Controllable versus uncontrollable stressors bi-directionally modulate conditioned but not innate fear
Fear conditioning and fear extinction play key roles in the development and treatment of anxiety-related disorders, yet there is little information concerning experiential variables that modulate these processes. Here we examined the impact of exposure to a stressor in a different environment on sub...
Saved in:
Published in | Neuroscience Vol. 146; no. 4; pp. 1495 - 1503 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
08.06.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fear conditioning and fear extinction play key roles in the development and treatment of anxiety-related disorders, yet there is little information concerning experiential variables that modulate these processes. Here we examined the impact of exposure to a stressor in a different environment on subsequent fear conditioning and extinction, and whether the degree of behavioral control that the subject has over the stressor is of importance. Rats received a session of either escapable (controllable) tail shock (ES), yoked inescapable (uncontrollable) tail shock (IS), or control treatment (home cage, HC) 7 days before fear conditioning in which a tone and foot shock were paired. Conditioning was measured 24 h later. In a second experiment rats received ES, IS or HC 24 h after contextual fear conditioning. Extinction then occurred every day beginning 7 days later until a criterion was reached. Spontaneous recovery of fear was assessed 14 days after extinction. IS potentiated fear conditioning when given before fear conditioning, and potentiated fear responding during extinction when given after conditioning. Importantly, ES potently interfered with later fear conditioning, decreased fear responding during fear extinction, and prevented spontaneous recovery of fear. Additionally, we examined if the activation of the ventral medial prefrontal cortex (mPFCv) by ES is critical for the protective effects of ES on later fear conditioning. Inactivation of the mPFCv with muscimol at the time of the initial experience with control prevented ES-induced reductions in later contextual and auditory fear conditioning.
Finally, we explored if the protective effects of ES extended to an unconditioned fear stimulus, ferret odor. Unlike conditioned fear, prior ES increased the fear response to ferret odor to the same degree as did IS. |
---|---|
AbstractList | Abstract Fear conditioning and fear extinction play key roles in the development and treatment of anxiety-related disorders, yet there is little information concerning experiential variables that modulate these processes. Here we examined the impact of exposure to a stressor in a different environment on subsequent fear conditioning and extinction, and whether the degree of behavioral control that the subject has over the stressor is of importance. Rats received a session of either escapable (controllable) tail shock (ES), yoked inescapable (uncontrollable) tail shock (IS), or control treatment (home cage, HC) 7 days before fear conditioning in which a tone and foot shock were paired. Conditioning was measured 24 h later. In a second experiment rats received ES, IS or HC 24 h after contextual fear conditioning. Extinction then occurred every day beginning 7 days later until a criterion was reached. Spontaneous recovery of fear was assessed 14 days after extinction. IS potentiated fear conditioning when given before fear conditioning, and potentiated fear responding during extinction when given after conditioning. Importantly, ES potently interfered with later fear conditioning, decreased fear responding during fear extinction, and prevented spontaneous recovery of fear. Additionally, we examined if the activation of the ventral medial prefrontal cortex (mPFCv) by ES is critical for the protective effects of ES on later fear conditioning. Inactivation of the mPFCv with muscimol at the time of the initial experience with control prevented ES-induced reductions in later contextual and auditory fear conditioning. Finally, we explored if the protective effects of ES extended to an unconditioned fear stimulus, ferret odor. Unlike conditioned fear, prior ES increased the fear response to ferret odor to the same degree as did IS. Fear conditioning and fear extinction play key roles in the development and treatment of anxiety-related disorders, yet there is little information concerning experiential variables that modulate these processes. Here we examined the impact of exposure to a stressor in a different environment on subsequent fear conditioning and extinction, and whether the degree of behavioral control that the subject has over the stressor is of importance. Rats received a session of either escapable (controllable) tail shock (ES), yoked inescapable (uncontrollable) tail shock (IS), or control treatment (home cage, HC) 7 days before fear conditioning in which a tone and foot shock were paired. Conditioning was measured 24 h later. In a second experiment rats received ES, IS or HC 24 h after contextual fear conditioning. Extinction then occurred every day beginning 7 days later until a criterion was reached. Spontaneous recovery of fear was assessed 14 days after extinction. IS potentiated fear conditioning when given before fear conditioning, and potentiated fear responding during extinction when given after conditioning. Importantly, ES potently interfered with later fear conditioning, decreased fear responding during fear extinction, and prevented spontaneous recovery of fear. Additionally, we examined if the activation of the ventral medial prefrontal cortex (mPFCv) by ES is critical for the protective effects of ES on later fear conditioning. Inactivation of the mPFCv with muscimol at the time of the initial experience with control prevented ES-induced reductions in later contextual and auditory fear conditioning. Finally, we explored if the protective effects of ES extended to an unconditioned fear stimulus, ferret odor. Unlike conditioned fear, prior ES increased the fear response to ferret odor to the same degree as did IS. Fear conditioning and fear extinction play key roles in the development and treatment of anxiety-related disorders, yet there is little information concerning experiential variables that modulate these processes. Here we examined the impact of exposure to a stressor in a different environment on subsequent fear conditioning and extinction, and whether the degree of behavioral control that the subject has over the stressor is of importance. Rats received a session of either escapable (controllable) tail shock (ES), yoked inescapable (uncontrollable) tail shock (IS), or control treatment (home cage, HC) 7 days before fear conditioning in which a tone and foot shock were paired. Conditioning was measured 24 h later. In a second experiment rats received ES, IS or HC 24 h after contextual fear conditioning. Extinction then occurred every day beginning 7 days later until a criterion was reached. Spontaneous recovery of fear was assessed 14 days after extinction. IS potentiated fear conditioning when given before fear conditioning, and potentiated fear responding during extinction when given after conditioning. Importantly, ES potently interfered with later fear conditioning, decreased fear responding during fear extinction, and prevented spontaneous recovery of fear. Additionally, we examined if the activation of the ventral medial prefrontal cortex (mPFCv) by ES is critical for the protective effects of ES on later fear conditioning. Inactivation of the mPFCv with muscimol at the time of the initial experience with control prevented ES-induced reductions in later contextual and auditory fear conditioning. Finally, we explored if the protective effects of ES extended to an unconditioned fear stimulus, ferret odor. Unlike conditioned fear, prior ES increased the fear response to ferret odor to the same degree as did IS. Fear conditioning and fear extinction play key roles in the development and treatment of anxiety-related disorders, yet there is little information concerning experiential variables that modulate these processes. Here we examined the impact of exposure to a stressor in a different environment on subsequent fear conditioning and extinction, and whether the degree of behavioral control that the subject has over the stressor is of importance. Rats received a session of either escapable (controllable) tailshock (ES), yoked inescapable (uncontrollable) tailshock (IS), or control treatment (HC) 7 days before fear conditioning in which a tone and footshock were paired. Conditioning was measured 24 h later. In a second experiment rats received ES, IS or HC 24 h after contextual fear conditioning. Extinction then occurred every day beginning 7 days later until a criterion was reached. Spontaneous recovery of fear was assessed 14 days after extinction. IS potentiated fear conditioning when given before fear conditioning, and potentiated fear responding during extinction when given after conditioning. Importantly, ES potently interfered with later fear conditioning, decreased fear responding during fear extinction, and prevented spontaneous recovery of fear. Additionally, we examined if the activation of the ventral medial prefrontal cortex (mPFCv) by ES is critical for the protective effects of ES on later fear conditioning. Inactivation of the mPFCv with muscimol at the time of the initial experience with control prevented ES-induced reductions in later contextual and auditory fear conditioning. Finally, we explored if the protective effects of ES extended to an unconditioned fear stimulus, ferret odor. Unlike conditioned fear, prior ES increased the fear response to ferret odor to the same degree as did IS. Fear conditioning and fear extinction play key roles in the development and treatment of anxiety-related disorders, yet there is little information concerning experiential variables that modulate these processes. Here we examined the impact of exposure to a stressor in a different environment on subsequent fear conditioning and extinction, and whether the degree of behavioral control that the subject has over the stressor is of importance. Rats received a session of either escapable (controllable) tail shock (ES), yoked inescapable (uncontrollable) tail shock (IS), or control treatment (home cage, HC) 7 days before fear conditioning in which a tone and foot shock were paired. Conditioning was measured 24 h later. In a second experiment rats received ES, IS or HC 24 h after contextual fear conditioning. Extinction then occurred every day beginning 7 days later until a criterion was reached. Spontaneous recovery of fear was assessed 14 days after extinction. IS potentiated fear conditioning when given before fear conditioning, and potentiated fear responding during extinction when given after conditioning. Importantly, ES potently interfered with later fear conditioning, decreased fear responding during fear extinction, and prevented spontaneous recovery of fear. Additionally, we examined if the activation of the ventral medial prefrontal cortex (mPFCv) by ES is critical for the protective effects of ES on later fear conditioning. Inactivation of the mPFCv with muscimol at the time of the initial experience with control prevented ES-induced reductions in later contextual and auditory fear conditioning. Finally, we explored if the protective effects of ES extended to an unconditioned fear stimulus, ferret odor. Unlike conditioned fear, prior ES increased the fear response to ferret odor to the same degree as did IS.Fear conditioning and fear extinction play key roles in the development and treatment of anxiety-related disorders, yet there is little information concerning experiential variables that modulate these processes. Here we examined the impact of exposure to a stressor in a different environment on subsequent fear conditioning and extinction, and whether the degree of behavioral control that the subject has over the stressor is of importance. Rats received a session of either escapable (controllable) tail shock (ES), yoked inescapable (uncontrollable) tail shock (IS), or control treatment (home cage, HC) 7 days before fear conditioning in which a tone and foot shock were paired. Conditioning was measured 24 h later. In a second experiment rats received ES, IS or HC 24 h after contextual fear conditioning. Extinction then occurred every day beginning 7 days later until a criterion was reached. Spontaneous recovery of fear was assessed 14 days after extinction. IS potentiated fear conditioning when given before fear conditioning, and potentiated fear responding during extinction when given after conditioning. Importantly, ES potently interfered with later fear conditioning, decreased fear responding during fear extinction, and prevented spontaneous recovery of fear. Additionally, we examined if the activation of the ventral medial prefrontal cortex (mPFCv) by ES is critical for the protective effects of ES on later fear conditioning. Inactivation of the mPFCv with muscimol at the time of the initial experience with control prevented ES-induced reductions in later contextual and auditory fear conditioning. Finally, we explored if the protective effects of ES extended to an unconditioned fear stimulus, ferret odor. Unlike conditioned fear, prior ES increased the fear response to ferret odor to the same degree as did IS. |
Author | Christianson, J.P. Masini, C.V. Maier, S.F. Baratta, M.V. Zarza, C.M. Gomez, D.M. Amat, J. Watkins, L.R. |
Author_xml | – sequence: 1 givenname: M.V. surname: Baratta fullname: Baratta, M.V. email: michael.baratta@colorado.edu – sequence: 2 givenname: J.P. surname: Christianson fullname: Christianson, J.P. – sequence: 3 givenname: D.M. surname: Gomez fullname: Gomez, D.M. – sequence: 4 givenname: C.M. surname: Zarza fullname: Zarza, C.M. – sequence: 5 givenname: J. surname: Amat fullname: Amat, J. – sequence: 6 givenname: C.V. surname: Masini fullname: Masini, C.V. – sequence: 7 givenname: L.R. surname: Watkins fullname: Watkins, L.R. – sequence: 8 givenname: S.F. surname: Maier fullname: Maier, S.F. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17478046$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk2P0zAQhi20iO0u_AUUceCWMv5InHBYsZRPaSUOwNmynQm4pPZiJ5X673FoWZWVEPXF0sw7j8fzzgU588EjIc8oLCnQ-sV66XGKIVmH3uKSAcgl8CUI9oAsaCN5KSshzsgCONSlqBg7JxcprSGfSvBH5JxKIRsQ9YL0q-DHGIZBmwGLLcY0pWLy9jiaxogphZgK48rORbSjC14Pw67YhG4a9IhFLujcHMauMNNY-DAWzvs51aOOj8nDXg8JnxzuS_L13dsvqw_lzaf3H1fXN6WtOYxl3RkwlFda1q2UPcjeNBXtQLNWGKktB1ah0bqthemMFT1vWGONllVrjWlqfkmu9tzbyWyws5i_oQd1G91Gx50K2qm_M959V9_CVtFWNhREBjw_AGL4OWEa1cYli3kSHsOUlISqplVb_1eYgYwzyrLw6XFLd7388SALXu0FNnuaIvbKulHPs8wdukFRULPtaq2ObVez7Qq4yrZnxMt7iLtXTil-sy_GbMzWYVQH1d5q1QV3GubqHsYOzjurhx-4w7QOU8w7kwejElOgPs_LOe8mSMjlv0f_-t-AU7v4BT88AOo |
CitedBy_id | crossref_primary_10_3389_fnbeh_2019_00236 crossref_primary_10_1097_FBP_0000000000000475 crossref_primary_10_1002_jts_20585 crossref_primary_10_1523_JNEUROSCI_4270_08_2008 crossref_primary_10_3390_encyclopedia4020066 crossref_primary_10_1007_s00213_018_5082_6 crossref_primary_10_1016_j_bbi_2022_09_003 crossref_primary_10_1016_j_ynstr_2014_11_004 crossref_primary_10_1016_j_bbr_2011_08_032 crossref_primary_10_1080_10615806_2018_1532504 crossref_primary_10_1016_j_tics_2017_06_008 crossref_primary_10_1016_j_ynstr_2015_03_002 crossref_primary_10_1016_j_biopsych_2011_04_004 crossref_primary_10_1016_j_neuroscience_2008_04_005 crossref_primary_10_3109_10253890_2015_1067678 crossref_primary_10_3389_fpsyt_2023_1170417 crossref_primary_10_3389_fnbeh_2014_00348 crossref_primary_10_3389_fnbeh_2021_785739 crossref_primary_10_1016_j_alcohol_2010_02_012 crossref_primary_10_1016_j_jbtep_2010_09_001 crossref_primary_10_1093_ilar_ilu008 crossref_primary_10_1111_ejn_12410 crossref_primary_10_1016_j_neubiorev_2017_11_021 crossref_primary_10_1038_sj_npp_1301555 crossref_primary_10_1002_dev_21969 crossref_primary_10_1016_j_brainres_2009_06_017 crossref_primary_10_3389_fpsyt_2014_00146 crossref_primary_10_1523_JNEUROSCI_3261_16_2017 crossref_primary_10_1016_j_physbeh_2013_02_009 crossref_primary_10_1016_j_neuroscience_2014_12_001 crossref_primary_10_1016_j_tins_2012_11_003 crossref_primary_10_1016_j_nlm_2013_12_003 crossref_primary_10_1038_s44159_023_00156_1 crossref_primary_10_3389_fphar_2017_00663 crossref_primary_10_1080_10253890_2023_2245492 crossref_primary_10_1016_j_actpsy_2007_11_007 crossref_primary_10_1007_s11920_017_0841_3 crossref_primary_10_1002_hipo_20534 crossref_primary_10_1016_j_neuroscience_2017_07_058 crossref_primary_10_1016_j_cobeha_2018_10_007 crossref_primary_10_1016_j_neubiorev_2024_105732 crossref_primary_10_3389_fnbeh_2019_00104 crossref_primary_10_1016_j_neuron_2015_09_028 crossref_primary_10_1016_j_pharmthera_2010_08_011 crossref_primary_10_1016_j_ynstr_2023_100597 crossref_primary_10_1038_s41380_017_0006_0 crossref_primary_10_1016_j_bbr_2011_01_030 crossref_primary_10_1016_j_biopsych_2024_10_016 crossref_primary_10_3109_10253890_2013_794450 crossref_primary_10_1016_j_pnpbp_2015_08_017 crossref_primary_10_1101_lm_053901_123 crossref_primary_10_1016_j_neulet_2020_135245 crossref_primary_10_1016_j_pnpbp_2017_04_004 crossref_primary_10_1007_s00429_019_01875_z crossref_primary_10_1016_j_neuroscience_2010_06_036 crossref_primary_10_1371_journal_pone_0125892 crossref_primary_10_1016_j_bbr_2017_12_009 crossref_primary_10_1038_npp_2012_3 crossref_primary_10_1111_j_1460_9568_2009_06867_x crossref_primary_10_3109_10253890_2011_650251 crossref_primary_10_1080_03075079_2020_1712691 crossref_primary_10_3389_fnbeh_2024_1503097 crossref_primary_10_1016_j_brs_2014_03_006 crossref_primary_10_1016_j_neuroscience_2012_02_042 crossref_primary_10_1097_FBP_0000000000000311 crossref_primary_10_1016_j_neubiorev_2015_10_009 crossref_primary_10_1016_j_ynstr_2021_100328 crossref_primary_10_1016_j_neuropharm_2020_107964 crossref_primary_10_1016_j_physbeh_2014_02_054 crossref_primary_10_1101_lm_800308 crossref_primary_10_1016_j_neuropharm_2012_07_034 crossref_primary_10_1007_s00213_019_05289_x crossref_primary_10_3389_fnbeh_2019_00040 crossref_primary_10_1016_j_jchemneu_2011_05_001 crossref_primary_10_1016_j_bbr_2017_02_044 crossref_primary_10_1016_j_physbeh_2011_05_025 crossref_primary_10_1080_09658211_2018_1564331 crossref_primary_10_1016_j_neubiorev_2008_04_003 crossref_primary_10_1111_ejn_14639 crossref_primary_10_1016_j_mcn_2020_103582 crossref_primary_10_1016_j_neubiorev_2021_10_014 crossref_primary_10_1016_j_biopha_2018_06_016 crossref_primary_10_1080_10253890802510302 crossref_primary_10_1016_j_brainres_2024_149351 crossref_primary_10_1016_j_biopsych_2009_09_011 crossref_primary_10_1016_j_bbr_2011_01_016 crossref_primary_10_1016_j_neuroscience_2010_06_052 crossref_primary_10_1523_JNEUROSCI_0128_21_2021 crossref_primary_10_1111_ejn_12609 crossref_primary_10_1586_ern_10_95 crossref_primary_10_1038_npp_2010_10 crossref_primary_10_1016_j_ynstr_2014_09_003 crossref_primary_10_1016_j_biopsych_2010_02_008 crossref_primary_10_1093_scan_nsaa074 crossref_primary_10_1111_ejn_13833 crossref_primary_10_1016_j_brat_2017_04_002 crossref_primary_10_1016_j_neuropharm_2011_08_012 crossref_primary_10_1016_j_pneurobio_2011_03_004 crossref_primary_10_1101_lm_042655_116 crossref_primary_10_1016_j_pain_2010_10_018 crossref_primary_10_1016_j_bbr_2016_08_014 crossref_primary_10_1016_j_biopsycho_2018_08_017 crossref_primary_10_1016_j_brainres_2010_08_039 crossref_primary_10_1038_s41583_021_00513_0 crossref_primary_10_1111_jopy_12591 crossref_primary_10_1016_j_bbr_2009_03_001 crossref_primary_10_1016_j_nlm_2020_107328 crossref_primary_10_1038_npp_2009_87 crossref_primary_10_1016_j_pbb_2019_02_001 crossref_primary_10_1016_j_pharmthera_2011_06_006 crossref_primary_10_1038_npp_2008_34 crossref_primary_10_3390_brainsci14121287 crossref_primary_10_1101_lm_1920810 crossref_primary_10_1523_ENEURO_0229_16_2016 crossref_primary_10_3389_fnbeh_2015_00366 crossref_primary_10_1016_j_bbr_2008_04_024 crossref_primary_10_1038_s41593_020_0591_0 crossref_primary_10_1016_j_neuroimage_2015_06_086 |
Cites_doi | 10.1523/JNEUROSCI.3630-06.2006 10.1523/JNEUROSCI.23-01-00023.2003 10.1037/0735-7044.118.2.389 10.1101/lm.79504 10.1523/JNEUROSCI.3215-05.2006 10.1016/j.neuroscience.2005.01.020 10.1101/lm.78804 10.1111/j.1749-6632.2003.tb07084.x 10.1037/0735-7044.100.5.669 10.1038/nn1399 10.1016/S0006-3223(98)00297-2 10.1037/0735-7044.119.1.280 10.1196/annals.1301.012 10.1037/0003-066X.61.1.10 10.1046/j.1365-2826.1999.00300.x 10.1038/nrn1535 10.1523/JNEUROSCI.23-35-11054.2003 10.1016/j.biopsych.2006.06.004 10.1002/syn.10279 10.1523/JNEUROSCI.4316-06.2006 10.1016/0306-4522(95)00417-3 10.1101/lm.306106 10.1016/j.neuron.2005.08.009 10.1523/JNEUROSCI.23-25-08800.2003 10.1016/j.conb.2006.07.004 10.1016/j.neubiorev.2005.04.010 10.1523/JNEUROSCI.19-23-10575.1999 10.1097/00008483-200505000-00008 10.1016/j.pain.2005.05.028 10.1016/j.neuroimage.2005.03.020 10.1176/appi.ajp.161.2.195 10.1097/00001756-200312190-00006 10.1016/j.neubiorev.2005.06.005 10.1523/JNEUROSCI.5327-06.2007 10.1016/j.physbeh.2005.08.044 10.1196/annals.1364.007 10.1007/s11920-003-0072-7 10.1146/annurev.ps.36.020185.002431 10.1016/j.neuroscience.2006.06.027 10.1002/cne.902900205 10.1016/S0149-7634(99)00016-0 10.1002/jts.20032 |
ContentType | Journal Article |
Copyright | 2007 IBRO IBRO |
Copyright_xml | – notice: 2007 IBRO – notice: IBRO |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7TK 7X8 5PM |
DOI | 10.1016/j.neuroscience.2007.03.042 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts Animal Behavior Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1873-7544 |
EndPage | 1503 |
ExternalDocumentID | PMC1978104 17478046 10_1016_j_neuroscience_2007_03_042 S0306452207004204 1_s2_0_S0306452207004204 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: MH 075213 – fundername: NIMH NIH HHS grantid: R01 MH050479 – fundername: NIMH NIH HHS grantid: F31 MH075213 – fundername: NIMH NIH HHS grantid: MH 050479 – fundername: NIMH NIH HHS grantid: R37 MH050479 |
GroupedDBID | --- --K --M -DZ -~X .1- .55 .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABJNI ABLJU ABMAC ABTEW ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMQ HVGLF HZ~ IHE J1W KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SES SEW SNS SPCBC SSN SSZ T5K UNMZH WUQ X7M YYP Z5R ZGI ZXP ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AADPK AAIAV ABYKQ AHPSJ AJBFU EFLBG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7QG 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c630t-6db0b135a76977f07fb851d0a294b7ac3025ebaa964bdbc4f3828cba759cbb863 |
IEDL.DBID | AIKHN |
ISSN | 0306-4522 |
IngestDate | Thu Aug 21 18:03:00 EDT 2025 Tue Aug 05 09:48:21 EDT 2025 Fri Jul 11 02:33:48 EDT 2025 Fri May 30 10:49:41 EDT 2025 Tue Jul 01 02:37:41 EDT 2025 Thu Apr 24 22:53:29 EDT 2025 Fri Feb 23 02:23:11 EST 2024 Sun Feb 23 10:18:46 EST 2025 Tue Aug 26 16:32:36 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | medial prefrontal cortex fear conditioning IL spontaneous recovery fear extinction IS ES PTSD stressor controllability mPFC mPFCv LA ITC VO HC MI PL CeA BA ITI post-traumatic stress disorder prelimbic cortex infralimbic cortex inescapable tail shock intercalated cell mass myocardial infarction ventral orbital cortex central nucleus of the amygdala intertrial interval home cage basal nucleus of the amygdala ventral medial prefrontal cortex lateral nucleus of the amygdala escapable tail shock |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c630t-6db0b135a76977f07fb851d0a294b7ac3025ebaa964bdbc4f3828cba759cbb863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1016/j.neuroscience.2007.03.042 |
PMID | 17478046 |
PQID | 19723212 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1978104 proquest_miscellaneous_70561596 proquest_miscellaneous_19723212 pubmed_primary_17478046 crossref_citationtrail_10_1016_j_neuroscience_2007_03_042 crossref_primary_10_1016_j_neuroscience_2007_03_042 elsevier_sciencedirect_doi_10_1016_j_neuroscience_2007_03_042 elsevier_clinicalkeyesjournals_1_s2_0_S0306452207004204 elsevier_clinicalkey_doi_10_1016_j_neuroscience_2007_03_042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-06-08 |
PublicationDateYYYYMMDD | 2007-06-08 |
PublicationDate_xml | – month: 06 year: 2007 text: 2007-06-08 day: 08 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neuroscience |
PublicationTitleAlternate | Neuroscience |
PublicationYear | 2007 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Maier, Ryan, Barksdale, Kalin (bib17) 1986; 100 Shin, Rauch, Pitman (bib35) 2006; 1071 Quirk, Beer (bib27) 2006; 16 Tanev (bib38) 2003; 5 Foa (bib12) 2000; 61 Kim, Jung (bib15) 2006; 30 Rauch, Shin, Phelps (bib30) 2006; 60 Bremner, Staib, Kaloupek, Southwick, Soufer, Charney (bib5) 1999; 45 Urry, van Reekum, Johnstone, Kalin, Thurow, Schaefer, Jackson, Frye, Greischar, Alexander, Davidson (bib39) 2006; 26 Davis, Walker, Myers (bib8) 2003; 985 Fendt, Fanselow (bib11) 1999; 23 Vidal-Gonzalez, Vidal-Gonzalez, Rauch, Quirk (bib42) 2006; 13 Wilensky, Schafe, Kristensen, LeDoux (bib43) 2006; 26 Maren (bib18) 2005; 47 McDonald, Mascagni, Guo (bib22) 1996; 71 Helmreich, Watkins, Deak, Maier, Akil, Watson (bib13) 1999; 11 Palyo, Beck (bib26) 2005; 117 Sumer, Karanci, Berument, Gunes (bib37) 2005; 18 Amat, Paul, Zarza, Watkins, Maier (bib2) 2006; 26 Masini, Sauer, Campeau (bib20) 2005; 119 Charney (bib6) 2004; 161 Vertes (bib40) 2004; 51 Mineka, Hendersen (bib24) 1985; 36 Quirk, Likhtik, Pelletier, Pare (bib28) 2003; 23 Sesack, Deutch, Roth, Bunney (bib34) 1989; 290 Corcoran, Quirk (bib7) 2007; 27 Milad, Vidal-Gonzalez, Quirk (bib23) 2004; 118 Masini, Sauer, White, Day, Campeau (bib21) 2006; 87 Sotres-Bayon, Bush, LeDoux (bib36) 2004; 11 Vertes (bib41) 2006; 142 Rothbaum, Davis (bib32) 2003; 1008 Bouton (bib4) 2004; 11 Mineka, Zinbarg (bib25) 2006; 61 Amat, Baratta, Paul, Bland, Watkins, Maier (bib1) 2005; 8 Doerfler, Paraskos, Piniarski (bib9) 2005; 25 Knight, Nguyen, Bandettini (bib16) 2003; 26 Rosenkranz, Moore, Grace (bib31) 2003; 23 Royer, Martina, Pare (bib33) 1999; 19 Maren, Quirk (bib19) 2004; 5 Rau, DeCola, Fanselow (bib29) 2005; 29 Berretta, Pantazopoulos, Caldera, Pantazopoulos, Pare (bib3) 2005; 132 Kim, Somerville, Johnstone, Alexander, Whalen (bib14) 2003; 14 Fendt, Endres, Apfelbach (bib10) 2003; 23 Masini (10.1016/j.neuroscience.2007.03.042_bib21) 2006; 87 Rau (10.1016/j.neuroscience.2007.03.042_bib29) 2005; 29 Charney (10.1016/j.neuroscience.2007.03.042_bib6) 2004; 161 Maier (10.1016/j.neuroscience.2007.03.042_bib17) 1986; 100 Tanev (10.1016/j.neuroscience.2007.03.042_bib38) 2003; 5 Sotres-Bayon (10.1016/j.neuroscience.2007.03.042_bib36) 2004; 11 Davis (10.1016/j.neuroscience.2007.03.042_bib8) 2003; 985 Rothbaum (10.1016/j.neuroscience.2007.03.042_bib32) 2003; 1008 Amat (10.1016/j.neuroscience.2007.03.042_bib2) 2006; 26 Palyo (10.1016/j.neuroscience.2007.03.042_bib26) 2005; 117 Quirk (10.1016/j.neuroscience.2007.03.042_bib28) 2003; 23 Urry (10.1016/j.neuroscience.2007.03.042_bib39) 2006; 26 Royer (10.1016/j.neuroscience.2007.03.042_bib33) 1999; 19 Vidal-Gonzalez (10.1016/j.neuroscience.2007.03.042_bib42) 2006; 13 Helmreich (10.1016/j.neuroscience.2007.03.042_bib13) 1999; 11 Milad (10.1016/j.neuroscience.2007.03.042_bib23) 2004; 118 Sumer (10.1016/j.neuroscience.2007.03.042_bib37) 2005; 18 Bouton (10.1016/j.neuroscience.2007.03.042_bib4) 2004; 11 Sesack (10.1016/j.neuroscience.2007.03.042_bib34) 1989; 290 Shin (10.1016/j.neuroscience.2007.03.042_bib35) 2006; 1071 Maren (10.1016/j.neuroscience.2007.03.042_bib18) 2005; 47 McDonald (10.1016/j.neuroscience.2007.03.042_bib22) 1996; 71 Rauch (10.1016/j.neuroscience.2007.03.042_bib30) 2006; 60 Kim (10.1016/j.neuroscience.2007.03.042_bib15) 2006; 30 Wilensky (10.1016/j.neuroscience.2007.03.042_bib43) 2006; 26 Fendt (10.1016/j.neuroscience.2007.03.042_bib11) 1999; 23 Foa (10.1016/j.neuroscience.2007.03.042_bib12) 2000; 61 Fendt (10.1016/j.neuroscience.2007.03.042_bib10) 2003; 23 Rosenkranz (10.1016/j.neuroscience.2007.03.042_bib31) 2003; 23 Mineka (10.1016/j.neuroscience.2007.03.042_bib25) 2006; 61 Kim (10.1016/j.neuroscience.2007.03.042_bib14) 2003; 14 Vertes (10.1016/j.neuroscience.2007.03.042_bib41) 2006; 142 Berretta (10.1016/j.neuroscience.2007.03.042_bib3) 2005; 132 Bremner (10.1016/j.neuroscience.2007.03.042_bib5) 1999; 45 Corcoran (10.1016/j.neuroscience.2007.03.042_bib7) 2007; 27 Knight (10.1016/j.neuroscience.2007.03.042_bib16) 2003; 26 Doerfler (10.1016/j.neuroscience.2007.03.042_bib9) 2005; 25 Vertes (10.1016/j.neuroscience.2007.03.042_bib40) 2004; 51 Amat (10.1016/j.neuroscience.2007.03.042_bib1) 2005; 8 Mineka (10.1016/j.neuroscience.2007.03.042_bib24) 1985; 36 Quirk (10.1016/j.neuroscience.2007.03.042_bib27) 2006; 16 Masini (10.1016/j.neuroscience.2007.03.042_bib20) 2005; 119 Maren (10.1016/j.neuroscience.2007.03.042_bib19) 2004; 5 |
References_xml | – volume: 985 start-page: 218 year: 2003 end-page: 232 ident: bib8 article-title: Role of the amygdala in fear extinction measured with potentiated startle publication-title: Ann N Y Acad Sci – volume: 45 start-page: 806 year: 1999 end-page: 816 ident: bib5 article-title: Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: a positron emission tomography study publication-title: Biol Psychiatry – volume: 11 start-page: 485 year: 2004 end-page: 494 ident: bib4 article-title: Context and behavioral processes in extinction publication-title: Learn Mem – volume: 29 start-page: 1207 year: 2005 end-page: 1223 ident: bib29 article-title: Stress-induced enhancement of fear learning: an animal model of posttraumatic stress disorder publication-title: Neurosci Biobehav Rev – volume: 36 start-page: 495 year: 1985 end-page: 529 ident: bib24 article-title: Controllability and predictability in acquired motivation publication-title: Annu Rev Psychol – volume: 71 start-page: 55 year: 1996 end-page: 75 ident: bib22 article-title: Projections of the medial and lateral prefrontal cortices to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat publication-title: Neuroscience – volume: 1008 start-page: 112 year: 2003 end-page: 121 ident: bib32 article-title: Applying learning principles to the treatment of post-trauma reactions publication-title: Ann N Y Acad Sci – volume: 27 start-page: 840 year: 2007 end-page: 844 ident: bib7 article-title: Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears publication-title: J Neurosci – volume: 5 start-page: 369 year: 2003 end-page: 383 ident: bib38 article-title: Neuroimaging and neurocircuitry in post-traumatic stress disorder: what is currently known publication-title: Curr Psychiatry Rep – volume: 8 start-page: 365 year: 2005 end-page: 371 ident: bib1 article-title: Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus publication-title: Nat Neurosci – volume: 26 start-page: 1193 year: 2003 end-page: 1200 ident: bib16 article-title: The role of the human amygdala in the production of conditioned fear responses publication-title: Neuroimage – volume: 1071 start-page: 67 year: 2006 end-page: 79 ident: bib35 article-title: Amygdala, medial prefrontal cortex, and hippocampal function in PTSD publication-title: Ann N Y Acad Sci – volume: 23 start-page: 8800 year: 2003 end-page: 8807 ident: bib28 article-title: Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons publication-title: J Neurosci – volume: 23 start-page: 743 year: 1999 end-page: 760 ident: bib11 article-title: The neuroanatomical and neurochemical basis of conditioned fear publication-title: Neurosci Biobehav Rev – volume: 5 start-page: 844 year: 2004 end-page: 852 ident: bib19 article-title: Neuronal signalling of fear memory publication-title: Nat Rev Neurosci – volume: 118 start-page: 389 year: 2004 end-page: 394 ident: bib23 article-title: Electrical stimulation of medial prefrontal cortex reduces conditioned fear in a temporally specific manner publication-title: Behav Neurosci – volume: 23 start-page: 23 year: 2003 end-page: 28 ident: bib10 article-title: Temporary inactivation of the bed nucleus of the stria terminalis but not of the amygdala blocks freezing induced by trimethylthiazoline, a component of fox feces publication-title: J Neurosci – volume: 51 start-page: 32 year: 2004 end-page: 58 ident: bib40 article-title: Differential projections of the infralimbic and prelimbic cortex in the rat publication-title: Synapse – volume: 290 start-page: 213 year: 1989 end-page: 242 ident: bib34 article-title: Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin publication-title: J Comp Neurol – volume: 30 start-page: 188 year: 2006 end-page: 202 ident: bib15 article-title: Neural circuits and mechanisms involved in pavlovian fear conditioning: a critical review publication-title: Neurosci Biobehav Rev – volume: 26 start-page: 12387 year: 2006 end-page: 12396 ident: bib43 article-title: Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of pavlovian fear conditioning publication-title: J Neurosci – volume: 11 start-page: 121 year: 1999 end-page: 128 ident: bib13 article-title: The effect of stressor controllability on stress-induced neuropeptide mRNA expression within the paraventricular nucleus of the hypothalamus publication-title: J Neuroendocrinol – volume: 161 start-page: 195 year: 2004 end-page: 216 ident: bib6 article-title: Psychobiological mechanisms of resilience and vulnerability: implications for successful adaptation to extreme stress publication-title: Am J Psychiatry – volume: 117 start-page: 121 year: 2005 end-page: 127 ident: bib26 article-title: Post-traumatic stress disorder symptoms, pain, and perceived life control: associations with psychosocial and physical functioning publication-title: Pain – volume: 87 start-page: 72 year: 2006 end-page: 81 ident: bib21 article-title: Non-associative defensive responses of rats to ferret odor publication-title: Physiol Behav – volume: 14 start-page: 2317 year: 2003 end-page: 2322 ident: bib14 article-title: Inverse amygdala and medial prefrontal cortex responses to surprised faces publication-title: Neuroreport – volume: 61 start-page: 10 year: 2006 end-page: 26 ident: bib25 article-title: A contemporary learning theory perspective on the etiology of anxiety disorders: it’s not what you thought it was publication-title: Am Psychol – volume: 61 start-page: 43 year: 2000 end-page: 48 ident: bib12 article-title: Psychosocial treatment of posttraumatic stress disorder publication-title: J Clin Psychiatry – volume: 23 start-page: 11054 year: 2003 end-page: 11064 ident: bib31 article-title: The prefrontal cortex regulates lateral amygdala neuronal plasticity and responses to previously conditioned stimuli publication-title: J Neurosci – volume: 16 start-page: 723 year: 2006 end-page: 727 ident: bib27 article-title: Prefrontal involvement in the regulation of emotion: convergence of rat and human studies publication-title: Curr Opin Neurobiol – volume: 47 start-page: 783 year: 2005 end-page: 786 ident: bib18 article-title: Synaptic mechanisms of associative memory in the amygdala publication-title: Neuron – volume: 132 start-page: 943 year: 2005 end-page: 953 ident: bib3 article-title: Infralimbic cortex activation increases c-Fos expression in intercalated neurons of the amygdala publication-title: Neuroscience – volume: 13 start-page: 728 year: 2006 end-page: 733 ident: bib42 article-title: Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear publication-title: Learn Mem – volume: 18 start-page: 331 year: 2005 end-page: 342 ident: bib37 article-title: Personal resources, coping self-efficacy, and quake exposure as predictors of psychological distress following the 1999 earthquake in Turkey publication-title: J Trauma Stress – volume: 26 start-page: 13264 year: 2006 end-page: 13272 ident: bib2 article-title: Previous experience with behavioral control over stress blocks the behavioral and dorsal raphe nucleus activating effects of later uncontrollable stress: role of the ventral medial prefrontal cortex publication-title: J Neurosci – volume: 19 start-page: 10575 year: 1999 end-page: 10583 ident: bib33 article-title: An inhibitory interface gates impulse traffic between the input and output stations of the amygdala publication-title: J Neurosci – volume: 26 start-page: 4415 year: 2006 end-page: 4425 ident: bib39 article-title: Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults publication-title: J Neurosci – volume: 25 start-page: 166 year: 2005 end-page: 172 ident: bib9 article-title: Relationship of quality of life and perceived control with posttraumatic stress disorder symptoms 3 to 6 months after myocardial infarction publication-title: J Cardiopulm Rehabil – volume: 100 start-page: 669 year: 1986 end-page: 674 ident: bib17 article-title: Stressor controllability and the pituitary-adrenal system publication-title: Behav Neurosci – volume: 119 start-page: 280 year: 2005 end-page: 292 ident: bib20 article-title: Ferret odor as a processive stress model in rats: neurochemical, behavioral, and endocrine evidence publication-title: Behav Neurosci – volume: 60 start-page: 376 year: 2006 end-page: 382 ident: bib30 article-title: Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research-past, present, and future publication-title: Biol Psychiatry – volume: 142 start-page: 1 year: 2006 end-page: 20 ident: bib41 article-title: Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat publication-title: Neuroscience – volume: 11 start-page: 525 year: 2004 end-page: 535 ident: bib36 article-title: Emotional perseveration: an update on prefrontal-amygdala interactions in fear extinction publication-title: Learn Mem – volume: 26 start-page: 13264 year: 2006 ident: 10.1016/j.neuroscience.2007.03.042_bib2 article-title: Previous experience with behavioral control over stress blocks the behavioral and dorsal raphe nucleus activating effects of later uncontrollable stress: role of the ventral medial prefrontal cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3630-06.2006 – volume: 23 start-page: 23 year: 2003 ident: 10.1016/j.neuroscience.2007.03.042_bib10 article-title: Temporary inactivation of the bed nucleus of the stria terminalis but not of the amygdala blocks freezing induced by trimethylthiazoline, a component of fox feces publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-01-00023.2003 – volume: 118 start-page: 389 year: 2004 ident: 10.1016/j.neuroscience.2007.03.042_bib23 article-title: Electrical stimulation of medial prefrontal cortex reduces conditioned fear in a temporally specific manner publication-title: Behav Neurosci doi: 10.1037/0735-7044.118.2.389 – volume: 11 start-page: 525 year: 2004 ident: 10.1016/j.neuroscience.2007.03.042_bib36 article-title: Emotional perseveration: an update on prefrontal-amygdala interactions in fear extinction publication-title: Learn Mem doi: 10.1101/lm.79504 – volume: 26 start-page: 4415 year: 2006 ident: 10.1016/j.neuroscience.2007.03.042_bib39 article-title: Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3215-05.2006 – volume: 132 start-page: 943 year: 2005 ident: 10.1016/j.neuroscience.2007.03.042_bib3 article-title: Infralimbic cortex activation increases c-Fos expression in intercalated neurons of the amygdala publication-title: Neuroscience doi: 10.1016/j.neuroscience.2005.01.020 – volume: 11 start-page: 485 year: 2004 ident: 10.1016/j.neuroscience.2007.03.042_bib4 article-title: Context and behavioral processes in extinction publication-title: Learn Mem doi: 10.1101/lm.78804 – volume: 985 start-page: 218 year: 2003 ident: 10.1016/j.neuroscience.2007.03.042_bib8 article-title: Role of the amygdala in fear extinction measured with potentiated startle publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.2003.tb07084.x – volume: 100 start-page: 669 year: 1986 ident: 10.1016/j.neuroscience.2007.03.042_bib17 article-title: Stressor controllability and the pituitary-adrenal system publication-title: Behav Neurosci doi: 10.1037/0735-7044.100.5.669 – volume: 8 start-page: 365 year: 2005 ident: 10.1016/j.neuroscience.2007.03.042_bib1 article-title: Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus publication-title: Nat Neurosci doi: 10.1038/nn1399 – volume: 45 start-page: 806 year: 1999 ident: 10.1016/j.neuroscience.2007.03.042_bib5 article-title: Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: a positron emission tomography study publication-title: Biol Psychiatry doi: 10.1016/S0006-3223(98)00297-2 – volume: 119 start-page: 280 year: 2005 ident: 10.1016/j.neuroscience.2007.03.042_bib20 article-title: Ferret odor as a processive stress model in rats: neurochemical, behavioral, and endocrine evidence publication-title: Behav Neurosci doi: 10.1037/0735-7044.119.1.280 – volume: 1008 start-page: 112 year: 2003 ident: 10.1016/j.neuroscience.2007.03.042_bib32 article-title: Applying learning principles to the treatment of post-trauma reactions publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1301.012 – volume: 61 start-page: 10 year: 2006 ident: 10.1016/j.neuroscience.2007.03.042_bib25 article-title: A contemporary learning theory perspective on the etiology of anxiety disorders: it’s not what you thought it was publication-title: Am Psychol doi: 10.1037/0003-066X.61.1.10 – volume: 11 start-page: 121 year: 1999 ident: 10.1016/j.neuroscience.2007.03.042_bib13 article-title: The effect of stressor controllability on stress-induced neuropeptide mRNA expression within the paraventricular nucleus of the hypothalamus publication-title: J Neuroendocrinol doi: 10.1046/j.1365-2826.1999.00300.x – volume: 5 start-page: 844 year: 2004 ident: 10.1016/j.neuroscience.2007.03.042_bib19 article-title: Neuronal signalling of fear memory publication-title: Nat Rev Neurosci doi: 10.1038/nrn1535 – volume: 23 start-page: 11054 year: 2003 ident: 10.1016/j.neuroscience.2007.03.042_bib31 article-title: The prefrontal cortex regulates lateral amygdala neuronal plasticity and responses to previously conditioned stimuli publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-35-11054.2003 – volume: 60 start-page: 376 year: 2006 ident: 10.1016/j.neuroscience.2007.03.042_bib30 article-title: Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research-past, present, and future publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2006.06.004 – volume: 51 start-page: 32 year: 2004 ident: 10.1016/j.neuroscience.2007.03.042_bib40 article-title: Differential projections of the infralimbic and prelimbic cortex in the rat publication-title: Synapse doi: 10.1002/syn.10279 – volume: 26 start-page: 12387 year: 2006 ident: 10.1016/j.neuroscience.2007.03.042_bib43 article-title: Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of pavlovian fear conditioning publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4316-06.2006 – volume: 71 start-page: 55 year: 1996 ident: 10.1016/j.neuroscience.2007.03.042_bib22 article-title: Projections of the medial and lateral prefrontal cortices to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat publication-title: Neuroscience doi: 10.1016/0306-4522(95)00417-3 – volume: 13 start-page: 728 year: 2006 ident: 10.1016/j.neuroscience.2007.03.042_bib42 article-title: Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear publication-title: Learn Mem doi: 10.1101/lm.306106 – volume: 47 start-page: 783 year: 2005 ident: 10.1016/j.neuroscience.2007.03.042_bib18 article-title: Synaptic mechanisms of associative memory in the amygdala publication-title: Neuron doi: 10.1016/j.neuron.2005.08.009 – volume: 23 start-page: 8800 year: 2003 ident: 10.1016/j.neuroscience.2007.03.042_bib28 article-title: Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-25-08800.2003 – volume: 16 start-page: 723 year: 2006 ident: 10.1016/j.neuroscience.2007.03.042_bib27 article-title: Prefrontal involvement in the regulation of emotion: convergence of rat and human studies publication-title: Curr Opin Neurobiol doi: 10.1016/j.conb.2006.07.004 – volume: 29 start-page: 1207 year: 2005 ident: 10.1016/j.neuroscience.2007.03.042_bib29 article-title: Stress-induced enhancement of fear learning: an animal model of posttraumatic stress disorder publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2005.04.010 – volume: 19 start-page: 10575 year: 1999 ident: 10.1016/j.neuroscience.2007.03.042_bib33 article-title: An inhibitory interface gates impulse traffic between the input and output stations of the amygdala publication-title: J Neurosci doi: 10.1523/JNEUROSCI.19-23-10575.1999 – volume: 25 start-page: 166 year: 2005 ident: 10.1016/j.neuroscience.2007.03.042_bib9 article-title: Relationship of quality of life and perceived control with posttraumatic stress disorder symptoms 3 to 6 months after myocardial infarction publication-title: J Cardiopulm Rehabil doi: 10.1097/00008483-200505000-00008 – volume: 117 start-page: 121 year: 2005 ident: 10.1016/j.neuroscience.2007.03.042_bib26 article-title: Post-traumatic stress disorder symptoms, pain, and perceived life control: associations with psychosocial and physical functioning publication-title: Pain doi: 10.1016/j.pain.2005.05.028 – volume: 26 start-page: 1193 year: 2003 ident: 10.1016/j.neuroscience.2007.03.042_bib16 article-title: The role of the human amygdala in the production of conditioned fear responses publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.03.020 – volume: 161 start-page: 195 year: 2004 ident: 10.1016/j.neuroscience.2007.03.042_bib6 article-title: Psychobiological mechanisms of resilience and vulnerability: implications for successful adaptation to extreme stress publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.161.2.195 – volume: 14 start-page: 2317 year: 2003 ident: 10.1016/j.neuroscience.2007.03.042_bib14 article-title: Inverse amygdala and medial prefrontal cortex responses to surprised faces publication-title: Neuroreport doi: 10.1097/00001756-200312190-00006 – volume: 30 start-page: 188 year: 2006 ident: 10.1016/j.neuroscience.2007.03.042_bib15 article-title: Neural circuits and mechanisms involved in pavlovian fear conditioning: a critical review publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2005.06.005 – volume: 27 start-page: 840 year: 2007 ident: 10.1016/j.neuroscience.2007.03.042_bib7 article-title: Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5327-06.2007 – volume: 87 start-page: 72 year: 2006 ident: 10.1016/j.neuroscience.2007.03.042_bib21 article-title: Non-associative defensive responses of rats to ferret odor publication-title: Physiol Behav doi: 10.1016/j.physbeh.2005.08.044 – volume: 1071 start-page: 67 year: 2006 ident: 10.1016/j.neuroscience.2007.03.042_bib35 article-title: Amygdala, medial prefrontal cortex, and hippocampal function in PTSD publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1364.007 – volume: 5 start-page: 369 year: 2003 ident: 10.1016/j.neuroscience.2007.03.042_bib38 article-title: Neuroimaging and neurocircuitry in post-traumatic stress disorder: what is currently known publication-title: Curr Psychiatry Rep doi: 10.1007/s11920-003-0072-7 – volume: 36 start-page: 495 year: 1985 ident: 10.1016/j.neuroscience.2007.03.042_bib24 article-title: Controllability and predictability in acquired motivation publication-title: Annu Rev Psychol doi: 10.1146/annurev.ps.36.020185.002431 – volume: 142 start-page: 1 year: 2006 ident: 10.1016/j.neuroscience.2007.03.042_bib41 article-title: Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat publication-title: Neuroscience doi: 10.1016/j.neuroscience.2006.06.027 – volume: 290 start-page: 213 year: 1989 ident: 10.1016/j.neuroscience.2007.03.042_bib34 article-title: Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin publication-title: J Comp Neurol doi: 10.1002/cne.902900205 – volume: 61 start-page: 43 issue: Suppl 5 year: 2000 ident: 10.1016/j.neuroscience.2007.03.042_bib12 article-title: Psychosocial treatment of posttraumatic stress disorder publication-title: J Clin Psychiatry – volume: 23 start-page: 743 year: 1999 ident: 10.1016/j.neuroscience.2007.03.042_bib11 article-title: The neuroanatomical and neurochemical basis of conditioned fear publication-title: Neurosci Biobehav Rev doi: 10.1016/S0149-7634(99)00016-0 – volume: 18 start-page: 331 year: 2005 ident: 10.1016/j.neuroscience.2007.03.042_bib37 article-title: Personal resources, coping self-efficacy, and quake exposure as predictors of psychological distress following the 1999 earthquake in Turkey publication-title: J Trauma Stress doi: 10.1002/jts.20032 |
SSID | ssj0000543 |
Score | 2.2723897 |
Snippet | Fear conditioning and fear extinction play key roles in the development and treatment of anxiety-related disorders, yet there is little information concerning... Abstract Fear conditioning and fear extinction play key roles in the development and treatment of anxiety-related disorders, yet there is little information... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1495 |
SubjectTerms | Acoustic Stimulation - adverse effects Analysis of Variance Animals Association Learning - drug effects Association Learning - physiology Behavior, Animal Conditioning, Classical - drug effects Conditioning, Classical - physiology Electroshock - adverse effects Escape Reaction - physiology Extinction, Psychological - drug effects Extinction, Psychological - physiology Fear fear conditioning fear extinction Freezing Reaction, Cataleptic - drug effects GABA Agonists - pharmacology Helplessness, Learned Male medial prefrontal cortex Muscimol - pharmacology Mustela putorius furo Neurology Prefrontal Cortex - drug effects PTSD Rats Rats, Sprague-Dawley spontaneous recovery Stress, Physiological - physiopathology stressor controllability |
Title | Controllable versus uncontrollable stressors bi-directionally modulate conditioned but not innate fear |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0306452207004204 https://www.clinicalkey.es/playcontent/1-s2.0-S0306452207004204 https://dx.doi.org/10.1016/j.neuroscience.2007.03.042 https://www.ncbi.nlm.nih.gov/pubmed/17478046 https://www.proquest.com/docview/19723212 https://www.proquest.com/docview/70561596 https://pubmed.ncbi.nlm.nih.gov/PMC1978104 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECbSZOlStEkf7iPhUHRjTL1ICUUHw2jgtmiWNkA2gqQoVIEjB5E8ZOlv751IOXaTAAayijxQOh6PR-q77wj5GDnnpBEVA1vKGSY_Ml04wVye2zQqSi4tXuj_PBWzs_T7eXa-Q6ZDLgzCKoPv9z6999bhyThoc3xV1-NfGO0iHzhHhvYYOUH34qQQYNp7k28_Zqe3Djnz4Dnoz1Bg4B7tYV5rtJEuMBomxzyNH9qn7sah_8Mp1_ank-fkWQgs6cS_-wuy45p9cjBp4FB9eUM_0R7q2d-hH5Bq6gHqc8ybogjMWLYUNrj1pz6JZHHdUlMzr6T-1nB-Qy8XJRb9chQESs91VFKz7Giz6GjdNNhUwQp6Sc5Ovv6ezlgouMCsSHjHRGm4iZJMSwFhYcVlZSAgK7mOi9RIbRMIkJzRuhCpKY1NqwTOa9ZomRXWmFwkr8huA2O-IVRyA54TTzswSU5gHFrFOs-4lS42MhuRYlCvsoGNHItizNUAO7tQ61OD5TKl4omCqRmRZCV75Tk5tpL6PMyiGrJOwU8q2Dq2kpb3Sbs2LPlWRaqNFVd3zHJEvqwkNyx765GPBpNTsPTxf45u3GIJI2LFOAg9Hu4h8XyYFWJEXnsTvdUX1k3gKbTIDeNddUDa8c2Wpv7T049HSJPG07eP_K535OmAveT5e7LbXS_dBwjwOnNInhz_jQ7DMv4HBpNXNA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwELUQHMqlKgXabQv4UPUW1kkcO1HFAa1ACwUugMTNsh1HTbVkEckeuPTbOxMny24p0kq9xh45sWfGz87MG0K-hs45aUQRgC6lASY_BjpzInBpanmY5UxavNC_vBLjW35-l9ytkVGfC4NhlZ3v9z699dbdk2E3m8OHshxeI9pFPnCGDO0RcoJucDBftM7D389xHoBJfI1kODpj9555tA3yWiCNdB2fYXzIePTaLvUShf4dTLmwO52-I287WEmP_ZtvkTVXvSfbxxUcqe-f6DfaBnq2N-jbpBj58PQJZk1RDMuY1RS2t8WnPoVk-lhTUwZ-ito7w8kTvZ_mWPLLURDIPdNRTs2sodW0oWVVYVMB9rNDbk9PbkbjoCu3EFgRsyYQuWEmjBMtBYDCgsnCABzLmY4ybqS2McAjZ7TOBDe5sbyI4bRmjZZJZo1JRbxL1isY8yOhkhnwm3jWgSVyAlFoEek0YVa6yMhkQLJ-epXtuMixJMZE9UFnv9Ti0mCxTKlYrGBpBiSeyz54Ro6VpL73q6j6nFPwkgo2jpWk5b-kXd0ZfK1CVUeKqRdKOSBHc8klvV555INe5RQYPv7N0ZWbzmBErBcHwOP1HhJPh0kmBuSDV9Hn-cKqCYxDi1xS3nkHJB1fbqnKny35eIgkaYx_-s_vOiBvxjeXF-ri7OrHZ7LZR2Gy9AtZbx5nbg-gXmP2W1P-A-zwV_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controllable+versus+uncontrollable+stressors+bi-directionally+modulate+conditioned+but+not+innate+fear&rft.jtitle=Neuroscience&rft.au=Baratta%2C+M.V&rft.au=Christianson%2C+J.P&rft.au=Gomez%2C+D.M&rft.au=Zarza%2C+C.M&rft.date=2007-06-08&rft.issn=0306-4522&rft.volume=146&rft.issue=4&rft.spage=1495&rft.epage=1503&rft_id=info:doi/10.1016%2Fj.neuroscience.2007.03.042&rft.externalDBID=ECK1-s2.0-S0306452207004204&rft.externalDocID=1_s2_0_S0306452207004204 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F03064522%2FS0306452207X07371%2Fcov150h.gif |