Engraftment and Reconstitution of Hematopoiesis Is Dependent on VEGFR2-Mediated Regeneration of Sinusoidal Endothelial Cells

Myelosuppression damages the bone marrow (BM) vascular niche, but it is unclear how regeneration of bone marrow vessels contributes to engraftment of transplanted hematopoietic stem and progenitor cells (HSPCs) and restoration of hematopoiesis. We found that chemotherapy and sublethal irradiation in...

Full description

Saved in:
Bibliographic Details
Published inCell stem cell Vol. 4; no. 3; pp. 263 - 274
Main Authors Hooper, Andrea T., Butler, Jason M., Nolan, Daniel J., Kranz, Andrea, Iida, Kaoruko, Kobayashi, Mariko, Kopp, Hans-Georg, Shido, Koji, Petit, Isabelle, Yanger, Kilangsungla, James, Daylon, Witte, Larry, Zhu, Zhenping, Wu, Yan, Pytowski, Bronislaw, Rosenwaks, Zev, Mittal, Vivek, Sato, Thomas N., Rafii, Shahin
Format Journal Article
LanguageEnglish
Published Cambridge, MA Elsevier Inc 06.03.2009
Cell Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Myelosuppression damages the bone marrow (BM) vascular niche, but it is unclear how regeneration of bone marrow vessels contributes to engraftment of transplanted hematopoietic stem and progenitor cells (HSPCs) and restoration of hematopoiesis. We found that chemotherapy and sublethal irradiation induced minor regression of BM sinusoidal endothelial cells (SECs), while lethal irradiation induced severe regression of SECs and required BM transplantation (BMT) for regeneration. Within the BM, VEGFR2 expression specifically demarcated a continuous network of arterioles and SECs, with arterioles uniquely expressing Sca1 and SECs uniquely expressing VEGFR3. Conditional deletion of VEGFR2 in adult mice blocked regeneration of SECs in sublethally irradiated animals and prevented hematopoietic reconstitution. Similarly, inhibition of VEGFR2 signaling in lethally irradiated wild-type mice rescued with BMT severely impaired SEC reconstruction and prevented engraftment and reconstitution of HSPCs. Therefore, regeneration of SECs via VEGFR2 signaling is essential for engraftment of HSPCs and restoration of hematopoiesis.
AbstractList Myelosuppression damages the bone marrow (BM) vascular niche, but it is unclear how regeneration of bone marrow vessels contributes to engraftment of transplanted hematopoietic stem and progenitor cells (HSPCs) and restoration of hematopoiesis. We found that chemotherapy and sublethal irradiation induced minor regression of BM sinusoidal endothelial cells (SECs), while lethal irradiation induced severe regression of SECs and required BM transplantation (BMT) for regeneration. Within the BM, VEGFR2 expression specifically demarcated a continuous network of arterioles and SECs, with arterioles uniquely expressing Sca1 and SECs uniquely expressing VEGFR3. Conditional deletion of VEGFR2 in adult mice blocked regeneration of SECs in sublethally irradiated animals and prevented hematopoietic reconstitution. Similarly, inhibition of VEGFR2 signaling in lethally irradiated wild-type mice rescued with BMT severely impaired SEC reconstruction and prevented engraftment and reconstitution of HSPCs. Therefore, regeneration of SECs via VEGFR2 signaling is essential for engraftment of HSPCs and restoration of hematopoiesis.
The phenotypic attributes and molecular determinants for the regeneration of bone marrow (BM) sinusoidal endothelial cells (SECs) and their contribution to hematopoiesis are unknown. We show that after myelosuppression VEGFR2 activation promotes reassembly of regressed SECs, reconstituting hematopoietic stem and progenitor cells (HSPCs). VEGFR2 and VEGFR3 expression are restricted to BM vasculature, demarcating a continuous network of VEGFR2 + VEGFR3 + Sca1 − SECs and VEGFR2 + VEGFR3 − Sca1 + arterioles. While chemotherapy (5FU) and sublethal irradiation (650 rad) induce minor SEC regression, lethal irradiation (950 rad) induces severe regression of SECs requiring BM transplantation (BMT) for regeneration. Conditional deletion of VEGFR2 in adult mice blocks regeneration of SECs in sublethally irradiated animals, preventing hematopoietic reconstitution. Inhibition of VEGFR2 signaling in lethally irradiated wild type mice rescued with BMT severely impairs SEC reconstruction, preventing engraftment and reconstitution of HSPCs. Therefore, activation of VEGFR2 is critical for regeneration of VEGFR3 + Sca1 − SECs that are essential for engraftment and restoration of HSPCs and hematopoiesis.
Myelosuppression damages the bone marrow (BM) vascular niche, but it is unclear how regeneration of bone marrow vessels contributes to engraftment of transplanted hematopoietic stem and progenitor cells (HSPCs) and restoration of hematopoiesis. We found that chemotherapy and sublethal irradiation induced minor regression of BM sinusoidal endothelial cells (SECs), while lethal irradiation induced severe regression of SECs and required BM transplantation (BMT) for regeneration. Within the BM, VEGFR2 expression specifically demarcated a continuous network of arterioles and SECs, with arterioles uniquely expressing Sca1 and SECs uniquely expressing VEGFR3. Conditional deletion of VEGFR2 in adult mice blocked regeneration of SECs in sublethally irradiated animals and prevented hematopoietic reconstitution. Similarly, inhibition of VEGFR2 signaling in lethally irradiated wild-type mice rescued with BMT severely impaired SEC reconstruction and prevented engraftment and reconstitution of HSPCs. Therefore, regeneration of SECs via VEGFR2 signaling is essential for engraftment of HSPCs and restoration of hematopoiesis.
Author Rosenwaks, Zev
Sato, Thomas N.
Kranz, Andrea
Shido, Koji
Witte, Larry
Nolan, Daniel J.
Pytowski, Bronislaw
Rafii, Shahin
Butler, Jason M.
Kopp, Hans-Georg
Petit, Isabelle
Hooper, Andrea T.
Kobayashi, Mariko
Wu, Yan
Iida, Kaoruko
Zhu, Zhenping
Mittal, Vivek
Yanger, Kilangsungla
James, Daylon
AuthorAffiliation 4 Department of Surgery, Weill Cornell Medical College New York, NY 10065
3 ImClone Systems Incorporated, 180 Varick Street, New York, NY 10014
1 Howard Hughes Medical Institute, Ansary Stem Cell Institute, and Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
2 Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065
AuthorAffiliation_xml – name: 2 Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065
– name: 1 Howard Hughes Medical Institute, Ansary Stem Cell Institute, and Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
– name: 4 Department of Surgery, Weill Cornell Medical College New York, NY 10065
– name: 3 ImClone Systems Incorporated, 180 Varick Street, New York, NY 10014
Author_xml – sequence: 1
  givenname: Andrea T.
  surname: Hooper
  fullname: Hooper, Andrea T.
  organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA
– sequence: 2
  givenname: Jason M.
  surname: Butler
  fullname: Butler, Jason M.
  organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA
– sequence: 3
  givenname: Daniel J.
  surname: Nolan
  fullname: Nolan, Daniel J.
  organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA
– sequence: 4
  givenname: Andrea
  surname: Kranz
  fullname: Kranz, Andrea
  organization: Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
– sequence: 5
  givenname: Kaoruko
  surname: Iida
  fullname: Iida, Kaoruko
  organization: Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
– sequence: 6
  givenname: Mariko
  surname: Kobayashi
  fullname: Kobayashi, Mariko
  organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA
– sequence: 7
  givenname: Hans-Georg
  surname: Kopp
  fullname: Kopp, Hans-Georg
  organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA
– sequence: 8
  givenname: Koji
  surname: Shido
  fullname: Shido, Koji
  organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA
– sequence: 9
  givenname: Isabelle
  surname: Petit
  fullname: Petit, Isabelle
  organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA
– sequence: 10
  givenname: Kilangsungla
  surname: Yanger
  fullname: Yanger, Kilangsungla
  organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA
– sequence: 11
  givenname: Daylon
  surname: James
  fullname: James, Daylon
  organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA
– sequence: 12
  givenname: Larry
  surname: Witte
  fullname: Witte, Larry
  organization: ImClone Systems Incorporated, 180 Varick Street, New York, NY 10014, USA
– sequence: 13
  givenname: Zhenping
  surname: Zhu
  fullname: Zhu, Zhenping
  organization: ImClone Systems Incorporated, 180 Varick Street, New York, NY 10014, USA
– sequence: 14
  givenname: Yan
  surname: Wu
  fullname: Wu, Yan
  organization: ImClone Systems Incorporated, 180 Varick Street, New York, NY 10014, USA
– sequence: 15
  givenname: Bronislaw
  surname: Pytowski
  fullname: Pytowski, Bronislaw
  organization: ImClone Systems Incorporated, 180 Varick Street, New York, NY 10014, USA
– sequence: 16
  givenname: Zev
  surname: Rosenwaks
  fullname: Rosenwaks, Zev
  organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA
– sequence: 17
  givenname: Vivek
  surname: Mittal
  fullname: Mittal, Vivek
  organization: Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
– sequence: 18
  givenname: Thomas N.
  surname: Sato
  fullname: Sato, Thomas N.
  organization: Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
– sequence: 19
  givenname: Shahin
  surname: Rafii
  fullname: Rafii, Shahin
  email: srafii@med.cornell.edu
  organization: Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21839879$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19265665$$D View this record in MEDLINE/PubMed
BookMark eNp9kUuLFDEUhQsZcR76B1xIbcRVtXlUpRIQQdqeB4wI42Mbbie3etJUJT1JekCYHz9puh114yoX8p2Tc3NOqyMfPFbVa0pmlFDxfj1LGacZI0TNCJ0RIp5VJ1T2XaP6vj8qs-Jt0ymijqvTlNaEdD0l_YvqmComOiG6k-ph4VcRhjyhzzV4W9-gCT5ll7fZBV-Hob7ECXLYBIfJpfoq1Z9xg97uBAX4ubg4v2HNF7QOMu70K_QY4bf6m_PbFJyFsV54G_Itjq7McxzH9LJ6PsCY8NXhPKt-nC--zy-b668XV_NP140RnORGKOwZM2BbhqJFhdx0aFFwKRVTgsOyBSmFBdFDuxykai3wlndMAVuC6vlZ9XHvu9kuJ7SmRI8w6k10E8RfOoDT_954d6tX4V5zxiTru2Lw7mAQw90WU9aTS6asAB7DNmkpOeG0a0Uh2Z40MaQUcXh6hRK9a02v9a41vWtNE6pLa0X05u98fySHmgrw9gBAMjAOEbxx6YljVHIle1W4D3sOy2_eO4w6GYfelHIimqxtcP_L8QjlbLqm
CitedBy_id crossref_primary_10_1002_stem_1463
crossref_primary_10_1038_s41467_019_11490_5
crossref_primary_10_1182_blood_2013_02_487470
crossref_primary_10_1038_nm_3070
crossref_primary_10_1016_j_blre_2020_100771
crossref_primary_10_1038_s41598_020_79278_y
crossref_primary_10_1038_s41536_021_00129_z
crossref_primary_10_3389_fcell_2020_602269
crossref_primary_10_1038_ncb3570
crossref_primary_10_3389_fbioe_2019_00318
crossref_primary_10_1016_j_cell_2011_09_044
crossref_primary_10_1182_blood_2009_01_202606
crossref_primary_10_1097_MOH_0000000000000350
crossref_primary_10_1172_JCI97720
crossref_primary_10_1182_blood_2016_03_702803
crossref_primary_10_1016_j_bbamcr_2015_09_017
crossref_primary_10_1016_j_jtbi_2018_12_029
crossref_primary_10_1038_nature17638
crossref_primary_10_1016_j_devcel_2017_07_012
crossref_primary_10_7554_eLife_05521
crossref_primary_10_1016_j_stem_2023_03_005
crossref_primary_10_1016_j_ydbio_2019_11_016
crossref_primary_10_1177_0271678X19895245
crossref_primary_10_1038_s41467_023_36906_1
crossref_primary_10_1038_s41467_022_28175_1
crossref_primary_10_1038_nature17624
crossref_primary_10_1158_0008_5472_CAN_10_1708
crossref_primary_10_1038_nature13145
crossref_primary_10_1016_j_stem_2019_10_006
crossref_primary_10_1093_bmb_ldt031
crossref_primary_10_1016_j_transproceed_2012_03_064
crossref_primary_10_1016_j_exphem_2019_10_003
crossref_primary_10_3390_ijms23031125
crossref_primary_10_1002_eji_201445405
crossref_primary_10_3390_diagnostics12071639
crossref_primary_10_1667_RADE_20_00113_1
crossref_primary_10_3389_fphys_2021_624928
crossref_primary_10_3727_096368912X657288
crossref_primary_10_1038_emboj_2011_465
crossref_primary_10_1002_jnr_23744
crossref_primary_10_1182_blood_2016_09_670224
crossref_primary_10_1111_cas_15594
crossref_primary_10_1182_blood_2010_06_291716
crossref_primary_10_1038_emm_2014_72
crossref_primary_10_1016_j_celrep_2017_12_070
crossref_primary_10_4103_ejim_ejim_68_19
crossref_primary_10_1182_blood_2010_02_261388
crossref_primary_10_1111_bjh_13335
crossref_primary_10_15252_emmm_201607341
crossref_primary_10_1016_j_stem_2009_05_011
crossref_primary_10_1182_bloodadvances_2017008730
crossref_primary_10_1038_nm_4251
crossref_primary_10_3390_ijms21010251
crossref_primary_10_1016_j_immuni_2018_03_024
crossref_primary_10_2478_ahp_2018_0018
crossref_primary_10_3389_fcell_2021_645496
crossref_primary_10_1016_j_bbmt_2014_03_019
crossref_primary_10_1016_j_pharmthera_2016_09_006
crossref_primary_10_1002_jcp_21897
crossref_primary_10_1038_nm_3155
crossref_primary_10_1182_blood_2010_05_282855
crossref_primary_10_1172_JCI60238
crossref_primary_10_1002_stem_2870
crossref_primary_10_1007_s40778_021_00198_2
crossref_primary_10_1038_srep36411
crossref_primary_10_1182_blood_2010_03_275404
crossref_primary_10_1134_S0026893319060025
crossref_primary_10_1186_s13287_021_02352_3
crossref_primary_10_5966_sctm_2013_0166
crossref_primary_10_1111_j_1749_6632_2009_04964_x
crossref_primary_10_1089_ars_2012_5019
crossref_primary_10_1016_j_devcel_2023_04_007
crossref_primary_10_1161_ATVBAHA_123_319266
crossref_primary_10_1016_j_ddstr_2009_06_003
crossref_primary_10_3892_ol_2016_5411
crossref_primary_10_1016_j_stem_2019_11_007
crossref_primary_10_1038_nature15250
crossref_primary_10_1371_journal_pone_0067861
crossref_primary_10_1186_s41232_023_00267_5
crossref_primary_10_1111_j_1365_2141_2012_09050_x
crossref_primary_10_3389_fphys_2015_00367
crossref_primary_10_1097_MOH_0b013e3283476140
crossref_primary_10_1667_RR14445_1
crossref_primary_10_1371_journal_pone_0110987
crossref_primary_10_1016_j_devcel_2013_06_017
crossref_primary_10_1016_j_bone_2018_04_022
crossref_primary_10_1182_blood_2015_07_533588
crossref_primary_10_1038_nature12085
crossref_primary_10_2139_ssrn_4052011
crossref_primary_10_1007_s00109_013_1002_8
crossref_primary_10_1155_2018_1943980
crossref_primary_10_1097_MOH_0000000000000055
crossref_primary_10_1038_s41467_023_37783_4
crossref_primary_10_1016_j_exphem_2014_08_003
crossref_primary_10_1161_CIRCULATIONAHA_122_061900
crossref_primary_10_1016_j_stem_2018_07_003
crossref_primary_10_1182_blood_2011_09_377457
crossref_primary_10_3389_fimmu_2020_01745
crossref_primary_10_1016_j_cbi_2017_05_014
crossref_primary_10_1016_j_celrep_2016_10_025
crossref_primary_10_3389_fphys_2020_591901
crossref_primary_10_1073_pnas_1019656108
crossref_primary_10_1093_jrr_rrx015
crossref_primary_10_1016_j_semcancer_2010_05_006
crossref_primary_10_1038_leu_2014_109
crossref_primary_10_1172_JCI76838
crossref_primary_10_5966_sctm_2013_0134
crossref_primary_10_1038_nm_4448
crossref_primary_10_1007_s00018_014_1813_y
crossref_primary_10_1667_RR14444_1
crossref_primary_10_1016_j_transci_2024_103935
crossref_primary_10_1182_blood_2010_12_324954
crossref_primary_10_1002_stem_1626
crossref_primary_10_1002_bies_201700190
crossref_primary_10_1182_blood_2014_01_547638
crossref_primary_10_1038_s41467_018_06881_z
crossref_primary_10_1016_j_celrep_2023_112777
crossref_primary_10_1182_blood_2010_01_266833
crossref_primary_10_3390_ijms17040553
crossref_primary_10_1038_nature11926
crossref_primary_10_1007_s40778_020_00181_3
crossref_primary_10_1182_blood_2009_08_240580
crossref_primary_10_3389_fcell_2021_663316
crossref_primary_10_1182_blood_2023023788
crossref_primary_10_1016_j_diff_2013_05_001
crossref_primary_10_1016_j_stem_2010_02_001
crossref_primary_10_1038_nri_2017_53
crossref_primary_10_3389_fimmu_2022_911174
crossref_primary_10_1038_emboj_2012_337
crossref_primary_10_5966_sctm_2014_0154
crossref_primary_10_1111_cei_13654
crossref_primary_10_1016_j_cell_2019_04_040
crossref_primary_10_1016_j_celrep_2023_112528
crossref_primary_10_1089_scd_2014_0005
crossref_primary_10_1016_j_celrep_2020_107572
crossref_primary_10_3390_toxics10120747
crossref_primary_10_1038_nrrheum_2015_160
crossref_primary_10_1038_emboj_2012_308
crossref_primary_10_1080_21541248_2021_1882832
crossref_primary_10_1016_j_exphem_2019_07_006
crossref_primary_10_1038_nprot_2015_125
crossref_primary_10_1038_nm_2119
crossref_primary_10_1186_s12916_022_02338_9
crossref_primary_10_1002_stem_2731
crossref_primary_10_1128_MCB_01035_15
crossref_primary_10_2492_inflammregen_33_013
crossref_primary_10_1016_j_bbagen_2012_08_023
crossref_primary_10_3389_fcell_2021_635189
crossref_primary_10_1126_sciimmunol_aal2736
crossref_primary_10_1016_j_celrep_2012_09_002
crossref_primary_10_2174_1381612825666190329153626
crossref_primary_10_1182_blood_2010_08_303800
crossref_primary_10_1016_j_exphem_2012_10_003
crossref_primary_10_1007_s00277_010_1058_2
crossref_primary_10_1016_j_stemcr_2014_12_013
crossref_primary_10_1186_s13287_024_03734_z
crossref_primary_10_1182_blood_2019000721
crossref_primary_10_1038_bmt_2015_229
crossref_primary_10_1016_j_addr_2015_10_010
crossref_primary_10_1021_acsptsci_0c00020
crossref_primary_10_1038_nature17040
crossref_primary_10_1371_journal_pbio_2003389
crossref_primary_10_3390_children8050371
crossref_primary_10_1172_JCI41158
crossref_primary_10_1016_j_actaastro_2021_08_031
crossref_primary_10_3390_cancers2020970
crossref_primary_10_1007_s40778_020_00185_z
crossref_primary_10_1186_s13048_017_0354_z
crossref_primary_10_1038_leu_2011_236
crossref_primary_10_1155_2014_128436
crossref_primary_10_1242_dev_200654
crossref_primary_10_1007_s00109_021_02155_2
crossref_primary_10_1098_rsob_190144
crossref_primary_10_1182_bloodadvances_2016003194
crossref_primary_10_1007_s40778_018_0143_7
crossref_primary_10_1186_s12929_020_00685_4
crossref_primary_10_1093_intimm_dxaa008
crossref_primary_10_1016_j_ajpath_2012_08_030
crossref_primary_10_1016_j_devcel_2022_12_013
crossref_primary_10_1155_2018_6740408
crossref_primary_10_1016_j_stem_2010_01_011
crossref_primary_10_1111_acel_13889
crossref_primary_10_1002_stem_1936
crossref_primary_10_1002_jcb_27589
crossref_primary_10_1016_j_arcmed_2012_03_005
crossref_primary_10_1002_stem_2901
crossref_primary_10_1038_s41596_018_0060_3
crossref_primary_10_1038_ncb2108
crossref_primary_10_1016_j_bbmt_2013_02_012
crossref_primary_10_1016_j_stemcr_2015_08_018
crossref_primary_10_1097_MOH_0000000000000587
crossref_primary_10_1002_stem_776
crossref_primary_10_1016_j_devcel_2021_10_020
crossref_primary_10_1016_j_ajpath_2021_11_003
crossref_primary_10_1182_bloodadvances_2018029454
crossref_primary_10_3389_fcell_2021_770705
crossref_primary_10_1038_nm_3647
crossref_primary_10_1038_s44161_021_00002_8
crossref_primary_10_7554_eLife_69894
crossref_primary_10_1016_j_exphem_2010_08_004
crossref_primary_10_1371_journal_pone_0125065
crossref_primary_10_1016_j_beha_2019_02_001
crossref_primary_10_5966_sctm_2016_0240
crossref_primary_10_1038_s12276_020_0477_y
crossref_primary_10_1038_s41375_022_01715_w
crossref_primary_10_1039_C4BM00200H
crossref_primary_10_1016_j_bbrc_2016_08_017
crossref_primary_10_1016_j_freeradbiomed_2018_12_021
crossref_primary_10_1186_1755_1536_5_S1_S20
crossref_primary_10_1097_MOH_0000000000000347
crossref_primary_10_1007_s40778_018_0132_x
crossref_primary_10_1038_nm_2545
crossref_primary_10_5966_sctm_2016_0254
crossref_primary_10_1111_acel_12897
crossref_primary_10_1038_s41556_023_01240_7
crossref_primary_10_1161_CIRCRESAHA_120_315895
crossref_primary_10_1146_annurev_immunol_032712_095919
crossref_primary_10_1016_j_devcel_2021_05_018
crossref_primary_10_1007_s00018_015_2064_2
crossref_primary_10_1158_0008_5472_CAN_14_3379
crossref_primary_10_1038_s41467_018_04726_3
crossref_primary_10_1016_j_ccell_2017_08_001
crossref_primary_10_3390_ijms23084462
crossref_primary_10_1016_j_stem_2013_10_010
crossref_primary_10_1016_j_ajps_2023_100868
crossref_primary_10_1084_jem_20192283
crossref_primary_10_1038_nature12984
crossref_primary_10_1007_s11427_015_4960_y
crossref_primary_10_1111_joa_12479
crossref_primary_10_2139_ssrn_3969389
crossref_primary_10_1186_s13045_020_00994_z
crossref_primary_10_1016_j_celrep_2013_07_048
crossref_primary_10_1016_j_semcdb_2020_05_014
crossref_primary_10_1242_dev_139691
crossref_primary_10_1158_0008_5472_CAN_14_3023
crossref_primary_10_1097_MOH_0b013e32833a25d8
crossref_primary_10_1146_annurev_pathol_012615_044414
crossref_primary_10_1016_j_pharmthera_2016_06_001
crossref_primary_10_1038_nature12612
crossref_primary_10_1016_j_pharmthera_2010_10_002
crossref_primary_10_1016_j_jams_2018_03_003
crossref_primary_10_1038_srep30779
crossref_primary_10_1111_nyas_12329
crossref_primary_10_1096_fj_202200862R
crossref_primary_10_1161_ATVBAHA_113_302586
crossref_primary_10_1186_s13045_021_01133_y
crossref_primary_10_1002_jca_21277
crossref_primary_10_1002_stem_453
crossref_primary_10_1016_j_exphem_2021_11_003
crossref_primary_10_1007_s00018_021_03977_6
crossref_primary_10_3389_fcell_2017_00062
crossref_primary_10_1182_blood_2020005699
crossref_primary_10_7554_eLife_67793
crossref_primary_10_1016_j_cell_2014_12_032
crossref_primary_10_1182_blood_2016_08_734210
crossref_primary_10_3389_fcell_2023_1325291
crossref_primary_10_1111_j_1538_7836_2011_04571_x
crossref_primary_10_3389_fimmu_2016_00689
crossref_primary_10_1038_nri2726
crossref_primary_10_1186_s13287_021_02380_z
crossref_primary_10_4061_2011_375857
crossref_primary_10_7554_eLife_33670
crossref_primary_10_1016_j_neo_2015_04_001
crossref_primary_10_1111_imr_13120
crossref_primary_10_1073_pnas_1423278112
crossref_primary_10_1667_RR14461_1
crossref_primary_10_1007_s11427_022_2310_x
crossref_primary_10_1038_s41556_023_01242_5
crossref_primary_10_3324_haematol_2021_279756
crossref_primary_10_1038_s41556_019_0444_9
crossref_primary_10_1084_jem_20161616
crossref_primary_10_1016_j_mvr_2014_10_008
crossref_primary_10_1038_s41586_019_1104_8
crossref_primary_10_1155_2011_570796
crossref_primary_10_1016_j_cell_2014_02_013
crossref_primary_10_1182_blood_2015_08_663708
crossref_primary_10_1182_blood_2018_10_844571
crossref_primary_10_1016_j_celrep_2021_109618
crossref_primary_10_1371_journal_pone_0168173
crossref_primary_10_1371_journal_pone_0055095
crossref_primary_10_3390_ijms25084430
crossref_primary_10_1038_nbt_4006
crossref_primary_10_3390_cells10081849
crossref_primary_10_1038_nm_2859
crossref_primary_10_1371_journal_pone_0026918
crossref_primary_10_1016_j_stem_2017_11_006
crossref_primary_10_3390_ijms21020539
crossref_primary_10_1002_cyto_b_21066
crossref_primary_10_1002_dvdy_24483
crossref_primary_10_1038_s41409_019_0766_z
crossref_primary_10_1111_bjh_18563
crossref_primary_10_1016_j_devcel_2018_12_002
crossref_primary_10_3389_fimmu_2019_00387
crossref_primary_10_3390_cells8020155
crossref_primary_10_1038_d41586_021_03550_y
crossref_primary_10_1016_j_stemcr_2019_04_023
crossref_primary_10_1038_s41467_018_04770_z
crossref_primary_10_1126_sciadv_abd2575
crossref_primary_10_1016_j_semcdb_2021_06_025
crossref_primary_10_1038_nature09493
crossref_primary_10_1016_j_canlet_2015_05_010
crossref_primary_10_1667_RR15361_1
crossref_primary_10_1002_eji_201747378
crossref_primary_10_1038_ncb2730
crossref_primary_10_1002_ajh_25056
crossref_primary_10_1038_s44161_022_00147_0
crossref_primary_10_1016_j_isci_2023_107548
crossref_primary_10_3390_ijms21030796
crossref_primary_10_1038_s12276_024_01192_4
crossref_primary_10_1161_CIRCRESAHA_123_322607
crossref_primary_10_3390_ijms17071162
crossref_primary_10_1097_MOH_0000000000000508
crossref_primary_10_1155_2012_270425
crossref_primary_10_1182_asheducation_2011_1_1
crossref_primary_10_1016_j_yexcr_2020_111954
crossref_primary_10_1182_blood_2014_09_570192
crossref_primary_10_1093_nar_gkae472
crossref_primary_10_1172_JCI93940
crossref_primary_10_3389_fonc_2022_840044
crossref_primary_10_1084_jem_20161721
crossref_primary_10_3389_fcell_2020_599281
crossref_primary_10_1186_2045_3701_1_33
crossref_primary_10_1002_stem_3174
crossref_primary_10_1016_j_canlet_2024_216937
crossref_primary_10_3324_haematol_2019_243998
crossref_primary_10_1073_pnas_1702576114
crossref_primary_10_1177_2041731417725464
crossref_primary_10_1038_s41409_022_01728_0
crossref_primary_10_1038_s41568_020_0263_0
crossref_primary_10_1016_j_biomaterials_2022_121568
crossref_primary_10_1038_nprot_2010_168
crossref_primary_10_1093_cvr_cvy308
crossref_primary_10_1016_j_bbmt_2013_07_014
crossref_primary_10_1016_j_stemcr_2022_06_004
crossref_primary_10_1172_JCI92309
crossref_primary_10_1371_journal_pone_0060357
crossref_primary_10_1038_ncomms13829
crossref_primary_10_1016_j_autneu_2017_06_003
crossref_primary_10_1128_MCB_01287_12
crossref_primary_10_1007_s12015_024_10703_9
crossref_primary_10_1080_10428194_2016_1201566
crossref_primary_10_1016_j_canlet_2014_08_027
crossref_primary_10_1038_s44161_022_00061_5
crossref_primary_10_1016_j_leukres_2012_05_026
crossref_primary_10_1053_j_seminhematol_2018_08_004
crossref_primary_10_1007_s40778_019_0152_1
crossref_primary_10_1007_s00018_015_1907_1
crossref_primary_10_1084_jem_20200817
crossref_primary_10_1038_s41588_023_01528_2
crossref_primary_10_1186_s12967_015_0761_0
crossref_primary_10_1371_journal_pone_0195082
crossref_primary_10_1089_scd_2010_0453
crossref_primary_10_1016_j_stemcr_2016_05_009
crossref_primary_10_1172_JCI153626
crossref_primary_10_1016_j_ccr_2014_04_015
crossref_primary_10_1038_nature13547
crossref_primary_10_3389_fimmu_2020_585402
crossref_primary_10_1002_jbmr_4171
crossref_primary_10_1007_s12672_023_00616_3
crossref_primary_10_1016_j_stem_2009_02_005
crossref_primary_10_1016_j_bcmd_2013_08_005
crossref_primary_10_1161_CIRCRESAHA_123_322767
crossref_primary_10_1111_nyas_13016
crossref_primary_10_1111_bjh_15000
crossref_primary_10_1111_nyas_13013
crossref_primary_10_1016_j_it_2013_10_002
crossref_primary_10_1016_j_scr_2013_07_001
crossref_primary_10_1038_s43587_022_00244_6
crossref_primary_10_3389_fcell_2021_660617
crossref_primary_10_1016_j_it_2011_03_009
crossref_primary_10_1038_s41556_020_00601_w
crossref_primary_10_1016_j_isci_2022_104225
crossref_primary_10_1080_15384101_2015_1026513
crossref_primary_10_1016_j_kint_2017_02_033
crossref_primary_10_1016_j_exphem_2017_08_003
crossref_primary_10_1016_j_stem_2010_11_030
crossref_primary_10_1038_srep44097
crossref_primary_10_3389_fphys_2023_1148414
crossref_primary_10_1080_09553002_2019_1644932
crossref_primary_10_1073_pnas_1208384109
crossref_primary_10_1007_s00223_013_9805_8
crossref_primary_10_1172_jci_insight_145295
crossref_primary_10_1007_s00277_013_1759_4
crossref_primary_10_1523_JNEUROSCI_2810_14_2015
crossref_primary_10_3389_fcell_2021_621214
crossref_primary_10_1371_journal_pone_0104607
crossref_primary_10_1093_jb_mvu031
crossref_primary_10_1038_srep19404
crossref_primary_10_3389_fimmu_2021_768439
crossref_primary_10_1038_ncomms15926
crossref_primary_10_1146_annurev_cellbio_111315_124936
crossref_primary_10_1038_s42003_021_01846_3
crossref_primary_10_1038_s42003_022_03733_x
crossref_primary_10_1002_jcp_28326
crossref_primary_10_1007_s10456_017_9577_2
crossref_primary_10_1155_2017_5046953
crossref_primary_10_2139_ssrn_3970227
crossref_primary_10_1038_nrc2791
crossref_primary_10_1016_j_cbi_2010_10_008
crossref_primary_10_1016_j_pharmthera_2016_11_006
crossref_primary_10_1016_j_cell_2011_10_003
crossref_primary_10_1016_j_jcyt_2022_07_006
crossref_primary_10_1182_blood_2011_01_332890
crossref_primary_10_1016_j_critrevonc_2019_01_024
crossref_primary_10_1016_j_bbrc_2017_06_023
crossref_primary_10_1182_asheducation_2014_1_71
crossref_primary_10_1371_journal_pone_0065720
crossref_primary_10_1186_s12964_020_00683_x
crossref_primary_10_3389_fimmu_2024_1405210
crossref_primary_10_1242_dev_065953
crossref_primary_10_3390_ijms24010563
crossref_primary_10_2967_jnumed_120_244681
crossref_primary_10_1038_s41598_019_44039_z
crossref_primary_10_1002_stem_1370
crossref_primary_10_1016_j_stem_2021_12_009
crossref_primary_10_1038_cdd_2014_89
crossref_primary_10_1186_1479_5876_11_94
crossref_primary_10_1242_jcs_074112
crossref_primary_10_1138_20110495
crossref_primary_10_3390_biom11010122
crossref_primary_10_1038_s41568_020_0245_2
crossref_primary_10_1016_j_stem_2010_11_021
crossref_primary_10_1084_jem_20192070
crossref_primary_10_1111_j_1749_6632_2012_06481_x
crossref_primary_10_1172_JCI94668
crossref_primary_10_1038_leu_2017_155
crossref_primary_10_1089_ars_2013_5635
crossref_primary_10_1038_s41467_020_14478_8
crossref_primary_10_1080_19490976_2024_2350784
crossref_primary_10_1016_j_stem_2009_10_014
crossref_primary_10_1007_s12307_012_0114_y
crossref_primary_10_1084_jem_20211789
crossref_primary_10_1097_MOH_0b013e3283475fe7
crossref_primary_10_1016_j_cell_2014_09_025
crossref_primary_10_1038_s41467_021_27263_y
crossref_primary_10_1182_blood_2017_12_768986
crossref_primary_10_1002_wdev_279
crossref_primary_10_1182_bloodadvances_2021004640
crossref_primary_10_1002_jcp_27785
crossref_primary_10_1016_j_mehy_2013_02_005
crossref_primary_10_3324_haematol_2022_282472
crossref_primary_10_1667_RR14436_1
crossref_primary_10_1007_s00109_017_1559_8
crossref_primary_10_1002_jca_21369
crossref_primary_10_1182_blood_2010_11_320564
crossref_primary_10_1002_stem_1275
crossref_primary_10_1182_blood_2011_01_315069
crossref_primary_10_1186_s12865_016_0167_7
crossref_primary_10_1084_jem_20210565
crossref_primary_10_1016_j_bbagen_2012_10_004
crossref_primary_10_1016_j_ccell_2017_08_012
crossref_primary_10_3389_fmed_2021_760236
crossref_primary_10_1007_s12013_012_9387_5
crossref_primary_10_1016_j_ijrobp_2023_02_007
crossref_primary_10_1016_j_jconrel_2021_09_018
crossref_primary_10_1002_stem_2487
crossref_primary_10_1016_j_devcel_2020_06_006
crossref_primary_10_1182_blood_2009_05_219840
Cites_doi 10.1016/S0092-8674(02)00754-7
10.1038/nature07083
10.1038/nature02040
10.1016/j.cell.2007.06.054
10.1038/nature00821
10.1016/j.immuni.2006.11.005
10.1016/j.stem.2007.10.020
10.1038/nature02041
10.1038/nm740
10.1038/ni1571
10.1016/j.cell.2004.07.004
10.1038/nm973
10.1016/j.exphem.2008.06.009
10.1182/blood-2005-05-1970
10.1172/JCI29314
10.1634/stemcells.2007-0158
10.1182/blood.V65.5.1163.1163
10.1182/blood.V86.9.3353.bloodjournal8693353
10.1242/dev.126.13.3015
10.1093/jnci/dji003
10.1182/blood.V94.12.4011
10.1016/j.immuni.2006.10.016
10.1359/jbmr.2001.16.7.1228
10.1016/j.cell.2005.05.026
10.1016/S0092-8674(00)00025-8
10.1073/pnas.94.2.663
10.1038/nm1417
10.1038/nature03703
10.1182/blood.V84.1.10.10
10.1038/376062a0
10.1182/blood-2004-11-4269
10.1016/S0014-5793(01)02921-0
ContentType Journal Article
Copyright 2009 Elsevier Inc.
2009 INIST-CNRS
2009 ll Press. All rights reserved. 2009
Copyright_xml – notice: 2009 Elsevier Inc.
– notice: 2009 INIST-CNRS
– notice: 2009 ll Press. All rights reserved. 2009
DBID 6I.
AAFTH
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7T5
8FD
FR3
H94
P64
5PM
DOI 10.1016/j.stem.2009.01.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Immunology Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList AIDS and Cancer Research Abstracts


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1875-9777
EndPage 274
ExternalDocumentID 10_1016_j_stem_2009_01_006
19265665
21839879
S1934590909000095
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: P01 HL059312-090006
– fundername: NHLBI NIH HHS
  grantid: R01 HL061849-03
– fundername: NHLBI NIH HHS
  grantid: P01 HL067839-050004
– fundername: Howard Hughes Medical Institute
– fundername: NHLBI NIH HHS
  grantid: R21 HL083222
– fundername: NHLBI NIH HHS
  grantid: R01 HL058707-04
– fundername: NHLBI NIH HHS
  grantid: R01 HL097797-01
– fundername: NHLBI NIH HHS
  grantid: R01 HL075234-02
– fundername: NHLBI NIH HHS
  grantid: R21 HL083222-01
– fundername: NHLBI NIH HHS
  grantid: R01 HL061849-03S1
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL061849-04 || HL
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: P50 HL084936-020003 || HL
– fundername: Howard Hughes Medical Institute :
  grantid: || HHMI_
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: P01 HL059312-090006 || HL
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL075234-04 || HL
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: P01 HL072942-010004 || HL
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: U01 HL066952-010002 || HL
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: U01 HL066952-020002 || HL
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL058707-04 || HL
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL097797-01 || HL
GroupedDBID ---
--K
0R~
29B
2WC
4.4
457
4G.
53G
5GY
5VS
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AALRI
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
HZ~
IHE
IXB
JIG
M41
NCXOZ
O-L
O9-
OK1
OZT
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
WQ6
ZA5
ZBA
IQODW
0SF
AAMRU
ADVLN
AKAPO
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7T5
8FD
FR3
H94
P64
5PM
ID FETCH-LOGICAL-c630t-69e722cad42e64e9e3c5ede638892963ab4a886da67a4bf894da343529a2ba973
IEDL.DBID ABVKL
ISSN 1934-5909
IngestDate Tue Sep 17 20:57:31 EDT 2024
Thu Oct 24 22:23:26 EDT 2024
Thu Sep 26 16:25:01 EDT 2024
Sat Sep 28 08:22:51 EDT 2024
Sun Oct 22 16:06:28 EDT 2023
Fri Feb 23 02:30:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords STEMCELL
Engraftment
Regeneration
Endothelial cell
Vascular endothelial growth factor receptor 2
Hematopoiesis
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-69e722cad42e64e9e3c5ede638892963ab4a886da67a4bf894da343529a2ba973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1934590909000095
PMID 19265665
PQID 883031546
PQPubID 23462
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3228275
proquest_miscellaneous_883031546
crossref_primary_10_1016_j_stem_2009_01_006
pubmed_primary_19265665
pascalfrancis_primary_21839879
elsevier_sciencedirect_doi_10_1016_j_stem_2009_01_006
PublicationCentury 2000
PublicationDate 2009-03-06
PublicationDateYYYYMMDD 2009-03-06
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03-06
  day: 06
PublicationDecade 2000
PublicationPlace Cambridge, MA
PublicationPlace_xml – name: Cambridge, MA
– name: United States
PublicationTitle Cell stem cell
PublicationTitleAlternate Cell Stem Cell
PublicationYear 2009
Publisher Elsevier Inc
Cell Press
Publisher_xml – name: Elsevier Inc
– name: Cell Press
References Kopp, Hooper, Broekman, Avecilla, Petit, Luo, Milde, Ramos, Zhang, Kopp (bib17) 2006; 116
Sugiyama, Kohara, Noda, Nagasawa (bib29) 2006; 25
Kataoka, Tavassoli (bib11) 1985; 65
Pytowski, Goldman, Persaud, Wu, Witte, Hicklin, Skobe, Boardman, Swartz (bib22) 2005; 97
Fong, Zhang, Bryce, Peng (bib6) 1999; 126
Kollet, Dar, Shivtiel, Kalinkovich, Lapid, Sztainberg, Tesio, Samstein, Goichberg, Spiegel (bib14) 2006; 12
Naiyer, Jo, Ahn, Mohle, Peichev, Lam, Silverstein, Moore, Rafii (bib20) 1999; 94
Yoshihara, Arai, Hosokawa, Hagiwara, Takubo, Nakamura, Gomei, Iwasaki, Matsuoka, Miyamoto (bib34) 2007; 1
Zhang, Niu, Ye, Huang, He, Tong, Ross, Haug, Johnson, Feng (bib32) 2003; 425
Sapoznikov, Pewzner-Jung, Kalchenko, Krauthgamer, Shachar, Jung (bib25) 2008; 9
Dacic, Kalajzic, Visnjic, Lichtler, Rowe (bib4) 2001; 16
Kopp, Avecilla, Hooper, Rafii (bib15) 2005; 20
Arai, Hirao, Ohmura, Sato, Matsuoka, Takubo, Ito, Koh, Suda (bib1) 2004; 118
Kopp, Avecilla, Hooper, Shmelkov, Ramos, Zhang, Rafii (bib16) 2005; 106
Shalaby, Rossant, Yamaguchi, Gertsenstein, Wu, Breitman, Schuh (bib26) 1995; 376
Takakura, Watanabe, Suenobu, Yamada, Noda, Ito, Satake, Suda (bib30) 2000; 102
Mohle, Green, Moore, Nachman, Rafii (bib19) 1997; 94
Gerber, Malik, Solar, Sherman, Liang, Meng, Hong, Marsters, Ferrara (bib7) 2002; 417
Avecilla, Hattori, Heissig, Tejada, Liao, Shido, Jin, Dias, Zhang, Hartman (bib2) 2004; 10
Kiel, Yilmaz, Iwashita, Terhorst, Morrison (bib13) 2005; 121
Tammela, Zarkada, Wallgard, Murtomaki, Suchting, Wirzenius, Waltari, Hellstrom, Schomber, Peltonen (bib31) 2008; 454
Haruta, Nagata, Todokoro (bib8) 2001; 507
Sipkins, Wei, Wu, Runnels, Cote, Means, Luster, Scadden, Lin (bib27) 2005; 435
Rafii, Shapiro, Rimarachin, Nachman, Ferris, Weksler, Moore, Asch (bib23) 1994; 84
Lee, Chen, Barber, Jordan, Murdock, Desai, Ferrara, Nagy, Roos, Iruela-Arispe (bib18) 2007; 130
Slayton, Li, Butler, Guthrie, Jorgensen, Wingard, Scott (bib28) 2007; 25
Heissig, Hattori, Dias, Friedrich, Ferris, Hackett, Crystal, Besmer, Lyden, Moore (bib10) 2002; 109
Hattori, Heissig, Wu, Dias, Tejada, Ferris, Hicklin, Zhu, Bohlen, Witte (bib9) 2002; 8
Prewett, Huber, Li, Santiago, O'Connor, King, Overholser, Hooper, Pytowski, Witte (bib21) 1999; 59
Ema, Takahashi, Rossant (bib5) 2006; 107
Li, Hu, Jorgensen, Wingard, Slayton (bib33) 2008; 36
Rafii, Shapiro, Pettengell, Ferris, Nachman, Moore, Asch (bib24) 1995; 86
Calvi, Adams, Weibrecht, Weber, Olson, Knight, Martin, Schipani, Divieti, Bringhurst (bib3) 2003; 425
Kiel, Morrison (bib12) 2006; 25
19265650 - Cell Stem Cell. 2009 Mar 6;4(3):187-8
Heissig (10.1016/j.stem.2009.01.006_bib10) 2002; 109
Kiel (10.1016/j.stem.2009.01.006_bib13) 2005; 121
Avecilla (10.1016/j.stem.2009.01.006_bib2) 2004; 10
Pytowski (10.1016/j.stem.2009.01.006_bib22) 2005; 97
Tammela (10.1016/j.stem.2009.01.006_bib31) 2008; 454
Calvi (10.1016/j.stem.2009.01.006_bib3) 2003; 425
Kopp (10.1016/j.stem.2009.01.006_bib16) 2005; 106
Yoshihara (10.1016/j.stem.2009.01.006_bib34) 2007; 1
Dacic (10.1016/j.stem.2009.01.006_bib4) 2001; 16
Rafii (10.1016/j.stem.2009.01.006_bib24) 1995; 86
Sugiyama (10.1016/j.stem.2009.01.006_bib29) 2006; 25
Arai (10.1016/j.stem.2009.01.006_bib1) 2004; 118
Naiyer (10.1016/j.stem.2009.01.006_bib20) 1999; 94
Lee (10.1016/j.stem.2009.01.006_bib18) 2007; 130
Rafii (10.1016/j.stem.2009.01.006_bib23) 1994; 84
Zhang (10.1016/j.stem.2009.01.006_bib32) 2003; 425
Kollet (10.1016/j.stem.2009.01.006_bib14) 2006; 12
Shalaby (10.1016/j.stem.2009.01.006_bib26) 1995; 376
Mohle (10.1016/j.stem.2009.01.006_bib19) 1997; 94
Ema (10.1016/j.stem.2009.01.006_bib5) 2006; 107
Sapoznikov (10.1016/j.stem.2009.01.006_bib25) 2008; 9
Haruta (10.1016/j.stem.2009.01.006_bib8) 2001; 507
Kopp (10.1016/j.stem.2009.01.006_bib17) 2006; 116
Sipkins (10.1016/j.stem.2009.01.006_bib27) 2005; 435
Fong (10.1016/j.stem.2009.01.006_bib6) 1999; 126
Prewett (10.1016/j.stem.2009.01.006_bib21) 1999; 59
Kiel (10.1016/j.stem.2009.01.006_bib12) 2006; 25
Kataoka (10.1016/j.stem.2009.01.006_bib11) 1985; 65
Slayton (10.1016/j.stem.2009.01.006_bib28) 2007; 25
Li (10.1016/j.stem.2009.01.006_bib33) 2008; 36
Takakura (10.1016/j.stem.2009.01.006_bib30) 2000; 102
Kopp (10.1016/j.stem.2009.01.006_bib15) 2005; 20
Gerber (10.1016/j.stem.2009.01.006_bib7) 2002; 417
Hattori (10.1016/j.stem.2009.01.006_bib9) 2002; 8
References_xml – volume: 107
  start-page: 111
  year: 2006
  end-page: 117
  ident: bib5
  article-title: Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors
  publication-title: Blood
  contributor:
    fullname: Rossant
– volume: 126
  start-page: 3015
  year: 1999
  end-page: 3025
  ident: bib6
  article-title: Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice
  publication-title: Development
  contributor:
    fullname: Peng
– volume: 425
  start-page: 841
  year: 2003
  end-page: 846
  ident: bib3
  article-title: Osteoblastic cells regulate the haematopoietic stem cell niche
  publication-title: Nature
  contributor:
    fullname: Bringhurst
– volume: 507
  start-page: 45
  year: 2001
  end-page: 48
  ident: bib8
  article-title: Role of Flk-1 in mouse hematopoietic stem cells
  publication-title: FEBS Lett.
  contributor:
    fullname: Todokoro
– volume: 86
  start-page: 3353
  year: 1995
  end-page: 3363
  ident: bib24
  article-title: Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors
  publication-title: Blood
  contributor:
    fullname: Asch
– volume: 25
  start-page: 862
  year: 2006
  end-page: 864
  ident: bib12
  article-title: Maintaining hematopoietic stem cells in the vascular niche
  publication-title: Immunity
  contributor:
    fullname: Morrison
– volume: 59
  start-page: 5209
  year: 1999
  end-page: 5218
  ident: bib21
  article-title: Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors
  publication-title: Cancer Res.
  contributor:
    fullname: Witte
– volume: 36
  start-page: 1143
  year: 2008
  end-page: 1156
  ident: bib33
  article-title: Bone marrow sinusoidal endothelial cells undergo nonapoptotic cell death and are replaced by proliferating sinusoidal cells in situ to maintain the vascular niche following lethal irradiation
  publication-title: Exp. Hematol.
  contributor:
    fullname: Slayton
– volume: 10
  start-page: 64
  year: 2004
  end-page: 71
  ident: bib2
  article-title: Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis
  publication-title: Nat. Med.
  contributor:
    fullname: Hartman
– volume: 376
  start-page: 62
  year: 1995
  end-page: 66
  ident: bib26
  article-title: Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice
  publication-title: Nature
  contributor:
    fullname: Schuh
– volume: 102
  start-page: 199
  year: 2000
  end-page: 209
  ident: bib30
  article-title: A role for hematopoietic stem cells in promoting angiogenesis
  publication-title: Cell
  contributor:
    fullname: Suda
– volume: 109
  start-page: 625
  year: 2002
  end-page: 637
  ident: bib10
  article-title: Recruitment of stem and progenitor cells from the bone marrow niche requires mmp-9 mediated release of kit-ligand
  publication-title: Cell
  contributor:
    fullname: Moore
– volume: 454
  start-page: 656
  year: 2008
  end-page: 660
  ident: bib31
  article-title: Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation
  publication-title: Nature
  contributor:
    fullname: Peltonen
– volume: 97
  start-page: 14
  year: 2005
  end-page: 21
  ident: bib22
  article-title: Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody
  publication-title: J. Natl. Cancer Inst.
  contributor:
    fullname: Swartz
– volume: 65
  start-page: 1163
  year: 1985
  end-page: 1171
  ident: bib11
  article-title: Identification of lectin-like substances recognizing galactosyl residues of glycoconjugates on the plasma membrane of marrow sinus endothelium
  publication-title: Blood
  contributor:
    fullname: Tavassoli
– volume: 425
  start-page: 836
  year: 2003
  end-page: 841
  ident: bib32
  article-title: Identification of the haematopoietic stem cell niche and control of the niche size
  publication-title: Nature
  contributor:
    fullname: Feng
– volume: 9
  start-page: 388
  year: 2008
  end-page: 395
  ident: bib25
  article-title: Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches
  publication-title: Nat. Immunol.
  contributor:
    fullname: Jung
– volume: 25
  start-page: 977
  year: 2006
  end-page: 988
  ident: bib29
  article-title: Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches
  publication-title: Immunity
  contributor:
    fullname: Nagasawa
– volume: 106
  start-page: 505
  year: 2005
  end-page: 513
  ident: bib16
  article-title: Tie-2 activation contributes to hemangiogenic regeneration after myelosuppression
  publication-title: Blood
  contributor:
    fullname: Rafii
– volume: 116
  start-page: 3277
  year: 2006
  end-page: 3291
  ident: bib17
  article-title: Thrombospondins deployed by thrombopoietic cells determine angiogenic switch and extent of revascularization
  publication-title: J. Clin. Invest.
  contributor:
    fullname: Kopp
– volume: 25
  start-page: 2945
  year: 2007
  end-page: 2955
  ident: bib28
  article-title: The Role of the Donor in the Repair of the Marrow Vascular Niche Following Hematopoietic Stem Cell Transplant
  publication-title: Stem Cells
  contributor:
    fullname: Scott
– volume: 84
  start-page: 10
  year: 1994
  end-page: 19
  ident: bib23
  article-title: Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion
  publication-title: Blood
  contributor:
    fullname: Asch
– volume: 20
  start-page: 349
  year: 2005
  end-page: 356
  ident: bib15
  article-title: The bone marrow vascular niche: home of HSC differentiation and mobilization
  publication-title: Physiology (Bethesda)
  contributor:
    fullname: Rafii
– volume: 118
  start-page: 149
  year: 2004
  end-page: 161
  ident: bib1
  article-title: Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche
  publication-title: Cell
  contributor:
    fullname: Suda
– volume: 417
  start-page: 954
  year: 2002
  end-page: 958
  ident: bib7
  article-title: VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism
  publication-title: Nature
  contributor:
    fullname: Ferrara
– volume: 12
  start-page: 657
  year: 2006
  end-page: 664
  ident: bib14
  article-title: Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells
  publication-title: Nat. Med.
  contributor:
    fullname: Spiegel
– volume: 1
  start-page: 685
  year: 2007
  end-page: 697
  ident: bib34
  article-title: Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche
  publication-title: Cell Stem Cell
  contributor:
    fullname: Miyamoto
– volume: 130
  start-page: 691
  year: 2007
  end-page: 703
  ident: bib18
  article-title: Autocrine VEGF signaling is required for vascular homeostasis
  publication-title: Cell
  contributor:
    fullname: Iruela-Arispe
– volume: 16
  start-page: 1228
  year: 2001
  end-page: 1236
  ident: bib4
  article-title: Col1a1-driven transgenic markers of osteoblast lineage progression
  publication-title: J. Bone Miner. Res.
  contributor:
    fullname: Rowe
– volume: 94
  start-page: 663
  year: 1997
  end-page: 668
  ident: bib19
  article-title: Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Rafii
– volume: 94
  start-page: 4011
  year: 1999
  end-page: 4019
  ident: bib20
  article-title: Stromal derived factor-1-induced chemokinesis of cord blood CD34(+) cells (long-term culture-initiating cells) through endothelial cells is mediated by E-selectin
  publication-title: Blood
  contributor:
    fullname: Rafii
– volume: 8
  start-page: 841
  year: 2002
  end-page: 849
  ident: bib9
  article-title: Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment
  publication-title: Nat. Med.
  contributor:
    fullname: Witte
– volume: 435
  start-page: 969
  year: 2005
  end-page: 973
  ident: bib27
  article-title: In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment
  publication-title: Nature
  contributor:
    fullname: Lin
– volume: 121
  start-page: 1109
  year: 2005
  end-page: 1121
  ident: bib13
  article-title: SLAM Family Receptors Distinguish Hematopoietic Stem and Progenitor Cells and Reveal Endothelial Niches for Stem Cells
  publication-title: Cell
  contributor:
    fullname: Morrison
– volume: 109
  start-page: 625
  year: 2002
  ident: 10.1016/j.stem.2009.01.006_bib10
  article-title: Recruitment of stem and progenitor cells from the bone marrow niche requires mmp-9 mediated release of kit-ligand
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00754-7
  contributor:
    fullname: Heissig
– volume: 454
  start-page: 656
  year: 2008
  ident: 10.1016/j.stem.2009.01.006_bib31
  article-title: Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation
  publication-title: Nature
  doi: 10.1038/nature07083
  contributor:
    fullname: Tammela
– volume: 425
  start-page: 841
  year: 2003
  ident: 10.1016/j.stem.2009.01.006_bib3
  article-title: Osteoblastic cells regulate the haematopoietic stem cell niche
  publication-title: Nature
  doi: 10.1038/nature02040
  contributor:
    fullname: Calvi
– volume: 130
  start-page: 691
  year: 2007
  ident: 10.1016/j.stem.2009.01.006_bib18
  article-title: Autocrine VEGF signaling is required for vascular homeostasis
  publication-title: Cell
  doi: 10.1016/j.cell.2007.06.054
  contributor:
    fullname: Lee
– volume: 417
  start-page: 954
  year: 2002
  ident: 10.1016/j.stem.2009.01.006_bib7
  article-title: VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism
  publication-title: Nature
  doi: 10.1038/nature00821
  contributor:
    fullname: Gerber
– volume: 25
  start-page: 862
  year: 2006
  ident: 10.1016/j.stem.2009.01.006_bib12
  article-title: Maintaining hematopoietic stem cells in the vascular niche
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.11.005
  contributor:
    fullname: Kiel
– volume: 59
  start-page: 5209
  year: 1999
  ident: 10.1016/j.stem.2009.01.006_bib21
  article-title: Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors
  publication-title: Cancer Res.
  contributor:
    fullname: Prewett
– volume: 1
  start-page: 685
  year: 2007
  ident: 10.1016/j.stem.2009.01.006_bib34
  article-title: Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.10.020
  contributor:
    fullname: Yoshihara
– volume: 425
  start-page: 836
  year: 2003
  ident: 10.1016/j.stem.2009.01.006_bib32
  article-title: Identification of the haematopoietic stem cell niche and control of the niche size
  publication-title: Nature
  doi: 10.1038/nature02041
  contributor:
    fullname: Zhang
– volume: 8
  start-page: 841
  year: 2002
  ident: 10.1016/j.stem.2009.01.006_bib9
  article-title: Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment
  publication-title: Nat. Med.
  doi: 10.1038/nm740
  contributor:
    fullname: Hattori
– volume: 9
  start-page: 388
  year: 2008
  ident: 10.1016/j.stem.2009.01.006_bib25
  article-title: Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1571
  contributor:
    fullname: Sapoznikov
– volume: 118
  start-page: 149
  year: 2004
  ident: 10.1016/j.stem.2009.01.006_bib1
  article-title: Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche
  publication-title: Cell
  doi: 10.1016/j.cell.2004.07.004
  contributor:
    fullname: Arai
– volume: 10
  start-page: 64
  year: 2004
  ident: 10.1016/j.stem.2009.01.006_bib2
  article-title: Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis
  publication-title: Nat. Med.
  doi: 10.1038/nm973
  contributor:
    fullname: Avecilla
– volume: 36
  start-page: 1143
  year: 2008
  ident: 10.1016/j.stem.2009.01.006_bib33
  article-title: Bone marrow sinusoidal endothelial cells undergo nonapoptotic cell death and are replaced by proliferating sinusoidal cells in situ to maintain the vascular niche following lethal irradiation
  publication-title: Exp. Hematol.
  doi: 10.1016/j.exphem.2008.06.009
  contributor:
    fullname: Li
– volume: 107
  start-page: 111
  year: 2006
  ident: 10.1016/j.stem.2009.01.006_bib5
  article-title: Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors
  publication-title: Blood
  doi: 10.1182/blood-2005-05-1970
  contributor:
    fullname: Ema
– volume: 116
  start-page: 3277
  year: 2006
  ident: 10.1016/j.stem.2009.01.006_bib17
  article-title: Thrombospondins deployed by thrombopoietic cells determine angiogenic switch and extent of revascularization
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI29314
  contributor:
    fullname: Kopp
– volume: 25
  start-page: 2945
  year: 2007
  ident: 10.1016/j.stem.2009.01.006_bib28
  article-title: The Role of the Donor in the Repair of the Marrow Vascular Niche Following Hematopoietic Stem Cell Transplant
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2007-0158
  contributor:
    fullname: Slayton
– volume: 65
  start-page: 1163
  year: 1985
  ident: 10.1016/j.stem.2009.01.006_bib11
  article-title: Identification of lectin-like substances recognizing galactosyl residues of glycoconjugates on the plasma membrane of marrow sinus endothelium
  publication-title: Blood
  doi: 10.1182/blood.V65.5.1163.1163
  contributor:
    fullname: Kataoka
– volume: 86
  start-page: 3353
  year: 1995
  ident: 10.1016/j.stem.2009.01.006_bib24
  article-title: Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors
  publication-title: Blood
  doi: 10.1182/blood.V86.9.3353.bloodjournal8693353
  contributor:
    fullname: Rafii
– volume: 126
  start-page: 3015
  year: 1999
  ident: 10.1016/j.stem.2009.01.006_bib6
  article-title: Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice
  publication-title: Development
  doi: 10.1242/dev.126.13.3015
  contributor:
    fullname: Fong
– volume: 97
  start-page: 14
  year: 2005
  ident: 10.1016/j.stem.2009.01.006_bib22
  article-title: Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/dji003
  contributor:
    fullname: Pytowski
– volume: 94
  start-page: 4011
  year: 1999
  ident: 10.1016/j.stem.2009.01.006_bib20
  article-title: Stromal derived factor-1-induced chemokinesis of cord blood CD34(+) cells (long-term culture-initiating cells) through endothelial cells is mediated by E-selectin
  publication-title: Blood
  doi: 10.1182/blood.V94.12.4011
  contributor:
    fullname: Naiyer
– volume: 25
  start-page: 977
  year: 2006
  ident: 10.1016/j.stem.2009.01.006_bib29
  article-title: Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.10.016
  contributor:
    fullname: Sugiyama
– volume: 16
  start-page: 1228
  year: 2001
  ident: 10.1016/j.stem.2009.01.006_bib4
  article-title: Col1a1-driven transgenic markers of osteoblast lineage progression
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.2001.16.7.1228
  contributor:
    fullname: Dacic
– volume: 121
  start-page: 1109
  year: 2005
  ident: 10.1016/j.stem.2009.01.006_bib13
  article-title: SLAM Family Receptors Distinguish Hematopoietic Stem and Progenitor Cells and Reveal Endothelial Niches for Stem Cells
  publication-title: Cell
  doi: 10.1016/j.cell.2005.05.026
  contributor:
    fullname: Kiel
– volume: 102
  start-page: 199
  year: 2000
  ident: 10.1016/j.stem.2009.01.006_bib30
  article-title: A role for hematopoietic stem cells in promoting angiogenesis
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00025-8
  contributor:
    fullname: Takakura
– volume: 94
  start-page: 663
  year: 1997
  ident: 10.1016/j.stem.2009.01.006_bib19
  article-title: Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.2.663
  contributor:
    fullname: Mohle
– volume: 12
  start-page: 657
  year: 2006
  ident: 10.1016/j.stem.2009.01.006_bib14
  article-title: Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells
  publication-title: Nat. Med.
  doi: 10.1038/nm1417
  contributor:
    fullname: Kollet
– volume: 435
  start-page: 969
  year: 2005
  ident: 10.1016/j.stem.2009.01.006_bib27
  article-title: In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment
  publication-title: Nature
  doi: 10.1038/nature03703
  contributor:
    fullname: Sipkins
– volume: 20
  start-page: 349
  year: 2005
  ident: 10.1016/j.stem.2009.01.006_bib15
  article-title: The bone marrow vascular niche: home of HSC differentiation and mobilization
  publication-title: Physiology (Bethesda)
  contributor:
    fullname: Kopp
– volume: 84
  start-page: 10
  year: 1994
  ident: 10.1016/j.stem.2009.01.006_bib23
  article-title: Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion
  publication-title: Blood
  doi: 10.1182/blood.V84.1.10.10
  contributor:
    fullname: Rafii
– volume: 376
  start-page: 62
  year: 1995
  ident: 10.1016/j.stem.2009.01.006_bib26
  article-title: Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice
  publication-title: Nature
  doi: 10.1038/376062a0
  contributor:
    fullname: Shalaby
– volume: 106
  start-page: 505
  year: 2005
  ident: 10.1016/j.stem.2009.01.006_bib16
  article-title: Tie-2 activation contributes to hemangiogenic regeneration after myelosuppression
  publication-title: Blood
  doi: 10.1182/blood-2004-11-4269
  contributor:
    fullname: Kopp
– volume: 507
  start-page: 45
  year: 2001
  ident: 10.1016/j.stem.2009.01.006_bib8
  article-title: Role of Flk-1 in mouse hematopoietic stem cells
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(01)02921-0
  contributor:
    fullname: Haruta
SSID ssj0057107
Score 2.5378501
Snippet Myelosuppression damages the bone marrow (BM) vascular niche, but it is unclear how regeneration of bone marrow vessels contributes to engraftment of...
The phenotypic attributes and molecular determinants for the regeneration of bone marrow (BM) sinusoidal endothelial cells (SECs) and their contribution to...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 263
SubjectTerms Animals
Ataxin-1
Ataxins
Biological and medical sciences
Blood Vessels - physiology
Bone Marrow - blood supply
Cell differentiation, maturation, development, hematopoiesis
Cell physiology
Endothelium, Vascular - cytology
Endothelium, Vascular - drug effects
Endothelium, Vascular - physiology
Endothelium, Vascular - radiation effects
Fundamental and applied biological sciences. Psychology
Hematopoiesis
Hematopoietic Stem Cell Transplantation
Hematopoietic Stem Cells - cytology
Hematopoietic Stem Cells - metabolism
Hematopoietic Stem Cells - physiology
Mice
Mice, Knockout
Molecular and cellular biology
Nerve Tissue Proteins - biosynthesis
Nuclear Proteins - biosynthesis
Regeneration
Sequence Deletion
Signal Transduction
STEMCELL
Vascular Endothelial Growth Factor Receptor-2 - genetics
Vascular Endothelial Growth Factor Receptor-2 - metabolism
Whole-Body Irradiation
Title Engraftment and Reconstitution of Hematopoiesis Is Dependent on VEGFR2-Mediated Regeneration of Sinusoidal Endothelial Cells
URI https://dx.doi.org/10.1016/j.stem.2009.01.006
https://www.ncbi.nlm.nih.gov/pubmed/19265665
https://search.proquest.com/docview/883031546
https://pubmed.ncbi.nlm.nih.gov/PMC3228275
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLf2ISQkhPimjFU-cENWU8eJ7ePWteuAcWBs6i1yHHsEVU61tAck_nieY2esaHBAuSV5ie33_N7P8vP7IfROGUot-H1SCm0Jy4wmyvKc5BosyCZc04694fxzPr9kHxbZYgdN-rMwPq0y-v7g0ztvHe-M4miOVnU9ugDowTKZ-KtDCrto39cyB9PePzq--vipd8gZBFEeNpcZ8QLx7ExI8_LlkmPZyrFP8vpbfHq0Ui2Mmg10F_fh0T_TKu_EqdkT9DgCTHwU-vAU7Rj3DD0IlJM_nqOfU3d9o2yXW46Vq7Bff8aEAVARbiye-zKuzaqBNXTd4rMWn0Si3DWGF66mp7MvlJx3FB_Gy193lat76YvabdqmrqANU1f5811LMHE8Mctl-wJdzqZfJ3MSGRiIztNkTXJpOKVaVYyanBlpUp2ZysCcFQCr8lSVTAmRVyrnipVWSFapFAAYlYqWSvL0JdpzjTOvEYZlIaATZUquLBOpKa1R40qWhiZWj3U2QO_7cS9WodBG0WegfS-8ljxjpiyScQFaGqCsV02xZS4FRIJ_yg239Hj7qw4pCi4HCPeKLWCi-d0T5UyzaQshUs-IweAbr4Kef7dTUg-LoQ98ywJuX_A1vLefuPpbV8sb_KkAq33zn_05QA_D9pan6HiL9tY3G3MIKGldDuMsGKLds8XxLyYzFSU
link.rule.ids 230,314,780,784,885,3506,27569,27924,27925,45663,45874
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKK0QlhHh3eRQfuCFrs47jx7Esu2zpbg_0od4sx7FL0CpZNbsHJH4848QpLAIOKLckk9ie8cxneTwfQm-No9SD3ye5tJ6wzFlivOCEW7AgnwhLW_aGxSmfXbBPV9nVDhr3Z2FCWmX0_Z1Pb711vDOMozlcleXwDKAHy1QSrhYp3EF7gAY4GPve0fvLk3nvkDMIoqLbXGYkCMSzM12aVyiXHMtWjkKS19_i0_2VaWDUfEd38Sc8-nta5S9xavoQPYgAEx91fXiEdlz1GN3tKCe_PUHfJ9X1jfFtbjk2VYHD-jMmDICKcO3xLJRxrVc1rKHLBh83-EMkyl1jeOFy8nH6mZJFS_Hhgvx1W7m6lz4rq01TlwW0YVIV4XzXEkwcj91y2TxFF9PJ-XhGIgMDsTxN1oQrJyi1pmDUceaUS23mCgdzVgKs4qnJmZGSF4YLw3IvFStMCgCMKkNzo0T6DO1WdeUOEIZlIaAT43JhPJOpy70zo0Lljibejmw2QO_6cderrtCG7jPQvuqgpcCYqXQy0qClAcp61egtc9EQCf4pd7ilx9tftUhRCjVAuFeshokWdk9M5epNo6VMAyMGg2887_T8s52KBlgMfRBbFnD7Qqjhvf2kKr-0tbzBn0oqshf_2Z836N7sfDHX8-PTk5dov9vqCnQdr9Du-mbjXgNiWueHcUb8AKxXFwY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engraftment+and+Reconstitution+of+Hematopoiesis+Is+Dependent+on+VEGFR2-Mediated+Regeneration+of+Sinusoidal+Endothelial+Cells&rft.jtitle=Cell+stem+cell&rft.au=Hooper%2C+Andrea+T&rft.au=Butler%2C+Jason+M&rft.au=Nolan%2C+Daniel+J&rft.au=Kranz%2C+Andrea&rft.date=2009-03-06&rft.issn=1934-5909&rft.volume=4&rft.issue=3&rft.spage=263&rft.epage=274&rft_id=info:doi/10.1016%2Fj.stem.2009.01.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon