. doi: 10.1016/j.acra.2010.11.013 – volume: 278 start-page: 64 issue: 1 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib142 article-title: Automated detection, localization, and classification of traumatic vertebral body fractures in the thoracic and lumbar spine at CT publication-title: Radiology doi: 10.1148/radiol.2015142346 – volume: 256 start-page: 30 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib179 article-title: Unsupervised learning based feature extraction for differential diagnosis of neurodegenerative diseases: a case study on early-stage diagnosis of Parkinson disease publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.08.011 – volume: 51 start-page: 176 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib37 article-title: Breast cancer detection using MRF-based probable texture feature and decision-level fusion-based classification using HMM on thermography images publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2015.09.009 – start-page: 1 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib38 article-title: Support top irrelevant machine: learning similarity measures to maximize top precision for image retrieval publication-title: Neural Comput. Appl. – volume: 35 start-page: 1077 issue: 4 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib117 article-title: Deformable mr prostate segmentation via deep feature learning and sparse patch matching publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2508280 – volume: 3 start-page: 143 issue: 4 year: 2009 ident: 10.1016/j.compbiomed.2019.02.017_bib41 article-title: A comparison of SIFT, PCA-SIFT and SURF publication-title: Int. J. Image Process. – volume: 89 start-page: 152 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib93 article-title: Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.11.040 – start-page: 1 year: 2018 ident: 10.1016/j.compbiomed.2019.02.017_bib212 article-title: A simple texture feature for retrieval of medical images publication-title: Multimed. Tool. Appl. – year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib3 – year: 2010 ident: 10.1016/j.compbiomed.2019.02.017_bib2 – volume: 15 start-page: 369 issue: Pt 3 year: 2012 ident: 10.1016/j.compbiomed.2019.02.017_bib71 article-title: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR publication-title: Medical Image Computing and Computer-Assisted Intervention – year: 1998 ident: 10.1016/j.compbiomed.2019.02.017_bib61 – volume: 222 start-page: 230 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib24 article-title: Machine learning on brain MRI data for differential diagnosis of Parkinson's disease and Progressive Supranuclear Palsy publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2013.11.016 – year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib229 – volume: 6 start-page: 22 issue: 1 year: 1999 ident: 10.1016/j.compbiomed.2019.02.017_bib155 article-title: Improving breast cancer diagnosis with computer-aided diagnosis publication-title: Acad. Radiol. doi: 10.1016/S1076-6332(99)80058-0 – volume: 60 issue: 7 year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib145 article-title: A cade system for nodule detection in thoracic ct images based on artificial neural network publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-016-9008-0 – volume: 72 start-page: 381 year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib164 article-title: Breast cancer diagnosis in dce-mri using mixture ensemble of convolutional neural networks publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2017.08.004 – volume: 12 issue: 3 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib157 article-title: Ensemble supervised classification method using the regions of interest and grey level co-occurrence matrices features for mammograms Data publication-title: Iran. J. Radiol. – start-page: 1 year: 2009 ident: 10.1016/j.compbiomed.2019.02.017_bib27 – volume: 240 start-page: 89 year: 2015 ident: 10.1016/j.compbiomed.2019.02.017_bib89 article-title: Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2014.11.011 – volume: 80 start-page: 24 year: 2017 ident: 10.1016/j.compbiomed.2019.02.017_bib146 article-title: Classification of teeth in cone-beam ct using deep convolutional neural network publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.11.003 – volume: 11 start-page: e0153043 issue: 4 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib56 article-title: Possibility study of scale invariant feature transform (SIFT) algorithm application to spine magnetic resonance imaging publication-title: PLoS One doi: 10.1371/journal.pone.0153043 – volume: 127 start-page: 248 year: 2016 ident: 10.1016/j.compbiomed.2019.02.017_bib138 article-title: Representation learning for mammography mass lesion classification with convolutional neural networks publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2015.12.014 – volume: 83 start-page: 48 issue: 1 year: 2014 ident: 10.1016/j.compbiomed.2019.02.017_bib186 article-title: Automated detection of cortical dysplasia type II in MRI-negative epilepsy publication-title: Neurology doi: 10.1212/WNL.0000000000000543 |
SSID | ssj0004030 |
Score | 2.5743058 |
SecondaryResourceType | review_article |
Snippet | The application of machine learning to radiological images is an increasingly active research area that is expected to grow in the next five to ten years.... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 354 |
SubjectTerms | Accuracy Algorithms Alzheimer's disease Artificial intelligence Brain Cancer Clinical decision making Cognitive ability Computed tomography Decision making Deep Learning Deep neural network Fractures Gamma rays Human performance Humans Image management Image processing Image Processing, Computer-Assisted Image registration Image retrieval Image segmentation Imaging modalities Keywords Learning algorithms Machine learning Magnetic Resonance Imaging Mammography Medical imaging Medical research Models, Theoretical Neural networks Neuroimaging Neurological diseases NMR Nuclear magnetic resonance Positron emission Positron emission tomography Principal components analysis Radiology Ultrasonic imaging X-rays |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQh6qXCtpSltIqlXokkF2_YnqqUBGqtD1UIHGzHD8giA2r7nLltzNjO9lu28NKPcb2RPF4_HkcfzMm5HPDrRlTb0suJGxQGhVgzgVaCksNnwQMncQf-tMf4uKKfb_m11vkrI-FQVplxv6E6RGtc8lJ1ubJvG0xxhe2EjHykuLCijjMmEQrP35a0TxYRVMYCuANts5snsTxQtp2CnNHkpeK2Tvj1WX_XKL-dkH_ZFL-tjSd75BX2acsvqbP3iVbvntNXkzzqfkbMv1pXNuDXNHOAEIWhelcMYtMSl_kqyNuTotEkT0q5qsYTHjCtvBVsWTxllydf7s8uyjzNQqlFbRalqqWsuKusay2NbOuUVS4RoJzEKzhMFKMMxGgD8rwsQsweJURjfFUNY5jupg9st09dH6fFFZI3KA5YYJiYTKBt4Rausp5Jmvq-YjIXnPa5hzjeNXFve7JZHd6pXONOtfVRIPOR2Q8SM5Tno0NZFQ_OLqPIwXk07AYbCD7ZZBds7cNpQ97W9B5zi80RhVj9iHFRuTTUA2zFY9gTOcfHmMb8KgpbGtG5F0ynaG74GiDO1tBjVwzqqEBZgJfr-na25gRXACSUsEO_qtT78lLfEpszkOyvfz16D-Ax7VsPsYp9QzRXSxh priority: 102 providerName: Elsevier |
Title | Radiological images and machine learning: Trends, perspectives, and prospects |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519300642 https://dx.doi.org/10.1016/j.compbiomed.2019.02.017 https://www.ncbi.nlm.nih.gov/pubmed/31054502 https://www.proquest.com/docview/2227017194 https://www.proquest.com/docview/2229233882 https://pubmed.ncbi.nlm.nih.gov/PMC6531364 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZoKyEuFeUZaKNF4sjCJn6tywEV1BBAiVBFpdwsrx8Q1G4CSa_89s6svRsKCOWSKLFntbbH48_2NzOEPK-4NQPqbc6FhA1KpQLMuUBzYanhw4Cuk3igP5mK8Tn7OOOzdOC2SrTK1iY2htotLJ6Rv0KfTYztotib5Y8cs0bh7WpKobFD9jB0GWq1nMmNX2RBowsK2BoGW6HE5In8LqRsRxd3JHipJnJnk7bsn8vT3_DzTxblb8vS6C7ZT3gyO4kKcEBu-foeuT1JN-b3yeTMuHlr4LL5JZiPVWZql102LEqfpbQRX4-zSI99kS03_pfwC-vCWzX_rB6Q89Hpl3fjPKVQyK2gxTpXpZQFd5VlpS2ZdZWiwlUSgEGwhsMoMc5EgDYowwcuwMAVRlTGU1U5jqFiHpLdelH7xySzQuLmzAkTFAvDITwllNIVzjNZUs97RLY9p22KL45pLi50SyT7rjd9rrHPdTHU0Oc9MugklzHGxhYyqh0c3fqQgtXTsBBsIfu6k004I-KHLaUPW13Qab6v9EY7e-RZVwwzFa9fTO0XV00dQNMUtjQ98iiqTtdcANkAZQsokTeUqquAUcBvltTzb000cAFWlAr25P-v9ZTcwTZEquYh2V3_vPJHAKfWVZ_svPw16DczBz7L0fs-2Tv58Gk8he-3p9PPZ9dJPSYW |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgGXijeBAosENywc78MxCCEEhJQ2PaBW6m273gcEUSclqVD_VH8jM17boYBQLj0mu2Ptjmfn4f1mBuBpKa3pc28TqXIMUMoi4JkLPFGWG5kFSp2kD_rjXTXaF58O5MEanLW5MASrbHVirajd1NI38heUs0m1XQrxZnacUNcoul1tW2hEsdj2pz8xZJu_3nqP7_dZlg0_7L0bJU1XgcQqni4SDLLzVLrSioEdCOvKgitX5mgrgzUSFy6kUME7WxjZdwH3khpVGs-L0kmqnoLPvQSXBUdLTpnpw4_LPMyUx5QX1G0CQ68GORTxZAQRjyn1BCgr6kqhdZu0f5rDv93dP1Gbv5nB4XXYaPxX9jYK3A1Y89VNuDJubuhvwfizcZNWobLJEaqrOTOVY0c1atOzpk3Fl5cswnGfs9ky3xN_0VxcVf3P_DbsXwhz78B6Na38PWBW5RQMOmVCIUKW4VPCIHep8yIfcC97kLec07apZ05tNb7rFrj2TS95ronnOs008rwH_Y5yFmt6rEBTtC9HtzmrqGU1Gp4VaF91tI1fE_2VFak3W1nQjX6Z6-Vp6MGTbhg1A133mMpPT-o56L1zDKF6cDeKTrdddOrRdU5xJD8nVN0Eqjp-fqSafK2rjyvU2lyJ-_9f1mO4Otob7-idrd3tB3CN9hNhopuwvvhx4h-iK7coH9Xnh8HhRR_YX22mXx4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9NADLdGJ028IL4pDAgSvBEtzX2kASEEbNXGaDVNTNrbcbkP1omlhXZC_Gv8ddi5S8sAob7sMblzlHNsn5372QZ4Wgmje8yZVMgCA5Sq9KhznqXSMC1yT6mT9EN_OJK7R_z9sTheg59tLgzBKlub2BhqOzH0j3yLcjaptkvJt3yERRxsD15Pv6bUQYpOWtt2GkFE9t2P7xi-zV7tbeO3fpbng52P73bT2GEgNZJl8xQD7iITtjK8b_rc2Kpk0lYF7pveaIGL4IJL76wptehZj-vKtKy0Y2VlBVVSwedegfWCoqIOrL_dGR0cLrMyMxYSYNDScQzEIo4ooMsIMB4S7AleVjZ1Q5umaf_cHP92fv_EcP62KQ6uw7XozSZvgvjdgDVX34SNYTyvvwXDQ23HrXlNxmdovGaJrm1y1mA4XRKbVnx-kQRw7vNkusz-xCuai2_V3JndhqNLYe8d6NST2t2DxMiCQkMrtS-5z3N8iu8XNrOOF33mRBeKlnPKxOrm1GTji2phbKdqyXNFPFdZrpDnXegtKKehwscKNGX7cVSbwYo2V-E2tALtywVt9HKC97Ii9WYrCypam5la6kYXniyG0U7Q4Y-u3eS8mYO-PMOAqgt3g-gslosuPjrSGY4UF4RqMYFqkF8cqccnTS1yiTacSX7__6_1GDZQWdWHvdH-A7hKywmY0U3ozL-du4fo182rR1GBEvh02Tr7C2wCZLA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiological+images+and+machine+learning%3A+trends%2C+perspectives%2C+and+prospects&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Zhang%2C+Zhenwei&rft.au=Sejdi%C4%87%2C+Ervin&rft.date=2019-05-01&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=108&rft.spage=354&rft.epage=370&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.02.017&rft_id=info%3Apmid%2F31054502&rft.externalDocID=PMC6531364 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |