Measuring functional connectivity with wearable MEG
Optically-pumped magnetometers (OPMs) offer the potential for a step change in magnetoencephalography (MEG) enabling wearable systems that provide improved data quality, accommodate any subject group, allow data capture during movement and potentially reduce cost. However, OPM-MEG is a nascent techn...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 230; p. 117815 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.04.2021
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Optically-pumped magnetometers (OPMs) offer the potential for a step change in magnetoencephalography (MEG) enabling wearable systems that provide improved data quality, accommodate any subject group, allow data capture during movement and potentially reduce cost. However, OPM-MEG is a nascent technology and, to realise its potential, it must be shown to facilitate key neuroscientific measurements, such as the characterisation of brain networks. Networks, and the connectivities that underlie them, have become a core area of neuroscientific investigation, and their importance is underscored by many demonstrations of their disruption in brain disorders. Consequently, a demonstration of network measurements using OPM-MEG would be a significant step forward. Here, we aimed to show that a wearable 50-channel OPM-MEG system enables characterisation of the electrophysiological connectome. To this end, we measured connectivity in the resting state and during a visuo-motor task, using both OPM-MEG and a state-of-the-art 275-channel cryogenic MEG device. Our results show that resting-state connectome matrices from OPM and cryogenic systems exhibit a high degree of similarity, with correlation values >70%. In addition, in task data, similar differences in connectivity between individuals (scanned multiple times) were observed in cryogenic and OPM-MEG data, again demonstrating the fidelity of the OPM-MEG device. This is the first demonstration of network connectivity measured using OPM-MEG, and results add weight to the argument that OPMs will ultimately supersede cryogenic sensors for MEG measurement. |
---|---|
AbstractList | Optically-pumped magnetometers (OPMs) offer the potential for a step change in magnetoencephalography (MEG) enabling wearable systems that provide improved data quality, accommodate any subject group, allow data capture during movement and potentially reduce cost. However, OPM-MEG is a nascent technology and, to realise its potential, it must be shown to facilitate key neuroscientific measurements, such as the characterisation of brain networks. Networks, and the connectivities that underlie them, have become a core area of neuroscientific investigation, and their importance is underscored by many demonstrations of their disruption in brain disorders. Consequently, a demonstration of network measurements using OPM-MEG would be a significant step forward. Here, we aimed to show that a wearable 50-channel OPM-MEG system enables characterisation of the electrophysiological connectome. To this end, we measured connectivity in the resting state and during a visuo-motor task, using both OPM-MEG and a state-of-the-art 275-channel cryogenic MEG device. Our results show that resting-state connectome matrices from OPM and cryogenic systems exhibit a high degree of similarity, with correlation values >70%. In addition, in task data, similar differences in connectivity between individuals (scanned multiple times) were observed in cryogenic and OPM-MEG data, again demonstrating the fidelity of the OPM-MEG device. This is the first demonstration of network connectivity measured using OPM-MEG, and results add weight to the argument that OPMs will ultimately supersede cryogenic sensors for MEG measurement. Optically-pumped magnetometers (OPMs) offer the potential for a step change in magnetoencephalography (MEG) enabling wearable systems that provide improved data quality, accommodate any subject group, allow data capture during movement and potentially reduce cost. However, OPM-MEG is a nascent technology and, to realise its potential, it must be shown to facilitate key neuroscientific measurements, such as the characterisation of brain networks. Networks, and the connectivities that underlie them, have become a core area of neuroscientific investigation, and their importance is underscored by many demonstrations of their disruption in brain disorders. Consequently, a demonstration of network measurements using OPM-MEG would be a significant step forward. Here, we aimed to show that a wearable 50-channel OPM-MEG system enables characterisation of the electrophysiological connectome. To this end, we measured connectivity in the resting state and during a visuo-motor task, using both OPM-MEG and a state-of-the-art 275-channel cryogenic MEG device. Our results show that resting-state connectome matrices from OPM and cryogenic systems exhibit a high degree of similarity, with correlation values >70%. In addition, in task data, similar differences in connectivity between individuals (scanned multiple times) were observed in cryogenic and OPM-MEG data, again demonstrating the fidelity of the OPM-MEG device. This is the first demonstration of network connectivity measured using OPM-MEG, and results add weight to the argument that OPMs will ultimately supersede cryogenic sensors for MEG measurement.Optically-pumped magnetometers (OPMs) offer the potential for a step change in magnetoencephalography (MEG) enabling wearable systems that provide improved data quality, accommodate any subject group, allow data capture during movement and potentially reduce cost. However, OPM-MEG is a nascent technology and, to realise its potential, it must be shown to facilitate key neuroscientific measurements, such as the characterisation of brain networks. Networks, and the connectivities that underlie them, have become a core area of neuroscientific investigation, and their importance is underscored by many demonstrations of their disruption in brain disorders. Consequently, a demonstration of network measurements using OPM-MEG would be a significant step forward. Here, we aimed to show that a wearable 50-channel OPM-MEG system enables characterisation of the electrophysiological connectome. To this end, we measured connectivity in the resting state and during a visuo-motor task, using both OPM-MEG and a state-of-the-art 275-channel cryogenic MEG device. Our results show that resting-state connectome matrices from OPM and cryogenic systems exhibit a high degree of similarity, with correlation values >70%. In addition, in task data, similar differences in connectivity between individuals (scanned multiple times) were observed in cryogenic and OPM-MEG data, again demonstrating the fidelity of the OPM-MEG device. This is the first demonstration of network connectivity measured using OPM-MEG, and results add weight to the argument that OPMs will ultimately supersede cryogenic sensors for MEG measurement. Optically-pumped magnetometers (OPMs) offer the potential for a step change in magnetoencephalography (MEG) enabling wearable systems that provide improved data quality, accommodate any subject group, allow data capture during movement and potentially reduce cost. However, OPM-MEG is a nascent technology and, to realise its potential, it must be shown to facilitate key neuroscientific measurements, such as the characterisation of brain networks. Networks, and the connectivities that underlie them, have become a core area of neuroscientific investigation, and their importance is underscored by many demonstrations of their disruption in brain disorders. Consequently, a demonstration of network measurements using OPM-MEG would be a significant step forward. Here, we aimed to show that a wearable 50-channel OPM-MEG system enables characterisation of the electrophysiological connectome. To this end, we measured connectivity in the resting state and during a visuo-motor task, using both OPM-MEG and a state-of-the-art 275-channel cryogenic MEG device. Our results show that resting-state connectome matrices from OPM and cryogenic systems exhibit a high degree of similarity, with correlation values > 70%. In addition, in task data, similar differences in connectivity between individuals (scanned multiple times) were observed in cryogenic and OPM-MEG data, again demonstrating the fidelity of the OPM-MEG device. This is the first demonstration of network connectivity measured using OPM-MEG, and results add weight to the argument that OPMs will ultimately supersede cryogenic sensors for MEG measurement. |
ArticleNumber | 117815 |
Author | Osborne, James Hill, Ryan M. Brookes, Matthew J. Rea, Molly Bowtell, Richard Shah, Vishal Seedat, Zelekha A. Boto, Elena Leggett, James Holmes, Niall |
AuthorAffiliation | b QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, 80027, CO, USA a Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom |
AuthorAffiliation_xml | – name: a Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom – name: b QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, 80027, CO, USA |
Author_xml | – sequence: 1 givenname: Elena orcidid: 0000-0002-0347-280X surname: Boto fullname: Boto, Elena email: elena.boto@nottingham.ac.uk organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom – sequence: 2 givenname: Ryan M. orcidid: 0000-0002-1732-2095 surname: Hill fullname: Hill, Ryan M. organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom – sequence: 3 givenname: Molly orcidid: 0000-0002-3487-713X surname: Rea fullname: Rea, Molly organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom – sequence: 4 givenname: Niall orcidid: 0000-0002-0561-8366 surname: Holmes fullname: Holmes, Niall organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom – sequence: 5 givenname: Zelekha A. surname: Seedat fullname: Seedat, Zelekha A. organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom – sequence: 6 givenname: James surname: Leggett fullname: Leggett, James organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom – sequence: 7 givenname: Vishal surname: Shah fullname: Shah, Vishal organization: QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, 80027, CO, USA – sequence: 8 givenname: James surname: Osborne fullname: Osborne, James organization: QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, 80027, CO, USA – sequence: 9 givenname: Richard orcidid: 0000-0001-8656-412X surname: Bowtell fullname: Bowtell, Richard organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom – sequence: 10 givenname: Matthew J. surname: Brookes fullname: Brookes, Matthew J. organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33524584$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhSNURB_wF1AkNmwy-PoR2xsEVKVUasUG1pbj3EwdMnZxkqnm3-NhWkpnNSu_7v187HNOi6MQAxZFCWQBBOoP_SLgnKJf2SUuKKGwAJAKxIviBIgWlRaSHm3nglUKQB8Xp-PYE0I0cPWqOGZMUC4UPynYDdpxTj4sy24ObvIx2KF0MQTMi7WfNuW9n27Le7TJNgOWNxeXr4uXnR1GfPMwnhU_v178OP9WXX-_vDr_fF25mpGpoiiRti0q0lG0TDLRQd1JJbnWpFPUEQSnOCKXTjnRdE3dNKqVAI0gXevYWXG147bR9uYu5eemjYnWm78bMS2NTZN3Axorc2unbFMLzSkD7ajWkjBuJWON45n1cce6m5sVtg7DlOzwDPr8JPhbs4xroyjUVJAMeP8ASPH3jONkVn50OAw2YJxHQ7kSAihwyKXv9kr7OKf8r7lKZE804bBV9PZ_Rf-kPHrzJNmlOI4JO-P8ZLcOZYF-MEDMNgymN09hMNswmF0YMkDtAR7vOKD1y64Vs79rj8mMzmNw2PqUg5EN8IdAPu1B3OCDd3b4hZvDEH8AOAzqbg |
CitedBy_id | crossref_primary_10_3389_fphys_2021_724755 crossref_primary_10_1016_j_sna_2023_114188 crossref_primary_10_1016_j_measurement_2023_113059 crossref_primary_10_7554_eLife_94561 crossref_primary_10_1038_s41598_023_31111_y crossref_primary_10_1111_epi_17368 crossref_primary_10_1109_TIM_2023_3346516 crossref_primary_10_1016_j_measurement_2022_110704 crossref_primary_10_1093_psyrad_kkab014 crossref_primary_10_1162_imag_a_00283 crossref_primary_10_3389_fdgth_2025_1552396 crossref_primary_10_1109_TMI_2024_3462415 crossref_primary_10_1016_j_neuroimage_2021_118834 crossref_primary_10_3389_fnins_2021_824759 crossref_primary_10_1016_j_isci_2022_103752 crossref_primary_10_1364_OME_462911 crossref_primary_10_1038_s42254_023_00558_3 crossref_primary_10_1002_hbm_26118 crossref_primary_10_1002_mop_33497 crossref_primary_10_1016_j_sna_2023_114869 crossref_primary_10_1038_s41398_024_03047_y crossref_primary_10_1016_j_neuroimage_2024_120864 crossref_primary_10_1109_JSEN_2021_3107433 crossref_primary_10_1371_journal_pone_0262669 crossref_primary_10_1016_j_measurement_2024_115149 crossref_primary_10_1080_00107514_2023_2182950 crossref_primary_10_1038_s41598_023_32696_0 crossref_primary_10_1016_j_neuroimage_2025_121056 crossref_primary_10_1364_PRJ_522062 crossref_primary_10_1093_schbul_sbac159 crossref_primary_10_1002_qute_202100139 crossref_primary_10_1016_j_neuroimage_2021_118604 crossref_primary_10_1148_radiol_212453 crossref_primary_10_1016_j_measurement_2024_115909 crossref_primary_10_3233_JAD_215240 crossref_primary_10_1016_j_neuroimage_2021_118401 crossref_primary_10_1016_j_sna_2024_115043 crossref_primary_10_3390_technologies12120254 crossref_primary_10_1002_ana_26562 crossref_primary_10_1016_j_neuroimage_2023_120236 crossref_primary_10_1162_imag_a_00179 crossref_primary_10_3389_fnins_2022_984036 crossref_primary_10_1088_1741_2552_ad44d8 crossref_primary_10_1016_j_neuroimage_2024_120851 crossref_primary_10_1109_JSEN_2024_3438990 crossref_primary_10_1016_j_neuroimage_2022_119027 crossref_primary_10_1016_j_tins_2022_05_008 crossref_primary_10_3389_fnins_2023_1284262 crossref_primary_10_3390_photonics10080934 crossref_primary_10_1162_imag_a_00020 crossref_primary_10_3389_fnetp_2023_1338864 crossref_primary_10_3390_s25020433 crossref_primary_10_1016_j_dcn_2024_101481 crossref_primary_10_1088_1361_6501_ad89e6 crossref_primary_10_1109_TIM_2022_3192287 crossref_primary_10_1002_hbm_70175 crossref_primary_10_1093_bjr_tqae123 crossref_primary_10_1016_j_tins_2021_04_006 crossref_primary_10_3390_s22031018 crossref_primary_10_1103_PhysRevLett_129_051802 crossref_primary_10_1016_j_optlastec_2022_109025 crossref_primary_10_1016_j_measurement_2024_115487 crossref_primary_10_1016_j_neuroimage_2025_121078 crossref_primary_10_1109_JSEN_2023_3297109 crossref_primary_10_1016_j_neuroimage_2023_119953 crossref_primary_10_1070_QEL17978 crossref_primary_10_1002_hbm_26295 crossref_primary_10_1103_PhysRevD_105_055020 crossref_primary_10_1364_OE_517961 crossref_primary_10_7554_eLife_94561_3 crossref_primary_10_1038_s41598_024_56878_6 crossref_primary_10_1109_JSEN_2023_3270325 crossref_primary_10_1111_nyas_14890 crossref_primary_10_1109_JSEN_2024_3509679 crossref_primary_10_1016_j_neuroimage_2021_118788 crossref_primary_10_1109_LMAG_2021_3132851 crossref_primary_10_1109_TIE_2022_3229347 crossref_primary_10_1016_j_neuroimage_2021_118025 crossref_primary_10_1016_j_heliyon_2024_e29092 crossref_primary_10_1016_j_clinph_2023_10_006 crossref_primary_10_3389_fnins_2021_706785 crossref_primary_10_1109_TSMC_2024_3408872 |
Cites_doi | 10.1073/pnas.1112685108 10.1016/j.neuroimage.2012.03.048 10.1016/j.neuroimage.2013.05.079 10.1109/72.761722 10.1038/nn.3101 10.1073/pnas.1608587113 10.1371/journal.pone.0227684 10.1016/j.neuroimage.2018.07.028 10.1006/nimg.2001.0978 10.1016/j.neuroimage.2018.07.035 10.1140/epjqt/s40507-020-00086-4 10.1016/j.jneumeth.2019.108378 10.1126/science.175.4022.664 10.1016/j.neuroimage.2012.04.046 10.1016/j.tics.2011.08.003 10.1038/s41598-019-41763-4 10.1016/j.neuroimage.2019.116099 10.1016/j.neuron.2013.09.038 10.1016/j.neuroimage.2020.116537 10.7567/JJAP.54.026601 10.1016/j.neuroimage.2015.04.030 10.1002/mrm.1910340409 10.1063/1.4922671 10.1063/1.2392722 10.1016/j.neuroimage.2016.01.053 10.1002/hbm.20745 10.1016/j.neuroimage.2017.01.034 10.1016/j.neuroimage.2020.116995 10.1016/j.neuroimage.2013.10.040 10.1088/0031-9155/58/17/6065 10.1103/PhysRevLett.73.951 10.1016/j.neuroimage.2019.05.063 10.1088/0031-9155/51/7/008 10.1016/j.neuroimage.2019.06.052 10.1073/pnas.0905267106 10.1111/j.2517-6161.1995.tb02031.x 10.1371/journal.pone.0157655 10.1038/nrn2201 10.1016/j.neuroimage.2016.12.048 10.1364/BOE.3.000981 10.1523/JNEUROSCI.4366-09.2009 10.1006/meth.2001.1238 10.1016/j.neuroimage.2019.116192 10.1016/j.neuroimage.2020.116556 10.1038/nature26147 10.1016/j.neuroimage.2016.01.055 10.7554/eLife.01867 10.1073/pnas.1515657113 10.1016/j.neuroimage.2020.116907 10.1073/pnas.98.2.694 10.1016/j.neuroimage.2005.08.043 10.1016/j.neuroimage.2019.06.010 10.1016/j.neuroimage.2007.09.050 10.1098/rstb.2005.1634 10.1016/j.neuroimage.2011.02.054 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier Inc. Copyright Elsevier Limited Apr 15, 2021 |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Apr 15, 2021 |
DBID | 6I. AAFTH AAYXX CITATION NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM DOA |
DOI | 10.1016/j.neuroimage.2021.117815 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (ODIN) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 117815 |
ExternalDocumentID | oai_doaj_org_article_a7bb8f8ab65942319c2997034a733bc4 PMC8216250 33524584 10_1016_j_neuroimage_2021_117815 S1053811921000926 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 203257/Z/16/Z – fundername: Wellcome Trust grantid: 203257/B/16/Z |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SNS ZA5 29N 53G AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- RIG SEW WUQ XPP ZMT 0SF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c630t-2e7e2dde80f2ea3735f16f7874990f82c0e1c84ee47c8c5bfb6bb8d711b50fdc3 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:23:35 EDT 2025 Thu Aug 21 18:25:06 EDT 2025 Fri Jul 11 05:36:48 EDT 2025 Wed Aug 13 02:29:55 EDT 2025 Wed Feb 19 02:28:09 EST 2025 Tue Jul 01 03:02:17 EDT 2025 Thu Apr 24 23:10:36 EDT 2025 Fri Feb 23 02:42:50 EST 2024 Tue Aug 26 20:02:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Functional connectivity Optically-pumped magnetometer Amplitude-envelope correlation Magnetoencephalography Network OPM-MEG OPM MEG Wearable MEG AEC |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2021. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c630t-2e7e2dde80f2ea3735f16f7874990f82c0e1c84ee47c8c5bfb6bb8d711b50fdc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Technical Report-3 content type line 23 Credit authorship contribution statement Elena Boto: Conceptualization, Methodology, Formal analysis, Data curation, Writing - original draft. Ryan M. Hill: Conceptualization, Methodology, Formal analysis, Data curation, Software, Writing - review & editing. Molly Rea: Methodology, Data curation, Writing - review & editing. Niall Holmes: Conceptualization, Methodology, Software, Data curation, Writing - review & editing. Zelekha A. Seedat: Methodology, Software, Writing - review & editing. James Leggett: Methodology, Software, Writing - review & editing. Vishal Shah: Resources, Writing - review & editing. James Osborne: Resources, Software, Writing - review & editing. Richard Bowtell: Conceptualization, Methodology, Software, Formal analysis, Writing - review & editing. Matthew J. Brookes: Conceptualization, Methodology, Software, Formal analysis, Writing - original draft, Project administration, Funding acquisition. |
ORCID | 0000-0001-8656-412X 0000-0002-0561-8366 0000-0002-1732-2095 0000-0002-3487-713X 0000-0002-0347-280X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811921000926 |
PMID | 33524584 |
PQID | 2510590414 |
PQPubID | 2031077 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a7bb8f8ab65942319c2997034a733bc4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8216250 proquest_miscellaneous_2485512141 proquest_journals_2510590414 pubmed_primary_33524584 crossref_citationtrail_10_1016_j_neuroimage_2021_117815 crossref_primary_10_1016_j_neuroimage_2021_117815 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_117815 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_117815 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-15 |
PublicationDateYYYYMMDD | 2021-04-15 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Homölle, Oostenveld (bib0028) 2019; 326 Baker, Brookes, Rezek, Smith, Behrens, Smith, Woolrich (bib0002) 2014; 2014 Hill, Boto, Rea, Holmes, Leggett, Coles, Papastavrou, Everton, Hunt, Sims, Osborne, Shah, Bowtell, Brookes (bib0024) 2020 Brookes, Woolrich, Barnes (bib0016) 2012; 63 Hunt, Tewarie, Mougin, Geades, Jones, Singh, Morris, Gowland, Brookes (bib0030) 2016; 113 Hill, Boto, Holmes, Hartley, Seedat, Leggett, Roberts, Shah, Tierney, Woolrich, Stagg, Barnes, Bowtell, Slater, Brookes (bib0023) 2019; 10 Seedat, Quinn, Vidaurre, Liuzzi, Gascoyne, Hunt, O'Neill, Pakenham, Mullinger, Morris, Woolrich, Brookes (bib0048) 2020; 209 Coquelet, De Tiège, Destoky, Roshchupkina, Bourguignon, Goldman, Peigneux, Wens (bib0019) 2020; 210 Boto, Holmes, Leggett, Roberts, Shah, Meyer, Muñoz, Mullinger, Tierney, Bestmann, Barnes, Bowtell, Brookes (bib0009) 2018; 555 Altarev, Fierlinger, Lins, Marino, Nießen, Petzoldt, Reisner, Stuiber, Sturm, Taggart Singh, Taubenheim, Rohrer, Schläpfer (bib0001) 2015; 117 Boto, Meyer, Shah, Alem, Knappe, Kruger, Fromhold, Lim, Glover, Morris, Bowtell, Barnes, Brookes (bib0011) 2017; 149 Bright, Whittaker, Driver, Murphy (bib0013) 2020; 217 Zetter, Iivanainen, Parkkonen (bib0059) 2019; 9 Fox, Raichle (bib0021) 2007 Engel, Gerloff, Hilgetag, Nolte (bib0020) 2013; 80 Sander, Preusser, Mhaskar, Kitching, Trahms, Knappe (bib0046) 2012; 3 Benjamini, Hochberg (bib0005) 1995 Brookes, Hale, Zumer, Stevenson, Francis, Barnes, Owen, Morris, Nagarajan (bib0014) 2011; 56 Osborne, Orton, Alem, Shah (bib0042) 2018; XI Tierney, Holmes, Meyer, Boto, Roberts, Leggett, Buck, Duque-Muñoz, Litvak, Bestmann, Baldeweg, Bowtell, Brookes, Barnes (bib0055) 2018; 181 Boto, Seedat, Holmes, Leggett, Hill, Roberts, Shah, Fromhold, Mullinger, Tierney, Barnes, Bowtell, Brookes (bib0012) 2019; 201 Brookes, Woolrich, Luckhoo, Price, Hale, Stephenson, Barnes, Smith, Morris (bib0017) 2011; 108 Taulu, Simola (bib0052) 2006; 51 Beckmann, DeLuca, Devlin, Smith (bib0004) 2005; 360 Hipp, Hawellek, Corbetta, Siegel, Engel (bib0026) 2012; 15 Johnson, Schwindt, Weisend (bib0035) 2013; 58 Kamada, Sato, Ito, Natsukawa, Okano, Mizutani, Kobayashi (bib0036) 2015; 54 Menon (bib0039) 2011 Prichard, Theiler (bib0043) 1994 Borna, Carter, Colombo, Jau, McKay, Weisend, Taulu, Stephen, Schwindt (bib0007) 2020; 15 Tierney, Holmes, Mellor, López, Roberts, Hill, Boto, Leggett, Shah, Brookes, Bowtell, Barnes (bib0054) 2019 Iivanainen, Stenroos, Parkkonen (bib0033) 2017; 147 Cohen (bib0018) 1972; 175 O'Neill, Bauer, Woolrich, Morris, Barnes, Brookes (bib0041) 2015; 115 Gross, Kujala, Hämäläinen, Timmermann, Schnitzler, Salmelin (bib0022) 2001; 98 Kim, Begus, Xia, Lee, Jazbinsek, Trontelj, Romalis (bib0037) 2014; 89 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib0056) 2002; 15 Roberts, Holmes, Alexander, Boto, Leggett, Hill, Shah, Rea, Vaughan, Maguire, Kessler, Beebe, Fromhold, Barnes, Bowtell, Brookes (bib0045) 2019; 199 Biswal, Zerrin Yetkin, Haughton, Hyde (bib0006) 1995; 34 Brookes, Vrba, Robinson, Stevenson, Peters, Barnes, Hillebrand, Morris (bib0015) 2008; 39 Schoffelen, Gross (bib0047) 2009; 30 Tewarie, Bright, Hillebrand, Robson, Gascoyne, Morris, Meier, Van Mieghem, Brookes (bib0053) 2016 Holmes, Leggett, Boto, Roberts, Hill, Tierney, Shah, Barnes, Brookes, Bowtell (bib0027) 2018; 181 Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta, Della Penna, Duyn, Glover, Gonzalez-Castillo, Handwerker, Keilholz, Kiviniemi, Leopold, de Pasquale, Sporns, Walter, Chang (bib0031) 2013; 80 Boto, Bowtell, Krüger, Fromhold, Morris, Meyer, Barnes, Brookes (bib0008) 2016; 11 Sjøgård, De Tiège, Mary, Peigneux, Goldman, Nagels, van Schependom, Quinn, Woolrich, Wens (bib0050) 2019 Vrba, Robinson (bib0057) 2001; 25 Barry, Tierney, Holmes, Boto, Roberts, Leggett, Bowtell, Brookes, Barnes, Maguire (bib0003) 2019; 203 Hoogenboom, Schoffelen, Oostenveld, Parkes, Fries (bib0029) 2006 Raichle (bib0044) 2009 Boto, Holmes, Tierney, Leggett, Hill, Mellor, Roberts, Barnes, Bowtell, Brookes, Boto, Holmes, Tierney, Leggett, Hill, Mellor, Roberts, Barnes, Bowtell, Brookes (bib0010) 2020 Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (bib0051) 2009; 106 Hyvärinen (bib0032) 1999; 10 Iivanainen, Zetter, Parkkonen (bib0034) 2019 Siems, Pape, Hipp, Siegel (bib0049) 2016 Xia, Ben-Amar Baranga, Hoffman, Romalis (bib0058) 2006; 89 Luckhoo, Hale, Stokes, Nobre, Morris, Brookes, Woolrich (bib0038) 2012; 62 Nardelli, Perry, Krzyzewski, Knappe (bib0040) 2020 Hillebrand, Tewarie, Van Dellen, Yu, Carbo, Douw, Gouw, Van Straaten, Stam (bib0025) 2016 Hoogenboom (10.1016/j.neuroimage.2021.117815_bib0029) 2006 Seedat (10.1016/j.neuroimage.2021.117815_bib0048) 2020; 209 O'Neill (10.1016/j.neuroimage.2021.117815_bib0041) 2015; 115 Vrba (10.1016/j.neuroimage.2021.117815_bib0057) 2001; 25 Smith (10.1016/j.neuroimage.2021.117815_bib0051) 2009; 106 Benjamini (10.1016/j.neuroimage.2021.117815_bib0005) 1995 Hill (10.1016/j.neuroimage.2021.117815_bib0024) 2020 Boto (10.1016/j.neuroimage.2021.117815_bib0009) 2018; 555 Osborne (10.1016/j.neuroimage.2021.117815_bib0042) 2018; XI Sjøgård (10.1016/j.neuroimage.2021.117815_bib0050) 2019 Tewarie (10.1016/j.neuroimage.2021.117815_bib0053) 2016 Hill (10.1016/j.neuroimage.2021.117815_bib0023) 2019; 10 Boto (10.1016/j.neuroimage.2021.117815_bib0011) 2017; 149 Tzourio-Mazoyer (10.1016/j.neuroimage.2021.117815_bib0056) 2002; 15 Brookes (10.1016/j.neuroimage.2021.117815_bib0016) 2012; 63 Raichle (10.1016/j.neuroimage.2021.117815_bib0044) 2009 Borna (10.1016/j.neuroimage.2021.117815_bib0007) 2020; 15 Barry (10.1016/j.neuroimage.2021.117815_bib0003) 2019; 203 Siems (10.1016/j.neuroimage.2021.117815_bib0049) 2016 Schoffelen (10.1016/j.neuroimage.2021.117815_bib0047) 2009; 30 Biswal (10.1016/j.neuroimage.2021.117815_bib0006) 1995; 34 Brookes (10.1016/j.neuroimage.2021.117815_bib0017) 2011; 108 Taulu (10.1016/j.neuroimage.2021.117815_bib0052) 2006; 51 Zetter (10.1016/j.neuroimage.2021.117815_bib0059) 2019; 9 Fox (10.1016/j.neuroimage.2021.117815_bib0021) 2007 Hyvärinen (10.1016/j.neuroimage.2021.117815_bib0032) 1999; 10 Engel (10.1016/j.neuroimage.2021.117815_bib0020) 2013; 80 Luckhoo (10.1016/j.neuroimage.2021.117815_bib0038) 2012; 62 Sander (10.1016/j.neuroimage.2021.117815_bib0046) 2012; 3 Iivanainen (10.1016/j.neuroimage.2021.117815_bib0034) 2019 Gross (10.1016/j.neuroimage.2021.117815_bib0022) 2001; 98 Coquelet (10.1016/j.neuroimage.2021.117815_bib0019) 2020; 210 Bright (10.1016/j.neuroimage.2021.117815_bib0013) 2020; 217 Xia (10.1016/j.neuroimage.2021.117815_bib0058) 2006; 89 Hillebrand (10.1016/j.neuroimage.2021.117815_bib0025) 2016 Iivanainen (10.1016/j.neuroimage.2021.117815_bib0033) 2017; 147 Kamada (10.1016/j.neuroimage.2021.117815_bib0036) 2015; 54 Johnson (10.1016/j.neuroimage.2021.117815_bib0035) 2013; 58 Menon (10.1016/j.neuroimage.2021.117815_bib0039) 2011 Hutchison (10.1016/j.neuroimage.2021.117815_bib0031) 2013; 80 Homölle (10.1016/j.neuroimage.2021.117815_bib0028) 2019; 326 Baker (10.1016/j.neuroimage.2021.117815_bib0002) 2014; 2014 Boto (10.1016/j.neuroimage.2021.117815_bib0010) 2020 Kim (10.1016/j.neuroimage.2021.117815_bib0037) 2014; 89 Prichard (10.1016/j.neuroimage.2021.117815_bib0043) 1994 Beckmann (10.1016/j.neuroimage.2021.117815_bib0004) 2005; 360 Brookes (10.1016/j.neuroimage.2021.117815_bib0014) 2011; 56 Brookes (10.1016/j.neuroimage.2021.117815_bib0015) 2008; 39 Boto (10.1016/j.neuroimage.2021.117815_bib0008) 2016; 11 Boto (10.1016/j.neuroimage.2021.117815_bib0012) 2019; 201 Hipp (10.1016/j.neuroimage.2021.117815_bib0026) 2012; 15 Roberts (10.1016/j.neuroimage.2021.117815_bib0045) 2019; 199 Tierney (10.1016/j.neuroimage.2021.117815_bib0055) 2018; 181 Altarev (10.1016/j.neuroimage.2021.117815_bib0001) 2015; 117 Holmes (10.1016/j.neuroimage.2021.117815_bib0027) 2018; 181 Cohen (10.1016/j.neuroimage.2021.117815_bib0018) 1972; 175 Hunt (10.1016/j.neuroimage.2021.117815_bib0030) 2016; 113 Nardelli (10.1016/j.neuroimage.2021.117815_bib0040) 2020 Tierney (10.1016/j.neuroimage.2021.117815_bib0054) 2019 |
References_xml | – volume: 117 year: 2015 ident: bib0001 article-title: Minimizing magnetic fields for precision experiments publication-title: J. Appl. Phys. – volume: 34 start-page: 537 year: 1995 end-page: 541 ident: bib0006 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn. Reson. Med. – year: 2020 ident: bib0040 article-title: A conformal array of microfabricated optically-pumped first-order gradiometers for magnetoencephalography publication-title: EPJ Quantum Technol. – year: 2019 ident: bib0050 article-title: Do the posterior midline cortices belong to the electrophysiological default-mode network? publication-title: Neuroimage – year: 2009 ident: bib0044 article-title: A paradigm shift in functional brain imaging publication-title: J. Neurosci. – volume: 11 year: 2016 ident: bib0008 article-title: On the potential of a new generation of magnetometers for MEG: a beamformer simulation study publication-title: PLoS One – year: 2016 ident: bib0053 article-title: Predicting haemodynamic networks using electrophysiology: the role of non-linear and cross-frequency interactions publication-title: Neuroimage – volume: 80 start-page: 360 year: 2013 end-page: 378 ident: bib0031 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: Neuroimage – volume: 555 start-page: 657 year: 2018 end-page: 661 ident: bib0009 article-title: Moving magnetoencephalography towards real-world applications with a wearable system publication-title: Nature – volume: 56 start-page: 1082 year: 2011 end-page: 1104 ident: bib0014 article-title: Measuring functional connectivity using MEG: methodology and comparison with fcMRI publication-title: Neuroimage – volume: 326 year: 2019 ident: bib0028 article-title: Using a structured-light 3D scanner to improve EEG source modeling with more accurate electrode positions publication-title: J. Neurosci. Methods – volume: 181 start-page: 760 year: 2018 end-page: 774 ident: bib0027 article-title: A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography publication-title: Neuroimage – year: 1994 ident: bib0043 article-title: Generating surrogate data for time series with several simultaneously measured variables publication-title: Phys. Rev. Lett. – volume: 25 start-page: 249 year: 2001 end-page: 271 ident: bib0057 article-title: Signal processing in magnetoencephalography publication-title: Methods – volume: 80 start-page: 867 year: 2013 end-page: 886 ident: bib0020 article-title: Intrinsic coupling modes: multiscale interactions in ongoing brain activity publication-title: Neuron – volume: 115 start-page: 85 year: 2015 end-page: 95 ident: bib0041 article-title: Dynamic recruitment of resting state sub-networks publication-title: Neuroimage – volume: 89 start-page: 143 year: 2014 end-page: 151 ident: bib0037 article-title: Multi-channel atomic magnetometer for magnetoencephalography: a configuration study publication-title: Neuroimage – volume: 39 start-page: 1788 year: 2008 end-page: 1802 ident: bib0015 article-title: Optimising experimental design for MEG beamformer imaging publication-title: Neuroimage – volume: 203 year: 2019 ident: bib0003 article-title: Imaging the human hippocampus with optically-pumped magnetoencephalography publication-title: Neuroimage – year: 2006 ident: bib0029 article-title: Localizing human visual gamma-band activity in frequency, time and space publication-title: Neuroimage – year: 2020 ident: bib0024 article-title: Multi-channel whole-head OPM-MEG: helmet design and a comparison with a conventional system publication-title: Neuroimage – volume: 54 year: 2015 ident: bib0036 article-title: Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer publication-title: Jpn. J. Appl. Phys. – volume: 149 start-page: 404 year: 2017 end-page: 414 ident: bib0011 article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers publication-title: Neuroimage – volume: 30 start-page: 1857 year: 2009 end-page: 1865 ident: bib0047 article-title: Source connectivity analysis with MEG and EEG publication-title: Hum. Brain Mapp. – volume: 9 start-page: 5490 year: 2019 ident: bib0059 article-title: Optical Co-registration of MRI and On-scalp MEG publication-title: Sci. Rep. – volume: 199 start-page: 408 year: 2019 end-page: 417 ident: bib0045 article-title: Towards OPM-MEG in a virtual reality environment publication-title: Neuroimage – volume: 10 start-page: 626 year: 1999 end-page: 634 ident: bib0032 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Trans. Neural Netw. – volume: 106 start-page: 13040 year: 2009 end-page: 13045 ident: bib0051 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 51 start-page: 1759 year: 2006 end-page: 1768 ident: bib0052 article-title: Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements publication-title: Phys. Med. Biol. – volume: 58 start-page: 6065 year: 2013 end-page: 6077 ident: bib0035 article-title: Multi-sensor magnetoencephalography with atomic magnetometers publication-title: Phys. Med. Biol. – volume: 175 start-page: 664 year: 1972 end-page: 666 ident: bib0018 article-title: Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer publication-title: Science (80-.) – year: 2019 ident: bib0034 article-title: Potential of On-Scalp MEG: Robust detection of Human Visual Gamma-Band Responses – volume: 15 year: 2020 ident: bib0007 article-title: Non-invasive functional-brain-imaging with an OPM-based magnetoencephalography system publication-title: PLoS One – year: 2007 ident: bib0021 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nat. Rev. Neurosci. – year: 2016 ident: bib0025 article-title: Direction of information flow in large-scale resting-state networks is frequency-dependent publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 147 start-page: 542 year: 2017 end-page: 553 ident: bib0033 article-title: Measuring MEG closer to the brain: performance of on-scalp sensor arrays publication-title: Neuroimage – volume: 209 year: 2020 ident: bib0048 article-title: The role of transient spectral ‘bursts’ in functional connectivity: a magnetoencephalography study publication-title: Neuroimage – year: 2011 ident: bib0039 article-title: Large-scale brain networks and psychopathology: a unifying triple network model publication-title: Trends Cognit. Sci. – volume: XI start-page: 10548 year: 2018 ident: bib0042 article-title: Fully integrated, standalone zero field optically pumped magnetometer for biomagnetism publication-title: Steep Dispers. Eng. Opto-At. Precis. Metrol. – volume: 98 start-page: 694 year: 2001 end-page: 699 ident: bib0022 article-title: Dynamic imaging of coherent sources: studying neural interactions in the human brain publication-title: Proc. Natl. Acad. Sci. – volume: 181 start-page: 513 year: 2018 end-page: 520 ident: bib0055 article-title: Cognitive neuroscience using wearable magnetometer arrays: non-invasive assessment of language function publication-title: Neuroimage – volume: 360 start-page: 1001 year: 2005 end-page: 1013 ident: bib0004 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos. Trans. R. Soc. B Biol. Sci. – volume: 3 start-page: 981 year: 2012 ident: bib0046 article-title: Magnetoencephalography with a chip-scale atomic magnetometer publication-title: Biomed. Opt. Express – volume: 217 year: 2020 ident: bib0013 article-title: Vascular physiology drives functional brain networks publication-title: Neuroimage – volume: 113 start-page: 13510 year: 2016 end-page: 13515 ident: bib0030 article-title: Relationships between cortical myeloarchitecture and electrophysiological networks publication-title: Proc. Natl. Acad. Sci. – volume: 201 year: 2019 ident: bib0012 article-title: Wearable neuroimaging: combining and contrasting magnetoencephalography and electroencephalography publication-title: Neuroimage – volume: 63 start-page: 910 year: 2012 end-page: 920 ident: bib0016 article-title: Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage publication-title: Neuroimage – year: 2016 ident: bib0049 article-title: Measuring the cortical correlation structure of spontaneous oscillatory activity with EEG and MEG publication-title: Neuroimage – volume: 10 year: 2019 ident: bib0023 article-title: A tool for functional brain imaging with lifespan compliance publication-title: Nat. Commun. – volume: 210 year: 2020 ident: bib0019 article-title: Comparing MEG and high-density EEG for intrinsic functional connectivity mapping publication-title: Neuroimage – start-page: 104 year: 2020 end-page: 124 ident: bib0010 article-title: Magnetoencephalography using optically pumped magnetometers publication-title: Fifty Years of Magnetoencephalography – year: 1995 ident: bib0005 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. Ser. B. – volume: 108 start-page: 16783 year: 2011 end-page: 16788 ident: bib0017 article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography publication-title: Proc. Natl. Acad. Sci. – volume: 62 start-page: 530 year: 2012 end-page: 541 ident: bib0038 article-title: Inferring task-related networks using independent component analysis in magnetoencephalography publication-title: Neuroimage – year: 2019 ident: bib0054 article-title: Optically pumped magnetometers: from quantum origins to multi-channel magnetoencephalography publication-title: Neuroimage – volume: 2014 start-page: e01867 year: 2014 ident: bib0002 article-title: Fast transient networks in spontaneous human brain activity publication-title: Elife – volume: 15 start-page: 884 year: 2012 end-page: 890 ident: bib0026 article-title: Large-scale cortical correlation structure of spontaneous oscillatory activity publication-title: Nat. Neurosci. – volume: 89 year: 2006 ident: bib0058 article-title: Magnetoencephalography with an atomic magnetometer publication-title: Appl. Phys. Lett. – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: bib0056 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage – volume: 108 start-page: 16783 year: 2011 ident: 10.1016/j.neuroimage.2021.117815_bib0017 article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1112685108 – year: 2019 ident: 10.1016/j.neuroimage.2021.117815_bib0034 – volume: 63 start-page: 910 year: 2012 ident: 10.1016/j.neuroimage.2021.117815_bib0016 article-title: Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.048 – volume: 80 start-page: 360 year: 2013 ident: 10.1016/j.neuroimage.2021.117815_bib0031 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.079 – volume: 10 start-page: 626 year: 1999 ident: 10.1016/j.neuroimage.2021.117815_bib0032 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.761722 – volume: 15 start-page: 884 year: 2012 ident: 10.1016/j.neuroimage.2021.117815_bib0026 article-title: Large-scale cortical correlation structure of spontaneous oscillatory activity publication-title: Nat. Neurosci. doi: 10.1038/nn.3101 – volume: 113 start-page: 13510 year: 2016 ident: 10.1016/j.neuroimage.2021.117815_bib0030 article-title: Relationships between cortical myeloarchitecture and electrophysiological networks publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1608587113 – volume: 15 year: 2020 ident: 10.1016/j.neuroimage.2021.117815_bib0007 article-title: Non-invasive functional-brain-imaging with an OPM-based magnetoencephalography system publication-title: PLoS One doi: 10.1371/journal.pone.0227684 – volume: 181 start-page: 760 year: 2018 ident: 10.1016/j.neuroimage.2021.117815_bib0027 article-title: A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.07.028 – start-page: 104 year: 2020 ident: 10.1016/j.neuroimage.2021.117815_bib0010 article-title: Magnetoencephalography using optically pumped magnetometers – volume: 15 start-page: 273 year: 2002 ident: 10.1016/j.neuroimage.2021.117815_bib0056 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 181 start-page: 513 year: 2018 ident: 10.1016/j.neuroimage.2021.117815_bib0055 article-title: Cognitive neuroscience using wearable magnetometer arrays: non-invasive assessment of language function publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.07.035 – year: 2020 ident: 10.1016/j.neuroimage.2021.117815_bib0040 article-title: A conformal array of microfabricated optically-pumped first-order gradiometers for magnetoencephalography publication-title: EPJ Quantum Technol. doi: 10.1140/epjqt/s40507-020-00086-4 – volume: 326 year: 2019 ident: 10.1016/j.neuroimage.2021.117815_bib0028 article-title: Using a structured-light 3D scanner to improve EEG source modeling with more accurate electrode positions publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2019.108378 – volume: 175 start-page: 664 year: 1972 ident: 10.1016/j.neuroimage.2021.117815_bib0018 article-title: Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer publication-title: Science (80-.) doi: 10.1126/science.175.4022.664 – volume: 62 start-page: 530 year: 2012 ident: 10.1016/j.neuroimage.2021.117815_bib0038 article-title: Inferring task-related networks using independent component analysis in magnetoencephalography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.04.046 – year: 2011 ident: 10.1016/j.neuroimage.2021.117815_bib0039 article-title: Large-scale brain networks and psychopathology: a unifying triple network model publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2011.08.003 – volume: 9 start-page: 5490 year: 2019 ident: 10.1016/j.neuroimage.2021.117815_bib0059 article-title: Optical Co-registration of MRI and On-scalp MEG publication-title: Sci. Rep. doi: 10.1038/s41598-019-41763-4 – volume: 201 year: 2019 ident: 10.1016/j.neuroimage.2021.117815_bib0012 article-title: Wearable neuroimaging: combining and contrasting magnetoencephalography and electroencephalography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116099 – volume: 80 start-page: 867 year: 2013 ident: 10.1016/j.neuroimage.2021.117815_bib0020 article-title: Intrinsic coupling modes: multiscale interactions in ongoing brain activity publication-title: Neuron doi: 10.1016/j.neuron.2013.09.038 – volume: 209 year: 2020 ident: 10.1016/j.neuroimage.2021.117815_bib0048 article-title: The role of transient spectral ‘bursts’ in functional connectivity: a magnetoencephalography study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116537 – volume: 54 year: 2015 ident: 10.1016/j.neuroimage.2021.117815_bib0036 article-title: Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.54.026601 – volume: 115 start-page: 85 year: 2015 ident: 10.1016/j.neuroimage.2021.117815_bib0041 article-title: Dynamic recruitment of resting state sub-networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.04.030 – volume: 34 start-page: 537 year: 1995 ident: 10.1016/j.neuroimage.2021.117815_bib0006 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910340409 – volume: 117 year: 2015 ident: 10.1016/j.neuroimage.2021.117815_bib0001 article-title: Minimizing magnetic fields for precision experiments publication-title: J. Appl. Phys. doi: 10.1063/1.4922671 – volume: 89 year: 2006 ident: 10.1016/j.neuroimage.2021.117815_bib0058 article-title: Magnetoencephalography with an atomic magnetometer publication-title: Appl. Phys. Lett. doi: 10.1063/1.2392722 – year: 2016 ident: 10.1016/j.neuroimage.2021.117815_bib0053 article-title: Predicting haemodynamic networks using electrophysiology: the role of non-linear and cross-frequency interactions publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.01.053 – volume: 30 start-page: 1857 year: 2009 ident: 10.1016/j.neuroimage.2021.117815_bib0047 article-title: Source connectivity analysis with MEG and EEG publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20745 – volume: 149 start-page: 404 year: 2017 ident: 10.1016/j.neuroimage.2021.117815_bib0011 article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.01.034 – year: 2020 ident: 10.1016/j.neuroimage.2021.117815_bib0024 article-title: Multi-channel whole-head OPM-MEG: helmet design and a comparison with a conventional system publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116995 – volume: 89 start-page: 143 year: 2014 ident: 10.1016/j.neuroimage.2021.117815_bib0037 article-title: Multi-channel atomic magnetometer for magnetoencephalography: a configuration study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.10.040 – volume: 58 start-page: 6065 year: 2013 ident: 10.1016/j.neuroimage.2021.117815_bib0035 article-title: Multi-sensor magnetoencephalography with atomic magnetometers publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/17/6065 – year: 1994 ident: 10.1016/j.neuroimage.2021.117815_bib0043 article-title: Generating surrogate data for time series with several simultaneously measured variables publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.73.951 – year: 2019 ident: 10.1016/j.neuroimage.2021.117815_bib0054 article-title: Optically pumped magnetometers: from quantum origins to multi-channel magnetoencephalography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.05.063 – volume: 51 start-page: 1759 year: 2006 ident: 10.1016/j.neuroimage.2021.117815_bib0052 article-title: Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/51/7/008 – year: 2019 ident: 10.1016/j.neuroimage.2021.117815_bib0050 article-title: Do the posterior midline cortices belong to the electrophysiological default-mode network? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.06.052 – volume: 106 start-page: 13040 year: 2009 ident: 10.1016/j.neuroimage.2021.117815_bib0051 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0905267106 – year: 1995 ident: 10.1016/j.neuroimage.2021.117815_bib0005 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. Ser. B. doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 11 year: 2016 ident: 10.1016/j.neuroimage.2021.117815_bib0008 article-title: On the potential of a new generation of magnetometers for MEG: a beamformer simulation study publication-title: PLoS One doi: 10.1371/journal.pone.0157655 – year: 2007 ident: 10.1016/j.neuroimage.2021.117815_bib0021 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2201 – volume: 147 start-page: 542 year: 2017 ident: 10.1016/j.neuroimage.2021.117815_bib0033 article-title: Measuring MEG closer to the brain: performance of on-scalp sensor arrays publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.12.048 – volume: XI start-page: 10548 year: 2018 ident: 10.1016/j.neuroimage.2021.117815_bib0042 article-title: Fully integrated, standalone zero field optically pumped magnetometer for biomagnetism publication-title: Steep Dispers. Eng. Opto-At. Precis. Metrol. – volume: 3 start-page: 981 year: 2012 ident: 10.1016/j.neuroimage.2021.117815_bib0046 article-title: Magnetoencephalography with a chip-scale atomic magnetometer publication-title: Biomed. Opt. Express doi: 10.1364/BOE.3.000981 – year: 2009 ident: 10.1016/j.neuroimage.2021.117815_bib0044 article-title: A paradigm shift in functional brain imaging publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4366-09.2009 – volume: 25 start-page: 249 year: 2001 ident: 10.1016/j.neuroimage.2021.117815_bib0057 article-title: Signal processing in magnetoencephalography publication-title: Methods doi: 10.1006/meth.2001.1238 – volume: 203 year: 2019 ident: 10.1016/j.neuroimage.2021.117815_bib0003 article-title: Imaging the human hippocampus with optically-pumped magnetoencephalography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116192 – volume: 10 year: 2019 ident: 10.1016/j.neuroimage.2021.117815_bib0023 article-title: A tool for functional brain imaging with lifespan compliance publication-title: Nat. Commun. – volume: 210 year: 2020 ident: 10.1016/j.neuroimage.2021.117815_bib0019 article-title: Comparing MEG and high-density EEG for intrinsic functional connectivity mapping publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116556 – volume: 555 start-page: 657 year: 2018 ident: 10.1016/j.neuroimage.2021.117815_bib0009 article-title: Moving magnetoencephalography towards real-world applications with a wearable system publication-title: Nature doi: 10.1038/nature26147 – year: 2016 ident: 10.1016/j.neuroimage.2021.117815_bib0049 article-title: Measuring the cortical correlation structure of spontaneous oscillatory activity with EEG and MEG publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.01.055 – volume: 2014 start-page: e01867 year: 2014 ident: 10.1016/j.neuroimage.2021.117815_bib0002 article-title: Fast transient networks in spontaneous human brain activity publication-title: Elife doi: 10.7554/eLife.01867 – year: 2016 ident: 10.1016/j.neuroimage.2021.117815_bib0025 article-title: Direction of information flow in large-scale resting-state networks is frequency-dependent publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1515657113 – volume: 217 year: 2020 ident: 10.1016/j.neuroimage.2021.117815_bib0013 article-title: Vascular physiology drives functional brain networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116907 – volume: 98 start-page: 694 year: 2001 ident: 10.1016/j.neuroimage.2021.117815_bib0022 article-title: Dynamic imaging of coherent sources: studying neural interactions in the human brain publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.98.2.694 – year: 2006 ident: 10.1016/j.neuroimage.2021.117815_bib0029 article-title: Localizing human visual gamma-band activity in frequency, time and space publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.08.043 – volume: 199 start-page: 408 year: 2019 ident: 10.1016/j.neuroimage.2021.117815_bib0045 article-title: Towards OPM-MEG in a virtual reality environment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.06.010 – volume: 39 start-page: 1788 year: 2008 ident: 10.1016/j.neuroimage.2021.117815_bib0015 article-title: Optimising experimental design for MEG beamformer imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.09.050 – volume: 360 start-page: 1001 year: 2005 ident: 10.1016/j.neuroimage.2021.117815_bib0004 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2005.1634 – volume: 56 start-page: 1082 year: 2011 ident: 10.1016/j.neuroimage.2021.117815_bib0014 article-title: Measuring functional connectivity using MEG: methodology and comparison with fcMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.02.054 |
SSID | ssj0009148 |
Score | 2.606436 |
Snippet | Optically-pumped magnetometers (OPMs) offer the potential for a step change in magnetoencephalography (MEG) enabling wearable systems that provide improved... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 117815 |
SubjectTerms | Accuracy AEC Algorithms Amplitude-envelope correlation Brain Functional connectivity Hemodynamics Magnetic fields Magnetoencephalography Medical imaging MEG Network Neural networks OPM OPM-MEG Optically-pumped magnetometer Sensors Wearable MEG |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQB9RLRaHAUqiCxDUifsWOegLEQ0jLCSRulu21xSIIqF3E3--MnYRdemAPvcZx5Hwee2Y8428IOYxgQigpZamll6Vogii1ZYm2csKZV9xZdBTH1_Xlrbi6k3dzpb4wJyzTA2fgjqxyTkdtXS0bUP208bCBgpgKqzh3PjGBgs7rnamebhes_C5vJ2dzJXbI6ROsUfAJGcVYpcZSuHPKKHH2L-ikf23Oj6mTc7rofJ187YzI4jgP_htZCe0GWRt3YfJNwsfp5A-0UoF6Kx_3FR5zWnyuFlHg-WvxBmKOV6eK8dnFd3J7fnZzell21RFKX_NqVrKgAoPNSVeRBcsVl5HWEdYf-DBV1MxXgXotQhDKay9ddDUgOVGUOlnFiedbZLV9bsMOKbybcAeGHLXUCyeti1Woo9auoUFYx0ZE9TAZ31GHYwWLR9PniD2Yd4ANAmwywCNCh54vmT5jiT4nOBPD-0iAnR6AWJhOLMxnYjEiTT-Ppr9jCrsifGi6xAB-DX07OyTbF0v23uvFxnT7wR_Dkh1bCQoDOxiaYSVjeMa24fkV3kGeHsqooCOynaVswABvxmFEG2ZiQf4WQFpsaaf3iS1cMwo-brX7P1D9Qb7gn2I0jco9sjr7_Rr2wSibuZ9p_f0FxVE2CQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA96gvgifls9pYKvxearSfFBVO48hPXJg30LSZroytk97_bw33cmSbu3CrKvTVLayXxlZvIbQl5HcCGUlLLR0stG9EE02rIEWzlw5hV3Fg-Kiy_dyan4vJTLEnC7LGWVk05MinpYe4yRv2HJE2gFFe_OfzXYNQqzq6WFxk1yC6HLsKRLLdUWdJeKfBVO8kbDhFLJk-u7El7k6idILZwSGcXspcbmuNfMU0Lx37FS_3qhfxdTXrNOx_fI3eJW1u8zH9wnN8L4gNxelMT5Q8IXKRYIdqpGS5YDgLXHKhef-0fUGJGtfwPj42WqenH06RE5PT76-vGkKf0SGt_xdtOwoAIDdaXbyILlistIuwgSCaeaNmrm20C9FiEI5bWXLrrOOT0oSp1s4-D5Y3IwrsfwlNTeDdyBa0ct9cJJ62Ibuqi162kQ1rGKqIlMxhcwcexpcWamqrEfZktggwQ2mcAVofPK8wyosceaD7gT83yExE4P1hffTJEwYxX8TNTWdbIHH5H2Hiwt6DNhFefOi4r00z6a6dYp6El40WqPD3g7ry2eSfY49lx9OLGNKRri0mz5uSKv5mGQbUzY2DGsr2AOIvdQRgWtyJPMZTMN8K4c5rhhJ3b4b4dIuyPj6nvCD9eMwqm3ffb_z3pO7uA_YOaMykNysLm4Ci_AAdu4l0nK_gAcRy_q priority: 102 providerName: ProQuest |
Title | Measuring functional connectivity with wearable MEG |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921000926 https://dx.doi.org/10.1016/j.neuroimage.2021.117815 https://www.ncbi.nlm.nih.gov/pubmed/33524584 https://www.proquest.com/docview/2510590414 https://www.proquest.com/docview/2485512141 https://pubmed.ncbi.nlm.nih.gov/PMC8216250 https://doaj.org/article/a7bb8f8ab65942319c2997034a733bc4 |
Volume | 230 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISFeEIyvwlYFidfQ-Ct2xNM2dRRQKwRM6ptlu84ognQanXjjb-fOcbIFXirxkiiOHTnn893Zd_czIa9qMCGUlDLX0stcVEHk2rIIW7nizCvuLC4U54tydi7eL-Vyj5x2uTAYVplkfyvTo7ROJZNEzcnlej35DJYBqBvE80JDgSHsthAKufz175swj4qKNh1O8hxrp2ieNsYrYkauf8DMhZUio-jB1HhA7i0VFZH8B5rqX0v074DKWxrq7AG5n0zL7Ljt_UOyF5oDcneenOePCJ_H_UDQVRlqs3YTMPMY6eLbMyQy3JXNfgHzY0JVNp--fUzOz6ZfTmd5OjMh9yUvtjkLKjAQWbqoWbBccVnTsoZZCSubotbMF4F6LUIQymsvXe1K5_RKUepkUa88f0L2m00TnpHMuxV3YN5RS71w0rq6CGWttatoENaxEVEdmYxPgOJ4rsV300WOfTM3BDZIYNMSeERo3_KyBdXYoc0JjkRfH2GxY8Hm6sIkvjBWwc_U2rpSVmAn0sqDtgWZJqzi3HkxIlU3jqbLPAVZCR9a79CBN33bAYfu2PqwYxuTpMRPw6J1WwgKHXvZv4b5jU4b24TNNdRB9B7KqKAj8rTlsp4GmC-Hfm4YiQH_DYg0fNOsv0YMcc0orHyL5__1Uy_IPXxC5xqVh2R_e3UdjsBG27pxnIRwVUs1JneO332YLeB-Ml18_DSO-x5_ACigQDU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVAJeEDeGAkaCRwvvZa-FEKKQktI6QqiV-rb1rtc0FSSlTVXxp_iNzPhKAxLKS19tr2XPzvHNzgXwskIIkSqlIq2cimTmZaQLXretLAV3qbAFOYr5OBnty88H6mANfne1MJRW2enEWlGXM0dn5K95jQRiyeS7k58RTY2i6Go3QqNhix3_6wJdtrO32x9xf19xvjXc-zCK2qkCkUtEPI-4Tz1HodZxxX0hUqEqllTIt4j940pzF3vmtPRepk47ZSubWKvLlDGr4qp0At97DdalQFdmAOubw_GXr4s2v0w2xXdKRJqxrM0dajLK6g6Vkx-oJ9Av5YzipZrG8V4yiPXcgCW7-C_u_Tt985I93LoNt1ogG75vOO8OrPnpXbiet6H6eyDy-vQRLWNItrM5cgwd5dW4ZmJFSGfA4QXSlMq3wnz46T7sXwktH8BgOpv6RxA6WwqLYJIVzEmrClvFPqm0thnzsrA8gLQjk3Ft-3KaovHddHlqx2ZBYEMENg2BA2D9ypOmhccKazZpJ_rnqQl3fWF2-s20Mm2KFH-m0oVNVIaolGUObTtqUFmkQlgnA8i6fTRdnStqZnzRZIUPeNOvbbFQg3FWXL3RsY1pddKZWUhQAC_626hNKERUTP3sHJ-hXkGMM8kCeNhwWU8Dqs6jqDruxBL_LRFp-c50clR3LNecoZ8dP_7_Zz2HG6O9fNfsbo93nsBN-h-K2zG1AYP56bl_ivBvbp-1MhfC4VWL-R8aom-L |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFqrgg3gQKBAmOUeNX7AghBLRLS9mKA5X2ZmLHhq1KtrRbVfwaX8dMnGS7IKG99JpkIns8T8-LkBcBTAglpcy0dDITpReZrljbtrLmzCluK3QUxwfF7qH4OJGTNfK7r4XBtMpeJraCup45vCPfYq0lkAsqtkKXFvF5e_Tm5GeGE6Qw0tqP04gksu9_XYD7dvZ6bxvO-iVjo50v73ezbsJA5gqezzPmlWfA4DoPzFdccRloEYCGwQ_Ig2Yu99Rp4b1QTjtpgy2s1bWi1Mo81I7Df6-R6wBHkcfURC0a_lIRy_AkzzSlZZdFFHPL2l6V0x8gMcBDZRQjpxoH815Sje0EgSUN-a8F_Hci5yXNOLpFbnYmbfo20uBtsuabO2Rj3AXt7xI-bu8hQUemqEXj5WPqMMPGxdkVKd4GpxeAUSzkSsc7H-6RwyvB5H2y3swa_5CkztbcgllJK-qElZUNuS-C1rakXlSWJUT1aDKua2SO8zSOTZ-xdmQWCDaIYBMRnBA6QJ7EZh4rwLzDkxi-x3bc7YPZ6TfTcbepFGwm6MoWsgT7lJYOtDzIUlEpzq0TCSn7czR9xSvIaPjRdIUFvBpgO6soWjsrQm_2ZGM66XRmFryUkOfDa5ArGCyqGj87h2-waxBlVNCEPIhUNuAA6_Qwvg4nsUR_S0haftNMv7e9yzWj4HHnj_6_rGdkA5jbfNo72H9MbuB2MIBH5SZZn5-e-ydgB87t05bhUvL1qjn8D--fcls |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+functional+connectivity+with+wearable+MEG&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Boto%2C+Elena&rft.au=Hill%2C+Ryan+M.&rft.au=Rea%2C+Molly&rft.au=Holmes%2C+Niall&rft.date=2021-04-15&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=230&rft.spage=117815&rft.epage=117815&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.117815&rft_id=info%3Apmid%2F33524584&rft.externalDocID=PMC8216250 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |