Transparency of deep neural networks for medical image analysis: A review of interpretability methods

Artificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for diagnosis and treatment decisions. Deep neural networks have shown the same or better performance than clinicians in many tasks owing to the rapid increase in the available data and computational power. In...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 140; p. 105111
Main Authors Salahuddin, Zohaib, Woodruff, Henry C., Chatterjee, Avishek, Lambin, Philippe
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.01.2022
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2021.105111

Cover

Loading…
Abstract Artificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for diagnosis and treatment decisions. Deep neural networks have shown the same or better performance than clinicians in many tasks owing to the rapid increase in the available data and computational power. In order to conform to the principles of trustworthy AI, it is essential that the AI system be transparent, robust, fair, and ensure accountability. Current deep neural solutions are referred to as black-boxes due to a lack of understanding of the specifics concerning the decision-making process. Therefore, there is a need to ensure the interpretability of deep neural networks before they can be incorporated into the routine clinical workflow. In this narrative review, we utilized systematic keyword searches and domain expertise to identify nine different types of interpretability methods that have been used for understanding deep learning models for medical image analysis applications based on the type of generated explanations and technical similarities. Furthermore, we report the progress made towards evaluating the explanations produced by various interpretability methods. Finally, we discuss limitations, provide guidelines for using interpretability methods and future directions concerning the interpretability of deep neural networks for medical imaging analysis. •Interpretability of deep neural networks is important for fostering clinical trust and for troubleshooting systems.•Interpretability methods for medical image analysis tasks can be classified into nine different types.•Evaluation of interpretability methods in a clinical setting is important.•Quantitative and qualitative evaluation of post-hoc explanations is important to determine their sanity.•Interpretability methods can help in discovering new imaging biomarkers.
AbstractList Artificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for diagnosis and treatment decisions. Deep neural networks have shown the same or better performance than clinicians in many tasks owing to the rapid increase in the available data and computational power. In order to conform to the principles of trustworthy AI, it is essential that the AI system be transparent, robust, fair, and ensure accountability. Current deep neural solutions are referred to as black-boxes due to a lack of understanding of the specifics concerning the decision-making process. Therefore, there is a need to ensure the interpretability of deep neural networks before they can be incorporated into the routine clinical workflow. In this narrative review, we utilized systematic keyword searches and domain expertise to identify nine different types of interpretability methods that have been used for understanding deep learning models for medical image analysis applications based on the type of generated explanations and technical similarities. Furthermore, we report the progress made towards evaluating the explanations produced by various interpretability methods. Finally, we discuss limitations, provide guidelines for using interpretability methods and future directions concerning the interpretability of deep neural networks for medical imaging analysis.Artificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for diagnosis and treatment decisions. Deep neural networks have shown the same or better performance than clinicians in many tasks owing to the rapid increase in the available data and computational power. In order to conform to the principles of trustworthy AI, it is essential that the AI system be transparent, robust, fair, and ensure accountability. Current deep neural solutions are referred to as black-boxes due to a lack of understanding of the specifics concerning the decision-making process. Therefore, there is a need to ensure the interpretability of deep neural networks before they can be incorporated into the routine clinical workflow. In this narrative review, we utilized systematic keyword searches and domain expertise to identify nine different types of interpretability methods that have been used for understanding deep learning models for medical image analysis applications based on the type of generated explanations and technical similarities. Furthermore, we report the progress made towards evaluating the explanations produced by various interpretability methods. Finally, we discuss limitations, provide guidelines for using interpretability methods and future directions concerning the interpretability of deep neural networks for medical imaging analysis.
Artificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for diagnosis and treatment decisions. Deep neural networks have shown the same or better performance than clinicians in many tasks owing to the rapid increase in the available data and computational power. In order to conform to the principles of trustworthy AI, it is essential that the AI system be transparent, robust, fair, and ensure accountability. Current deep neural solutions are referred to as black-boxes due to a lack of understanding of the specifics concerning the decision-making process. Therefore, there is a need to ensure the interpretability of deep neural networks before they can be incorporated into the routine clinical workflow. In this narrative review, we utilized systematic keyword searches and domain expertise to identify nine different types of interpretability methods that have been used for understanding deep learning models for medical image analysis applications based on the type of generated explanations and technical similarities. Furthermore, we report the progress made towards evaluating the explanations produced by various interpretability methods. Finally, we discuss limitations, provide guidelines for using interpretability methods and future directions concerning the interpretability of deep neural networks for medical imaging analysis.
Artificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for diagnosis and treatment decisions. Deep neural networks have shown the same or better performance than clinicians in many tasks owing to the rapid increase in the available data and computational power. In order to conform to the principles of trustworthy AI, it is essential that the AI system be transparent, robust, fair, and ensure accountability. Current deep neural solutions are referred to as black-boxes due to a lack of understanding of the specifics concerning the decision-making process. Therefore, there is a need to ensure the interpretability of deep neural networks before they can be incorporated into the routine clinical workflow. In this narrative review, we utilized systematic keyword searches and domain expertise to identify nine different types of interpretability methods that have been used for understanding deep learning models for medical image analysis applications based on the type of generated explanations and technical similarities. Furthermore, we report the progress made towards evaluating the explanations produced by various interpretability methods. Finally, we discuss limitations, provide guidelines for using interpretability methods and future directions concerning the interpretability of deep neural networks for medical imaging analysis. •Interpretability of deep neural networks is important for fostering clinical trust and for troubleshooting systems.•Interpretability methods for medical image analysis tasks can be classified into nine different types.•Evaluation of interpretability methods in a clinical setting is important.•Quantitative and qualitative evaluation of post-hoc explanations is important to determine their sanity.•Interpretability methods can help in discovering new imaging biomarkers.
AbstractArtificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for diagnosis and treatment decisions. Deep neural networks have shown the same or better performance than clinicians in many tasks owing to the rapid increase in the available data and computational power. In order to conform to the principles of trustworthy AI, it is essential that the AI system be transparent, robust, fair, and ensure accountability. Current deep neural solutions are referred to as black-boxes due to a lack of understanding of the specifics concerning the decision-making process. Therefore, there is a need to ensure the interpretability of deep neural networks before they can be incorporated into the routine clinical workflow. In this narrative review, we utilized systematic keyword searches and domain expertise to identify nine different types of interpretability methods that have been used for understanding deep learning models for medical image analysis applications based on the type of generated explanations and technical similarities. Furthermore, we report the progress made towards evaluating the explanations produced by various interpretability methods. Finally, we discuss limitations, provide guidelines for using interpretability methods and future directions concerning the interpretability of deep neural networks for medical imaging analysis.
ArticleNumber 105111
Author Woodruff, Henry C.
Chatterjee, Avishek
Lambin, Philippe
Salahuddin, Zohaib
Author_xml – sequence: 1
  givenname: Zohaib
  surname: Salahuddin
  fullname: Salahuddin, Zohaib
  email: z.salahuddin@maastrichtuniversity.nl
  organization: The D-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
– sequence: 2
  givenname: Henry C.
  surname: Woodruff
  fullname: Woodruff, Henry C.
  organization: The D-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
– sequence: 3
  givenname: Avishek
  surname: Chatterjee
  fullname: Chatterjee, Avishek
  organization: The D-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
– sequence: 4
  givenname: Philippe
  surname: Lambin
  fullname: Lambin, Philippe
  organization: The D-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34891095$$D View this record in MEDLINE/PubMed
BookMark eNqVkk1v1DAQhi1URLeFv4AiceGSZcaJ88EBUSq-pEocKGfLcSbgbdYOtkOVf4-jLYtUCamcLI3eeT3zPnPGTqyzxFiGsEXA6tVuq91-6ozbU7_lwDGVBSI-Yhts6jYHUZQnbAOAkJcNF6fsLIQdAJRQwBN2WpRNi9CKDaNrr2yYlCerl8wNWU80ZZZmr8b0xFvnb0I2OJ-lr4xORbNX3ylTVo1LMOF1dpF5-mXodm02NpKfPEXVmdHEJTXFH64PT9njQY2Bnt295-zbh_fXl5_yqy8fP19eXOW6KiDmAgXXusIOoSmwHJRuVKuw7bpG8Lprq37o-1pUHJVo0i5YVLpAxWHoqaQBinP28uA7efdzphDl3gRN46gsuTlIXkFbVlyIJklf3JPu3OzTVqsKRVmngERSPb9TzV0KQE4-re8X-SfAJGgOAu1dCJ6GowRBrqzkTv5lJVdW8sAqtb6516pNVNE4G70y40MM3h0MKEWaEHgZtEkcEyhPOsremf-Y4miiR2NX0je0UDiGgjJwCfLrelPrSXEEaEHUyeDtvw0eNsNvbhTgsg
CitedBy_id crossref_primary_10_1007_s10278_024_01038_5
crossref_primary_10_1016_j_neucom_2023_126919
crossref_primary_10_1167_tvst_12_12_2
crossref_primary_10_3390_app131910778
crossref_primary_10_1016_j_inffus_2025_102995
crossref_primary_10_3390_biomedinformatics4040115
crossref_primary_10_1002_jmri_28049
crossref_primary_10_3390_app13063453
crossref_primary_10_12677_AAM_2022_118542
crossref_primary_10_3389_fmed_2022_915243
crossref_primary_10_1016_j_neucom_2023_127207
crossref_primary_10_3233_NAI_240740
crossref_primary_10_3390_ai4030033
crossref_primary_10_3389_fnmol_2024_1356453
crossref_primary_10_1016_j_compbiomed_2024_108709
crossref_primary_10_3390_a18030163
crossref_primary_10_1109_MCI_2024_3401348
crossref_primary_10_1016_j_egyai_2022_100224
crossref_primary_10_1038_s41571_022_00707_0
crossref_primary_10_1049_cit2_12356
crossref_primary_10_3389_fmed_2024_1414582
crossref_primary_10_3390_diagnostics13142345
crossref_primary_10_1038_s41746_023_00904_w
crossref_primary_10_1371_journal_pone_0296175
crossref_primary_10_1002_hbm_70190
crossref_primary_10_3390_bios12110985
crossref_primary_10_1007_s41666_023_00127_4
crossref_primary_10_1002_widm_1510
crossref_primary_10_15212_npt_2024_0007
crossref_primary_10_1016_j_aei_2024_103048
crossref_primary_10_1016_j_neunet_2023_06_028
crossref_primary_10_3390_app12199710
crossref_primary_10_1186_s12859_023_05444_4
crossref_primary_10_1016_j_eneco_2023_106868
crossref_primary_10_3390_diagnostics14100997
crossref_primary_10_1016_j_compbiomed_2022_105499
crossref_primary_10_1016_j_patter_2023_100830
crossref_primary_10_1038_s41598_024_81724_0
crossref_primary_10_1016_j_cej_2024_155987
crossref_primary_10_3389_fncom_2024_1418546
crossref_primary_10_1007_s11042_023_17666_y
crossref_primary_10_1016_j_csbj_2024_11_012
crossref_primary_10_1038_s41598_022_20268_7
crossref_primary_10_1016_j_jhepr_2024_101198
crossref_primary_10_1259_bjr_20220239
crossref_primary_10_1016_j_engappai_2024_109817
crossref_primary_10_1063_5_0206807
crossref_primary_10_3390_diagnostics13233506
crossref_primary_10_1055_a_2415_8408
crossref_primary_10_1016_j_media_2024_103320
crossref_primary_10_1016_j_resuscitation_2023_109894
crossref_primary_10_1038_s41597_022_01695_7
crossref_primary_10_1016_j_compbiomed_2022_106378
crossref_primary_10_3390_bdcc8070073
crossref_primary_10_1016_j_ins_2024_121796
crossref_primary_10_1038_s41598_024_70559_4
crossref_primary_10_1016_j_ailsci_2022_100048
crossref_primary_10_1109_TMI_2024_3501405
crossref_primary_10_3390_tomography10110133
crossref_primary_10_1016_j_entcom_2024_100680
crossref_primary_10_1038_s41598_024_54517_8
crossref_primary_10_1007_s00284_024_03750_5
crossref_primary_10_3390_heritage7020038
crossref_primary_10_1007_s11831_023_09899_9
crossref_primary_10_1093_jamia_ocae108
crossref_primary_10_1016_j_compbiomed_2024_108055
crossref_primary_10_32604_cmc_2023_034952
crossref_primary_10_1016_j_patrec_2023_10_013
crossref_primary_10_3390_electronics13132438
crossref_primary_10_1002_joc_8366
crossref_primary_10_3390_app14051992
crossref_primary_10_1007_s40846_024_00863_x
crossref_primary_10_1016_j_compmedimag_2022_102161
crossref_primary_10_1109_ACCESS_2023_3318739
crossref_primary_10_57197_JDR_2024_0101
crossref_primary_10_1016_j_phro_2024_100694
crossref_primary_10_1016_j_cmpb_2024_108238
crossref_primary_10_1016_j_jrras_2024_101281
crossref_primary_10_3390_diagnostics14080848
crossref_primary_10_1093_jamiaopen_ooae035
crossref_primary_10_1007_s00432_025_06119_8
crossref_primary_10_3390_cancers15215303
crossref_primary_10_3390_s23020634
crossref_primary_10_1007_s10462_022_10342_x
crossref_primary_10_3389_fradi_2022_991683
crossref_primary_10_1016_j_compbiomed_2024_108861
crossref_primary_10_1093_bib_bbaf018
crossref_primary_10_1007_s00521_024_10868_x
crossref_primary_10_1038_s41746_024_01012_z
crossref_primary_10_1016_j_jhazmat_2025_137575
crossref_primary_10_3390_app14104144
crossref_primary_10_1016_j_bspc_2024_107228
crossref_primary_10_3389_fpubh_2023_1273253
crossref_primary_10_1016_j_nucengdes_2024_113395
crossref_primary_10_1093_bjrai_ubae008
crossref_primary_10_1142_S2972389224300044
crossref_primary_10_7717_peerj_cs_1903
crossref_primary_10_1089_big_2023_0014
crossref_primary_10_3389_fmed_2024_1511389
crossref_primary_10_1148_radiol_233261
crossref_primary_10_1016_j_procs_2022_11_005
crossref_primary_10_1002_widm_1574
crossref_primary_10_1016_j_compmedimag_2022_102158
crossref_primary_10_3390_bioengineering12030308
crossref_primary_10_1109_TBME_2022_3232964
crossref_primary_10_1145_3625287
crossref_primary_10_1016_j_canrad_2023_07_015
crossref_primary_10_1177_09670335231173140
crossref_primary_10_1016_j_prime_2024_100678
crossref_primary_10_3390_antibiotics14020134
crossref_primary_10_1002_mp_16188
crossref_primary_10_1016_j_jbi_2023_104567
crossref_primary_10_1016_j_aej_2024_04_072
crossref_primary_10_1016_j_ebiom_2023_104525
crossref_primary_10_1016_j_compbiomed_2024_108635
crossref_primary_10_1371_journal_pone_0290435
crossref_primary_10_1016_j_clon_2024_06_053
crossref_primary_10_1016_j_compbiomed_2024_109569
crossref_primary_10_1016_j_rineng_2024_102818
crossref_primary_10_1016_j_diii_2024_06_001
crossref_primary_10_1080_21681163_2023_2292072
crossref_primary_10_3390_diagnostics15050624
crossref_primary_10_3390_bioengineering10070775
crossref_primary_10_1016_j_pacs_2024_100674
crossref_primary_10_1186_s40708_024_00244_9
crossref_primary_10_1016_j_compbiomed_2023_107897
crossref_primary_10_3389_frai_2024_1482141
crossref_primary_10_3390_en16124773
crossref_primary_10_1016_j_compbiomed_2022_106422
crossref_primary_10_1088_1361_6560_ad5e31
crossref_primary_10_1049_htl2_12122
crossref_primary_10_1016_j_compbiomed_2022_105691
crossref_primary_10_1016_j_jpi_2024_100390
crossref_primary_10_1007_s11831_024_10103_9
crossref_primary_10_1109_ACCESS_2024_3398203
crossref_primary_10_1007_s10278_024_01076_z
crossref_primary_10_1002_ird3_102
crossref_primary_10_1080_07853890_2024_2399759
crossref_primary_10_1111_jdv_18963
crossref_primary_10_1007_s00366_024_01987_z
crossref_primary_10_1007_s11042_023_16721_y
crossref_primary_10_1038_s41746_022_00699_2
crossref_primary_10_1109_ACCESS_2023_3311752
crossref_primary_10_1177_00368504241306830
crossref_primary_10_3390_make6030098
crossref_primary_10_1016_j_neucom_2024_128920
crossref_primary_10_3390_info15120783
crossref_primary_10_1016_j_cmpb_2022_107161
crossref_primary_10_1038_s41598_024_73428_2
crossref_primary_10_1016_j_asoc_2024_112635
crossref_primary_10_3389_fonc_2023_1089998
crossref_primary_10_1007_s11042_023_17238_0
crossref_primary_10_12677_AIRR_2022_112016
crossref_primary_10_1007_s13198_024_02463_z
crossref_primary_10_3390_biomimetics8060499
crossref_primary_10_47836_pjst_32_1_25
crossref_primary_10_31612_2616_4868_6_2023_06
crossref_primary_10_3390_bioengineering10101225
crossref_primary_10_1016_j_jksuci_2024_102096
crossref_primary_10_1016_j_sciaf_2023_e01961
crossref_primary_10_3390_app14114654
crossref_primary_10_1016_j_compbiomed_2024_108412
crossref_primary_10_1109_ACCESS_2023_3299850
crossref_primary_10_1007_s11042_023_16627_9
crossref_primary_10_3390_app12136448
crossref_primary_10_3390_ph16091243
crossref_primary_10_1109_ACCESS_2024_3387702
crossref_primary_10_1109_TBME_2023_3290541
crossref_primary_10_1038_s41598_024_80691_w
crossref_primary_10_1007_s40257_024_00883_y
crossref_primary_10_1016_j_eswa_2023_121226
crossref_primary_10_1109_TIM_2024_3352713
crossref_primary_10_3389_fradi_2024_1433457
crossref_primary_10_1093_dmfr_twae033
crossref_primary_10_1007_s00259_023_06553_1
crossref_primary_10_1016_j_cjca_2024_07_003
crossref_primary_10_3389_frcmn_2025_1482698
Cites_doi 10.1038/s42256-019-0048-x
10.1038/nature14539
10.1016/j.media.2019.05.010
10.1118/1.4955435
10.1016/j.media.2019.01.012
10.7554/eLife.23421
10.1016/j.neucom.2021.05.081
10.1016/S1470-2045(19)30333-X
10.3390/cancers13061291
10.1109/ACCESS.2021.3064838
10.3390/electronics8080832
10.1007/s13218-020-00636-z
10.3389/fnins.2020.609468
10.1038/nrclinonc.2012.196
10.1148/radiol.2018180887
10.1016/j.patcog.2016.11.008
10.1016/j.ejca.2011.11.036
10.1016/j.compbiomed.2020.104041
10.1109/TMI.2020.2964499
10.1109/ACCESS.2017.2788849
10.1016/j.chaos.2020.110190
10.1038/s42256-021-00338-7
10.1038/s41551-018-0324-9
10.1038/s42256-020-00265-z
10.1016/j.nicl.2019.102003
10.1126/science.abg1834
10.1038/s41598-020-69814-1
10.1371/journal.pone.0130140
10.1016/j.neunet.2014.09.003
10.3233/JIFS-169457
10.1109/ACCESS.2021.3087583
10.1038/nrclinonc.2017.141
10.21552/edpl/2017/4/9
10.1109/TMI.2018.2867350
10.3389/fncom.2020.00006
10.1109/TMI.2021.3090082
10.1016/j.compbiomed.2021.104410
10.1016/j.radonc.2018.03.033
10.1377/hlthaff.27.6.1491
10.3389/fnins.2019.01321
10.1038/ncomms5006
10.1109/TMI.2019.2948026
10.1016/j.media.2020.101839
10.1109/TNNLS.2016.2599820
10.1016/j.radonc.2015.06.013
10.1016/j.eswa.2019.01.048
10.1016/j.ophtha.2018.11.016
10.1038/s42256-021-00343-w
10.1016/j.media.2019.101537
10.1038/s42256-019-0052-1
10.1145/3236386.3241340
10.1109/ACCESS.2019.2914873
10.1016/j.inffus.2019.12.012
10.1186/s12859-018-2184-4
10.1016/j.compbiomed.2020.103865
10.1038/s43856-021-00013-3
10.3390/electronics10050593
10.1016/j.media.2019.101619
10.1002/mp.13141
10.1016/j.neuroimage.2020.117689
10.1016/j.cell.2018.02.010
10.1016/j.inffus.2021.01.008
10.1038/s41746-019-0216-8
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.
2021. The Authors
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.
– notice: 2021. The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2021.105111
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Research Library Prep


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 105111
ExternalDocumentID 34891095
10_1016_j_compbiomed_2021_105111
S0010482521009057
1_s2_0_S0010482521009057
Genre Journal Article
Review
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
6I.
AAFTH
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c630t-5152cc61b108314fac8a9a19bb8527b96dfdd75621a58040136c31a20fde4ef03
IEDL.DBID 7X7
ISSN 0010-4825
1879-0534
IngestDate Tue Aug 05 10:07:59 EDT 2025
Wed Aug 13 03:06:02 EDT 2025
Wed Feb 19 02:05:40 EST 2025
Tue Jul 01 03:28:46 EDT 2025
Thu Apr 24 22:52:33 EDT 2025
Fri Feb 23 02:40:51 EST 2024
Tue Feb 25 20:10:54 EST 2025
Tue Aug 26 20:14:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Explainable artificial intelligence
Medical imaging
Deep neural networks
Interpretability
Explainability
Language English
License This is an open access article under the CC BY license.
Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-5152cc61b108314fac8a9a19bb8527b96dfdd75621a58040136c31a20fde4ef03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0010482521009057
PMID 34891095
PQID 2615479105
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2609462558
proquest_journals_2615479105
pubmed_primary_34891095
crossref_primary_10_1016_j_compbiomed_2021_105111
crossref_citationtrail_10_1016_j_compbiomed_2021_105111
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2021_105111
elsevier_clinicalkeyesjournals_1_s2_0_S0010482521009057
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2021_105111
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Dai, Wang, Li (bib27) 2018; 34
Lambin, Stiphout, Starmans, Rios-Velazquez, Nalbantov, Aerts, Roelofs, Elmpt, Boutros, Granone, Valentini, Begg, Ruysscher, Dekker (bib74) 2013; 10
Wargnier-Dauchelle, Grenier, Durand-Dubief, Cotton, Sdika (bib150) 2021
Saleem, Shahid, Raza (bib114) 2021; 133
Zhou, Gandomi, Chen, Holzinger (bib169) 2021; 10
Sabour, Frosst, Hinton (bib111) 2017
Simonyan, Vedaldi, Zisserman (bib128) 2014
Babic, Gerke, Evgeniou, Cohen (bib5) 2021; 373
Higgins, Amos, Pfau, Racaniere, Matthey, Rezende, Lerchner (bib52) 2018
Baumgartner, Koch, Tezcan, Ang, Konukoglu (bib12) 2018
Rieger, Singh, Murdoch, Yu (bib109) 2020
Mahinpei, Clark, Lage, Doshi-Velez, Pan (bib94) 2021
Smith-Bindman, Miglioretti, Larson (bib133) 2008; 27
Magesh, Myloth, Tom (bib93) 2020; 126
Katzmann, Taubmann, Ahmad, Mühlberg, Sühling, Groß (bib62) 2021; 458
Eitel, Soehler, Bellmann-Strobl, Brandt, Ruprecht, Giess, Kuchling, Asseyer, Weygandt, Haynes, Scheel, Paul, Ritter (bib35) 2019; 24
Bansal, Agarwal, Nguyen (bib7) 2020
Natekar, Kori, Krishnamurthi (bib99) 2020; 14
Eitel, Ritter (bib33) 2019
LaLonde, Torigian, Bagci (bib71) 2020
Adebayo, Gilmer, Muelly, Goodfellow, Hardt, Kim (bib1) 2018
Puyol-Antón, Chen, Clough, Ruijsink, Sidhu, Gould, Porter, Elliott, Mehta, Rueckert, Rinaldi, King (bib106) 2020
DeGrave, Janizek, Lee (bib28) 2021; 3
Springenberg, Dosovitskiy, Brox, Riedmiller (bib134) 2015
Santamaría-Pang, Kubricht, Chowdhury, Bhushan, Tu (bib117) 2020
Saha, Grimm, Harowicz, Ghate, Kim, Walsh, Mazurowski (bib112) 2016; 43 8
Sun, Darbehani, Zaidi, Wang (bib136) 2020
Wickstrøm, Kampffmeyer, Jenssen (bib152) 2020; 60
Hinterreiter, Streit, Kainz (bib53) 2020
Zeiler, Fergus (bib162) 2014
Li, Dvornek, Zhou, Zhuang, Ventola, Duncan (bib82) 2019
Young, Booth, Simpson, Dutton, Shrapnel (bib161) 2019
LeCun, Bengio, Hinton (bib75) 2015; 521
Papanastasopoulos, Samala, Chan, Hadjiiski, Paramagul, Helvie, Neal (bib102) 2020
Geirhos, Rubisch, Michaelis, Bethge, Wichmann, Brendel (bib41) 2019
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib46) 2014; 27
Boehle, Eitel, Weygandt, Ritter (bib15) 2019; 11
Singh, Yow (bib129) 2021; 9
Goodfellow, Shlens, Szegedy (bib48) 2015
Biffi, Cerrolaza, Tarroni, Bai, de Marvao, Oktay, Ledig, Folgoc, Kamnitsas, Doumou, Duan, Prasad, Cook, O'Regan, Rueckert (bib13) 2020; 39
Papineni, Roukos, Ward, Zhu (bib103) 2002
Arjovsky, Chintala, Bottou (bib4) 2017
Yang, Kim, Kim, Adhikari (bib156) 2020; 39
Zhuang, Li, Payer, Štern, Urschler, Heinrich, Oster, Wang, Örjan Smedby, Bian, Yang, Heng, Mortazi, Bagci, Yang, Sun, Galisot, Ramel, Brouard, Tong, Si, Liao, Zeng, Shi, Zheng, Wang, MacGillivray, Newby, Rhode, Ourselin, Mohiaddin, Keegan, Firmin, Yang (bib173) 2019; 58
He, Shang, Ji, Zhang (bib51) 2017
Hoffmann, Fanconi, Rade, Kohler (bib54) 2021
Finlayson, Chung, Kohane, Beam (bib39) 2019
Zhuang, Dvornek, Li, Ventola, Duncan (bib172) 2019
Krizhevsky, Sutskever, Hinton (bib70) 2012; 25
Camalan, Mahmood, Binol, Araújo, Santos-Silva, Vargas, Lopes, Khurram, Gurcan (bib16) 2021; 13
Kermany, Goldbaum, Cai, Valentim, Liang, Baxter, McKeown, Yang, Wu, Yan, Dong, Prasadha, Pei, Ting, Zhu, Li, Hewett, Dong, Ziyar, Shi, Zhang, Zheng, Hou, Shi, Fu, Duan, Huu, Wen, Zhang, Zhang, Li, Wang, Singer, Sun, Xu, Tafreshi, Lewis, Xia, Zhang (bib64) 2018; 172
Sayres, Taly, Rahimy, Blumer, Coz, Hammel, Krause, Narayanaswamy, Rastegar, Wu, Xu, Barb, Joseph, Shumski, Smith, Sood, Corrado, Peng, Webster (bib118) 2019; 126
Kaur, Uslu, Durresi, Badve, Dundar (bib63) 2021
Zhang, Xie, Xing, McGough, Yang (bib166) 2017
Zhao, Zhou, Wang, Jiang, Xu (bib167) 2018
Singla, Pollack, Wallace, Batmanghelich (bib131) 2021
Li, Wu, Chen, Jiang (bib84) 2019
Li, Wu, Peng, Ernst, Fu (bib79) 2018
Lopatina, Ropele, Sibgatulin, Reichenbach, Güllmar (bib89) 2020; 14
Grossmann, Stringfield, El-Hachem, Bui, Velazquez, Parmar, Leijenaar, Haibe-Kains, Lambin, Gillies, Aerts (bib50) 2017; 6
Couteaux, Nempont, Pizaine, Bloch (bib25) 2019
Yan, Plis, Calhoun, Liu, Jiang, Jiang, Sui (bib153) 2017
Li, Dvornek, Zhuang, Ventola, Duncan (bib83) 2018
Vedantam, Zitnick, Parikh (bib146) 2015
Pisov, Goncharov, Kurochkina, Morozov, Gombolevskiy, Chernina, Vladzymyrskyy, Zamyatina, Chesnokova, Pronin, Shifrin, Belyaev (bib105) 2019
Silva, Poellinger, Cardoso, Reyes (bib127) 2020
Aresta, Araújo, Kwok, Chennamsetty, Safwan, Alex, Marami, Prastawa, Chan, Donovan, Fernandez, Zeineh, Kohl, Walz, Ludwig, Braunewell, Baust, Vu, To, Kim, Kwak, Galal, Sanchez-Freire, Brancati, Frucci, Riccio, Wang, Sun, Ma, Fang, Kone, Boulmane, Campilho, Eloy, Polónia, Aguiar (bib3) 2019; 56
Karras, Laine, Aila (bib61) 2019
Tschandl, Codella, Akay, Argenziano, Braun, Cabo, Gutman, Halpern, Helba, Hofmann-Wellenhof, Lallas, Lapins, Longo, Malvehy, Marchetti, Marghoob, Menzies, Oakley, Paoli, Puig, Rinner, Rosendahl, Scope, Sinz, Soyer, Thomas, Zalaudek, Kittler (bib143) 2019; 20
Cohen, Brooks, En, Zucker, Pareek, Lungren, Chaudhari (bib24) 2021
Ghandeharioun, Kim, Li, Jou, Eoff, Picard (bib42) 2021
Kim, Wattenberg, Gilmer, Cai, Wexler, Viégas, Sayres (bib65) 2018
Waldstein, Seeböck, Donner, Sadeghipour, Bogunović, Osborne, Schmidt-Erfurth (bib148) 2020; 10
Erion, Janizek, Sturmfels, Lundberg, Lee (bib37) 2021; 3
Margeloiu, Ashman, Bhatt, Chen, Jamnik, Weller (bib95) 2021
Wang, Peng, Lu, Lu, Summers (bib149) 2018
Carvalho, Pereira, Cardoso (bib18) 2019; 8
Bau, Zhou, Khosla, Oliva, Torralba (bib11) 2017
Tang, Chuang, DeCarli, Jin, Beckett, Keiser, Dugger (bib139) 2019; 10
Clough, Oksuz, Puyol-Antón, Ruijsink, King, Schnabel (bib23) 2019
Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib124) 2017
Durán, Jongsma (bib32) 2021; 47
Barredo Arrieta, Díaz-Rodríguez, Del Ser, Bennetot, Tabik, Barbado, Garcia, Gil-Lopez, Molina, Benjamins, Chatila, Herrera (bib9) 2020; 58
Zhou, Khosla, Lapedriza, Oliva, Torralba (bib168) 2016
Ravi, Khoshrou, Pechenizkiy (bib107) 2020
Gamble, Jaroensri, Wang, Tan, Moran, Brown, Flament-Auvigne, Rakha, Toss, Dabbs, Regitnig, Olson, Wren, Robinson, Corrado, Peng, Liu, Mermel, Steiner, Chen (bib40) 2021; 1
Tang, Tang, Zhu, Xiao, Summers (bib138) 2021; 67
Jin, Li, Hamarneh (bib60) 2021
Tjoa, Guan (bib142) 2020
Chen, Li, Tao, Barnett, Rudin, Su (bib20) 2019
Lundberg, Lee (bib90) 2017
Zhang, Tan, Wang, Manivannan, Chen, Lin, Zheng (bib164) 2019
Singh, Yow (bib130) 2021; 9
M, V, S, H (bib91) 2020; 123
Ghorbani, Wexler, Zou, Kim (bib45) 2019
Tschandl, Rinner, Apalla, Argenziano, Codella, Halpern, Janda, Lallas, Longo, Malvehy, Paoli, Puig, Rosendahl, Soyer, Zalaudek, Kittler (bib144) 2020
Pereira, Meier, Alves, Reyes, Silva (bib104) 2018
Stergiou, Kapidis, Kalliatakis, Chrysoulas, Veltkamp, Poppe (bib135) 2019
Schlemper, Oktay, Schaap, Heinrich, Kainz, Glocker, Rueckert (bib119) 2019; 53
Uzunova, Ehrhardt, Kepp, Handels (bib145) 2019
Kim, Kim, Seo, Yoon (bib66) 2021
Narayanaswamy, Venugopalan, Webster, Peng, Corrado, Ruamviboonsuk, Bavishi, Brenner, Nelson, Varadarajan (bib98) 2020
Dai, Wang (bib26) 2018; 6
Panth, Leijenaar, Carvalho, Lieuwes, Yaromina, Dubois, Lambin (bib100) 2015; 116
Weaver, Leung (bib151) 2017; 210
Smilkov, Thorat, Kim, Viégas, Wattenberg (bib132) 2017
Chattopadhay, Sarkar, Howlader, Balasubramanian (bib19) 2018
Li, Dong, Du, Mu (bib81) 2019; 7
Sanduleanu, Woodruff, de Jong, van Timmeren, Jochems, Dubois, Lambin (bib116) 2018; 127
Lee, Yune, Mansouri, Kim, Tajmir, Guerrier, Ebert, Pomerantz, Romero, Kamalian, Gonzalez, Lev, Do (bib77) 2018; 3
Yan, Kawahara, Hamarneh (bib154) 2019
Panwar, Gupta, Siddiqui, Morales-Menendez, Bhardwaj, Singh (bib101) 2020; 140
Yang, Dvornek, Zhang, Zhuang, Chapiro, Lin, Duncan (bib157) 2019
Salahuddin, Lenga, Nickisch (bib113) 2021
Li, Liu, Chen, Rudin (bib80) 2018
Temme (bib140) 2017; 3
Lipton (bib88) 2018; 16
Koh, Nguyen, Tang, Mussmann, Pierson, Kim, Liang (bib69) 2020
Liao, Chen, Xiao (bib85) 2018
Verma, Dickerson, Hines (bib147) 2020
Lambin, Rios-Velazquez, Leijenaar, Carvalho, van Stiphout, Granton, Zegers, Gillies, Boellard, Dekker, Aerts (bib73) 2012; 48
Bach, Binder, Montavon, Klauschen, Müller, Samek (bib6) 2015; 10
Samek, Binder, Montavon, Lapuschkin, Müller (bib115) 2017; 28
Kindermans, Schütt, Alber, Müller, Erhan, Kim, Dähne (bib67) 2018
Mohammadjafari, Cevik, Thanabalasingam, Basar, Initiative (bib96) 2021
Bass, da Silva, Sudre, Tudosiu, Smith, Robinson (bib10) 2020
Yilmaz, Mader, Fricke, Peña, Glüer, Meyer (bib160) 2020
Janik, Dodd, Ifrim, Sankaran, Curran (bib58) 2021
Erhan, Bengio, Courville, Vincent (bib36) 2009
Zhang, Chen, McGough, Xing, Wang, Bui, Xie, Sapkota, Cui, Dhillon, Ahmad, Khalil, Dickinson, Shi, Liu, Su, Cai, Yang (bib165) 2019; 1
Graziani, Andrearczyk, Müller (bib49) 2018
Lee, Kim, Ro (bib76) 2019
van der Maaten, Hinton (bib92) 2008; 9
Ding, Sohn, Kawczynski, Trivedi, Harnish, Jenkins, Lituiev, Copeland, Aboian, Aparici, Behr, Flavell, Huang, Zalocusky, Nardo, Seo, Hawkins, hernandez pampaloni, Hadley, Franc (bib29) 2018; 290
Lin (bib86) 2004
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib47) 2014
Sundararajan, Taly, Yan (bib137) 2017; vol. 70
Chen, Bei, Rudin (bib21) 2020; 2
Lenis, Major, Wimmer, Berg, Sluiter, Bühler (bib78) 2020
Faust, Xie, Han, Goyle, Volynskaya, Djuric, Diamandis (bib38) 2018; 19
Rudin (bib110) 2019; 1
Ghorbani, Abid, Zou (bib43) 2019; 33
Bándi, Geessink, Manson, Van Dijk, Balkenhol, Hermsen, Ehteshami Bejnordi, Lee, Paeng, Zhong, Li, Zanjani, Zinger, Fukuta, Komura, Ovtcharov, Cheng, Zeng, Thagaard, Dahl, Lin, Chen, Jacobsson, Hedlund, Çetin, Halıcı, Jackson, Chen, Both, Franke, Küsters-Vandevelde, Vreuls, Bult, van Ginneken, van der Laak, Litjens (bib14) 2019; 38
Yeche, Harrison, Berthier (bib159) 2019
Ghorbani, Ouyang, Abid, He, Chen, Harrington, Liang, Ashley, Zou (bib44) 2020; 3
Seah, Tang, Kitchen, Gaillard, Dixon (bib122) 2019; 290
Schmidhuber (bib120) 2015; 61
Shen, Han, Aberle, Bui, Hsu (bib125) 2019; 128
Holzinger, Carrington, Müller (bib55) 2020; 34
Zhang, Petitjean, Yger, Ainouz (bib163) 2020
Schutte, Moindrot, Hérent, Schiratti, Jégou (bib121) 2021
Yang, Veeraraghavan, Armato, Farahani, Kirby, Kalpathy-Kramer, van Elmpt, Dekker, Han, Feng, Aljabar, Oliveir
Kermany (10.1016/j.compbiomed.2021.105111_bib64) 2018; 172
Lundberg (10.1016/j.compbiomed.2021.105111_bib90) 2017
Sundararajan (10.1016/j.compbiomed.2021.105111_bib137) 2017; vol. 70
Izadyyazdanabadi (10.1016/j.compbiomed.2021.105111_bib57) 2018
Lee (10.1016/j.compbiomed.2021.105111_bib76) 2019
Margeloiu (10.1016/j.compbiomed.2021.105111_bib95) 2021
Zhou (10.1016/j.compbiomed.2021.105111_bib169) 2021; 10
Chattopadhay (10.1016/j.compbiomed.2021.105111_bib19) 2018
Saha (10.1016/j.compbiomed.2021.105111_bib112) 2016; 43 8
Springenberg (10.1016/j.compbiomed.2021.105111_bib134) 2015
Singh (10.1016/j.compbiomed.2021.105111_bib130) 2021; 9
van der Maaten (10.1016/j.compbiomed.2021.105111_bib92) 2008; 9
Aresta (10.1016/j.compbiomed.2021.105111_bib3) 2019; 56
Goodfellow (10.1016/j.compbiomed.2021.105111_bib46) 2014; 27
Santamaría-Pang (10.1016/j.compbiomed.2021.105111_bib117) 2020
Katzmann (10.1016/j.compbiomed.2021.105111_bib62) 2021; 458
Li (10.1016/j.compbiomed.2021.105111_bib84) 2019
Yang (10.1016/j.compbiomed.2021.105111_bib158) 2018; 45
Shen (10.1016/j.compbiomed.2021.105111_bib125) 2019; 128
Faust (10.1016/j.compbiomed.2021.105111_bib38) 2018; 19
Lipton (10.1016/j.compbiomed.2021.105111_bib87) 2017
Chen (10.1016/j.compbiomed.2021.105111_bib21) 2020; 2
Narayanaswamy (10.1016/j.compbiomed.2021.105111_bib98) 2020
Baumgartner (10.1016/j.compbiomed.2021.105111_bib12) 2018
Kim (10.1016/j.compbiomed.2021.105111_bib66) 2021
Tang (10.1016/j.compbiomed.2021.105111_bib138) 2021; 67
Adebayo (10.1016/j.compbiomed.2021.105111_bib1) 2018
Lin (10.1016/j.compbiomed.2021.105111_bib86) 2004
Samek (10.1016/j.compbiomed.2021.105111_bib115) 2017; 28
Bass (10.1016/j.compbiomed.2021.105111_bib10) 2020
Tschandl (10.1016/j.compbiomed.2021.105111_bib143) 2019; 20
Dai (10.1016/j.compbiomed.2021.105111_bib27) 2018; 34
Schlemper (10.1016/j.compbiomed.2021.105111_bib119) 2019; 53
Eitel (10.1016/j.compbiomed.2021.105111_bib34) 2019
Lopatina (10.1016/j.compbiomed.2021.105111_bib89) 2020; 14
Wickstrøm (10.1016/j.compbiomed.2021.105111_bib152) 2020; 60
Yang (10.1016/j.compbiomed.2021.105111_bib157) 2019
Zhu (10.1016/j.compbiomed.2021.105111_bib170) 2017
Li (10.1016/j.compbiomed.2021.105111_bib79) 2018
Lipton (10.1016/j.compbiomed.2021.105111_bib88) 2018; 16
Zhuang (10.1016/j.compbiomed.2021.105111_bib173) 2019; 58
Zhang (10.1016/j.compbiomed.2021.105111_bib166) 2017
Panth (10.1016/j.compbiomed.2021.105111_bib100) 2015; 116
Ravi (10.1016/j.compbiomed.2021.105111_bib107) 2020
Sabour (10.1016/j.compbiomed.2021.105111_bib111) 2017
LaLonde (10.1016/j.compbiomed.2021.105111_bib71) 2020
Thomas (10.1016/j.compbiomed.2021.105111_bib141) 2019; 13
Janik (10.1016/j.compbiomed.2021.105111_bib58) 2021
Eitel (10.1016/j.compbiomed.2021.105111_bib35) 2019; 24
Bau (10.1016/j.compbiomed.2021.105111_bib11) 2017
Li (10.1016/j.compbiomed.2021.105111_bib82) 2019
Zeiler (10.1016/j.compbiomed.2021.105111_bib162) 2014
Pisov (10.1016/j.compbiomed.2021.105111_bib105) 2019
Lenis (10.1016/j.compbiomed.2021.105111_bib78) 2020
Goodfellow (10.1016/j.compbiomed.2021.105111_bib47) 2014
Tang (10.1016/j.compbiomed.2021.105111_bib139) 2019; 10
Schmidhuber (10.1016/j.compbiomed.2021.105111_bib120) 2015; 61
Lambin (10.1016/j.compbiomed.2021.105111_bib74) 2013; 10
Magesh (10.1016/j.compbiomed.2021.105111_bib93) 2020; 126
Graziani (10.1016/j.compbiomed.2021.105111_bib49) 2018
Smith-Bindman (10.1016/j.compbiomed.2021.105111_bib133) 2008; 27
Camalan (10.1016/j.compbiomed.2021.105111_bib16) 2021; 13
Zhuang (10.1016/j.compbiomed.2021.105111_bib172) 2019
Li (10.1016/j.compbiomed.2021.105111_bib81) 2019; 7
Li (10.1016/j.compbiomed.2021.105111_bib83) 2018
Geirhos (10.1016/j.compbiomed.2021.105111_bib41) 2019
Jin (10.1016/j.compbiomed.2021.105111_bib60) 2021
Tjoa (10.1016/j.compbiomed.2021.105111_bib142) 2020
Schutte (10.1016/j.compbiomed.2021.105111_bib121) 2021
Zhao (10.1016/j.compbiomed.2021.105111_bib167) 2018
Ribeiro (10.1016/j.compbiomed.2021.105111_bib108) 2016
Weaver (10.1016/j.compbiomed.2021.105111_bib151) 2017; 210
Chen (10.1016/j.compbiomed.2021.105111_bib20) 2019
Mohammadjafari (10.1016/j.compbiomed.2021.105111_bib96) 2021
Yang (10.1016/j.compbiomed.2021.105111_bib155) 2021
Bansal (10.1016/j.compbiomed.2021.105111_bib7) 2020
LeCun (10.1016/j.compbiomed.2021.105111_bib75) 2015; 521
Holzinger (10.1016/j.compbiomed.2021.105111_bib56) 2021; 71
Liao (10.1016/j.compbiomed.2021.105111_bib85) 2018
Salahuddin (10.1016/j.compbiomed.2021.105111_bib113) 2021
Wang (10.1016/j.compbiomed.2021.105111_bib149) 2018
He (10.1016/j.compbiomed.2021.105111_bib51) 2017
Krizhevsky (10.1016/j.compbiomed.2021.105111_bib70) 2012; 25
Rudin (10.1016/j.compbiomed.2021.105111_bib110) 2019; 1
Cohen (10.1016/j.compbiomed.2021.105111_bib24) 2021
Chowdhury (10.1016/j.compbiomed.2021.105111_bib22) 2021
Shrikumar (10.1016/j.compbiomed.2021.105111_bib126) 2017
Zhang (10.1016/j.compbiomed.2021.105111_bib164) 2019
Babic (10.1016/j.compbiomed.2021.105111_bib5) 2021; 373
Gamble (10.1016/j.compbiomed.2021.105111_bib40) 2021; 1
Higgins (10.1016/j.compbiomed.2021.105111_bib52) 2018
Ding (10.1016/j.compbiomed.2021.105111_bib29) 2018; 290
Zhu (10.1016/j.compbiomed.2021.105111_bib171) 2019
Singh (10.1016/j.compbiomed.2021.105111_bib129) 2021; 9
Couteaux (10.1016/j.compbiomed.2021.105111_bib25) 2019
Lambin (10.1016/j.compbiomed.2021.105111_bib72) 2017; 14
Karras (10.1016/j.compbiomed.2021.105111_bib61) 2019
Selvaraju (10.1016/j.compbiomed.2021.105111_bib124) 2017
Pereira (10.1016/j.compbiomed.2021.105111_bib104) 2018
Silva (10.1016/j.compbiomed.2021.105111_bib127) 2020
Young (10.1016/j.compbiomed.2021.105111_bib161) 2019
Boehle (10.1016/j.compbiomed.2021.105111_bib15) 2019; 11
Finlayson (10.1016/j.compbiomed.2021.105111_bib39) 2019
Ghorbani (10.1016/j.compbiomed.2021.105111_bib45) 2019
Mahinpei (10.1016/j.compbiomed.2021.105111_bib94) 2021
Barredo Arrieta (10.1016/j.compbiomed.2021.105111_bib9) 2020; 58
Clough (10.1016/j.compbiomed.2021.105111_bib23) 2019
Smilkov (10.1016/j.compbiomed.2021.105111_bib132) 2017
Sun (10.1016/j.compbiomed.2021.105111_bib136) 2020
Dai (10.1016/j.compbiomed.2021.105111_bib26) 2018; 6
Temme (10.1016/j.compbiomed.2021.105111_bib140) 2017; 3
Goodfellow (10.1016/j.compbiomed.2021.105111_bib48) 2015
Papanastasopoulos (10.1016/j.compbiomed.2021.105111_bib102) 2020
Grossmann (10.1016/j.compbiomed.2021.105111_bib50) 2017; 6
Dinsdale (10.1016/j.compbiomed.2021.105111_bib30) 2021; 228
Puyol-Antón (10.1016/j.compbiomed.2021.105111_bib106) 2020
Simonyan (10.1016/j.compbiomed.2021.105111_bib128) 2014
Saleem (10.1016/j.compbiomed.2021.105111_bib114) 2021; 133
Lambin (10.1016/j.compbiomed.2021.105111_bib73) 2012; 48
Seegerer (10.1016/j.compbiomed.2021.105111_bib123) 2020
DeGrave (10.1016/j.compbiomed.2021.105111_bib28) 2021; 3
Lee (10.1016/j.compbiomed.2021.105111_bib77) 2018; 3
Erhan (10.1016/j.compbiomed.2021.105111_bib36) 2009
Erion (10.1016/j.compbiomed.2021.105111_bib37) 2021; 3
Wargnier-Dauchelle (10.1016/j.compbiomed.2021.105111_bib150) 2021
Ghandeharioun (10.1016/j.compbiomed.2021.105111_bib42) 2021
Zhou (10.1016/j.compbiomed.2021.105111_bib168) 2016
M (10.1016/j.compbiomed.2021.105111_bib91) 2020; 123
Eitel (10.1016/j.compbiomed.2021.105111_bib33) 2019
Kingma (10.1016/j.compbiomed.2021.105111_bib68) 2014
Yan (10.1016/j.compbiomed.2021.105111_bib154) 2019
Bach (10.1016/j.compbiomed.2021.105111_bib6) 2015; 10
Barnett (10.1016/j.compbiomed.2021.105111_bib8) 2021
Papineni (10.1016/j.compbiomed.2021.105111_bib103) 2002
Sanduleanu (10.1016/j.compbiomed.2021.105111_bib116) 2018; 127
Bándi (10.1016/j.compbiomed.2021.105111_bib14) 2019; 38
Holzinger (10.1016/j.compbiomed.2021.105111_bib55) 2020; 34
Hinterreiter (10.1016/j.compbiomed.2021.105111_bib53) 2020
Yilmaz (10.1016/j.compbiomed.2021.105111_bib160) 2020
Natekar (10.1016/j.compbiomed.2021.105111_bib99) 2020; 14
Verma (10.1016/j.compbiomed.2021.105111_bib147) 2020
Sayres (10.1016/j.compbiomed.2021.105111_bib118) 2019; 126
Jetley (10.1016/j.compbiomed.2021.105111_bib59) 2018
Kindermans (10.1016/j.compbiomed.2021.105111_bib67) 2018
Aerts (10.1016/j.compbiomed.2021.105111_bib2) 2014; 5
Ghorbani (10.1016/j.compbiomed.2021.105111_bib44) 2020; 3
Yan (10.1016/j.compbiomed.2021.105111_bib153) 2017
Yeche (10.1016/j.compbiomed.2021.105111_bib159) 2019
Stergiou (10.1016/j.compbiomed.2021.105111_bib135) 2019
Tschandl (10.1016/j.compbiomed.2021.105111_bib144) 2020
Waldstein (10.1016/j.compbiomed.2021.105111_bib148) 2020; 10
Kaur (10.1016/j.compbiomed.2021.105111_bib63) 2021
Singla (10.1016/j.compbiomed.2021.105111_bib131) 2021
Hoffmann (10.1016/j.compbiomed.2021.105111_bib54) 2021
Montavon (10.1016/j.compbiomed.2021.105111_bib97) 2017; 65
Carvalho (10.1016/j.compbiomed.2021.105111_bib18) 2019; 8
Durán (10.1016/j.compbiomed.2021.105111_bib32) 2021; 47
Seah (10.1016/j.compbiomed.2021.105111_bib122) 2019; 290
Yang (10.1016/j.compbiomed.2021.105111_bib156) 2020; 39
Biffi (10.1016/j.compbiomed.2021.105111_bib13) 2020; 39
Uzunova (10.1016/j.compbiomed.2021.105111_bib145) 2019
Campello (10.1016/j.compbiomed.2021.105111_bib17) 2021
Koh (10.1016/j.compbiomed.2021.105111_bib69) 2020
Vedantam (10.1016/j.compbiomed.2021.105111_bib146) 2015
Doshi-Velez (10.1016/j.compbiomed.2021.105111_bib31) 2017
Zhang (10.1016/j.compbiomed.2021.105111_bib163) 2020
Arjovsky (10.1016/j.compbiomed.2021.105111_bib4) 2017
Ghorbani (10.1016/j.compbiomed.2021.105111_bib43) 2019; 33
Kim (10.1016/j.compbiomed.2021.105111_bib65) 2018
Panwar (10.1016/j.compbiomed.2021.105111_bib101) 2020; 140
Rieger (10.1016/j.compbiomed.2021.105111_bib109) 2020
Li (10.1016/j.compbiomed.2021.105111_bib80) 2018
Zhang (10.1016/j.compbiomed.2021.105111_bib165) 2019; 1
References_xml – year: 2021
  ident: bib17
  article-title: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the m amp;ms challenge
  publication-title: IEEE Trans. Med. Imag.
– start-page: 3549
  year: 2017
  end-page: 3557
  ident: bib166
  article-title: Mdnet: a semantically and visually interpretable medical image diagnosis network
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 11
  year: 2019
  ident: bib15
  article-title: Layer-wise relevance propagation for explaining deep neural network decisions in mri-based alzheimer's disease classification
  publication-title: Front. Aging Neurosci.
– year: 2014
  ident: bib68
  article-title: Auto-encoding Variational Bayes
– start-page: 326
  year: 2020
  end-page: 334
  ident: bib117
  article-title: Towards emergent language symbolic semantic segmentation and model interpretability
  publication-title: Medical Image Computing and Computer Assisted Intervention - MICCAI 2020 - 23rd International Conference, Lima, Peru, October 4-8, 2020, Proceedings, Part I
– volume: 60
  start-page: 101619
  year: 2020
  ident: bib152
  article-title: Uncertainty and interpretability in convolutional neural networks for semantic segmentation of colorectal polyps
  publication-title: Med. Image Anal.
– volume: 28
  start-page: 2660
  year: 2017
  end-page: 2673
  ident: bib115
  article-title: Evaluating the visualization of what a deep neural network has learned
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 228
  start-page: 117689
  year: 2021
  ident: bib30
  article-title: Deep learning-based unlearning of dataset bias for mri harmonisation and confound removal
  publication-title: Neuroimage
– year: 2017
  ident: bib87
  article-title: The Doctor Just Won't Accept that!
– volume: 126
  start-page: 104041
  year: 2020
  ident: bib93
  article-title: An explainable machine learning model for early detection of Parkinson's disease using lime on datscan imagery
  publication-title: Comput. Biol. Med.
– start-page: 8928
  year: 2019
  end-page: 8939
  ident: bib20
  article-title: This looks like that: deep learning for interpretable image recognition
  publication-title: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada
– volume: 58
  start-page: 82
  year: 2020
  end-page: 115
  ident: bib9
  article-title: Explainable artificial intelligence (xai): concepts, taxonomies, opportunities and challenges toward responsible ai
  publication-title: Inf. Fusion
– year: 2021
  ident: bib95
  article-title: Do Concept Bottleneck Models Learn as Intended?
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib75
  article-title: Deep learning
  publication-title: Nature
– start-page: 793
  year: 2019
  end-page: 804
  ident: bib154
  article-title: Melanoma recognition via visual attention
  publication-title: Information Processing in Medical Imaging
– start-page: 2242
  year: 2017
  end-page: 2251
  ident: bib170
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
  publication-title: 2017 IEEE International Conference on Computer Vision (ICCV)
– start-page: 700
  year: 2019
  end-page: 708
  ident: bib172
  article-title: Invertible network for classification and biomarker selection for ASD
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019
– volume: 10
  year: 2015
  ident: bib6
  article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
  publication-title: PLoS One
– volume: 3
  start-page: 173
  year: 2018
  end-page: 182
  ident: bib77
  article-title: An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets
  publication-title: Nat. Biomed. Eng.
– volume: 6
  year: 2017
  ident: bib50
  article-title: Defining the biological basis of radiomic phenotypes in lung cancer
  publication-title: eLife
– start-page: 3
  year: 2019
  end-page: 11
  ident: bib33
  article-title: Testing the robustness of attribution methods for convolutional neural networks in mri-based alzheimer's disease classification
  publication-title: Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support
– volume: 48
  start-page: 441
  year: 2012
  end-page: 446
  ident: bib73
  article-title: Radiomics: extracting more information from medical images using advanced feature analysis
  publication-title: Eur. J. Cancer
– start-page: 35
  year: 2021
  end-page: 46
  ident: bib63
  article-title: Trustworthy explainability acceptance: a new metric to measure the trustworthiness of interpretable ai medical diagnostic systems
  publication-title: Complex, Intelligent and Software Intensive Systems
– start-page: 3319
  year: 2017
  end-page: 3327
  ident: bib11
  article-title: Network dissection: quantifying interpretability of deep visual representations
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 742
  year: 2017
  end-page: 751
  ident: bib51
  article-title: Deep learning features for lung adenocarcinoma classification with tissue pathology images
  publication-title: Neural Information Processing
– volume: 140
  start-page: 110190
  year: 2020
  ident: bib101
  article-title: A deep learning and grad-cam based color visualization approach for fast detection of covid-19 cases using chest x-ray and ct-scan images
  publication-title: Chaos, Solit. Fractals
– year: 2018
  ident: bib67
  article-title: Learning how to explain neural networks: patternnet and patternattribution
  publication-title: International Conference on Learning Representations
– volume: 1
  start-page: 14
  year: 2021
  ident: bib40
  article-title: Determining breast cancer biomarker status and associated morphological features using deep learning
  publication-title: Commun. Med.
– start-page: 11
  year: 2020
  end-page: 21
  ident: bib7
  article-title: Sam: the sensitivity of attribution methods to hyperparameters
  publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
– start-page: 21
  year: 2019
  end-page: 29
  ident: bib76
  article-title: Generation of multimodal justification using visual word constraint model for explainable computer-aided diagnosis
  publication-title: Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support
– start-page: 861
  year: 2021
  end-page: 872
  ident: bib58
  article-title: Interpretability of a deep learning model in the application of cardiac MRI segmentation with an ACDC challenge dataset
  publication-title: Medical Imaging 2021: Image Processing
– year: 2018
  ident: bib59
  article-title: Learn to pay attention
  publication-title: International Conference on Learning Representations
– start-page: 4303161
  year: 2018
  ident: bib85
  article-title: Brain midline shift measurement and its automation: a review of techniques and algorithms
  publication-title: Int. J. Biomed. Imag. 2018
– volume: 133
  start-page: 104410
  year: 2021
  ident: bib114
  article-title: Visual interpretability in 3d brain tumor segmentation network
  publication-title: Comput. Biol. Med.
– start-page: 3
  year: 2019
  end-page: 11
  ident: bib34
  article-title: Testing the robustness of attribution methods for convolutional neural networks in mri-based alzheimer's disease classification
  publication-title: Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support
– volume: 47
  start-page: 329
  year: 2021
  end-page: 335
  ident: bib32
  article-title: Who is afraid of black box algorithms? on the epistemological and ethical basis of trust in medical ai
  publication-title: J. Med. Ethics
– year: 2014
  ident: bib47
  publication-title: Generative Adversarial Nets
– volume: 10
  year: 2019
  ident: bib139
  article-title: Interpretable classification of alzheimer's disease pathologies with a convolutional neural network pipeline
  publication-title: Nat. Commun.
– year: 2002
  ident: bib103
  publication-title: Bleu: a Method for Automatic Evaluation of Machine Translation
– start-page: 618
  year: 2017
  end-page: 626
  ident: bib124
  article-title: Grad-cam: Visual Explanations from Deep Networks via Gradient-Based Localization
  publication-title: 2017 IEEE International Conference on Computer Vision (ICCV)
– start-page: 3
  year: 2020
  end-page: 12
  ident: bib160
  article-title: Assessing attribution maps for explaining cnn-based vertebral fracture classifiers
  publication-title: Interpretable and Annotation-Efficient Learning for Medical Image Computing
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: bib92
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– start-page: 228
  year: 2020
  end-page: 235
  ident: bib102
  article-title: Explainable AI for medical imaging: deep-learning CNN ensemble for classification of estrogen receptor status from breast MRI
  publication-title: Medical Imaging 2020: Computer-Aided Diagnosis, International Society for Optics and Photonics
– start-page: 9049
  year: 2018
  end-page: 9058
  ident: bib149
  article-title: Tienet: text-image embedding network for common thorax disease classification and reporting in chest x-rays
  publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 15719
  year: 2021
  end-page: 15728
  ident: bib66
  article-title: Xprotonet: diagnosis in chest radiography with global and local explanations
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 27
  start-page: 1491
  year: 2008
  end-page: 1502
  ident: bib133
  article-title: Rising use of diagnostic medical imaging in a large integrated health system
  publication-title: Health Aff.(Project Hope)
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: bib120
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Network.
– volume: 290
  start-page: 514
  year: 2019
  end-page: 522
  ident: bib122
  article-title: Chest radiographs in congestive heart failure: visualizing neural network learning
  publication-title: Radiology
– volume: 56
  start-page: 122
  year: 2019
  end-page: 139
  ident: bib3
  article-title: Bach: grand challenge on breast cancer histology images
  publication-title: Med. Image Anal.
– year: 2014
  ident: bib128
  article-title: Deep inside convolutional networks: visualising image classification models and saliency maps
  publication-title: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Workshop Track Proceedings
– year: 2021
  ident: bib60
  article-title: One Map Does Not Fit All: Evaluating Saliency Map Explanation on Multi-Modal Medical Images
– start-page: 1830
  year: 2019
  end-page: 1834
  ident: bib135
  article-title: Saliency tubes: visual explanations for spatio-temporal convolutions
  publication-title: 2019 IEEE International Conference on Image Processing (ICIP)
– volume: 14
  year: 2020
  ident: bib89
  article-title: Investigation of deep-learning-driven identification of multiple sclerosis patients based on susceptibility-weighted images using relevance analysis
  publication-title: Front. Neurosci.
– volume: 10
  year: 2021
  ident: bib169
  article-title: Evaluating the quality of machine learning explanations: a survey on methods and metrics
  publication-title: Electronics
– start-page: 9273
  year: 2019
  end-page: 9282
  ident: bib45
  article-title: Towards automatic concept-based explanations
  publication-title: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada
– start-page: 323
  year: 2019
  end-page: 331
  ident: bib157
  article-title: Domain-agnostic learning with anatomy-consistent embedding for cross-modality liver segmentation
  publication-title: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)
– year: 2020
  ident: bib107
  article-title: Vidi: Descriptive Visual Data Clustering as Radiologist Assistant in Covid-19 Streamline Diagnostic
– year: 2020
  ident: bib147
  article-title: Counterfactual Explanations for Machine Learning: A Review
– volume: 3
  start-page: 610
  year: 2021
  end-page: 619
  ident: bib28
  article-title: Ai for radiographic covid-19 detection selects shortcuts over signal
  publication-title: Nat. Mach. Intell.
– volume: 10
  start-page: 27
  year: 2013
  end-page: 40
  ident: bib74
  article-title: Predicting outcomes in radiation oncology—multifactorial decision support systems
  publication-title: Nat. Rev. Clin. Oncol.
– year: 2021
  ident: bib94
  article-title: Promises and Pitfalls of Black-Box Concept Learning Models
– year: 2019
  ident: bib41
  article-title: Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness
  publication-title: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019
– volume: 1
  start-page: 206
  year: 2019
  end-page: 215
  ident: bib110
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat. Mach. Intell.
– start-page: 305
  year: 2020
  end-page: 314
  ident: bib127
  article-title: Interpretability-guided content-based medical image retrieval
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020
– year: 2020
  ident: bib142
  article-title: Quantifying Explainability of Saliency Methods in Deep Neural Networks
– volume: 373
  start-page: 284
  year: 2021
  end-page: 286
  ident: bib5
  article-title: Beware explanations from ai in health care
  publication-title: Science
– volume: 33
  start-page: 3681
  year: 2019
  end-page: 3688
  ident: bib43
  article-title: Interpretation of neural networks is fragile
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 1
  year: 2020
  end-page: 6
  ident: bib144
  article-title: Human–computer collaboration for skin cancer recognition
  publication-title: Nat. Med.
– start-page: 294
  year: 2020
  end-page: 304
  ident: bib71
  article-title: Encoding visual attributes in capsules for explainable medical diagnoses
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
– volume: 10
  start-page: 12954
  year: 2020
  ident: bib148
  article-title: Unbiased identification of novel subclinical imaging biomarkers using unsupervised deep learning
  publication-title: Sci. Rep.
– year: 2019
  ident: bib171
  article-title: Guideline-based additive explanation for computer-aided diagnosis of lung nodules
  publication-title: iMIMIC/ML-CDS@MICCAI
– year: 2004
  ident: bib86
  publication-title: Rouge: A Package for Automatic Evaluation of Summaries
– volume: 16
  start-page: 31
  year: 2018
  end-page: 57
  ident: bib88
  article-title: The mythos of model interpretability
  publication-title: Queue
– start-page: 2797
  year: 2019
  end-page: 2800
  ident: bib84
  article-title: From deep learning towards finding skin lesion biomarkers
  publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– year: 2021
  ident: bib131
  article-title: Explaining the Black-Box Smoothly- a Counterfactual Approach
– volume: 20
  start-page: 938
  year: 2019
  end-page: 947
  ident: bib143
  article-title: Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study
  publication-title: Lancet Oncol.
– volume: 19
  year: 2018
  ident: bib38
  article-title: Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction
  publication-title: BMC Bioinf.
– start-page: 315
  year: 2020
  end-page: 325
  ident: bib78
  article-title: Domain aware medical image classifier interpretation by counterfactual impact analysis
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020
– volume: 34
  start-page: 1631
  year: 2018
  end-page: 1642
  ident: bib27
  article-title: Conceptual alignment deep neural networks
  publication-title: J. Intell. Fuzzy Syst.
– year: 2021
  ident: bib155
  article-title: Unbox the Black-Box for the Medical Explainable AI via Multi-Modal and Multi-Centre Data Fusion: A Mini-Review, Two Showcases and beyond
– volume: 39
  start-page: 1306
  year: 2020
  end-page: 1315
  ident: bib156
  article-title: Guided soft attention network for classification of breast cancer histopathology images
  publication-title: IEEE Trans. Med. Imag.
– start-page: 8309
  year: 2018
  end-page: 8319
  ident: bib12
  article-title: Visual feature attribution using wasserstein gans
  publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 818
  year: 2014
  end-page: 833
  ident: bib162
  article-title: Visualizing and understanding convolutional networks
  publication-title: Computer Vision – ECCV 2014
– year: 2017
  ident: bib31
  article-title: Towards a Rigorous Science of Interpretable Machine Learning
– start-page: 209
  year: 2019
  end-page: 217
  ident: bib164
  article-title: Biomarker localization by combining cnn classifier and generative adversarial network
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019
– volume: 58
  start-page: 101537
  year: 2019
  ident: bib173
  article-title: Evaluation of algorithms for multi-modality whole heart segmentation: an open-access grand challenge
  publication-title: Med. Image Anal.
– year: 2021
  ident: bib121
  article-title: Using Stylegan for Visual Interpretability of Deep Learning Models on Medical Images
– start-page: 56
  year: 2019
  end-page: 63
  ident: bib25
  article-title: Towards interpretability of segmentation networks by analyzing deepdreams
  publication-title: Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support
– year: 2021
  ident: bib8
  article-title: Interpretable Mammographic Image Classification Using Cased-Based Reasoning and Deep Learning
– volume: 8
  start-page: 832
  year: 2019
  ident: bib18
  article-title: Machine learning interpretability: a survey on methods and metrics
  publication-title: Electronics
– start-page: 656
  year: 2019
  end-page: 664
  ident: bib23
  article-title: Global and local interpretability for cardiac mri classification
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019
– start-page: 7697
  year: 2020
  end-page: 7709
  ident: bib10
  article-title: Icam: interpretable classification via disentangled representations and feature attribution mapping
  publication-title: Advances in Neural Information Processing Systems
– volume: 53
  start-page: 197
  year: 2019
  end-page: 207
  ident: bib119
  article-title: Attention gated networks: learning to leverage salient regions in medical images
  publication-title: Med. Image Anal.
– volume: 38
  start-page: 550
  year: 2019
  end-page: 560
  ident: bib14
  article-title: From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge
  publication-title: IEEE Trans. Med. Imag.
– start-page: 16
  year: 2020
  end-page: 37
  ident: bib123
  article-title: Interpretable Deep Neural Network to Predict Estrogen Receptor Status from Haematoxylin-Eosin Images
– start-page: 1
  year: 2017
  end-page: 6
  ident: bib153
  article-title: Discriminating schizophrenia from normal controls using resting state functional network connectivity: a deep neural network and layer-wise relevance propagation method
  publication-title: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing
– start-page: 206
  year: 2018
  end-page: 214
  ident: bib83
  article-title: Brain biomarker interpretation in asd using deep learning and fmri
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018
– start-page: 2921
  year: 2016
  end-page: 2929
  ident: bib168
  article-title: Learning deep features for discriminative localization
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 273
  year: 2020
  end-page: 283
  ident: bib98
  article-title: Scientific discovery by generating counterfactuals using image translation
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020
– year: 2021
  ident: bib24
  article-title: Gifsplanation via Latent Shift: A Simple Autoencoder Approach to Progressive Exaggeration on Chest X-Rays
– start-page: 5338
  year: 2020
  end-page: 5348
  ident: bib69
  article-title: Concept bottleneck models
  publication-title: Proceedings of the 37th International Conference on Machine Learning, PMLR
– start-page: 73
  year: 2020
  end-page: 82
  ident: bib163
  article-title: Explainability for regression cnn in fetal head circumference estimation from ultrasound images
  publication-title: Interpretable and Annotation-Efficient Learning for Medical Image Computing
– year: 2021
  ident: bib96
  article-title: Using protopnet for interpretable alzheimer's disease classification
  publication-title: Proceedings of the Canadian Conference on Artificial Intelligence
– volume: 9
  start-page: 85198
  year: 2021
  end-page: 85208
  ident: bib130
  article-title: An interpretable deep learning model for covid-19 detection with chest <italic>x</italic>-ray images
  publication-title: IEEE Access
– start-page: 106
  year: 2018
  end-page: 114
  ident: bib104
  article-title: Automatic brain tumor grading from mri data using convolutional neural networks and quality assessment
  publication-title: Understanding and Interpreting Machine Learning in Medical Image Computing Applications
– volume: 1
  start-page: 236
  year: 2019
  end-page: 245
  ident: bib165
  article-title: Pathologist-level interpretable whole-slide cancer diagnosis with deep learning
  publication-title: Nat. Mach. Intell.
– volume: 13
  year: 2021
  ident: bib16
  article-title: Convolutional neural network-based clinical predictors of oral dysplasia: class activation map analysis of deep learning results
  publication-title: Cancers
– start-page: 839
  year: 2018
  end-page: 847
  ident: bib19
  article-title: Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks
  publication-title: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV)
– year: 2018
  ident: bib52
  article-title: Towards a Definition of Disentangled Representations
– volume: 71
  start-page: 28
  year: 2021
  end-page: 37
  ident: bib56
  article-title: Towards multi-modal causability with graph neural networks enabling information fusion for explainable ai
  publication-title: Inf. Fusion
– year: 2017
  ident: bib111
  article-title: Dynamic routing between capsules
  publication-title: Advances in Neural Information Processing Systems
– year: 2017
  ident: bib132
  article-title: Smoothgrad: Removing Noise by Adding Noise
– start-page: 214
  year: 2017
  end-page: 223
  ident: bib4
  article-title: Wasserstein generative adversarial networks
  publication-title: Proceedings of the 34th International Conference on Machine Learning
– year: 2021
  ident: bib42
  article-title: Dissect: Disentangled Simultaneous Explanations via Concept Traversals
– volume: 14
  start-page: 749
  year: 2017
  end-page: 762
  ident: bib72
  article-title: Radiomics: the bridge between medical imaging and personalized medicine
  publication-title: Nat. Rev. Clin. Oncol.
– start-page: 689
  year: 2021
  end-page: 692
  ident: bib22
  article-title: Emergent symbolic language based deep medical image classification
  publication-title: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)
– year: 2018
  ident: bib57
  article-title: Weakly-supervised learning-based feature localization in confocal laser endomicroscopy glioma images
  publication-title: MICCAI
– volume: 24
  start-page: 102003
  year: 2019
  ident: bib35
  article-title: Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional mri using layer-wise relevance propagation
  publication-title: Neuroimage: Clin.
– volume: 6
  start-page: 5962
  year: 2018
  end-page: 5972
  ident: bib26
  article-title: Analyzing tongue images using a conceptual alignment deep autoencoder
  publication-title: IEEE Access
– start-page: 4396
  year: 2019
  end-page: 4405
  ident: bib61
  article-title: A style-based generator architecture for generative adversarial networks
  publication-title: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2019
  ident: bib159
  article-title: Ubs: a dimension-agnostic metric for concept vector interpretability applied to radiomics
  publication-title: iMIMIC/ML-CDS@MICCAI
– start-page: 13
  year: 2020
  end-page: 22
  ident: bib53
  article-title: Projective latent interventions for understanding and fine-tuning classifiers
  publication-title: Interpretable and Annotation-Efficient Learning for Medical Image Computing
– volume: 3
  start-page: 10
  year: 2020
  ident: bib44
  article-title: Deep learning interpretation of echocardiograms
  publication-title: npj Digit. Med.
– volume: 27
  year: 2014
  ident: bib46
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 126
  start-page: 552
  year: 2019
  end-page: 564
  ident: bib118
  article-title: Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy
  publication-title: Ophthalmology
– volume: 39
  start-page: 2088
  year: 2020
  end-page: 2099
  ident: bib13
  article-title: Explainable anatomical shape analysis through deep hierarchical generative models
  publication-title: IEEE Trans. Med. Imag.
– year: 2018
  ident: bib65
  article-title: Interpretability beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (Tcav)
– year: 2009
  ident: bib36
  article-title: Visualizing Higher-Layer Features of a Deep Network
– volume: 45
  start-page: 4568
  year: 2018
  end-page: 4581
  ident: bib158
  article-title: Autosegmentation for thoracic radiation treatment planning: a grand challenge at aapm 2017
  publication-title: Med. Phys.
– year: 2016
  ident: bib108
  publication-title: ”why Should I Trust You?”: Explaining the Predictions of Any Classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 123
  start-page: 103865
  year: 2020
  ident: bib91
  article-title: Concept attribution: explaining cnn decisions to physicians
  publication-title: Comput. Biol. Med.
– start-page: 4768
  year: 2017
  end-page: 4777
  ident: bib90
  article-title: A unified approach to interpreting model predictions
  publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems
– year: 2018
  ident: bib49
  article-title: Regression Concept Vectors for Bidirectional Explanations in Histopathology
– volume: 65
  start-page: 211
  year: 2017
  end-page: 222
  ident: bib97
  article-title: Explaining nonlinear classification decisions with deep taylor decomposition
  publication-title: Pattern Recogn.
– start-page: 264
  year: 2019
  end-page: 271
  ident: bib145
  article-title: Interpretable explanations of black box classifiers applied on medical images by meaningful perturbations using variational autoencoders
  publication-title: Medical Imaging 2019: Image Processing
– volume: 172
  start-page: 1122
  year: 2018
  end-page: 1131
  ident: bib64
  article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning
  publication-title: Cell
– year: 2018
  ident: bib167
  publication-title: Respond-cam: Analyzing Deep Models for 3d Imaging Data by Visualizations
– volume: 3
  start-page: 473
  year: 2017
  ident: bib140
  article-title: Algorithms and transparency in view of the new general data protection regulation
  publication-title: Eur. Data Prot. L. Rev.
– volume: 290
  start-page: 180958
  year: 2018
  ident: bib29
  article-title: A deep learning model to predict a diagnosis of alzheimer disease by using 18 f-fdg pet of the brain
  publication-title: Radiology
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib70
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2018
  ident: bib1
  article-title: Sanity checks for saliency maps
  publication-title: Advances in Neural Information Processing Systems
– volume: 34
  start-page: 193
  year: 2020
  end-page: 198
  ident: bib55
  article-title: Measuring the quality of explanations: the system causability scale (scs)
  publication-title: Kunstliche Intelligenz
– volume: 2
  start-page: 772
  year: 2020
  end-page: 782
  ident: bib21
  article-title: Concept whitening for interpretable image recognition
  publication-title: Nat. Mach. Intell.
– start-page: 48
  year: 2019
  end-page: 55
  ident: bib161
  article-title: Deep neural network or dermatologist?
  publication-title: Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support
– volume: vol. 70
  start-page: 3319
  year: 2017
  end-page: 3328
  ident: bib137
  article-title: Axiomatic attribution for deep networks
  publication-title: Proceedings of the 34th International Conference on Machine Learning
– volume: 9
  start-page: 41482
  year: 2021
  end-page: 41493
  ident: bib129
  article-title: These do not look like those: an interpretable deep learning model for image recognition
  publication-title: IEEE Access
– volume: 127
  start-page: 349
  year: 2018
  end-page: 360
  ident: bib116
  article-title: Tracking tumor biology with radiomics: a systematic review utilizing a radiomics quality score
  publication-title: Radiother. Oncol.
– volume: 13
  year: 2019
  ident: bib141
  article-title: Analyzing neuroimaging data through recurrent deep learning models
  publication-title: Front. Neurosci.
– volume: 210
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib151
  article-title: Biomarkers and imaging of breast cancer
  publication-title: Am. J. Roentgenol.
– year: 2015
  ident: bib48
  article-title: Explaining and Harnessing Adversarial Examples
– start-page: 4566
  year: 2015
  end-page: 4575
  ident: bib146
  article-title: Cider: consensus-based image description evaluation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
– year: 2021
  ident: bib54
  article-title: This Looks like That…does it? Shortcomings of Latent Space Prototype Interpretability in Deep Networks
– start-page: 284
  year: 2020
  end-page: 293
  ident: bib106
  article-title: Interpretable deep models for cardiac resynchronisation therapy response prediction
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020
– start-page: 9215
  year: 2018
  end-page: 9223
  ident: bib79
  article-title: Tell me where to look: guided attention inference network
  publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 128
  start-page: 84
  year: 2019
  end-page: 95
  ident: bib125
  article-title: An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification
  publication-title: Expert Syst. Appl.
– start-page: 1062
  year: 2021
  end-page: 1066
  ident: bib150
  article-title: A more interpretable classifier for multiple sclerosis
  publication-title: 2021 IEEE 18th International Symposium on Biomedical Imaging
– volume: 458
  start-page: 141
  year: 2021
  end-page: 156
  ident: bib62
  article-title: Explaining clinical decision support systems in medical imaging using cycle-consistent activation maximization
  publication-title: Neurocomputing
– year: 2015
  ident: bib134
  article-title: Striving for Simplicity: the All Convolutional Net
– volume: 7
  start-page: 59037
  year: 2019
  end-page: 59047
  ident: bib81
  article-title: Attention dense-u-net for automatic breast mass segmentation in digital mammogram
  publication-title: IEEE Access
– volume: 116
  start-page: 462
  year: 2015
  end-page: 466
  ident: bib100
  article-title: Is there a causal relationship between genetic changes and radiomics-based image features? an in vivo preclinical experiment with doxycycline inducible gadd34 tumor cells
  publication-title: Radiother. Oncol. : J. Eur. Soc. Therapeut. Radiol. Oncol.
– volume: 43 8
  start-page: 4558
  year: 2016
  ident: bib112
  article-title: Interobserver variability in identification of breast tumors in mri and its implications for prognostic biomarkers and radiogenomics
  publication-title: Med. Phys.
– year: 2017
  ident: bib126
  article-title: Not Just a Black Box: learning Important Features through Propagating Activation Differences
– year: 2019
  ident: bib39
  article-title: Adversarial Attacks against Medical Deep Learning Systems
– start-page: 797
  year: 2020
  end-page: 806
  ident: bib136
  article-title: Saunet: shape attentive u-net for interpretable medical image segmentation
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020
– start-page: 718
  year: 2019
  end-page: 730
  ident: bib82
  article-title: Efficient interpretation of deep learning models using graph structure and cooperative game theory: application to asd biomarker discovery
  publication-title: Information Processing in Medical Imaging
– volume: 3
  start-page: 620
  year: 2021
  end-page: 631
  ident: bib37
  article-title: Improving performance of deep learning models with axiomatic attribution priors and expected gradients
  publication-title: Nat. Mach. Intell.
– start-page: 30
  year: 2019
  end-page: 38
  ident: bib105
  article-title: Incorporating task-specific structural knowledge into cnns for brain midline shift detection
  publication-title: Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support
– year: 2020
  ident: bib109
  publication-title: Interpretations Are Useful: Penalizing Explanations to Align Neural Networks with Prior Knowledge
– volume: 14
  start-page: 6
  year: 2020
  ident: bib99
  article-title: Demystifying brain tumor segmentation networks: interpretability and uncertainty analysis
  publication-title: Front. Comput. Neurosci.
– start-page: 91
  year: 2021
  end-page: 95
  ident: bib113
  article-title: Multi-resolution 3d convolutional neural networks for automatic coronary centerline extraction in cardiac ct angiography scans
  publication-title: 2021 IEEE 18th International Symposium on Biomedical Imaging
– start-page: 3530
  year: 2018
  end-page: 3537
  ident: bib80
  article-title: Deep learning for case-based reasoning through prototypes: a neural network that explains its predictions
  publication-title: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans
– volume: 5
  start-page: 4006
  year: 2014
  ident: bib2
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat. Commun.
– volume: 67
  start-page: 101839
  year: 2021
  ident: bib138
  article-title: A disentangled generative model for disease decomposition in chest x-rays via normal image synthesis
  publication-title: Med. Image Anal.
– volume: 1
  start-page: 206
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib110
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0048-x
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.compbiomed.2021.105111_bib92
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.compbiomed.2021.105111_bib75
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib24
– year: 2014
  ident: 10.1016/j.compbiomed.2021.105111_bib128
  article-title: Deep inside convolutional networks: visualising image classification models and saliency maps
– volume: 56
  start-page: 122
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib3
  article-title: Bach: grand challenge on breast cancer histology images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.05.010
– volume: 43 8
  start-page: 4558
  year: 2016
  ident: 10.1016/j.compbiomed.2021.105111_bib112
  article-title: Interobserver variability in identification of breast tumors in mri and its implications for prognostic biomarkers and radiogenomics
  publication-title: Med. Phys.
  doi: 10.1118/1.4955435
– volume: 53
  start-page: 197
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib119
  article-title: Attention gated networks: learning to leverage salient regions in medical images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.01.012
– start-page: 4768
  year: 2017
  ident: 10.1016/j.compbiomed.2021.105111_bib90
  article-title: A unified approach to interpreting model predictions
– start-page: 209
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib164
  article-title: Biomarker localization by combining cnn classifier and generative adversarial network
– start-page: 323
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib157
  article-title: Domain-agnostic learning with anatomy-consistent embedding for cross-modality liver segmentation
– volume: 6
  year: 2017
  ident: 10.1016/j.compbiomed.2021.105111_bib50
  article-title: Defining the biological basis of radiomic phenotypes in lung cancer
  publication-title: eLife
  doi: 10.7554/eLife.23421
– volume: 458
  start-page: 141
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib62
  article-title: Explaining clinical decision support systems in medical imaging using cycle-consistent activation maximization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.05.081
– year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib96
  article-title: Using protopnet for interpretable alzheimer's disease classification
– volume: 20
  start-page: 938
  issue: 7
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib143
  article-title: Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(19)30333-X
– volume: 13
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib16
  article-title: Convolutional neural network-based clinical predictors of oral dysplasia: class activation map analysis of deep learning results
  publication-title: Cancers
  doi: 10.3390/cancers13061291
– start-page: 793
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib154
  article-title: Melanoma recognition via visual attention
– start-page: 2921
  year: 2016
  ident: 10.1016/j.compbiomed.2021.105111_bib168
  article-title: Learning deep features for discriminative localization
– start-page: 294
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib71
  article-title: Encoding visual attributes in capsules for explainable medical diagnoses
– start-page: 742
  year: 2017
  ident: 10.1016/j.compbiomed.2021.105111_bib51
  article-title: Deep learning features for lung adenocarcinoma classification with tissue pathology images
– volume: 9
  start-page: 41482
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib129
  article-title: These do not look like those: an interpretable deep learning model for image recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3064838
– start-page: 689
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib22
  article-title: Emergent symbolic language based deep medical image classification
– volume: 8
  start-page: 832
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib18
  article-title: Machine learning interpretability: a survey on methods and metrics
  publication-title: Electronics
  doi: 10.3390/electronics8080832
– start-page: 3
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib33
  article-title: Testing the robustness of attribution methods for convolutional neural networks in mri-based alzheimer's disease classification
– volume: 34
  start-page: 193
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib55
  article-title: Measuring the quality of explanations: the system causability scale (scs)
  publication-title: Kunstliche Intelligenz
  doi: 10.1007/s13218-020-00636-z
– start-page: 15719
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib66
  article-title: Xprotonet: diagnosis in chest radiography with global and local explanations
– start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib144
  article-title: Human–computer collaboration for skin cancer recognition
  publication-title: Nat. Med.
– volume: 14
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib89
  article-title: Investigation of deep-learning-driven identification of multiple sclerosis patients based on susceptibility-weighted images using relevance analysis
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.609468
– start-page: 48
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib161
  article-title: Deep neural network or dermatologist?
– start-page: 35
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib63
  article-title: Trustworthy explainability acceptance: a new metric to measure the trustworthiness of interpretable ai medical diagnostic systems
– volume: 10
  start-page: 27
  year: 2013
  ident: 10.1016/j.compbiomed.2021.105111_bib74
  article-title: Predicting outcomes in radiation oncology—multifactorial decision support systems
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2012.196
– start-page: 839
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib19
  article-title: Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks
– start-page: 861
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib58
  article-title: Interpretability of a deep learning model in the application of cardiac MRI segmentation with an ACDC challenge dataset
– year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib60
– volume: 290
  start-page: 514
  issue: 2
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib122
  article-title: Chest radiographs in congestive heart failure: visualizing neural network learning
  publication-title: Radiology
  doi: 10.1148/radiol.2018180887
– year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib155
– start-page: 700
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib172
  article-title: Invertible network for classification and biomarker selection for ASD
– start-page: 4396
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib61
  article-title: A style-based generator architecture for generative adversarial networks
– volume: 65
  start-page: 211
  year: 2017
  ident: 10.1016/j.compbiomed.2021.105111_bib97
  article-title: Explaining nonlinear classification decisions with deep taylor decomposition
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2016.11.008
– volume: 48
  start-page: 441
  issue: 4
  year: 2012
  ident: 10.1016/j.compbiomed.2021.105111_bib73
  article-title: Radiomics: extracting more information from medical images using advanced feature analysis
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2011.11.036
– volume: 126
  start-page: 104041
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib93
  article-title: An explainable machine learning model for early detection of Parkinson's disease using lime on datscan imagery
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104041
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.compbiomed.2021.105111_bib70
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib121
– volume: 47
  start-page: 329
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib32
  article-title: Who is afraid of black box algorithms? on the epistemological and ethical basis of trust in medical ai
  publication-title: J. Med. Ethics
– start-page: 91
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib113
  article-title: Multi-resolution 3d convolutional neural networks for automatic coronary centerline extraction in cardiac ct angiography scans
– year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib8
– year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib109
– start-page: 5338
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib69
  article-title: Concept bottleneck models
– volume: 33
  start-page: 3681
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib43
  article-title: Interpretation of neural networks is fragile
– volume: 27
  year: 2014
  ident: 10.1016/j.compbiomed.2021.105111_bib46
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 56
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib25
  article-title: Towards interpretability of segmentation networks by analyzing deepdreams
– year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib131
– start-page: 8928
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib20
  article-title: This looks like that: deep learning for interpretable image recognition
– volume: 290
  start-page: 180958
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib29
  article-title: A deep learning model to predict a diagnosis of alzheimer disease by using 18 f-fdg pet of the brain
  publication-title: Radiology
– year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib147
– volume: 39
  start-page: 2088
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib13
  article-title: Explainable anatomical shape analysis through deep hierarchical generative models
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2020.2964499
– volume: 6
  start-page: 5962
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib26
  article-title: Analyzing tongue images using a conceptual alignment deep autoencoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2788849
– volume: 140
  start-page: 110190
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib101
  article-title: A deep learning and grad-cam based color visualization approach for fast detection of covid-19 cases using chest x-ray and ct-scan images
  publication-title: Chaos, Solit. Fractals
  doi: 10.1016/j.chaos.2020.110190
– year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib54
– volume: 3
  start-page: 610
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib28
  article-title: Ai for radiographic covid-19 detection selects shortcuts over signal
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00338-7
– volume: 3
  start-page: 173
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib77
  article-title: An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0324-9
– start-page: 9215
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib79
  article-title: Tell me where to look: guided attention inference network
– start-page: 1830
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib135
  article-title: Saliency tubes: visual explanations for spatio-temporal convolutions
– start-page: 305
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib127
  article-title: Interpretability-guided content-based medical image retrieval
– volume: 2
  start-page: 772
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib21
  article-title: Concept whitening for interpretable image recognition
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-00265-z
– volume: 24
  start-page: 102003
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib35
  article-title: Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional mri using layer-wise relevance propagation
  publication-title: Neuroimage: Clin.
  doi: 10.1016/j.nicl.2019.102003
– start-page: 264
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib145
  article-title: Interpretable explanations of black box classifiers applied on medical images by meaningful perturbations using variational autoencoders
– year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib167
– volume: 373
  start-page: 284
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib5
  article-title: Beware explanations from ai in health care
  publication-title: Science
  doi: 10.1126/science.abg1834
– volume: 10
  start-page: 12954
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib148
  article-title: Unbiased identification of novel subclinical imaging biomarkers using unsupervised deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69814-1
– volume: 10
  year: 2015
  ident: 10.1016/j.compbiomed.2021.105111_bib6
  article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0130140
– start-page: 9273
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib45
  article-title: Towards automatic concept-based explanations
– start-page: 16
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib123
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.compbiomed.2021.105111_bib120
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Network.
  doi: 10.1016/j.neunet.2014.09.003
– start-page: 1062
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib150
  article-title: A more interpretable classifier for multiple sclerosis
– volume: 34
  start-page: 1631
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib27
  article-title: Conceptual alignment deep neural networks
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-169457
– volume: 9
  start-page: 85198
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib130
  article-title: An interpretable deep learning model for covid-19 detection with chest x-ray images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3087583
– year: 2017
  ident: 10.1016/j.compbiomed.2021.105111_bib126
– start-page: 656
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib23
  article-title: Global and local interpretability for cardiac mri classification
– start-page: 4566
  year: 2015
  ident: 10.1016/j.compbiomed.2021.105111_bib146
  article-title: Cider: consensus-based image description evaluation
– start-page: 30
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib105
  article-title: Incorporating task-specific structural knowledge into cnns for brain midline shift detection
– start-page: 818
  year: 2014
  ident: 10.1016/j.compbiomed.2021.105111_bib162
  article-title: Visualizing and understanding convolutional networks
– year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib49
– volume: 14
  start-page: 749
  year: 2017
  ident: 10.1016/j.compbiomed.2021.105111_bib72
  article-title: Radiomics: the bridge between medical imaging and personalized medicine
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2017.141
– year: 2004
  ident: 10.1016/j.compbiomed.2021.105111_bib86
– year: 2009
  ident: 10.1016/j.compbiomed.2021.105111_bib36
– volume: 3
  start-page: 473
  year: 2017
  ident: 10.1016/j.compbiomed.2021.105111_bib140
  article-title: Algorithms and transparency in view of the new general data protection regulation
  publication-title: Eur. Data Prot. L. Rev.
  doi: 10.21552/edpl/2017/4/9
– year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib142
– volume: 38
  start-page: 550
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib14
  article-title: From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2018.2867350
– volume: 14
  start-page: 6
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib99
  article-title: Demystifying brain tumor segmentation networks: interpretability and uncertainty analysis
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2020.00006
– start-page: 797
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib136
  article-title: Saunet: shape attentive u-net for interpretable medical image segmentation
– year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib17
  article-title: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the m amp;ms challenge
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2021.3090082
– start-page: 3319
  year: 2017
  ident: 10.1016/j.compbiomed.2021.105111_bib11
  article-title: Network dissection: quantifying interpretability of deep visual representations
– start-page: 3549
  year: 2017
  ident: 10.1016/j.compbiomed.2021.105111_bib166
  article-title: Mdnet: a semantically and visually interpretable medical image diagnosis network
– start-page: 273
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib98
  article-title: Scientific discovery by generating counterfactuals using image translation
– volume: 133
  start-page: 104410
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib114
  article-title: Visual interpretability in 3d brain tumor segmentation network
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104410
– volume: 127
  start-page: 349
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib116
  article-title: Tracking tumor biology with radiomics: a systematic review utilizing a radiomics quality score
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2018.03.033
– volume: 27
  start-page: 1491
  year: 2008
  ident: 10.1016/j.compbiomed.2021.105111_bib133
  article-title: Rising use of diagnostic medical imaging in a large integrated health system
  publication-title: Health Aff.(Project Hope)
  doi: 10.1377/hlthaff.27.6.1491
– volume: 13
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib141
  article-title: Analyzing neuroimaging data through recurrent deep learning models
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.01321
– start-page: 7697
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib10
  article-title: Icam: interpretable classification via disentangled representations and feature attribution mapping
– year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib95
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2021.105111_bib153
  article-title: Discriminating schizophrenia from normal controls using resting state functional network connectivity: a deep neural network and layer-wise relevance propagation method
– year: 2014
  ident: 10.1016/j.compbiomed.2021.105111_bib68
– start-page: 718
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib82
  article-title: Efficient interpretation of deep learning models using graph structure and cooperative game theory: application to asd biomarker discovery
– start-page: 618
  year: 2017
  ident: 10.1016/j.compbiomed.2021.105111_bib124
  article-title: Grad-cam: Visual Explanations from Deep Networks via Gradient-Based Localization
– volume: 5
  start-page: 4006
  year: 2014
  ident: 10.1016/j.compbiomed.2021.105111_bib2
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5006
– volume: 39
  start-page: 1306
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib156
  article-title: Guided soft attention network for classification of breast cancer histopathology images
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2019.2948026
– year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib94
– start-page: 9049
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib149
  article-title: Tienet: text-image embedding network for common thorax disease classification and reporting in chest x-rays
– start-page: 284
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib106
  article-title: Interpretable deep models for cardiac resynchronisation therapy response prediction
– start-page: 228
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib102
  article-title: Explainable AI for medical imaging: deep-learning CNN ensemble for classification of estrogen receptor status from breast MRI
– start-page: 3
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib160
  article-title: Assessing attribution maps for explaining cnn-based vertebral fracture classifiers
– start-page: 73
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib163
  article-title: Explainability for regression cnn in fetal head circumference estimation from ultrasound images
– start-page: 2242
  year: 2017
  ident: 10.1016/j.compbiomed.2021.105111_bib170
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
– year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib59
  article-title: Learn to pay attention
– volume: 67
  start-page: 101839
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib138
  article-title: A disentangled generative model for disease decomposition in chest x-rays via normal image synthesis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101839
– volume: 28
  start-page: 2660
  year: 2017
  ident: 10.1016/j.compbiomed.2021.105111_bib115
  article-title: Evaluating the visualization of what a deep neural network has learned
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2016.2599820
– start-page: 3
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib34
  article-title: Testing the robustness of attribution methods for convolutional neural networks in mri-based alzheimer's disease classification
– volume: 116
  start-page: 462
  issue: 3
  year: 2015
  ident: 10.1016/j.compbiomed.2021.105111_bib100
  article-title: Is there a causal relationship between genetic changes and radiomics-based image features? an in vivo preclinical experiment with doxycycline inducible gadd34 tumor cells
  publication-title: Radiother. Oncol. : J. Eur. Soc. Therapeut. Radiol. Oncol.
  doi: 10.1016/j.radonc.2015.06.013
– start-page: 8309
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib12
  article-title: Visual feature attribution using wasserstein gans
– year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib52
– volume: 128
  start-page: 84
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib125
  article-title: An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.01.048
– year: 2015
  ident: 10.1016/j.compbiomed.2021.105111_bib48
– start-page: 3530
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib80
  article-title: Deep learning for case-based reasoning through prototypes: a neural network that explains its predictions
– start-page: 206
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib83
  article-title: Brain biomarker interpretation in asd using deep learning and fmri
– volume: 126
  start-page: 552
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib118
  article-title: Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.11.016
– year: 2016
  ident: 10.1016/j.compbiomed.2021.105111_bib108
– volume: 3
  start-page: 620
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib37
  article-title: Improving performance of deep learning models with axiomatic attribution priors and expected gradients
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00343-w
– year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib171
  article-title: Guideline-based additive explanation for computer-aided diagnosis of lung nodules
– year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib57
  article-title: Weakly-supervised learning-based feature localization in confocal laser endomicroscopy glioma images
– year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib39
– volume: 58
  start-page: 101537
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib173
  article-title: Evaluation of algorithms for multi-modality whole heart segmentation: an open-access grand challenge
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101537
– start-page: 214
  year: 2017
  ident: 10.1016/j.compbiomed.2021.105111_bib4
  article-title: Wasserstein generative adversarial networks
– year: 2015
  ident: 10.1016/j.compbiomed.2021.105111_bib134
– volume: 1
  start-page: 236
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib165
  article-title: Pathologist-level interpretable whole-slide cancer diagnosis with deep learning
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0052-1
– start-page: 13
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib53
  article-title: Projective latent interventions for understanding and fine-tuning classifiers
– volume: 10
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib139
  article-title: Interpretable classification of alzheimer's disease pathologies with a convolutional neural network pipeline
  publication-title: Nat. Commun.
– volume: 16
  start-page: 31
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib88
  article-title: The mythos of model interpretability
  publication-title: Queue
  doi: 10.1145/3236386.3241340
– year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib41
  article-title: Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness
– year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib65
– start-page: 21
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib76
  article-title: Generation of multimodal justification using visual word constraint model for explainable computer-aided diagnosis
– volume: 210
  start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2021.105111_bib151
  article-title: Biomarkers and imaging of breast cancer
  publication-title: Am. J. Roentgenol.
– year: 2017
  ident: 10.1016/j.compbiomed.2021.105111_bib132
– start-page: 326
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib117
  article-title: Towards emergent language symbolic semantic segmentation and model interpretability
– year: 2017
  ident: 10.1016/j.compbiomed.2021.105111_bib111
  article-title: Dynamic routing between capsules
– year: 2017
  ident: 10.1016/j.compbiomed.2021.105111_bib87
– volume: 7
  start-page: 59037
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib81
  article-title: Attention dense-u-net for automatic breast mass segmentation in digital mammogram
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2914873
– year: 2014
  ident: 10.1016/j.compbiomed.2021.105111_bib47
– volume: 58
  start-page: 82
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib9
  article-title: Explainable artificial intelligence (xai): concepts, taxonomies, opportunities and challenges toward responsible ai
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.12.012
– start-page: 11
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib7
  article-title: Sam: the sensitivity of attribution methods to hyperparameters
– start-page: 106
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib104
  article-title: Automatic brain tumor grading from mri data using convolutional neural networks and quality assessment
– year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib1
  article-title: Sanity checks for saliency maps
– volume: vol. 70
  start-page: 3319
  year: 2017
  ident: 10.1016/j.compbiomed.2021.105111_bib137
  article-title: Axiomatic attribution for deep networks
– year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib67
  article-title: Learning how to explain neural networks: patternnet and patternattribution
– start-page: 315
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib78
  article-title: Domain aware medical image classifier interpretation by counterfactual impact analysis
– volume: 19
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib38
  article-title: Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-018-2184-4
– volume: 123
  start-page: 103865
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib91
  article-title: Concept attribution: explaining cnn decisions to physicians
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103865
– volume: 11
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib15
  article-title: Layer-wise relevance propagation for explaining deep neural network decisions in mri-based alzheimer's disease classification
  publication-title: Front. Aging Neurosci.
– volume: 1
  start-page: 14
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib40
  article-title: Determining breast cancer biomarker status and associated morphological features using deep learning
  publication-title: Commun. Med.
  doi: 10.1038/s43856-021-00013-3
– year: 2017
  ident: 10.1016/j.compbiomed.2021.105111_bib31
– volume: 10
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib169
  article-title: Evaluating the quality of machine learning explanations: a survey on methods and metrics
  publication-title: Electronics
  doi: 10.3390/electronics10050593
– year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib42
– volume: 60
  start-page: 101619
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib152
  article-title: Uncertainty and interpretability in convolutional neural networks for semantic segmentation of colorectal polyps
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101619
– year: 2002
  ident: 10.1016/j.compbiomed.2021.105111_bib103
– volume: 45
  start-page: 4568
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib158
  article-title: Autosegmentation for thoracic radiation treatment planning: a grand challenge at aapm 2017
  publication-title: Med. Phys.
  doi: 10.1002/mp.13141
– volume: 228
  start-page: 117689
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib30
  article-title: Deep learning-based unlearning of dataset bias for mri harmonisation and confound removal
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117689
– start-page: 4303161
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib85
  article-title: Brain midline shift measurement and its automation: a review of techniques and algorithms
  publication-title: Int. J. Biomed. Imag. 2018
– volume: 172
  start-page: 1122
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105111_bib64
  article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.010
– year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib159
  article-title: Ubs: a dimension-agnostic metric for concept vector interpretability applied to radiomics
– year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib107
– start-page: 2797
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105111_bib84
  article-title: From deep learning towards finding skin lesion biomarkers
– volume: 71
  start-page: 28
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105111_bib56
  article-title: Towards multi-modal causability with graph neural networks enabling information fusion for explainable ai
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.01.008
– volume: 3
  start-page: 10
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105111_bib44
  article-title: Deep learning interpretation of echocardiograms
  publication-title: npj Digit. Med.
  doi: 10.1038/s41746-019-0216-8
SSID ssj0004030
Score 2.6675932
SecondaryResourceType review_article
Snippet Artificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for diagnosis and treatment decisions. Deep neural networks have...
AbstractArtificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for diagnosis and treatment decisions. Deep neural networks...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105111
SubjectTerms Artificial intelligence
Artificial neural networks
Biomarkers
Computer applications
Decision making
Deep learning
Deep neural networks
Explainability
Explainable artificial intelligence
Image analysis
Image processing
Internal Medicine
Interpretability
Machine learning
Medical imaging
Neural networks
Other
Semantics
Trust
Workflow
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CDqWX0vTpNi0q9OpGsh6201MIDaGQnhrITciyBFsa7xJvDrn0t3fGkh1KG1jo0Y_BZiyNvrG-bwbgY-d5NE3UpdGVKpXsY4lHspQqcC-l1EqROPnimzm_VF-v9NUenM5aGKJV5tifYvoUrfOZo-zNo81qRRpfTCUwwcGkhbcIO0jBrmqi9X36dU_zUFwmGQrGG7o7s3kSx4to20nmjpliJajprRDioSXqIQg6LUVnT-FJxpDsJL3mAeyF4Rk8usi75M8hpIrlJPPyd2wdWR_ChlHlSrQaEu97ZIhW2XXapmGrawwrzOUCJcfshCVJCxmvFlrixKO9Y6np9PgCLs--fD89L3M7hdIbybclIpfKeyM6Qd3FVHS-ca0Tbdc1uqq71vSx72vEQ8LphlPeZbwUruKxDypELl_C_rAewmtgET9kNK7umoCIL5imC7ju997XlNC4UEA9e9D6XGucWl78tDOp7Ie9970l39vk-wLEYrlJ9TZ2sGnnj2RnPSlGQIuLwg629b9sw5in8miFHSvL7V_DrYDPi-UfI3bH5x7Oo8kuj8JsVqsaAZwu4MNyGec7beK4Iaxv6R5MyDFp1U0Br9IoXBwlVYPGrX7zX6_2Fh5XpPGY_jMdwv725ja8Q-S17d5PU-s3j7osGQ
  priority: 102
  providerName: Elsevier
Title Transparency of deep neural networks for medical image analysis: A review of interpretability methods
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482521009057
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482521009057
https://dx.doi.org/10.1016/j.compbiomed.2021.105111
https://www.ncbi.nlm.nih.gov/pubmed/34891095
https://www.proquest.com/docview/2615479105
https://www.proquest.com/docview/2609462558
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RVkJcEOUZaFdG4hqIYzsPOKBt1WUBdYWASnuzEseWimh2IdtDL_x2ZmIne6FoL4miZGJpbM9843kBvKpN4rLCqThTqYylaFyMTyIW0iZGCKGkpOTk80U2v5CflmoZDty6EFY5yMReUDcrQ2fkbxDpK5mjclPv179i6hpF3tXQQmMPDqh0GRlf-TLf5kUmwqegoKyRaAqFSB4f30Uh2z7FHa3ElFPDW875berpNvjZq6HZA7gf8COb-gk_hDu2fQh3z4OH_BFYX62cUrzMDVs51li7ZlS1EqlaH_PdMUSq7Mq7aNjlFYoUVoXiJG_ZlPl0FiK-HEMS-xjaG-YbTneP4WJ29v10HodWCrHJRLKJEbWkxmS85tRZTLrKFFVZ8bKuC5XmdZk1rmlyxEK8UkVCNldmBK_SxDVWWpeIJ7Dfrlr7DJjDSXRZldeFRbRns6K2qPMbY3IyZiobQT5wUJtQZ5zaXfzUQ0DZD73lvSbea8_7CPhIufa1NnagKYdJ0kMuKUo_jQphB9r8X7S2C9u401x3qU70t76KES4gtI-TEhFuBO9GyoBUPALZcdyjYTXpcajt-o7g5fga9zo5cKrWrq7pGzTG0WBVRQRP_SocGSVkgcSlev7_n7-AeyklcPSHSEewv_l9bY8RVm3qCey9_sMn_Q7CazH7MIGD6cfP8wXeT84WX77-BSG3Jg8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgEXxGcJFDASHCPi2E4cEEIVsGxptxdaqTeTOLZURLML2Qrtn-I3MhMn2QtFe-kxSiaRxuOZN_GbGYCXlU18pr2KM5XKWIrax3glYiFdYoUQSkoqTp4dZdMT-eVUnW7Bn6EWhmiVg0_sHHU9t_SP_DUifSVzDG7q_eJnTFOj6HR1GKERzOLArX5jyta-2_-I6_sqTSefjj9M436qQGwzkSxjDOCptRmvOA3Zkr60uixKXlSVVmleFVnt6zpHWMBLpRNKPzIreJkmvnbS-UTge6_BdSlEQRRCPfm8rsNMRCh5Qd8mMfXqmUOBT0YU8VBSj1lpymnALuf8snB4Gdztwt7kDtzu8SrbCwZ2F7Zccw9uzPoT-fvgQnd0KimzKzb3rHZuwahLJko1gWPeMkTG7DwcCbGzc3RhrOybobxheyyUz5Dw2UiB7Di7KxYGXLcP4ORKlPwQtpt54x4B82g0PivzSjtEly7TlUOMUVubU_JUugjyQYPG9n3NabzGDzMQ2L6bte4N6d4E3UfAR8lF6O2xgUwxLJIZalfR2xoMQBvI5v-SdW3vNlrDTZuaxHztuiahAWE-nhSIqCN4O0r2yCggng2_uztYkxk_td5PEbwYb6NvoQOjsnHzC3oGk39MkJWOYCdY4agoITUKF-rx_1_-HG5Oj2eH5nD_6OAJ3EqpeKT7gbUL28tfF-4pQrpl9azbRwy-XfXG_QslCF0P
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEO8GChgJjlHt2I4TEEIVZdVSWiFBpb2ZxLGlIprdNluh_Wv8Osaxk71QtJceV9lJpMk8vom_mQF4XRvq8sLJNJeZSAVvXIq_eMqFpYZzLoXwzcnHJ_nBqfg8ldMN-DP0wnha5RAT-0DdzIz_Rr6LSF8KhclN7rpIi_i6P_kwv0j9Bil_0jqs0wgmcmSXv7F8694f7uO7fpNlk0_fPx6kccNAanJOFykm88yYnNXML9wSrjJFVVasrOtCZqou88Y1jUKIwCpZUF-K5IazKqOuscI6yvG-t-C24pg20ZfUVK16MikP7S8Y5wSWYZFFFLhlni4e2uuxQs2YX7bLGLsuNV4HffsUOLkHdyN2JXvB2O7Dhm0fwNZxPJ1_CDZMSvftZWZJZo401s6Jn5iJUm3gm3cEUTI5D8dD5Owcwxmp4mCUt2SPhFYaL3w20iF7_u6ShGXX3SM4vRElP4bNdtbabSAODcjllaoLi0jT5kVtEW80xihfSFU2ATVoUJs449yv2vilBzLbT73Svfa610H3CbBRch7mfKwhUw4vSQ99rBh5NSajNWTVv2RtF0NIp5nuMk31t36CEhoQ1ua0RHSdwLtRMqKkgH7WfO7OYE16fNTKtxJ4NV7GOOMPj6rWzq78f2gpsFiWRQJPghWOiuKiQOFSPv3_zV_CFrqs_nJ4cvQM7mS-j6T_lrUDm4vLK_sc0d2iftG7EYEfN-23fwFRlGE8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transparency+of+deep+neural+networks+for+medical+image+analysis%3A+A+review+of+interpretability+methods&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Salahuddin%2C+Zohaib&rft.au=Woodruff%2C+Henry+C&rft.au=Chatterjee%2C+Avishek&rft.au=Lambin%2C+Philippe&rft.date=2022-01-01&rft.eissn=1879-0534&rft.volume=140&rft.spage=105111&rft_id=info:doi/10.1016%2Fj.compbiomed.2021.105111&rft_id=info%3Apmid%2F34891095&rft.externalDocID=34891095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon