Neuroimage signature from salient keypoints is highly specific to individuals and shared by close relatives

Neuroimaging studies typically adopt a common feature space for all data, which may obscure aspects of neuroanatomy only observable in subsets of a population, e.g. cortical folding patterns unique to individuals or shared by close relatives. Here, we propose to model individual variability using a...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 204; p. 116208
Main Authors Chauvin, Laurent, Kumar, Kuldeep, Wachinger, Christian, Vangel, Marc, de Guise, Jacques, Desrosiers, Christian, Wells, William, Toews, Matthew
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2020
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2019.116208

Cover

Loading…
Abstract Neuroimaging studies typically adopt a common feature space for all data, which may obscure aspects of neuroanatomy only observable in subsets of a population, e.g. cortical folding patterns unique to individuals or shared by close relatives. Here, we propose to model individual variability using a distinctive keypoint signature: a set of unique, localized patterns, detected automatically in each image by a generic saliency operator. The similarity of an image pair is then quantified by the proportion of keypoints they share using a novel Jaccard-like measure of set overlap. Experiments demonstrate the keypoint method to be highly efficient and accurate, using a set of 7536 T1-weighted MRIs pooled from four public neuroimaging repositories, including twins, non-twin siblings, and 3334 unique subjects. All same-subject image pairs are identified by a similarity threshold despite confounds including aging and neurodegenerative disease progression. Outliers reveal previously unknown data labeling inconsistencies, demonstrating the usefulness of the keypoint signature as a computational tool for curating large neuroimage datasets. •Efficient large scale analysis of whole brain images.•Introduction of a new pairwise brain similarity measure.•Correlation between brain similarity and genetic proximity across family members.•Automatic identification of mislabeled data in large public neuroimaging datasets.•Automatic identification of duplicate subjects across datasets.
AbstractList Neuroimaging studies typically adopt a common feature space for all data, which may obscure aspects of neuroanatomy only observable in subsets of a population, e.g. cortical folding patterns unique to individuals or shared by close relatives. Here, we propose to model individual variability using a distinctive keypoint signature: a set of unique, localized patterns, detected automatically in each image by a generic saliency operator. The similarity of an image pair is then quantified by the proportion of keypoints they share using a novel Jaccard-like measure of set overlap. Experiments demonstrate the keypoint method to be highly efficient and accurate, using a set of 7536 T1-weighted MRIs pooled from four public neuroimaging repositories, including twins, non-twin siblings, and 3334 unique subjects. All same-subject image pairs are identified by a similarity threshold despite confounds including aging and neurodegenerative disease progression. Outliers reveal previously unknown data labeling inconsistencies, demonstrating the usefulness of the keypoint signature as a computational tool for curating large neuroimage datasets.Neuroimaging studies typically adopt a common feature space for all data, which may obscure aspects of neuroanatomy only observable in subsets of a population, e.g. cortical folding patterns unique to individuals or shared by close relatives. Here, we propose to model individual variability using a distinctive keypoint signature: a set of unique, localized patterns, detected automatically in each image by a generic saliency operator. The similarity of an image pair is then quantified by the proportion of keypoints they share using a novel Jaccard-like measure of set overlap. Experiments demonstrate the keypoint method to be highly efficient and accurate, using a set of 7536 T1-weighted MRIs pooled from four public neuroimaging repositories, including twins, non-twin siblings, and 3334 unique subjects. All same-subject image pairs are identified by a similarity threshold despite confounds including aging and neurodegenerative disease progression. Outliers reveal previously unknown data labeling inconsistencies, demonstrating the usefulness of the keypoint signature as a computational tool for curating large neuroimage datasets.
Neuroimaging studies typically adopt a common feature space for all data, which may obscure aspects of neuroanatomy only observable in subsets of a population, e.g. cortical folding patterns unique to individuals or shared by close relatives. Here, we propose to model individual variability using a distinctive keypoint signature: a set of unique, localized patterns, detected automatically in each image by a generic saliency operator. The similarity of an image pair is then quantified by the proportion of keypoints they share using a novel Jaccard-like measure of set overlap. Experiments demonstrate the keypoint method to be highly efficient and accurate, using a set of 7536 T1-weighted MRIs pooled from four public neuroimaging repositories, including twins, non-twin siblings, and 3334 unique subjects. All same-subject image pairs are identified by a similarity threshold despite confounds including aging and neurodegenerative disease progression. Outliers reveal previously unknown data labeling inconsistencies, demonstrating the usefulness of the keypoint signature as a computational tool for curating large neuroimage datasets. •Efficient large scale analysis of whole brain images.•Introduction of a new pairwise brain similarity measure.•Correlation between brain similarity and genetic proximity across family members.•Automatic identification of mislabeled data in large public neuroimaging datasets.•Automatic identification of duplicate subjects across datasets.
Neuroimaging studies typically adopt a common feature space for all data, which may obscure aspects of neuroanatomy only observable in subsets of a population, e.g. cortical folding patterns unique to individuals or shared by close relatives. Here, we propose to model individual variability using a distinctive keypoint signature: a set of unique, localized patterns, detected automatically in each image by a generic saliency operator. The similarity of an image pair is then quantified by the proportion of keypoints they share using a novel Jaccard-like measure of set overlap. Experiments demonstrate the keypoint method to be highly efficient and accurate, using a set of 7536 T1-weighted MRIs pooled from four public neuroimaging repositories, including twins, non-twin siblings, and 3334 unique subjects. All same-subject image pairs are identified by a similarity threshold despite confounds including aging and neurodegenerative disease progression. Outliers reveal previously unknown data labeling inconsistencies, demonstrating the usefulness of the keypoint signature as a computational tool for curating large neuroimage datasets.
ArticleNumber 116208
Author Vangel, Marc
Desrosiers, Christian
Kumar, Kuldeep
Chauvin, Laurent
Wachinger, Christian
de Guise, Jacques
Toews, Matthew
Wells, William
AuthorAffiliation d Massachusetts General Hospital, Harvard Medical School, Boston, USA
e Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, USA
b Laboratory for Artificial Intelligence in Medical Imaging, University Hospital, LMU, Munich, Germany
a École de Technologie Supérieure, Montreal, Canada
c Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
AuthorAffiliation_xml – name: c Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
– name: e Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, USA
– name: d Massachusetts General Hospital, Harvard Medical School, Boston, USA
– name: a École de Technologie Supérieure, Montreal, Canada
– name: b Laboratory for Artificial Intelligence in Medical Imaging, University Hospital, LMU, Munich, Germany
Author_xml – sequence: 1
  givenname: Laurent
  surname: Chauvin
  fullname: Chauvin, Laurent
  email: laurent.chauvin0@gmail.com
  organization: École de Technologie Supérieure, Montreal, Canada
– sequence: 2
  givenname: Kuldeep
  surname: Kumar
  fullname: Kumar, Kuldeep
  organization: École de Technologie Supérieure, Montreal, Canada
– sequence: 3
  givenname: Christian
  surname: Wachinger
  fullname: Wachinger, Christian
  organization: Laboratory for Artificial Intelligence in Medical Imaging, University Hospital, LMU, Munich, Germany
– sequence: 4
  givenname: Marc
  surname: Vangel
  fullname: Vangel, Marc
  organization: Massachusetts General Hospital, Harvard Medical School, Boston, USA
– sequence: 5
  givenname: Jacques
  surname: de Guise
  fullname: de Guise, Jacques
  organization: École de Technologie Supérieure, Montreal, Canada
– sequence: 6
  givenname: Christian
  surname: Desrosiers
  fullname: Desrosiers, Christian
  organization: École de Technologie Supérieure, Montreal, Canada
– sequence: 7
  givenname: William
  surname: Wells
  fullname: Wells, William
  organization: Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
– sequence: 8
  givenname: Matthew
  surname: Toews
  fullname: Toews, Matthew
  email: matt.toews@gmail.com
  organization: École de Technologie Supérieure, Montreal, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31546048$$D View this record in MEDLINE/PubMed
BookMark eNqNks1uEzEUhUeoiLaBV0CW2LBJ8N849gYBFS2VKtjA2rI9dxKnjh3smUh5exxSUtpVVrbs48_33nMum7OYIjQNInhGMBEfVrMIY05-bRYwo5ioGSGCYvmiuSBYtVPVzunZft-yqSREnTeXpawwxopw-ao5Z6TlAnN50dx_P4JQ8YtohjED6nNao2KChzige9htko9DQb6gpV8sww6VDTjfe4eGhHzs_NZ3owkFmdihsjQZOmR3yIVUAGUIZvBbKK-bl30VwZuHddL8uv768-rb9O7Hze3V57upEwwPU9lSoExSZaCrJ5bJ1lGBKaeUWzM33BLGeqa4ZdS02PC2dYZj3NqOzjsj2aS5PXC7ZFZ6k2t3eaeT8frvQcoLbfLgXQBNhJWW4Hnf98CdspbxjjjisCVcQf1n0nw8sDajXdd66kCyCU-gT2-iX-pF2mqhGFFYVMD7B0BOv0cog1774iAEEyGNRVOqhBCUC1ql755JV2nMsY5KU0akoELJPfDt_xUdS_nnaRXIg8DlVEqG_ighWO_jo1f6MT56Hx99iM9jt8enzg_VvLTvzYdTAF8OAKj-bj1kXVwNkYPOZ3BDNcCfAvn0DOKCj96ZUKN4GuIP_zz_Ow
CitedBy_id crossref_primary_10_1017_pab_2021_33
crossref_primary_10_1109_TCDS_2023_3314155
crossref_primary_10_1016_j_neucom_2023_126236
crossref_primary_10_1016_j_neuroimage_2024_120595
crossref_primary_10_1109_TMI_2021_3123252
crossref_primary_10_3390_jpm14020127
crossref_primary_10_1016_j_neuroimage_2021_118254
crossref_primary_10_1016_j_addr_2021_113959
crossref_primary_10_1212_WNL_0000000000213374
Cites_doi 10.1016/j.neuroimage.2015.01.032
10.1371/journal.pone.0111048
10.1016/j.neuroimage.2009.10.032
10.1073/pnas.1604378113
10.1016/j.mri.2015.03.010
10.1002/jmri.21049
10.1113/jphysiol.1962.sp006837
10.1016/j.neuroimage.2017.06.083
10.1016/j.neuroimage.2013.05.041
10.1016/j.neuroimage.2012.01.021
10.1371/journal.pcbi.1005203
10.1016/j.mri.2012.05.001
10.1016/j.neuroimage.2018.08.042
10.1016/j.media.2012.11.002
10.1016/j.neuroimage.2016.08.032
10.7554/eLife.20178
10.1214/aos/1176348768
10.1023/B:VISI.0000029664.99615.94
10.1038/nn758
10.1038/234034a0
10.1038/s41598-018-23696-6
10.1093/brain/awp123
10.1038/nn.4135
10.1016/j.neuroimage.2018.08.006
10.1089/brain.2017.0561
10.1038/s41598-018-25089-1
10.1162/jocn.2007.19.9.1498
10.1109/TPAMI.2014.2321376
10.1038/nn.4501
10.1016/j.neucom.2015.04.025
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
2019. Elsevier Inc.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
– notice: 2019. Elsevier Inc.
CorporateAuthor for the Alzheimer’s Disease Neuroimaging Initiative
Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: for the Alzheimer’s Disease Neuroimaging Initiative
– name: Alzheimer’s Disease Neuroimaging Initiative
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOA
DOI 10.1016/j.neuroimage.2019.116208
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


ProQuest One Psychology
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 116208
ExternalDocumentID oai_doaj_org_article_16b8b107fffe4c9bb34d1c1c0b149e13
PMC6931906
31546048
10_1016_j_neuroimage_2019_116208
S1053811919307992
Genre Multicenter Study
Twin Study
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: P41 EB015902
– fundername: NIA NIH HHS
  grantid: P30 AG066444
– fundername: NIA NIH HHS
  grantid: P50 AG005681
– fundername: NIA NIH HHS
  grantid: P01 AG003991
– fundername: NIA NIH HHS
  grantid: P01 AG026276
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
RIG
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c630t-852e23829aedc63b385c26024224ba7a4b133f394b32a50a455ca4005bd27da83
IEDL.DBID DOA
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:32:08 EDT 2025
Thu Aug 21 14:04:33 EDT 2025
Thu Sep 04 15:04:05 EDT 2025
Wed Aug 13 09:57:58 EDT 2025
Thu Apr 03 07:03:30 EDT 2025
Tue Jul 01 03:02:10 EDT 2025
Thu Apr 24 23:04:24 EDT 2025
Fri Feb 23 02:43:40 EST 2024
Tue Aug 26 18:33:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Individual variability
Neuroimage analysis
Salient image keypoints
MRI
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-852e23829aedc63b385c26024224ba7a4b133f394b32a50a455ca4005bd27da83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/16b8b107fffe4c9bb34d1c1c0b149e13
PMID 31546048
PQID 2318626986
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_16b8b107fffe4c9bb34d1c1c0b149e13
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6931906
proquest_miscellaneous_2296662462
proquest_journals_2318626986
pubmed_primary_31546048
crossref_primary_10_1016_j_neuroimage_2019_116208
crossref_citationtrail_10_1016_j_neuroimage_2019_116208
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_116208
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_116208
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2020
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Armstrong, Ruiz-Blondet, Khalifian, Kurtz, Jin, Laszlo (bib2) 2015; 166
Fischl (bib10) 2012; 62
Takao, Hayashi, Ohtomo (bib26) 2015; 33
Marr, Hildreth (bib21) 1980; vol. 207
Marcus, Wang, Parker, Csernansky, Morris, Buckner (bib20) 2007; 19
Toews, Wells, Collins, Arbel (bib32) 2010; 49
Toews, Wells (bib31) 2016
Kumar, Toews, Chauvin, Colliot, Desrosiers (bib15) 2018; 183
Thompson, Cannon, Narr, Van Erp, Poutanen, Huttunen, Lönnqvist, Standertskjöld-Nordenstam, Kaprio, Khaledy (bib28) 2001; 4
Gordon, Laumann, Adeyemo, Gilmore, Nelson, Dosenbach, Petersen (bib11) 2017; 146
Fedorov, Beichel, Kalpathy-Cramer, Finet, Fillion-Robin, Pujol, Bauer, Jennings, Fennessy, Sonka (bib8) 2012; 30
Lerch, van der Kouwe, Raznahan, Paus, Johansen-Berg, Miller, Smith, Fischl, Sotiropoulos (bib17) 2017; 20
Valizadeh, Liem, Mérillat, Hänggi, Jäncke (bib35) 2018; 8
Chauvin, Kumar, Desrosiers, De Guise, Toews (bib3) 2018
Desikan, Cabral, Hess, Dillon, Glastonbury, Weiner, Schmansky, Greve, Salat, Buckner (bib7) 2009; 132
Toews, Wells (bib29) 2009
Wachinger, Becker, Rieckmann, Pölsterl (bib39) 2019
Kumar, Desrosiers, Siddiqi, Colliot, Toews (bib14) 2017; 158
Levandowsky, Winter (bib18) 1971; 234
Lowe (bib19) 2004; 60
Muja, Lowe (bib23) 2014; 36
Chen, Hu (bib4) 2018; 8
Wachinger, Golland, Kremen, Fischl, Reuter, Initiative (bib38) 2015; 109
Van Essen, Donahue, Dierker, Glasser (bib37) 2016
Dalal, Triggs (bib6) 2005; vol. 1
Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib9) 2015; 18
Yeh, Vettel, Singh, Poczos, Grafton, Erickson, Tseng, Verstynen (bib40) 2016; 12
LeCun, Bengio, Hinton (bib16) 2015; 521
Hubel, Wiesel (bib12) 1962; 160
Terrell, Scott (bib27) 1992; 20
Toews, Wells (bib30) 2013; 17
Colclough, Smith, Nichols, Winkler, Sotiropoulos, Glasser, Van Essen, Woolrich (bib5) 2017; 6
Amico, Goñi (bib1) 2018; 8
Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, Whitwell, Ward (bib13) 2008; 27
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium (bib36) 2013; 80
Toews, Zöllei, Wells (bib33) 2013
Toews, Wells, Zöllei (bib34) 2012
Sabuncu, Ge, Holmes, Smoller, Buckner, Fischl, Initiative (bib24) 2016; 113
Miranda-Dominguez, Mills, Carpenter, Grant, Kroenke, Nigg, Fair (bib22) 2014; 9
Samper-Gonzalez, Burgos, Bottani, Fontanella, Lu, Marcoux, Routier, Guillon, Bacci, Wen (bib25) 2018; 183
Valizadeh (10.1016/j.neuroimage.2019.116208_bib35) 2018; 8
Desikan (10.1016/j.neuroimage.2019.116208_bib7) 2009; 132
Sabuncu (10.1016/j.neuroimage.2019.116208_bib24) 2016; 113
Gordon (10.1016/j.neuroimage.2019.116208_bib11) 2017; 146
Toews (10.1016/j.neuroimage.2019.116208_bib33) 2013
Van Essen (10.1016/j.neuroimage.2019.116208_bib36) 2013; 80
Van Essen (10.1016/j.neuroimage.2019.116208_bib37) 2016
Lerch (10.1016/j.neuroimage.2019.116208_bib17) 2017; 20
Toews (10.1016/j.neuroimage.2019.116208_bib32) 2010; 49
Toews (10.1016/j.neuroimage.2019.116208_bib30) 2013; 17
Muja (10.1016/j.neuroimage.2019.116208_bib23) 2014; 36
Fedorov (10.1016/j.neuroimage.2019.116208_bib8) 2012; 30
Jack (10.1016/j.neuroimage.2019.116208_bib13) 2008; 27
Levandowsky (10.1016/j.neuroimage.2019.116208_bib18) 1971; 234
Terrell (10.1016/j.neuroimage.2019.116208_bib27) 1992; 20
Finn (10.1016/j.neuroimage.2019.116208_bib9) 2015; 18
Wachinger (10.1016/j.neuroimage.2019.116208_bib38) 2015; 109
LeCun (10.1016/j.neuroimage.2019.116208_bib16) 2015; 521
Wachinger (10.1016/j.neuroimage.2019.116208_bib39) 2019
Amico (10.1016/j.neuroimage.2019.116208_bib1) 2018; 8
Colclough (10.1016/j.neuroimage.2019.116208_bib5) 2017; 6
Takao (10.1016/j.neuroimage.2019.116208_bib26) 2015; 33
Chauvin (10.1016/j.neuroimage.2019.116208_bib3) 2018
Lowe (10.1016/j.neuroimage.2019.116208_bib19) 2004; 60
Samper-Gonzalez (10.1016/j.neuroimage.2019.116208_bib25) 2018; 183
Toews (10.1016/j.neuroimage.2019.116208_bib34) 2012
Thompson (10.1016/j.neuroimage.2019.116208_bib28) 2001; 4
Toews (10.1016/j.neuroimage.2019.116208_bib31) 2016
Chen (10.1016/j.neuroimage.2019.116208_bib4) 2018; 8
Fischl (10.1016/j.neuroimage.2019.116208_bib10) 2012; 62
Kumar (10.1016/j.neuroimage.2019.116208_bib15) 2018; 183
Kumar (10.1016/j.neuroimage.2019.116208_bib14) 2017; 158
Miranda-Dominguez (10.1016/j.neuroimage.2019.116208_bib22) 2014; 9
Marr (10.1016/j.neuroimage.2019.116208_bib21) 1980; vol. 207
Toews (10.1016/j.neuroimage.2019.116208_bib29) 2009
Dalal (10.1016/j.neuroimage.2019.116208_bib6) 2005; vol. 1
Hubel (10.1016/j.neuroimage.2019.116208_bib12) 1962; 160
Armstrong (10.1016/j.neuroimage.2019.116208_bib2) 2015; 166
Marcus (10.1016/j.neuroimage.2019.116208_bib20) 2007; 19
Yeh (10.1016/j.neuroimage.2019.116208_bib40) 2016; 12
References_xml – volume: vol. 207
  start-page: 187
  year: 1980
  end-page: 217
  ident: bib21
  article-title: Theory of edge detection
  publication-title: Proceedings of the Royal Society of London. Series B. Biological Sciences
– volume: 33
  start-page: 816
  year: 2015
  end-page: 821
  ident: bib26
  article-title: Brain morphology is individual-specific information
  publication-title: Magn. Reson. Imag.
– volume: 20
  start-page: 1236
  year: 1992
  end-page: 1265
  ident: bib27
  article-title: Variable kernel density estimation
  publication-title: Ann. Stat.
– volume: 109
  start-page: 232
  year: 2015
  end-page: 248
  ident: bib38
  article-title: Brainprint: a discriminative characterization of brain morphology
  publication-title: Neuroimage
– volume: 183
  start-page: 504
  year: 2018
  end-page: 521
  ident: bib25
  article-title: Reproducible evaluation of classification methods in alzheimer’s disease: framework and application to mri and pet data
  publication-title: Neuroimage
– volume: 8
  start-page: 197
  year: 2018
  end-page: 204
  ident: bib4
  article-title: Individual identification using the functional brain fingerprint detected by the recurrent neural network
  publication-title: Brain Connect.
– volume: 234
  start-page: 34
  year: 1971
  ident: bib18
  article-title: Distance between sets
  publication-title: Nature
– start-page: 172
  year: 2009
  end-page: 177
  ident: bib29
  article-title: Sift-rank: ordinal description for invariant feature correspondence
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 04102
  year: 2019
  ident: bib39
  article-title: Quantifying Confounding Bias in Neuroimaging Datasets with Causal Inference
– volume: 9
  start-page: e111048
  year: 2014
  ident: bib22
  article-title: Connectotyping: model based fingerprinting of the functional connectome
  publication-title: PLoS One
– volume: 158
  start-page: 242
  year: 2017
  end-page: 259
  ident: bib14
  article-title: Fiberprint: a subject fingerprint based on sparse code pooling for white matter fiber analysis
  publication-title: Neuroimage
– volume: 166
  start-page: 59
  year: 2015
  end-page: 67
  ident: bib2
  article-title: Brainprint: assessing the uniqueness, collectability, and permanence of a novel method for erp biometrics
  publication-title: Neurocomputing
– volume: 4
  start-page: 1253
  year: 2001
  ident: bib28
  article-title: Genetic influences on brain structure
  publication-title: Nat. Neurosci.
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib36
  article-title: The Wu-minn human connectome project: an overview
  publication-title: Neuroimage
– volume: 183
  start-page: 212
  year: 2018
  end-page: 226
  ident: bib15
  article-title: Multi-modal brain fingerprinting: a manifold approximation based framework
  publication-title: Neuroimage
– volume: 30
  start-page: 1323
  year: 2012
  end-page: 1341
  ident: bib8
  article-title: 3d slicer as an image computing platform for the quantitative imaging network
  publication-title: Magn. Reson. Imag.
– start-page: 204
  year: 2012
  end-page: 211
  ident: bib34
  article-title: A feature-based developmental model of the infant brain in structural mri
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 8
  start-page: 8254
  year: 2018
  ident: bib1
  article-title: The quest for identifiability in human functional connectomes
  publication-title: Sci. Rep.
– volume: 60
  start-page: 91
  year: 2004
  end-page: 110
  ident: bib19
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
– volume: 113
  start-page: E5749
  year: 2016
  end-page: E5756
  ident: bib24
  article-title: Morphometricity as a measure of the neuroanatomical signature of a trait
  publication-title: Proc. Natl. Acad. Sci.
– volume: 160
  start-page: 106
  year: 1962
  end-page: 154
  ident: bib12
  article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex
  publication-title: J. Physiol.
– volume: 20
  start-page: 314
  year: 2017
  ident: bib17
  article-title: Studying neuroanatomy using mri
  publication-title: Nat. Neurosci.
– volume: 18
  start-page: 1664
  year: 2015
  ident: bib9
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
– volume: 132
  start-page: 2048
  year: 2009
  end-page: 2057
  ident: bib7
  article-title: Automated mri measures identify individuals with mild cognitive impairment and alzheimer’s disease
  publication-title: Brain
– volume: 146
  start-page: 918
  year: 2017
  end-page: 939
  ident: bib11
  article-title: Individual-specific features of brain systems identified with resting state functional correlations
  publication-title: Neuroimage
– volume: 17
  start-page: 271
  year: 2013
  end-page: 282
  ident: bib30
  article-title: Efficient and robust model-to-image alignment using 3d scale-invariant features
  publication-title: Med. Image Anal.
– start-page: 91
  year: 2018
  end-page: 99
  ident: bib3
  article-title: Diffusion orientation histograms (doh) for diffusion weighted image analysis
  publication-title: Computational Diffusion MRI
– volume: 19
  start-page: 1498
  year: 2007
  end-page: 1507
  ident: bib20
  article-title: Open access series of imaging studies (oasis): cross-sectional mri data in young, middle aged, nondemented, and demented older adults
  publication-title: J. Cogn. Neurosci.
– volume: 6
  start-page: e20178
  year: 2017
  ident: bib5
  article-title: The heritability of multi-modal connectivity in human brain activity
  publication-title: Elife
– volume: 49
  start-page: 2318
  year: 2010
  end-page: 2327
  ident: bib32
  article-title: Feature-based morphometry: discovering group-related anatomical patterns
  publication-title: Neuroimage
– volume: 521
  start-page: 436
  year: 2015
  ident: bib16
  publication-title: Deep learning, nature
– volume: 36
  start-page: 2227
  year: 2014
  end-page: 2240
  ident: bib23
  article-title: Scalable nearest neighbor algorithms for high dimensional data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: bib13
  article-title: The alzheimer’s disease neuroimaging initiative (adni): mri methods
  publication-title: J. Magn. Reson. Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine
– start-page: 25
  year: 2013
  end-page: 36
  ident: bib33
  article-title: Feature-based alignment of volumetric multi-modal images
  publication-title: International Conference on Information Processing in Medical Imaging
– volume: 12
  start-page: e1005203
  year: 2016
  ident: bib40
  article-title: Quantifying differences and similarities in whole-brain white matter architecture using local connectome fingerprints
  publication-title: PLoS Comput. Biol.
– start-page: 89
  year: 2016
  end-page: 106
  ident: bib37
  article-title: Parcellations and connectivity patterns in human and macaque cerebral cortex
  publication-title: Micro-, Meso-And Macro-Connectomics of the Brain
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  ident: bib10
  publication-title: Freesurfer, Neuroimage
– volume: vol. 1
  start-page: 886
  year: 2005
  end-page: 893
  ident: bib6
  article-title: Histograms of oriented gradients for human detection
  publication-title: International Conference on Computer Vision & Pattern Recognition (CVPR’05)
– volume: 8
  start-page: 5611
  year: 2018
  ident: bib35
  article-title: Identification of individual subjects on the basis of their brain anatomical features
  publication-title: Sci. Rep.
– start-page: 847
  year: 2016
  end-page: 850
  ident: bib31
  article-title: How are siblings similar? how similar are siblings? large-scale imaging genetics using local image features
  publication-title: IEEE 13th International Symposium on Biomedical Imaging (ISBI), IEEE
– volume: vol. 1
  start-page: 886
  year: 2005
  ident: 10.1016/j.neuroimage.2019.116208_bib6
  article-title: Histograms of oriented gradients for human detection
– volume: 109
  start-page: 232
  year: 2015
  ident: 10.1016/j.neuroimage.2019.116208_bib38
  article-title: Brainprint: a discriminative characterization of brain morphology
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.01.032
– volume: 9
  start-page: e111048
  year: 2014
  ident: 10.1016/j.neuroimage.2019.116208_bib22
  article-title: Connectotyping: model based fingerprinting of the functional connectome
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0111048
– volume: 49
  start-page: 2318
  year: 2010
  ident: 10.1016/j.neuroimage.2019.116208_bib32
  article-title: Feature-based morphometry: discovering group-related anatomical patterns
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.032
– volume: 113
  start-page: E5749
  year: 2016
  ident: 10.1016/j.neuroimage.2019.116208_bib24
  article-title: Morphometricity as a measure of the neuroanatomical signature of a trait
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1604378113
– volume: 33
  start-page: 816
  year: 2015
  ident: 10.1016/j.neuroimage.2019.116208_bib26
  article-title: Brain morphology is individual-specific information
  publication-title: Magn. Reson. Imag.
  doi: 10.1016/j.mri.2015.03.010
– volume: 27
  start-page: 685
  year: 2008
  ident: 10.1016/j.neuroimage.2019.116208_bib13
  article-title: The alzheimer’s disease neuroimaging initiative (adni): mri methods
  publication-title: J. Magn. Reson. Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine
  doi: 10.1002/jmri.21049
– start-page: 89
  year: 2016
  ident: 10.1016/j.neuroimage.2019.116208_bib37
  article-title: Parcellations and connectivity patterns in human and macaque cerebral cortex
– volume: 160
  start-page: 106
  year: 1962
  ident: 10.1016/j.neuroimage.2019.116208_bib12
  article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1962.sp006837
– volume: 158
  start-page: 242
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116208_bib14
  article-title: Fiberprint: a subject fingerprint based on sparse code pooling for white matter fiber analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.06.083
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2019.116208_bib36
  article-title: The Wu-minn human connectome project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 62
  start-page: 774
  year: 2012
  ident: 10.1016/j.neuroimage.2019.116208_bib10
  publication-title: Freesurfer, Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– start-page: 25
  year: 2013
  ident: 10.1016/j.neuroimage.2019.116208_bib33
  article-title: Feature-based alignment of volumetric multi-modal images
– volume: 12
  start-page: e1005203
  year: 2016
  ident: 10.1016/j.neuroimage.2019.116208_bib40
  article-title: Quantifying differences and similarities in whole-brain white matter architecture using local connectome fingerprints
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005203
– volume: 30
  start-page: 1323
  year: 2012
  ident: 10.1016/j.neuroimage.2019.116208_bib8
  article-title: 3d slicer as an image computing platform for the quantitative imaging network
  publication-title: Magn. Reson. Imag.
  doi: 10.1016/j.mri.2012.05.001
– volume: 183
  start-page: 504
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116208_bib25
  article-title: Reproducible evaluation of classification methods in alzheimer’s disease: framework and application to mri and pet data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.08.042
– start-page: 04102
  year: 2019
  ident: 10.1016/j.neuroimage.2019.116208_bib39
– start-page: 172
  year: 2009
  ident: 10.1016/j.neuroimage.2019.116208_bib29
  article-title: Sift-rank: ordinal description for invariant feature correspondence
– volume: 17
  start-page: 271
  year: 2013
  ident: 10.1016/j.neuroimage.2019.116208_bib30
  article-title: Efficient and robust model-to-image alignment using 3d scale-invariant features
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2012.11.002
– volume: 146
  start-page: 918
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116208_bib11
  article-title: Individual-specific features of brain systems identified with resting state functional correlations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.08.032
– volume: 6
  start-page: e20178
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116208_bib5
  article-title: The heritability of multi-modal connectivity in human brain activity
  publication-title: Elife
  doi: 10.7554/eLife.20178
– volume: 20
  start-page: 1236
  year: 1992
  ident: 10.1016/j.neuroimage.2019.116208_bib27
  article-title: Variable kernel density estimation
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176348768
– volume: 60
  start-page: 91
  year: 2004
  ident: 10.1016/j.neuroimage.2019.116208_bib19
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 4
  start-page: 1253
  year: 2001
  ident: 10.1016/j.neuroimage.2019.116208_bib28
  article-title: Genetic influences on brain structure
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn758
– volume: 234
  start-page: 34
  year: 1971
  ident: 10.1016/j.neuroimage.2019.116208_bib18
  article-title: Distance between sets
  publication-title: Nature
  doi: 10.1038/234034a0
– volume: 8
  start-page: 5611
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116208_bib35
  article-title: Identification of individual subjects on the basis of their brain anatomical features
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-23696-6
– volume: 132
  start-page: 2048
  year: 2009
  ident: 10.1016/j.neuroimage.2019.116208_bib7
  article-title: Automated mri measures identify individuals with mild cognitive impairment and alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/awp123
– start-page: 847
  year: 2016
  ident: 10.1016/j.neuroimage.2019.116208_bib31
  article-title: How are siblings similar? how similar are siblings? large-scale imaging genetics using local image features
– volume: 18
  start-page: 1664
  year: 2015
  ident: 10.1016/j.neuroimage.2019.116208_bib9
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4135
– volume: 183
  start-page: 212
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116208_bib15
  article-title: Multi-modal brain fingerprinting: a manifold approximation based framework
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.08.006
– volume: 8
  start-page: 197
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116208_bib4
  article-title: Individual identification using the functional brain fingerprint detected by the recurrent neural network
  publication-title: Brain Connect.
  doi: 10.1089/brain.2017.0561
– volume: 8
  start-page: 8254
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116208_bib1
  article-title: The quest for identifiability in human functional connectomes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-25089-1
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.neuroimage.2019.116208_bib16
  publication-title: Deep learning, nature
– volume: vol. 207
  start-page: 187
  year: 1980
  ident: 10.1016/j.neuroimage.2019.116208_bib21
  article-title: Theory of edge detection
– volume: 19
  start-page: 1498
  year: 2007
  ident: 10.1016/j.neuroimage.2019.116208_bib20
  article-title: Open access series of imaging studies (oasis): cross-sectional mri data in young, middle aged, nondemented, and demented older adults
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.2007.19.9.1498
– volume: 36
  start-page: 2227
  year: 2014
  ident: 10.1016/j.neuroimage.2019.116208_bib23
  article-title: Scalable nearest neighbor algorithms for high dimensional data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2321376
– start-page: 204
  year: 2012
  ident: 10.1016/j.neuroimage.2019.116208_bib34
  article-title: A feature-based developmental model of the infant brain in structural mri
– volume: 20
  start-page: 314
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116208_bib17
  article-title: Studying neuroanatomy using mri
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4501
– start-page: 91
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116208_bib3
  article-title: Diffusion orientation histograms (doh) for diffusion weighted image analysis
– volume: 166
  start-page: 59
  year: 2015
  ident: 10.1016/j.neuroimage.2019.116208_bib2
  article-title: Brainprint: assessing the uniqueness, collectability, and permanence of a novel method for erp biometrics
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.025
SSID ssj0009148
Score 2.3882117
Snippet Neuroimaging studies typically adopt a common feature space for all data, which may obscure aspects of neuroanatomy only observable in subsets of a population,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 116208
SubjectTerms Adolescent
Adult
Aged
Aged, 80 and over
Aging
Aging - pathology
Anatomy
Brain - anatomy & histology
Brain - diagnostic imaging
Cortex
Datasets
Datasets as Topic
Female
Humans
Identification
Individual variability
Investigations
Magnetic Resonance Imaging
Male
Medical imaging
Middle Aged
MRI
Neurodegenerative diseases
Neurodegenerative Diseases - diagnostic imaging
Neurodegenerative Diseases - pathology
Neuroimage analysis
Neuroimaging
Neuroimaging - methods
NMR
Nuclear magnetic resonance
Pattern Recognition, Automated - methods
Pharmaceutical industry
R&D
Research & development
Salient image keypoints
Siblings
Young Adult
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqrYS4IN4ECjIS12jj58biVCqqBdS9QKXeLDuxaWBJVk2K1H_POHHSBi4rcY0zkT0z_mbGmRkj9M6UBoyUE6kjJUt5kdnUmsylJM88sUqsqA-FwmcbuT7nny_ExQE6GWthQlplxP4B03u0jk-WkZvLXVUtv4JnAOYG4g0FeqoU4PAhZUqKBTo8_vRlvbntvUv4UBEnWBoIYkLPkObVt42sfsHmDXleCiBE0nDX5B0r1Tfznxmrf53Rv3Mq7xip04foQfQu8fGwgEfowNWP0b2z-P_8Cfq5meaBQ-ZG39UThxIT3IJDDh_FsKl3TVV3La5aHJoZb29wKMcMKUW4a3A1VXC12NQlbi9DCju2N7jYNq3DQ3HMb9c-ReenH7-drNN43UJaSJZ1aS6oAwNOlYFVSGZZLgqIdsCGU27NynAL8axniltGjcgMF6IwAAHClnRVmpw9Q4u6qd2LwF7FjBcm89xy6gqVewjEMgOxoy8zZhK0Gtmri9iLPFyJsdVj0tkPfSsYHQSjB8EkiEyUu6Efxx40H4IEp_dDR-3-QXP1XUeV0kTa3EIs7L13vFDWMl6SgoDyQgzpCEuQGuWvx6JVkAh8qNpjAu8n2ply70l9NKqbjgDTanDLQyyqcpmgt9MwQEP432Nq11zDOxRiWUm5pAl6PmjnxAMGrrME9AZJzPR2xqT5SF1d9u3HpQLYzuTL_1rUK3SfhpOL_jDrCC26q2v3Gty7zr6J2_cPrwBR2w
  priority: 102
  providerName: Elsevier
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9UwFA86QXwRv61OieBrsc1XG3wQFccQticH960kaeKqd-117YT9957Tpr27CnJf26SkOd_JOb9DyFtTGzBSXqY-r3kqXGZTazKf5mUWcqtlwQIWCp-cquMz8XUlV_HArY9plbNOHBV13Tk8I38Hfgg637pUHza_UuwahbersYXGbXJnhC4Dfi5WxRZ0NxdTKZzkaQkDYibPlN814kU2FyC1mOClQXcohk0mb5inEcV_x0r964X-nUx5wzodPSD3o1tJP0588JDc8u0jcvckXpw_Jj9Pl3VQTNkY4Twp1pbQHjxx-CgFad50TTv0tOkpohivrynWYWIuER062iylWz01bU37c8xdp_aaunXXezpVxfz2_RNydvTl2-fjNPZZSJ3i2ZCWknmw3Ewb-AvFLS-lgzAHjDcT1hRGWAhkA9fCcmZkZoSUzoDsS1uzojYlf0oO2q71z3F7NTdBmiwIK5h3ugwQgWUGgsZQZ9wkpJi3t3IRhBx7YayrOdvsR7UlTIWEqSbCJCRfZm4mII495nxCCi7jEUp7fNBdfq-iZFa5sqWFIDiE4IXT1nJR5y4HroXg0ec8IXqmfzVXqwJF4EPNHgt4v8yNHs3kqew5-3Bmtypqlr7aykFC3iyvQSfgRY9pfXcFYxgEsYoJxRLybOLOZQ84-MwK1DZQYodvdzZp903bnI-440qDvs7Ui_8v6yW5x_BMYjymOiQHw-WVfwWO22Bfj9L5B7zdRU0
  priority: 102
  providerName: ProQuest
Title Neuroimage signature from salient keypoints is highly specific to individuals and shared by close relatives
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919307992
https://dx.doi.org/10.1016/j.neuroimage.2019.116208
https://www.ncbi.nlm.nih.gov/pubmed/31546048
https://www.proquest.com/docview/2318626986
https://www.proquest.com/docview/2296662462
https://pubmed.ncbi.nlm.nih.gov/PMC6931906
https://doaj.org/article/16b8b107fffe4c9bb34d1c1c0b149e13
Volume 204
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagSIgL4k1KWRmJa8DxK7E4tajVAuoKISrtzbITW01ZkqrZIvXCb2ccJ2EXDuyBSyIlsZPMjOeRzHyD0GtTGTBSTqQuq1jKS2JTa4hLs4L4zCqRUx8KhU8Xcn7GPy7FcqPVV8gJi_DAkXBvM2kLCzGK997xUlnLeJWVGUwKvr3r-9VSosgYTI1wuxmPRXChEyHccMjhiZldPVJk_R3Wa0jtUqA1JA3tJTcMU4_fv2Wf_vY__0yj3LBLJw_Q_cGhxIfxRR6iW655hO6eDr_MH6Nvi-k5cEjW6IE8cagqwR344DAphnV82dbNusN1hwN-8eoGhwrMkEWE1y2up6KtDpumwt15yFrH9gaXq7ZzONbD_HDdE3R2cvz1_TwdOiykpWRknRaCOrDZVBl4C8ksK0QJAQ6YbcqtyQ23EMJ6prhl1AhiuBClgVUvbEXzyhTsKdpr2sY9D-RVzHhhiOeWU1eqwkPsRQyEi74izCQoH8mrywF-PHTBWOkxz-xC_2aMDozRkTEJyqaRlxGCY4cxR4GD0_UBRLs_AKKlB9HS_xKtBKmR_3qsUwWOwET1Dg_wbho7-DLRR9lx9MEobnrQKZ0GTzyEn6qQCXo1nQZtEH7xmMa113ANhfBVUi5pgp5F6ZxowMBblqCwgRNbcrtFpO0zTX3eI45LBZqayP3_QdUX6B4N3yz6z1gHaG99de1egmO3tjN0-83PDLb5Mp-hO4cfPs0XsD86Xnz-MuvX9y_f-1OK
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELbKVgJeEDcLBYwEjxHxlY2FEKLQqqXdFUKt1DdjJw4NLMnSbEH7p_iNzOTaLkhoX_rqS5ZnPPONPQchz21qQUl5FXiWikAmoQucDX3A4jBjTqsRzzBQeDyJ9o7lhxN1skF-d7Ew6FbZycRaUKdlgm_kLwGHIPjWcfRm9iPAqlH4u9qV0GjY4sAvfoHJVr3efw_0fcH57s7Ru72grSoQJJEI50GsuAc9xbX1KbQ4EasEQD2oKi6dHVnpwGzLhJZOcKtCK5VKLHC6cikfpTYWsO4VsikxonVANrd3Jh8_LdP8MtkE3ykRxIzp1neo8SirM1Tm30FOoEuZBmkVcSxreUEh1nUDVvTiv7j3b_fNC_pw9ya50QJZ-rbhvFtkwxe3ydVx-1V_h3yb9Pug6CRSJxClGM1CK8D-sCgF-TEr82Je0byimDd5uqAY-YneS3Re0rwPFquoLVJanaK3PHULmkzLytMmDuenr-6S40uhwT0yKMrCP8Dj1cJmyoaZdJL7RMcZ2HyhBTM1S0Nhh2TUHa9J2rTnWH1jajr_tq9mSRiDhDENYYaE9TNnTeqPNeZsIwX78Zi8u24oz76YVhYYFrnYgdmdZZmXiXZOyJQlDO4JmKueiSHRHf1NFx8LFIGF8jU28Kqf22KoBhutOXurYzfTyrLKLG_ekDzru0EK4deSLXx5DmM4mM0RlxEfkvsNd_ZnIAClR6AogBIrfLtySKs9RX5aZzqPNGiIMHr4_209Jdf2jsaH5nB_cvCIXOf4IlI_km2Rwfzs3D8G2Dh3T9q7SsnnyxYPfwCaH4Hy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiDeBAkaCY9T4lcRCCAFl1VK64kClvRk7sWlgSZYmBe1f49cxzmu7IKG99JrEluUZfzMTfzOD0DOdazBSVoSW5CzkWWRCoyMbkjRyxEiRUOcThY-n8cEJfz8Tsy30e8iF8bTKARNboM6rzP8j3wM_xDvfMo33XE-L-Lg_ebX4EfoOUv6mdWin0anIkV3-gvCtfnm4D7J-Tunk3ae3B2HfYSDMYhY1YSqoBZtFpbY5PDEsFRk4-GC2KDc60dxACOeY5IZRLSLNhcg0aL0wOU1ynTKY9wq6mjDwquAsJbNkVfCX8C4NT7AwJUT2LKKOW9bWqiy-A2J4cpkE3Iqpb3B5wTS2HQTWLOS_HvDfRM4LlnFyA13vXVr8utPBm2jLlrfQznF_aX8bfZuO68CeLtKWEsU-rwXXEAXApBiQZFEVZVPjosa-gvJ8iX0OqOcx4abCxZg2VmNd5rg-9bx5bJY4m1e1xV1Gzk9b30EnlyKBu2i7rEp732-vZNoJHTluOLWZTB1Ef5GGgNXlEdMBSobtVVlfAN334Zirgen2Va0Eo7xgVCeYAJFx5KIrArLBmDdeguP3vox3-6A6-6J6VFAkNqmBANw5Z3kmjWE8JxmBEwOBqyUsQHKQvxoyZUEiMFGxwQJejGN7b6rzkjYcvTuom-pRrVarMxigp-NrwCN_yaRLW53DNxQC6JjymAboXqed4x4w8NdjMBkgiTW9Xduk9TdlcdrWPI8l2IoofvD_ZT1BOwAK6sPh9Oghukb9r5H2b9ku2m7Ozu0j8B8b87g9qBh9vmxk-AP2-IS5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuroimage+signature+from+salient+keypoints+is+highly+specific+to+individuals+and+shared+by+close+relatives&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Chauvin%2C+Laurent&rft.au=Kumar%2C+Kuldeep&rft.au=Wachinger%2C+Christian&rft.au=Vangel%2C+Marc&rft.date=2020-01-01&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=204&rft.spage=116208&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.116208&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon