Measuring functional connectivity with wearable MEG

Optically-pumped magnetometers (OPMs) offer the potential for a step change in magnetoencephalography (MEG) enabling wearable systems that provide improved data quality, accommodate any subject group, allow data capture during movement and potentially reduce cost. However, OPM-MEG is a nascent techn...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 230; p. 117815
Main Authors Boto, Elena, Hill, Ryan M., Rea, Molly, Holmes, Niall, Seedat, Zelekha A., Leggett, James, Shah, Vishal, Osborne, James, Bowtell, Richard, Brookes, Matthew J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.04.2021
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Optically-pumped magnetometers (OPMs) offer the potential for a step change in magnetoencephalography (MEG) enabling wearable systems that provide improved data quality, accommodate any subject group, allow data capture during movement and potentially reduce cost. However, OPM-MEG is a nascent technology and, to realise its potential, it must be shown to facilitate key neuroscientific measurements, such as the characterisation of brain networks. Networks, and the connectivities that underlie them, have become a core area of neuroscientific investigation, and their importance is underscored by many demonstrations of their disruption in brain disorders. Consequently, a demonstration of network measurements using OPM-MEG would be a significant step forward. Here, we aimed to show that a wearable 50-channel OPM-MEG system enables characterisation of the electrophysiological connectome. To this end, we measured connectivity in the resting state and during a visuo-motor task, using both OPM-MEG and a state-of-the-art 275-channel cryogenic MEG device. Our results show that resting-state connectome matrices from OPM and cryogenic systems exhibit a high degree of similarity, with correlation values >70%. In addition, in task data, similar differences in connectivity between individuals (scanned multiple times) were observed in cryogenic and OPM-MEG data, again demonstrating the fidelity of the OPM-MEG device. This is the first demonstration of network connectivity measured using OPM-MEG, and results add weight to the argument that OPMs will ultimately supersede cryogenic sensors for MEG measurement.
AbstractList Optically-pumped magnetometers (OPMs) offer the potential for a step change in magnetoencephalography (MEG) enabling wearable systems that provide improved data quality, accommodate any subject group, allow data capture during movement and potentially reduce cost. However, OPM-MEG is a nascent technology and, to realise its potential, it must be shown to facilitate key neuroscientific measurements, such as the characterisation of brain networks. Networks, and the connectivities that underlie them, have become a core area of neuroscientific investigation, and their importance is underscored by many demonstrations of their disruption in brain disorders. Consequently, a demonstration of network measurements using OPM-MEG would be a significant step forward. Here, we aimed to show that a wearable 50-channel OPM-MEG system enables characterisation of the electrophysiological connectome. To this end, we measured connectivity in the resting state and during a visuo-motor task, using both OPM-MEG and a state-of-the-art 275-channel cryogenic MEG device. Our results show that resting-state connectome matrices from OPM and cryogenic systems exhibit a high degree of similarity, with correlation values >70%. In addition, in task data, similar differences in connectivity between individuals (scanned multiple times) were observed in cryogenic and OPM-MEG data, again demonstrating the fidelity of the OPM-MEG device. This is the first demonstration of network connectivity measured using OPM-MEG, and results add weight to the argument that OPMs will ultimately supersede cryogenic sensors for MEG measurement.
Optically-pumped magnetometers (OPMs) offer the potential for a step change in magnetoencephalography (MEG) enabling wearable systems that provide improved data quality, accommodate any subject group, allow data capture during movement and potentially reduce cost. However, OPM-MEG is a nascent technology and, to realise its potential, it must be shown to facilitate key neuroscientific measurements, such as the characterisation of brain networks. Networks, and the connectivities that underlie them, have become a core area of neuroscientific investigation, and their importance is underscored by many demonstrations of their disruption in brain disorders. Consequently, a demonstration of network measurements using OPM-MEG would be a significant step forward. Here, we aimed to show that a wearable 50-channel OPM-MEG system enables characterisation of the electrophysiological connectome. To this end, we measured connectivity in the resting state and during a visuo-motor task, using both OPM-MEG and a state-of-the-art 275-channel cryogenic MEG device. Our results show that resting-state connectome matrices from OPM and cryogenic systems exhibit a high degree of similarity, with correlation values >70%. In addition, in task data, similar differences in connectivity between individuals (scanned multiple times) were observed in cryogenic and OPM-MEG data, again demonstrating the fidelity of the OPM-MEG device. This is the first demonstration of network connectivity measured using OPM-MEG, and results add weight to the argument that OPMs will ultimately supersede cryogenic sensors for MEG measurement.Optically-pumped magnetometers (OPMs) offer the potential for a step change in magnetoencephalography (MEG) enabling wearable systems that provide improved data quality, accommodate any subject group, allow data capture during movement and potentially reduce cost. However, OPM-MEG is a nascent technology and, to realise its potential, it must be shown to facilitate key neuroscientific measurements, such as the characterisation of brain networks. Networks, and the connectivities that underlie them, have become a core area of neuroscientific investigation, and their importance is underscored by many demonstrations of their disruption in brain disorders. Consequently, a demonstration of network measurements using OPM-MEG would be a significant step forward. Here, we aimed to show that a wearable 50-channel OPM-MEG system enables characterisation of the electrophysiological connectome. To this end, we measured connectivity in the resting state and during a visuo-motor task, using both OPM-MEG and a state-of-the-art 275-channel cryogenic MEG device. Our results show that resting-state connectome matrices from OPM and cryogenic systems exhibit a high degree of similarity, with correlation values >70%. In addition, in task data, similar differences in connectivity between individuals (scanned multiple times) were observed in cryogenic and OPM-MEG data, again demonstrating the fidelity of the OPM-MEG device. This is the first demonstration of network connectivity measured using OPM-MEG, and results add weight to the argument that OPMs will ultimately supersede cryogenic sensors for MEG measurement.
Optically-pumped magnetometers (OPMs) offer the potential for a step change in magnetoencephalography (MEG) enabling wearable systems that provide improved data quality, accommodate any subject group, allow data capture during movement and potentially reduce cost. However, OPM-MEG is a nascent technology and, to realise its potential, it must be shown to facilitate key neuroscientific measurements, such as the characterisation of brain networks. Networks, and the connectivities that underlie them, have become a core area of neuroscientific investigation, and their importance is underscored by many demonstrations of their disruption in brain disorders. Consequently, a demonstration of network measurements using OPM-MEG would be a significant step forward. Here, we aimed to show that a wearable 50-channel OPM-MEG system enables characterisation of the electrophysiological connectome. To this end, we measured connectivity in the resting state and during a visuo-motor task, using both OPM-MEG and a state-of-the-art 275-channel cryogenic MEG device. Our results show that resting-state connectome matrices from OPM and cryogenic systems exhibit a high degree of similarity, with correlation values > 70%. In addition, in task data, similar differences in connectivity between individuals (scanned multiple times) were observed in cryogenic and OPM-MEG data, again demonstrating the fidelity of the OPM-MEG device. This is the first demonstration of network connectivity measured using OPM-MEG, and results add weight to the argument that OPMs will ultimately supersede cryogenic sensors for MEG measurement.
ArticleNumber 117815
Author Osborne, James
Hill, Ryan M.
Brookes, Matthew J.
Rea, Molly
Bowtell, Richard
Shah, Vishal
Seedat, Zelekha A.
Boto, Elena
Leggett, James
Holmes, Niall
AuthorAffiliation b QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, 80027, CO, USA
a Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
AuthorAffiliation_xml – name: a Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
– name: b QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, 80027, CO, USA
Author_xml – sequence: 1
  givenname: Elena
  orcidid: 0000-0002-0347-280X
  surname: Boto
  fullname: Boto, Elena
  email: elena.boto@nottingham.ac.uk
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
– sequence: 2
  givenname: Ryan M.
  orcidid: 0000-0002-1732-2095
  surname: Hill
  fullname: Hill, Ryan M.
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
– sequence: 3
  givenname: Molly
  orcidid: 0000-0002-3487-713X
  surname: Rea
  fullname: Rea, Molly
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
– sequence: 4
  givenname: Niall
  orcidid: 0000-0002-0561-8366
  surname: Holmes
  fullname: Holmes, Niall
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
– sequence: 5
  givenname: Zelekha A.
  surname: Seedat
  fullname: Seedat, Zelekha A.
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
– sequence: 6
  givenname: James
  surname: Leggett
  fullname: Leggett, James
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
– sequence: 7
  givenname: Vishal
  surname: Shah
  fullname: Shah, Vishal
  organization: QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, 80027, CO, USA
– sequence: 8
  givenname: James
  surname: Osborne
  fullname: Osborne, James
  organization: QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, 80027, CO, USA
– sequence: 9
  givenname: Richard
  orcidid: 0000-0001-8656-412X
  surname: Bowtell
  fullname: Bowtell, Richard
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
– sequence: 10
  givenname: Matthew J.
  surname: Brookes
  fullname: Brookes, Matthew J.
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33524584$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wF1AkNmwy-PoR2xsEVKVUasUG1pbj3EwdMnZxkqnm3-NhWkpnNSu_7v187HNOi6MQAxZFCWQBBOoP_SLgnKJf2SUuKKGwAJAKxIviBIgWlRaSHm3nglUKQB8Xp-PYE0I0cPWqOGZMUC4UPynYDdpxTj4sy24ObvIx2KF0MQTMi7WfNuW9n27Le7TJNgOWNxeXr4uXnR1GfPMwnhU_v178OP9WXX-_vDr_fF25mpGpoiiRti0q0lG0TDLRQd1JJbnWpFPUEQSnOCKXTjnRdE3dNKqVAI0gXevYWXG147bR9uYu5eemjYnWm78bMS2NTZN3Axorc2unbFMLzSkD7ajWkjBuJWON45n1cce6m5sVtg7DlOzwDPr8JPhbs4xroyjUVJAMeP8ASPH3jONkVn50OAw2YJxHQ7kSAihwyKXv9kr7OKf8r7lKZE804bBV9PZ_Rf-kPHrzJNmlOI4JO-P8ZLcOZYF-MEDMNgymN09hMNswmF0YMkDtAR7vOKD1y64Vs79rj8mMzmNw2PqUg5EN8IdAPu1B3OCDd3b4hZvDEH8AOAzqbg
CitedBy_id crossref_primary_10_3389_fphys_2021_724755
crossref_primary_10_1016_j_sna_2023_114188
crossref_primary_10_1016_j_measurement_2023_113059
crossref_primary_10_7554_eLife_94561
crossref_primary_10_1038_s41598_023_31111_y
crossref_primary_10_1111_epi_17368
crossref_primary_10_1109_TIM_2023_3346516
crossref_primary_10_1016_j_measurement_2022_110704
crossref_primary_10_1093_psyrad_kkab014
crossref_primary_10_1162_imag_a_00283
crossref_primary_10_3389_fdgth_2025_1552396
crossref_primary_10_1109_TMI_2024_3462415
crossref_primary_10_1016_j_neuroimage_2021_118834
crossref_primary_10_3389_fnins_2021_824759
crossref_primary_10_1016_j_isci_2022_103752
crossref_primary_10_1364_OME_462911
crossref_primary_10_1038_s42254_023_00558_3
crossref_primary_10_1002_hbm_26118
crossref_primary_10_1002_mop_33497
crossref_primary_10_1016_j_sna_2023_114869
crossref_primary_10_1038_s41398_024_03047_y
crossref_primary_10_1016_j_neuroimage_2024_120864
crossref_primary_10_1109_JSEN_2021_3107433
crossref_primary_10_1371_journal_pone_0262669
crossref_primary_10_1016_j_measurement_2024_115149
crossref_primary_10_1080_00107514_2023_2182950
crossref_primary_10_1038_s41598_023_32696_0
crossref_primary_10_1016_j_neuroimage_2025_121056
crossref_primary_10_1364_PRJ_522062
crossref_primary_10_1093_schbul_sbac159
crossref_primary_10_1002_qute_202100139
crossref_primary_10_1016_j_neuroimage_2021_118604
crossref_primary_10_1148_radiol_212453
crossref_primary_10_1016_j_measurement_2024_115909
crossref_primary_10_3233_JAD_215240
crossref_primary_10_1016_j_neuroimage_2021_118401
crossref_primary_10_1016_j_sna_2024_115043
crossref_primary_10_3390_technologies12120254
crossref_primary_10_1002_ana_26562
crossref_primary_10_1016_j_neuroimage_2023_120236
crossref_primary_10_1162_imag_a_00179
crossref_primary_10_3389_fnins_2022_984036
crossref_primary_10_1088_1741_2552_ad44d8
crossref_primary_10_1016_j_neuroimage_2024_120851
crossref_primary_10_1109_JSEN_2024_3438990
crossref_primary_10_1016_j_neuroimage_2022_119027
crossref_primary_10_1016_j_tins_2022_05_008
crossref_primary_10_3389_fnins_2023_1284262
crossref_primary_10_3390_photonics10080934
crossref_primary_10_1162_imag_a_00020
crossref_primary_10_3389_fnetp_2023_1338864
crossref_primary_10_3390_s25020433
crossref_primary_10_1016_j_dcn_2024_101481
crossref_primary_10_1088_1361_6501_ad89e6
crossref_primary_10_1109_TIM_2022_3192287
crossref_primary_10_1002_hbm_70175
crossref_primary_10_1093_bjr_tqae123
crossref_primary_10_1016_j_tins_2021_04_006
crossref_primary_10_3390_s22031018
crossref_primary_10_1103_PhysRevLett_129_051802
crossref_primary_10_1016_j_optlastec_2022_109025
crossref_primary_10_1016_j_measurement_2024_115487
crossref_primary_10_1016_j_neuroimage_2025_121078
crossref_primary_10_1109_JSEN_2023_3297109
crossref_primary_10_1016_j_neuroimage_2023_119953
crossref_primary_10_1070_QEL17978
crossref_primary_10_1002_hbm_26295
crossref_primary_10_1103_PhysRevD_105_055020
crossref_primary_10_1364_OE_517961
crossref_primary_10_7554_eLife_94561_3
crossref_primary_10_1038_s41598_024_56878_6
crossref_primary_10_1109_JSEN_2023_3270325
crossref_primary_10_1111_nyas_14890
crossref_primary_10_1109_JSEN_2024_3509679
crossref_primary_10_1016_j_neuroimage_2021_118788
crossref_primary_10_1109_LMAG_2021_3132851
crossref_primary_10_1109_TIE_2022_3229347
crossref_primary_10_1016_j_neuroimage_2021_118025
crossref_primary_10_1016_j_heliyon_2024_e29092
crossref_primary_10_1016_j_clinph_2023_10_006
crossref_primary_10_3389_fnins_2021_706785
crossref_primary_10_1109_TSMC_2024_3408872
Cites_doi 10.1073/pnas.1112685108
10.1016/j.neuroimage.2012.03.048
10.1016/j.neuroimage.2013.05.079
10.1109/72.761722
10.1038/nn.3101
10.1073/pnas.1608587113
10.1371/journal.pone.0227684
10.1016/j.neuroimage.2018.07.028
10.1006/nimg.2001.0978
10.1016/j.neuroimage.2018.07.035
10.1140/epjqt/s40507-020-00086-4
10.1016/j.jneumeth.2019.108378
10.1126/science.175.4022.664
10.1016/j.neuroimage.2012.04.046
10.1016/j.tics.2011.08.003
10.1038/s41598-019-41763-4
10.1016/j.neuroimage.2019.116099
10.1016/j.neuron.2013.09.038
10.1016/j.neuroimage.2020.116537
10.7567/JJAP.54.026601
10.1016/j.neuroimage.2015.04.030
10.1002/mrm.1910340409
10.1063/1.4922671
10.1063/1.2392722
10.1016/j.neuroimage.2016.01.053
10.1002/hbm.20745
10.1016/j.neuroimage.2017.01.034
10.1016/j.neuroimage.2020.116995
10.1016/j.neuroimage.2013.10.040
10.1088/0031-9155/58/17/6065
10.1103/PhysRevLett.73.951
10.1016/j.neuroimage.2019.05.063
10.1088/0031-9155/51/7/008
10.1016/j.neuroimage.2019.06.052
10.1073/pnas.0905267106
10.1111/j.2517-6161.1995.tb02031.x
10.1371/journal.pone.0157655
10.1038/nrn2201
10.1016/j.neuroimage.2016.12.048
10.1364/BOE.3.000981
10.1523/JNEUROSCI.4366-09.2009
10.1006/meth.2001.1238
10.1016/j.neuroimage.2019.116192
10.1016/j.neuroimage.2020.116556
10.1038/nature26147
10.1016/j.neuroimage.2016.01.055
10.7554/eLife.01867
10.1073/pnas.1515657113
10.1016/j.neuroimage.2020.116907
10.1073/pnas.98.2.694
10.1016/j.neuroimage.2005.08.043
10.1016/j.neuroimage.2019.06.010
10.1016/j.neuroimage.2007.09.050
10.1098/rstb.2005.1634
10.1016/j.neuroimage.2011.02.054
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Inc.
Copyright Elsevier Limited Apr 15, 2021
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Apr 15, 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOA
DOI 10.1016/j.neuroimage.2021.117815
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology
MEDLINE - Academic
PubMed




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (ODIN)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 117815
ExternalDocumentID oai_doaj_org_article_a7bb8f8ab65942319c2997034a733bc4
PMC8216250
33524584
10_1016_j_neuroimage_2021_117815
S1053811921000926
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 203257/Z/16/Z
– fundername: Wellcome Trust
  grantid: 203257/B/16/Z
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
RIG
SEW
WUQ
XPP
ZMT
0SF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c630t-2e7e2dde80f2ea3735f16f7874990f82c0e1c84ee47c8c5bfb6bb8d711b50fdc3
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:23:35 EDT 2025
Thu Aug 21 18:25:06 EDT 2025
Fri Jul 11 05:36:48 EDT 2025
Wed Aug 13 02:29:55 EDT 2025
Wed Feb 19 02:28:09 EST 2025
Tue Jul 01 03:02:17 EDT 2025
Thu Apr 24 23:10:36 EDT 2025
Fri Feb 23 02:42:50 EST 2024
Tue Aug 26 20:02:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Functional connectivity
Optically-pumped magnetometer
Amplitude-envelope correlation
Magnetoencephalography
Network
OPM-MEG
OPM
MEG
Wearable MEG
AEC
Language English
License This is an open access article under the CC BY license.
Copyright © 2021. Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-2e7e2dde80f2ea3735f16f7874990f82c0e1c84ee47c8c5bfb6bb8d711b50fdc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Technical Report-3
content type line 23
Credit authorship contribution statement
Elena Boto: Conceptualization, Methodology, Formal analysis, Data curation, Writing - original draft. Ryan M. Hill: Conceptualization, Methodology, Formal analysis, Data curation, Software, Writing - review & editing. Molly Rea: Methodology, Data curation, Writing - review & editing. Niall Holmes: Conceptualization, Methodology, Software, Data curation, Writing - review & editing. Zelekha A. Seedat: Methodology, Software, Writing - review & editing. James Leggett: Methodology, Software, Writing - review & editing. Vishal Shah: Resources, Writing - review & editing. James Osborne: Resources, Software, Writing - review & editing. Richard Bowtell: Conceptualization, Methodology, Software, Formal analysis, Writing - review & editing. Matthew J. Brookes: Conceptualization, Methodology, Software, Formal analysis, Writing - original draft, Project administration, Funding acquisition.
ORCID 0000-0001-8656-412X
0000-0002-0561-8366
0000-0002-1732-2095
0000-0002-3487-713X
0000-0002-0347-280X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811921000926
PMID 33524584
PQID 2510590414
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_a7bb8f8ab65942319c2997034a733bc4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8216250
proquest_miscellaneous_2485512141
proquest_journals_2510590414
pubmed_primary_33524584
crossref_citationtrail_10_1016_j_neuroimage_2021_117815
crossref_primary_10_1016_j_neuroimage_2021_117815
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_117815
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_117815
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-15
PublicationDateYYYYMMDD 2021-04-15
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Homölle, Oostenveld (bib0028) 2019; 326
Baker, Brookes, Rezek, Smith, Behrens, Smith, Woolrich (bib0002) 2014; 2014
Hill, Boto, Rea, Holmes, Leggett, Coles, Papastavrou, Everton, Hunt, Sims, Osborne, Shah, Bowtell, Brookes (bib0024) 2020
Brookes, Woolrich, Barnes (bib0016) 2012; 63
Hunt, Tewarie, Mougin, Geades, Jones, Singh, Morris, Gowland, Brookes (bib0030) 2016; 113
Hill, Boto, Holmes, Hartley, Seedat, Leggett, Roberts, Shah, Tierney, Woolrich, Stagg, Barnes, Bowtell, Slater, Brookes (bib0023) 2019; 10
Seedat, Quinn, Vidaurre, Liuzzi, Gascoyne, Hunt, O'Neill, Pakenham, Mullinger, Morris, Woolrich, Brookes (bib0048) 2020; 209
Coquelet, De Tiège, Destoky, Roshchupkina, Bourguignon, Goldman, Peigneux, Wens (bib0019) 2020; 210
Boto, Holmes, Leggett, Roberts, Shah, Meyer, Muñoz, Mullinger, Tierney, Bestmann, Barnes, Bowtell, Brookes (bib0009) 2018; 555
Altarev, Fierlinger, Lins, Marino, Nießen, Petzoldt, Reisner, Stuiber, Sturm, Taggart Singh, Taubenheim, Rohrer, Schläpfer (bib0001) 2015; 117
Boto, Meyer, Shah, Alem, Knappe, Kruger, Fromhold, Lim, Glover, Morris, Bowtell, Barnes, Brookes (bib0011) 2017; 149
Bright, Whittaker, Driver, Murphy (bib0013) 2020; 217
Zetter, Iivanainen, Parkkonen (bib0059) 2019; 9
Fox, Raichle (bib0021) 2007
Engel, Gerloff, Hilgetag, Nolte (bib0020) 2013; 80
Sander, Preusser, Mhaskar, Kitching, Trahms, Knappe (bib0046) 2012; 3
Benjamini, Hochberg (bib0005) 1995
Brookes, Hale, Zumer, Stevenson, Francis, Barnes, Owen, Morris, Nagarajan (bib0014) 2011; 56
Osborne, Orton, Alem, Shah (bib0042) 2018; XI
Tierney, Holmes, Meyer, Boto, Roberts, Leggett, Buck, Duque-Muñoz, Litvak, Bestmann, Baldeweg, Bowtell, Brookes, Barnes (bib0055) 2018; 181
Boto, Seedat, Holmes, Leggett, Hill, Roberts, Shah, Fromhold, Mullinger, Tierney, Barnes, Bowtell, Brookes (bib0012) 2019; 201
Brookes, Woolrich, Luckhoo, Price, Hale, Stephenson, Barnes, Smith, Morris (bib0017) 2011; 108
Taulu, Simola (bib0052) 2006; 51
Beckmann, DeLuca, Devlin, Smith (bib0004) 2005; 360
Hipp, Hawellek, Corbetta, Siegel, Engel (bib0026) 2012; 15
Johnson, Schwindt, Weisend (bib0035) 2013; 58
Kamada, Sato, Ito, Natsukawa, Okano, Mizutani, Kobayashi (bib0036) 2015; 54
Menon (bib0039) 2011
Prichard, Theiler (bib0043) 1994
Borna, Carter, Colombo, Jau, McKay, Weisend, Taulu, Stephen, Schwindt (bib0007) 2020; 15
Tierney, Holmes, Mellor, López, Roberts, Hill, Boto, Leggett, Shah, Brookes, Bowtell, Barnes (bib0054) 2019
Iivanainen, Stenroos, Parkkonen (bib0033) 2017; 147
Cohen (bib0018) 1972; 175
O'Neill, Bauer, Woolrich, Morris, Barnes, Brookes (bib0041) 2015; 115
Gross, Kujala, Hämäläinen, Timmermann, Schnitzler, Salmelin (bib0022) 2001; 98
Kim, Begus, Xia, Lee, Jazbinsek, Trontelj, Romalis (bib0037) 2014; 89
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib0056) 2002; 15
Roberts, Holmes, Alexander, Boto, Leggett, Hill, Shah, Rea, Vaughan, Maguire, Kessler, Beebe, Fromhold, Barnes, Bowtell, Brookes (bib0045) 2019; 199
Biswal, Zerrin Yetkin, Haughton, Hyde (bib0006) 1995; 34
Brookes, Vrba, Robinson, Stevenson, Peters, Barnes, Hillebrand, Morris (bib0015) 2008; 39
Schoffelen, Gross (bib0047) 2009; 30
Tewarie, Bright, Hillebrand, Robson, Gascoyne, Morris, Meier, Van Mieghem, Brookes (bib0053) 2016
Holmes, Leggett, Boto, Roberts, Hill, Tierney, Shah, Barnes, Brookes, Bowtell (bib0027) 2018; 181
Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta, Della Penna, Duyn, Glover, Gonzalez-Castillo, Handwerker, Keilholz, Kiviniemi, Leopold, de Pasquale, Sporns, Walter, Chang (bib0031) 2013; 80
Boto, Bowtell, Krüger, Fromhold, Morris, Meyer, Barnes, Brookes (bib0008) 2016; 11
Sjøgård, De Tiège, Mary, Peigneux, Goldman, Nagels, van Schependom, Quinn, Woolrich, Wens (bib0050) 2019
Vrba, Robinson (bib0057) 2001; 25
Barry, Tierney, Holmes, Boto, Roberts, Leggett, Bowtell, Brookes, Barnes, Maguire (bib0003) 2019; 203
Hoogenboom, Schoffelen, Oostenveld, Parkes, Fries (bib0029) 2006
Raichle (bib0044) 2009
Boto, Holmes, Tierney, Leggett, Hill, Mellor, Roberts, Barnes, Bowtell, Brookes, Boto, Holmes, Tierney, Leggett, Hill, Mellor, Roberts, Barnes, Bowtell, Brookes (bib0010) 2020
Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (bib0051) 2009; 106
Hyvärinen (bib0032) 1999; 10
Iivanainen, Zetter, Parkkonen (bib0034) 2019
Siems, Pape, Hipp, Siegel (bib0049) 2016
Xia, Ben-Amar Baranga, Hoffman, Romalis (bib0058) 2006; 89
Luckhoo, Hale, Stokes, Nobre, Morris, Brookes, Woolrich (bib0038) 2012; 62
Nardelli, Perry, Krzyzewski, Knappe (bib0040) 2020
Hillebrand, Tewarie, Van Dellen, Yu, Carbo, Douw, Gouw, Van Straaten, Stam (bib0025) 2016
Hoogenboom (10.1016/j.neuroimage.2021.117815_bib0029) 2006
Seedat (10.1016/j.neuroimage.2021.117815_bib0048) 2020; 209
O'Neill (10.1016/j.neuroimage.2021.117815_bib0041) 2015; 115
Vrba (10.1016/j.neuroimage.2021.117815_bib0057) 2001; 25
Smith (10.1016/j.neuroimage.2021.117815_bib0051) 2009; 106
Benjamini (10.1016/j.neuroimage.2021.117815_bib0005) 1995
Hill (10.1016/j.neuroimage.2021.117815_bib0024) 2020
Boto (10.1016/j.neuroimage.2021.117815_bib0009) 2018; 555
Osborne (10.1016/j.neuroimage.2021.117815_bib0042) 2018; XI
Sjøgård (10.1016/j.neuroimage.2021.117815_bib0050) 2019
Tewarie (10.1016/j.neuroimage.2021.117815_bib0053) 2016
Hill (10.1016/j.neuroimage.2021.117815_bib0023) 2019; 10
Boto (10.1016/j.neuroimage.2021.117815_bib0011) 2017; 149
Tzourio-Mazoyer (10.1016/j.neuroimage.2021.117815_bib0056) 2002; 15
Brookes (10.1016/j.neuroimage.2021.117815_bib0016) 2012; 63
Raichle (10.1016/j.neuroimage.2021.117815_bib0044) 2009
Borna (10.1016/j.neuroimage.2021.117815_bib0007) 2020; 15
Barry (10.1016/j.neuroimage.2021.117815_bib0003) 2019; 203
Siems (10.1016/j.neuroimage.2021.117815_bib0049) 2016
Schoffelen (10.1016/j.neuroimage.2021.117815_bib0047) 2009; 30
Biswal (10.1016/j.neuroimage.2021.117815_bib0006) 1995; 34
Brookes (10.1016/j.neuroimage.2021.117815_bib0017) 2011; 108
Taulu (10.1016/j.neuroimage.2021.117815_bib0052) 2006; 51
Zetter (10.1016/j.neuroimage.2021.117815_bib0059) 2019; 9
Fox (10.1016/j.neuroimage.2021.117815_bib0021) 2007
Hyvärinen (10.1016/j.neuroimage.2021.117815_bib0032) 1999; 10
Engel (10.1016/j.neuroimage.2021.117815_bib0020) 2013; 80
Luckhoo (10.1016/j.neuroimage.2021.117815_bib0038) 2012; 62
Sander (10.1016/j.neuroimage.2021.117815_bib0046) 2012; 3
Iivanainen (10.1016/j.neuroimage.2021.117815_bib0034) 2019
Gross (10.1016/j.neuroimage.2021.117815_bib0022) 2001; 98
Coquelet (10.1016/j.neuroimage.2021.117815_bib0019) 2020; 210
Bright (10.1016/j.neuroimage.2021.117815_bib0013) 2020; 217
Xia (10.1016/j.neuroimage.2021.117815_bib0058) 2006; 89
Hillebrand (10.1016/j.neuroimage.2021.117815_bib0025) 2016
Iivanainen (10.1016/j.neuroimage.2021.117815_bib0033) 2017; 147
Kamada (10.1016/j.neuroimage.2021.117815_bib0036) 2015; 54
Johnson (10.1016/j.neuroimage.2021.117815_bib0035) 2013; 58
Menon (10.1016/j.neuroimage.2021.117815_bib0039) 2011
Hutchison (10.1016/j.neuroimage.2021.117815_bib0031) 2013; 80
Homölle (10.1016/j.neuroimage.2021.117815_bib0028) 2019; 326
Baker (10.1016/j.neuroimage.2021.117815_bib0002) 2014; 2014
Boto (10.1016/j.neuroimage.2021.117815_bib0010) 2020
Kim (10.1016/j.neuroimage.2021.117815_bib0037) 2014; 89
Prichard (10.1016/j.neuroimage.2021.117815_bib0043) 1994
Beckmann (10.1016/j.neuroimage.2021.117815_bib0004) 2005; 360
Brookes (10.1016/j.neuroimage.2021.117815_bib0014) 2011; 56
Brookes (10.1016/j.neuroimage.2021.117815_bib0015) 2008; 39
Boto (10.1016/j.neuroimage.2021.117815_bib0008) 2016; 11
Boto (10.1016/j.neuroimage.2021.117815_bib0012) 2019; 201
Hipp (10.1016/j.neuroimage.2021.117815_bib0026) 2012; 15
Roberts (10.1016/j.neuroimage.2021.117815_bib0045) 2019; 199
Tierney (10.1016/j.neuroimage.2021.117815_bib0055) 2018; 181
Altarev (10.1016/j.neuroimage.2021.117815_bib0001) 2015; 117
Holmes (10.1016/j.neuroimage.2021.117815_bib0027) 2018; 181
Cohen (10.1016/j.neuroimage.2021.117815_bib0018) 1972; 175
Hunt (10.1016/j.neuroimage.2021.117815_bib0030) 2016; 113
Nardelli (10.1016/j.neuroimage.2021.117815_bib0040) 2020
Tierney (10.1016/j.neuroimage.2021.117815_bib0054) 2019
References_xml – volume: 117
  year: 2015
  ident: bib0001
  article-title: Minimizing magnetic fields for precision experiments
  publication-title: J. Appl. Phys.
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  ident: bib0006
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Reson. Med.
– year: 2020
  ident: bib0040
  article-title: A conformal array of microfabricated optically-pumped first-order gradiometers for magnetoencephalography
  publication-title: EPJ Quantum Technol.
– year: 2019
  ident: bib0050
  article-title: Do the posterior midline cortices belong to the electrophysiological default-mode network?
  publication-title: Neuroimage
– year: 2009
  ident: bib0044
  article-title: A paradigm shift in functional brain imaging
  publication-title: J. Neurosci.
– volume: 11
  year: 2016
  ident: bib0008
  article-title: On the potential of a new generation of magnetometers for MEG: a beamformer simulation study
  publication-title: PLoS One
– year: 2016
  ident: bib0053
  article-title: Predicting haemodynamic networks using electrophysiology: the role of non-linear and cross-frequency interactions
  publication-title: Neuroimage
– volume: 80
  start-page: 360
  year: 2013
  end-page: 378
  ident: bib0031
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: Neuroimage
– volume: 555
  start-page: 657
  year: 2018
  end-page: 661
  ident: bib0009
  article-title: Moving magnetoencephalography towards real-world applications with a wearable system
  publication-title: Nature
– volume: 56
  start-page: 1082
  year: 2011
  end-page: 1104
  ident: bib0014
  article-title: Measuring functional connectivity using MEG: methodology and comparison with fcMRI
  publication-title: Neuroimage
– volume: 326
  year: 2019
  ident: bib0028
  article-title: Using a structured-light 3D scanner to improve EEG source modeling with more accurate electrode positions
  publication-title: J. Neurosci. Methods
– volume: 181
  start-page: 760
  year: 2018
  end-page: 774
  ident: bib0027
  article-title: A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography
  publication-title: Neuroimage
– year: 1994
  ident: bib0043
  article-title: Generating surrogate data for time series with several simultaneously measured variables
  publication-title: Phys. Rev. Lett.
– volume: 25
  start-page: 249
  year: 2001
  end-page: 271
  ident: bib0057
  article-title: Signal processing in magnetoencephalography
  publication-title: Methods
– volume: 80
  start-page: 867
  year: 2013
  end-page: 886
  ident: bib0020
  article-title: Intrinsic coupling modes: multiscale interactions in ongoing brain activity
  publication-title: Neuron
– volume: 115
  start-page: 85
  year: 2015
  end-page: 95
  ident: bib0041
  article-title: Dynamic recruitment of resting state sub-networks
  publication-title: Neuroimage
– volume: 89
  start-page: 143
  year: 2014
  end-page: 151
  ident: bib0037
  article-title: Multi-channel atomic magnetometer for magnetoencephalography: a configuration study
  publication-title: Neuroimage
– volume: 39
  start-page: 1788
  year: 2008
  end-page: 1802
  ident: bib0015
  article-title: Optimising experimental design for MEG beamformer imaging
  publication-title: Neuroimage
– volume: 203
  year: 2019
  ident: bib0003
  article-title: Imaging the human hippocampus with optically-pumped magnetoencephalography
  publication-title: Neuroimage
– year: 2006
  ident: bib0029
  article-title: Localizing human visual gamma-band activity in frequency, time and space
  publication-title: Neuroimage
– year: 2020
  ident: bib0024
  article-title: Multi-channel whole-head OPM-MEG: helmet design and a comparison with a conventional system
  publication-title: Neuroimage
– volume: 54
  year: 2015
  ident: bib0036
  article-title: Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer
  publication-title: Jpn. J. Appl. Phys.
– volume: 149
  start-page: 404
  year: 2017
  end-page: 414
  ident: bib0011
  article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers
  publication-title: Neuroimage
– volume: 30
  start-page: 1857
  year: 2009
  end-page: 1865
  ident: bib0047
  article-title: Source connectivity analysis with MEG and EEG
  publication-title: Hum. Brain Mapp.
– volume: 9
  start-page: 5490
  year: 2019
  ident: bib0059
  article-title: Optical Co-registration of MRI and On-scalp MEG
  publication-title: Sci. Rep.
– volume: 199
  start-page: 408
  year: 2019
  end-page: 417
  ident: bib0045
  article-title: Towards OPM-MEG in a virtual reality environment
  publication-title: Neuroimage
– volume: 10
  start-page: 626
  year: 1999
  end-page: 634
  ident: bib0032
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Trans. Neural Netw.
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  ident: bib0051
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 51
  start-page: 1759
  year: 2006
  end-page: 1768
  ident: bib0052
  article-title: Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements
  publication-title: Phys. Med. Biol.
– volume: 58
  start-page: 6065
  year: 2013
  end-page: 6077
  ident: bib0035
  article-title: Multi-sensor magnetoencephalography with atomic magnetometers
  publication-title: Phys. Med. Biol.
– volume: 175
  start-page: 664
  year: 1972
  end-page: 666
  ident: bib0018
  article-title: Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer
  publication-title: Science (80-.)
– year: 2019
  ident: bib0034
  article-title: Potential of On-Scalp MEG: Robust detection of Human Visual Gamma-Band Responses
– volume: 15
  year: 2020
  ident: bib0007
  article-title: Non-invasive functional-brain-imaging with an OPM-based magnetoencephalography system
  publication-title: PLoS One
– year: 2007
  ident: bib0021
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nat. Rev. Neurosci.
– year: 2016
  ident: bib0025
  article-title: Direction of information flow in large-scale resting-state networks is frequency-dependent
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 147
  start-page: 542
  year: 2017
  end-page: 553
  ident: bib0033
  article-title: Measuring MEG closer to the brain: performance of on-scalp sensor arrays
  publication-title: Neuroimage
– volume: 209
  year: 2020
  ident: bib0048
  article-title: The role of transient spectral ‘bursts’ in functional connectivity: a magnetoencephalography study
  publication-title: Neuroimage
– year: 2011
  ident: bib0039
  article-title: Large-scale brain networks and psychopathology: a unifying triple network model
  publication-title: Trends Cognit. Sci.
– volume: XI
  start-page: 10548
  year: 2018
  ident: bib0042
  article-title: Fully integrated, standalone zero field optically pumped magnetometer for biomagnetism
  publication-title: Steep Dispers. Eng. Opto-At. Precis. Metrol.
– volume: 98
  start-page: 694
  year: 2001
  end-page: 699
  ident: bib0022
  article-title: Dynamic imaging of coherent sources: studying neural interactions in the human brain
  publication-title: Proc. Natl. Acad. Sci.
– volume: 181
  start-page: 513
  year: 2018
  end-page: 520
  ident: bib0055
  article-title: Cognitive neuroscience using wearable magnetometer arrays: non-invasive assessment of language function
  publication-title: Neuroimage
– volume: 360
  start-page: 1001
  year: 2005
  end-page: 1013
  ident: bib0004
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
– volume: 3
  start-page: 981
  year: 2012
  ident: bib0046
  article-title: Magnetoencephalography with a chip-scale atomic magnetometer
  publication-title: Biomed. Opt. Express
– volume: 217
  year: 2020
  ident: bib0013
  article-title: Vascular physiology drives functional brain networks
  publication-title: Neuroimage
– volume: 113
  start-page: 13510
  year: 2016
  end-page: 13515
  ident: bib0030
  article-title: Relationships between cortical myeloarchitecture and electrophysiological networks
  publication-title: Proc. Natl. Acad. Sci.
– volume: 201
  year: 2019
  ident: bib0012
  article-title: Wearable neuroimaging: combining and contrasting magnetoencephalography and electroencephalography
  publication-title: Neuroimage
– volume: 63
  start-page: 910
  year: 2012
  end-page: 920
  ident: bib0016
  article-title: Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage
  publication-title: Neuroimage
– year: 2016
  ident: bib0049
  article-title: Measuring the cortical correlation structure of spontaneous oscillatory activity with EEG and MEG
  publication-title: Neuroimage
– volume: 10
  year: 2019
  ident: bib0023
  article-title: A tool for functional brain imaging with lifespan compliance
  publication-title: Nat. Commun.
– volume: 210
  year: 2020
  ident: bib0019
  article-title: Comparing MEG and high-density EEG for intrinsic functional connectivity mapping
  publication-title: Neuroimage
– start-page: 104
  year: 2020
  end-page: 124
  ident: bib0010
  article-title: Magnetoencephalography using optically pumped magnetometers
  publication-title: Fifty Years of Magnetoencephalography
– year: 1995
  ident: bib0005
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B.
– volume: 108
  start-page: 16783
  year: 2011
  end-page: 16788
  ident: bib0017
  article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography
  publication-title: Proc. Natl. Acad. Sci.
– volume: 62
  start-page: 530
  year: 2012
  end-page: 541
  ident: bib0038
  article-title: Inferring task-related networks using independent component analysis in magnetoencephalography
  publication-title: Neuroimage
– year: 2019
  ident: bib0054
  article-title: Optically pumped magnetometers: from quantum origins to multi-channel magnetoencephalography
  publication-title: Neuroimage
– volume: 2014
  start-page: e01867
  year: 2014
  ident: bib0002
  article-title: Fast transient networks in spontaneous human brain activity
  publication-title: Elife
– volume: 15
  start-page: 884
  year: 2012
  end-page: 890
  ident: bib0026
  article-title: Large-scale cortical correlation structure of spontaneous oscillatory activity
  publication-title: Nat. Neurosci.
– volume: 89
  year: 2006
  ident: bib0058
  article-title: Magnetoencephalography with an atomic magnetometer
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: bib0056
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
– volume: 108
  start-page: 16783
  year: 2011
  ident: 10.1016/j.neuroimage.2021.117815_bib0017
  article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1112685108
– year: 2019
  ident: 10.1016/j.neuroimage.2021.117815_bib0034
– volume: 63
  start-page: 910
  year: 2012
  ident: 10.1016/j.neuroimage.2021.117815_bib0016
  article-title: Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.048
– volume: 80
  start-page: 360
  year: 2013
  ident: 10.1016/j.neuroimage.2021.117815_bib0031
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.079
– volume: 10
  start-page: 626
  year: 1999
  ident: 10.1016/j.neuroimage.2021.117815_bib0032
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.761722
– volume: 15
  start-page: 884
  year: 2012
  ident: 10.1016/j.neuroimage.2021.117815_bib0026
  article-title: Large-scale cortical correlation structure of spontaneous oscillatory activity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3101
– volume: 113
  start-page: 13510
  year: 2016
  ident: 10.1016/j.neuroimage.2021.117815_bib0030
  article-title: Relationships between cortical myeloarchitecture and electrophysiological networks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1608587113
– volume: 15
  year: 2020
  ident: 10.1016/j.neuroimage.2021.117815_bib0007
  article-title: Non-invasive functional-brain-imaging with an OPM-based magnetoencephalography system
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0227684
– volume: 181
  start-page: 760
  year: 2018
  ident: 10.1016/j.neuroimage.2021.117815_bib0027
  article-title: A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.07.028
– start-page: 104
  year: 2020
  ident: 10.1016/j.neuroimage.2021.117815_bib0010
  article-title: Magnetoencephalography using optically pumped magnetometers
– volume: 15
  start-page: 273
  year: 2002
  ident: 10.1016/j.neuroimage.2021.117815_bib0056
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 181
  start-page: 513
  year: 2018
  ident: 10.1016/j.neuroimage.2021.117815_bib0055
  article-title: Cognitive neuroscience using wearable magnetometer arrays: non-invasive assessment of language function
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.07.035
– year: 2020
  ident: 10.1016/j.neuroimage.2021.117815_bib0040
  article-title: A conformal array of microfabricated optically-pumped first-order gradiometers for magnetoencephalography
  publication-title: EPJ Quantum Technol.
  doi: 10.1140/epjqt/s40507-020-00086-4
– volume: 326
  year: 2019
  ident: 10.1016/j.neuroimage.2021.117815_bib0028
  article-title: Using a structured-light 3D scanner to improve EEG source modeling with more accurate electrode positions
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.108378
– volume: 175
  start-page: 664
  year: 1972
  ident: 10.1016/j.neuroimage.2021.117815_bib0018
  article-title: Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer
  publication-title: Science (80-.)
  doi: 10.1126/science.175.4022.664
– volume: 62
  start-page: 530
  year: 2012
  ident: 10.1016/j.neuroimage.2021.117815_bib0038
  article-title: Inferring task-related networks using independent component analysis in magnetoencephalography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.04.046
– year: 2011
  ident: 10.1016/j.neuroimage.2021.117815_bib0039
  article-title: Large-scale brain networks and psychopathology: a unifying triple network model
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2011.08.003
– volume: 9
  start-page: 5490
  year: 2019
  ident: 10.1016/j.neuroimage.2021.117815_bib0059
  article-title: Optical Co-registration of MRI and On-scalp MEG
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41763-4
– volume: 201
  year: 2019
  ident: 10.1016/j.neuroimage.2021.117815_bib0012
  article-title: Wearable neuroimaging: combining and contrasting magnetoencephalography and electroencephalography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116099
– volume: 80
  start-page: 867
  year: 2013
  ident: 10.1016/j.neuroimage.2021.117815_bib0020
  article-title: Intrinsic coupling modes: multiscale interactions in ongoing brain activity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.09.038
– volume: 209
  year: 2020
  ident: 10.1016/j.neuroimage.2021.117815_bib0048
  article-title: The role of transient spectral ‘bursts’ in functional connectivity: a magnetoencephalography study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116537
– volume: 54
  year: 2015
  ident: 10.1016/j.neuroimage.2021.117815_bib0036
  article-title: Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.54.026601
– volume: 115
  start-page: 85
  year: 2015
  ident: 10.1016/j.neuroimage.2021.117815_bib0041
  article-title: Dynamic recruitment of resting state sub-networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.04.030
– volume: 34
  start-page: 537
  year: 1995
  ident: 10.1016/j.neuroimage.2021.117815_bib0006
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910340409
– volume: 117
  year: 2015
  ident: 10.1016/j.neuroimage.2021.117815_bib0001
  article-title: Minimizing magnetic fields for precision experiments
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4922671
– volume: 89
  year: 2006
  ident: 10.1016/j.neuroimage.2021.117815_bib0058
  article-title: Magnetoencephalography with an atomic magnetometer
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2392722
– year: 2016
  ident: 10.1016/j.neuroimage.2021.117815_bib0053
  article-title: Predicting haemodynamic networks using electrophysiology: the role of non-linear and cross-frequency interactions
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.01.053
– volume: 30
  start-page: 1857
  year: 2009
  ident: 10.1016/j.neuroimage.2021.117815_bib0047
  article-title: Source connectivity analysis with MEG and EEG
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20745
– volume: 149
  start-page: 404
  year: 2017
  ident: 10.1016/j.neuroimage.2021.117815_bib0011
  article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.01.034
– year: 2020
  ident: 10.1016/j.neuroimage.2021.117815_bib0024
  article-title: Multi-channel whole-head OPM-MEG: helmet design and a comparison with a conventional system
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116995
– volume: 89
  start-page: 143
  year: 2014
  ident: 10.1016/j.neuroimage.2021.117815_bib0037
  article-title: Multi-channel atomic magnetometer for magnetoencephalography: a configuration study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.10.040
– volume: 58
  start-page: 6065
  year: 2013
  ident: 10.1016/j.neuroimage.2021.117815_bib0035
  article-title: Multi-sensor magnetoencephalography with atomic magnetometers
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/17/6065
– year: 1994
  ident: 10.1016/j.neuroimage.2021.117815_bib0043
  article-title: Generating surrogate data for time series with several simultaneously measured variables
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.73.951
– year: 2019
  ident: 10.1016/j.neuroimage.2021.117815_bib0054
  article-title: Optically pumped magnetometers: from quantum origins to multi-channel magnetoencephalography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.05.063
– volume: 51
  start-page: 1759
  year: 2006
  ident: 10.1016/j.neuroimage.2021.117815_bib0052
  article-title: Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/7/008
– year: 2019
  ident: 10.1016/j.neuroimage.2021.117815_bib0050
  article-title: Do the posterior midline cortices belong to the electrophysiological default-mode network?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.06.052
– volume: 106
  start-page: 13040
  year: 2009
  ident: 10.1016/j.neuroimage.2021.117815_bib0051
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0905267106
– year: 1995
  ident: 10.1016/j.neuroimage.2021.117815_bib0005
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B.
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 11
  year: 2016
  ident: 10.1016/j.neuroimage.2021.117815_bib0008
  article-title: On the potential of a new generation of magnetometers for MEG: a beamformer simulation study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0157655
– year: 2007
  ident: 10.1016/j.neuroimage.2021.117815_bib0021
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2201
– volume: 147
  start-page: 542
  year: 2017
  ident: 10.1016/j.neuroimage.2021.117815_bib0033
  article-title: Measuring MEG closer to the brain: performance of on-scalp sensor arrays
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.12.048
– volume: XI
  start-page: 10548
  year: 2018
  ident: 10.1016/j.neuroimage.2021.117815_bib0042
  article-title: Fully integrated, standalone zero field optically pumped magnetometer for biomagnetism
  publication-title: Steep Dispers. Eng. Opto-At. Precis. Metrol.
– volume: 3
  start-page: 981
  year: 2012
  ident: 10.1016/j.neuroimage.2021.117815_bib0046
  article-title: Magnetoencephalography with a chip-scale atomic magnetometer
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.3.000981
– year: 2009
  ident: 10.1016/j.neuroimage.2021.117815_bib0044
  article-title: A paradigm shift in functional brain imaging
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4366-09.2009
– volume: 25
  start-page: 249
  year: 2001
  ident: 10.1016/j.neuroimage.2021.117815_bib0057
  article-title: Signal processing in magnetoencephalography
  publication-title: Methods
  doi: 10.1006/meth.2001.1238
– volume: 203
  year: 2019
  ident: 10.1016/j.neuroimage.2021.117815_bib0003
  article-title: Imaging the human hippocampus with optically-pumped magnetoencephalography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116192
– volume: 10
  year: 2019
  ident: 10.1016/j.neuroimage.2021.117815_bib0023
  article-title: A tool for functional brain imaging with lifespan compliance
  publication-title: Nat. Commun.
– volume: 210
  year: 2020
  ident: 10.1016/j.neuroimage.2021.117815_bib0019
  article-title: Comparing MEG and high-density EEG for intrinsic functional connectivity mapping
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116556
– volume: 555
  start-page: 657
  year: 2018
  ident: 10.1016/j.neuroimage.2021.117815_bib0009
  article-title: Moving magnetoencephalography towards real-world applications with a wearable system
  publication-title: Nature
  doi: 10.1038/nature26147
– year: 2016
  ident: 10.1016/j.neuroimage.2021.117815_bib0049
  article-title: Measuring the cortical correlation structure of spontaneous oscillatory activity with EEG and MEG
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.01.055
– volume: 2014
  start-page: e01867
  year: 2014
  ident: 10.1016/j.neuroimage.2021.117815_bib0002
  article-title: Fast transient networks in spontaneous human brain activity
  publication-title: Elife
  doi: 10.7554/eLife.01867
– year: 2016
  ident: 10.1016/j.neuroimage.2021.117815_bib0025
  article-title: Direction of information flow in large-scale resting-state networks is frequency-dependent
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1515657113
– volume: 217
  year: 2020
  ident: 10.1016/j.neuroimage.2021.117815_bib0013
  article-title: Vascular physiology drives functional brain networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116907
– volume: 98
  start-page: 694
  year: 2001
  ident: 10.1016/j.neuroimage.2021.117815_bib0022
  article-title: Dynamic imaging of coherent sources: studying neural interactions in the human brain
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.98.2.694
– year: 2006
  ident: 10.1016/j.neuroimage.2021.117815_bib0029
  article-title: Localizing human visual gamma-band activity in frequency, time and space
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.08.043
– volume: 199
  start-page: 408
  year: 2019
  ident: 10.1016/j.neuroimage.2021.117815_bib0045
  article-title: Towards OPM-MEG in a virtual reality environment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.06.010
– volume: 39
  start-page: 1788
  year: 2008
  ident: 10.1016/j.neuroimage.2021.117815_bib0015
  article-title: Optimising experimental design for MEG beamformer imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.09.050
– volume: 360
  start-page: 1001
  year: 2005
  ident: 10.1016/j.neuroimage.2021.117815_bib0004
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2005.1634
– volume: 56
  start-page: 1082
  year: 2011
  ident: 10.1016/j.neuroimage.2021.117815_bib0014
  article-title: Measuring functional connectivity using MEG: methodology and comparison with fcMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.02.054
SSID ssj0009148
Score 2.606436
Snippet Optically-pumped magnetometers (OPMs) offer the potential for a step change in magnetoencephalography (MEG) enabling wearable systems that provide improved...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117815
SubjectTerms Accuracy
AEC
Algorithms
Amplitude-envelope correlation
Brain
Functional connectivity
Hemodynamics
Magnetic fields
Magnetoencephalography
Medical imaging
MEG
Network
Neural networks
OPM
OPM-MEG
Optically-pumped magnetometer
Sensors
Wearable MEG
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQB9RLRaHAUqiCxDUifsWOegLEQ0jLCSRulu21xSIIqF3E3--MnYRdemAPvcZx5Hwee2Y8428IOYxgQigpZamll6Vogii1ZYm2csKZV9xZdBTH1_Xlrbi6k3dzpb4wJyzTA2fgjqxyTkdtXS0bUP208bCBgpgKqzh3PjGBgs7rnamebhes_C5vJ2dzJXbI6ROsUfAJGcVYpcZSuHPKKHH2L-ikf23Oj6mTc7rofJ187YzI4jgP_htZCe0GWRt3YfJNwsfp5A-0UoF6Kx_3FR5zWnyuFlHg-WvxBmKOV6eK8dnFd3J7fnZzell21RFKX_NqVrKgAoPNSVeRBcsVl5HWEdYf-DBV1MxXgXotQhDKay9ddDUgOVGUOlnFiedbZLV9bsMOKbybcAeGHLXUCyeti1Woo9auoUFYx0ZE9TAZ31GHYwWLR9PniD2Yd4ANAmwywCNCh54vmT5jiT4nOBPD-0iAnR6AWJhOLMxnYjEiTT-Ppr9jCrsifGi6xAB-DX07OyTbF0v23uvFxnT7wR_Dkh1bCQoDOxiaYSVjeMa24fkV3kGeHsqooCOynaVswABvxmFEG2ZiQf4WQFpsaaf3iS1cMwo-brX7P1D9Qb7gn2I0jco9sjr7_Rr2wSibuZ9p_f0FxVE2CQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA96gvgifls9pYKvxearSfFBVO48hPXJg30LSZroytk97_bw33cmSbu3CrKvTVLayXxlZvIbQl5HcCGUlLLR0stG9EE02rIEWzlw5hV3Fg-Kiy_dyan4vJTLEnC7LGWVk05MinpYe4yRv2HJE2gFFe_OfzXYNQqzq6WFxk1yC6HLsKRLLdUWdJeKfBVO8kbDhFLJk-u7El7k6idILZwSGcXspcbmuNfMU0Lx37FS_3qhfxdTXrNOx_fI3eJW1u8zH9wnN8L4gNxelMT5Q8IXKRYIdqpGS5YDgLXHKhef-0fUGJGtfwPj42WqenH06RE5PT76-vGkKf0SGt_xdtOwoAIDdaXbyILlistIuwgSCaeaNmrm20C9FiEI5bWXLrrOOT0oSp1s4-D5Y3IwrsfwlNTeDdyBa0ct9cJJ62Ibuqi162kQ1rGKqIlMxhcwcexpcWamqrEfZktggwQ2mcAVofPK8wyosceaD7gT83yExE4P1hffTJEwYxX8TNTWdbIHH5H2Hiwt6DNhFefOi4r00z6a6dYp6El40WqPD3g7ry2eSfY49lx9OLGNKRri0mz5uSKv5mGQbUzY2DGsr2AOIvdQRgWtyJPMZTMN8K4c5rhhJ3b4b4dIuyPj6nvCD9eMwqm3ffb_z3pO7uA_YOaMykNysLm4Ci_AAdu4l0nK_gAcRy_q
  priority: 102
  providerName: ProQuest
Title Measuring functional connectivity with wearable MEG
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921000926
https://dx.doi.org/10.1016/j.neuroimage.2021.117815
https://www.ncbi.nlm.nih.gov/pubmed/33524584
https://www.proquest.com/docview/2510590414
https://www.proquest.com/docview/2485512141
https://pubmed.ncbi.nlm.nih.gov/PMC8216250
https://doaj.org/article/a7bb8f8ab65942319c2997034a733bc4
Volume 230
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISFeEIyvwlYFidfQ-Ct2xNM2dRRQKwRM6ptlu84ognQanXjjb-fOcbIFXirxkiiOHTnn893Zd_czIa9qMCGUlDLX0stcVEHk2rIIW7nizCvuLC4U54tydi7eL-Vyj5x2uTAYVplkfyvTo7ROJZNEzcnlej35DJYBqBvE80JDgSHsthAKufz175swj4qKNh1O8hxrp2ieNsYrYkauf8DMhZUio-jB1HhA7i0VFZH8B5rqX0v074DKWxrq7AG5n0zL7Ljt_UOyF5oDcneenOePCJ_H_UDQVRlqs3YTMPMY6eLbMyQy3JXNfgHzY0JVNp--fUzOz6ZfTmd5OjMh9yUvtjkLKjAQWbqoWbBccVnTsoZZCSubotbMF4F6LUIQymsvXe1K5_RKUepkUa88f0L2m00TnpHMuxV3YN5RS71w0rq6CGWttatoENaxEVEdmYxPgOJ4rsV300WOfTM3BDZIYNMSeERo3_KyBdXYoc0JjkRfH2GxY8Hm6sIkvjBWwc_U2rpSVmAn0sqDtgWZJqzi3HkxIlU3jqbLPAVZCR9a79CBN33bAYfu2PqwYxuTpMRPw6J1WwgKHXvZv4b5jU4b24TNNdRB9B7KqKAj8rTlsp4GmC-Hfm4YiQH_DYg0fNOsv0YMcc0orHyL5__1Uy_IPXxC5xqVh2R_e3UdjsBG27pxnIRwVUs1JneO332YLeB-Ml18_DSO-x5_ACigQDU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVAJeEDeGAkaCRwvvZa-FEKKQktI6QqiV-rb1rtc0FSSlTVXxp_iNzPhKAxLKS19tr2XPzvHNzgXwskIIkSqlIq2cimTmZaQLXretLAV3qbAFOYr5OBnty88H6mANfne1MJRW2enEWlGXM0dn5K95jQRiyeS7k58RTY2i6Go3QqNhix3_6wJdtrO32x9xf19xvjXc-zCK2qkCkUtEPI-4Tz1HodZxxX0hUqEqllTIt4j940pzF3vmtPRepk47ZSubWKvLlDGr4qp0At97DdalQFdmAOubw_GXr4s2v0w2xXdKRJqxrM0dajLK6g6Vkx-oJ9Av5YzipZrG8V4yiPXcgCW7-C_u_Tt985I93LoNt1ogG75vOO8OrPnpXbiet6H6eyDy-vQRLWNItrM5cgwd5dW4ZmJFSGfA4QXSlMq3wnz46T7sXwktH8BgOpv6RxA6WwqLYJIVzEmrClvFPqm0thnzsrA8gLQjk3Ft-3KaovHddHlqx2ZBYEMENg2BA2D9ypOmhccKazZpJ_rnqQl3fWF2-s20Mm2KFH-m0oVNVIaolGUObTtqUFmkQlgnA8i6fTRdnStqZnzRZIUPeNOvbbFQg3FWXL3RsY1pddKZWUhQAC_626hNKERUTP3sHJ-hXkGMM8kCeNhwWU8Dqs6jqDruxBL_LRFp-c50clR3LNecoZ8dP_7_Zz2HG6O9fNfsbo93nsBN-h-K2zG1AYP56bl_ivBvbp-1MhfC4VWL-R8aom-L
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFqrgg3gQKBAmOUeNX7AghBLRLS9mKA5X2ZmLHhq1KtrRbVfwaX8dMnGS7IKG99JpkIns8T8-LkBcBTAglpcy0dDITpReZrljbtrLmzCluK3QUxwfF7qH4OJGTNfK7r4XBtMpeJraCup45vCPfYq0lkAsqtkKXFvF5e_Tm5GeGE6Qw0tqP04gksu9_XYD7dvZ6bxvO-iVjo50v73ezbsJA5gqezzPmlWfA4DoPzFdccRloEYCGwQ_Ig2Yu99Rp4b1QTjtpgy2s1bWi1Mo81I7Df6-R6wBHkcfURC0a_lIRy_AkzzSlZZdFFHPL2l6V0x8gMcBDZRQjpxoH815Sje0EgSUN-a8F_Hci5yXNOLpFbnYmbfo20uBtsuabO2Rj3AXt7xI-bu8hQUemqEXj5WPqMMPGxdkVKd4GpxeAUSzkSsc7H-6RwyvB5H2y3swa_5CkztbcgllJK-qElZUNuS-C1rakXlSWJUT1aDKua2SO8zSOTZ-xdmQWCDaIYBMRnBA6QJ7EZh4rwLzDkxi-x3bc7YPZ6TfTcbepFGwm6MoWsgT7lJYOtDzIUlEpzq0TCSn7czR9xSvIaPjRdIUFvBpgO6soWjsrQm_2ZGM66XRmFryUkOfDa5ArGCyqGj87h2-waxBlVNCEPIhUNuAA6_Qwvg4nsUR_S0haftNMv7e9yzWj4HHnj_6_rGdkA5jbfNo72H9MbuB2MIBH5SZZn5-e-ydgB87t05bhUvL1qjn8D--fcls
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+functional+connectivity+with+wearable+MEG&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Boto%2C+Elena&rft.au=Hill%2C+Ryan+M.&rft.au=Rea%2C+Molly&rft.au=Holmes%2C+Niall&rft.date=2021-04-15&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=230&rft.spage=117815&rft.epage=117815&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.117815&rft_id=info%3Apmid%2F33524584&rft.externalDocID=PMC8216250
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon