Engraftment and Reconstitution of Hematopoiesis Is Dependent on VEGFR2-Mediated Regeneration of Sinusoidal Endothelial Cells
Myelosuppression damages the bone marrow (BM) vascular niche, but it is unclear how regeneration of bone marrow vessels contributes to engraftment of transplanted hematopoietic stem and progenitor cells (HSPCs) and restoration of hematopoiesis. We found that chemotherapy and sublethal irradiation in...
Saved in:
Published in | Cell stem cell Vol. 4; no. 3; pp. 263 - 274 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, MA
Elsevier Inc
06.03.2009
Cell Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Myelosuppression damages the bone marrow (BM) vascular niche, but it is unclear how regeneration of bone marrow vessels contributes to engraftment of transplanted hematopoietic stem and progenitor cells (HSPCs) and restoration of hematopoiesis. We found that chemotherapy and sublethal irradiation induced minor regression of BM sinusoidal endothelial cells (SECs), while lethal irradiation induced severe regression of SECs and required BM transplantation (BMT) for regeneration. Within the BM, VEGFR2 expression specifically demarcated a continuous network of arterioles and SECs, with arterioles uniquely expressing Sca1 and SECs uniquely expressing VEGFR3. Conditional deletion of VEGFR2 in adult mice blocked regeneration of SECs in sublethally irradiated animals and prevented hematopoietic reconstitution. Similarly, inhibition of VEGFR2 signaling in lethally irradiated wild-type mice rescued with BMT severely impaired SEC reconstruction and prevented engraftment and reconstitution of HSPCs. Therefore, regeneration of SECs via VEGFR2 signaling is essential for engraftment of HSPCs and restoration of hematopoiesis. |
---|---|
AbstractList | Myelosuppression damages the bone marrow (BM) vascular niche, but it is unclear how regeneration of bone marrow vessels contributes to engraftment of transplanted hematopoietic stem and progenitor cells (HSPCs) and restoration of hematopoiesis. We found that chemotherapy and sublethal irradiation induced minor regression of BM sinusoidal endothelial cells (SECs), while lethal irradiation induced severe regression of SECs and required BM transplantation (BMT) for regeneration. Within the BM, VEGFR2 expression specifically demarcated a continuous network of arterioles and SECs, with arterioles uniquely expressing Sca1 and SECs uniquely expressing VEGFR3. Conditional deletion of VEGFR2 in adult mice blocked regeneration of SECs in sublethally irradiated animals and prevented hematopoietic reconstitution. Similarly, inhibition of VEGFR2 signaling in lethally irradiated wild-type mice rescued with BMT severely impaired SEC reconstruction and prevented engraftment and reconstitution of HSPCs. Therefore, regeneration of SECs via VEGFR2 signaling is essential for engraftment of HSPCs and restoration of hematopoiesis. The phenotypic attributes and molecular determinants for the regeneration of bone marrow (BM) sinusoidal endothelial cells (SECs) and their contribution to hematopoiesis are unknown. We show that after myelosuppression VEGFR2 activation promotes reassembly of regressed SECs, reconstituting hematopoietic stem and progenitor cells (HSPCs). VEGFR2 and VEGFR3 expression are restricted to BM vasculature, demarcating a continuous network of VEGFR2 + VEGFR3 + Sca1 − SECs and VEGFR2 + VEGFR3 − Sca1 + arterioles. While chemotherapy (5FU) and sublethal irradiation (650 rad) induce minor SEC regression, lethal irradiation (950 rad) induces severe regression of SECs requiring BM transplantation (BMT) for regeneration. Conditional deletion of VEGFR2 in adult mice blocks regeneration of SECs in sublethally irradiated animals, preventing hematopoietic reconstitution. Inhibition of VEGFR2 signaling in lethally irradiated wild type mice rescued with BMT severely impairs SEC reconstruction, preventing engraftment and reconstitution of HSPCs. Therefore, activation of VEGFR2 is critical for regeneration of VEGFR3 + Sca1 − SECs that are essential for engraftment and restoration of HSPCs and hematopoiesis. Myelosuppression damages the bone marrow (BM) vascular niche, but it is unclear how regeneration of bone marrow vessels contributes to engraftment of transplanted hematopoietic stem and progenitor cells (HSPCs) and restoration of hematopoiesis. We found that chemotherapy and sublethal irradiation induced minor regression of BM sinusoidal endothelial cells (SECs), while lethal irradiation induced severe regression of SECs and required BM transplantation (BMT) for regeneration. Within the BM, VEGFR2 expression specifically demarcated a continuous network of arterioles and SECs, with arterioles uniquely expressing Sca1 and SECs uniquely expressing VEGFR3. Conditional deletion of VEGFR2 in adult mice blocked regeneration of SECs in sublethally irradiated animals and prevented hematopoietic reconstitution. Similarly, inhibition of VEGFR2 signaling in lethally irradiated wild-type mice rescued with BMT severely impaired SEC reconstruction and prevented engraftment and reconstitution of HSPCs. Therefore, regeneration of SECs via VEGFR2 signaling is essential for engraftment of HSPCs and restoration of hematopoiesis. |
Author | Rosenwaks, Zev Sato, Thomas N. Kranz, Andrea Shido, Koji Witte, Larry Nolan, Daniel J. Pytowski, Bronislaw Rafii, Shahin Butler, Jason M. Kopp, Hans-Georg Petit, Isabelle Hooper, Andrea T. Kobayashi, Mariko Wu, Yan Iida, Kaoruko Zhu, Zhenping Mittal, Vivek Yanger, Kilangsungla James, Daylon |
AuthorAffiliation | 4 Department of Surgery, Weill Cornell Medical College New York, NY 10065 3 ImClone Systems Incorporated, 180 Varick Street, New York, NY 10014 1 Howard Hughes Medical Institute, Ansary Stem Cell Institute, and Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065 2 Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065 |
AuthorAffiliation_xml | – name: 2 Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065 – name: 1 Howard Hughes Medical Institute, Ansary Stem Cell Institute, and Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065 – name: 4 Department of Surgery, Weill Cornell Medical College New York, NY 10065 – name: 3 ImClone Systems Incorporated, 180 Varick Street, New York, NY 10014 |
Author_xml | – sequence: 1 givenname: Andrea T. surname: Hooper fullname: Hooper, Andrea T. organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA – sequence: 2 givenname: Jason M. surname: Butler fullname: Butler, Jason M. organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA – sequence: 3 givenname: Daniel J. surname: Nolan fullname: Nolan, Daniel J. organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA – sequence: 4 givenname: Andrea surname: Kranz fullname: Kranz, Andrea organization: Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA – sequence: 5 givenname: Kaoruko surname: Iida fullname: Iida, Kaoruko organization: Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA – sequence: 6 givenname: Mariko surname: Kobayashi fullname: Kobayashi, Mariko organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA – sequence: 7 givenname: Hans-Georg surname: Kopp fullname: Kopp, Hans-Georg organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA – sequence: 8 givenname: Koji surname: Shido fullname: Shido, Koji organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA – sequence: 9 givenname: Isabelle surname: Petit fullname: Petit, Isabelle organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA – sequence: 10 givenname: Kilangsungla surname: Yanger fullname: Yanger, Kilangsungla organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA – sequence: 11 givenname: Daylon surname: James fullname: James, Daylon organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA – sequence: 12 givenname: Larry surname: Witte fullname: Witte, Larry organization: ImClone Systems Incorporated, 180 Varick Street, New York, NY 10014, USA – sequence: 13 givenname: Zhenping surname: Zhu fullname: Zhu, Zhenping organization: ImClone Systems Incorporated, 180 Varick Street, New York, NY 10014, USA – sequence: 14 givenname: Yan surname: Wu fullname: Wu, Yan organization: ImClone Systems Incorporated, 180 Varick Street, New York, NY 10014, USA – sequence: 15 givenname: Bronislaw surname: Pytowski fullname: Pytowski, Bronislaw organization: ImClone Systems Incorporated, 180 Varick Street, New York, NY 10014, USA – sequence: 16 givenname: Zev surname: Rosenwaks fullname: Rosenwaks, Zev organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA – sequence: 17 givenname: Vivek surname: Mittal fullname: Mittal, Vivek organization: Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA – sequence: 18 givenname: Thomas N. surname: Sato fullname: Sato, Thomas N. organization: Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA – sequence: 19 givenname: Shahin surname: Rafii fullname: Rafii, Shahin email: srafii@med.cornell.edu organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21839879$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19265665$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUuLFDEUhQsZcR76B1xIbcRVtXlUpRIQQdqeB4wI42Mbbie3etJUJT1JekCYHz9puh114yoX8p2Tc3NOqyMfPFbVa0pmlFDxfj1LGacZI0TNCJ0RIp5VJ1T2XaP6vj8qs-Jt0ymijqvTlNaEdD0l_YvqmComOiG6k-ph4VcRhjyhzzV4W9-gCT5ll7fZBV-Hob7ECXLYBIfJpfoq1Z9xg97uBAX4ubg4v2HNF7QOMu70K_QY4bf6m_PbFJyFsV54G_Itjq7McxzH9LJ6PsCY8NXhPKt-nC--zy-b668XV_NP140RnORGKOwZM2BbhqJFhdx0aFFwKRVTgsOyBSmFBdFDuxykai3wlndMAVuC6vlZ9XHvu9kuJ7SmRI8w6k10E8RfOoDT_954d6tX4V5zxiTru2Lw7mAQw90WU9aTS6asAB7DNmkpOeG0a0Uh2Z40MaQUcXh6hRK9a02v9a41vWtNE6pLa0X05u98fySHmgrw9gBAMjAOEbxx6YljVHIle1W4D3sOy2_eO4w6GYfelHIimqxtcP_L8QjlbLqm |
CitedBy_id | crossref_primary_10_1002_stem_1463 crossref_primary_10_1038_s41467_019_11490_5 crossref_primary_10_1182_blood_2013_02_487470 crossref_primary_10_1038_nm_3070 crossref_primary_10_1016_j_blre_2020_100771 crossref_primary_10_1038_s41598_020_79278_y crossref_primary_10_1038_s41536_021_00129_z crossref_primary_10_3389_fcell_2020_602269 crossref_primary_10_1038_ncb3570 crossref_primary_10_3389_fbioe_2019_00318 crossref_primary_10_1016_j_cell_2011_09_044 crossref_primary_10_1182_blood_2009_01_202606 crossref_primary_10_1097_MOH_0000000000000350 crossref_primary_10_1172_JCI97720 crossref_primary_10_1182_blood_2016_03_702803 crossref_primary_10_1016_j_bbamcr_2015_09_017 crossref_primary_10_1016_j_jtbi_2018_12_029 crossref_primary_10_1038_nature17638 crossref_primary_10_1016_j_devcel_2017_07_012 crossref_primary_10_7554_eLife_05521 crossref_primary_10_1016_j_stem_2023_03_005 crossref_primary_10_1016_j_ydbio_2019_11_016 crossref_primary_10_1177_0271678X19895245 crossref_primary_10_1038_s41467_023_36906_1 crossref_primary_10_1038_s41467_022_28175_1 crossref_primary_10_1038_nature17624 crossref_primary_10_1158_0008_5472_CAN_10_1708 crossref_primary_10_1038_nature13145 crossref_primary_10_1016_j_stem_2019_10_006 crossref_primary_10_1093_bmb_ldt031 crossref_primary_10_1016_j_transproceed_2012_03_064 crossref_primary_10_1016_j_exphem_2019_10_003 crossref_primary_10_3390_ijms23031125 crossref_primary_10_1002_eji_201445405 crossref_primary_10_3390_diagnostics12071639 crossref_primary_10_1667_RADE_20_00113_1 crossref_primary_10_3389_fphys_2021_624928 crossref_primary_10_3727_096368912X657288 crossref_primary_10_1038_emboj_2011_465 crossref_primary_10_1002_jnr_23744 crossref_primary_10_1182_blood_2016_09_670224 crossref_primary_10_1111_cas_15594 crossref_primary_10_1182_blood_2010_06_291716 crossref_primary_10_1038_emm_2014_72 crossref_primary_10_1016_j_celrep_2017_12_070 crossref_primary_10_4103_ejim_ejim_68_19 crossref_primary_10_1182_blood_2010_02_261388 crossref_primary_10_1111_bjh_13335 crossref_primary_10_15252_emmm_201607341 crossref_primary_10_1016_j_stem_2009_05_011 crossref_primary_10_1182_bloodadvances_2017008730 crossref_primary_10_1038_nm_4251 crossref_primary_10_3390_ijms21010251 crossref_primary_10_1016_j_immuni_2018_03_024 crossref_primary_10_2478_ahp_2018_0018 crossref_primary_10_3389_fcell_2021_645496 crossref_primary_10_1016_j_bbmt_2014_03_019 crossref_primary_10_1016_j_pharmthera_2016_09_006 crossref_primary_10_1002_jcp_21897 crossref_primary_10_1038_nm_3155 crossref_primary_10_1182_blood_2010_05_282855 crossref_primary_10_1172_JCI60238 crossref_primary_10_1002_stem_2870 crossref_primary_10_1007_s40778_021_00198_2 crossref_primary_10_1038_srep36411 crossref_primary_10_1182_blood_2010_03_275404 crossref_primary_10_1134_S0026893319060025 crossref_primary_10_1186_s13287_021_02352_3 crossref_primary_10_5966_sctm_2013_0166 crossref_primary_10_1111_j_1749_6632_2009_04964_x crossref_primary_10_1089_ars_2012_5019 crossref_primary_10_1016_j_devcel_2023_04_007 crossref_primary_10_1161_ATVBAHA_123_319266 crossref_primary_10_1016_j_ddstr_2009_06_003 crossref_primary_10_3892_ol_2016_5411 crossref_primary_10_1016_j_stem_2019_11_007 crossref_primary_10_1038_nature15250 crossref_primary_10_1371_journal_pone_0067861 crossref_primary_10_1186_s41232_023_00267_5 crossref_primary_10_1111_j_1365_2141_2012_09050_x crossref_primary_10_3389_fphys_2015_00367 crossref_primary_10_1097_MOH_0b013e3283476140 crossref_primary_10_1667_RR14445_1 crossref_primary_10_1371_journal_pone_0110987 crossref_primary_10_1016_j_devcel_2013_06_017 crossref_primary_10_1016_j_bone_2018_04_022 crossref_primary_10_1182_blood_2015_07_533588 crossref_primary_10_1038_nature12085 crossref_primary_10_2139_ssrn_4052011 crossref_primary_10_1007_s00109_013_1002_8 crossref_primary_10_1155_2018_1943980 crossref_primary_10_1097_MOH_0000000000000055 crossref_primary_10_1038_s41467_023_37783_4 crossref_primary_10_1016_j_exphem_2014_08_003 crossref_primary_10_1161_CIRCULATIONAHA_122_061900 crossref_primary_10_1016_j_stem_2018_07_003 crossref_primary_10_1182_blood_2011_09_377457 crossref_primary_10_3389_fimmu_2020_01745 crossref_primary_10_1016_j_cbi_2017_05_014 crossref_primary_10_1016_j_celrep_2016_10_025 crossref_primary_10_3389_fphys_2020_591901 crossref_primary_10_1073_pnas_1019656108 crossref_primary_10_1093_jrr_rrx015 crossref_primary_10_1016_j_semcancer_2010_05_006 crossref_primary_10_1038_leu_2014_109 crossref_primary_10_1172_JCI76838 crossref_primary_10_5966_sctm_2013_0134 crossref_primary_10_1038_nm_4448 crossref_primary_10_1007_s00018_014_1813_y crossref_primary_10_1667_RR14444_1 crossref_primary_10_1016_j_transci_2024_103935 crossref_primary_10_1182_blood_2010_12_324954 crossref_primary_10_1002_stem_1626 crossref_primary_10_1002_bies_201700190 crossref_primary_10_1182_blood_2014_01_547638 crossref_primary_10_1038_s41467_018_06881_z crossref_primary_10_1016_j_celrep_2023_112777 crossref_primary_10_1182_blood_2010_01_266833 crossref_primary_10_3390_ijms17040553 crossref_primary_10_1038_nature11926 crossref_primary_10_1007_s40778_020_00181_3 crossref_primary_10_1182_blood_2009_08_240580 crossref_primary_10_3389_fcell_2021_663316 crossref_primary_10_1182_blood_2023023788 crossref_primary_10_1016_j_diff_2013_05_001 crossref_primary_10_1016_j_stem_2010_02_001 crossref_primary_10_1038_nri_2017_53 crossref_primary_10_3389_fimmu_2022_911174 crossref_primary_10_1038_emboj_2012_337 crossref_primary_10_5966_sctm_2014_0154 crossref_primary_10_1111_cei_13654 crossref_primary_10_1016_j_cell_2019_04_040 crossref_primary_10_1016_j_celrep_2023_112528 crossref_primary_10_1089_scd_2014_0005 crossref_primary_10_1016_j_celrep_2020_107572 crossref_primary_10_3390_toxics10120747 crossref_primary_10_1038_nrrheum_2015_160 crossref_primary_10_1038_emboj_2012_308 crossref_primary_10_1080_21541248_2021_1882832 crossref_primary_10_1016_j_exphem_2019_07_006 crossref_primary_10_1038_nprot_2015_125 crossref_primary_10_1038_nm_2119 crossref_primary_10_1186_s12916_022_02338_9 crossref_primary_10_1002_stem_2731 crossref_primary_10_1128_MCB_01035_15 crossref_primary_10_2492_inflammregen_33_013 crossref_primary_10_1016_j_bbagen_2012_08_023 crossref_primary_10_3389_fcell_2021_635189 crossref_primary_10_1126_sciimmunol_aal2736 crossref_primary_10_1016_j_celrep_2012_09_002 crossref_primary_10_2174_1381612825666190329153626 crossref_primary_10_1182_blood_2010_08_303800 crossref_primary_10_1016_j_exphem_2012_10_003 crossref_primary_10_1007_s00277_010_1058_2 crossref_primary_10_1016_j_stemcr_2014_12_013 crossref_primary_10_1186_s13287_024_03734_z crossref_primary_10_1182_blood_2019000721 crossref_primary_10_1038_bmt_2015_229 crossref_primary_10_1016_j_addr_2015_10_010 crossref_primary_10_1021_acsptsci_0c00020 crossref_primary_10_1038_nature17040 crossref_primary_10_1371_journal_pbio_2003389 crossref_primary_10_3390_children8050371 crossref_primary_10_1172_JCI41158 crossref_primary_10_1016_j_actaastro_2021_08_031 crossref_primary_10_3390_cancers2020970 crossref_primary_10_1007_s40778_020_00185_z crossref_primary_10_1186_s13048_017_0354_z crossref_primary_10_1038_leu_2011_236 crossref_primary_10_1155_2014_128436 crossref_primary_10_1242_dev_200654 crossref_primary_10_1007_s00109_021_02155_2 crossref_primary_10_1098_rsob_190144 crossref_primary_10_1182_bloodadvances_2016003194 crossref_primary_10_1007_s40778_018_0143_7 crossref_primary_10_1186_s12929_020_00685_4 crossref_primary_10_1093_intimm_dxaa008 crossref_primary_10_1016_j_ajpath_2012_08_030 crossref_primary_10_1016_j_devcel_2022_12_013 crossref_primary_10_1155_2018_6740408 crossref_primary_10_1016_j_stem_2010_01_011 crossref_primary_10_1111_acel_13889 crossref_primary_10_1002_stem_1936 crossref_primary_10_1002_jcb_27589 crossref_primary_10_1016_j_arcmed_2012_03_005 crossref_primary_10_1002_stem_2901 crossref_primary_10_1038_s41596_018_0060_3 crossref_primary_10_1038_ncb2108 crossref_primary_10_1016_j_bbmt_2013_02_012 crossref_primary_10_1016_j_stemcr_2015_08_018 crossref_primary_10_1097_MOH_0000000000000587 crossref_primary_10_1002_stem_776 crossref_primary_10_1016_j_devcel_2021_10_020 crossref_primary_10_1016_j_ajpath_2021_11_003 crossref_primary_10_1182_bloodadvances_2018029454 crossref_primary_10_3389_fcell_2021_770705 crossref_primary_10_1038_nm_3647 crossref_primary_10_1038_s44161_021_00002_8 crossref_primary_10_7554_eLife_69894 crossref_primary_10_1016_j_exphem_2010_08_004 crossref_primary_10_1371_journal_pone_0125065 crossref_primary_10_1016_j_beha_2019_02_001 crossref_primary_10_5966_sctm_2016_0240 crossref_primary_10_1038_s12276_020_0477_y crossref_primary_10_1038_s41375_022_01715_w crossref_primary_10_1039_C4BM00200H crossref_primary_10_1016_j_bbrc_2016_08_017 crossref_primary_10_1016_j_freeradbiomed_2018_12_021 crossref_primary_10_1186_1755_1536_5_S1_S20 crossref_primary_10_1097_MOH_0000000000000347 crossref_primary_10_1007_s40778_018_0132_x crossref_primary_10_1038_nm_2545 crossref_primary_10_5966_sctm_2016_0254 crossref_primary_10_1111_acel_12897 crossref_primary_10_1038_s41556_023_01240_7 crossref_primary_10_1161_CIRCRESAHA_120_315895 crossref_primary_10_1146_annurev_immunol_032712_095919 crossref_primary_10_1016_j_devcel_2021_05_018 crossref_primary_10_1007_s00018_015_2064_2 crossref_primary_10_1158_0008_5472_CAN_14_3379 crossref_primary_10_1038_s41467_018_04726_3 crossref_primary_10_1016_j_ccell_2017_08_001 crossref_primary_10_3390_ijms23084462 crossref_primary_10_1016_j_stem_2013_10_010 crossref_primary_10_1016_j_ajps_2023_100868 crossref_primary_10_1084_jem_20192283 crossref_primary_10_1038_nature12984 crossref_primary_10_1007_s11427_015_4960_y crossref_primary_10_1111_joa_12479 crossref_primary_10_2139_ssrn_3969389 crossref_primary_10_1186_s13045_020_00994_z crossref_primary_10_1016_j_celrep_2013_07_048 crossref_primary_10_1016_j_semcdb_2020_05_014 crossref_primary_10_1242_dev_139691 crossref_primary_10_1158_0008_5472_CAN_14_3023 crossref_primary_10_1097_MOH_0b013e32833a25d8 crossref_primary_10_1146_annurev_pathol_012615_044414 crossref_primary_10_1016_j_pharmthera_2016_06_001 crossref_primary_10_1038_nature12612 crossref_primary_10_1016_j_pharmthera_2010_10_002 crossref_primary_10_1016_j_jams_2018_03_003 crossref_primary_10_1038_srep30779 crossref_primary_10_1111_nyas_12329 crossref_primary_10_1096_fj_202200862R crossref_primary_10_1161_ATVBAHA_113_302586 crossref_primary_10_1186_s13045_021_01133_y crossref_primary_10_1002_jca_21277 crossref_primary_10_1002_stem_453 crossref_primary_10_1016_j_exphem_2021_11_003 crossref_primary_10_1007_s00018_021_03977_6 crossref_primary_10_3389_fcell_2017_00062 crossref_primary_10_1182_blood_2020005699 crossref_primary_10_7554_eLife_67793 crossref_primary_10_1016_j_cell_2014_12_032 crossref_primary_10_1182_blood_2016_08_734210 crossref_primary_10_3389_fcell_2023_1325291 crossref_primary_10_1111_j_1538_7836_2011_04571_x crossref_primary_10_3389_fimmu_2016_00689 crossref_primary_10_1038_nri2726 crossref_primary_10_1186_s13287_021_02380_z crossref_primary_10_4061_2011_375857 crossref_primary_10_7554_eLife_33670 crossref_primary_10_1016_j_neo_2015_04_001 crossref_primary_10_1111_imr_13120 crossref_primary_10_1073_pnas_1423278112 crossref_primary_10_1667_RR14461_1 crossref_primary_10_1007_s11427_022_2310_x crossref_primary_10_1038_s41556_023_01242_5 crossref_primary_10_3324_haematol_2021_279756 crossref_primary_10_1038_s41556_019_0444_9 crossref_primary_10_1084_jem_20161616 crossref_primary_10_1016_j_mvr_2014_10_008 crossref_primary_10_1038_s41586_019_1104_8 crossref_primary_10_1155_2011_570796 crossref_primary_10_1016_j_cell_2014_02_013 crossref_primary_10_1182_blood_2015_08_663708 crossref_primary_10_1182_blood_2018_10_844571 crossref_primary_10_1016_j_celrep_2021_109618 crossref_primary_10_1371_journal_pone_0168173 crossref_primary_10_1371_journal_pone_0055095 crossref_primary_10_3390_ijms25084430 crossref_primary_10_1038_nbt_4006 crossref_primary_10_3390_cells10081849 crossref_primary_10_1038_nm_2859 crossref_primary_10_1371_journal_pone_0026918 crossref_primary_10_1016_j_stem_2017_11_006 crossref_primary_10_3390_ijms21020539 crossref_primary_10_1002_cyto_b_21066 crossref_primary_10_1002_dvdy_24483 crossref_primary_10_1038_s41409_019_0766_z crossref_primary_10_1111_bjh_18563 crossref_primary_10_1016_j_devcel_2018_12_002 crossref_primary_10_3389_fimmu_2019_00387 crossref_primary_10_3390_cells8020155 crossref_primary_10_1038_d41586_021_03550_y crossref_primary_10_1016_j_stemcr_2019_04_023 crossref_primary_10_1038_s41467_018_04770_z crossref_primary_10_1126_sciadv_abd2575 crossref_primary_10_1016_j_semcdb_2021_06_025 crossref_primary_10_1038_nature09493 crossref_primary_10_1016_j_canlet_2015_05_010 crossref_primary_10_1667_RR15361_1 crossref_primary_10_1002_eji_201747378 crossref_primary_10_1038_ncb2730 crossref_primary_10_1002_ajh_25056 crossref_primary_10_1038_s44161_022_00147_0 crossref_primary_10_1016_j_isci_2023_107548 crossref_primary_10_3390_ijms21030796 crossref_primary_10_1038_s12276_024_01192_4 crossref_primary_10_1161_CIRCRESAHA_123_322607 crossref_primary_10_3390_ijms17071162 crossref_primary_10_1097_MOH_0000000000000508 crossref_primary_10_1155_2012_270425 crossref_primary_10_1182_asheducation_2011_1_1 crossref_primary_10_1016_j_yexcr_2020_111954 crossref_primary_10_1182_blood_2014_09_570192 crossref_primary_10_1093_nar_gkae472 crossref_primary_10_1172_JCI93940 crossref_primary_10_3389_fonc_2022_840044 crossref_primary_10_1084_jem_20161721 crossref_primary_10_3389_fcell_2020_599281 crossref_primary_10_1186_2045_3701_1_33 crossref_primary_10_1002_stem_3174 crossref_primary_10_1016_j_canlet_2024_216937 crossref_primary_10_3324_haematol_2019_243998 crossref_primary_10_1073_pnas_1702576114 crossref_primary_10_1177_2041731417725464 crossref_primary_10_1038_s41409_022_01728_0 crossref_primary_10_1038_s41568_020_0263_0 crossref_primary_10_1016_j_biomaterials_2022_121568 crossref_primary_10_1038_nprot_2010_168 crossref_primary_10_1093_cvr_cvy308 crossref_primary_10_1016_j_bbmt_2013_07_014 crossref_primary_10_1016_j_stemcr_2022_06_004 crossref_primary_10_1172_JCI92309 crossref_primary_10_1371_journal_pone_0060357 crossref_primary_10_1038_ncomms13829 crossref_primary_10_1016_j_autneu_2017_06_003 crossref_primary_10_1128_MCB_01287_12 crossref_primary_10_1007_s12015_024_10703_9 crossref_primary_10_1080_10428194_2016_1201566 crossref_primary_10_1016_j_canlet_2014_08_027 crossref_primary_10_1038_s44161_022_00061_5 crossref_primary_10_1016_j_leukres_2012_05_026 crossref_primary_10_1053_j_seminhematol_2018_08_004 crossref_primary_10_1007_s40778_019_0152_1 crossref_primary_10_1007_s00018_015_1907_1 crossref_primary_10_1084_jem_20200817 crossref_primary_10_1038_s41588_023_01528_2 crossref_primary_10_1186_s12967_015_0761_0 crossref_primary_10_1371_journal_pone_0195082 crossref_primary_10_1089_scd_2010_0453 crossref_primary_10_1016_j_stemcr_2016_05_009 crossref_primary_10_1172_JCI153626 crossref_primary_10_1016_j_ccr_2014_04_015 crossref_primary_10_1038_nature13547 crossref_primary_10_3389_fimmu_2020_585402 crossref_primary_10_1002_jbmr_4171 crossref_primary_10_1007_s12672_023_00616_3 crossref_primary_10_1016_j_stem_2009_02_005 crossref_primary_10_1016_j_bcmd_2013_08_005 crossref_primary_10_1161_CIRCRESAHA_123_322767 crossref_primary_10_1111_nyas_13016 crossref_primary_10_1111_bjh_15000 crossref_primary_10_1111_nyas_13013 crossref_primary_10_1016_j_it_2013_10_002 crossref_primary_10_1016_j_scr_2013_07_001 crossref_primary_10_1038_s43587_022_00244_6 crossref_primary_10_3389_fcell_2021_660617 crossref_primary_10_1016_j_it_2011_03_009 crossref_primary_10_1038_s41556_020_00601_w crossref_primary_10_1016_j_isci_2022_104225 crossref_primary_10_1080_15384101_2015_1026513 crossref_primary_10_1016_j_kint_2017_02_033 crossref_primary_10_1016_j_exphem_2017_08_003 crossref_primary_10_1016_j_stem_2010_11_030 crossref_primary_10_1038_srep44097 crossref_primary_10_3389_fphys_2023_1148414 crossref_primary_10_1080_09553002_2019_1644932 crossref_primary_10_1073_pnas_1208384109 crossref_primary_10_1007_s00223_013_9805_8 crossref_primary_10_1172_jci_insight_145295 crossref_primary_10_1007_s00277_013_1759_4 crossref_primary_10_1523_JNEUROSCI_2810_14_2015 crossref_primary_10_3389_fcell_2021_621214 crossref_primary_10_1371_journal_pone_0104607 crossref_primary_10_1093_jb_mvu031 crossref_primary_10_1038_srep19404 crossref_primary_10_3389_fimmu_2021_768439 crossref_primary_10_1038_ncomms15926 crossref_primary_10_1146_annurev_cellbio_111315_124936 crossref_primary_10_1038_s42003_021_01846_3 crossref_primary_10_1038_s42003_022_03733_x crossref_primary_10_1002_jcp_28326 crossref_primary_10_1007_s10456_017_9577_2 crossref_primary_10_1155_2017_5046953 crossref_primary_10_2139_ssrn_3970227 crossref_primary_10_1038_nrc2791 crossref_primary_10_1016_j_cbi_2010_10_008 crossref_primary_10_1016_j_pharmthera_2016_11_006 crossref_primary_10_1016_j_cell_2011_10_003 crossref_primary_10_1016_j_jcyt_2022_07_006 crossref_primary_10_1182_blood_2011_01_332890 crossref_primary_10_1016_j_critrevonc_2019_01_024 crossref_primary_10_1016_j_bbrc_2017_06_023 crossref_primary_10_1182_asheducation_2014_1_71 crossref_primary_10_1371_journal_pone_0065720 crossref_primary_10_1186_s12964_020_00683_x crossref_primary_10_3389_fimmu_2024_1405210 crossref_primary_10_1242_dev_065953 crossref_primary_10_3390_ijms24010563 crossref_primary_10_2967_jnumed_120_244681 crossref_primary_10_1038_s41598_019_44039_z crossref_primary_10_1002_stem_1370 crossref_primary_10_1016_j_stem_2021_12_009 crossref_primary_10_1038_cdd_2014_89 crossref_primary_10_1186_1479_5876_11_94 crossref_primary_10_1242_jcs_074112 crossref_primary_10_1138_20110495 crossref_primary_10_3390_biom11010122 crossref_primary_10_1038_s41568_020_0245_2 crossref_primary_10_1016_j_stem_2010_11_021 crossref_primary_10_1084_jem_20192070 crossref_primary_10_1111_j_1749_6632_2012_06481_x crossref_primary_10_1172_JCI94668 crossref_primary_10_1038_leu_2017_155 crossref_primary_10_1089_ars_2013_5635 crossref_primary_10_1038_s41467_020_14478_8 crossref_primary_10_1080_19490976_2024_2350784 crossref_primary_10_1016_j_stem_2009_10_014 crossref_primary_10_1007_s12307_012_0114_y crossref_primary_10_1084_jem_20211789 crossref_primary_10_1097_MOH_0b013e3283475fe7 crossref_primary_10_1016_j_cell_2014_09_025 crossref_primary_10_1038_s41467_021_27263_y crossref_primary_10_1182_blood_2017_12_768986 crossref_primary_10_1002_wdev_279 crossref_primary_10_1182_bloodadvances_2021004640 crossref_primary_10_1002_jcp_27785 crossref_primary_10_1016_j_mehy_2013_02_005 crossref_primary_10_3324_haematol_2022_282472 crossref_primary_10_1667_RR14436_1 crossref_primary_10_1007_s00109_017_1559_8 crossref_primary_10_1002_jca_21369 crossref_primary_10_1182_blood_2010_11_320564 crossref_primary_10_1002_stem_1275 crossref_primary_10_1182_blood_2011_01_315069 crossref_primary_10_1186_s12865_016_0167_7 crossref_primary_10_1084_jem_20210565 crossref_primary_10_1016_j_bbagen_2012_10_004 crossref_primary_10_1016_j_ccell_2017_08_012 crossref_primary_10_3389_fmed_2021_760236 crossref_primary_10_1007_s12013_012_9387_5 crossref_primary_10_1016_j_ijrobp_2023_02_007 crossref_primary_10_1016_j_jconrel_2021_09_018 crossref_primary_10_1002_stem_2487 crossref_primary_10_1016_j_devcel_2020_06_006 crossref_primary_10_1182_blood_2009_05_219840 |
Cites_doi | 10.1016/S0092-8674(02)00754-7 10.1038/nature07083 10.1038/nature02040 10.1016/j.cell.2007.06.054 10.1038/nature00821 10.1016/j.immuni.2006.11.005 10.1016/j.stem.2007.10.020 10.1038/nature02041 10.1038/nm740 10.1038/ni1571 10.1016/j.cell.2004.07.004 10.1038/nm973 10.1016/j.exphem.2008.06.009 10.1182/blood-2005-05-1970 10.1172/JCI29314 10.1634/stemcells.2007-0158 10.1182/blood.V65.5.1163.1163 10.1182/blood.V86.9.3353.bloodjournal8693353 10.1242/dev.126.13.3015 10.1093/jnci/dji003 10.1182/blood.V94.12.4011 10.1016/j.immuni.2006.10.016 10.1359/jbmr.2001.16.7.1228 10.1016/j.cell.2005.05.026 10.1016/S0092-8674(00)00025-8 10.1073/pnas.94.2.663 10.1038/nm1417 10.1038/nature03703 10.1182/blood.V84.1.10.10 10.1038/376062a0 10.1182/blood-2004-11-4269 10.1016/S0014-5793(01)02921-0 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Inc. 2009 INIST-CNRS 2009 ll Press. All rights reserved. 2009 |
Copyright_xml | – notice: 2009 Elsevier Inc. – notice: 2009 INIST-CNRS – notice: 2009 ll Press. All rights reserved. 2009 |
DBID | 6I. AAFTH IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7T5 8FD FR3 H94 P64 5PM |
DOI | 10.1016/j.stem.2009.01.006 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Immunology Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1875-9777 |
EndPage | 274 |
ExternalDocumentID | 10_1016_j_stem_2009_01_006 19265665 21839879 S1934590909000095 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: P01 HL059312-090006 – fundername: NHLBI NIH HHS grantid: R01 HL061849-03 – fundername: NHLBI NIH HHS grantid: P01 HL067839-050004 – fundername: Howard Hughes Medical Institute – fundername: NHLBI NIH HHS grantid: R21 HL083222 – fundername: NHLBI NIH HHS grantid: R01 HL058707-04 – fundername: NHLBI NIH HHS grantid: R01 HL097797-01 – fundername: NHLBI NIH HHS grantid: R01 HL075234-02 – fundername: NHLBI NIH HHS grantid: R21 HL083222-01 – fundername: NHLBI NIH HHS grantid: R01 HL061849-03S1 – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL061849-04 || HL – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: P50 HL084936-020003 || HL – fundername: Howard Hughes Medical Institute : grantid: || HHMI_ – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: P01 HL059312-090006 || HL – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL075234-04 || HL – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: P01 HL072942-010004 || HL – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: U01 HL066952-010002 || HL – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: U01 HL066952-020002 || HL – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL058707-04 || HL – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL097797-01 || HL |
GroupedDBID | --- --K 0R~ 29B 2WC 4.4 457 4G. 53G 5GY 5VS 62- 6I. 6J9 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AALRI AAQFI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHFR AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE HVGLF HZ~ IHE IXB JIG M41 NCXOZ O-L O9- OK1 OZT P2P RCE RIG ROL RPZ SES SSZ TR2 WQ6 ZA5 ZBA IQODW 0SF AAMRU ADVLN AKAPO AKRWK CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7T5 8FD FR3 H94 P64 5PM |
ID | FETCH-LOGICAL-c630t-69e722cad42e64e9e3c5ede638892963ab4a886da67a4bf894da343529a2ba973 |
IEDL.DBID | ABVKL |
ISSN | 1934-5909 |
IngestDate | Tue Sep 17 20:57:31 EDT 2024 Thu Oct 24 22:23:26 EDT 2024 Thu Sep 26 16:25:01 EDT 2024 Sat Sep 28 08:22:51 EDT 2024 Sun Oct 22 16:06:28 EDT 2023 Fri Feb 23 02:30:30 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | STEMCELL Engraftment Regeneration Endothelial cell Vascular endothelial growth factor receptor 2 Hematopoiesis |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c630t-69e722cad42e64e9e3c5ede638892963ab4a886da67a4bf894da343529a2ba973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1934590909000095 |
PMID | 19265665 |
PQID | 883031546 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3228275 proquest_miscellaneous_883031546 crossref_primary_10_1016_j_stem_2009_01_006 pubmed_primary_19265665 pascalfrancis_primary_21839879 elsevier_sciencedirect_doi_10_1016_j_stem_2009_01_006 |
PublicationCentury | 2000 |
PublicationDate | 2009-03-06 |
PublicationDateYYYYMMDD | 2009-03-06 |
PublicationDate_xml | – month: 03 year: 2009 text: 2009-03-06 day: 06 |
PublicationDecade | 2000 |
PublicationPlace | Cambridge, MA |
PublicationPlace_xml | – name: Cambridge, MA – name: United States |
PublicationTitle | Cell stem cell |
PublicationTitleAlternate | Cell Stem Cell |
PublicationYear | 2009 |
Publisher | Elsevier Inc Cell Press |
Publisher_xml | – name: Elsevier Inc – name: Cell Press |
References | Kopp, Hooper, Broekman, Avecilla, Petit, Luo, Milde, Ramos, Zhang, Kopp (bib17) 2006; 116 Sugiyama, Kohara, Noda, Nagasawa (bib29) 2006; 25 Kataoka, Tavassoli (bib11) 1985; 65 Pytowski, Goldman, Persaud, Wu, Witte, Hicklin, Skobe, Boardman, Swartz (bib22) 2005; 97 Fong, Zhang, Bryce, Peng (bib6) 1999; 126 Kollet, Dar, Shivtiel, Kalinkovich, Lapid, Sztainberg, Tesio, Samstein, Goichberg, Spiegel (bib14) 2006; 12 Naiyer, Jo, Ahn, Mohle, Peichev, Lam, Silverstein, Moore, Rafii (bib20) 1999; 94 Yoshihara, Arai, Hosokawa, Hagiwara, Takubo, Nakamura, Gomei, Iwasaki, Matsuoka, Miyamoto (bib34) 2007; 1 Zhang, Niu, Ye, Huang, He, Tong, Ross, Haug, Johnson, Feng (bib32) 2003; 425 Sapoznikov, Pewzner-Jung, Kalchenko, Krauthgamer, Shachar, Jung (bib25) 2008; 9 Dacic, Kalajzic, Visnjic, Lichtler, Rowe (bib4) 2001; 16 Kopp, Avecilla, Hooper, Rafii (bib15) 2005; 20 Arai, Hirao, Ohmura, Sato, Matsuoka, Takubo, Ito, Koh, Suda (bib1) 2004; 118 Kopp, Avecilla, Hooper, Shmelkov, Ramos, Zhang, Rafii (bib16) 2005; 106 Shalaby, Rossant, Yamaguchi, Gertsenstein, Wu, Breitman, Schuh (bib26) 1995; 376 Takakura, Watanabe, Suenobu, Yamada, Noda, Ito, Satake, Suda (bib30) 2000; 102 Mohle, Green, Moore, Nachman, Rafii (bib19) 1997; 94 Gerber, Malik, Solar, Sherman, Liang, Meng, Hong, Marsters, Ferrara (bib7) 2002; 417 Avecilla, Hattori, Heissig, Tejada, Liao, Shido, Jin, Dias, Zhang, Hartman (bib2) 2004; 10 Kiel, Yilmaz, Iwashita, Terhorst, Morrison (bib13) 2005; 121 Tammela, Zarkada, Wallgard, Murtomaki, Suchting, Wirzenius, Waltari, Hellstrom, Schomber, Peltonen (bib31) 2008; 454 Haruta, Nagata, Todokoro (bib8) 2001; 507 Sipkins, Wei, Wu, Runnels, Cote, Means, Luster, Scadden, Lin (bib27) 2005; 435 Rafii, Shapiro, Rimarachin, Nachman, Ferris, Weksler, Moore, Asch (bib23) 1994; 84 Lee, Chen, Barber, Jordan, Murdock, Desai, Ferrara, Nagy, Roos, Iruela-Arispe (bib18) 2007; 130 Slayton, Li, Butler, Guthrie, Jorgensen, Wingard, Scott (bib28) 2007; 25 Heissig, Hattori, Dias, Friedrich, Ferris, Hackett, Crystal, Besmer, Lyden, Moore (bib10) 2002; 109 Hattori, Heissig, Wu, Dias, Tejada, Ferris, Hicklin, Zhu, Bohlen, Witte (bib9) 2002; 8 Prewett, Huber, Li, Santiago, O'Connor, King, Overholser, Hooper, Pytowski, Witte (bib21) 1999; 59 Ema, Takahashi, Rossant (bib5) 2006; 107 Li, Hu, Jorgensen, Wingard, Slayton (bib33) 2008; 36 Rafii, Shapiro, Pettengell, Ferris, Nachman, Moore, Asch (bib24) 1995; 86 Calvi, Adams, Weibrecht, Weber, Olson, Knight, Martin, Schipani, Divieti, Bringhurst (bib3) 2003; 425 Kiel, Morrison (bib12) 2006; 25 19265650 - Cell Stem Cell. 2009 Mar 6;4(3):187-8 Heissig (10.1016/j.stem.2009.01.006_bib10) 2002; 109 Kiel (10.1016/j.stem.2009.01.006_bib13) 2005; 121 Avecilla (10.1016/j.stem.2009.01.006_bib2) 2004; 10 Pytowski (10.1016/j.stem.2009.01.006_bib22) 2005; 97 Tammela (10.1016/j.stem.2009.01.006_bib31) 2008; 454 Calvi (10.1016/j.stem.2009.01.006_bib3) 2003; 425 Kopp (10.1016/j.stem.2009.01.006_bib16) 2005; 106 Yoshihara (10.1016/j.stem.2009.01.006_bib34) 2007; 1 Dacic (10.1016/j.stem.2009.01.006_bib4) 2001; 16 Rafii (10.1016/j.stem.2009.01.006_bib24) 1995; 86 Sugiyama (10.1016/j.stem.2009.01.006_bib29) 2006; 25 Arai (10.1016/j.stem.2009.01.006_bib1) 2004; 118 Naiyer (10.1016/j.stem.2009.01.006_bib20) 1999; 94 Lee (10.1016/j.stem.2009.01.006_bib18) 2007; 130 Rafii (10.1016/j.stem.2009.01.006_bib23) 1994; 84 Zhang (10.1016/j.stem.2009.01.006_bib32) 2003; 425 Kollet (10.1016/j.stem.2009.01.006_bib14) 2006; 12 Shalaby (10.1016/j.stem.2009.01.006_bib26) 1995; 376 Mohle (10.1016/j.stem.2009.01.006_bib19) 1997; 94 Ema (10.1016/j.stem.2009.01.006_bib5) 2006; 107 Sapoznikov (10.1016/j.stem.2009.01.006_bib25) 2008; 9 Haruta (10.1016/j.stem.2009.01.006_bib8) 2001; 507 Kopp (10.1016/j.stem.2009.01.006_bib17) 2006; 116 Sipkins (10.1016/j.stem.2009.01.006_bib27) 2005; 435 Fong (10.1016/j.stem.2009.01.006_bib6) 1999; 126 Prewett (10.1016/j.stem.2009.01.006_bib21) 1999; 59 Kiel (10.1016/j.stem.2009.01.006_bib12) 2006; 25 Kataoka (10.1016/j.stem.2009.01.006_bib11) 1985; 65 Slayton (10.1016/j.stem.2009.01.006_bib28) 2007; 25 Li (10.1016/j.stem.2009.01.006_bib33) 2008; 36 Takakura (10.1016/j.stem.2009.01.006_bib30) 2000; 102 Kopp (10.1016/j.stem.2009.01.006_bib15) 2005; 20 Gerber (10.1016/j.stem.2009.01.006_bib7) 2002; 417 Hattori (10.1016/j.stem.2009.01.006_bib9) 2002; 8 |
References_xml | – volume: 107 start-page: 111 year: 2006 end-page: 117 ident: bib5 article-title: Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors publication-title: Blood contributor: fullname: Rossant – volume: 126 start-page: 3015 year: 1999 end-page: 3025 ident: bib6 article-title: Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice publication-title: Development contributor: fullname: Peng – volume: 425 start-page: 841 year: 2003 end-page: 846 ident: bib3 article-title: Osteoblastic cells regulate the haematopoietic stem cell niche publication-title: Nature contributor: fullname: Bringhurst – volume: 507 start-page: 45 year: 2001 end-page: 48 ident: bib8 article-title: Role of Flk-1 in mouse hematopoietic stem cells publication-title: FEBS Lett. contributor: fullname: Todokoro – volume: 86 start-page: 3353 year: 1995 end-page: 3363 ident: bib24 article-title: Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors publication-title: Blood contributor: fullname: Asch – volume: 25 start-page: 862 year: 2006 end-page: 864 ident: bib12 article-title: Maintaining hematopoietic stem cells in the vascular niche publication-title: Immunity contributor: fullname: Morrison – volume: 59 start-page: 5209 year: 1999 end-page: 5218 ident: bib21 article-title: Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors publication-title: Cancer Res. contributor: fullname: Witte – volume: 36 start-page: 1143 year: 2008 end-page: 1156 ident: bib33 article-title: Bone marrow sinusoidal endothelial cells undergo nonapoptotic cell death and are replaced by proliferating sinusoidal cells in situ to maintain the vascular niche following lethal irradiation publication-title: Exp. Hematol. contributor: fullname: Slayton – volume: 10 start-page: 64 year: 2004 end-page: 71 ident: bib2 article-title: Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis publication-title: Nat. Med. contributor: fullname: Hartman – volume: 376 start-page: 62 year: 1995 end-page: 66 ident: bib26 article-title: Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice publication-title: Nature contributor: fullname: Schuh – volume: 102 start-page: 199 year: 2000 end-page: 209 ident: bib30 article-title: A role for hematopoietic stem cells in promoting angiogenesis publication-title: Cell contributor: fullname: Suda – volume: 109 start-page: 625 year: 2002 end-page: 637 ident: bib10 article-title: Recruitment of stem and progenitor cells from the bone marrow niche requires mmp-9 mediated release of kit-ligand publication-title: Cell contributor: fullname: Moore – volume: 454 start-page: 656 year: 2008 end-page: 660 ident: bib31 article-title: Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation publication-title: Nature contributor: fullname: Peltonen – volume: 97 start-page: 14 year: 2005 end-page: 21 ident: bib22 article-title: Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody publication-title: J. Natl. Cancer Inst. contributor: fullname: Swartz – volume: 65 start-page: 1163 year: 1985 end-page: 1171 ident: bib11 article-title: Identification of lectin-like substances recognizing galactosyl residues of glycoconjugates on the plasma membrane of marrow sinus endothelium publication-title: Blood contributor: fullname: Tavassoli – volume: 425 start-page: 836 year: 2003 end-page: 841 ident: bib32 article-title: Identification of the haematopoietic stem cell niche and control of the niche size publication-title: Nature contributor: fullname: Feng – volume: 9 start-page: 388 year: 2008 end-page: 395 ident: bib25 article-title: Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches publication-title: Nat. Immunol. contributor: fullname: Jung – volume: 25 start-page: 977 year: 2006 end-page: 988 ident: bib29 article-title: Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches publication-title: Immunity contributor: fullname: Nagasawa – volume: 106 start-page: 505 year: 2005 end-page: 513 ident: bib16 article-title: Tie-2 activation contributes to hemangiogenic regeneration after myelosuppression publication-title: Blood contributor: fullname: Rafii – volume: 116 start-page: 3277 year: 2006 end-page: 3291 ident: bib17 article-title: Thrombospondins deployed by thrombopoietic cells determine angiogenic switch and extent of revascularization publication-title: J. Clin. Invest. contributor: fullname: Kopp – volume: 25 start-page: 2945 year: 2007 end-page: 2955 ident: bib28 article-title: The Role of the Donor in the Repair of the Marrow Vascular Niche Following Hematopoietic Stem Cell Transplant publication-title: Stem Cells contributor: fullname: Scott – volume: 84 start-page: 10 year: 1994 end-page: 19 ident: bib23 article-title: Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion publication-title: Blood contributor: fullname: Asch – volume: 20 start-page: 349 year: 2005 end-page: 356 ident: bib15 article-title: The bone marrow vascular niche: home of HSC differentiation and mobilization publication-title: Physiology (Bethesda) contributor: fullname: Rafii – volume: 118 start-page: 149 year: 2004 end-page: 161 ident: bib1 article-title: Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche publication-title: Cell contributor: fullname: Suda – volume: 417 start-page: 954 year: 2002 end-page: 958 ident: bib7 article-title: VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism publication-title: Nature contributor: fullname: Ferrara – volume: 12 start-page: 657 year: 2006 end-page: 664 ident: bib14 article-title: Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells publication-title: Nat. Med. contributor: fullname: Spiegel – volume: 1 start-page: 685 year: 2007 end-page: 697 ident: bib34 article-title: Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche publication-title: Cell Stem Cell contributor: fullname: Miyamoto – volume: 130 start-page: 691 year: 2007 end-page: 703 ident: bib18 article-title: Autocrine VEGF signaling is required for vascular homeostasis publication-title: Cell contributor: fullname: Iruela-Arispe – volume: 16 start-page: 1228 year: 2001 end-page: 1236 ident: bib4 article-title: Col1a1-driven transgenic markers of osteoblast lineage progression publication-title: J. Bone Miner. Res. contributor: fullname: Rowe – volume: 94 start-page: 663 year: 1997 end-page: 668 ident: bib19 article-title: Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Rafii – volume: 94 start-page: 4011 year: 1999 end-page: 4019 ident: bib20 article-title: Stromal derived factor-1-induced chemokinesis of cord blood CD34(+) cells (long-term culture-initiating cells) through endothelial cells is mediated by E-selectin publication-title: Blood contributor: fullname: Rafii – volume: 8 start-page: 841 year: 2002 end-page: 849 ident: bib9 article-title: Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment publication-title: Nat. Med. contributor: fullname: Witte – volume: 435 start-page: 969 year: 2005 end-page: 973 ident: bib27 article-title: In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment publication-title: Nature contributor: fullname: Lin – volume: 121 start-page: 1109 year: 2005 end-page: 1121 ident: bib13 article-title: SLAM Family Receptors Distinguish Hematopoietic Stem and Progenitor Cells and Reveal Endothelial Niches for Stem Cells publication-title: Cell contributor: fullname: Morrison – volume: 109 start-page: 625 year: 2002 ident: 10.1016/j.stem.2009.01.006_bib10 article-title: Recruitment of stem and progenitor cells from the bone marrow niche requires mmp-9 mediated release of kit-ligand publication-title: Cell doi: 10.1016/S0092-8674(02)00754-7 contributor: fullname: Heissig – volume: 454 start-page: 656 year: 2008 ident: 10.1016/j.stem.2009.01.006_bib31 article-title: Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation publication-title: Nature doi: 10.1038/nature07083 contributor: fullname: Tammela – volume: 425 start-page: 841 year: 2003 ident: 10.1016/j.stem.2009.01.006_bib3 article-title: Osteoblastic cells regulate the haematopoietic stem cell niche publication-title: Nature doi: 10.1038/nature02040 contributor: fullname: Calvi – volume: 130 start-page: 691 year: 2007 ident: 10.1016/j.stem.2009.01.006_bib18 article-title: Autocrine VEGF signaling is required for vascular homeostasis publication-title: Cell doi: 10.1016/j.cell.2007.06.054 contributor: fullname: Lee – volume: 417 start-page: 954 year: 2002 ident: 10.1016/j.stem.2009.01.006_bib7 article-title: VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism publication-title: Nature doi: 10.1038/nature00821 contributor: fullname: Gerber – volume: 25 start-page: 862 year: 2006 ident: 10.1016/j.stem.2009.01.006_bib12 article-title: Maintaining hematopoietic stem cells in the vascular niche publication-title: Immunity doi: 10.1016/j.immuni.2006.11.005 contributor: fullname: Kiel – volume: 59 start-page: 5209 year: 1999 ident: 10.1016/j.stem.2009.01.006_bib21 article-title: Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors publication-title: Cancer Res. contributor: fullname: Prewett – volume: 1 start-page: 685 year: 2007 ident: 10.1016/j.stem.2009.01.006_bib34 article-title: Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.10.020 contributor: fullname: Yoshihara – volume: 425 start-page: 836 year: 2003 ident: 10.1016/j.stem.2009.01.006_bib32 article-title: Identification of the haematopoietic stem cell niche and control of the niche size publication-title: Nature doi: 10.1038/nature02041 contributor: fullname: Zhang – volume: 8 start-page: 841 year: 2002 ident: 10.1016/j.stem.2009.01.006_bib9 article-title: Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment publication-title: Nat. Med. doi: 10.1038/nm740 contributor: fullname: Hattori – volume: 9 start-page: 388 year: 2008 ident: 10.1016/j.stem.2009.01.006_bib25 article-title: Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches publication-title: Nat. Immunol. doi: 10.1038/ni1571 contributor: fullname: Sapoznikov – volume: 118 start-page: 149 year: 2004 ident: 10.1016/j.stem.2009.01.006_bib1 article-title: Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche publication-title: Cell doi: 10.1016/j.cell.2004.07.004 contributor: fullname: Arai – volume: 10 start-page: 64 year: 2004 ident: 10.1016/j.stem.2009.01.006_bib2 article-title: Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis publication-title: Nat. Med. doi: 10.1038/nm973 contributor: fullname: Avecilla – volume: 36 start-page: 1143 year: 2008 ident: 10.1016/j.stem.2009.01.006_bib33 article-title: Bone marrow sinusoidal endothelial cells undergo nonapoptotic cell death and are replaced by proliferating sinusoidal cells in situ to maintain the vascular niche following lethal irradiation publication-title: Exp. Hematol. doi: 10.1016/j.exphem.2008.06.009 contributor: fullname: Li – volume: 107 start-page: 111 year: 2006 ident: 10.1016/j.stem.2009.01.006_bib5 article-title: Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors publication-title: Blood doi: 10.1182/blood-2005-05-1970 contributor: fullname: Ema – volume: 116 start-page: 3277 year: 2006 ident: 10.1016/j.stem.2009.01.006_bib17 article-title: Thrombospondins deployed by thrombopoietic cells determine angiogenic switch and extent of revascularization publication-title: J. Clin. Invest. doi: 10.1172/JCI29314 contributor: fullname: Kopp – volume: 25 start-page: 2945 year: 2007 ident: 10.1016/j.stem.2009.01.006_bib28 article-title: The Role of the Donor in the Repair of the Marrow Vascular Niche Following Hematopoietic Stem Cell Transplant publication-title: Stem Cells doi: 10.1634/stemcells.2007-0158 contributor: fullname: Slayton – volume: 65 start-page: 1163 year: 1985 ident: 10.1016/j.stem.2009.01.006_bib11 article-title: Identification of lectin-like substances recognizing galactosyl residues of glycoconjugates on the plasma membrane of marrow sinus endothelium publication-title: Blood doi: 10.1182/blood.V65.5.1163.1163 contributor: fullname: Kataoka – volume: 86 start-page: 3353 year: 1995 ident: 10.1016/j.stem.2009.01.006_bib24 article-title: Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors publication-title: Blood doi: 10.1182/blood.V86.9.3353.bloodjournal8693353 contributor: fullname: Rafii – volume: 126 start-page: 3015 year: 1999 ident: 10.1016/j.stem.2009.01.006_bib6 article-title: Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice publication-title: Development doi: 10.1242/dev.126.13.3015 contributor: fullname: Fong – volume: 97 start-page: 14 year: 2005 ident: 10.1016/j.stem.2009.01.006_bib22 article-title: Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/dji003 contributor: fullname: Pytowski – volume: 94 start-page: 4011 year: 1999 ident: 10.1016/j.stem.2009.01.006_bib20 article-title: Stromal derived factor-1-induced chemokinesis of cord blood CD34(+) cells (long-term culture-initiating cells) through endothelial cells is mediated by E-selectin publication-title: Blood doi: 10.1182/blood.V94.12.4011 contributor: fullname: Naiyer – volume: 25 start-page: 977 year: 2006 ident: 10.1016/j.stem.2009.01.006_bib29 article-title: Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches publication-title: Immunity doi: 10.1016/j.immuni.2006.10.016 contributor: fullname: Sugiyama – volume: 16 start-page: 1228 year: 2001 ident: 10.1016/j.stem.2009.01.006_bib4 article-title: Col1a1-driven transgenic markers of osteoblast lineage progression publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.2001.16.7.1228 contributor: fullname: Dacic – volume: 121 start-page: 1109 year: 2005 ident: 10.1016/j.stem.2009.01.006_bib13 article-title: SLAM Family Receptors Distinguish Hematopoietic Stem and Progenitor Cells and Reveal Endothelial Niches for Stem Cells publication-title: Cell doi: 10.1016/j.cell.2005.05.026 contributor: fullname: Kiel – volume: 102 start-page: 199 year: 2000 ident: 10.1016/j.stem.2009.01.006_bib30 article-title: A role for hematopoietic stem cells in promoting angiogenesis publication-title: Cell doi: 10.1016/S0092-8674(00)00025-8 contributor: fullname: Takakura – volume: 94 start-page: 663 year: 1997 ident: 10.1016/j.stem.2009.01.006_bib19 article-title: Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.2.663 contributor: fullname: Mohle – volume: 12 start-page: 657 year: 2006 ident: 10.1016/j.stem.2009.01.006_bib14 article-title: Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells publication-title: Nat. Med. doi: 10.1038/nm1417 contributor: fullname: Kollet – volume: 435 start-page: 969 year: 2005 ident: 10.1016/j.stem.2009.01.006_bib27 article-title: In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment publication-title: Nature doi: 10.1038/nature03703 contributor: fullname: Sipkins – volume: 20 start-page: 349 year: 2005 ident: 10.1016/j.stem.2009.01.006_bib15 article-title: The bone marrow vascular niche: home of HSC differentiation and mobilization publication-title: Physiology (Bethesda) contributor: fullname: Kopp – volume: 84 start-page: 10 year: 1994 ident: 10.1016/j.stem.2009.01.006_bib23 article-title: Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion publication-title: Blood doi: 10.1182/blood.V84.1.10.10 contributor: fullname: Rafii – volume: 376 start-page: 62 year: 1995 ident: 10.1016/j.stem.2009.01.006_bib26 article-title: Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice publication-title: Nature doi: 10.1038/376062a0 contributor: fullname: Shalaby – volume: 106 start-page: 505 year: 2005 ident: 10.1016/j.stem.2009.01.006_bib16 article-title: Tie-2 activation contributes to hemangiogenic regeneration after myelosuppression publication-title: Blood doi: 10.1182/blood-2004-11-4269 contributor: fullname: Kopp – volume: 507 start-page: 45 year: 2001 ident: 10.1016/j.stem.2009.01.006_bib8 article-title: Role of Flk-1 in mouse hematopoietic stem cells publication-title: FEBS Lett. doi: 10.1016/S0014-5793(01)02921-0 contributor: fullname: Haruta |
SSID | ssj0057107 |
Score | 2.5378501 |
Snippet | Myelosuppression damages the bone marrow (BM) vascular niche, but it is unclear how regeneration of bone marrow vessels contributes to engraftment of... The phenotypic attributes and molecular determinants for the regeneration of bone marrow (BM) sinusoidal endothelial cells (SECs) and their contribution to... |
SourceID | pubmedcentral proquest crossref pubmed pascalfrancis elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 263 |
SubjectTerms | Animals Ataxin-1 Ataxins Biological and medical sciences Blood Vessels - physiology Bone Marrow - blood supply Cell differentiation, maturation, development, hematopoiesis Cell physiology Endothelium, Vascular - cytology Endothelium, Vascular - drug effects Endothelium, Vascular - physiology Endothelium, Vascular - radiation effects Fundamental and applied biological sciences. Psychology Hematopoiesis Hematopoietic Stem Cell Transplantation Hematopoietic Stem Cells - cytology Hematopoietic Stem Cells - metabolism Hematopoietic Stem Cells - physiology Mice Mice, Knockout Molecular and cellular biology Nerve Tissue Proteins - biosynthesis Nuclear Proteins - biosynthesis Regeneration Sequence Deletion Signal Transduction STEMCELL Vascular Endothelial Growth Factor Receptor-2 - genetics Vascular Endothelial Growth Factor Receptor-2 - metabolism Whole-Body Irradiation |
Title | Engraftment and Reconstitution of Hematopoiesis Is Dependent on VEGFR2-Mediated Regeneration of Sinusoidal Endothelial Cells |
URI | https://dx.doi.org/10.1016/j.stem.2009.01.006 https://www.ncbi.nlm.nih.gov/pubmed/19265665 https://search.proquest.com/docview/883031546 https://pubmed.ncbi.nlm.nih.gov/PMC3228275 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLf2ISQkhPimjFU-cENWU8eJ7ePWteuAcWBs6i1yHHsEVU61tAck_nieY2esaHBAuSV5ie33_N7P8vP7IfROGUot-H1SCm0Jy4wmyvKc5BosyCZc04694fxzPr9kHxbZYgdN-rMwPq0y-v7g0ztvHe-M4miOVnU9ugDowTKZ-KtDCrto39cyB9PePzq--vipd8gZBFEeNpcZ8QLx7ExI8_LlkmPZyrFP8vpbfHq0Ui2Mmg10F_fh0T_TKu_EqdkT9DgCTHwU-vAU7Rj3DD0IlJM_nqOfU3d9o2yXW46Vq7Bff8aEAVARbiye-zKuzaqBNXTd4rMWn0Si3DWGF66mp7MvlJx3FB_Gy193lat76YvabdqmrqANU1f5811LMHE8Mctl-wJdzqZfJ3MSGRiIztNkTXJpOKVaVYyanBlpUp2ZysCcFQCr8lSVTAmRVyrnipVWSFapFAAYlYqWSvL0JdpzjTOvEYZlIaATZUquLBOpKa1R40qWhiZWj3U2QO_7cS9WodBG0WegfS-8ljxjpiyScQFaGqCsV02xZS4FRIJ_yg239Hj7qw4pCi4HCPeKLWCi-d0T5UyzaQshUs-IweAbr4Kef7dTUg-LoQ98ywJuX_A1vLefuPpbV8sb_KkAq33zn_05QA_D9pan6HiL9tY3G3MIKGldDuMsGKLds8XxLyYzFSU |
link.rule.ids | 230,314,780,784,885,3506,27569,27924,27925,45663,45874 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKK0QlhHh3eRQfuCFrs47jx7Esu2zpbg_0od4sx7FL0CpZNbsHJH4848QpLAIOKLckk9ie8cxneTwfQm-No9SD3ye5tJ6wzFlivOCEW7AgnwhLW_aGxSmfXbBPV9nVDhr3Z2FCWmX0_Z1Pb711vDOMozlcleXwDKAHy1QSrhYp3EF7gAY4GPve0fvLk3nvkDMIoqLbXGYkCMSzM12aVyiXHMtWjkKS19_i0_2VaWDUfEd38Sc8-nta5S9xavoQPYgAEx91fXiEdlz1GN3tKCe_PUHfJ9X1jfFtbjk2VYHD-jMmDICKcO3xLJRxrVc1rKHLBh83-EMkyl1jeOFy8nH6mZJFS_Hhgvx1W7m6lz4rq01TlwW0YVIV4XzXEkwcj91y2TxFF9PJ-XhGIgMDsTxN1oQrJyi1pmDUceaUS23mCgdzVgKs4qnJmZGSF4YLw3IvFStMCgCMKkNzo0T6DO1WdeUOEIZlIaAT43JhPJOpy70zo0Lljibejmw2QO_6cderrtCG7jPQvuqgpcCYqXQy0qClAcp61egtc9EQCf4pd7ilx9tftUhRCjVAuFeshokWdk9M5epNo6VMAyMGg2887_T8s52KBlgMfRBbFnD7Qqjhvf2kKr-0tbzBn0oqshf_2Z836N7sfDHX8-PTk5dov9vqCnQdr9Du-mbjXgNiWueHcUb8AKxXFwY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engraftment+and+Reconstitution+of+Hematopoiesis+Is+Dependent+on+VEGFR2-Mediated+Regeneration+of+Sinusoidal+Endothelial+Cells&rft.jtitle=Cell+stem+cell&rft.au=Hooper%2C+Andrea+T&rft.au=Butler%2C+Jason+M&rft.au=Nolan%2C+Daniel+J&rft.au=Kranz%2C+Andrea&rft.date=2009-03-06&rft.issn=1934-5909&rft.volume=4&rft.issue=3&rft.spage=263&rft.epage=274&rft_id=info:doi/10.1016%2Fj.stem.2009.01.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon |