Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans

Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant ( τ) of phosphocreatine (PCr...

Full description

Saved in:
Bibliographic Details
Published inApplied physiology, nutrition, and metabolism Vol. 33; no. 6; pp. 1124 - 1131
Main Authors Forbes, Sean C, Slade, Jill M, Meyer, Ronald A
Format Journal Article
LanguageEnglish
Published Ottawa Presses scientifiques du CNRC 01.12.2008
NRC Research Press
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant ( τ) of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 ± 4 years;; body mass, 69 ± 11 kg) performed 6 sessions of 4-6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 ± 5 years;; body mass, 80 ± 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy ( 31 P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the τ of PCr recovery. The τ of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 ± 14 s vs. post-training, 37 ± 15 s; p < 0.05) with no change in the control group (44 ± 12 s vs. 43 ± 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle.
AbstractList Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant ( τ) of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 ± 4 years;; body mass, 69 ± 11 kg) performed 6 sessions of 4-6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 ± 5 years;; body mass, 80 ± 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy ( 31 P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the τ of PCr recovery. The τ of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 ± 14 s vs. post-training, 37 ± 15 s; p < 0.05) with no change in the control group (44 ± 12 s vs. 43 ± 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle.
Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant (τ) of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 ± 4 years; body mass, 69 ± 11 kg) performed 6 sessions of 4-6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 ± 5 years; body mass, 80 ± 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy ([sup.31]P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the τ of PCr recovery. The τ of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 ± 14 s vs. post-training, 37 ± 15 s; p < 0.05) with no change in the control group (44 ± 12 s vs. 43 ± 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle. Key words: phosphorus magnetic resonance spectroscopy, endurance, oxidative capacity, aerobic capacity. D'apres des etudes, l'entrainement de forte intensite ameliore en moins de deux semaines les marqueurs biochimiques du potentiel oxydatif du muscle squelettique. Le but de cette etude est d'analyser l'effet de l'entrainement par intervalle pendant une breve periode de temps et de forte intensite sur la constante de temps (<< τ >>) de la recuperation de la phosphocreatine (PCr) consecutivement a un exercice d'intensite moderee et sur la capacite oxydative fonctionnelle mesuree in vivo. Sept sujets en bonne sante et physiquement actifs (21 [+ ou -] 4 ans (ecart-type); 69 [+ ou -] 11 kg) participent en moins de 2 semaines a 6 seances de 4 a 6 efforts maximaux consistant en des exercices de pedalage d'une duree de 30 s; 7 sujets (24 [+ ou -] 5 ans; 80 [+ ou -] 15 kg) jouent le role de temoins. Avant et apres la fin de la periode d'entrainement, on mesure par resonance magnetique nucleaire du phosphore 31 ([sup.31]P-MRS, << GE 3T Excite System >>) les variations relatives des composes phosphates riches en energie et du pH intracellulaire des muscles quadriceps au cours d'une seance d'exercice d'extension dynamique consistant en 3 cycles d'effort d'une duree de 90 s intercale d'un repos d'une duree de 5 min. On recourt a un modele monoexponentiel pour estimer le τ de la recuperation du PCr. Le τ de la recuperation du PCr diminue de 14 % consecutivement a un entrainement par intervalle de forte intensite : 43 [+ ou -] 14 s avant la periode d'entrainement comparativement a 37 [+ ou -] 15 s apres la periode d'entrainement, p < 0,05; on n'observe aucun changement aupres du groupe temoin, soit 44 [+ ou -] 12 s comparativement a 43 [+ ou -] 12 s, respectivement, p > 0,05). D'apres ces observations, un entrainement par intervalle de courte duree et de forte intensite constitue un bon moyen d'ameliorer la capacite oxydative fonctionnelle du muscle squelettique. Mots-cles : resonance magnetique nucleaire du phosphore 31, endurance, capacite oxydative, capacite aerobie. [Traduit par la Redaction]
Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant () of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 +/- 4 years; body mass, 69 +/- 11 kg) performed 6 sessions of 4-6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 +/- 5 years; body mass, 80 +/- 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy (31P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the of PCr recovery. The of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 +/- 14 s vs. post-training, 37 +/- 15 s; p < 0.05) with no change in the control group (44 +/- 12 s vs. 43 +/- 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle.
Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant () of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 c 4 years; body mass, 69 c 11 kg) performed 6 sessions of 4-6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 c 5 years; body mass, 80 c 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy ( super(31)P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the of PCr recovery. The of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 c 14 s vs. post-training, 37 c 15 s; p < 0.05) with no change in the control group (44 c 12 s vs. 43 c 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle.Original Abstract: D'apres des etudes, l'entrainement de forte intensite ameliore en moins de deux semaines les marqueurs biochimiques du potentiel oxydatif du muscle squelettique. Le but de cette etude est d'analyser l'effet de l'entrainement par intervalle pendant une breve periode de temps et de forte intensite sur la constante de temps (' ') de la recuperation de la phosphocreatine (PCr) consecutivement a un exercice d'intensite moderee et sur la capacite oxydative fonctionnelle mesuree in vivo. Sept sujets en bonne sante et physiquement actifs (21 c 4 ans (ecart-type); 69 c 11 kg) participent en moins de 2 semaines a 6 seances de 4 a 6 efforts maximaux consistant en des exercices de pedalage d'une duree de 30 s; 7 sujets (24 c 5 ans; 80 c 15 kg) jouent le role de temoins. Avant et apres la fin de la periode d'entrainement, on mesure par resonance magnetique nucleaire du phosphore 31 ( super(31)P-MRS, ' GE 3T Excite System ') les variations relatives des composes phosphates riches en energie et du pH intracellulaire des muscles quadriceps au cours d'une seance d'exercice d'extension dynamique consistant en 3 cycles d'effort d'une duree de 90 s intercale d'un repos d'une duree de 5 min. On recourt a un modele monoexponentiel pour estimer le de la recuperation du PCr. Le de la recuperation du PCr diminue de 14 % consecutivement a un entrainement par intervalle de forte intensite : 43 c 14 s avant la periode d'entrainement comparativement a 37 c 15 s apres la periode d'entrainement, p < 0,05; on n'observe aucun changement aupres du groupe temoin, soit 44 c 12 s comparativement a 43 c 12 s, respectivement, p > 0,05). D'apres ces observations, un entrainement par intervalle de courte duree et de forte intensite constitue un bon moyen d'ameliorer la capacite oxydative fonctionnelle du muscle squelettique.
Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant (τ) of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 ± 4 years; body mass, 69 ± 11 kg) performed 6 sessions of 4–6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 ± 5 years; body mass, 80 ± 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy (³¹P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the τ of PCr recovery. The τ of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 ± 14 s vs. post-training, 37 ± 15 s; p < 0.05) with no change in the control group (44 ± 12 s vs. 43 ± 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle.
Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant (τ) of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 ± 4 years; body mass, 69 ± 11 kg) performed 6 sessions of 4–6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 ± 5 years; body mass, 80 ± 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy ( 31 P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the τ of PCr recovery. The τ of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 ± 14 s vs. post-training, 37 ± 15 s; p < 0.05) with no change in the control group (44 ± 12 s vs. 43 ± 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle.
Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant (τ) of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 ± 4 years; body mass, 69 ± 11 kg) performed 6 sessions of 4-6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 ± 5 years; body mass, 80 ± 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy ([sup.31]P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the τ of PCr recovery. The τ of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 ± 14 s vs. post-training, 37 ± 15 s; p < 0.05) with no change in the control group (44 ± 12 s vs. 43 ± 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle.
Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant () of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 +/- 4 years; body mass, 69 +/- 11 kg) performed 6 sessions of 4-6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 +/- 5 years; body mass, 80 +/- 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy (31P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the of PCr recovery. The of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 +/- 14 s vs. post-training, 37 +/- 15 s; p < 0.05) with no change in the control group (44 +/- 12 s vs. 43 +/- 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle.Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant () of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 +/- 4 years; body mass, 69 +/- 11 kg) performed 6 sessions of 4-6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 +/- 5 years; body mass, 80 +/- 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy (31P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the of PCr recovery. The of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 +/- 14 s vs. post-training, 37 +/- 15 s; p < 0.05) with no change in the control group (44 +/- 12 s vs. 43 +/- 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle.
Abstract_FL D'après des études, l'entraînement de forte intensité améliore en moins de deux semaines les marqueurs biochimiques du potentiel oxydatif du muscle squelettique. Le but de cette étude est d'analyser l'effet de l'entraînement par intervalle pendant une brève période de temps et de forte intensité sur la constante de temps (« τ ») de la récupération de la phosphocréatine (PCr) consécutivement à un exercice d'intensité modérée et sur la capacité oxydative fonctionnelle mesurée in vivo. Sept sujets en bonne santé et physiquement actifs (21 ± 4 ans (écart-type);; 69 ± 11 kg) participent en moins de 2 semaines à 6 séances de 4 à 6 efforts maximaux consistant en des exercices de pédalage d'une durée de 30 s;; 7 sujets (24 ± 5 ans;; 80 ± 15 kg) jouent le rôle de témoins. Avant et après la fin de la période d'entraînement, on mesure par résonance magnétique nucléaire du phosphore 31 ( 31 P-MRS, « GE 3T Excite System ») les variations relatives des composés phosphatés riches en énergie et du pH intracellulaire des muscles quadriceps au cours d'une séance d'exercice d'extension dynamique consistant en 3 cycles d'effort d'une durée de 90 s intercalé d'un repos d'une durée de 5 min. On recourt à un modèle monoexponentiel pour estimer le τ de la récupération du PCr. Le τ de la récupération du PCr diminue de 14 % consécutivement à un entraînement par intervalle de forte intensité : 43 ± 14 s avant la période d'entraînement comparativement à 37 ± 15 s après la période d'entraînement, p < 0,05;; on n'observe aucun changement auprès du groupe témoin, soit 44 ± 12 s comparativement à 43 ± 12 s, respectivement, p > 0,05). D'après ces observations, un entraînement par intervalle de courte durée et de forte intensité constitue un bon moyen d'améliorer la capacité oxydative fonctionnelle du muscle squelettique.
Audience Academic
Author Meyer, Ronald A
Slade, Jill M
Forbes, Sean C
Author_xml – sequence: 1
  givenname: Sean C
  surname: Forbes
  fullname: Forbes, Sean C
  email: sforbes@msu.edu
  organization: Department of Physiology, Michigan State University, 3105 Biomedical Physical Sciences Building, East Lansing, MI 48824, USA
– sequence: 2
  givenname: Jill M
  surname: Slade
  fullname: Slade, Jill M
  organization: Departments of Osteopathic Manipulative Medicine and Radiology, Michigan State University, 184 Radiology, East Lansing, MI 48824, USA
– sequence: 3
  givenname: Ronald A
  surname: Meyer
  fullname: Meyer, Ronald A
  organization: Department of Physiology, Michigan State University, 3105 Biomedical Physical Sciences Building, East Lansing, MI 48824, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21141475$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19088770$$D View this record in MEDLINE/PubMed
BookMark eNqFkm1rFDEQxxep2PYsfgNZFE8RtibZp-zLUtQKBV_Y9yGbndxGd5MzyVbvC_RzO8udR1sfSgiZDL-ZyWT-x8mBdRaS5Bklp5TmzbsLwjPSNI-SI1rTMitzRg72NmWHyUkIpiWEcMZ5zZ4kh7QhaNXkKLn50jsfswh-THuz6jNjI9hg4iadLX8thzR6aayxq9SMa--uIaTr3gXcyoOMxkLqQaHfb9JveItGhVS7YXA_5qDRdeBlhFuZ4Sd4ZQJgibSfRmnD0-SxlkOAk925SK4-vL86v8guP3_8dH52makqJzFjZau7lijOWoYeXqi6bhgpCNO0IzXXLaiKAy9VSRR0edHSSkve6bLoCtnli2S5TYt9fJ8gRDGaoGAYpAU3BVE1DSFVTR4EGSlrVtASwTcPgISwvGpwUIvkxT30q5u8xXbndJyWjNYIvdxCKzmAMFY7_H015xRntGEVx7kVSJ3-hcLVwWgUqkMb9N8JWN4K6EEOsQ9umKJxNtwFn-8eObUjdGLtzSj9RvxWDAKvdoAMSg7aS4uj3HOM0oIW9fwx2ZZT3oXgQQtlopzrzXIaBCViFq9A8QoUL_Kv7_H70n-Qb7ek9SjAANKr_j_w8t9wv4XEutP5LzzICPM
CitedBy_id crossref_primary_10_1139_bcb_2015_0012
crossref_primary_10_1152_japplphysiol_01331_2012
crossref_primary_10_1152_ajpregu_00409_2012
crossref_primary_10_1152_japplphysiol_00445_2013
crossref_primary_10_3390_nu14061140
crossref_primary_10_1249_MSS_0000000000003357
crossref_primary_10_1111_apha_12275
crossref_primary_10_1152_japplphysiol_00234_2009
crossref_primary_10_1007_s00421_024_05594_0
crossref_primary_10_1007_s00421_011_1901_8
crossref_primary_10_1371_journal_pone_0069229
crossref_primary_10_1007_s40279_013_0115_0
crossref_primary_10_1519_JSC_0000000000001954
crossref_primary_10_2478_hukin_2019_0033
crossref_primary_10_1152_japplphysiol_00047_2018
crossref_primary_10_3390_nu12020390
crossref_primary_10_23736_S0393_3660_21_04734_3
crossref_primary_10_1139_cjpp_2021_0801
crossref_primary_10_3390_ijerph182312662
crossref_primary_10_2215_CJN_10320819
crossref_primary_10_1016_j_scispo_2021_07_004
crossref_primary_10_1249_MSS_0b013e31829a726a
crossref_primary_10_1089_ars_2015_6291
crossref_primary_10_1161_CIRCULATIONAHA_118_038516
crossref_primary_10_1016_j_ahjo_2021_100028
crossref_primary_10_1016_j_biocel_2014_02_014
crossref_primary_10_3389_fphys_2015_00051
crossref_primary_10_1007_s11357_014_9713_5
crossref_primary_10_1519_JSC_0000000000004257
crossref_primary_10_1007_s00421_014_2968_9
crossref_primary_10_1152_japplphysiol_00260_2009
crossref_primary_10_3389_fspor_2024_1451738
crossref_primary_10_1111_apha_12307
crossref_primary_10_1249_MSS_0000000000000858
crossref_primary_10_1139_h11_156
crossref_primary_10_1007_s40279_014_0180_z
Cites_doi 10.1152/ajpendo.2001.281.6.E1340
10.1007/s00424-003-1203-z
10.1016/0021-9290(91)90385-Z
10.1055/s-2007-1024622
10.1096/fj.03-0762fje
10.1152/ajpregu.00056.2007
10.1152/jappl.2000.88.6.2219
10.1249/01.mss.0000191418.37709.81
10.1152/jappl.1995.78.6.2131
10.1002/mus.880170802
10.1152/jappl.1996.81.3.1331
10.1152/jappl.1996.80.3.876
10.1152/jappl.1989.67.3.926
10.1113/jphysiol.2001.012910
10.1152/jappl.2000.89.3.1072
10.1113/jphysiol.2004.062232
10.1152/jappl.1976.40.2.149
10.1152/ajplegacy.1968.215.3.523
10.1152/ajpcell.00409.2002
10.1055/s-2003-39085
10.1152/jn.1978.41.5.1203
10.1152/jappl.1993.75.2.813
10.1152/ajpcell.1988.254.4.C548
10.1111/j.1748-1716.1985.tb07735.x
10.1055/s-2007-971901
10.1097/00005768-200211000-00005
10.1152/jappl.1993.75.2.648
10.1113/jphysiol.2006.112094
10.1113/jphysiol.1993.sp019673
10.1042/BST0300237
10.1152/ajpcell.1997.272.2.C501
10.1152/japplphysiol.01095.2004
10.1016/S0021-9258(19)43389-9
10.1152/jappl.1999.86.6.2013
10.1101/gad.7.12a.2431
10.1113/jphysiol.2007.142109
10.1152/ajpendo.2000.279.5.E1202
10.1152/ajpregu.00503.2006
10.1111/j.1365-201X.2005.01423.x
10.1007/BF00585149
10.2114/jpa.21.247
10.1152/jappl.1982.53.4.844
10.1007/s004210000223
10.1152/ajpcell.1997.272.2.C525
10.1139/y92-190
10.1093/oxfordjournals.aje.a113987
10.1007/BF00635872
10.1249/01.MSS.0000128246.20242.8B
ContentType Journal Article
Copyright 2009 INIST-CNRS
COPYRIGHT 2008 NRC Research Press
Copyright Human Kinetics Dec 2008
Copyright_xml – notice: 2009 INIST-CNRS
– notice: COPYRIGHT 2008 NRC Research Press
– notice: Copyright Human Kinetics Dec 2008
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TS
7S9
L.6
7X8
DOI 10.1139/H08-099
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Physical Education Index
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Physical Education Index
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Physical Education Index
AGRICOLA
CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
Recreation & Sports
EISSN 1715-5320
EndPage 1131
ExternalDocumentID 1618535821
A192688874
19088770
21141475
10_1139_H08_099
h08-099
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: R01 AR043903
GroupedDBID 0R
186
23M
2QV
4.4
53G
5GY
5RP
AAIKC
AAWTL
ABDBF
ABFLS
ABFSI
ABPTK
ACGFS
ADHUB
AENEX
ALMA_UNASSIGNED_HOLDINGS
C1A
CAG
COF
CS3
D8U
DL
DXH
E.L
EAD
EAP
EAS
EBD
EBS
EJD
EMK
ESX
F5P
HZ
H~9
IAO
IEA
IFM
IHR
IHW
INH
INR
ITC
NRXXU
O9-
OHT
PQEST
PQQKQ
PV9
RIG
RRP
RZL
TUS
UKR
UPT
X
XFK
-~X
00T
0R~
36B
AAFWJ
AAHBH
AAMNW
AAYXX
ABJNI
ACGFO
ACUHS
CITATION
DATHI
HZ~
IPNFZ
IPT
VQG
ZY4
IQODW
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7TS
7S9
L.6
7X8
ID FETCH-LOGICAL-c630t-25bfdb0c82b2c6384c77920402f1d078fbec68e85c50ced34b16fa8df54d4ad3
ISSN 1715-5312
1715-5320
IngestDate Fri Jul 11 11:08:52 EDT 2025
Fri Jul 11 09:45:23 EDT 2025
Fri Jul 11 00:53:22 EDT 2025
Mon Jun 30 04:57:35 EDT 2025
Tue Jun 17 22:22:35 EDT 2025
Tue Jun 10 21:21:51 EDT 2025
Thu May 22 21:21:36 EDT 2025
Thu Jan 02 22:03:15 EST 2025
Mon Jul 21 09:15:35 EDT 2025
Tue Jul 01 02:56:34 EDT 2025
Thu Apr 24 23:03:09 EDT 2025
Thu May 23 14:04:13 EDT 2019
Wed Nov 11 00:34:01 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Short term
Physical exercise
Human
Physical training
Intensity
Phosphorus
Aerobe
Phosphocreatine
Recovery
Endurance
Kinetics
Nuclear magnetic resonance
Interval
Language English
License http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c630t-25bfdb0c82b2c6384c77920402f1d078fbec68e85c50ced34b16fa8df54d4ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 19088770
PQID 205815217
PQPubID 28783
PageCount 8
ParticipantIDs proquest_miscellaneous_69900670
pascalfrancis_primary_21141475
proquest_journals_205815217
proquest_miscellaneous_20572415
proquest_miscellaneous_2000236911
gale_healthsolutions_A192688874
pubmed_primary_19088770
crossref_primary_10_1139_H08_099
nrcresearch_primary_10_1139_H08_099
gale_infotracacademiconefile_A192688874
crossref_citationtrail_10_1139_H08_099
gale_infotracmisc_A192688874
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-12-01
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Ottawa
PublicationPlace_xml – name: Ottawa
– name: Canada
PublicationTitle Applied physiology, nutrition, and metabolism
PublicationTitleAlternate Physiologie appliquée, nutrition et métabolisme
PublicationYear 2008
Publisher Presses scientifiques du CNRC
NRC Research Press
Canadian Science Publishing NRC Research Press
Publisher_xml – name: Presses scientifiques du CNRC
– name: NRC Research Press
– name: Canadian Science Publishing NRC Research Press
References rg39/ref39
Walter G. (rg45/ref45) 1997; 272
rg1/ref1
rg48/ref48
rg23/ref23
McCully K.K. (rg29/ref29) 1992; 70
rg21/ref21
Bogdanis G.C. (rg4/ref4) 1996; 80
McCully K.K. (rg27/ref27) 1989; 67
Meyer R.A. (rg31/ref31) 1988; 254
rg46/ref46
Winder W.W. (rg47/ref47) 2000; 88
rg12/ref12
Moon R.B. (rg32/ref32) 1973; 248
rg35/ref35
Dudley G.A. (rg11/ref11) 1982; 53
Paganini A.T. (rg33/ref33) 1997; 272
Thompson C.H. (rg41/ref41) 1995; 78
Jeneson J.A.L. (rg16/ref16) 2004; 18
Haseler L.J. (rg14/ref14) 1999; 86
Chen Z.-P. (rg8/ref8) 2000; 279
Sallis J.F. (rg38/ref38) 1985; 121
rg10/ref10
rg7/ref7
rg22/ref22
McCully K.K. (rg30/ref30) 1993; 75
McCreary C.R. (rg26/ref26) 1996; 81
rg13/ref13
Piiper J. (rg34/ref34) 1968; 215
rg6/ref6
rg36/ref36
rg42/ref42
Burgomaster K.A. (rg5/ref5) 2007; 292
Vøllestad N.K. (rg43/ref43) 1985; 125
Walmsley B. (rg44/ref44) 1978; 41
Blei M.L. (rg3/ref3) 1993; 465
rg17/ref17
Marsh G.D. (rg25/ref25) 1993; 75
Kent-Braun J.A. (rg19/ref19) 2000; 89
Costill D.L. (rg9/ref9) 1976; 40
rg37/ref37
Irrcher I. (rg15/ref15) 2003; 284
rg20/ref20
rg28/ref28
Jones A.M. (rg18/ref18) 2007; 293
Bergeron R. (rg2/ref2) 2001; 281
Laurent D. (rg24/ref24) 1992; 13
rg40/ref40
References_xml – volume: 281
  start-page: E1340
  year: 2001
  ident: rg2/ref2
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.2001.281.6.E1340
– ident: rg22/ref22
  doi: 10.1007/s00424-003-1203-z
– ident: rg28/ref28
  doi: 10.1016/0021-9290(91)90385-Z
– volume: 13
  start-page: S150
  year: 1992
  ident: rg24/ref24
  publication-title: Int. J. Sports Med.
  doi: 10.1055/s-2007-1024622
– volume: 18
  start-page: 1010
  year: 2004
  ident: rg16/ref16
  publication-title: FASEB J.
  doi: 10.1096/fj.03-0762fje
– volume: 293
  start-page: R392
  year: 2007
  ident: rg18/ref18
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00056.2007
– volume: 88
  start-page: 2219
  year: 2000
  ident: rg47/ref47
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.2000.88.6.2219
– ident: rg1/ref1
  doi: 10.1249/01.mss.0000191418.37709.81
– volume: 78
  start-page: 2131
  year: 1995
  ident: rg41/ref41
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1995.78.6.2131
– ident: rg20/ref20
  doi: 10.1002/mus.880170802
– volume: 81
  start-page: 1331
  year: 1996
  ident: rg26/ref26
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1996.81.3.1331
– volume: 80
  start-page: 876
  year: 1996
  ident: rg4/ref4
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1996.80.3.876
– volume: 67
  start-page: 926
  year: 1989
  ident: rg27/ref27
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1989.67.3.926
– ident: rg37/ref37
  doi: 10.1113/jphysiol.2001.012910
– volume: 89
  start-page: 1072
  year: 2000
  ident: rg19/ref19
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.2000.89.3.1072
– ident: rg21/ref21
  doi: 10.1113/jphysiol.2004.062232
– volume: 40
  start-page: 149
  year: 1976
  ident: rg9/ref9
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1976.40.2.149
– volume: 215
  start-page: 523
  year: 1968
  ident: rg34/ref34
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajplegacy.1968.215.3.523
– volume: 284
  start-page: C1669
  year: 2003
  ident: rg15/ref15
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00409.2002
– ident: rg17/ref17
  doi: 10.1055/s-2003-39085
– volume: 41
  start-page: 1203
  year: 1978
  ident: rg44/ref44
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1978.41.5.1203
– volume: 75
  start-page: 813
  year: 1993
  ident: rg30/ref30
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1993.75.2.813
– volume: 254
  start-page: C548
  year: 1988
  ident: rg31/ref31
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.1988.254.4.C548
– volume: 125
  start-page: 395
  year: 1985
  ident: rg43/ref43
  publication-title: Acta Physiol. Scand.
  doi: 10.1111/j.1748-1716.1985.tb07735.x
– ident: rg35/ref35
  doi: 10.1055/s-2007-971901
– ident: rg10/ref10
  doi: 10.1097/00005768-200211000-00005
– volume: 75
  start-page: 648
  year: 1993
  ident: rg25/ref25
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1993.75.2.648
– ident: rg12/ref12
  doi: 10.1113/jphysiol.2006.112094
– volume: 465
  start-page: 203
  year: 1993
  ident: rg3/ref3
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1993.sp019673
– ident: rg46/ref46
  doi: 10.1042/BST0300237
– volume: 272
  start-page: C501
  year: 1997
  ident: rg33/ref33
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.1997.272.2.C501
– ident: rg7/ref7
  doi: 10.1152/japplphysiol.01095.2004
– volume: 248
  start-page: 7276
  year: 1973
  ident: rg32/ref32
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)43389-9
– volume: 86
  start-page: 2013
  year: 1999
  ident: rg14/ref14
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1999.86.6.2013
– ident: rg42/ref42
  doi: 10.1101/gad.7.12a.2431
– ident: rg6/ref6
  doi: 10.1113/jphysiol.2007.142109
– volume: 279
  start-page: E1202
  year: 2000
  ident: rg8/ref8
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.2000.279.5.E1202
– volume: 292
  start-page: R1970
  year: 2007
  ident: rg5/ref5
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00503.2006
– ident: rg40/ref40
  doi: 10.1111/j.1365-201X.2005.01423.x
– ident: rg13/ref13
  doi: 10.1007/BF00585149
– ident: rg48/ref48
  doi: 10.2114/jpa.21.247
– volume: 53
  start-page: 844
  year: 1982
  ident: rg11/ref11
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1982.53.4.844
– ident: rg36/ref36
  doi: 10.1007/s004210000223
– volume: 272
  start-page: C525
  year: 1997
  ident: rg45/ref45
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajpcell.1997.272.2.C525
– volume: 70
  start-page: 1353
  year: 1992
  ident: rg29/ref29
  publication-title: Can. J. Physiol. Pharmacol.
  doi: 10.1139/y92-190
– volume: 121
  start-page: 91
  year: 1985
  ident: rg38/ref38
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/oxfordjournals.aje.a113987
– ident: rg39/ref39
  doi: 10.1007/BF00635872
– ident: rg23/ref23
  doi: 10.1249/01.MSS.0000128246.20242.8B
SSID ssib000828872
ssj0045063
Score 2.0626776
Snippet Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The...
SourceID proquest
gale
pubmed
pascalfrancis
crossref
nrcresearch
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1124
SubjectTerms Adult
aerobic capacity
Bicycling
Biological and medical sciences
biomarkers
capacité aérobie
capacité oxydative
endurance
Exercise
Exercise - physiology
Female
Fundamental and applied biological sciences. Psychology
Health aspects
Humans
Hydrogen-Ion Concentration
Kinetics
Magnetic Resonance Spectroscopy - methods
Male
metabolism
Muscle, Skeletal - metabolism
Muscles
Musculoskeletal system
nutrition
oxidative capacity
Oxidative stress
Oxygen Consumption - physiology
phosphates
Phosphocreatine
Phosphocreatine - metabolism
phosphorus magnetic resonance spectroscopy
Physical Endurance - physiology
Physical Exertion - physiology
Physiological aspects
Reference Values
résonance magnétique nucléaire du phosphore 31
skeletal muscle
spectroscopy
Spectrum analysis
Students
Studies
Time Factors
Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports
Weight training
Young Adult
Title Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans
URI http://www.nrcresearchpress.com/doi/abs/10.1139/H08-099
https://www.ncbi.nlm.nih.gov/pubmed/19088770
https://www.proquest.com/docview/205815217
https://www.proquest.com/docview/2000236911
https://www.proquest.com/docview/20572415
https://www.proquest.com/docview/69900670
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6V9gIHBOVlWsoiUDlULrG9ttfHvqKoaoNEUik3y7u2lYjgVIkLKj-AP8WfY8a769htUwGHWIl34l1rPs_OjOdByAfQIAJ02tshCzKbpZKDHBQY0-A7iUwywQLMHT7vB70LdjryR2trvxtRS1el2Jc_78wr-R-uwjngK2bJ_gNn64vCCfgO_IUjcBiOf8XjwRiUZxuF6x6WHbYnKh69vK6qQMy_V4HkqgUEpkPOZ1hi9nI8W8BHaYsFdk2RGMZ5vfcVflVFm3PAxuwH_gn75GAticaVTY8mdJRUDf4WTf3WKLWVw6ROhClMyX8TK_otKwF8U1O-EBgulLga4IuBhuNWVwU-nUynS7_teXatOzZXjm3tjjWuC34jDKSuv2DEWMPz1v9yVMcetqJRUEiHjm-D7GhJcVVOQ6O1KZJBoWR37xUellrtVeEf0XI7NCEA_c9x9-LsLB6ejIbtUWU8BajpYJrxA7Lhgo3irpONg8Pjw65RBJivGvnVy1U52zjvJz1rSxnSKsGjYi51oacxRuomC3hYc9VlZbUZVKlDwyfksbZj6IEC5VOylhWbxDqeZCXdpbrY7JT2DeM3yebSQAGKQfWm6hn5tYQwbUOYGghTA2FqIExvQJgaCFMDYVpDmN6GMDUQhimogvBzMuyeDI96tm4NYsvA65S264s8FR3JXeHCGc5kGEYubEhu7qSg9eYgmgKecV_6HZmlHhNOkCc8zX2WsiT1XpD1YlZkrwj1PCETngQ8dVIWBkmU-0KkLOIidzo8cS2ya1gUS102H-97GlfmsxfFPezjGkUWoTXhpaoUc5vkLfI4VinOtQSKD8DMCjhs98wiHysKBCrMIhOdJANrxTptLcrtFiXsCrI1_L6Bo3sWdBfVWI3Gl2lukZ0WAmsa13GYw0LfIlsGkrEWjYvY7fgcDYPQIu_qUVwhRnQW2ewKSarmFaBrwSJW0vghWhirKQJQpjHT0CIv1dOwvFMM4AzDzut717dFHi4F0zZZL-dX2RuwMkqxo5_mP2plM9A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+high-intensity+interval+training+improves+phosphocreatine+recovery+kinetics+following+moderate-intensity+exercise+in+humans&rft.jtitle=Applied+physiology%2C+nutrition%2C+and+metabolism&rft.au=bes%2C+Sean+C&rft.au=Slade%2C+Jill+M&rft.au=Meyer%2C+Ronald+A&rft.date=2008-12-01&rft.pub=Canadian+Science+Publishing+NRC+Research+Press&rft.issn=1715-5312&rft.volume=33&rft.issue=6&rft.spage=1124&rft_id=info:doi/10.1139%2FH08-099&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1618535821
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1715-5312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1715-5312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1715-5312&client=summon