Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans
Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant ( τ) of phosphocreatine (PCr...
Saved in:
Published in | Applied physiology, nutrition, and metabolism Vol. 33; no. 6; pp. 1124 - 1131 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Ottawa
Presses scientifiques du CNRC
01.12.2008
NRC Research Press Canadian Science Publishing NRC Research Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant ( τ) of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 ± 4 years;; body mass, 69 ± 11 kg) performed 6 sessions of 4-6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 ± 5 years;; body mass, 80 ± 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy (
31
P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the τ of PCr recovery. The τ of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 ± 14 s vs. post-training, 37 ± 15 s; p < 0.05) with no change in the control group (44 ± 12 s vs. 43 ± 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle. |
---|---|
AbstractList | Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant ( τ) of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 ± 4 years;; body mass, 69 ± 11 kg) performed 6 sessions of 4-6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 ± 5 years;; body mass, 80 ± 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy (
31
P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the τ of PCr recovery. The τ of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 ± 14 s vs. post-training, 37 ± 15 s; p < 0.05) with no change in the control group (44 ± 12 s vs. 43 ± 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle. Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant (τ) of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 ± 4 years; body mass, 69 ± 11 kg) performed 6 sessions of 4-6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 ± 5 years; body mass, 80 ± 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy ([sup.31]P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the τ of PCr recovery. The τ of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 ± 14 s vs. post-training, 37 ± 15 s; p < 0.05) with no change in the control group (44 ± 12 s vs. 43 ± 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle. Key words: phosphorus magnetic resonance spectroscopy, endurance, oxidative capacity, aerobic capacity. D'apres des etudes, l'entrainement de forte intensite ameliore en moins de deux semaines les marqueurs biochimiques du potentiel oxydatif du muscle squelettique. Le but de cette etude est d'analyser l'effet de l'entrainement par intervalle pendant une breve periode de temps et de forte intensite sur la constante de temps (<< τ >>) de la recuperation de la phosphocreatine (PCr) consecutivement a un exercice d'intensite moderee et sur la capacite oxydative fonctionnelle mesuree in vivo. Sept sujets en bonne sante et physiquement actifs (21 [+ ou -] 4 ans (ecart-type); 69 [+ ou -] 11 kg) participent en moins de 2 semaines a 6 seances de 4 a 6 efforts maximaux consistant en des exercices de pedalage d'une duree de 30 s; 7 sujets (24 [+ ou -] 5 ans; 80 [+ ou -] 15 kg) jouent le role de temoins. Avant et apres la fin de la periode d'entrainement, on mesure par resonance magnetique nucleaire du phosphore 31 ([sup.31]P-MRS, << GE 3T Excite System >>) les variations relatives des composes phosphates riches en energie et du pH intracellulaire des muscles quadriceps au cours d'une seance d'exercice d'extension dynamique consistant en 3 cycles d'effort d'une duree de 90 s intercale d'un repos d'une duree de 5 min. On recourt a un modele monoexponentiel pour estimer le τ de la recuperation du PCr. Le τ de la recuperation du PCr diminue de 14 % consecutivement a un entrainement par intervalle de forte intensite : 43 [+ ou -] 14 s avant la periode d'entrainement comparativement a 37 [+ ou -] 15 s apres la periode d'entrainement, p < 0,05; on n'observe aucun changement aupres du groupe temoin, soit 44 [+ ou -] 12 s comparativement a 43 [+ ou -] 12 s, respectivement, p > 0,05). D'apres ces observations, un entrainement par intervalle de courte duree et de forte intensite constitue un bon moyen d'ameliorer la capacite oxydative fonctionnelle du muscle squelettique. Mots-cles : resonance magnetique nucleaire du phosphore 31, endurance, capacite oxydative, capacite aerobie. [Traduit par la Redaction] Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant () of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 +/- 4 years; body mass, 69 +/- 11 kg) performed 6 sessions of 4-6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 +/- 5 years; body mass, 80 +/- 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy (31P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the of PCr recovery. The of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 +/- 14 s vs. post-training, 37 +/- 15 s; p < 0.05) with no change in the control group (44 +/- 12 s vs. 43 +/- 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle. Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant () of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 c 4 years; body mass, 69 c 11 kg) performed 6 sessions of 4-6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 c 5 years; body mass, 80 c 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy ( super(31)P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the of PCr recovery. The of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 c 14 s vs. post-training, 37 c 15 s; p < 0.05) with no change in the control group (44 c 12 s vs. 43 c 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle.Original Abstract: D'apres des etudes, l'entrainement de forte intensite ameliore en moins de deux semaines les marqueurs biochimiques du potentiel oxydatif du muscle squelettique. Le but de cette etude est d'analyser l'effet de l'entrainement par intervalle pendant une breve periode de temps et de forte intensite sur la constante de temps (' ') de la recuperation de la phosphocreatine (PCr) consecutivement a un exercice d'intensite moderee et sur la capacite oxydative fonctionnelle mesuree in vivo. Sept sujets en bonne sante et physiquement actifs (21 c 4 ans (ecart-type); 69 c 11 kg) participent en moins de 2 semaines a 6 seances de 4 a 6 efforts maximaux consistant en des exercices de pedalage d'une duree de 30 s; 7 sujets (24 c 5 ans; 80 c 15 kg) jouent le role de temoins. Avant et apres la fin de la periode d'entrainement, on mesure par resonance magnetique nucleaire du phosphore 31 ( super(31)P-MRS, ' GE 3T Excite System ') les variations relatives des composes phosphates riches en energie et du pH intracellulaire des muscles quadriceps au cours d'une seance d'exercice d'extension dynamique consistant en 3 cycles d'effort d'une duree de 90 s intercale d'un repos d'une duree de 5 min. On recourt a un modele monoexponentiel pour estimer le de la recuperation du PCr. Le de la recuperation du PCr diminue de 14 % consecutivement a un entrainement par intervalle de forte intensite : 43 c 14 s avant la periode d'entrainement comparativement a 37 c 15 s apres la periode d'entrainement, p < 0,05; on n'observe aucun changement aupres du groupe temoin, soit 44 c 12 s comparativement a 43 c 12 s, respectivement, p > 0,05). D'apres ces observations, un entrainement par intervalle de courte duree et de forte intensite constitue un bon moyen d'ameliorer la capacite oxydative fonctionnelle du muscle squelettique. Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant (τ) of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 ± 4 years; body mass, 69 ± 11 kg) performed 6 sessions of 4–6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 ± 5 years; body mass, 80 ± 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy (³¹P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the τ of PCr recovery. The τ of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 ± 14 s vs. post-training, 37 ± 15 s; p < 0.05) with no change in the control group (44 ± 12 s vs. 43 ± 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle. Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant (τ) of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 ± 4 years; body mass, 69 ± 11 kg) performed 6 sessions of 4–6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 ± 5 years; body mass, 80 ± 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy ( 31 P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the τ of PCr recovery. The τ of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 ± 14 s vs. post-training, 37 ± 15 s; p < 0.05) with no change in the control group (44 ± 12 s vs. 43 ± 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle. Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant (τ) of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 ± 4 years; body mass, 69 ± 11 kg) performed 6 sessions of 4-6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 ± 5 years; body mass, 80 ± 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy ([sup.31]P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the τ of PCr recovery. The τ of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 ± 14 s vs. post-training, 37 ± 15 s; p < 0.05) with no change in the control group (44 ± 12 s vs. 43 ± 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle. Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant () of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 +/- 4 years; body mass, 69 +/- 11 kg) performed 6 sessions of 4-6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 +/- 5 years; body mass, 80 +/- 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy (31P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the of PCr recovery. The of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 +/- 14 s vs. post-training, 37 +/- 15 s; p < 0.05) with no change in the control group (44 +/- 12 s vs. 43 +/- 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle.Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant () of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 +/- 4 years; body mass, 69 +/- 11 kg) performed 6 sessions of 4-6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 +/- 5 years; body mass, 80 +/- 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy (31P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the of PCr recovery. The of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 +/- 14 s vs. post-training, 37 +/- 15 s; p < 0.05) with no change in the control group (44 +/- 12 s vs. 43 +/- 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle. |
Abstract_FL | D'après des études, l'entraînement de forte intensité améliore en moins de deux semaines les marqueurs biochimiques du potentiel oxydatif du muscle squelettique. Le but de cette étude est d'analyser l'effet de l'entraînement par intervalle pendant une brève période de temps et de forte intensité sur la constante de temps (« τ ») de la récupération de la phosphocréatine (PCr) consécutivement à un exercice d'intensité modérée et sur la capacité oxydative fonctionnelle mesurée in vivo. Sept sujets en bonne santé et physiquement actifs (21 ± 4 ans (écart-type);; 69 ± 11 kg) participent en moins de 2 semaines à 6 séances de 4 à 6 efforts maximaux consistant en des exercices de pédalage d'une durée de 30 s;; 7 sujets (24 ± 5 ans;; 80 ± 15 kg) jouent le rôle de témoins. Avant et après la fin de la période d'entraînement, on mesure par résonance magnétique nucléaire du phosphore 31 (
31
P-MRS, « GE 3T Excite System ») les variations relatives des composés phosphatés riches en énergie et du pH intracellulaire des muscles quadriceps au cours d'une séance d'exercice d'extension dynamique consistant en 3 cycles d'effort d'une durée de 90 s intercalé d'un repos d'une durée de 5 min. On recourt à un modèle monoexponentiel pour estimer le τ de la récupération du PCr. Le τ de la récupération du PCr diminue de 14 % consécutivement à un entraînement par intervalle de forte intensité : 43 ± 14 s avant la période d'entraînement comparativement à 37 ± 15 s après la période d'entraînement, p < 0,05;; on n'observe aucun changement auprès du groupe témoin, soit 44 ± 12 s comparativement à 43 ± 12 s, respectivement, p > 0,05). D'après ces observations, un entraînement par intervalle de courte durée et de forte intensité constitue un bon moyen d'améliorer la capacité oxydative fonctionnelle du muscle squelettique. |
Audience | Academic |
Author | Meyer, Ronald A Slade, Jill M Forbes, Sean C |
Author_xml | – sequence: 1 givenname: Sean C surname: Forbes fullname: Forbes, Sean C email: sforbes@msu.edu organization: Department of Physiology, Michigan State University, 3105 Biomedical Physical Sciences Building, East Lansing, MI 48824, USA – sequence: 2 givenname: Jill M surname: Slade fullname: Slade, Jill M organization: Departments of Osteopathic Manipulative Medicine and Radiology, Michigan State University, 184 Radiology, East Lansing, MI 48824, USA – sequence: 3 givenname: Ronald A surname: Meyer fullname: Meyer, Ronald A organization: Department of Physiology, Michigan State University, 3105 Biomedical Physical Sciences Building, East Lansing, MI 48824, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21141475$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19088770$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkm1rFDEQxxep2PYsfgNZFE8RtibZp-zLUtQKBV_Y9yGbndxGd5MzyVbvC_RzO8udR1sfSgiZDL-ZyWT-x8mBdRaS5Bklp5TmzbsLwjPSNI-SI1rTMitzRg72NmWHyUkIpiWEcMZ5zZ4kh7QhaNXkKLn50jsfswh-THuz6jNjI9hg4iadLX8thzR6aayxq9SMa--uIaTr3gXcyoOMxkLqQaHfb9JveItGhVS7YXA_5qDRdeBlhFuZ4Sd4ZQJgibSfRmnD0-SxlkOAk925SK4-vL86v8guP3_8dH52makqJzFjZau7lijOWoYeXqi6bhgpCNO0IzXXLaiKAy9VSRR0edHSSkve6bLoCtnli2S5TYt9fJ8gRDGaoGAYpAU3BVE1DSFVTR4EGSlrVtASwTcPgISwvGpwUIvkxT30q5u8xXbndJyWjNYIvdxCKzmAMFY7_H015xRntGEVx7kVSJ3-hcLVwWgUqkMb9N8JWN4K6EEOsQ9umKJxNtwFn-8eObUjdGLtzSj9RvxWDAKvdoAMSg7aS4uj3HOM0oIW9fwx2ZZT3oXgQQtlopzrzXIaBCViFq9A8QoUL_Kv7_H70n-Qb7ek9SjAANKr_j_w8t9wv4XEutP5LzzICPM |
CitedBy_id | crossref_primary_10_1139_bcb_2015_0012 crossref_primary_10_1152_japplphysiol_01331_2012 crossref_primary_10_1152_ajpregu_00409_2012 crossref_primary_10_1152_japplphysiol_00445_2013 crossref_primary_10_3390_nu14061140 crossref_primary_10_1249_MSS_0000000000003357 crossref_primary_10_1111_apha_12275 crossref_primary_10_1152_japplphysiol_00234_2009 crossref_primary_10_1007_s00421_024_05594_0 crossref_primary_10_1007_s00421_011_1901_8 crossref_primary_10_1371_journal_pone_0069229 crossref_primary_10_1007_s40279_013_0115_0 crossref_primary_10_1519_JSC_0000000000001954 crossref_primary_10_2478_hukin_2019_0033 crossref_primary_10_1152_japplphysiol_00047_2018 crossref_primary_10_3390_nu12020390 crossref_primary_10_23736_S0393_3660_21_04734_3 crossref_primary_10_1139_cjpp_2021_0801 crossref_primary_10_3390_ijerph182312662 crossref_primary_10_2215_CJN_10320819 crossref_primary_10_1016_j_scispo_2021_07_004 crossref_primary_10_1249_MSS_0b013e31829a726a crossref_primary_10_1089_ars_2015_6291 crossref_primary_10_1161_CIRCULATIONAHA_118_038516 crossref_primary_10_1016_j_ahjo_2021_100028 crossref_primary_10_1016_j_biocel_2014_02_014 crossref_primary_10_3389_fphys_2015_00051 crossref_primary_10_1007_s11357_014_9713_5 crossref_primary_10_1519_JSC_0000000000004257 crossref_primary_10_1007_s00421_014_2968_9 crossref_primary_10_1152_japplphysiol_00260_2009 crossref_primary_10_3389_fspor_2024_1451738 crossref_primary_10_1111_apha_12307 crossref_primary_10_1249_MSS_0000000000000858 crossref_primary_10_1139_h11_156 crossref_primary_10_1007_s40279_014_0180_z |
Cites_doi | 10.1152/ajpendo.2001.281.6.E1340 10.1007/s00424-003-1203-z 10.1016/0021-9290(91)90385-Z 10.1055/s-2007-1024622 10.1096/fj.03-0762fje 10.1152/ajpregu.00056.2007 10.1152/jappl.2000.88.6.2219 10.1249/01.mss.0000191418.37709.81 10.1152/jappl.1995.78.6.2131 10.1002/mus.880170802 10.1152/jappl.1996.81.3.1331 10.1152/jappl.1996.80.3.876 10.1152/jappl.1989.67.3.926 10.1113/jphysiol.2001.012910 10.1152/jappl.2000.89.3.1072 10.1113/jphysiol.2004.062232 10.1152/jappl.1976.40.2.149 10.1152/ajplegacy.1968.215.3.523 10.1152/ajpcell.00409.2002 10.1055/s-2003-39085 10.1152/jn.1978.41.5.1203 10.1152/jappl.1993.75.2.813 10.1152/ajpcell.1988.254.4.C548 10.1111/j.1748-1716.1985.tb07735.x 10.1055/s-2007-971901 10.1097/00005768-200211000-00005 10.1152/jappl.1993.75.2.648 10.1113/jphysiol.2006.112094 10.1113/jphysiol.1993.sp019673 10.1042/BST0300237 10.1152/ajpcell.1997.272.2.C501 10.1152/japplphysiol.01095.2004 10.1016/S0021-9258(19)43389-9 10.1152/jappl.1999.86.6.2013 10.1101/gad.7.12a.2431 10.1113/jphysiol.2007.142109 10.1152/ajpendo.2000.279.5.E1202 10.1152/ajpregu.00503.2006 10.1111/j.1365-201X.2005.01423.x 10.1007/BF00585149 10.2114/jpa.21.247 10.1152/jappl.1982.53.4.844 10.1007/s004210000223 10.1152/ajpcell.1997.272.2.C525 10.1139/y92-190 10.1093/oxfordjournals.aje.a113987 10.1007/BF00635872 10.1249/01.MSS.0000128246.20242.8B |
ContentType | Journal Article |
Copyright | 2009 INIST-CNRS COPYRIGHT 2008 NRC Research Press Copyright Human Kinetics Dec 2008 |
Copyright_xml | – notice: 2009 INIST-CNRS – notice: COPYRIGHT 2008 NRC Research Press – notice: Copyright Human Kinetics Dec 2008 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TS 7S9 L.6 7X8 |
DOI | 10.1139/H08-099 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Physical Education Index AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Physical Education Index AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE Physical Education Index AGRICOLA CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition Recreation & Sports |
EISSN | 1715-5320 |
EndPage | 1131 |
ExternalDocumentID | 1618535821 A192688874 19088770 21141475 10_1139_H08_099 h08-099 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: R01 AR043903 |
GroupedDBID | 0R 186 23M 2QV 4.4 53G 5GY 5RP AAIKC AAWTL ABDBF ABFLS ABFSI ABPTK ACGFS ADHUB AENEX ALMA_UNASSIGNED_HOLDINGS C1A CAG COF CS3 D8U DL DXH E.L EAD EAP EAS EBD EBS EJD EMK ESX F5P HZ H~9 IAO IEA IFM IHR IHW INH INR ITC NRXXU O9- OHT PQEST PQQKQ PV9 RIG RRP RZL TUS UKR UPT X XFK -~X 00T 0R~ 36B AAFWJ AAHBH AAMNW AAYXX ABJNI ACGFO ACUHS CITATION DATHI HZ~ IPNFZ IPT VQG ZY4 IQODW ABTAH CGR CUY CVF ECM EIF NPM 7TS 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c630t-25bfdb0c82b2c6384c77920402f1d078fbec68e85c50ced34b16fa8df54d4ad3 |
ISSN | 1715-5312 1715-5320 |
IngestDate | Fri Jul 11 11:08:52 EDT 2025 Fri Jul 11 09:45:23 EDT 2025 Fri Jul 11 00:53:22 EDT 2025 Mon Jun 30 04:57:35 EDT 2025 Tue Jun 17 22:22:35 EDT 2025 Tue Jun 10 21:21:51 EDT 2025 Thu May 22 21:21:36 EDT 2025 Thu Jan 02 22:03:15 EST 2025 Mon Jul 21 09:15:35 EDT 2025 Tue Jul 01 02:56:34 EDT 2025 Thu Apr 24 23:03:09 EDT 2025 Thu May 23 14:04:13 EDT 2019 Wed Nov 11 00:34:01 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Short term Physical exercise Human Physical training Intensity Phosphorus Aerobe Phosphocreatine Recovery Endurance Kinetics Nuclear magnetic resonance Interval |
Language | English |
License | http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c630t-25bfdb0c82b2c6384c77920402f1d078fbec68e85c50ced34b16fa8df54d4ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 19088770 |
PQID | 205815217 |
PQPubID | 28783 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_69900670 pascalfrancis_primary_21141475 proquest_journals_205815217 proquest_miscellaneous_20572415 proquest_miscellaneous_2000236911 gale_healthsolutions_A192688874 pubmed_primary_19088770 crossref_primary_10_1139_H08_099 nrcresearch_primary_10_1139_H08_099 gale_infotracacademiconefile_A192688874 crossref_citationtrail_10_1139_H08_099 gale_infotracmisc_A192688874 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-12-01 |
PublicationDateYYYYMMDD | 2008-12-01 |
PublicationDate_xml | – month: 12 year: 2008 text: 2008-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Ottawa |
PublicationPlace_xml | – name: Ottawa – name: Canada |
PublicationTitle | Applied physiology, nutrition, and metabolism |
PublicationTitleAlternate | Physiologie appliquée, nutrition et métabolisme |
PublicationYear | 2008 |
Publisher | Presses scientifiques du CNRC NRC Research Press Canadian Science Publishing NRC Research Press |
Publisher_xml | – name: Presses scientifiques du CNRC – name: NRC Research Press – name: Canadian Science Publishing NRC Research Press |
References | rg39/ref39 Walter G. (rg45/ref45) 1997; 272 rg1/ref1 rg48/ref48 rg23/ref23 McCully K.K. (rg29/ref29) 1992; 70 rg21/ref21 Bogdanis G.C. (rg4/ref4) 1996; 80 McCully K.K. (rg27/ref27) 1989; 67 Meyer R.A. (rg31/ref31) 1988; 254 rg46/ref46 Winder W.W. (rg47/ref47) 2000; 88 rg12/ref12 Moon R.B. (rg32/ref32) 1973; 248 rg35/ref35 Dudley G.A. (rg11/ref11) 1982; 53 Paganini A.T. (rg33/ref33) 1997; 272 Thompson C.H. (rg41/ref41) 1995; 78 Jeneson J.A.L. (rg16/ref16) 2004; 18 Haseler L.J. (rg14/ref14) 1999; 86 Chen Z.-P. (rg8/ref8) 2000; 279 Sallis J.F. (rg38/ref38) 1985; 121 rg10/ref10 rg7/ref7 rg22/ref22 McCully K.K. (rg30/ref30) 1993; 75 McCreary C.R. (rg26/ref26) 1996; 81 rg13/ref13 Piiper J. (rg34/ref34) 1968; 215 rg6/ref6 rg36/ref36 rg42/ref42 Burgomaster K.A. (rg5/ref5) 2007; 292 Vøllestad N.K. (rg43/ref43) 1985; 125 Walmsley B. (rg44/ref44) 1978; 41 Blei M.L. (rg3/ref3) 1993; 465 rg17/ref17 Marsh G.D. (rg25/ref25) 1993; 75 Kent-Braun J.A. (rg19/ref19) 2000; 89 Costill D.L. (rg9/ref9) 1976; 40 rg37/ref37 Irrcher I. (rg15/ref15) 2003; 284 rg20/ref20 rg28/ref28 Jones A.M. (rg18/ref18) 2007; 293 Bergeron R. (rg2/ref2) 2001; 281 Laurent D. (rg24/ref24) 1992; 13 rg40/ref40 |
References_xml | – volume: 281 start-page: E1340 year: 2001 ident: rg2/ref2 publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.2001.281.6.E1340 – ident: rg22/ref22 doi: 10.1007/s00424-003-1203-z – ident: rg28/ref28 doi: 10.1016/0021-9290(91)90385-Z – volume: 13 start-page: S150 year: 1992 ident: rg24/ref24 publication-title: Int. J. Sports Med. doi: 10.1055/s-2007-1024622 – volume: 18 start-page: 1010 year: 2004 ident: rg16/ref16 publication-title: FASEB J. doi: 10.1096/fj.03-0762fje – volume: 293 start-page: R392 year: 2007 ident: rg18/ref18 publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00056.2007 – volume: 88 start-page: 2219 year: 2000 ident: rg47/ref47 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.2000.88.6.2219 – ident: rg1/ref1 doi: 10.1249/01.mss.0000191418.37709.81 – volume: 78 start-page: 2131 year: 1995 ident: rg41/ref41 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1995.78.6.2131 – ident: rg20/ref20 doi: 10.1002/mus.880170802 – volume: 81 start-page: 1331 year: 1996 ident: rg26/ref26 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1996.81.3.1331 – volume: 80 start-page: 876 year: 1996 ident: rg4/ref4 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1996.80.3.876 – volume: 67 start-page: 926 year: 1989 ident: rg27/ref27 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1989.67.3.926 – ident: rg37/ref37 doi: 10.1113/jphysiol.2001.012910 – volume: 89 start-page: 1072 year: 2000 ident: rg19/ref19 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.2000.89.3.1072 – ident: rg21/ref21 doi: 10.1113/jphysiol.2004.062232 – volume: 40 start-page: 149 year: 1976 ident: rg9/ref9 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1976.40.2.149 – volume: 215 start-page: 523 year: 1968 ident: rg34/ref34 publication-title: Am. J. Physiol. doi: 10.1152/ajplegacy.1968.215.3.523 – volume: 284 start-page: C1669 year: 2003 ident: rg15/ref15 publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00409.2002 – ident: rg17/ref17 doi: 10.1055/s-2003-39085 – volume: 41 start-page: 1203 year: 1978 ident: rg44/ref44 publication-title: J. Neurophysiol. doi: 10.1152/jn.1978.41.5.1203 – volume: 75 start-page: 813 year: 1993 ident: rg30/ref30 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1993.75.2.813 – volume: 254 start-page: C548 year: 1988 ident: rg31/ref31 publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.1988.254.4.C548 – volume: 125 start-page: 395 year: 1985 ident: rg43/ref43 publication-title: Acta Physiol. Scand. doi: 10.1111/j.1748-1716.1985.tb07735.x – ident: rg35/ref35 doi: 10.1055/s-2007-971901 – ident: rg10/ref10 doi: 10.1097/00005768-200211000-00005 – volume: 75 start-page: 648 year: 1993 ident: rg25/ref25 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1993.75.2.648 – ident: rg12/ref12 doi: 10.1113/jphysiol.2006.112094 – volume: 465 start-page: 203 year: 1993 ident: rg3/ref3 publication-title: J. Physiol. doi: 10.1113/jphysiol.1993.sp019673 – ident: rg46/ref46 doi: 10.1042/BST0300237 – volume: 272 start-page: C501 year: 1997 ident: rg33/ref33 publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.1997.272.2.C501 – ident: rg7/ref7 doi: 10.1152/japplphysiol.01095.2004 – volume: 248 start-page: 7276 year: 1973 ident: rg32/ref32 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)43389-9 – volume: 86 start-page: 2013 year: 1999 ident: rg14/ref14 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1999.86.6.2013 – ident: rg42/ref42 doi: 10.1101/gad.7.12a.2431 – ident: rg6/ref6 doi: 10.1113/jphysiol.2007.142109 – volume: 279 start-page: E1202 year: 2000 ident: rg8/ref8 publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.2000.279.5.E1202 – volume: 292 start-page: R1970 year: 2007 ident: rg5/ref5 publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00503.2006 – ident: rg40/ref40 doi: 10.1111/j.1365-201X.2005.01423.x – ident: rg13/ref13 doi: 10.1007/BF00585149 – ident: rg48/ref48 doi: 10.2114/jpa.21.247 – volume: 53 start-page: 844 year: 1982 ident: rg11/ref11 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1982.53.4.844 – ident: rg36/ref36 doi: 10.1007/s004210000223 – volume: 272 start-page: C525 year: 1997 ident: rg45/ref45 publication-title: Am. J. Physiol. doi: 10.1152/ajpcell.1997.272.2.C525 – volume: 70 start-page: 1353 year: 1992 ident: rg29/ref29 publication-title: Can. J. Physiol. Pharmacol. doi: 10.1139/y92-190 – volume: 121 start-page: 91 year: 1985 ident: rg38/ref38 publication-title: Am. J. Epidemiol. doi: 10.1093/oxfordjournals.aje.a113987 – ident: rg39/ref39 doi: 10.1007/BF00635872 – ident: rg23/ref23 doi: 10.1249/01.MSS.0000128246.20242.8B |
SSID | ssib000828872 ssj0045063 |
Score | 2.0626776 |
Snippet | Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The... |
SourceID | proquest gale pubmed pascalfrancis crossref nrcresearch |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1124 |
SubjectTerms | Adult aerobic capacity Bicycling Biological and medical sciences biomarkers capacité aérobie capacité oxydative endurance Exercise Exercise - physiology Female Fundamental and applied biological sciences. Psychology Health aspects Humans Hydrogen-Ion Concentration Kinetics Magnetic Resonance Spectroscopy - methods Male metabolism Muscle, Skeletal - metabolism Muscles Musculoskeletal system nutrition oxidative capacity Oxidative stress Oxygen Consumption - physiology phosphates Phosphocreatine Phosphocreatine - metabolism phosphorus magnetic resonance spectroscopy Physical Endurance - physiology Physical Exertion - physiology Physiological aspects Reference Values résonance magnétique nucléaire du phosphore 31 skeletal muscle spectroscopy Spectrum analysis Students Studies Time Factors Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports Weight training Young Adult |
Title | Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans |
URI | http://www.nrcresearchpress.com/doi/abs/10.1139/H08-099 https://www.ncbi.nlm.nih.gov/pubmed/19088770 https://www.proquest.com/docview/205815217 https://www.proquest.com/docview/2000236911 https://www.proquest.com/docview/20572415 https://www.proquest.com/docview/69900670 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6V9gIHBOVlWsoiUDlULrG9ttfHvqKoaoNEUik3y7u2lYjgVIkLKj-AP8WfY8a769htUwGHWIl34l1rPs_OjOdByAfQIAJ02tshCzKbpZKDHBQY0-A7iUwywQLMHT7vB70LdjryR2trvxtRS1el2Jc_78wr-R-uwjngK2bJ_gNn64vCCfgO_IUjcBiOf8XjwRiUZxuF6x6WHbYnKh69vK6qQMy_V4HkqgUEpkPOZ1hi9nI8W8BHaYsFdk2RGMZ5vfcVflVFm3PAxuwH_gn75GAticaVTY8mdJRUDf4WTf3WKLWVw6ROhClMyX8TK_otKwF8U1O-EBgulLga4IuBhuNWVwU-nUynS7_teXatOzZXjm3tjjWuC34jDKSuv2DEWMPz1v9yVMcetqJRUEiHjm-D7GhJcVVOQ6O1KZJBoWR37xUellrtVeEf0XI7NCEA_c9x9-LsLB6ejIbtUWU8BajpYJrxA7Lhgo3irpONg8Pjw65RBJivGvnVy1U52zjvJz1rSxnSKsGjYi51oacxRuomC3hYc9VlZbUZVKlDwyfksbZj6IEC5VOylhWbxDqeZCXdpbrY7JT2DeM3yebSQAGKQfWm6hn5tYQwbUOYGghTA2FqIExvQJgaCFMDYVpDmN6GMDUQhimogvBzMuyeDI96tm4NYsvA65S264s8FR3JXeHCGc5kGEYubEhu7qSg9eYgmgKecV_6HZmlHhNOkCc8zX2WsiT1XpD1YlZkrwj1PCETngQ8dVIWBkmU-0KkLOIidzo8cS2ya1gUS102H-97GlfmsxfFPezjGkUWoTXhpaoUc5vkLfI4VinOtQSKD8DMCjhs98wiHysKBCrMIhOdJANrxTptLcrtFiXsCrI1_L6Bo3sWdBfVWI3Gl2lukZ0WAmsa13GYw0LfIlsGkrEWjYvY7fgcDYPQIu_qUVwhRnQW2ewKSarmFaBrwSJW0vghWhirKQJQpjHT0CIv1dOwvFMM4AzDzut717dFHi4F0zZZL-dX2RuwMkqxo5_mP2plM9A |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+high-intensity+interval+training+improves+phosphocreatine+recovery+kinetics+following+moderate-intensity+exercise+in+humans&rft.jtitle=Applied+physiology%2C+nutrition%2C+and+metabolism&rft.au=bes%2C+Sean+C&rft.au=Slade%2C+Jill+M&rft.au=Meyer%2C+Ronald+A&rft.date=2008-12-01&rft.pub=Canadian+Science+Publishing+NRC+Research+Press&rft.issn=1715-5312&rft.volume=33&rft.issue=6&rft.spage=1124&rft_id=info:doi/10.1139%2FH08-099&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1618535821 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1715-5312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1715-5312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1715-5312&client=summon |