Transparency of deep neural networks for medical image analysis: A review of interpretability methods
Artificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for diagnosis and treatment decisions. Deep neural networks have shown the same or better performance than clinicians in many tasks owing to the rapid increase in the available data and computational power. In...
Saved in:
Published in | Computers in biology and medicine Vol. 140; p. 105111 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.01.2022
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0010-4825 1879-0534 1879-0534 |
DOI | 10.1016/j.compbiomed.2021.105111 |
Cover
Loading…
Abstract | Artificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for diagnosis and treatment decisions. Deep neural networks have shown the same or better performance than clinicians in many tasks owing to the rapid increase in the available data and computational power. In order to conform to the principles of trustworthy AI, it is essential that the AI system be transparent, robust, fair, and ensure accountability. Current deep neural solutions are referred to as black-boxes due to a lack of understanding of the specifics concerning the decision-making process. Therefore, there is a need to ensure the interpretability of deep neural networks before they can be incorporated into the routine clinical workflow. In this narrative review, we utilized systematic keyword searches and domain expertise to identify nine different types of interpretability methods that have been used for understanding deep learning models for medical image analysis applications based on the type of generated explanations and technical similarities. Furthermore, we report the progress made towards evaluating the explanations produced by various interpretability methods. Finally, we discuss limitations, provide guidelines for using interpretability methods and future directions concerning the interpretability of deep neural networks for medical imaging analysis.
•Interpretability of deep neural networks is important for fostering clinical trust and for troubleshooting systems.•Interpretability methods for medical image analysis tasks can be classified into nine different types.•Evaluation of interpretability methods in a clinical setting is important.•Quantitative and qualitative evaluation of post-hoc explanations is important to determine their sanity.•Interpretability methods can help in discovering new imaging biomarkers. |
---|---|
AbstractList | Artificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for diagnosis and treatment decisions. Deep neural networks have shown the same or better performance than clinicians in many tasks owing to the rapid increase in the available data and computational power. In order to conform to the principles of trustworthy AI, it is essential that the AI system be transparent, robust, fair, and ensure accountability. Current deep neural solutions are referred to as black-boxes due to a lack of understanding of the specifics concerning the decision-making process. Therefore, there is a need to ensure the interpretability of deep neural networks before they can be incorporated into the routine clinical workflow. In this narrative review, we utilized systematic keyword searches and domain expertise to identify nine different types of interpretability methods that have been used for understanding deep learning models for medical image analysis applications based on the type of generated explanations and technical similarities. Furthermore, we report the progress made towards evaluating the explanations produced by various interpretability methods. Finally, we discuss limitations, provide guidelines for using interpretability methods and future directions concerning the interpretability of deep neural networks for medical imaging analysis.Artificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for diagnosis and treatment decisions. Deep neural networks have shown the same or better performance than clinicians in many tasks owing to the rapid increase in the available data and computational power. In order to conform to the principles of trustworthy AI, it is essential that the AI system be transparent, robust, fair, and ensure accountability. Current deep neural solutions are referred to as black-boxes due to a lack of understanding of the specifics concerning the decision-making process. Therefore, there is a need to ensure the interpretability of deep neural networks before they can be incorporated into the routine clinical workflow. In this narrative review, we utilized systematic keyword searches and domain expertise to identify nine different types of interpretability methods that have been used for understanding deep learning models for medical image analysis applications based on the type of generated explanations and technical similarities. Furthermore, we report the progress made towards evaluating the explanations produced by various interpretability methods. Finally, we discuss limitations, provide guidelines for using interpretability methods and future directions concerning the interpretability of deep neural networks for medical imaging analysis. Artificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for diagnosis and treatment decisions. Deep neural networks have shown the same or better performance than clinicians in many tasks owing to the rapid increase in the available data and computational power. In order to conform to the principles of trustworthy AI, it is essential that the AI system be transparent, robust, fair, and ensure accountability. Current deep neural solutions are referred to as black-boxes due to a lack of understanding of the specifics concerning the decision-making process. Therefore, there is a need to ensure the interpretability of deep neural networks before they can be incorporated into the routine clinical workflow. In this narrative review, we utilized systematic keyword searches and domain expertise to identify nine different types of interpretability methods that have been used for understanding deep learning models for medical image analysis applications based on the type of generated explanations and technical similarities. Furthermore, we report the progress made towards evaluating the explanations produced by various interpretability methods. Finally, we discuss limitations, provide guidelines for using interpretability methods and future directions concerning the interpretability of deep neural networks for medical imaging analysis. Artificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for diagnosis and treatment decisions. Deep neural networks have shown the same or better performance than clinicians in many tasks owing to the rapid increase in the available data and computational power. In order to conform to the principles of trustworthy AI, it is essential that the AI system be transparent, robust, fair, and ensure accountability. Current deep neural solutions are referred to as black-boxes due to a lack of understanding of the specifics concerning the decision-making process. Therefore, there is a need to ensure the interpretability of deep neural networks before they can be incorporated into the routine clinical workflow. In this narrative review, we utilized systematic keyword searches and domain expertise to identify nine different types of interpretability methods that have been used for understanding deep learning models for medical image analysis applications based on the type of generated explanations and technical similarities. Furthermore, we report the progress made towards evaluating the explanations produced by various interpretability methods. Finally, we discuss limitations, provide guidelines for using interpretability methods and future directions concerning the interpretability of deep neural networks for medical imaging analysis. •Interpretability of deep neural networks is important for fostering clinical trust and for troubleshooting systems.•Interpretability methods for medical image analysis tasks can be classified into nine different types.•Evaluation of interpretability methods in a clinical setting is important.•Quantitative and qualitative evaluation of post-hoc explanations is important to determine their sanity.•Interpretability methods can help in discovering new imaging biomarkers. AbstractArtificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for diagnosis and treatment decisions. Deep neural networks have shown the same or better performance than clinicians in many tasks owing to the rapid increase in the available data and computational power. In order to conform to the principles of trustworthy AI, it is essential that the AI system be transparent, robust, fair, and ensure accountability. Current deep neural solutions are referred to as black-boxes due to a lack of understanding of the specifics concerning the decision-making process. Therefore, there is a need to ensure the interpretability of deep neural networks before they can be incorporated into the routine clinical workflow. In this narrative review, we utilized systematic keyword searches and domain expertise to identify nine different types of interpretability methods that have been used for understanding deep learning models for medical image analysis applications based on the type of generated explanations and technical similarities. Furthermore, we report the progress made towards evaluating the explanations produced by various interpretability methods. Finally, we discuss limitations, provide guidelines for using interpretability methods and future directions concerning the interpretability of deep neural networks for medical imaging analysis. |
ArticleNumber | 105111 |
Author | Woodruff, Henry C. Chatterjee, Avishek Lambin, Philippe Salahuddin, Zohaib |
Author_xml | – sequence: 1 givenname: Zohaib surname: Salahuddin fullname: Salahuddin, Zohaib email: z.salahuddin@maastrichtuniversity.nl organization: The D-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands – sequence: 2 givenname: Henry C. surname: Woodruff fullname: Woodruff, Henry C. organization: The D-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands – sequence: 3 givenname: Avishek surname: Chatterjee fullname: Chatterjee, Avishek organization: The D-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands – sequence: 4 givenname: Philippe surname: Lambin fullname: Lambin, Philippe organization: The D-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34891095$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkk1v1DAQhi1URLeFv4AiceGSZcaJ88EBUSq-pEocKGfLcSbgbdYOtkOVf4-jLYtUCamcLI3eeT3zPnPGTqyzxFiGsEXA6tVuq91-6ozbU7_lwDGVBSI-Yhts6jYHUZQnbAOAkJcNF6fsLIQdAJRQwBN2WpRNi9CKDaNrr2yYlCerl8wNWU80ZZZmr8b0xFvnb0I2OJ-lr4xORbNX3ylTVo1LMOF1dpF5-mXodm02NpKfPEXVmdHEJTXFH64PT9njQY2Bnt295-zbh_fXl5_yqy8fP19eXOW6KiDmAgXXusIOoSmwHJRuVKuw7bpG8Lprq37o-1pUHJVo0i5YVLpAxWHoqaQBinP28uA7efdzphDl3gRN46gsuTlIXkFbVlyIJklf3JPu3OzTVqsKRVmngERSPb9TzV0KQE4-re8X-SfAJGgOAu1dCJ6GowRBrqzkTv5lJVdW8sAqtb6516pNVNE4G70y40MM3h0MKEWaEHgZtEkcEyhPOsremf-Y4miiR2NX0je0UDiGgjJwCfLrelPrSXEEaEHUyeDtvw0eNsNvbhTgsg |
CitedBy_id | crossref_primary_10_1007_s10278_024_01038_5 crossref_primary_10_1016_j_neucom_2023_126919 crossref_primary_10_1167_tvst_12_12_2 crossref_primary_10_3390_app131910778 crossref_primary_10_1016_j_inffus_2025_102995 crossref_primary_10_3390_biomedinformatics4040115 crossref_primary_10_1002_jmri_28049 crossref_primary_10_3390_app13063453 crossref_primary_10_12677_AAM_2022_118542 crossref_primary_10_3389_fmed_2022_915243 crossref_primary_10_1016_j_neucom_2023_127207 crossref_primary_10_3233_NAI_240740 crossref_primary_10_3390_ai4030033 crossref_primary_10_3389_fnmol_2024_1356453 crossref_primary_10_1016_j_compbiomed_2024_108709 crossref_primary_10_3390_a18030163 crossref_primary_10_1109_MCI_2024_3401348 crossref_primary_10_1016_j_egyai_2022_100224 crossref_primary_10_1038_s41571_022_00707_0 crossref_primary_10_1049_cit2_12356 crossref_primary_10_3389_fmed_2024_1414582 crossref_primary_10_3390_diagnostics13142345 crossref_primary_10_1038_s41746_023_00904_w crossref_primary_10_1371_journal_pone_0296175 crossref_primary_10_1002_hbm_70190 crossref_primary_10_3390_bios12110985 crossref_primary_10_1007_s41666_023_00127_4 crossref_primary_10_1002_widm_1510 crossref_primary_10_15212_npt_2024_0007 crossref_primary_10_1016_j_aei_2024_103048 crossref_primary_10_1016_j_neunet_2023_06_028 crossref_primary_10_3390_app12199710 crossref_primary_10_1186_s12859_023_05444_4 crossref_primary_10_1016_j_eneco_2023_106868 crossref_primary_10_3390_diagnostics14100997 crossref_primary_10_1016_j_compbiomed_2022_105499 crossref_primary_10_1016_j_patter_2023_100830 crossref_primary_10_1038_s41598_024_81724_0 crossref_primary_10_1016_j_cej_2024_155987 crossref_primary_10_3389_fncom_2024_1418546 crossref_primary_10_1007_s11042_023_17666_y crossref_primary_10_1016_j_csbj_2024_11_012 crossref_primary_10_1038_s41598_022_20268_7 crossref_primary_10_1016_j_jhepr_2024_101198 crossref_primary_10_1259_bjr_20220239 crossref_primary_10_1016_j_engappai_2024_109817 crossref_primary_10_1063_5_0206807 crossref_primary_10_3390_diagnostics13233506 crossref_primary_10_1055_a_2415_8408 crossref_primary_10_1016_j_media_2024_103320 crossref_primary_10_1016_j_resuscitation_2023_109894 crossref_primary_10_1038_s41597_022_01695_7 crossref_primary_10_1016_j_compbiomed_2022_106378 crossref_primary_10_3390_bdcc8070073 crossref_primary_10_1016_j_ins_2024_121796 crossref_primary_10_1038_s41598_024_70559_4 crossref_primary_10_1016_j_ailsci_2022_100048 crossref_primary_10_1109_TMI_2024_3501405 crossref_primary_10_3390_tomography10110133 crossref_primary_10_1016_j_entcom_2024_100680 crossref_primary_10_1038_s41598_024_54517_8 crossref_primary_10_1007_s00284_024_03750_5 crossref_primary_10_3390_heritage7020038 crossref_primary_10_1007_s11831_023_09899_9 crossref_primary_10_1093_jamia_ocae108 crossref_primary_10_1016_j_compbiomed_2024_108055 crossref_primary_10_32604_cmc_2023_034952 crossref_primary_10_1016_j_patrec_2023_10_013 crossref_primary_10_3390_electronics13132438 crossref_primary_10_1002_joc_8366 crossref_primary_10_3390_app14051992 crossref_primary_10_1007_s40846_024_00863_x crossref_primary_10_1016_j_compmedimag_2022_102161 crossref_primary_10_1109_ACCESS_2023_3318739 crossref_primary_10_57197_JDR_2024_0101 crossref_primary_10_1016_j_phro_2024_100694 crossref_primary_10_1016_j_cmpb_2024_108238 crossref_primary_10_1016_j_jrras_2024_101281 crossref_primary_10_3390_diagnostics14080848 crossref_primary_10_1093_jamiaopen_ooae035 crossref_primary_10_1007_s00432_025_06119_8 crossref_primary_10_3390_cancers15215303 crossref_primary_10_3390_s23020634 crossref_primary_10_1007_s10462_022_10342_x crossref_primary_10_3389_fradi_2022_991683 crossref_primary_10_1016_j_compbiomed_2024_108861 crossref_primary_10_1093_bib_bbaf018 crossref_primary_10_1007_s00521_024_10868_x crossref_primary_10_1038_s41746_024_01012_z crossref_primary_10_1016_j_jhazmat_2025_137575 crossref_primary_10_3390_app14104144 crossref_primary_10_1016_j_bspc_2024_107228 crossref_primary_10_3389_fpubh_2023_1273253 crossref_primary_10_1016_j_nucengdes_2024_113395 crossref_primary_10_1093_bjrai_ubae008 crossref_primary_10_1142_S2972389224300044 crossref_primary_10_7717_peerj_cs_1903 crossref_primary_10_1089_big_2023_0014 crossref_primary_10_3389_fmed_2024_1511389 crossref_primary_10_1148_radiol_233261 crossref_primary_10_1016_j_procs_2022_11_005 crossref_primary_10_1002_widm_1574 crossref_primary_10_1016_j_compmedimag_2022_102158 crossref_primary_10_3390_bioengineering12030308 crossref_primary_10_1109_TBME_2022_3232964 crossref_primary_10_1145_3625287 crossref_primary_10_1016_j_canrad_2023_07_015 crossref_primary_10_1177_09670335231173140 crossref_primary_10_1016_j_prime_2024_100678 crossref_primary_10_3390_antibiotics14020134 crossref_primary_10_1002_mp_16188 crossref_primary_10_1016_j_jbi_2023_104567 crossref_primary_10_1016_j_aej_2024_04_072 crossref_primary_10_1016_j_ebiom_2023_104525 crossref_primary_10_1016_j_compbiomed_2024_108635 crossref_primary_10_1371_journal_pone_0290435 crossref_primary_10_1016_j_clon_2024_06_053 crossref_primary_10_1016_j_compbiomed_2024_109569 crossref_primary_10_1016_j_rineng_2024_102818 crossref_primary_10_1016_j_diii_2024_06_001 crossref_primary_10_1080_21681163_2023_2292072 crossref_primary_10_3390_diagnostics15050624 crossref_primary_10_3390_bioengineering10070775 crossref_primary_10_1016_j_pacs_2024_100674 crossref_primary_10_1186_s40708_024_00244_9 crossref_primary_10_1016_j_compbiomed_2023_107897 crossref_primary_10_3389_frai_2024_1482141 crossref_primary_10_3390_en16124773 crossref_primary_10_1016_j_compbiomed_2022_106422 crossref_primary_10_1088_1361_6560_ad5e31 crossref_primary_10_1049_htl2_12122 crossref_primary_10_1016_j_compbiomed_2022_105691 crossref_primary_10_1016_j_jpi_2024_100390 crossref_primary_10_1007_s11831_024_10103_9 crossref_primary_10_1109_ACCESS_2024_3398203 crossref_primary_10_1007_s10278_024_01076_z crossref_primary_10_1002_ird3_102 crossref_primary_10_1080_07853890_2024_2399759 crossref_primary_10_1111_jdv_18963 crossref_primary_10_1007_s00366_024_01987_z crossref_primary_10_1007_s11042_023_16721_y crossref_primary_10_1038_s41746_022_00699_2 crossref_primary_10_1109_ACCESS_2023_3311752 crossref_primary_10_1177_00368504241306830 crossref_primary_10_3390_make6030098 crossref_primary_10_1016_j_neucom_2024_128920 crossref_primary_10_3390_info15120783 crossref_primary_10_1016_j_cmpb_2022_107161 crossref_primary_10_1038_s41598_024_73428_2 crossref_primary_10_1016_j_asoc_2024_112635 crossref_primary_10_3389_fonc_2023_1089998 crossref_primary_10_1007_s11042_023_17238_0 crossref_primary_10_12677_AIRR_2022_112016 crossref_primary_10_1007_s13198_024_02463_z crossref_primary_10_3390_biomimetics8060499 crossref_primary_10_47836_pjst_32_1_25 crossref_primary_10_31612_2616_4868_6_2023_06 crossref_primary_10_3390_bioengineering10101225 crossref_primary_10_1016_j_jksuci_2024_102096 crossref_primary_10_1016_j_sciaf_2023_e01961 crossref_primary_10_3390_app14114654 crossref_primary_10_1016_j_compbiomed_2024_108412 crossref_primary_10_1109_ACCESS_2023_3299850 crossref_primary_10_1007_s11042_023_16627_9 crossref_primary_10_3390_app12136448 crossref_primary_10_3390_ph16091243 crossref_primary_10_1109_ACCESS_2024_3387702 crossref_primary_10_1109_TBME_2023_3290541 crossref_primary_10_1038_s41598_024_80691_w crossref_primary_10_1007_s40257_024_00883_y crossref_primary_10_1016_j_eswa_2023_121226 crossref_primary_10_1109_TIM_2024_3352713 crossref_primary_10_3389_fradi_2024_1433457 crossref_primary_10_1093_dmfr_twae033 crossref_primary_10_1007_s00259_023_06553_1 crossref_primary_10_1016_j_cjca_2024_07_003 crossref_primary_10_3389_frcmn_2025_1482698 |
Cites_doi | 10.1038/s42256-019-0048-x 10.1038/nature14539 10.1016/j.media.2019.05.010 10.1118/1.4955435 10.1016/j.media.2019.01.012 10.7554/eLife.23421 10.1016/j.neucom.2021.05.081 10.1016/S1470-2045(19)30333-X 10.3390/cancers13061291 10.1109/ACCESS.2021.3064838 10.3390/electronics8080832 10.1007/s13218-020-00636-z 10.3389/fnins.2020.609468 10.1038/nrclinonc.2012.196 10.1148/radiol.2018180887 10.1016/j.patcog.2016.11.008 10.1016/j.ejca.2011.11.036 10.1016/j.compbiomed.2020.104041 10.1109/TMI.2020.2964499 10.1109/ACCESS.2017.2788849 10.1016/j.chaos.2020.110190 10.1038/s42256-021-00338-7 10.1038/s41551-018-0324-9 10.1038/s42256-020-00265-z 10.1016/j.nicl.2019.102003 10.1126/science.abg1834 10.1038/s41598-020-69814-1 10.1371/journal.pone.0130140 10.1016/j.neunet.2014.09.003 10.3233/JIFS-169457 10.1109/ACCESS.2021.3087583 10.1038/nrclinonc.2017.141 10.21552/edpl/2017/4/9 10.1109/TMI.2018.2867350 10.3389/fncom.2020.00006 10.1109/TMI.2021.3090082 10.1016/j.compbiomed.2021.104410 10.1016/j.radonc.2018.03.033 10.1377/hlthaff.27.6.1491 10.3389/fnins.2019.01321 10.1038/ncomms5006 10.1109/TMI.2019.2948026 10.1016/j.media.2020.101839 10.1109/TNNLS.2016.2599820 10.1016/j.radonc.2015.06.013 10.1016/j.eswa.2019.01.048 10.1016/j.ophtha.2018.11.016 10.1038/s42256-021-00343-w 10.1016/j.media.2019.101537 10.1038/s42256-019-0052-1 10.1145/3236386.3241340 10.1109/ACCESS.2019.2914873 10.1016/j.inffus.2019.12.012 10.1186/s12859-018-2184-4 10.1016/j.compbiomed.2020.103865 10.1038/s43856-021-00013-3 10.3390/electronics10050593 10.1016/j.media.2019.101619 10.1002/mp.13141 10.1016/j.neuroimage.2020.117689 10.1016/j.cell.2018.02.010 10.1016/j.inffus.2021.01.008 10.1038/s41746-019-0216-8 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved. 2021. The Authors |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved. – notice: 2021. The Authors |
DBID | 6I. AAFTH AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.compbiomed.2021.105111 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni) Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 105111 |
ExternalDocumentID | 34891095 10_1016_j_compbiomed_2021_105111 S0010482521009057 1_s2_0_S0010482521009057 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG 6I. AAFTH AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c630t-5152cc61b108314fac8a9a19bb8527b96dfdd75621a58040136c31a20fde4ef03 |
IEDL.DBID | 7X7 |
ISSN | 0010-4825 1879-0534 |
IngestDate | Tue Aug 05 10:07:59 EDT 2025 Wed Aug 13 03:06:02 EDT 2025 Wed Feb 19 02:05:40 EST 2025 Tue Jul 01 03:28:46 EDT 2025 Thu Apr 24 22:52:33 EDT 2025 Fri Feb 23 02:40:51 EST 2024 Tue Feb 25 20:10:54 EST 2025 Tue Aug 26 20:14:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Explainable artificial intelligence Medical imaging Deep neural networks Interpretability Explainability |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c630t-5152cc61b108314fac8a9a19bb8527b96dfdd75621a58040136c31a20fde4ef03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0010482521009057 |
PMID | 34891095 |
PQID | 2615479105 |
PQPubID | 1226355 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2609462558 proquest_journals_2615479105 pubmed_primary_34891095 crossref_primary_10_1016_j_compbiomed_2021_105111 crossref_citationtrail_10_1016_j_compbiomed_2021_105111 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2021_105111 elsevier_clinicalkeyesjournals_1_s2_0_S0010482521009057 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2021_105111 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Dai, Wang, Li (bib27) 2018; 34 Lambin, Stiphout, Starmans, Rios-Velazquez, Nalbantov, Aerts, Roelofs, Elmpt, Boutros, Granone, Valentini, Begg, Ruysscher, Dekker (bib74) 2013; 10 Wargnier-Dauchelle, Grenier, Durand-Dubief, Cotton, Sdika (bib150) 2021 Saleem, Shahid, Raza (bib114) 2021; 133 Zhou, Gandomi, Chen, Holzinger (bib169) 2021; 10 Sabour, Frosst, Hinton (bib111) 2017 Simonyan, Vedaldi, Zisserman (bib128) 2014 Babic, Gerke, Evgeniou, Cohen (bib5) 2021; 373 Higgins, Amos, Pfau, Racaniere, Matthey, Rezende, Lerchner (bib52) 2018 Baumgartner, Koch, Tezcan, Ang, Konukoglu (bib12) 2018 Rieger, Singh, Murdoch, Yu (bib109) 2020 Mahinpei, Clark, Lage, Doshi-Velez, Pan (bib94) 2021 Smith-Bindman, Miglioretti, Larson (bib133) 2008; 27 Magesh, Myloth, Tom (bib93) 2020; 126 Katzmann, Taubmann, Ahmad, Mühlberg, Sühling, Groß (bib62) 2021; 458 Eitel, Soehler, Bellmann-Strobl, Brandt, Ruprecht, Giess, Kuchling, Asseyer, Weygandt, Haynes, Scheel, Paul, Ritter (bib35) 2019; 24 Bansal, Agarwal, Nguyen (bib7) 2020 Natekar, Kori, Krishnamurthi (bib99) 2020; 14 Eitel, Ritter (bib33) 2019 LaLonde, Torigian, Bagci (bib71) 2020 Adebayo, Gilmer, Muelly, Goodfellow, Hardt, Kim (bib1) 2018 Puyol-Antón, Chen, Clough, Ruijsink, Sidhu, Gould, Porter, Elliott, Mehta, Rueckert, Rinaldi, King (bib106) 2020 DeGrave, Janizek, Lee (bib28) 2021; 3 Springenberg, Dosovitskiy, Brox, Riedmiller (bib134) 2015 Santamaría-Pang, Kubricht, Chowdhury, Bhushan, Tu (bib117) 2020 Saha, Grimm, Harowicz, Ghate, Kim, Walsh, Mazurowski (bib112) 2016; 43 8 Sun, Darbehani, Zaidi, Wang (bib136) 2020 Wickstrøm, Kampffmeyer, Jenssen (bib152) 2020; 60 Hinterreiter, Streit, Kainz (bib53) 2020 Zeiler, Fergus (bib162) 2014 Li, Dvornek, Zhou, Zhuang, Ventola, Duncan (bib82) 2019 Young, Booth, Simpson, Dutton, Shrapnel (bib161) 2019 LeCun, Bengio, Hinton (bib75) 2015; 521 Papanastasopoulos, Samala, Chan, Hadjiiski, Paramagul, Helvie, Neal (bib102) 2020 Geirhos, Rubisch, Michaelis, Bethge, Wichmann, Brendel (bib41) 2019 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib46) 2014; 27 Boehle, Eitel, Weygandt, Ritter (bib15) 2019; 11 Singh, Yow (bib129) 2021; 9 Goodfellow, Shlens, Szegedy (bib48) 2015 Biffi, Cerrolaza, Tarroni, Bai, de Marvao, Oktay, Ledig, Folgoc, Kamnitsas, Doumou, Duan, Prasad, Cook, O'Regan, Rueckert (bib13) 2020; 39 Papineni, Roukos, Ward, Zhu (bib103) 2002 Arjovsky, Chintala, Bottou (bib4) 2017 Yang, Kim, Kim, Adhikari (bib156) 2020; 39 Zhuang, Li, Payer, Štern, Urschler, Heinrich, Oster, Wang, Örjan Smedby, Bian, Yang, Heng, Mortazi, Bagci, Yang, Sun, Galisot, Ramel, Brouard, Tong, Si, Liao, Zeng, Shi, Zheng, Wang, MacGillivray, Newby, Rhode, Ourselin, Mohiaddin, Keegan, Firmin, Yang (bib173) 2019; 58 He, Shang, Ji, Zhang (bib51) 2017 Hoffmann, Fanconi, Rade, Kohler (bib54) 2021 Finlayson, Chung, Kohane, Beam (bib39) 2019 Zhuang, Dvornek, Li, Ventola, Duncan (bib172) 2019 Krizhevsky, Sutskever, Hinton (bib70) 2012; 25 Camalan, Mahmood, Binol, Araújo, Santos-Silva, Vargas, Lopes, Khurram, Gurcan (bib16) 2021; 13 Kermany, Goldbaum, Cai, Valentim, Liang, Baxter, McKeown, Yang, Wu, Yan, Dong, Prasadha, Pei, Ting, Zhu, Li, Hewett, Dong, Ziyar, Shi, Zhang, Zheng, Hou, Shi, Fu, Duan, Huu, Wen, Zhang, Zhang, Li, Wang, Singer, Sun, Xu, Tafreshi, Lewis, Xia, Zhang (bib64) 2018; 172 Sayres, Taly, Rahimy, Blumer, Coz, Hammel, Krause, Narayanaswamy, Rastegar, Wu, Xu, Barb, Joseph, Shumski, Smith, Sood, Corrado, Peng, Webster (bib118) 2019; 126 Kaur, Uslu, Durresi, Badve, Dundar (bib63) 2021 Zhang, Xie, Xing, McGough, Yang (bib166) 2017 Zhao, Zhou, Wang, Jiang, Xu (bib167) 2018 Singla, Pollack, Wallace, Batmanghelich (bib131) 2021 Li, Wu, Chen, Jiang (bib84) 2019 Li, Wu, Peng, Ernst, Fu (bib79) 2018 Lopatina, Ropele, Sibgatulin, Reichenbach, Güllmar (bib89) 2020; 14 Grossmann, Stringfield, El-Hachem, Bui, Velazquez, Parmar, Leijenaar, Haibe-Kains, Lambin, Gillies, Aerts (bib50) 2017; 6 Couteaux, Nempont, Pizaine, Bloch (bib25) 2019 Yan, Plis, Calhoun, Liu, Jiang, Jiang, Sui (bib153) 2017 Li, Dvornek, Zhuang, Ventola, Duncan (bib83) 2018 Vedantam, Zitnick, Parikh (bib146) 2015 Pisov, Goncharov, Kurochkina, Morozov, Gombolevskiy, Chernina, Vladzymyrskyy, Zamyatina, Chesnokova, Pronin, Shifrin, Belyaev (bib105) 2019 Silva, Poellinger, Cardoso, Reyes (bib127) 2020 Aresta, Araújo, Kwok, Chennamsetty, Safwan, Alex, Marami, Prastawa, Chan, Donovan, Fernandez, Zeineh, Kohl, Walz, Ludwig, Braunewell, Baust, Vu, To, Kim, Kwak, Galal, Sanchez-Freire, Brancati, Frucci, Riccio, Wang, Sun, Ma, Fang, Kone, Boulmane, Campilho, Eloy, Polónia, Aguiar (bib3) 2019; 56 Karras, Laine, Aila (bib61) 2019 Tschandl, Codella, Akay, Argenziano, Braun, Cabo, Gutman, Halpern, Helba, Hofmann-Wellenhof, Lallas, Lapins, Longo, Malvehy, Marchetti, Marghoob, Menzies, Oakley, Paoli, Puig, Rinner, Rosendahl, Scope, Sinz, Soyer, Thomas, Zalaudek, Kittler (bib143) 2019; 20 Cohen, Brooks, En, Zucker, Pareek, Lungren, Chaudhari (bib24) 2021 Ghandeharioun, Kim, Li, Jou, Eoff, Picard (bib42) 2021 Kim, Wattenberg, Gilmer, Cai, Wexler, Viégas, Sayres (bib65) 2018 Waldstein, Seeböck, Donner, Sadeghipour, Bogunović, Osborne, Schmidt-Erfurth (bib148) 2020; 10 Erion, Janizek, Sturmfels, Lundberg, Lee (bib37) 2021; 3 Margeloiu, Ashman, Bhatt, Chen, Jamnik, Weller (bib95) 2021 Wang, Peng, Lu, Lu, Summers (bib149) 2018 Carvalho, Pereira, Cardoso (bib18) 2019; 8 Bau, Zhou, Khosla, Oliva, Torralba (bib11) 2017 Tang, Chuang, DeCarli, Jin, Beckett, Keiser, Dugger (bib139) 2019; 10 Clough, Oksuz, Puyol-Antón, Ruijsink, King, Schnabel (bib23) 2019 Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib124) 2017 Durán, Jongsma (bib32) 2021; 47 Barredo Arrieta, Díaz-Rodríguez, Del Ser, Bennetot, Tabik, Barbado, Garcia, Gil-Lopez, Molina, Benjamins, Chatila, Herrera (bib9) 2020; 58 Zhou, Khosla, Lapedriza, Oliva, Torralba (bib168) 2016 Ravi, Khoshrou, Pechenizkiy (bib107) 2020 Gamble, Jaroensri, Wang, Tan, Moran, Brown, Flament-Auvigne, Rakha, Toss, Dabbs, Regitnig, Olson, Wren, Robinson, Corrado, Peng, Liu, Mermel, Steiner, Chen (bib40) 2021; 1 Tang, Tang, Zhu, Xiao, Summers (bib138) 2021; 67 Jin, Li, Hamarneh (bib60) 2021 Tjoa, Guan (bib142) 2020 Chen, Li, Tao, Barnett, Rudin, Su (bib20) 2019 Lundberg, Lee (bib90) 2017 Zhang, Tan, Wang, Manivannan, Chen, Lin, Zheng (bib164) 2019 Singh, Yow (bib130) 2021; 9 M, V, S, H (bib91) 2020; 123 Ghorbani, Wexler, Zou, Kim (bib45) 2019 Tschandl, Rinner, Apalla, Argenziano, Codella, Halpern, Janda, Lallas, Longo, Malvehy, Paoli, Puig, Rosendahl, Soyer, Zalaudek, Kittler (bib144) 2020 Pereira, Meier, Alves, Reyes, Silva (bib104) 2018 Stergiou, Kapidis, Kalliatakis, Chrysoulas, Veltkamp, Poppe (bib135) 2019 Schlemper, Oktay, Schaap, Heinrich, Kainz, Glocker, Rueckert (bib119) 2019; 53 Uzunova, Ehrhardt, Kepp, Handels (bib145) 2019 Kim, Kim, Seo, Yoon (bib66) 2021 Narayanaswamy, Venugopalan, Webster, Peng, Corrado, Ruamviboonsuk, Bavishi, Brenner, Nelson, Varadarajan (bib98) 2020 Dai, Wang (bib26) 2018; 6 Panth, Leijenaar, Carvalho, Lieuwes, Yaromina, Dubois, Lambin (bib100) 2015; 116 Weaver, Leung (bib151) 2017; 210 Smilkov, Thorat, Kim, Viégas, Wattenberg (bib132) 2017 Chattopadhay, Sarkar, Howlader, Balasubramanian (bib19) 2018 Li, Dong, Du, Mu (bib81) 2019; 7 Sanduleanu, Woodruff, de Jong, van Timmeren, Jochems, Dubois, Lambin (bib116) 2018; 127 Lee, Yune, Mansouri, Kim, Tajmir, Guerrier, Ebert, Pomerantz, Romero, Kamalian, Gonzalez, Lev, Do (bib77) 2018; 3 Yan, Kawahara, Hamarneh (bib154) 2019 Panwar, Gupta, Siddiqui, Morales-Menendez, Bhardwaj, Singh (bib101) 2020; 140 Yang, Dvornek, Zhang, Zhuang, Chapiro, Lin, Duncan (bib157) 2019 Salahuddin, Lenga, Nickisch (bib113) 2021 Li, Liu, Chen, Rudin (bib80) 2018 Temme (bib140) 2017; 3 Lipton (bib88) 2018; 16 Koh, Nguyen, Tang, Mussmann, Pierson, Kim, Liang (bib69) 2020 Liao, Chen, Xiao (bib85) 2018 Verma, Dickerson, Hines (bib147) 2020 Lambin, Rios-Velazquez, Leijenaar, Carvalho, van Stiphout, Granton, Zegers, Gillies, Boellard, Dekker, Aerts (bib73) 2012; 48 Bach, Binder, Montavon, Klauschen, Müller, Samek (bib6) 2015; 10 Samek, Binder, Montavon, Lapuschkin, Müller (bib115) 2017; 28 Kindermans, Schütt, Alber, Müller, Erhan, Kim, Dähne (bib67) 2018 Mohammadjafari, Cevik, Thanabalasingam, Basar, Initiative (bib96) 2021 Bass, da Silva, Sudre, Tudosiu, Smith, Robinson (bib10) 2020 Yilmaz, Mader, Fricke, Peña, Glüer, Meyer (bib160) 2020 Janik, Dodd, Ifrim, Sankaran, Curran (bib58) 2021 Erhan, Bengio, Courville, Vincent (bib36) 2009 Zhang, Chen, McGough, Xing, Wang, Bui, Xie, Sapkota, Cui, Dhillon, Ahmad, Khalil, Dickinson, Shi, Liu, Su, Cai, Yang (bib165) 2019; 1 Graziani, Andrearczyk, Müller (bib49) 2018 Lee, Kim, Ro (bib76) 2019 van der Maaten, Hinton (bib92) 2008; 9 Ding, Sohn, Kawczynski, Trivedi, Harnish, Jenkins, Lituiev, Copeland, Aboian, Aparici, Behr, Flavell, Huang, Zalocusky, Nardo, Seo, Hawkins, hernandez pampaloni, Hadley, Franc (bib29) 2018; 290 Lin (bib86) 2004 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib47) 2014 Sundararajan, Taly, Yan (bib137) 2017; vol. 70 Chen, Bei, Rudin (bib21) 2020; 2 Lenis, Major, Wimmer, Berg, Sluiter, Bühler (bib78) 2020 Faust, Xie, Han, Goyle, Volynskaya, Djuric, Diamandis (bib38) 2018; 19 Rudin (bib110) 2019; 1 Ghorbani, Abid, Zou (bib43) 2019; 33 Bándi, Geessink, Manson, Van Dijk, Balkenhol, Hermsen, Ehteshami Bejnordi, Lee, Paeng, Zhong, Li, Zanjani, Zinger, Fukuta, Komura, Ovtcharov, Cheng, Zeng, Thagaard, Dahl, Lin, Chen, Jacobsson, Hedlund, Çetin, Halıcı, Jackson, Chen, Both, Franke, Küsters-Vandevelde, Vreuls, Bult, van Ginneken, van der Laak, Litjens (bib14) 2019; 38 Yeche, Harrison, Berthier (bib159) 2019 Ghorbani, Ouyang, Abid, He, Chen, Harrington, Liang, Ashley, Zou (bib44) 2020; 3 Seah, Tang, Kitchen, Gaillard, Dixon (bib122) 2019; 290 Schmidhuber (bib120) 2015; 61 Shen, Han, Aberle, Bui, Hsu (bib125) 2019; 128 Holzinger, Carrington, Müller (bib55) 2020; 34 Zhang, Petitjean, Yger, Ainouz (bib163) 2020 Schutte, Moindrot, Hérent, Schiratti, Jégou (bib121) 2021 Yang, Veeraraghavan, Armato, Farahani, Kirby, Kalpathy-Kramer, van Elmpt, Dekker, Han, Feng, Aljabar, Oliveir Kermany (10.1016/j.compbiomed.2021.105111_bib64) 2018; 172 Lundberg (10.1016/j.compbiomed.2021.105111_bib90) 2017 Sundararajan (10.1016/j.compbiomed.2021.105111_bib137) 2017; vol. 70 Izadyyazdanabadi (10.1016/j.compbiomed.2021.105111_bib57) 2018 Lee (10.1016/j.compbiomed.2021.105111_bib76) 2019 Margeloiu (10.1016/j.compbiomed.2021.105111_bib95) 2021 Zhou (10.1016/j.compbiomed.2021.105111_bib169) 2021; 10 Chattopadhay (10.1016/j.compbiomed.2021.105111_bib19) 2018 Saha (10.1016/j.compbiomed.2021.105111_bib112) 2016; 43 8 Springenberg (10.1016/j.compbiomed.2021.105111_bib134) 2015 Singh (10.1016/j.compbiomed.2021.105111_bib130) 2021; 9 van der Maaten (10.1016/j.compbiomed.2021.105111_bib92) 2008; 9 Aresta (10.1016/j.compbiomed.2021.105111_bib3) 2019; 56 Goodfellow (10.1016/j.compbiomed.2021.105111_bib46) 2014; 27 Santamaría-Pang (10.1016/j.compbiomed.2021.105111_bib117) 2020 Katzmann (10.1016/j.compbiomed.2021.105111_bib62) 2021; 458 Li (10.1016/j.compbiomed.2021.105111_bib84) 2019 Yang (10.1016/j.compbiomed.2021.105111_bib158) 2018; 45 Shen (10.1016/j.compbiomed.2021.105111_bib125) 2019; 128 Faust (10.1016/j.compbiomed.2021.105111_bib38) 2018; 19 Lipton (10.1016/j.compbiomed.2021.105111_bib87) 2017 Chen (10.1016/j.compbiomed.2021.105111_bib21) 2020; 2 Narayanaswamy (10.1016/j.compbiomed.2021.105111_bib98) 2020 Baumgartner (10.1016/j.compbiomed.2021.105111_bib12) 2018 Kim (10.1016/j.compbiomed.2021.105111_bib66) 2021 Tang (10.1016/j.compbiomed.2021.105111_bib138) 2021; 67 Adebayo (10.1016/j.compbiomed.2021.105111_bib1) 2018 Lin (10.1016/j.compbiomed.2021.105111_bib86) 2004 Samek (10.1016/j.compbiomed.2021.105111_bib115) 2017; 28 Bass (10.1016/j.compbiomed.2021.105111_bib10) 2020 Tschandl (10.1016/j.compbiomed.2021.105111_bib143) 2019; 20 Dai (10.1016/j.compbiomed.2021.105111_bib27) 2018; 34 Schlemper (10.1016/j.compbiomed.2021.105111_bib119) 2019; 53 Eitel (10.1016/j.compbiomed.2021.105111_bib34) 2019 Lopatina (10.1016/j.compbiomed.2021.105111_bib89) 2020; 14 Wickstrøm (10.1016/j.compbiomed.2021.105111_bib152) 2020; 60 Yang (10.1016/j.compbiomed.2021.105111_bib157) 2019 Zhu (10.1016/j.compbiomed.2021.105111_bib170) 2017 Li (10.1016/j.compbiomed.2021.105111_bib79) 2018 Lipton (10.1016/j.compbiomed.2021.105111_bib88) 2018; 16 Zhuang (10.1016/j.compbiomed.2021.105111_bib173) 2019; 58 Zhang (10.1016/j.compbiomed.2021.105111_bib166) 2017 Panth (10.1016/j.compbiomed.2021.105111_bib100) 2015; 116 Ravi (10.1016/j.compbiomed.2021.105111_bib107) 2020 Sabour (10.1016/j.compbiomed.2021.105111_bib111) 2017 LaLonde (10.1016/j.compbiomed.2021.105111_bib71) 2020 Thomas (10.1016/j.compbiomed.2021.105111_bib141) 2019; 13 Janik (10.1016/j.compbiomed.2021.105111_bib58) 2021 Eitel (10.1016/j.compbiomed.2021.105111_bib35) 2019; 24 Bau (10.1016/j.compbiomed.2021.105111_bib11) 2017 Li (10.1016/j.compbiomed.2021.105111_bib82) 2019 Zeiler (10.1016/j.compbiomed.2021.105111_bib162) 2014 Pisov (10.1016/j.compbiomed.2021.105111_bib105) 2019 Lenis (10.1016/j.compbiomed.2021.105111_bib78) 2020 Goodfellow (10.1016/j.compbiomed.2021.105111_bib47) 2014 Tang (10.1016/j.compbiomed.2021.105111_bib139) 2019; 10 Schmidhuber (10.1016/j.compbiomed.2021.105111_bib120) 2015; 61 Lambin (10.1016/j.compbiomed.2021.105111_bib74) 2013; 10 Magesh (10.1016/j.compbiomed.2021.105111_bib93) 2020; 126 Graziani (10.1016/j.compbiomed.2021.105111_bib49) 2018 Smith-Bindman (10.1016/j.compbiomed.2021.105111_bib133) 2008; 27 Camalan (10.1016/j.compbiomed.2021.105111_bib16) 2021; 13 Zhuang (10.1016/j.compbiomed.2021.105111_bib172) 2019 Li (10.1016/j.compbiomed.2021.105111_bib81) 2019; 7 Li (10.1016/j.compbiomed.2021.105111_bib83) 2018 Geirhos (10.1016/j.compbiomed.2021.105111_bib41) 2019 Jin (10.1016/j.compbiomed.2021.105111_bib60) 2021 Tjoa (10.1016/j.compbiomed.2021.105111_bib142) 2020 Schutte (10.1016/j.compbiomed.2021.105111_bib121) 2021 Zhao (10.1016/j.compbiomed.2021.105111_bib167) 2018 Ribeiro (10.1016/j.compbiomed.2021.105111_bib108) 2016 Weaver (10.1016/j.compbiomed.2021.105111_bib151) 2017; 210 Chen (10.1016/j.compbiomed.2021.105111_bib20) 2019 Mohammadjafari (10.1016/j.compbiomed.2021.105111_bib96) 2021 Yang (10.1016/j.compbiomed.2021.105111_bib155) 2021 Bansal (10.1016/j.compbiomed.2021.105111_bib7) 2020 LeCun (10.1016/j.compbiomed.2021.105111_bib75) 2015; 521 Holzinger (10.1016/j.compbiomed.2021.105111_bib56) 2021; 71 Liao (10.1016/j.compbiomed.2021.105111_bib85) 2018 Salahuddin (10.1016/j.compbiomed.2021.105111_bib113) 2021 Wang (10.1016/j.compbiomed.2021.105111_bib149) 2018 He (10.1016/j.compbiomed.2021.105111_bib51) 2017 Krizhevsky (10.1016/j.compbiomed.2021.105111_bib70) 2012; 25 Rudin (10.1016/j.compbiomed.2021.105111_bib110) 2019; 1 Cohen (10.1016/j.compbiomed.2021.105111_bib24) 2021 Chowdhury (10.1016/j.compbiomed.2021.105111_bib22) 2021 Shrikumar (10.1016/j.compbiomed.2021.105111_bib126) 2017 Zhang (10.1016/j.compbiomed.2021.105111_bib164) 2019 Babic (10.1016/j.compbiomed.2021.105111_bib5) 2021; 373 Gamble (10.1016/j.compbiomed.2021.105111_bib40) 2021; 1 Higgins (10.1016/j.compbiomed.2021.105111_bib52) 2018 Ding (10.1016/j.compbiomed.2021.105111_bib29) 2018; 290 Zhu (10.1016/j.compbiomed.2021.105111_bib171) 2019 Singh (10.1016/j.compbiomed.2021.105111_bib129) 2021; 9 Couteaux (10.1016/j.compbiomed.2021.105111_bib25) 2019 Lambin (10.1016/j.compbiomed.2021.105111_bib72) 2017; 14 Karras (10.1016/j.compbiomed.2021.105111_bib61) 2019 Selvaraju (10.1016/j.compbiomed.2021.105111_bib124) 2017 Pereira (10.1016/j.compbiomed.2021.105111_bib104) 2018 Silva (10.1016/j.compbiomed.2021.105111_bib127) 2020 Young (10.1016/j.compbiomed.2021.105111_bib161) 2019 Boehle (10.1016/j.compbiomed.2021.105111_bib15) 2019; 11 Finlayson (10.1016/j.compbiomed.2021.105111_bib39) 2019 Ghorbani (10.1016/j.compbiomed.2021.105111_bib45) 2019 Mahinpei (10.1016/j.compbiomed.2021.105111_bib94) 2021 Barredo Arrieta (10.1016/j.compbiomed.2021.105111_bib9) 2020; 58 Clough (10.1016/j.compbiomed.2021.105111_bib23) 2019 Smilkov (10.1016/j.compbiomed.2021.105111_bib132) 2017 Sun (10.1016/j.compbiomed.2021.105111_bib136) 2020 Dai (10.1016/j.compbiomed.2021.105111_bib26) 2018; 6 Temme (10.1016/j.compbiomed.2021.105111_bib140) 2017; 3 Goodfellow (10.1016/j.compbiomed.2021.105111_bib48) 2015 Papanastasopoulos (10.1016/j.compbiomed.2021.105111_bib102) 2020 Grossmann (10.1016/j.compbiomed.2021.105111_bib50) 2017; 6 Dinsdale (10.1016/j.compbiomed.2021.105111_bib30) 2021; 228 Puyol-Antón (10.1016/j.compbiomed.2021.105111_bib106) 2020 Simonyan (10.1016/j.compbiomed.2021.105111_bib128) 2014 Saleem (10.1016/j.compbiomed.2021.105111_bib114) 2021; 133 Lambin (10.1016/j.compbiomed.2021.105111_bib73) 2012; 48 Seegerer (10.1016/j.compbiomed.2021.105111_bib123) 2020 DeGrave (10.1016/j.compbiomed.2021.105111_bib28) 2021; 3 Lee (10.1016/j.compbiomed.2021.105111_bib77) 2018; 3 Erhan (10.1016/j.compbiomed.2021.105111_bib36) 2009 Erion (10.1016/j.compbiomed.2021.105111_bib37) 2021; 3 Wargnier-Dauchelle (10.1016/j.compbiomed.2021.105111_bib150) 2021 Ghandeharioun (10.1016/j.compbiomed.2021.105111_bib42) 2021 Zhou (10.1016/j.compbiomed.2021.105111_bib168) 2016 M (10.1016/j.compbiomed.2021.105111_bib91) 2020; 123 Eitel (10.1016/j.compbiomed.2021.105111_bib33) 2019 Kingma (10.1016/j.compbiomed.2021.105111_bib68) 2014 Yan (10.1016/j.compbiomed.2021.105111_bib154) 2019 Bach (10.1016/j.compbiomed.2021.105111_bib6) 2015; 10 Barnett (10.1016/j.compbiomed.2021.105111_bib8) 2021 Papineni (10.1016/j.compbiomed.2021.105111_bib103) 2002 Sanduleanu (10.1016/j.compbiomed.2021.105111_bib116) 2018; 127 Bándi (10.1016/j.compbiomed.2021.105111_bib14) 2019; 38 Holzinger (10.1016/j.compbiomed.2021.105111_bib55) 2020; 34 Hinterreiter (10.1016/j.compbiomed.2021.105111_bib53) 2020 Yilmaz (10.1016/j.compbiomed.2021.105111_bib160) 2020 Natekar (10.1016/j.compbiomed.2021.105111_bib99) 2020; 14 Verma (10.1016/j.compbiomed.2021.105111_bib147) 2020 Sayres (10.1016/j.compbiomed.2021.105111_bib118) 2019; 126 Jetley (10.1016/j.compbiomed.2021.105111_bib59) 2018 Kindermans (10.1016/j.compbiomed.2021.105111_bib67) 2018 Aerts (10.1016/j.compbiomed.2021.105111_bib2) 2014; 5 Ghorbani (10.1016/j.compbiomed.2021.105111_bib44) 2020; 3 Yan (10.1016/j.compbiomed.2021.105111_bib153) 2017 Yeche (10.1016/j.compbiomed.2021.105111_bib159) 2019 Stergiou (10.1016/j.compbiomed.2021.105111_bib135) 2019 Tschandl (10.1016/j.compbiomed.2021.105111_bib144) 2020 Waldstein (10.1016/j.compbiomed.2021.105111_bib148) 2020; 10 Kaur (10.1016/j.compbiomed.2021.105111_bib63) 2021 Singla (10.1016/j.compbiomed.2021.105111_bib131) 2021 Hoffmann (10.1016/j.compbiomed.2021.105111_bib54) 2021 Montavon (10.1016/j.compbiomed.2021.105111_bib97) 2017; 65 Carvalho (10.1016/j.compbiomed.2021.105111_bib18) 2019; 8 Durán (10.1016/j.compbiomed.2021.105111_bib32) 2021; 47 Seah (10.1016/j.compbiomed.2021.105111_bib122) 2019; 290 Yang (10.1016/j.compbiomed.2021.105111_bib156) 2020; 39 Biffi (10.1016/j.compbiomed.2021.105111_bib13) 2020; 39 Uzunova (10.1016/j.compbiomed.2021.105111_bib145) 2019 Campello (10.1016/j.compbiomed.2021.105111_bib17) 2021 Koh (10.1016/j.compbiomed.2021.105111_bib69) 2020 Vedantam (10.1016/j.compbiomed.2021.105111_bib146) 2015 Doshi-Velez (10.1016/j.compbiomed.2021.105111_bib31) 2017 Zhang (10.1016/j.compbiomed.2021.105111_bib163) 2020 Arjovsky (10.1016/j.compbiomed.2021.105111_bib4) 2017 Ghorbani (10.1016/j.compbiomed.2021.105111_bib43) 2019; 33 Kim (10.1016/j.compbiomed.2021.105111_bib65) 2018 Panwar (10.1016/j.compbiomed.2021.105111_bib101) 2020; 140 Rieger (10.1016/j.compbiomed.2021.105111_bib109) 2020 Li (10.1016/j.compbiomed.2021.105111_bib80) 2018 Zhang (10.1016/j.compbiomed.2021.105111_bib165) 2019; 1 |
References_xml | – year: 2021 ident: bib17 article-title: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the m amp;ms challenge publication-title: IEEE Trans. Med. Imag. – start-page: 3549 year: 2017 end-page: 3557 ident: bib166 article-title: Mdnet: a semantically and visually interpretable medical image diagnosis network publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 11 year: 2019 ident: bib15 article-title: Layer-wise relevance propagation for explaining deep neural network decisions in mri-based alzheimer's disease classification publication-title: Front. Aging Neurosci. – year: 2014 ident: bib68 article-title: Auto-encoding Variational Bayes – start-page: 326 year: 2020 end-page: 334 ident: bib117 article-title: Towards emergent language symbolic semantic segmentation and model interpretability publication-title: Medical Image Computing and Computer Assisted Intervention - MICCAI 2020 - 23rd International Conference, Lima, Peru, October 4-8, 2020, Proceedings, Part I – volume: 60 start-page: 101619 year: 2020 ident: bib152 article-title: Uncertainty and interpretability in convolutional neural networks for semantic segmentation of colorectal polyps publication-title: Med. Image Anal. – volume: 28 start-page: 2660 year: 2017 end-page: 2673 ident: bib115 article-title: Evaluating the visualization of what a deep neural network has learned publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 228 start-page: 117689 year: 2021 ident: bib30 article-title: Deep learning-based unlearning of dataset bias for mri harmonisation and confound removal publication-title: Neuroimage – year: 2017 ident: bib87 article-title: The Doctor Just Won't Accept that! – volume: 126 start-page: 104041 year: 2020 ident: bib93 article-title: An explainable machine learning model for early detection of Parkinson's disease using lime on datscan imagery publication-title: Comput. Biol. Med. – start-page: 8928 year: 2019 end-page: 8939 ident: bib20 article-title: This looks like that: deep learning for interpretable image recognition publication-title: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada – volume: 58 start-page: 82 year: 2020 end-page: 115 ident: bib9 article-title: Explainable artificial intelligence (xai): concepts, taxonomies, opportunities and challenges toward responsible ai publication-title: Inf. Fusion – year: 2021 ident: bib95 article-title: Do Concept Bottleneck Models Learn as Intended? – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib75 article-title: Deep learning publication-title: Nature – start-page: 793 year: 2019 end-page: 804 ident: bib154 article-title: Melanoma recognition via visual attention publication-title: Information Processing in Medical Imaging – start-page: 2242 year: 2017 end-page: 2251 ident: bib170 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks publication-title: 2017 IEEE International Conference on Computer Vision (ICCV) – start-page: 700 year: 2019 end-page: 708 ident: bib172 article-title: Invertible network for classification and biomarker selection for ASD publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 – volume: 10 year: 2015 ident: bib6 article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation publication-title: PLoS One – volume: 3 start-page: 173 year: 2018 end-page: 182 ident: bib77 article-title: An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets publication-title: Nat. Biomed. Eng. – volume: 6 year: 2017 ident: bib50 article-title: Defining the biological basis of radiomic phenotypes in lung cancer publication-title: eLife – start-page: 3 year: 2019 end-page: 11 ident: bib33 article-title: Testing the robustness of attribution methods for convolutional neural networks in mri-based alzheimer's disease classification publication-title: Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support – volume: 48 start-page: 441 year: 2012 end-page: 446 ident: bib73 article-title: Radiomics: extracting more information from medical images using advanced feature analysis publication-title: Eur. J. Cancer – start-page: 35 year: 2021 end-page: 46 ident: bib63 article-title: Trustworthy explainability acceptance: a new metric to measure the trustworthiness of interpretable ai medical diagnostic systems publication-title: Complex, Intelligent and Software Intensive Systems – start-page: 3319 year: 2017 end-page: 3327 ident: bib11 article-title: Network dissection: quantifying interpretability of deep visual representations publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 742 year: 2017 end-page: 751 ident: bib51 article-title: Deep learning features for lung adenocarcinoma classification with tissue pathology images publication-title: Neural Information Processing – volume: 140 start-page: 110190 year: 2020 ident: bib101 article-title: A deep learning and grad-cam based color visualization approach for fast detection of covid-19 cases using chest x-ray and ct-scan images publication-title: Chaos, Solit. Fractals – year: 2018 ident: bib67 article-title: Learning how to explain neural networks: patternnet and patternattribution publication-title: International Conference on Learning Representations – volume: 1 start-page: 14 year: 2021 ident: bib40 article-title: Determining breast cancer biomarker status and associated morphological features using deep learning publication-title: Commun. Med. – start-page: 11 year: 2020 end-page: 21 ident: bib7 article-title: Sam: the sensitivity of attribution methods to hyperparameters publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) – start-page: 21 year: 2019 end-page: 29 ident: bib76 article-title: Generation of multimodal justification using visual word constraint model for explainable computer-aided diagnosis publication-title: Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support – start-page: 861 year: 2021 end-page: 872 ident: bib58 article-title: Interpretability of a deep learning model in the application of cardiac MRI segmentation with an ACDC challenge dataset publication-title: Medical Imaging 2021: Image Processing – year: 2018 ident: bib59 article-title: Learn to pay attention publication-title: International Conference on Learning Representations – start-page: 4303161 year: 2018 ident: bib85 article-title: Brain midline shift measurement and its automation: a review of techniques and algorithms publication-title: Int. J. Biomed. Imag. 2018 – volume: 133 start-page: 104410 year: 2021 ident: bib114 article-title: Visual interpretability in 3d brain tumor segmentation network publication-title: Comput. Biol. Med. – start-page: 3 year: 2019 end-page: 11 ident: bib34 article-title: Testing the robustness of attribution methods for convolutional neural networks in mri-based alzheimer's disease classification publication-title: Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support – volume: 47 start-page: 329 year: 2021 end-page: 335 ident: bib32 article-title: Who is afraid of black box algorithms? on the epistemological and ethical basis of trust in medical ai publication-title: J. Med. Ethics – year: 2014 ident: bib47 publication-title: Generative Adversarial Nets – volume: 10 year: 2019 ident: bib139 article-title: Interpretable classification of alzheimer's disease pathologies with a convolutional neural network pipeline publication-title: Nat. Commun. – year: 2002 ident: bib103 publication-title: Bleu: a Method for Automatic Evaluation of Machine Translation – start-page: 618 year: 2017 end-page: 626 ident: bib124 article-title: Grad-cam: Visual Explanations from Deep Networks via Gradient-Based Localization publication-title: 2017 IEEE International Conference on Computer Vision (ICCV) – start-page: 3 year: 2020 end-page: 12 ident: bib160 article-title: Assessing attribution maps for explaining cnn-based vertebral fracture classifiers publication-title: Interpretable and Annotation-Efficient Learning for Medical Image Computing – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: bib92 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – start-page: 228 year: 2020 end-page: 235 ident: bib102 article-title: Explainable AI for medical imaging: deep-learning CNN ensemble for classification of estrogen receptor status from breast MRI publication-title: Medical Imaging 2020: Computer-Aided Diagnosis, International Society for Optics and Photonics – start-page: 9049 year: 2018 end-page: 9058 ident: bib149 article-title: Tienet: text-image embedding network for common thorax disease classification and reporting in chest x-rays publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 15719 year: 2021 end-page: 15728 ident: bib66 article-title: Xprotonet: diagnosis in chest radiography with global and local explanations publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 27 start-page: 1491 year: 2008 end-page: 1502 ident: bib133 article-title: Rising use of diagnostic medical imaging in a large integrated health system publication-title: Health Aff.(Project Hope) – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: bib120 article-title: Deep learning in neural networks: an overview publication-title: Neural Network. – volume: 290 start-page: 514 year: 2019 end-page: 522 ident: bib122 article-title: Chest radiographs in congestive heart failure: visualizing neural network learning publication-title: Radiology – volume: 56 start-page: 122 year: 2019 end-page: 139 ident: bib3 article-title: Bach: grand challenge on breast cancer histology images publication-title: Med. Image Anal. – year: 2014 ident: bib128 article-title: Deep inside convolutional networks: visualising image classification models and saliency maps publication-title: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Workshop Track Proceedings – year: 2021 ident: bib60 article-title: One Map Does Not Fit All: Evaluating Saliency Map Explanation on Multi-Modal Medical Images – start-page: 1830 year: 2019 end-page: 1834 ident: bib135 article-title: Saliency tubes: visual explanations for spatio-temporal convolutions publication-title: 2019 IEEE International Conference on Image Processing (ICIP) – volume: 14 year: 2020 ident: bib89 article-title: Investigation of deep-learning-driven identification of multiple sclerosis patients based on susceptibility-weighted images using relevance analysis publication-title: Front. Neurosci. – volume: 10 year: 2021 ident: bib169 article-title: Evaluating the quality of machine learning explanations: a survey on methods and metrics publication-title: Electronics – start-page: 9273 year: 2019 end-page: 9282 ident: bib45 article-title: Towards automatic concept-based explanations publication-title: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada – start-page: 323 year: 2019 end-page: 331 ident: bib157 article-title: Domain-agnostic learning with anatomy-consistent embedding for cross-modality liver segmentation publication-title: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW) – year: 2020 ident: bib107 article-title: Vidi: Descriptive Visual Data Clustering as Radiologist Assistant in Covid-19 Streamline Diagnostic – year: 2020 ident: bib147 article-title: Counterfactual Explanations for Machine Learning: A Review – volume: 3 start-page: 610 year: 2021 end-page: 619 ident: bib28 article-title: Ai for radiographic covid-19 detection selects shortcuts over signal publication-title: Nat. Mach. Intell. – volume: 10 start-page: 27 year: 2013 end-page: 40 ident: bib74 article-title: Predicting outcomes in radiation oncology—multifactorial decision support systems publication-title: Nat. Rev. Clin. Oncol. – year: 2021 ident: bib94 article-title: Promises and Pitfalls of Black-Box Concept Learning Models – year: 2019 ident: bib41 article-title: Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness publication-title: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 – volume: 1 start-page: 206 year: 2019 end-page: 215 ident: bib110 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nat. Mach. Intell. – start-page: 305 year: 2020 end-page: 314 ident: bib127 article-title: Interpretability-guided content-based medical image retrieval publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 – year: 2020 ident: bib142 article-title: Quantifying Explainability of Saliency Methods in Deep Neural Networks – volume: 373 start-page: 284 year: 2021 end-page: 286 ident: bib5 article-title: Beware explanations from ai in health care publication-title: Science – volume: 33 start-page: 3681 year: 2019 end-page: 3688 ident: bib43 article-title: Interpretation of neural networks is fragile publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 1 year: 2020 end-page: 6 ident: bib144 article-title: Human–computer collaboration for skin cancer recognition publication-title: Nat. Med. – start-page: 294 year: 2020 end-page: 304 ident: bib71 article-title: Encoding visual attributes in capsules for explainable medical diagnoses publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings – volume: 10 start-page: 12954 year: 2020 ident: bib148 article-title: Unbiased identification of novel subclinical imaging biomarkers using unsupervised deep learning publication-title: Sci. Rep. – year: 2019 ident: bib171 article-title: Guideline-based additive explanation for computer-aided diagnosis of lung nodules publication-title: iMIMIC/ML-CDS@MICCAI – year: 2004 ident: bib86 publication-title: Rouge: A Package for Automatic Evaluation of Summaries – volume: 16 start-page: 31 year: 2018 end-page: 57 ident: bib88 article-title: The mythos of model interpretability publication-title: Queue – start-page: 2797 year: 2019 end-page: 2800 ident: bib84 article-title: From deep learning towards finding skin lesion biomarkers publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society – year: 2021 ident: bib131 article-title: Explaining the Black-Box Smoothly- a Counterfactual Approach – volume: 20 start-page: 938 year: 2019 end-page: 947 ident: bib143 article-title: Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study publication-title: Lancet Oncol. – volume: 19 year: 2018 ident: bib38 article-title: Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction publication-title: BMC Bioinf. – start-page: 315 year: 2020 end-page: 325 ident: bib78 article-title: Domain aware medical image classifier interpretation by counterfactual impact analysis publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 – volume: 34 start-page: 1631 year: 2018 end-page: 1642 ident: bib27 article-title: Conceptual alignment deep neural networks publication-title: J. Intell. Fuzzy Syst. – year: 2021 ident: bib155 article-title: Unbox the Black-Box for the Medical Explainable AI via Multi-Modal and Multi-Centre Data Fusion: A Mini-Review, Two Showcases and beyond – volume: 39 start-page: 1306 year: 2020 end-page: 1315 ident: bib156 article-title: Guided soft attention network for classification of breast cancer histopathology images publication-title: IEEE Trans. Med. Imag. – start-page: 8309 year: 2018 end-page: 8319 ident: bib12 article-title: Visual feature attribution using wasserstein gans publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 818 year: 2014 end-page: 833 ident: bib162 article-title: Visualizing and understanding convolutional networks publication-title: Computer Vision – ECCV 2014 – year: 2017 ident: bib31 article-title: Towards a Rigorous Science of Interpretable Machine Learning – start-page: 209 year: 2019 end-page: 217 ident: bib164 article-title: Biomarker localization by combining cnn classifier and generative adversarial network publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 – volume: 58 start-page: 101537 year: 2019 ident: bib173 article-title: Evaluation of algorithms for multi-modality whole heart segmentation: an open-access grand challenge publication-title: Med. Image Anal. – year: 2021 ident: bib121 article-title: Using Stylegan for Visual Interpretability of Deep Learning Models on Medical Images – start-page: 56 year: 2019 end-page: 63 ident: bib25 article-title: Towards interpretability of segmentation networks by analyzing deepdreams publication-title: Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support – year: 2021 ident: bib8 article-title: Interpretable Mammographic Image Classification Using Cased-Based Reasoning and Deep Learning – volume: 8 start-page: 832 year: 2019 ident: bib18 article-title: Machine learning interpretability: a survey on methods and metrics publication-title: Electronics – start-page: 656 year: 2019 end-page: 664 ident: bib23 article-title: Global and local interpretability for cardiac mri classification publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 – start-page: 7697 year: 2020 end-page: 7709 ident: bib10 article-title: Icam: interpretable classification via disentangled representations and feature attribution mapping publication-title: Advances in Neural Information Processing Systems – volume: 53 start-page: 197 year: 2019 end-page: 207 ident: bib119 article-title: Attention gated networks: learning to leverage salient regions in medical images publication-title: Med. Image Anal. – volume: 38 start-page: 550 year: 2019 end-page: 560 ident: bib14 article-title: From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge publication-title: IEEE Trans. Med. Imag. – start-page: 16 year: 2020 end-page: 37 ident: bib123 article-title: Interpretable Deep Neural Network to Predict Estrogen Receptor Status from Haematoxylin-Eosin Images – start-page: 1 year: 2017 end-page: 6 ident: bib153 article-title: Discriminating schizophrenia from normal controls using resting state functional network connectivity: a deep neural network and layer-wise relevance propagation method publication-title: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing – start-page: 206 year: 2018 end-page: 214 ident: bib83 article-title: Brain biomarker interpretation in asd using deep learning and fmri publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 – start-page: 2921 year: 2016 end-page: 2929 ident: bib168 article-title: Learning deep features for discriminative localization publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 273 year: 2020 end-page: 283 ident: bib98 article-title: Scientific discovery by generating counterfactuals using image translation publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 – year: 2021 ident: bib24 article-title: Gifsplanation via Latent Shift: A Simple Autoencoder Approach to Progressive Exaggeration on Chest X-Rays – start-page: 5338 year: 2020 end-page: 5348 ident: bib69 article-title: Concept bottleneck models publication-title: Proceedings of the 37th International Conference on Machine Learning, PMLR – start-page: 73 year: 2020 end-page: 82 ident: bib163 article-title: Explainability for regression cnn in fetal head circumference estimation from ultrasound images publication-title: Interpretable and Annotation-Efficient Learning for Medical Image Computing – year: 2021 ident: bib96 article-title: Using protopnet for interpretable alzheimer's disease classification publication-title: Proceedings of the Canadian Conference on Artificial Intelligence – volume: 9 start-page: 85198 year: 2021 end-page: 85208 ident: bib130 article-title: An interpretable deep learning model for covid-19 detection with chest <italic>x</italic>-ray images publication-title: IEEE Access – start-page: 106 year: 2018 end-page: 114 ident: bib104 article-title: Automatic brain tumor grading from mri data using convolutional neural networks and quality assessment publication-title: Understanding and Interpreting Machine Learning in Medical Image Computing Applications – volume: 1 start-page: 236 year: 2019 end-page: 245 ident: bib165 article-title: Pathologist-level interpretable whole-slide cancer diagnosis with deep learning publication-title: Nat. Mach. Intell. – volume: 13 year: 2021 ident: bib16 article-title: Convolutional neural network-based clinical predictors of oral dysplasia: class activation map analysis of deep learning results publication-title: Cancers – start-page: 839 year: 2018 end-page: 847 ident: bib19 article-title: Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks publication-title: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) – year: 2018 ident: bib52 article-title: Towards a Definition of Disentangled Representations – volume: 71 start-page: 28 year: 2021 end-page: 37 ident: bib56 article-title: Towards multi-modal causability with graph neural networks enabling information fusion for explainable ai publication-title: Inf. Fusion – year: 2017 ident: bib111 article-title: Dynamic routing between capsules publication-title: Advances in Neural Information Processing Systems – year: 2017 ident: bib132 article-title: Smoothgrad: Removing Noise by Adding Noise – start-page: 214 year: 2017 end-page: 223 ident: bib4 article-title: Wasserstein generative adversarial networks publication-title: Proceedings of the 34th International Conference on Machine Learning – year: 2021 ident: bib42 article-title: Dissect: Disentangled Simultaneous Explanations via Concept Traversals – volume: 14 start-page: 749 year: 2017 end-page: 762 ident: bib72 article-title: Radiomics: the bridge between medical imaging and personalized medicine publication-title: Nat. Rev. Clin. Oncol. – start-page: 689 year: 2021 end-page: 692 ident: bib22 article-title: Emergent symbolic language based deep medical image classification publication-title: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI) – year: 2018 ident: bib57 article-title: Weakly-supervised learning-based feature localization in confocal laser endomicroscopy glioma images publication-title: MICCAI – volume: 24 start-page: 102003 year: 2019 ident: bib35 article-title: Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional mri using layer-wise relevance propagation publication-title: Neuroimage: Clin. – volume: 6 start-page: 5962 year: 2018 end-page: 5972 ident: bib26 article-title: Analyzing tongue images using a conceptual alignment deep autoencoder publication-title: IEEE Access – start-page: 4396 year: 2019 end-page: 4405 ident: bib61 article-title: A style-based generator architecture for generative adversarial networks publication-title: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2019 ident: bib159 article-title: Ubs: a dimension-agnostic metric for concept vector interpretability applied to radiomics publication-title: iMIMIC/ML-CDS@MICCAI – start-page: 13 year: 2020 end-page: 22 ident: bib53 article-title: Projective latent interventions for understanding and fine-tuning classifiers publication-title: Interpretable and Annotation-Efficient Learning for Medical Image Computing – volume: 3 start-page: 10 year: 2020 ident: bib44 article-title: Deep learning interpretation of echocardiograms publication-title: npj Digit. Med. – volume: 27 year: 2014 ident: bib46 article-title: Generative adversarial nets publication-title: Adv. Neural Inf. Process. Syst. – volume: 126 start-page: 552 year: 2019 end-page: 564 ident: bib118 article-title: Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy publication-title: Ophthalmology – volume: 39 start-page: 2088 year: 2020 end-page: 2099 ident: bib13 article-title: Explainable anatomical shape analysis through deep hierarchical generative models publication-title: IEEE Trans. Med. Imag. – year: 2018 ident: bib65 article-title: Interpretability beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (Tcav) – year: 2009 ident: bib36 article-title: Visualizing Higher-Layer Features of a Deep Network – volume: 45 start-page: 4568 year: 2018 end-page: 4581 ident: bib158 article-title: Autosegmentation for thoracic radiation treatment planning: a grand challenge at aapm 2017 publication-title: Med. Phys. – year: 2016 ident: bib108 publication-title: ”why Should I Trust You?”: Explaining the Predictions of Any Classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 123 start-page: 103865 year: 2020 ident: bib91 article-title: Concept attribution: explaining cnn decisions to physicians publication-title: Comput. Biol. Med. – start-page: 4768 year: 2017 end-page: 4777 ident: bib90 article-title: A unified approach to interpreting model predictions publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems – year: 2018 ident: bib49 article-title: Regression Concept Vectors for Bidirectional Explanations in Histopathology – volume: 65 start-page: 211 year: 2017 end-page: 222 ident: bib97 article-title: Explaining nonlinear classification decisions with deep taylor decomposition publication-title: Pattern Recogn. – start-page: 264 year: 2019 end-page: 271 ident: bib145 article-title: Interpretable explanations of black box classifiers applied on medical images by meaningful perturbations using variational autoencoders publication-title: Medical Imaging 2019: Image Processing – volume: 172 start-page: 1122 year: 2018 end-page: 1131 ident: bib64 article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning publication-title: Cell – year: 2018 ident: bib167 publication-title: Respond-cam: Analyzing Deep Models for 3d Imaging Data by Visualizations – volume: 3 start-page: 473 year: 2017 ident: bib140 article-title: Algorithms and transparency in view of the new general data protection regulation publication-title: Eur. Data Prot. L. Rev. – volume: 290 start-page: 180958 year: 2018 ident: bib29 article-title: A deep learning model to predict a diagnosis of alzheimer disease by using 18 f-fdg pet of the brain publication-title: Radiology – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: bib70 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – year: 2018 ident: bib1 article-title: Sanity checks for saliency maps publication-title: Advances in Neural Information Processing Systems – volume: 34 start-page: 193 year: 2020 end-page: 198 ident: bib55 article-title: Measuring the quality of explanations: the system causability scale (scs) publication-title: Kunstliche Intelligenz – volume: 2 start-page: 772 year: 2020 end-page: 782 ident: bib21 article-title: Concept whitening for interpretable image recognition publication-title: Nat. Mach. Intell. – start-page: 48 year: 2019 end-page: 55 ident: bib161 article-title: Deep neural network or dermatologist? publication-title: Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support – volume: vol. 70 start-page: 3319 year: 2017 end-page: 3328 ident: bib137 article-title: Axiomatic attribution for deep networks publication-title: Proceedings of the 34th International Conference on Machine Learning – volume: 9 start-page: 41482 year: 2021 end-page: 41493 ident: bib129 article-title: These do not look like those: an interpretable deep learning model for image recognition publication-title: IEEE Access – volume: 127 start-page: 349 year: 2018 end-page: 360 ident: bib116 article-title: Tracking tumor biology with radiomics: a systematic review utilizing a radiomics quality score publication-title: Radiother. Oncol. – volume: 13 year: 2019 ident: bib141 article-title: Analyzing neuroimaging data through recurrent deep learning models publication-title: Front. Neurosci. – volume: 210 start-page: 1 year: 2017 end-page: 8 ident: bib151 article-title: Biomarkers and imaging of breast cancer publication-title: Am. J. Roentgenol. – year: 2015 ident: bib48 article-title: Explaining and Harnessing Adversarial Examples – start-page: 4566 year: 2015 end-page: 4575 ident: bib146 article-title: Cider: consensus-based image description evaluation publication-title: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 – year: 2021 ident: bib54 article-title: This Looks like That…does it? Shortcomings of Latent Space Prototype Interpretability in Deep Networks – start-page: 284 year: 2020 end-page: 293 ident: bib106 article-title: Interpretable deep models for cardiac resynchronisation therapy response prediction publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 – start-page: 9215 year: 2018 end-page: 9223 ident: bib79 article-title: Tell me where to look: guided attention inference network publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 128 start-page: 84 year: 2019 end-page: 95 ident: bib125 article-title: An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification publication-title: Expert Syst. Appl. – start-page: 1062 year: 2021 end-page: 1066 ident: bib150 article-title: A more interpretable classifier for multiple sclerosis publication-title: 2021 IEEE 18th International Symposium on Biomedical Imaging – volume: 458 start-page: 141 year: 2021 end-page: 156 ident: bib62 article-title: Explaining clinical decision support systems in medical imaging using cycle-consistent activation maximization publication-title: Neurocomputing – year: 2015 ident: bib134 article-title: Striving for Simplicity: the All Convolutional Net – volume: 7 start-page: 59037 year: 2019 end-page: 59047 ident: bib81 article-title: Attention dense-u-net for automatic breast mass segmentation in digital mammogram publication-title: IEEE Access – volume: 116 start-page: 462 year: 2015 end-page: 466 ident: bib100 article-title: Is there a causal relationship between genetic changes and radiomics-based image features? an in vivo preclinical experiment with doxycycline inducible gadd34 tumor cells publication-title: Radiother. Oncol. : J. Eur. Soc. Therapeut. Radiol. Oncol. – volume: 43 8 start-page: 4558 year: 2016 ident: bib112 article-title: Interobserver variability in identification of breast tumors in mri and its implications for prognostic biomarkers and radiogenomics publication-title: Med. Phys. – year: 2017 ident: bib126 article-title: Not Just a Black Box: learning Important Features through Propagating Activation Differences – year: 2019 ident: bib39 article-title: Adversarial Attacks against Medical Deep Learning Systems – start-page: 797 year: 2020 end-page: 806 ident: bib136 article-title: Saunet: shape attentive u-net for interpretable medical image segmentation publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 – start-page: 718 year: 2019 end-page: 730 ident: bib82 article-title: Efficient interpretation of deep learning models using graph structure and cooperative game theory: application to asd biomarker discovery publication-title: Information Processing in Medical Imaging – volume: 3 start-page: 620 year: 2021 end-page: 631 ident: bib37 article-title: Improving performance of deep learning models with axiomatic attribution priors and expected gradients publication-title: Nat. Mach. Intell. – start-page: 30 year: 2019 end-page: 38 ident: bib105 article-title: Incorporating task-specific structural knowledge into cnns for brain midline shift detection publication-title: Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support – year: 2020 ident: bib109 publication-title: Interpretations Are Useful: Penalizing Explanations to Align Neural Networks with Prior Knowledge – volume: 14 start-page: 6 year: 2020 ident: bib99 article-title: Demystifying brain tumor segmentation networks: interpretability and uncertainty analysis publication-title: Front. Comput. Neurosci. – start-page: 91 year: 2021 end-page: 95 ident: bib113 article-title: Multi-resolution 3d convolutional neural networks for automatic coronary centerline extraction in cardiac ct angiography scans publication-title: 2021 IEEE 18th International Symposium on Biomedical Imaging – start-page: 3530 year: 2018 end-page: 3537 ident: bib80 article-title: Deep learning for case-based reasoning through prototypes: a neural network that explains its predictions publication-title: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans – volume: 5 start-page: 4006 year: 2014 ident: bib2 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat. Commun. – volume: 67 start-page: 101839 year: 2021 ident: bib138 article-title: A disentangled generative model for disease decomposition in chest x-rays via normal image synthesis publication-title: Med. Image Anal. – volume: 1 start-page: 206 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib110 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0048-x – volume: 9 start-page: 2579 year: 2008 ident: 10.1016/j.compbiomed.2021.105111_bib92 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.compbiomed.2021.105111_bib75 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib24 – year: 2014 ident: 10.1016/j.compbiomed.2021.105111_bib128 article-title: Deep inside convolutional networks: visualising image classification models and saliency maps – volume: 56 start-page: 122 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib3 article-title: Bach: grand challenge on breast cancer histology images publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.05.010 – volume: 43 8 start-page: 4558 year: 2016 ident: 10.1016/j.compbiomed.2021.105111_bib112 article-title: Interobserver variability in identification of breast tumors in mri and its implications for prognostic biomarkers and radiogenomics publication-title: Med. Phys. doi: 10.1118/1.4955435 – volume: 53 start-page: 197 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib119 article-title: Attention gated networks: learning to leverage salient regions in medical images publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.01.012 – start-page: 4768 year: 2017 ident: 10.1016/j.compbiomed.2021.105111_bib90 article-title: A unified approach to interpreting model predictions – start-page: 209 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib164 article-title: Biomarker localization by combining cnn classifier and generative adversarial network – start-page: 323 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib157 article-title: Domain-agnostic learning with anatomy-consistent embedding for cross-modality liver segmentation – volume: 6 year: 2017 ident: 10.1016/j.compbiomed.2021.105111_bib50 article-title: Defining the biological basis of radiomic phenotypes in lung cancer publication-title: eLife doi: 10.7554/eLife.23421 – volume: 458 start-page: 141 year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib62 article-title: Explaining clinical decision support systems in medical imaging using cycle-consistent activation maximization publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.05.081 – year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib96 article-title: Using protopnet for interpretable alzheimer's disease classification – volume: 20 start-page: 938 issue: 7 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib143 article-title: Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(19)30333-X – volume: 13 year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib16 article-title: Convolutional neural network-based clinical predictors of oral dysplasia: class activation map analysis of deep learning results publication-title: Cancers doi: 10.3390/cancers13061291 – start-page: 793 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib154 article-title: Melanoma recognition via visual attention – start-page: 2921 year: 2016 ident: 10.1016/j.compbiomed.2021.105111_bib168 article-title: Learning deep features for discriminative localization – start-page: 294 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib71 article-title: Encoding visual attributes in capsules for explainable medical diagnoses – start-page: 742 year: 2017 ident: 10.1016/j.compbiomed.2021.105111_bib51 article-title: Deep learning features for lung adenocarcinoma classification with tissue pathology images – volume: 9 start-page: 41482 year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib129 article-title: These do not look like those: an interpretable deep learning model for image recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3064838 – start-page: 689 year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib22 article-title: Emergent symbolic language based deep medical image classification – volume: 8 start-page: 832 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib18 article-title: Machine learning interpretability: a survey on methods and metrics publication-title: Electronics doi: 10.3390/electronics8080832 – start-page: 3 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib33 article-title: Testing the robustness of attribution methods for convolutional neural networks in mri-based alzheimer's disease classification – volume: 34 start-page: 193 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib55 article-title: Measuring the quality of explanations: the system causability scale (scs) publication-title: Kunstliche Intelligenz doi: 10.1007/s13218-020-00636-z – start-page: 15719 year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib66 article-title: Xprotonet: diagnosis in chest radiography with global and local explanations – start-page: 1 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib144 article-title: Human–computer collaboration for skin cancer recognition publication-title: Nat. Med. – volume: 14 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib89 article-title: Investigation of deep-learning-driven identification of multiple sclerosis patients based on susceptibility-weighted images using relevance analysis publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.609468 – start-page: 48 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib161 article-title: Deep neural network or dermatologist? – start-page: 35 year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib63 article-title: Trustworthy explainability acceptance: a new metric to measure the trustworthiness of interpretable ai medical diagnostic systems – volume: 10 start-page: 27 year: 2013 ident: 10.1016/j.compbiomed.2021.105111_bib74 article-title: Predicting outcomes in radiation oncology—multifactorial decision support systems publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2012.196 – start-page: 839 year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib19 article-title: Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks – start-page: 861 year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib58 article-title: Interpretability of a deep learning model in the application of cardiac MRI segmentation with an ACDC challenge dataset – year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib60 – volume: 290 start-page: 514 issue: 2 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib122 article-title: Chest radiographs in congestive heart failure: visualizing neural network learning publication-title: Radiology doi: 10.1148/radiol.2018180887 – year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib155 – start-page: 700 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib172 article-title: Invertible network for classification and biomarker selection for ASD – start-page: 4396 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib61 article-title: A style-based generator architecture for generative adversarial networks – volume: 65 start-page: 211 year: 2017 ident: 10.1016/j.compbiomed.2021.105111_bib97 article-title: Explaining nonlinear classification decisions with deep taylor decomposition publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2016.11.008 – volume: 48 start-page: 441 issue: 4 year: 2012 ident: 10.1016/j.compbiomed.2021.105111_bib73 article-title: Radiomics: extracting more information from medical images using advanced feature analysis publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2011.11.036 – volume: 126 start-page: 104041 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib93 article-title: An explainable machine learning model for early detection of Parkinson's disease using lime on datscan imagery publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.104041 – volume: 25 start-page: 1097 year: 2012 ident: 10.1016/j.compbiomed.2021.105111_bib70 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib121 – volume: 47 start-page: 329 year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib32 article-title: Who is afraid of black box algorithms? on the epistemological and ethical basis of trust in medical ai publication-title: J. Med. Ethics – start-page: 91 year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib113 article-title: Multi-resolution 3d convolutional neural networks for automatic coronary centerline extraction in cardiac ct angiography scans – year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib8 – year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib109 – start-page: 5338 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib69 article-title: Concept bottleneck models – volume: 33 start-page: 3681 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib43 article-title: Interpretation of neural networks is fragile – volume: 27 year: 2014 ident: 10.1016/j.compbiomed.2021.105111_bib46 article-title: Generative adversarial nets publication-title: Adv. Neural Inf. Process. Syst. – start-page: 56 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib25 article-title: Towards interpretability of segmentation networks by analyzing deepdreams – year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib131 – start-page: 8928 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib20 article-title: This looks like that: deep learning for interpretable image recognition – volume: 290 start-page: 180958 year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib29 article-title: A deep learning model to predict a diagnosis of alzheimer disease by using 18 f-fdg pet of the brain publication-title: Radiology – year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib147 – volume: 39 start-page: 2088 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib13 article-title: Explainable anatomical shape analysis through deep hierarchical generative models publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2020.2964499 – volume: 6 start-page: 5962 year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib26 article-title: Analyzing tongue images using a conceptual alignment deep autoencoder publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2788849 – volume: 140 start-page: 110190 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib101 article-title: A deep learning and grad-cam based color visualization approach for fast detection of covid-19 cases using chest x-ray and ct-scan images publication-title: Chaos, Solit. Fractals doi: 10.1016/j.chaos.2020.110190 – year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib54 – volume: 3 start-page: 610 year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib28 article-title: Ai for radiographic covid-19 detection selects shortcuts over signal publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00338-7 – volume: 3 start-page: 173 year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib77 article-title: An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0324-9 – start-page: 9215 year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib79 article-title: Tell me where to look: guided attention inference network – start-page: 1830 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib135 article-title: Saliency tubes: visual explanations for spatio-temporal convolutions – start-page: 305 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib127 article-title: Interpretability-guided content-based medical image retrieval – volume: 2 start-page: 772 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib21 article-title: Concept whitening for interpretable image recognition publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-00265-z – volume: 24 start-page: 102003 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib35 article-title: Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional mri using layer-wise relevance propagation publication-title: Neuroimage: Clin. doi: 10.1016/j.nicl.2019.102003 – start-page: 264 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib145 article-title: Interpretable explanations of black box classifiers applied on medical images by meaningful perturbations using variational autoencoders – year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib167 – volume: 373 start-page: 284 year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib5 article-title: Beware explanations from ai in health care publication-title: Science doi: 10.1126/science.abg1834 – volume: 10 start-page: 12954 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib148 article-title: Unbiased identification of novel subclinical imaging biomarkers using unsupervised deep learning publication-title: Sci. Rep. doi: 10.1038/s41598-020-69814-1 – volume: 10 year: 2015 ident: 10.1016/j.compbiomed.2021.105111_bib6 article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation publication-title: PLoS One doi: 10.1371/journal.pone.0130140 – start-page: 9273 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib45 article-title: Towards automatic concept-based explanations – start-page: 16 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib123 – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.compbiomed.2021.105111_bib120 article-title: Deep learning in neural networks: an overview publication-title: Neural Network. doi: 10.1016/j.neunet.2014.09.003 – start-page: 1062 year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib150 article-title: A more interpretable classifier for multiple sclerosis – volume: 34 start-page: 1631 year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib27 article-title: Conceptual alignment deep neural networks publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-169457 – volume: 9 start-page: 85198 year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib130 article-title: An interpretable deep learning model for covid-19 detection with chest x-ray images publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3087583 – year: 2017 ident: 10.1016/j.compbiomed.2021.105111_bib126 – start-page: 656 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib23 article-title: Global and local interpretability for cardiac mri classification – start-page: 4566 year: 2015 ident: 10.1016/j.compbiomed.2021.105111_bib146 article-title: Cider: consensus-based image description evaluation – start-page: 30 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib105 article-title: Incorporating task-specific structural knowledge into cnns for brain midline shift detection – start-page: 818 year: 2014 ident: 10.1016/j.compbiomed.2021.105111_bib162 article-title: Visualizing and understanding convolutional networks – year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib49 – volume: 14 start-page: 749 year: 2017 ident: 10.1016/j.compbiomed.2021.105111_bib72 article-title: Radiomics: the bridge between medical imaging and personalized medicine publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2017.141 – year: 2004 ident: 10.1016/j.compbiomed.2021.105111_bib86 – year: 2009 ident: 10.1016/j.compbiomed.2021.105111_bib36 – volume: 3 start-page: 473 year: 2017 ident: 10.1016/j.compbiomed.2021.105111_bib140 article-title: Algorithms and transparency in view of the new general data protection regulation publication-title: Eur. Data Prot. L. Rev. doi: 10.21552/edpl/2017/4/9 – year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib142 – volume: 38 start-page: 550 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib14 article-title: From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2018.2867350 – volume: 14 start-page: 6 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib99 article-title: Demystifying brain tumor segmentation networks: interpretability and uncertainty analysis publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2020.00006 – start-page: 797 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib136 article-title: Saunet: shape attentive u-net for interpretable medical image segmentation – year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib17 article-title: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the m amp;ms challenge publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2021.3090082 – start-page: 3319 year: 2017 ident: 10.1016/j.compbiomed.2021.105111_bib11 article-title: Network dissection: quantifying interpretability of deep visual representations – start-page: 3549 year: 2017 ident: 10.1016/j.compbiomed.2021.105111_bib166 article-title: Mdnet: a semantically and visually interpretable medical image diagnosis network – start-page: 273 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib98 article-title: Scientific discovery by generating counterfactuals using image translation – volume: 133 start-page: 104410 year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib114 article-title: Visual interpretability in 3d brain tumor segmentation network publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104410 – volume: 127 start-page: 349 year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib116 article-title: Tracking tumor biology with radiomics: a systematic review utilizing a radiomics quality score publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2018.03.033 – volume: 27 start-page: 1491 year: 2008 ident: 10.1016/j.compbiomed.2021.105111_bib133 article-title: Rising use of diagnostic medical imaging in a large integrated health system publication-title: Health Aff.(Project Hope) doi: 10.1377/hlthaff.27.6.1491 – volume: 13 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib141 article-title: Analyzing neuroimaging data through recurrent deep learning models publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.01321 – start-page: 7697 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib10 article-title: Icam: interpretable classification via disentangled representations and feature attribution mapping – year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib95 – start-page: 1 year: 2017 ident: 10.1016/j.compbiomed.2021.105111_bib153 article-title: Discriminating schizophrenia from normal controls using resting state functional network connectivity: a deep neural network and layer-wise relevance propagation method – year: 2014 ident: 10.1016/j.compbiomed.2021.105111_bib68 – start-page: 718 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib82 article-title: Efficient interpretation of deep learning models using graph structure and cooperative game theory: application to asd biomarker discovery – start-page: 618 year: 2017 ident: 10.1016/j.compbiomed.2021.105111_bib124 article-title: Grad-cam: Visual Explanations from Deep Networks via Gradient-Based Localization – volume: 5 start-page: 4006 year: 2014 ident: 10.1016/j.compbiomed.2021.105111_bib2 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat. Commun. doi: 10.1038/ncomms5006 – volume: 39 start-page: 1306 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib156 article-title: Guided soft attention network for classification of breast cancer histopathology images publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2019.2948026 – year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib94 – start-page: 9049 year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib149 article-title: Tienet: text-image embedding network for common thorax disease classification and reporting in chest x-rays – start-page: 284 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib106 article-title: Interpretable deep models for cardiac resynchronisation therapy response prediction – start-page: 228 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib102 article-title: Explainable AI for medical imaging: deep-learning CNN ensemble for classification of estrogen receptor status from breast MRI – start-page: 3 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib160 article-title: Assessing attribution maps for explaining cnn-based vertebral fracture classifiers – start-page: 73 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib163 article-title: Explainability for regression cnn in fetal head circumference estimation from ultrasound images – start-page: 2242 year: 2017 ident: 10.1016/j.compbiomed.2021.105111_bib170 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks – year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib59 article-title: Learn to pay attention – volume: 67 start-page: 101839 year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib138 article-title: A disentangled generative model for disease decomposition in chest x-rays via normal image synthesis publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101839 – volume: 28 start-page: 2660 year: 2017 ident: 10.1016/j.compbiomed.2021.105111_bib115 article-title: Evaluating the visualization of what a deep neural network has learned publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2016.2599820 – start-page: 3 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib34 article-title: Testing the robustness of attribution methods for convolutional neural networks in mri-based alzheimer's disease classification – volume: 116 start-page: 462 issue: 3 year: 2015 ident: 10.1016/j.compbiomed.2021.105111_bib100 article-title: Is there a causal relationship between genetic changes and radiomics-based image features? an in vivo preclinical experiment with doxycycline inducible gadd34 tumor cells publication-title: Radiother. Oncol. : J. Eur. Soc. Therapeut. Radiol. Oncol. doi: 10.1016/j.radonc.2015.06.013 – start-page: 8309 year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib12 article-title: Visual feature attribution using wasserstein gans – year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib52 – volume: 128 start-page: 84 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib125 article-title: An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.01.048 – year: 2015 ident: 10.1016/j.compbiomed.2021.105111_bib48 – start-page: 3530 year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib80 article-title: Deep learning for case-based reasoning through prototypes: a neural network that explains its predictions – start-page: 206 year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib83 article-title: Brain biomarker interpretation in asd using deep learning and fmri – volume: 126 start-page: 552 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib118 article-title: Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy publication-title: Ophthalmology doi: 10.1016/j.ophtha.2018.11.016 – year: 2016 ident: 10.1016/j.compbiomed.2021.105111_bib108 – volume: 3 start-page: 620 year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib37 article-title: Improving performance of deep learning models with axiomatic attribution priors and expected gradients publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00343-w – year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib171 article-title: Guideline-based additive explanation for computer-aided diagnosis of lung nodules – year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib57 article-title: Weakly-supervised learning-based feature localization in confocal laser endomicroscopy glioma images – year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib39 – volume: 58 start-page: 101537 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib173 article-title: Evaluation of algorithms for multi-modality whole heart segmentation: an open-access grand challenge publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101537 – start-page: 214 year: 2017 ident: 10.1016/j.compbiomed.2021.105111_bib4 article-title: Wasserstein generative adversarial networks – year: 2015 ident: 10.1016/j.compbiomed.2021.105111_bib134 – volume: 1 start-page: 236 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib165 article-title: Pathologist-level interpretable whole-slide cancer diagnosis with deep learning publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0052-1 – start-page: 13 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib53 article-title: Projective latent interventions for understanding and fine-tuning classifiers – volume: 10 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib139 article-title: Interpretable classification of alzheimer's disease pathologies with a convolutional neural network pipeline publication-title: Nat. Commun. – volume: 16 start-page: 31 year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib88 article-title: The mythos of model interpretability publication-title: Queue doi: 10.1145/3236386.3241340 – year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib41 article-title: Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness – year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib65 – start-page: 21 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib76 article-title: Generation of multimodal justification using visual word constraint model for explainable computer-aided diagnosis – volume: 210 start-page: 1 year: 2017 ident: 10.1016/j.compbiomed.2021.105111_bib151 article-title: Biomarkers and imaging of breast cancer publication-title: Am. J. Roentgenol. – year: 2017 ident: 10.1016/j.compbiomed.2021.105111_bib132 – start-page: 326 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib117 article-title: Towards emergent language symbolic semantic segmentation and model interpretability – year: 2017 ident: 10.1016/j.compbiomed.2021.105111_bib111 article-title: Dynamic routing between capsules – year: 2017 ident: 10.1016/j.compbiomed.2021.105111_bib87 – volume: 7 start-page: 59037 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib81 article-title: Attention dense-u-net for automatic breast mass segmentation in digital mammogram publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2914873 – year: 2014 ident: 10.1016/j.compbiomed.2021.105111_bib47 – volume: 58 start-page: 82 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib9 article-title: Explainable artificial intelligence (xai): concepts, taxonomies, opportunities and challenges toward responsible ai publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.12.012 – start-page: 11 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib7 article-title: Sam: the sensitivity of attribution methods to hyperparameters – start-page: 106 year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib104 article-title: Automatic brain tumor grading from mri data using convolutional neural networks and quality assessment – year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib1 article-title: Sanity checks for saliency maps – volume: vol. 70 start-page: 3319 year: 2017 ident: 10.1016/j.compbiomed.2021.105111_bib137 article-title: Axiomatic attribution for deep networks – year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib67 article-title: Learning how to explain neural networks: patternnet and patternattribution – start-page: 315 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib78 article-title: Domain aware medical image classifier interpretation by counterfactual impact analysis – volume: 19 year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib38 article-title: Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction publication-title: BMC Bioinf. doi: 10.1186/s12859-018-2184-4 – volume: 123 start-page: 103865 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib91 article-title: Concept attribution: explaining cnn decisions to physicians publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103865 – volume: 11 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib15 article-title: Layer-wise relevance propagation for explaining deep neural network decisions in mri-based alzheimer's disease classification publication-title: Front. Aging Neurosci. – volume: 1 start-page: 14 year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib40 article-title: Determining breast cancer biomarker status and associated morphological features using deep learning publication-title: Commun. Med. doi: 10.1038/s43856-021-00013-3 – year: 2017 ident: 10.1016/j.compbiomed.2021.105111_bib31 – volume: 10 year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib169 article-title: Evaluating the quality of machine learning explanations: a survey on methods and metrics publication-title: Electronics doi: 10.3390/electronics10050593 – year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib42 – volume: 60 start-page: 101619 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib152 article-title: Uncertainty and interpretability in convolutional neural networks for semantic segmentation of colorectal polyps publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101619 – year: 2002 ident: 10.1016/j.compbiomed.2021.105111_bib103 – volume: 45 start-page: 4568 year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib158 article-title: Autosegmentation for thoracic radiation treatment planning: a grand challenge at aapm 2017 publication-title: Med. Phys. doi: 10.1002/mp.13141 – volume: 228 start-page: 117689 year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib30 article-title: Deep learning-based unlearning of dataset bias for mri harmonisation and confound removal publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117689 – start-page: 4303161 year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib85 article-title: Brain midline shift measurement and its automation: a review of techniques and algorithms publication-title: Int. J. Biomed. Imag. 2018 – volume: 172 start-page: 1122 year: 2018 ident: 10.1016/j.compbiomed.2021.105111_bib64 article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning publication-title: Cell doi: 10.1016/j.cell.2018.02.010 – year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib159 article-title: Ubs: a dimension-agnostic metric for concept vector interpretability applied to radiomics – year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib107 – start-page: 2797 year: 2019 ident: 10.1016/j.compbiomed.2021.105111_bib84 article-title: From deep learning towards finding skin lesion biomarkers – volume: 71 start-page: 28 year: 2021 ident: 10.1016/j.compbiomed.2021.105111_bib56 article-title: Towards multi-modal causability with graph neural networks enabling information fusion for explainable ai publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.01.008 – volume: 3 start-page: 10 year: 2020 ident: 10.1016/j.compbiomed.2021.105111_bib44 article-title: Deep learning interpretation of echocardiograms publication-title: npj Digit. Med. doi: 10.1038/s41746-019-0216-8 |
SSID | ssj0004030 |
Score | 2.6675932 |
SecondaryResourceType | review_article |
Snippet | Artificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for diagnosis and treatment decisions. Deep neural networks have... AbstractArtificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for diagnosis and treatment decisions. Deep neural networks... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 105111 |
SubjectTerms | Artificial intelligence Artificial neural networks Biomarkers Computer applications Decision making Deep learning Deep neural networks Explainability Explainable artificial intelligence Image analysis Image processing Internal Medicine Interpretability Machine learning Medical imaging Neural networks Other Semantics Trust Workflow |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CDqWX0vTpNi0q9OpGsh6201MIDaGQnhrITciyBFsa7xJvDrn0t3fGkh1KG1jo0Y_BZiyNvrG-bwbgY-d5NE3UpdGVKpXsY4lHspQqcC-l1EqROPnimzm_VF-v9NUenM5aGKJV5tifYvoUrfOZo-zNo81qRRpfTCUwwcGkhbcIO0jBrmqi9X36dU_zUFwmGQrGG7o7s3kSx4to20nmjpliJajprRDioSXqIQg6LUVnT-FJxpDsJL3mAeyF4Rk8usi75M8hpIrlJPPyd2wdWR_ChlHlSrQaEu97ZIhW2XXapmGrawwrzOUCJcfshCVJCxmvFlrixKO9Y6np9PgCLs--fD89L3M7hdIbybclIpfKeyM6Qd3FVHS-ca0Tbdc1uqq71vSx72vEQ8LphlPeZbwUruKxDypELl_C_rAewmtgET9kNK7umoCIL5imC7ju997XlNC4UEA9e9D6XGucWl78tDOp7Ie9970l39vk-wLEYrlJ9TZ2sGnnj2RnPSlGQIuLwg629b9sw5in8miFHSvL7V_DrYDPi-UfI3bH5x7Oo8kuj8JsVqsaAZwu4MNyGec7beK4Iaxv6R5MyDFp1U0Br9IoXBwlVYPGrX7zX6_2Fh5XpPGY_jMdwv725ja8Q-S17d5PU-s3j7osGQ priority: 102 providerName: Elsevier |
Title | Transparency of deep neural networks for medical image analysis: A review of interpretability methods |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482521009057 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482521009057 https://dx.doi.org/10.1016/j.compbiomed.2021.105111 https://www.ncbi.nlm.nih.gov/pubmed/34891095 https://www.proquest.com/docview/2615479105 https://www.proquest.com/docview/2609462558 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RVkJcEOUZaFdG4hqIYzsPOKBt1WUBdYWASnuzEseWimh2IdtDL_x2ZmIne6FoL4miZGJpbM9843kBvKpN4rLCqThTqYylaFyMTyIW0iZGCKGkpOTk80U2v5CflmoZDty6EFY5yMReUDcrQ2fkbxDpK5mjclPv179i6hpF3tXQQmMPDqh0GRlf-TLf5kUmwqegoKyRaAqFSB4f30Uh2z7FHa3ElFPDW875berpNvjZq6HZA7gf8COb-gk_hDu2fQh3z4OH_BFYX62cUrzMDVs51li7ZlS1EqlaH_PdMUSq7Mq7aNjlFYoUVoXiJG_ZlPl0FiK-HEMS-xjaG-YbTneP4WJ29v10HodWCrHJRLKJEbWkxmS85tRZTLrKFFVZ8bKuC5XmdZk1rmlyxEK8UkVCNldmBK_SxDVWWpeIJ7Dfrlr7DJjDSXRZldeFRbRns6K2qPMbY3IyZiobQT5wUJtQZ5zaXfzUQ0DZD73lvSbea8_7CPhIufa1NnagKYdJ0kMuKUo_jQphB9r8X7S2C9u401x3qU70t76KES4gtI-TEhFuBO9GyoBUPALZcdyjYTXpcajt-o7g5fga9zo5cKrWrq7pGzTG0WBVRQRP_SocGSVkgcSlev7_n7-AeyklcPSHSEewv_l9bY8RVm3qCey9_sMn_Q7CazH7MIGD6cfP8wXeT84WX77-BSG3Jg8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgEXxGcJFDASHCPi2E4cEEIVsGxptxdaqTeTOLZURLML2Qrtn-I3MhMn2QtFe-kxSiaRxuOZN_GbGYCXlU18pr2KM5XKWIrax3glYiFdYoUQSkoqTp4dZdMT-eVUnW7Bn6EWhmiVg0_sHHU9t_SP_DUifSVzDG7q_eJnTFOj6HR1GKERzOLArX5jyta-2_-I6_sqTSefjj9M436qQGwzkSxjDOCptRmvOA3Zkr60uixKXlSVVmleFVnt6zpHWMBLpRNKPzIreJkmvnbS-UTge6_BdSlEQRRCPfm8rsNMRCh5Qd8mMfXqmUOBT0YU8VBSj1lpymnALuf8snB4Gdztwt7kDtzu8SrbCwZ2F7Zccw9uzPoT-fvgQnd0KimzKzb3rHZuwahLJko1gWPeMkTG7DwcCbGzc3RhrOybobxheyyUz5Dw2UiB7Di7KxYGXLcP4ORKlPwQtpt54x4B82g0PivzSjtEly7TlUOMUVubU_JUugjyQYPG9n3NabzGDzMQ2L6bte4N6d4E3UfAR8lF6O2xgUwxLJIZalfR2xoMQBvI5v-SdW3vNlrDTZuaxHztuiahAWE-nhSIqCN4O0r2yCggng2_uztYkxk_td5PEbwYb6NvoQOjsnHzC3oGk39MkJWOYCdY4agoITUKF-rx_1_-HG5Oj2eH5nD_6OAJ3EqpeKT7gbUL28tfF-4pQrpl9azbRwy-XfXG_QslCF0P |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEO8GChgJjlHt2I4TEEIVZdVSWiFBpb2ZxLGlIprdNluh_Wv8Osaxk71QtJceV9lJpMk8vom_mQF4XRvq8sLJNJeZSAVvXIq_eMqFpYZzLoXwzcnHJ_nBqfg8ldMN-DP0wnha5RAT-0DdzIz_Rr6LSF8KhclN7rpIi_i6P_kwv0j9Bil_0jqs0wgmcmSXv7F8694f7uO7fpNlk0_fPx6kccNAanJOFykm88yYnNXML9wSrjJFVVasrOtCZqou88Y1jUKIwCpZUF-K5IazKqOuscI6yvG-t-C24pg20ZfUVK16MikP7S8Y5wSWYZFFFLhlni4e2uuxQs2YX7bLGLsuNV4HffsUOLkHdyN2JXvB2O7Dhm0fwNZxPJ1_CDZMSvftZWZJZo401s6Jn5iJUm3gm3cEUTI5D8dD5Owcwxmp4mCUt2SPhFYaL3w20iF7_u6ShGXX3SM4vRElP4bNdtbabSAODcjllaoLi0jT5kVtEW80xihfSFU2ATVoUJs449yv2vilBzLbT73Svfa610H3CbBRch7mfKwhUw4vSQ99rBh5NSajNWTVv2RtF0NIp5nuMk31t36CEhoQ1ua0RHSdwLtRMqKkgH7WfO7OYE16fNTKtxJ4NV7GOOMPj6rWzq78f2gpsFiWRQJPghWOiuKiQOFSPv3_zV_CFrqs_nJ4cvQM7mS-j6T_lrUDm4vLK_sc0d2iftG7EYEfN-23fwFRlGE8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transparency+of+deep+neural+networks+for+medical+image+analysis%3A+A+review+of+interpretability+methods&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Salahuddin%2C+Zohaib&rft.au=Woodruff%2C+Henry+C&rft.au=Chatterjee%2C+Avishek&rft.au=Lambin%2C+Philippe&rft.date=2022-01-01&rft.eissn=1879-0534&rft.volume=140&rft.spage=105111&rft_id=info:doi/10.1016%2Fj.compbiomed.2021.105111&rft_id=info%3Apmid%2F34891095&rft.externalDocID=34891095 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |