Neuroimage signature from salient keypoints is highly specific to individuals and shared by close relatives
Neuroimaging studies typically adopt a common feature space for all data, which may obscure aspects of neuroanatomy only observable in subsets of a population, e.g. cortical folding patterns unique to individuals or shared by close relatives. Here, we propose to model individual variability using a...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 204; p. 116208 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2020
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2019.116208 |
Cover
Loading…
Abstract | Neuroimaging studies typically adopt a common feature space for all data, which may obscure aspects of neuroanatomy only observable in subsets of a population, e.g. cortical folding patterns unique to individuals or shared by close relatives. Here, we propose to model individual variability using a distinctive keypoint signature: a set of unique, localized patterns, detected automatically in each image by a generic saliency operator. The similarity of an image pair is then quantified by the proportion of keypoints they share using a novel Jaccard-like measure of set overlap. Experiments demonstrate the keypoint method to be highly efficient and accurate, using a set of 7536 T1-weighted MRIs pooled from four public neuroimaging repositories, including twins, non-twin siblings, and 3334 unique subjects. All same-subject image pairs are identified by a similarity threshold despite confounds including aging and neurodegenerative disease progression. Outliers reveal previously unknown data labeling inconsistencies, demonstrating the usefulness of the keypoint signature as a computational tool for curating large neuroimage datasets.
•Efficient large scale analysis of whole brain images.•Introduction of a new pairwise brain similarity measure.•Correlation between brain similarity and genetic proximity across family members.•Automatic identification of mislabeled data in large public neuroimaging datasets.•Automatic identification of duplicate subjects across datasets. |
---|---|
AbstractList | Neuroimaging studies typically adopt a common feature space for all data, which may obscure aspects of neuroanatomy only observable in subsets of a population, e.g. cortical folding patterns unique to individuals or shared by close relatives. Here, we propose to model individual variability using a distinctive keypoint signature: a set of unique, localized patterns, detected automatically in each image by a generic saliency operator. The similarity of an image pair is then quantified by the proportion of keypoints they share using a novel Jaccard-like measure of set overlap. Experiments demonstrate the keypoint method to be highly efficient and accurate, using a set of 7536 T1-weighted MRIs pooled from four public neuroimaging repositories, including twins, non-twin siblings, and 3334 unique subjects. All same-subject image pairs are identified by a similarity threshold despite confounds including aging and neurodegenerative disease progression. Outliers reveal previously unknown data labeling inconsistencies, demonstrating the usefulness of the keypoint signature as a computational tool for curating large neuroimage datasets.Neuroimaging studies typically adopt a common feature space for all data, which may obscure aspects of neuroanatomy only observable in subsets of a population, e.g. cortical folding patterns unique to individuals or shared by close relatives. Here, we propose to model individual variability using a distinctive keypoint signature: a set of unique, localized patterns, detected automatically in each image by a generic saliency operator. The similarity of an image pair is then quantified by the proportion of keypoints they share using a novel Jaccard-like measure of set overlap. Experiments demonstrate the keypoint method to be highly efficient and accurate, using a set of 7536 T1-weighted MRIs pooled from four public neuroimaging repositories, including twins, non-twin siblings, and 3334 unique subjects. All same-subject image pairs are identified by a similarity threshold despite confounds including aging and neurodegenerative disease progression. Outliers reveal previously unknown data labeling inconsistencies, demonstrating the usefulness of the keypoint signature as a computational tool for curating large neuroimage datasets. Neuroimaging studies typically adopt a common feature space for all data, which may obscure aspects of neuroanatomy only observable in subsets of a population, e.g. cortical folding patterns unique to individuals or shared by close relatives. Here, we propose to model individual variability using a distinctive keypoint signature: a set of unique, localized patterns, detected automatically in each image by a generic saliency operator. The similarity of an image pair is then quantified by the proportion of keypoints they share using a novel Jaccard-like measure of set overlap. Experiments demonstrate the keypoint method to be highly efficient and accurate, using a set of 7536 T1-weighted MRIs pooled from four public neuroimaging repositories, including twins, non-twin siblings, and 3334 unique subjects. All same-subject image pairs are identified by a similarity threshold despite confounds including aging and neurodegenerative disease progression. Outliers reveal previously unknown data labeling inconsistencies, demonstrating the usefulness of the keypoint signature as a computational tool for curating large neuroimage datasets. •Efficient large scale analysis of whole brain images.•Introduction of a new pairwise brain similarity measure.•Correlation between brain similarity and genetic proximity across family members.•Automatic identification of mislabeled data in large public neuroimaging datasets.•Automatic identification of duplicate subjects across datasets. Neuroimaging studies typically adopt a common feature space for all data, which may obscure aspects of neuroanatomy only observable in subsets of a population, e.g. cortical folding patterns unique to individuals or shared by close relatives. Here, we propose to model individual variability using a distinctive keypoint signature: a set of unique, localized patterns, detected automatically in each image by a generic saliency operator. The similarity of an image pair is then quantified by the proportion of keypoints they share using a novel Jaccard-like measure of set overlap. Experiments demonstrate the keypoint method to be highly efficient and accurate, using a set of 7536 T1-weighted MRIs pooled from four public neuroimaging repositories, including twins, non-twin siblings, and 3334 unique subjects. All same-subject image pairs are identified by a similarity threshold despite confounds including aging and neurodegenerative disease progression. Outliers reveal previously unknown data labeling inconsistencies, demonstrating the usefulness of the keypoint signature as a computational tool for curating large neuroimage datasets. |
ArticleNumber | 116208 |
Author | Vangel, Marc Desrosiers, Christian Kumar, Kuldeep Chauvin, Laurent Wachinger, Christian de Guise, Jacques Toews, Matthew Wells, William |
AuthorAffiliation | d Massachusetts General Hospital, Harvard Medical School, Boston, USA e Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, USA b Laboratory for Artificial Intelligence in Medical Imaging, University Hospital, LMU, Munich, Germany a École de Technologie Supérieure, Montreal, Canada c Brigham and Women’s Hospital, Harvard Medical School, Boston, USA |
AuthorAffiliation_xml | – name: c Brigham and Women’s Hospital, Harvard Medical School, Boston, USA – name: e Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, USA – name: d Massachusetts General Hospital, Harvard Medical School, Boston, USA – name: a École de Technologie Supérieure, Montreal, Canada – name: b Laboratory for Artificial Intelligence in Medical Imaging, University Hospital, LMU, Munich, Germany |
Author_xml | – sequence: 1 givenname: Laurent surname: Chauvin fullname: Chauvin, Laurent email: laurent.chauvin0@gmail.com organization: École de Technologie Supérieure, Montreal, Canada – sequence: 2 givenname: Kuldeep surname: Kumar fullname: Kumar, Kuldeep organization: École de Technologie Supérieure, Montreal, Canada – sequence: 3 givenname: Christian surname: Wachinger fullname: Wachinger, Christian organization: Laboratory for Artificial Intelligence in Medical Imaging, University Hospital, LMU, Munich, Germany – sequence: 4 givenname: Marc surname: Vangel fullname: Vangel, Marc organization: Massachusetts General Hospital, Harvard Medical School, Boston, USA – sequence: 5 givenname: Jacques surname: de Guise fullname: de Guise, Jacques organization: École de Technologie Supérieure, Montreal, Canada – sequence: 6 givenname: Christian surname: Desrosiers fullname: Desrosiers, Christian organization: École de Technologie Supérieure, Montreal, Canada – sequence: 7 givenname: William surname: Wells fullname: Wells, William organization: Brigham and Women’s Hospital, Harvard Medical School, Boston, USA – sequence: 8 givenname: Matthew surname: Toews fullname: Toews, Matthew email: matt.toews@gmail.com organization: École de Technologie Supérieure, Montreal, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31546048$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1uEzEUhUeoiLaBV0CW2LBJ8N849gYBFS2VKtjA2rI9dxKnjh3smUh5exxSUtpVVrbs48_33nMum7OYIjQNInhGMBEfVrMIY05-bRYwo5ioGSGCYvmiuSBYtVPVzunZft-yqSREnTeXpawwxopw-ao5Z6TlAnN50dx_P4JQ8YtohjED6nNao2KChzige9htko9DQb6gpV8sww6VDTjfe4eGhHzs_NZ3owkFmdihsjQZOmR3yIVUAGUIZvBbKK-bl30VwZuHddL8uv768-rb9O7Hze3V57upEwwPU9lSoExSZaCrJ5bJ1lGBKaeUWzM33BLGeqa4ZdS02PC2dYZj3NqOzjsj2aS5PXC7ZFZ6k2t3eaeT8frvQcoLbfLgXQBNhJWW4Hnf98CdspbxjjjisCVcQf1n0nw8sDajXdd66kCyCU-gT2-iX-pF2mqhGFFYVMD7B0BOv0cog1774iAEEyGNRVOqhBCUC1ql755JV2nMsY5KU0akoELJPfDt_xUdS_nnaRXIg8DlVEqG_ighWO_jo1f6MT56Hx99iM9jt8enzg_VvLTvzYdTAF8OAKj-bj1kXVwNkYPOZ3BDNcCfAvn0DOKCj96ZUKN4GuIP_zz_Ow |
CitedBy_id | crossref_primary_10_1017_pab_2021_33 crossref_primary_10_1109_TCDS_2023_3314155 crossref_primary_10_1016_j_neucom_2023_126236 crossref_primary_10_1016_j_neuroimage_2024_120595 crossref_primary_10_1109_TMI_2021_3123252 crossref_primary_10_3390_jpm14020127 crossref_primary_10_1016_j_neuroimage_2021_118254 crossref_primary_10_1016_j_addr_2021_113959 crossref_primary_10_1212_WNL_0000000000213374 |
Cites_doi | 10.1016/j.neuroimage.2015.01.032 10.1371/journal.pone.0111048 10.1016/j.neuroimage.2009.10.032 10.1073/pnas.1604378113 10.1016/j.mri.2015.03.010 10.1002/jmri.21049 10.1113/jphysiol.1962.sp006837 10.1016/j.neuroimage.2017.06.083 10.1016/j.neuroimage.2013.05.041 10.1016/j.neuroimage.2012.01.021 10.1371/journal.pcbi.1005203 10.1016/j.mri.2012.05.001 10.1016/j.neuroimage.2018.08.042 10.1016/j.media.2012.11.002 10.1016/j.neuroimage.2016.08.032 10.7554/eLife.20178 10.1214/aos/1176348768 10.1023/B:VISI.0000029664.99615.94 10.1038/nn758 10.1038/234034a0 10.1038/s41598-018-23696-6 10.1093/brain/awp123 10.1038/nn.4135 10.1016/j.neuroimage.2018.08.006 10.1089/brain.2017.0561 10.1038/s41598-018-25089-1 10.1162/jocn.2007.19.9.1498 10.1109/TPAMI.2014.2321376 10.1038/nn.4501 10.1016/j.neucom.2015.04.025 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. 2019. Elsevier Inc. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. – notice: 2019. Elsevier Inc. |
CorporateAuthor | for the Alzheimer’s Disease Neuroimaging Initiative Alzheimer’s Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: for the Alzheimer’s Disease Neuroimaging Initiative – name: Alzheimer’s Disease Neuroimaging Initiative |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM DOA |
DOI | 10.1016/j.neuroimage.2019.116208 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 116208 |
ExternalDocumentID | oai_doaj_org_article_16b8b107fffe4c9bb34d1c1c0b149e13 PMC6931906 31546048 10_1016_j_neuroimage_2019_116208 S1053811919307992 |
Genre | Multicenter Study Twin Study Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: P41 EB015902 – fundername: NIA NIH HHS grantid: P30 AG066444 – fundername: NIA NIH HHS grantid: P50 AG005681 – fundername: NIA NIH HHS grantid: P01 AG003991 – fundername: NIA NIH HHS grantid: P01 AG026276 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SNS ZA5 29N 53G AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- RIG SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c630t-852e23829aedc63b385c26024224ba7a4b133f394b32a50a455ca4005bd27da83 |
IEDL.DBID | DOA |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:32:08 EDT 2025 Thu Aug 21 14:04:33 EDT 2025 Thu Sep 04 15:04:05 EDT 2025 Wed Aug 13 09:57:58 EDT 2025 Thu Apr 03 07:03:30 EDT 2025 Tue Jul 01 03:02:10 EDT 2025 Thu Apr 24 23:04:24 EDT 2025 Fri Feb 23 02:43:40 EST 2024 Tue Aug 26 18:33:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Individual variability Neuroimage analysis Salient image keypoints MRI |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c630t-852e23829aedc63b385c26024224ba7a4b133f394b32a50a455ca4005bd27da83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/16b8b107fffe4c9bb34d1c1c0b149e13 |
PMID | 31546048 |
PQID | 2318626986 |
PQPubID | 2031077 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_16b8b107fffe4c9bb34d1c1c0b149e13 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6931906 proquest_miscellaneous_2296662462 proquest_journals_2318626986 pubmed_primary_31546048 crossref_primary_10_1016_j_neuroimage_2019_116208 crossref_citationtrail_10_1016_j_neuroimage_2019_116208 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_116208 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_116208 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Armstrong, Ruiz-Blondet, Khalifian, Kurtz, Jin, Laszlo (bib2) 2015; 166 Fischl (bib10) 2012; 62 Takao, Hayashi, Ohtomo (bib26) 2015; 33 Marr, Hildreth (bib21) 1980; vol. 207 Marcus, Wang, Parker, Csernansky, Morris, Buckner (bib20) 2007; 19 Toews, Wells, Collins, Arbel (bib32) 2010; 49 Toews, Wells (bib31) 2016 Kumar, Toews, Chauvin, Colliot, Desrosiers (bib15) 2018; 183 Thompson, Cannon, Narr, Van Erp, Poutanen, Huttunen, Lönnqvist, Standertskjöld-Nordenstam, Kaprio, Khaledy (bib28) 2001; 4 Gordon, Laumann, Adeyemo, Gilmore, Nelson, Dosenbach, Petersen (bib11) 2017; 146 Fedorov, Beichel, Kalpathy-Cramer, Finet, Fillion-Robin, Pujol, Bauer, Jennings, Fennessy, Sonka (bib8) 2012; 30 Lerch, van der Kouwe, Raznahan, Paus, Johansen-Berg, Miller, Smith, Fischl, Sotiropoulos (bib17) 2017; 20 Valizadeh, Liem, Mérillat, Hänggi, Jäncke (bib35) 2018; 8 Chauvin, Kumar, Desrosiers, De Guise, Toews (bib3) 2018 Desikan, Cabral, Hess, Dillon, Glastonbury, Weiner, Schmansky, Greve, Salat, Buckner (bib7) 2009; 132 Toews, Wells (bib29) 2009 Wachinger, Becker, Rieckmann, Pölsterl (bib39) 2019 Kumar, Desrosiers, Siddiqi, Colliot, Toews (bib14) 2017; 158 Levandowsky, Winter (bib18) 1971; 234 Lowe (bib19) 2004; 60 Muja, Lowe (bib23) 2014; 36 Chen, Hu (bib4) 2018; 8 Wachinger, Golland, Kremen, Fischl, Reuter, Initiative (bib38) 2015; 109 Van Essen, Donahue, Dierker, Glasser (bib37) 2016 Dalal, Triggs (bib6) 2005; vol. 1 Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib9) 2015; 18 Yeh, Vettel, Singh, Poczos, Grafton, Erickson, Tseng, Verstynen (bib40) 2016; 12 LeCun, Bengio, Hinton (bib16) 2015; 521 Hubel, Wiesel (bib12) 1962; 160 Terrell, Scott (bib27) 1992; 20 Toews, Wells (bib30) 2013; 17 Colclough, Smith, Nichols, Winkler, Sotiropoulos, Glasser, Van Essen, Woolrich (bib5) 2017; 6 Amico, Goñi (bib1) 2018; 8 Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, Whitwell, Ward (bib13) 2008; 27 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium (bib36) 2013; 80 Toews, Zöllei, Wells (bib33) 2013 Toews, Wells, Zöllei (bib34) 2012 Sabuncu, Ge, Holmes, Smoller, Buckner, Fischl, Initiative (bib24) 2016; 113 Miranda-Dominguez, Mills, Carpenter, Grant, Kroenke, Nigg, Fair (bib22) 2014; 9 Samper-Gonzalez, Burgos, Bottani, Fontanella, Lu, Marcoux, Routier, Guillon, Bacci, Wen (bib25) 2018; 183 Valizadeh (10.1016/j.neuroimage.2019.116208_bib35) 2018; 8 Desikan (10.1016/j.neuroimage.2019.116208_bib7) 2009; 132 Sabuncu (10.1016/j.neuroimage.2019.116208_bib24) 2016; 113 Gordon (10.1016/j.neuroimage.2019.116208_bib11) 2017; 146 Toews (10.1016/j.neuroimage.2019.116208_bib33) 2013 Van Essen (10.1016/j.neuroimage.2019.116208_bib36) 2013; 80 Van Essen (10.1016/j.neuroimage.2019.116208_bib37) 2016 Lerch (10.1016/j.neuroimage.2019.116208_bib17) 2017; 20 Toews (10.1016/j.neuroimage.2019.116208_bib32) 2010; 49 Toews (10.1016/j.neuroimage.2019.116208_bib30) 2013; 17 Muja (10.1016/j.neuroimage.2019.116208_bib23) 2014; 36 Fedorov (10.1016/j.neuroimage.2019.116208_bib8) 2012; 30 Jack (10.1016/j.neuroimage.2019.116208_bib13) 2008; 27 Levandowsky (10.1016/j.neuroimage.2019.116208_bib18) 1971; 234 Terrell (10.1016/j.neuroimage.2019.116208_bib27) 1992; 20 Finn (10.1016/j.neuroimage.2019.116208_bib9) 2015; 18 Wachinger (10.1016/j.neuroimage.2019.116208_bib38) 2015; 109 LeCun (10.1016/j.neuroimage.2019.116208_bib16) 2015; 521 Wachinger (10.1016/j.neuroimage.2019.116208_bib39) 2019 Amico (10.1016/j.neuroimage.2019.116208_bib1) 2018; 8 Colclough (10.1016/j.neuroimage.2019.116208_bib5) 2017; 6 Takao (10.1016/j.neuroimage.2019.116208_bib26) 2015; 33 Chauvin (10.1016/j.neuroimage.2019.116208_bib3) 2018 Lowe (10.1016/j.neuroimage.2019.116208_bib19) 2004; 60 Samper-Gonzalez (10.1016/j.neuroimage.2019.116208_bib25) 2018; 183 Toews (10.1016/j.neuroimage.2019.116208_bib34) 2012 Thompson (10.1016/j.neuroimage.2019.116208_bib28) 2001; 4 Toews (10.1016/j.neuroimage.2019.116208_bib31) 2016 Chen (10.1016/j.neuroimage.2019.116208_bib4) 2018; 8 Fischl (10.1016/j.neuroimage.2019.116208_bib10) 2012; 62 Kumar (10.1016/j.neuroimage.2019.116208_bib15) 2018; 183 Kumar (10.1016/j.neuroimage.2019.116208_bib14) 2017; 158 Miranda-Dominguez (10.1016/j.neuroimage.2019.116208_bib22) 2014; 9 Marr (10.1016/j.neuroimage.2019.116208_bib21) 1980; vol. 207 Toews (10.1016/j.neuroimage.2019.116208_bib29) 2009 Dalal (10.1016/j.neuroimage.2019.116208_bib6) 2005; vol. 1 Hubel (10.1016/j.neuroimage.2019.116208_bib12) 1962; 160 Armstrong (10.1016/j.neuroimage.2019.116208_bib2) 2015; 166 Marcus (10.1016/j.neuroimage.2019.116208_bib20) 2007; 19 Yeh (10.1016/j.neuroimage.2019.116208_bib40) 2016; 12 |
References_xml | – volume: vol. 207 start-page: 187 year: 1980 end-page: 217 ident: bib21 article-title: Theory of edge detection publication-title: Proceedings of the Royal Society of London. Series B. Biological Sciences – volume: 33 start-page: 816 year: 2015 end-page: 821 ident: bib26 article-title: Brain morphology is individual-specific information publication-title: Magn. Reson. Imag. – volume: 20 start-page: 1236 year: 1992 end-page: 1265 ident: bib27 article-title: Variable kernel density estimation publication-title: Ann. Stat. – volume: 109 start-page: 232 year: 2015 end-page: 248 ident: bib38 article-title: Brainprint: a discriminative characterization of brain morphology publication-title: Neuroimage – volume: 183 start-page: 504 year: 2018 end-page: 521 ident: bib25 article-title: Reproducible evaluation of classification methods in alzheimer’s disease: framework and application to mri and pet data publication-title: Neuroimage – volume: 8 start-page: 197 year: 2018 end-page: 204 ident: bib4 article-title: Individual identification using the functional brain fingerprint detected by the recurrent neural network publication-title: Brain Connect. – volume: 234 start-page: 34 year: 1971 ident: bib18 article-title: Distance between sets publication-title: Nature – start-page: 172 year: 2009 end-page: 177 ident: bib29 article-title: Sift-rank: ordinal description for invariant feature correspondence publication-title: IEEE Conference on Computer Vision and Pattern Recognition – start-page: 04102 year: 2019 ident: bib39 article-title: Quantifying Confounding Bias in Neuroimaging Datasets with Causal Inference – volume: 9 start-page: e111048 year: 2014 ident: bib22 article-title: Connectotyping: model based fingerprinting of the functional connectome publication-title: PLoS One – volume: 158 start-page: 242 year: 2017 end-page: 259 ident: bib14 article-title: Fiberprint: a subject fingerprint based on sparse code pooling for white matter fiber analysis publication-title: Neuroimage – volume: 166 start-page: 59 year: 2015 end-page: 67 ident: bib2 article-title: Brainprint: assessing the uniqueness, collectability, and permanence of a novel method for erp biometrics publication-title: Neurocomputing – volume: 4 start-page: 1253 year: 2001 ident: bib28 article-title: Genetic influences on brain structure publication-title: Nat. Neurosci. – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bib36 article-title: The Wu-minn human connectome project: an overview publication-title: Neuroimage – volume: 183 start-page: 212 year: 2018 end-page: 226 ident: bib15 article-title: Multi-modal brain fingerprinting: a manifold approximation based framework publication-title: Neuroimage – volume: 30 start-page: 1323 year: 2012 end-page: 1341 ident: bib8 article-title: 3d slicer as an image computing platform for the quantitative imaging network publication-title: Magn. Reson. Imag. – start-page: 204 year: 2012 end-page: 211 ident: bib34 article-title: A feature-based developmental model of the infant brain in structural mri publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 8 start-page: 8254 year: 2018 ident: bib1 article-title: The quest for identifiability in human functional connectomes publication-title: Sci. Rep. – volume: 60 start-page: 91 year: 2004 end-page: 110 ident: bib19 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. – volume: 113 start-page: E5749 year: 2016 end-page: E5756 ident: bib24 article-title: Morphometricity as a measure of the neuroanatomical signature of a trait publication-title: Proc. Natl. Acad. Sci. – volume: 160 start-page: 106 year: 1962 end-page: 154 ident: bib12 article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex publication-title: J. Physiol. – volume: 20 start-page: 314 year: 2017 ident: bib17 article-title: Studying neuroanatomy using mri publication-title: Nat. Neurosci. – volume: 18 start-page: 1664 year: 2015 ident: bib9 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. – volume: 132 start-page: 2048 year: 2009 end-page: 2057 ident: bib7 article-title: Automated mri measures identify individuals with mild cognitive impairment and alzheimer’s disease publication-title: Brain – volume: 146 start-page: 918 year: 2017 end-page: 939 ident: bib11 article-title: Individual-specific features of brain systems identified with resting state functional correlations publication-title: Neuroimage – volume: 17 start-page: 271 year: 2013 end-page: 282 ident: bib30 article-title: Efficient and robust model-to-image alignment using 3d scale-invariant features publication-title: Med. Image Anal. – start-page: 91 year: 2018 end-page: 99 ident: bib3 article-title: Diffusion orientation histograms (doh) for diffusion weighted image analysis publication-title: Computational Diffusion MRI – volume: 19 start-page: 1498 year: 2007 end-page: 1507 ident: bib20 article-title: Open access series of imaging studies (oasis): cross-sectional mri data in young, middle aged, nondemented, and demented older adults publication-title: J. Cogn. Neurosci. – volume: 6 start-page: e20178 year: 2017 ident: bib5 article-title: The heritability of multi-modal connectivity in human brain activity publication-title: Elife – volume: 49 start-page: 2318 year: 2010 end-page: 2327 ident: bib32 article-title: Feature-based morphometry: discovering group-related anatomical patterns publication-title: Neuroimage – volume: 521 start-page: 436 year: 2015 ident: bib16 publication-title: Deep learning, nature – volume: 36 start-page: 2227 year: 2014 end-page: 2240 ident: bib23 article-title: Scalable nearest neighbor algorithms for high dimensional data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 27 start-page: 685 year: 2008 end-page: 691 ident: bib13 article-title: The alzheimer’s disease neuroimaging initiative (adni): mri methods publication-title: J. Magn. Reson. Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine – start-page: 25 year: 2013 end-page: 36 ident: bib33 article-title: Feature-based alignment of volumetric multi-modal images publication-title: International Conference on Information Processing in Medical Imaging – volume: 12 start-page: e1005203 year: 2016 ident: bib40 article-title: Quantifying differences and similarities in whole-brain white matter architecture using local connectome fingerprints publication-title: PLoS Comput. Biol. – start-page: 89 year: 2016 end-page: 106 ident: bib37 article-title: Parcellations and connectivity patterns in human and macaque cerebral cortex publication-title: Micro-, Meso-And Macro-Connectomics of the Brain – volume: 62 start-page: 774 year: 2012 end-page: 781 ident: bib10 publication-title: Freesurfer, Neuroimage – volume: vol. 1 start-page: 886 year: 2005 end-page: 893 ident: bib6 article-title: Histograms of oriented gradients for human detection publication-title: International Conference on Computer Vision & Pattern Recognition (CVPR’05) – volume: 8 start-page: 5611 year: 2018 ident: bib35 article-title: Identification of individual subjects on the basis of their brain anatomical features publication-title: Sci. Rep. – start-page: 847 year: 2016 end-page: 850 ident: bib31 article-title: How are siblings similar? how similar are siblings? large-scale imaging genetics using local image features publication-title: IEEE 13th International Symposium on Biomedical Imaging (ISBI), IEEE – volume: vol. 1 start-page: 886 year: 2005 ident: 10.1016/j.neuroimage.2019.116208_bib6 article-title: Histograms of oriented gradients for human detection – volume: 109 start-page: 232 year: 2015 ident: 10.1016/j.neuroimage.2019.116208_bib38 article-title: Brainprint: a discriminative characterization of brain morphology publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.01.032 – volume: 9 start-page: e111048 year: 2014 ident: 10.1016/j.neuroimage.2019.116208_bib22 article-title: Connectotyping: model based fingerprinting of the functional connectome publication-title: PLoS One doi: 10.1371/journal.pone.0111048 – volume: 49 start-page: 2318 year: 2010 ident: 10.1016/j.neuroimage.2019.116208_bib32 article-title: Feature-based morphometry: discovering group-related anatomical patterns publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.032 – volume: 113 start-page: E5749 year: 2016 ident: 10.1016/j.neuroimage.2019.116208_bib24 article-title: Morphometricity as a measure of the neuroanatomical signature of a trait publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1604378113 – volume: 33 start-page: 816 year: 2015 ident: 10.1016/j.neuroimage.2019.116208_bib26 article-title: Brain morphology is individual-specific information publication-title: Magn. Reson. Imag. doi: 10.1016/j.mri.2015.03.010 – volume: 27 start-page: 685 year: 2008 ident: 10.1016/j.neuroimage.2019.116208_bib13 article-title: The alzheimer’s disease neuroimaging initiative (adni): mri methods publication-title: J. Magn. Reson. Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine doi: 10.1002/jmri.21049 – start-page: 89 year: 2016 ident: 10.1016/j.neuroimage.2019.116208_bib37 article-title: Parcellations and connectivity patterns in human and macaque cerebral cortex – volume: 160 start-page: 106 year: 1962 ident: 10.1016/j.neuroimage.2019.116208_bib12 article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex publication-title: J. Physiol. doi: 10.1113/jphysiol.1962.sp006837 – volume: 158 start-page: 242 year: 2017 ident: 10.1016/j.neuroimage.2019.116208_bib14 article-title: Fiberprint: a subject fingerprint based on sparse code pooling for white matter fiber analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.06.083 – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2019.116208_bib36 article-title: The Wu-minn human connectome project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 62 start-page: 774 year: 2012 ident: 10.1016/j.neuroimage.2019.116208_bib10 publication-title: Freesurfer, Neuroimage doi: 10.1016/j.neuroimage.2012.01.021 – start-page: 25 year: 2013 ident: 10.1016/j.neuroimage.2019.116208_bib33 article-title: Feature-based alignment of volumetric multi-modal images – volume: 12 start-page: e1005203 year: 2016 ident: 10.1016/j.neuroimage.2019.116208_bib40 article-title: Quantifying differences and similarities in whole-brain white matter architecture using local connectome fingerprints publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005203 – volume: 30 start-page: 1323 year: 2012 ident: 10.1016/j.neuroimage.2019.116208_bib8 article-title: 3d slicer as an image computing platform for the quantitative imaging network publication-title: Magn. Reson. Imag. doi: 10.1016/j.mri.2012.05.001 – volume: 183 start-page: 504 year: 2018 ident: 10.1016/j.neuroimage.2019.116208_bib25 article-title: Reproducible evaluation of classification methods in alzheimer’s disease: framework and application to mri and pet data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.08.042 – start-page: 04102 year: 2019 ident: 10.1016/j.neuroimage.2019.116208_bib39 – start-page: 172 year: 2009 ident: 10.1016/j.neuroimage.2019.116208_bib29 article-title: Sift-rank: ordinal description for invariant feature correspondence – volume: 17 start-page: 271 year: 2013 ident: 10.1016/j.neuroimage.2019.116208_bib30 article-title: Efficient and robust model-to-image alignment using 3d scale-invariant features publication-title: Med. Image Anal. doi: 10.1016/j.media.2012.11.002 – volume: 146 start-page: 918 year: 2017 ident: 10.1016/j.neuroimage.2019.116208_bib11 article-title: Individual-specific features of brain systems identified with resting state functional correlations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.08.032 – volume: 6 start-page: e20178 year: 2017 ident: 10.1016/j.neuroimage.2019.116208_bib5 article-title: The heritability of multi-modal connectivity in human brain activity publication-title: Elife doi: 10.7554/eLife.20178 – volume: 20 start-page: 1236 year: 1992 ident: 10.1016/j.neuroimage.2019.116208_bib27 article-title: Variable kernel density estimation publication-title: Ann. Stat. doi: 10.1214/aos/1176348768 – volume: 60 start-page: 91 year: 2004 ident: 10.1016/j.neuroimage.2019.116208_bib19 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 4 start-page: 1253 year: 2001 ident: 10.1016/j.neuroimage.2019.116208_bib28 article-title: Genetic influences on brain structure publication-title: Nat. Neurosci. doi: 10.1038/nn758 – volume: 234 start-page: 34 year: 1971 ident: 10.1016/j.neuroimage.2019.116208_bib18 article-title: Distance between sets publication-title: Nature doi: 10.1038/234034a0 – volume: 8 start-page: 5611 year: 2018 ident: 10.1016/j.neuroimage.2019.116208_bib35 article-title: Identification of individual subjects on the basis of their brain anatomical features publication-title: Sci. Rep. doi: 10.1038/s41598-018-23696-6 – volume: 132 start-page: 2048 year: 2009 ident: 10.1016/j.neuroimage.2019.116208_bib7 article-title: Automated mri measures identify individuals with mild cognitive impairment and alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awp123 – start-page: 847 year: 2016 ident: 10.1016/j.neuroimage.2019.116208_bib31 article-title: How are siblings similar? how similar are siblings? large-scale imaging genetics using local image features – volume: 18 start-page: 1664 year: 2015 ident: 10.1016/j.neuroimage.2019.116208_bib9 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4135 – volume: 183 start-page: 212 year: 2018 ident: 10.1016/j.neuroimage.2019.116208_bib15 article-title: Multi-modal brain fingerprinting: a manifold approximation based framework publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.08.006 – volume: 8 start-page: 197 year: 2018 ident: 10.1016/j.neuroimage.2019.116208_bib4 article-title: Individual identification using the functional brain fingerprint detected by the recurrent neural network publication-title: Brain Connect. doi: 10.1089/brain.2017.0561 – volume: 8 start-page: 8254 year: 2018 ident: 10.1016/j.neuroimage.2019.116208_bib1 article-title: The quest for identifiability in human functional connectomes publication-title: Sci. Rep. doi: 10.1038/s41598-018-25089-1 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.neuroimage.2019.116208_bib16 publication-title: Deep learning, nature – volume: vol. 207 start-page: 187 year: 1980 ident: 10.1016/j.neuroimage.2019.116208_bib21 article-title: Theory of edge detection – volume: 19 start-page: 1498 year: 2007 ident: 10.1016/j.neuroimage.2019.116208_bib20 article-title: Open access series of imaging studies (oasis): cross-sectional mri data in young, middle aged, nondemented, and demented older adults publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.2007.19.9.1498 – volume: 36 start-page: 2227 year: 2014 ident: 10.1016/j.neuroimage.2019.116208_bib23 article-title: Scalable nearest neighbor algorithms for high dimensional data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2321376 – start-page: 204 year: 2012 ident: 10.1016/j.neuroimage.2019.116208_bib34 article-title: A feature-based developmental model of the infant brain in structural mri – volume: 20 start-page: 314 year: 2017 ident: 10.1016/j.neuroimage.2019.116208_bib17 article-title: Studying neuroanatomy using mri publication-title: Nat. Neurosci. doi: 10.1038/nn.4501 – start-page: 91 year: 2018 ident: 10.1016/j.neuroimage.2019.116208_bib3 article-title: Diffusion orientation histograms (doh) for diffusion weighted image analysis – volume: 166 start-page: 59 year: 2015 ident: 10.1016/j.neuroimage.2019.116208_bib2 article-title: Brainprint: assessing the uniqueness, collectability, and permanence of a novel method for erp biometrics publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.04.025 |
SSID | ssj0009148 |
Score | 2.3882117 |
Snippet | Neuroimaging studies typically adopt a common feature space for all data, which may obscure aspects of neuroanatomy only observable in subsets of a population,... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 116208 |
SubjectTerms | Adolescent Adult Aged Aged, 80 and over Aging Aging - pathology Anatomy Brain - anatomy & histology Brain - diagnostic imaging Cortex Datasets Datasets as Topic Female Humans Identification Individual variability Investigations Magnetic Resonance Imaging Male Medical imaging Middle Aged MRI Neurodegenerative diseases Neurodegenerative Diseases - diagnostic imaging Neurodegenerative Diseases - pathology Neuroimage analysis Neuroimaging Neuroimaging - methods NMR Nuclear magnetic resonance Pattern Recognition, Automated - methods Pharmaceutical industry R&D Research & development Salient image keypoints Siblings Young Adult |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqrYS4IN4ECjIS12jj58biVCqqBdS9QKXeLDuxaWBJVk2K1H_POHHSBi4rcY0zkT0z_mbGmRkj9M6UBoyUE6kjJUt5kdnUmsylJM88sUqsqA-FwmcbuT7nny_ExQE6GWthQlplxP4B03u0jk-WkZvLXVUtv4JnAOYG4g0FeqoU4PAhZUqKBTo8_vRlvbntvUv4UBEnWBoIYkLPkObVt42sfsHmDXleCiBE0nDX5B0r1Tfznxmrf53Rv3Mq7xip04foQfQu8fGwgEfowNWP0b2z-P_8Cfq5meaBQ-ZG39UThxIT3IJDDh_FsKl3TVV3La5aHJoZb29wKMcMKUW4a3A1VXC12NQlbi9DCju2N7jYNq3DQ3HMb9c-ReenH7-drNN43UJaSJZ1aS6oAwNOlYFVSGZZLgqIdsCGU27NynAL8axniltGjcgMF6IwAAHClnRVmpw9Q4u6qd2LwF7FjBcm89xy6gqVewjEMgOxoy8zZhK0Gtmri9iLPFyJsdVj0tkPfSsYHQSjB8EkiEyUu6Efxx40H4IEp_dDR-3-QXP1XUeV0kTa3EIs7L13vFDWMl6SgoDyQgzpCEuQGuWvx6JVkAh8qNpjAu8n2ply70l9NKqbjgDTanDLQyyqcpmgt9MwQEP432Nq11zDOxRiWUm5pAl6PmjnxAMGrrME9AZJzPR2xqT5SF1d9u3HpQLYzuTL_1rUK3SfhpOL_jDrCC26q2v3Gty7zr6J2_cPrwBR2w priority: 102 providerName: Elsevier – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9UwFA86QXwRv61OieBrsc1XG3wQFccQticH960kaeKqd-117YT9957Tpr27CnJf26SkOd_JOb9DyFtTGzBSXqY-r3kqXGZTazKf5mUWcqtlwQIWCp-cquMz8XUlV_HArY9plbNOHBV13Tk8I38Hfgg637pUHza_UuwahbersYXGbXJnhC4Dfi5WxRZ0NxdTKZzkaQkDYibPlN814kU2FyC1mOClQXcohk0mb5inEcV_x0r964X-nUx5wzodPSD3o1tJP0588JDc8u0jcvckXpw_Jj9Pl3VQTNkY4Twp1pbQHjxx-CgFad50TTv0tOkpohivrynWYWIuER062iylWz01bU37c8xdp_aaunXXezpVxfz2_RNydvTl2-fjNPZZSJ3i2ZCWknmw3Ewb-AvFLS-lgzAHjDcT1hRGWAhkA9fCcmZkZoSUzoDsS1uzojYlf0oO2q71z3F7NTdBmiwIK5h3ugwQgWUGgsZQZ9wkpJi3t3IRhBx7YayrOdvsR7UlTIWEqSbCJCRfZm4mII495nxCCi7jEUp7fNBdfq-iZFa5sqWFIDiE4IXT1nJR5y4HroXg0ec8IXqmfzVXqwJF4EPNHgt4v8yNHs3kqew5-3Bmtypqlr7aykFC3iyvQSfgRY9pfXcFYxgEsYoJxRLybOLOZQ84-MwK1DZQYodvdzZp903bnI-440qDvs7Ui_8v6yW5x_BMYjymOiQHw-WVfwWO22Bfj9L5B7zdRU0 priority: 102 providerName: ProQuest |
Title | Neuroimage signature from salient keypoints is highly specific to individuals and shared by close relatives |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919307992 https://dx.doi.org/10.1016/j.neuroimage.2019.116208 https://www.ncbi.nlm.nih.gov/pubmed/31546048 https://www.proquest.com/docview/2318626986 https://www.proquest.com/docview/2296662462 https://pubmed.ncbi.nlm.nih.gov/PMC6931906 https://doaj.org/article/16b8b107fffe4c9bb34d1c1c0b149e13 |
Volume | 204 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagSIgL4k1KWRmJa8DxK7E4tajVAuoKISrtzbITW01ZkqrZIvXCb2ccJ2EXDuyBSyIlsZPMjOeRzHyD0GtTGTBSTqQuq1jKS2JTa4hLs4L4zCqRUx8KhU8Xcn7GPy7FcqPVV8gJi_DAkXBvM2kLCzGK997xUlnLeJWVGUwKvr3r-9VSosgYTI1wuxmPRXChEyHccMjhiZldPVJk_R3Wa0jtUqA1JA3tJTcMU4_fv2Wf_vY__0yj3LBLJw_Q_cGhxIfxRR6iW655hO6eDr_MH6Nvi-k5cEjW6IE8cagqwR344DAphnV82dbNusN1hwN-8eoGhwrMkEWE1y2up6KtDpumwt15yFrH9gaXq7ZzONbD_HDdE3R2cvz1_TwdOiykpWRknRaCOrDZVBl4C8ksK0QJAQ6YbcqtyQ23EMJ6prhl1AhiuBClgVUvbEXzyhTsKdpr2sY9D-RVzHhhiOeWU1eqwkPsRQyEi74izCQoH8mrywF-PHTBWOkxz-xC_2aMDozRkTEJyqaRlxGCY4cxR4GD0_UBRLs_AKKlB9HS_xKtBKmR_3qsUwWOwET1Dg_wbho7-DLRR9lx9MEobnrQKZ0GTzyEn6qQCXo1nQZtEH7xmMa113ANhfBVUi5pgp5F6ZxowMBblqCwgRNbcrtFpO0zTX3eI45LBZqayP3_QdUX6B4N3yz6z1gHaG99de1egmO3tjN0-83PDLb5Mp-hO4cfPs0XsD86Xnz-MuvX9y_f-1OK |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELbKVgJeEDcLBYwEjxHxlY2FEKLQqqXdFUKt1DdjJw4NLMnSbEH7p_iNzOTaLkhoX_rqS5ZnPPONPQchz21qQUl5FXiWikAmoQucDX3A4jBjTqsRzzBQeDyJ9o7lhxN1skF-d7Ew6FbZycRaUKdlgm_kLwGHIPjWcfRm9iPAqlH4u9qV0GjY4sAvfoHJVr3efw_0fcH57s7Ru72grSoQJJEI50GsuAc9xbX1KbQ4EasEQD2oKi6dHVnpwGzLhJZOcKtCK5VKLHC6cikfpTYWsO4VsikxonVANrd3Jh8_LdP8MtkE3ykRxIzp1neo8SirM1Tm30FOoEuZBmkVcSxreUEh1nUDVvTiv7j3b_fNC_pw9ya50QJZ-rbhvFtkwxe3ydVx-1V_h3yb9Pug6CRSJxClGM1CK8D-sCgF-TEr82Je0byimDd5uqAY-YneS3Re0rwPFquoLVJanaK3PHULmkzLytMmDuenr-6S40uhwT0yKMrCP8Dj1cJmyoaZdJL7RMcZ2HyhBTM1S0Nhh2TUHa9J2rTnWH1jajr_tq9mSRiDhDENYYaE9TNnTeqPNeZsIwX78Zi8u24oz76YVhYYFrnYgdmdZZmXiXZOyJQlDO4JmKueiSHRHf1NFx8LFIGF8jU28Kqf22KoBhutOXurYzfTyrLKLG_ekDzru0EK4deSLXx5DmM4mM0RlxEfkvsNd_ZnIAClR6AogBIrfLtySKs9RX5aZzqPNGiIMHr4_209Jdf2jsaH5nB_cvCIXOf4IlI_km2Rwfzs3D8G2Dh3T9q7SsnnyxYPfwCaH4Hy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiDeBAkaCY9T4lcRCCAFl1VK64kClvRk7sWlgSZYmBe1f49cxzmu7IKG99JrEluUZfzMTfzOD0DOdazBSVoSW5CzkWWRCoyMbkjRyxEiRUOcThY-n8cEJfz8Tsy30e8iF8bTKARNboM6rzP8j3wM_xDvfMo33XE-L-Lg_ebX4EfoOUv6mdWin0anIkV3-gvCtfnm4D7J-Tunk3ae3B2HfYSDMYhY1YSqoBZtFpbY5PDEsFRk4-GC2KDc60dxACOeY5IZRLSLNhcg0aL0wOU1ynTKY9wq6mjDwquAsJbNkVfCX8C4NT7AwJUT2LKKOW9bWqiy-A2J4cpkE3Iqpb3B5wTS2HQTWLOS_HvDfRM4LlnFyA13vXVr8utPBm2jLlrfQznF_aX8bfZuO68CeLtKWEsU-rwXXEAXApBiQZFEVZVPjosa-gvJ8iX0OqOcx4abCxZg2VmNd5rg-9bx5bJY4m1e1xV1Gzk9b30EnlyKBu2i7rEp732-vZNoJHTluOLWZTB1Ef5GGgNXlEdMBSobtVVlfAN334Zirgen2Va0Eo7xgVCeYAJFx5KIrArLBmDdeguP3vox3-6A6-6J6VFAkNqmBANw5Z3kmjWE8JxmBEwOBqyUsQHKQvxoyZUEiMFGxwQJejGN7b6rzkjYcvTuom-pRrVarMxigp-NrwCN_yaRLW53DNxQC6JjymAboXqed4x4w8NdjMBkgiTW9Xduk9TdlcdrWPI8l2IoofvD_ZT1BOwAK6sPh9Oghukb9r5H2b9ku2m7Ozu0j8B8b87g9qBh9vmxk-AP2-IS5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuroimage+signature+from+salient+keypoints+is+highly+specific+to+individuals+and+shared+by+close+relatives&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Chauvin%2C+Laurent&rft.au=Kumar%2C+Kuldeep&rft.au=Wachinger%2C+Christian&rft.au=Vangel%2C+Marc&rft.date=2020-01-01&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=204&rft.spage=116208&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.116208&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |