Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex

Goal-driven and feedforward-only convolutional neural networks (CNN) have been shown to be able to predict and decode cortical responses to natural images or videos. Here, we explored an alternative deep neural network, variational auto-encoder (VAE), as a computational model of the visual cortex. W...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 198; pp. 125 - 136
Main Authors Han, Kuan, Wen, Haiguang, Shi, Junxing, Lu, Kun-Han, Zhang, Yizhen, Fu, Di, Liu, Zhongming
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2019
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Goal-driven and feedforward-only convolutional neural networks (CNN) have been shown to be able to predict and decode cortical responses to natural images or videos. Here, we explored an alternative deep neural network, variational auto-encoder (VAE), as a computational model of the visual cortex. We trained a VAE with a five-layer encoder and a five-layer decoder to learn visual representations from a diverse set of unlabeled images. Using the trained VAE, we predicted and decoded cortical activity observed with functional magnetic resonance imaging (fMRI) from three human subjects passively watching natural videos. Compared to CNN, VAE could predict the video-evoked cortical responses with comparable accuracy in early visual areas, but relatively lower accuracy in higher-order visual areas. The distinction between CNN and VAE in terms of encoding performance was primarily attributed to their different learning objectives, rather than their different model architecture or number of parameters. Despite lower encoding accuracies, VAE offered a more convenient strategy for decoding the fMRI activity to reconstruct the video input, by first converting the fMRI activity to the VAE's latent variables, and then converting the latent variables to the reconstructed video frames through the VAE's decoder. This strategy was more advantageous than alternative decoding methods, e.g. partial least squares regression, for being able to reconstruct both the spatial structure and color of the visual input. Such findings highlight VAE as an unsupervised model for learning visual representation, as well as its potential and limitations for explaining cortical responses and reconstructing naturalistic and diverse visual experiences. •Variational auto-encoder implements 1 an unsupervised model of “Bayesian brain”.•Variational auto-encoder explains and predicts fMRI responses to natural videos.•Variational auto-encoder decodes fMRI responses to directly reconstruct visual input.•Convolutional neural networks trained for image classification better predict fMRI responses than variational auto-encoder trained for image reconstruction.
AbstractList Goal-driven and feedforward-only convolutional neural networks (CNN) have been shown to be able to predict and decode cortical responses to natural images or videos. Here, we explored an alternative deep neural network, variational auto-encoder (VAE), as a computational model of the visual cortex. We trained a VAE with a five-layer encoder and a five-layer decoder to learn visual representations from a diverse set of unlabeled images. Using the trained VAE, we predicted and decoded cortical activity observed with functional magnetic resonance imaging (fMRI) from three human subjects passively watching natural videos. Compared to CNN, VAE could predict the video-evoked cortical responses with comparable accuracy in early visual areas, but relatively lower accuracy in higher-order visual areas. The distinction between CNN and VAE in terms of encoding performance was primarily attributed to their different learning objectives, rather than their different model architecture or number of parameters. Despite lower encoding accuracies, VAE offered a more convenient strategy for decoding the fMRI activity to reconstruct the video input, by first converting the fMRI activity to the VAE's latent variables, and then converting the latent variables to the reconstructed video frames through the VAE's decoder. This strategy was more advantageous than alternative decoding methods, e.g. partial least squares regression, for being able to reconstruct both the spatial structure and color of the visual input. Such findings highlight VAE as an unsupervised model for learning visual representation, as well as its potential and limitations for explaining cortical responses and reconstructing naturalistic and diverse visual experiences.
Goal-driven and feedforward-only convolutional neural networks (CNN) have been shown to be able to predict and decode cortical responses to natural images or videos. Here, we explored an alternative deep neural network, variational auto-encoder (VAE), as a computational model of the visual cortex. We trained a VAE with a five-layer encoder and a five-layer decoder to learn visual representations from a diverse set of unlabeled images. Using the trained VAE, we predicted and decoded cortical activity observed with functional magnetic resonance imaging (fMRI) from three human subjects passively watching natural videos. Compared to CNN, VAE could predict the video-evoked cortical responses with comparable accuracy in early visual areas, but relatively lower accuracy in higher-order visual areas. The distinction between CNN and VAE in terms of encoding performance was primarily attributed to their different learning objectives, rather than their different model architecture or number of parameters. Despite lower encoding accuracies, VAE offered a more convenient strategy for decoding the fMRI activity to reconstruct the video input, by first converting the fMRI activity to the VAE's latent variables, and then converting the latent variables to the reconstructed video frames through the VAE's decoder. This strategy was more advantageous than alternative decoding methods, e.g. partial least squares regression, for being able to reconstruct both the spatial structure and color of the visual input. Such findings highlight VAE as an unsupervised model for learning visual representation, as well as its potential and limitations for explaining cortical responses and reconstructing naturalistic and diverse visual experiences. •Variational auto-encoder implements 1 an unsupervised model of “Bayesian brain”.•Variational auto-encoder explains and predicts fMRI responses to natural videos.•Variational auto-encoder decodes fMRI responses to directly reconstruct visual input.•Convolutional neural networks trained for image classification better predict fMRI responses than variational auto-encoder trained for image reconstruction.
Goal-driven and feedforward-only convolutional neural networks (CNN) have been shown to be able to predict and decode cortical responses to natural images or videos. Here, we explored an alternative deep neural network, variational auto-encoder (VAE), as a computational model of the visual cortex. We trained a VAE with a five-layer encoder and a five-layer decoder to learn visual representations from a diverse set of unlabeled images. Using the trained VAE, we predicted and decoded cortical activity observed with functional magnetic resonance imaging (fMRI) from three human subjects passively watching natural videos. Compared to CNN, VAE could predict the video-evoked cortical responses with comparable accuracy in early visual areas, but relatively lower accuracy in higher-order visual areas. The distinction between CNN and VAE in terms of encoding performance was primarily attributed to their different learning objectives, rather than their different model architecture or number of parameters. Despite lower encoding accuracies, VAE offered a more convenient strategy for decoding the fMRI activity to reconstruct the video input, by first converting the fMRI activity to the VAE's latent variables, and then converting the latent variables to the reconstructed video frames through the VAE's decoder. This strategy was more advantageous than alternative decoding methods, e.g. partial least squares regression, for being able to reconstruct both the spatial structure and color of the visual input. Such findings highlight VAE as an unsupervised model for learning visual representation, as well as its potential and limitations for explaining cortical responses and reconstructing naturalistic and diverse visual experiences.Goal-driven and feedforward-only convolutional neural networks (CNN) have been shown to be able to predict and decode cortical responses to natural images or videos. Here, we explored an alternative deep neural network, variational auto-encoder (VAE), as a computational model of the visual cortex. We trained a VAE with a five-layer encoder and a five-layer decoder to learn visual representations from a diverse set of unlabeled images. Using the trained VAE, we predicted and decoded cortical activity observed with functional magnetic resonance imaging (fMRI) from three human subjects passively watching natural videos. Compared to CNN, VAE could predict the video-evoked cortical responses with comparable accuracy in early visual areas, but relatively lower accuracy in higher-order visual areas. The distinction between CNN and VAE in terms of encoding performance was primarily attributed to their different learning objectives, rather than their different model architecture or number of parameters. Despite lower encoding accuracies, VAE offered a more convenient strategy for decoding the fMRI activity to reconstruct the video input, by first converting the fMRI activity to the VAE's latent variables, and then converting the latent variables to the reconstructed video frames through the VAE's decoder. This strategy was more advantageous than alternative decoding methods, e.g. partial least squares regression, for being able to reconstruct both the spatial structure and color of the visual input. Such findings highlight VAE as an unsupervised model for learning visual representation, as well as its potential and limitations for explaining cortical responses and reconstructing naturalistic and diverse visual experiences.
Goal-driven and feedforward-only convolutional neural networks (CNN) have been shown to be able to predict and decode cortical responses to natural images or videos. Here, we explored an alternative deep neural network, variational auto-encoder (VAE), as a computational model of the visual cortex. We trained a VAE with a five-layer encoder and a five-layer decoder to learn visual representations from a diverse set of unlabeled images. Using the trained VAE, we predicted and decoded cortical activity observed with functional magnetic resonance imaging (fMRI) from three human subjects passively watching natural videos. Compared to CNN, VAE could predict the video-evoked cortical responses with comparable accuracy in early visual areas, but relatively lower accuracy in higher-order visual areas. The distinction between CNN and VAE in terms of encoding performance was primarily attributed to their different learning objectives, rather than their different model architecture or number of parameters. Despite lower encoding accuracies, VAE offered a more convenient strategy for decoding the fMRI activity to reconstruct the video input, by first converting the fMRI activity to the VAE’s latent variables, and then converting the latent variables to the reconstructed video frames through the VAE’s decoder. This strategy was more advantageous than alternative decoding methods, e.g. partial least square regression, for being able to reconstruct both the spatial structure and color of the visual input. Such findings highlight VAE as an unsupervised model for learning visual representation, as well as its potential and limitations for explaining cortical responses and reconstructing naturalistic and diverse visual experiences.
Author Fu, Di
Liu, Zhongming
Zhang, Yizhen
Lu, Kun-Han
Shi, Junxing
Han, Kuan
Wen, Haiguang
AuthorAffiliation 2 School of Electrical and Computer Engineering Purdue University, West Lafayette, Indiana, 47906, USA
3 Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, 47906, USA
1 Weldon School of Biomedical Engineering Purdue University, West Lafayette, Indiana, 47906, USA
AuthorAffiliation_xml – name: 1 Weldon School of Biomedical Engineering Purdue University, West Lafayette, Indiana, 47906, USA
– name: 2 School of Electrical and Computer Engineering Purdue University, West Lafayette, Indiana, 47906, USA
– name: 3 Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, 47906, USA
Author_xml – sequence: 1
  givenname: Kuan
  surname: Han
  fullname: Han, Kuan
  organization: School of Electrical and Computer Engineering, USA
– sequence: 2
  givenname: Haiguang
  surname: Wen
  fullname: Wen, Haiguang
  organization: School of Electrical and Computer Engineering, USA
– sequence: 3
  givenname: Junxing
  surname: Shi
  fullname: Shi, Junxing
  organization: School of Electrical and Computer Engineering, USA
– sequence: 4
  givenname: Kun-Han
  surname: Lu
  fullname: Lu, Kun-Han
  organization: School of Electrical and Computer Engineering, USA
– sequence: 5
  givenname: Yizhen
  surname: Zhang
  fullname: Zhang, Yizhen
  organization: School of Electrical and Computer Engineering, USA
– sequence: 6
  givenname: Di
  surname: Fu
  fullname: Fu, Di
  organization: School of Electrical and Computer Engineering, USA
– sequence: 7
  givenname: Zhongming
  surname: Liu
  fullname: Liu, Zhongming
  email: zmliu@purdue.edu
  organization: Weldon School of Biomedical Engineering, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31103784$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URH_gFZAlNmwS_BPHMQtEqShUKkJCwNYy9s3gIWMPdjJi3r5OO6Uwq1k5Ts79cnS_U3QUYgCEMCU1JbR9tawDTCn6lVlAzQhVNRE14eoROqFEiUoJyY7mZ8GrjlJ1jE5zXhJCFG26J-iYU0q47JoTtPhukjejj8EM2ExjhGCjg_Qanwc8hTytIW18BodX5fWA-5jwbcSHBTbBYQe7S__pyxU2dvQbP26xD7iMTQVqYxrhz1P0uDdDhme78wx9u3z_9eJjdf35w9XF-XVlW07GijpGZGlney6IVMJZ00vXS2qbxjVGCMpZb_rWSMGFY6y30jaKgIWua53p-Bl6c8ddTz9W4CyEMZlBr1PZVdrqaLz-_0vwP_UibnQrFJOsLYCXO0CKvyfIo175bGEYTIA4Zc0Yp13LCFMl-mIvuoxTKoucU00z91eypJ7_2-hvlXsHD5Vtijkn6LX1462SUtAPmhI9S9dL_SBdz9I1EbpIL4BuD3D_jwNG392NQnGy8ZB0tr74BecT2FG76A-BvN2D2MEHb83wC7aHIW4AmGPliw
CitedBy_id crossref_primary_10_1177_0954406220941037
crossref_primary_10_1016_j_neuroimage_2023_120395
crossref_primary_10_1016_j_neuroimage_2022_119121
crossref_primary_10_1007_s11783_024_1768_7
crossref_primary_10_1088_1741_2552_ac1179
crossref_primary_10_1016_j_cmpb_2022_106979
crossref_primary_10_1109_TCDS_2020_3007761
crossref_primary_10_1088_1757_899X_1043_2_022032
crossref_primary_10_3389_fnins_2022_940972
crossref_primary_10_1016_j_neucom_2020_05_113
crossref_primary_10_3390_make2030020
crossref_primary_10_1109_TSP_2020_3028701
crossref_primary_10_1117_1_NPh_11_3_035005
crossref_primary_10_1007_s11633_023_1484_y
crossref_primary_10_3390_s22166148
crossref_primary_10_1016_j_cobme_2021_100298
crossref_primary_10_3389_fnins_2022_1032696
crossref_primary_10_1016_j_jbiosc_2020_01_006
crossref_primary_10_3390_brainsci11081004
crossref_primary_10_1109_LSP_2020_2998361
crossref_primary_10_1371_journal_pone_0297947
crossref_primary_10_1109_TIP_2020_2984360
crossref_primary_10_1142_S0218001422560158
crossref_primary_10_1145_3448302
crossref_primary_10_1117_1_JEI_33_2_023032
crossref_primary_10_1016_j_ecoinf_2024_102588
crossref_primary_10_2174_1568026620666200704135327
crossref_primary_10_1016_j_eng_2019_03_010
crossref_primary_10_1007_s10845_021_01822_y
crossref_primary_10_3390_brainsci12020228
crossref_primary_10_1371_journal_pcbi_1012822
crossref_primary_10_1016_j_neuroscience_2022_11_021
crossref_primary_10_1016_j_patter_2021_100198
crossref_primary_10_1016_j_neuroimage_2021_118203
crossref_primary_10_3758_s13423_023_02281_7
crossref_primary_10_3390_bioengineering10101117
crossref_primary_10_1007_s12264_020_00613_4
crossref_primary_10_1016_j_jfranklin_2023_07_015
crossref_primary_10_1016_j_neunet_2023_07_016
crossref_primary_10_1093_cercor_bhab498
crossref_primary_10_1016_j_neucom_2022_02_017
crossref_primary_10_1016_j_compmedimag_2024_102372
crossref_primary_10_1016_j_measurement_2019_107459
crossref_primary_10_1016_j_neunet_2023_11_024
crossref_primary_10_1109_TNNLS_2020_3028167
crossref_primary_10_1186_s13640_023_00618_9
crossref_primary_10_1007_s10044_024_01347_z
crossref_primary_10_1016_j_neunet_2022_06_034
crossref_primary_10_1016_j_compbiomed_2022_105603
crossref_primary_10_1371_journal_pcbi_1008558
crossref_primary_10_1016_j_neunet_2021_08_006
crossref_primary_10_1038_s41467_024_50310_3
crossref_primary_10_1016_j_neuri_2021_100031
crossref_primary_10_1142_S0129065724500163
crossref_primary_10_1371_journal_pcbi_1011887
crossref_primary_10_1016_j_neuroimage_2020_117602
crossref_primary_10_1109_JBHI_2022_3175928
crossref_primary_10_1371_journal_pcbi_1012058
crossref_primary_10_1109_TCDS_2022_3176977
crossref_primary_10_1109_TNSRE_2022_3217344
crossref_primary_10_1016_j_neuroimage_2020_116790
crossref_primary_10_1038_s42003_023_05257_4
crossref_primary_10_1016_j_neucom_2024_128123
crossref_primary_10_1155_2022_1124927
crossref_primary_10_1167_tvst_11_2_11
crossref_primary_10_1093_cercor_bhae257
crossref_primary_10_1007_s11633_022_1335_2
crossref_primary_10_1002_hbm_26573
crossref_primary_10_1016_j_cortex_2021_07_008
crossref_primary_10_1016_j_jncc_2022_11_004
crossref_primary_10_3389_fnins_2019_00692
crossref_primary_10_1038_s41598_020_80675_6
crossref_primary_10_1007_s10926_020_09886_y
crossref_primary_10_1007_s11277_023_10759_9
crossref_primary_10_1007_s12559_022_09992_4
crossref_primary_10_1016_j_fmre_2023_08_010
crossref_primary_10_1017_dsj_2020_23
crossref_primary_10_1162_neco_a_01628
crossref_primary_10_1371_journal_pcbi_1008943
crossref_primary_10_1016_j_bspc_2021_103397
crossref_primary_10_3390_s21227432
crossref_primary_10_3389_fnins_2021_614182
crossref_primary_10_1016_j_iswa_2025_200490
crossref_primary_10_1109_TCDS_2022_3181469
crossref_primary_10_1016_j_neuroimage_2021_118423
crossref_primary_10_3389_fnins_2022_928841
crossref_primary_10_3390_computers13110293
crossref_primary_10_1016_j_compbiomed_2023_107395
crossref_primary_10_1016_j_neuroimage_2023_120412
Cites_doi 10.1016/j.tics.2006.05.002
10.1038/ncomms15037
10.1016/j.neuroimage.2010.07.073
10.1371/journal.pcbi.1003724
10.1152/jn.00105.2013
10.1109/TIP.2003.819861
10.1098/rspb.1998.0303
10.1016/j.neuroimage.2013.04.127
10.1016/j.neuron.2009.09.006
10.1038/srep27755
10.1113/jphysiol.1962.sp006837
10.1002/hbm.24006
10.1038/nature18933
10.1016/j.neuroimage.2017.07.018
10.1523/JNEUROSCI.2807-09.2009
10.1016/j.tins.2004.10.007
10.1098/rstb.2008.0300
10.1093/cercor/bhx268
10.1007/s11263-015-0816-y
10.1038/s41598-018-22160-9
10.1038/4580
10.1162/neco.1995.7.5.889
10.3389/fninf.2014.00072
10.1016/j.neuroimage.2014.03.018
10.1146/annurev.neuro.29.051605.113024
10.1126/science.290.5500.2268
10.1523/JNEUROSCI.5023-14.2015
10.1371/journal.pcbi.1003553
10.1038/nn.4244
10.1038/381607a0
10.1162/neco.1989.1.3.295
10.1007/BF00204594
10.1016/j.neuroimage.2018.07.043
10.1162/NECO_a_00047
10.1371/journal.pcbi.1003915
10.1038/nature06713
10.1038/nrn2787
10.1038/nature14539
10.1016/j.cub.2011.08.031
10.1080/09548980500464030
10.3389/fnsys.2016.00081
10.1016/j.neuroimage.2016.10.001
10.1146/annurev-vision-082114-035447
10.1016/j.csda.2004.03.005
10.1371/journal.pcbi.1006633
10.1152/physrev.1995.75.1.107
10.1007/s12559-016-9445-1
10.1126/science.7761831
10.1364/JOSA.70.001297
10.1016/j.tics.2009.04.005
10.1016/j.neuron.2012.10.038
10.1523/JNEUROSCI.4911-09.2010
10.1073/pnas.1403112111
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
2019. Elsevier Inc.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
– notice: 2019. Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1016/j.neuroimage.2019.05.039
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology

MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 136
ExternalDocumentID PMC6592726
31103784
10_1016_j_neuroimage_2019_05_039
S1053811919304318
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH104402
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c630t-1d207311cf350795dcaf7df71c44d4a55132faf6a7535d22fc7c490ece886da83
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 14:11:26 EDT 2025
Fri Jul 11 16:11:43 EDT 2025
Wed Aug 13 10:53:10 EDT 2025
Wed Feb 19 02:30:54 EST 2025
Thu Apr 24 22:56:07 EDT 2025
Tue Jul 01 03:02:08 EDT 2025
Fri Feb 23 02:36:57 EST 2024
Tue Aug 26 20:02:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Neural coding
Variational autoencoder
Bayesian brain
Visual reconstruction
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-1d207311cf350795dcaf7df71c44d4a55132faf6a7535d22fc7c490ece886da83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6592726
PMID 31103784
PQID 2244079597
PQPubID 2031077
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6592726
proquest_miscellaneous_2231862029
proquest_journals_2244079597
pubmed_primary_31103784
crossref_citationtrail_10_1016_j_neuroimage_2019_05_039
crossref_primary_10_1016_j_neuroimage_2019_05_039
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_05_039
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_05_039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2019
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Tenenhaus, Vinzi, Chatelin, Lauro (bib66) 2005; 48
Barlow (bib3) 1989; 1
Mirza, Courville, Bengio (bib49) 2016
Wen, Han, Shi, Zhang, Culurciello, Liu (bib71) 2018
Seeliger, Güçlü, Ambrogioni, Güçlütürk, Van Gerven (bib59) 2018; 181
Simonyan, Zisserman (bib63) 2014
Nili, Wingfield, Walther, Su, Marslen-Wilson, Kriegeskorte (bib53) 2014; 10
Cowen, Chun, Kuhl (bib8) 2014; 94
David, Gallant (bib10) 2005; 16
Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson (bib20) 2016; 536
Gregor, Danihelka, Graves, Rezende, Wierstra (bib22) 2015
Bastos, Usrey, Adams, Mangun, Fries, Friston (bib4) 2012; 76
van Gerven, de Lange, Heskes (bib67) 2010; 22
Wen, Shi, Chen, Liu (bib72) 2018; 8
Friston, Kiebel (bib19) 2009; 364
Huth, Lee, Nishimoto, Bilenko, Vu, Gallant (bib33) 2016; 10
Wu, David, Gallant (bib75) 2006; 29
Nair, Hinton (bib50) 2010
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (bib56) 2015; 115
Deshpande, Lu, Yeh, Chong, Forsyth (bib12) 2017
Horikawa, Kamitani (bib31) 2017; 8
Lin, Chen, Yan (bib46) 2013
Jammalamadaka, Sengupta (bib34) 2001
Olshausen, Field (bib1a) 1996; 381
Friston (bib17) 2009; 13
Yan, Yang, Sohn, Lee (bib78) 2016
LeCun, Bengio, Hinton (bib45) 2015; 521
Yeh, Liu, Dan, Agarwala (bib79) 2016
Hinton, Sejnowski, Poggio (bib29) 1999
Yuille, Kersten (bib80) 2006; 10
Lotter, Kreiman, Cox (bib47) 2016
Spratling (bib64) 2010; 30
Hinton, Dayan, Frey, Neal (bib28) 1995; 268
Kulkarni, Whitney, Kohli, Tenenbaum (bib44) 2015; 2
Kriegeskorte (bib42) 2015; 1
Kingma, Welling (bib40) 2013
Salin, Bullier (bib57) 1995; 75
Yamins, DiCarlo (bib77) 2016; 19
Zhao, Song, Ermon (bib81) 2017
van Hateren, van der Schaaf (bib68) 1998; 265
Wang, Bovik, Sheikh, Simoncelli (bib70) 2004; 13
Dayan, Hinton, Neal, Zemel (bib11) 1995; 7
Seung, Lee (bib60) 2000; 290
Hubel, Wiesel (bib32) 1962; 160
Kingma, Ba (bib39) 2014
Wetzel (bib74) 2017; 96
Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo (bib76) 2014; 111
Han, Wen, Zhang, Fu, Culurciello, Liu (bib26) 2018
Berens (bib5) 2009; 31
Eickenberg, Gramfort, Varoquaux, Thirion (bib15) 2017; 152
Khaligh-Razavi, Kriegeskorte (bib37) 2014; 10
Güçlütürk, Güçlü, Seeliger, Bosch, van Lier, van Gerven (bib25) 2017
Adolf, Weston, Baecke, Luchtmann, Bernarding, Kropf (bib1) 2014; 8
Rao, Ballard (bib55) 1999; 2
Knill, Pouget (bib41) 2004; 27
Kay, Winawer, Mezer, Wandell (bib36) 2013; 110
Kay, Naselaris, Prenger, Gallant (bib35) 2008; 452
Hinton, Zemel (bib30) 1994
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni (bib21) 2013; 80
Doersch (bib13) 2016
Dai, Wang, Aston, Hua, Wipf (bib9) 2017
Guclu, van Gerven (bib23) 2015; 35
Naselaris, Prenger, Kay, Oliver, Gallant (bib52) 2009; 63
Nishimoto, Vu, Naselaris, Benjamini, Yu, Gallant (bib54) 2011; 21
Seeliger, Fritsche, Güçlü, Schoenmakers, Schoffelen, Bosch, van Gerven (bib58) 2018; 180
Krizhevsky, Sutskever, Hinton (bib43) 2012
Shi, Wen, Zhang, Han, Liu (bib62) 2017; 39
Arcaro, McMains, Singer, Kastner (bib2) 2009; 29
Naselaris, Kay, Nishimoto, Gallant (bib51) 2011; 56
Friston (bib18) 2010; 11
Kietzmann, McClure, Kriegeskorte (bib38) 2019
Fogel, Sagi (bib16) 1989; 61
Güçlü, van Gerven (bib24) 2014; 10
Cichy, Khosla, Pantazis, Torralba, Oliva (bib7) 2016; 6
Wen, Shi, Zhang, Lu, Cao, Liu (bib73) 2018; 28
He, Zhang, Ren, Sun (bib27) 2016
Marcelja (bib48) 1980; 70
Du, Du, Huang, He (bib14) 2018
Bouchacourt, Tomioka, Nowozin (bib6) 2017
Shen, Horikawa, Majima, Kamitani (bib61) 2019; 15
Spratling (bib65) 2017; 9
Walker, Doersch, Gupta, Hebert (bib69) 2016
Simonyan (10.1016/j.neuroimage.2019.05.039_bib63) 2014
Fogel (10.1016/j.neuroimage.2019.05.039_bib16) 1989; 61
Lotter (10.1016/j.neuroimage.2019.05.039_bib47) 2016
Wetzel (10.1016/j.neuroimage.2019.05.039_bib74) 2017; 96
Shen (10.1016/j.neuroimage.2019.05.039_bib61) 2019; 15
Wang (10.1016/j.neuroimage.2019.05.039_bib70) 2004; 13
Güçlü (10.1016/j.neuroimage.2019.05.039_bib24) 2014; 10
Friston (10.1016/j.neuroimage.2019.05.039_bib18) 2010; 11
Naselaris (10.1016/j.neuroimage.2019.05.039_bib51) 2011; 56
Salin (10.1016/j.neuroimage.2019.05.039_bib57) 1995; 75
Russakovsky (10.1016/j.neuroimage.2019.05.039_bib56) 2015; 115
LeCun (10.1016/j.neuroimage.2019.05.039_bib45) 2015; 521
David (10.1016/j.neuroimage.2019.05.039_bib10) 2005; 16
Hinton (10.1016/j.neuroimage.2019.05.039_bib30) 1994
Kingma (10.1016/j.neuroimage.2019.05.039_bib39) 2014
Nili (10.1016/j.neuroimage.2019.05.039_bib53) 2014; 10
Horikawa (10.1016/j.neuroimage.2019.05.039_bib31) 2017; 8
van Gerven (10.1016/j.neuroimage.2019.05.039_bib67) 2010; 22
Yamins (10.1016/j.neuroimage.2019.05.039_bib76) 2014; 111
Mirza (10.1016/j.neuroimage.2019.05.039_bib49) 2016
Hinton (10.1016/j.neuroimage.2019.05.039_bib28) 1995; 268
Olshausen (10.1016/j.neuroimage.2019.05.039_bib1a) 1996; 381
Glasser (10.1016/j.neuroimage.2019.05.039_bib20) 2016; 536
Marcelja (10.1016/j.neuroimage.2019.05.039_bib48) 1980; 70
Seung (10.1016/j.neuroimage.2019.05.039_bib60) 2000; 290
Wen (10.1016/j.neuroimage.2019.05.039_bib72) 2018; 8
Wu (10.1016/j.neuroimage.2019.05.039_bib75) 2006; 29
Shi (10.1016/j.neuroimage.2019.05.039_bib62) 2017; 39
He (10.1016/j.neuroimage.2019.05.039_bib27) 2016
Hinton (10.1016/j.neuroimage.2019.05.039_bib29) 1999
Guclu (10.1016/j.neuroimage.2019.05.039_bib23) 2015; 35
Han (10.1016/j.neuroimage.2019.05.039_bib26) 2018
Seeliger (10.1016/j.neuroimage.2019.05.039_bib59) 2018; 181
Güçlütürk (10.1016/j.neuroimage.2019.05.039_bib25) 2017
Eickenberg (10.1016/j.neuroimage.2019.05.039_bib15) 2017; 152
Friston (10.1016/j.neuroimage.2019.05.039_bib19) 2009; 364
Nishimoto (10.1016/j.neuroimage.2019.05.039_bib54) 2011; 21
Kingma (10.1016/j.neuroimage.2019.05.039_bib40) 2013
Nair (10.1016/j.neuroimage.2019.05.039_bib50) 2010
Lin (10.1016/j.neuroimage.2019.05.039_bib46) 2013
Berens (10.1016/j.neuroimage.2019.05.039_bib5) 2009; 31
Hubel (10.1016/j.neuroimage.2019.05.039_bib32) 1962; 160
Cichy (10.1016/j.neuroimage.2019.05.039_bib7) 2016; 6
Glasser (10.1016/j.neuroimage.2019.05.039_bib21) 2013; 80
Wen (10.1016/j.neuroimage.2019.05.039_bib73) 2018; 28
Spratling (10.1016/j.neuroimage.2019.05.039_bib64) 2010; 30
Khaligh-Razavi (10.1016/j.neuroimage.2019.05.039_bib37) 2014; 10
Dai (10.1016/j.neuroimage.2019.05.039_bib9) 2017
Doersch (10.1016/j.neuroimage.2019.05.039_bib13) 2016
Seeliger (10.1016/j.neuroimage.2019.05.039_bib58) 2018; 180
Deshpande (10.1016/j.neuroimage.2019.05.039_bib12) 2017
Adolf (10.1016/j.neuroimage.2019.05.039_bib1) 2014; 8
Tenenhaus (10.1016/j.neuroimage.2019.05.039_bib66) 2005; 48
Friston (10.1016/j.neuroimage.2019.05.039_bib17) 2009; 13
Rao (10.1016/j.neuroimage.2019.05.039_bib55) 1999; 2
Kietzmann (10.1016/j.neuroimage.2019.05.039_bib38) 2019
Kulkarni (10.1016/j.neuroimage.2019.05.039_bib44) 2015; 2
Du (10.1016/j.neuroimage.2019.05.039_bib14) 2018
Yeh (10.1016/j.neuroimage.2019.05.039_bib79) 2016
Yan (10.1016/j.neuroimage.2019.05.039_bib78) 2016
Kay (10.1016/j.neuroimage.2019.05.039_bib36) 2013; 110
Naselaris (10.1016/j.neuroimage.2019.05.039_bib52) 2009; 63
Walker (10.1016/j.neuroimage.2019.05.039_bib69) 2016
Gregor (10.1016/j.neuroimage.2019.05.039_bib22) 2015
Kay (10.1016/j.neuroimage.2019.05.039_bib35) 2008; 452
Zhao (10.1016/j.neuroimage.2019.05.039_bib81) 2017
Jammalamadaka (10.1016/j.neuroimage.2019.05.039_bib34) 2001
Arcaro (10.1016/j.neuroimage.2019.05.039_bib2) 2009; 29
Knill (10.1016/j.neuroimage.2019.05.039_bib41) 2004; 27
van Hateren (10.1016/j.neuroimage.2019.05.039_bib68) 1998; 265
Yuille (10.1016/j.neuroimage.2019.05.039_bib80) 2006; 10
Cowen (10.1016/j.neuroimage.2019.05.039_bib8) 2014; 94
Bastos (10.1016/j.neuroimage.2019.05.039_bib4) 2012; 76
Bouchacourt (10.1016/j.neuroimage.2019.05.039_bib6) 2017
Dayan (10.1016/j.neuroimage.2019.05.039_bib11) 1995; 7
Yamins (10.1016/j.neuroimage.2019.05.039_bib77) 2016; 19
Huth (10.1016/j.neuroimage.2019.05.039_bib33) 2016; 10
Kriegeskorte (10.1016/j.neuroimage.2019.05.039_bib42) 2015; 1
Spratling (10.1016/j.neuroimage.2019.05.039_bib65) 2017; 9
Wen (10.1016/j.neuroimage.2019.05.039_bib71) 2018
Krizhevsky (10.1016/j.neuroimage.2019.05.039_bib43) 2012
Barlow (10.1016/j.neuroimage.2019.05.039_bib3) 1989; 1
References_xml – volume: 16
  start-page: 239
  year: 2005
  end-page: 260
  ident: bib10
  article-title: Predicting neuronal responses during natural vision
  publication-title: Netw. Comput. Neural Syst.
– volume: 96
  start-page: 022140
  year: 2017
  ident: bib74
  article-title: Unsupervised learning of phase transitions: from principal component analysis to variational autoencoders
  publication-title: Phys. Rev.
– volume: 364
  start-page: 1211
  year: 2009
  end-page: 1221
  ident: bib19
  article-title: Predictive coding under the free-energy principle
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 8
  start-page: 3752
  year: 2018
  ident: bib72
  article-title: Deep residual network predicts cortical representation and organization of visual features for rapid categorization
  publication-title: Sci. Rep.
– volume: 15
  start-page: e1006633
  year: 2019
  ident: bib61
  article-title: Deep image reconstruction from human brain activity
  publication-title: PLoS Comput. Biol.
– volume: 2
  start-page: 2539
  year: 2015
  end-page: 2547
  ident: bib44
  article-title: Deep convolutional inverse graphics network
  publication-title: Proceedings of the 28th International Conference on Neural Information Processing Systems
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib56
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– volume: 181
  start-page: 775
  year: 2018
  end-page: 785
  ident: bib59
  article-title: Generative adversarial networks for reconstructing natural images from brain activity
  publication-title: Neuroimage
– volume: 7
  start-page: 889
  year: 1995
  end-page: 904
  ident: bib11
  article-title: The helmholtz machine
  publication-title: Neural Comput.
– start-page: 9201
  year: 2018
  end-page: 9213
  ident: bib26
  article-title: Deep predictive coding network with local recurrent processing for object recognition
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 29
  start-page: 477
  year: 2006
  end-page: 505
  ident: bib75
  article-title: Complete functional characterization of sensory neurons by system identification
  publication-title: Annu. Rev. Neurosci.
– volume: 56
  start-page: 400
  year: 2011
  end-page: 410
  ident: bib51
  article-title: Encoding and decoding in fMRI
  publication-title: Neuroimage
– year: 2017
  ident: bib9
  article-title: Hidden Talents of the Variational Autoencoder
– year: 2019
  ident: bib38
  article-title: Deep Neural Networks in Computational Neuroscience. Oxford Research Encyclopedia of Neuroscience
– volume: 290
  start-page: 2268
  year: 2000
  end-page: 2269
  ident: bib60
  article-title: The manifold ways of perception
  publication-title: Science
– volume: 8
  start-page: 15037
  year: 2017
  ident: bib31
  article-title: Generic decoding of seen and imagined objects using hierarchical visual features
  publication-title: Nat. Commun.
– volume: 31
  start-page: 1
  year: 2009
  end-page: 21
  ident: bib5
  article-title: CircStat: a MATLAB toolbox for circular statistics
  publication-title: J. Stat. Softw.
– volume: 152
  start-page: 184
  year: 2017
  end-page: 194
  ident: bib15
  article-title: Seeing it all: convolutional network layers map the function of the human visual system
  publication-title: Neuroimage
– volume: 76
  start-page: 695
  year: 2012
  end-page: 711
  ident: bib4
  article-title: Canonical microcircuits for predictive coding
  publication-title: Neuron
– volume: 110
  start-page: 481
  year: 2013
  end-page: 494
  ident: bib36
  article-title: Compressive spatial summation in human visual cortex
  publication-title: J. Neurophysiol.
– volume: 1
  start-page: 417
  year: 2015
  end-page: 446
  ident: bib42
  article-title: Deep neural networks: a new framework for modeling biological vision and brain information processing
  publication-title: Ann. Rev. Vis. Sci.
– volume: 180
  start-page: 253
  year: 2018
  end-page: 266
  ident: bib58
  article-title: Convolutional neural network-based encoding and decoding of visual object recognition in space and time
  publication-title: Neuroimage
– start-page: 776
  year: 2016
  end-page: 791
  ident: bib78
  article-title: Attribute2Image: conditional image generation from visual attributes
  publication-title: Euro. Conf. Comp. Vision
– volume: 48
  start-page: 159
  year: 2005
  end-page: 205
  ident: bib66
  article-title: PLS path modeling
  publication-title: Comput. Stat. Data Anal.
– year: 2015
  ident: bib22
  article-title: DRAW: A Recurrent Neural Network for Image Generation
– volume: 1
  start-page: 295
  year: 1989
  end-page: 311
  ident: bib3
  article-title: Unsupervised learning
  publication-title: Neural Comput.
– volume: 160
  start-page: 106
  year: 1962
  end-page: 154
  ident: bib32
  article-title: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
  publication-title: J. Physiol.
– volume: 75
  start-page: 107
  year: 1995
  end-page: 154
  ident: bib57
  article-title: Corticocortical connections in the visual system: structure and function
  publication-title: Physiol. Rev.
– year: 1999
  ident: bib29
  article-title: Unsupervised Learning: Foundations of Neural Computation
– year: 2014
  ident: bib39
  article-title: Adam: A Method for Stochastic Optimization
– start-page: 835
  year: 2016
  end-page: 851
  ident: bib69
  article-title: An Uncertain Future: Forecasting from Static Images Using Variational Autoencoders
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib43
  article-title: ImageNet Classification with Deep Convolutional Neural Networks
– volume: 63
  start-page: 902
  year: 2009
  end-page: 915
  ident: bib52
  article-title: Bayesian reconstruction of natural images from human brain activity
  publication-title: Neuron
– volume: 536
  start-page: 171
  year: 2016
  end-page: 178
  ident: bib20
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib45
  article-title: Deep learning
  publication-title: Nature
– year: 2016
  ident: bib47
  article-title: Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning
– volume: 8
  start-page: 72
  year: 2014
  ident: bib1
  article-title: Increasing the reliability of data analysis of functional magnetic resonance imaging by applying a new blockwise permutation method
  publication-title: Front. Neuroinf.
– year: 2016
  ident: bib49
  article-title: Generalizable Features from Unsupervised Learning
– year: 2014
  ident: bib63
  article-title: Very Deep Convolutional Networks for Large-Scale Image Recognition
– volume: 10
  start-page: 301
  year: 2006
  end-page: 308
  ident: bib80
  article-title: Vision as Bayesian inference: analysis by synthesis?
  publication-title: Trends Cognit. Sci.
– volume: 70
  start-page: 1297
  year: 1980
  ident: bib48
  article-title: Mathematical description of the responses of simple cortical cells
  publication-title: J. Opt. Soc. Am.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib27
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2013
  ident: bib40
  article-title: Auto-encoding Variational Bayes
– volume: 9
  start-page: 151
  year: 2017
  end-page: 167
  ident: bib65
  article-title: A hierarchical predictive coding model of object recognition in natural images
  publication-title: Cogn. Comput.
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib70
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 6
  start-page: 27755
  year: 2016
  ident: bib7
  article-title: Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence
  publication-title: Sci. Rep.
– start-page: 3
  year: 1994
  end-page: 10
  ident: bib30
  article-title: Autoencoders, minimum description length and Helmholtz free energy
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 10
  start-page: e1003724
  year: 2014
  ident: bib24
  article-title: Unsupervised feature learning improves prediction of human brain activity in response to natural images
  publication-title: PLoS Comput. Biol.
– year: 2017
  ident: bib81
  article-title: Learning Hierarchical Features from Generative Models
– year: 2018
  ident: bib14
  article-title: Reconstructing Perceived Images from Human Brain Activities with Bayesian Deep Multiview Learning
– volume: 19
  start-page: 356
  year: 2016
  end-page: 365
  ident: bib77
  article-title: Using goal-driven deep learning models to understand sensory cortex
  publication-title: Nat. Neurosci.
– volume: 268
  start-page: 1158
  year: 1995
  end-page: 1161
  ident: bib28
  article-title: The wake-sleep algorithm for unsupervised neural networks
  publication-title: Science
– volume: 10
  start-page: 81
  year: 2016
  ident: bib33
  article-title: Decoding the semantic content of natural movies from human brain activity
  publication-title: Front. Syst. Neurosci.
– volume: 29
  start-page: 10638
  year: 2009
  end-page: 10652
  ident: bib2
  article-title: Retinotopic organization of human ventral visual cortex
  publication-title: J. Neurosci.
– volume: 21
  start-page: 1641
  year: 2011
  end-page: 1646
  ident: bib54
  article-title: Reconstructing visual experiences from brain activity evoked by natural movies
  publication-title: Curr. Biol.
– volume: 22
  start-page: 3127
  year: 2010
  end-page: 3142
  ident: bib67
  article-title: Neural decoding with hierarchical generative models
  publication-title: Neural Comput.
– start-page: 2877
  year: 2017
  end-page: 2885
  ident: bib12
  article-title: Learning Diverse Image Colorization
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib21
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
– volume: 27
  start-page: 712
  year: 2004
  end-page: 719
  ident: bib41
  article-title: The Bayesian brain: the role of uncertainty in neural coding and computation
  publication-title: Trends Neurosci.
– volume: 61
  start-page: 103
  year: 1989
  end-page: 113
  ident: bib16
  article-title: Gabor filters as texture discriminator
  publication-title: Biol. Cybern.
– volume: 2
  start-page: 79
  year: 1999
  end-page: 87
  ident: bib55
  article-title: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects
  publication-title: Nat. Neurosci.
– start-page: 5263
  year: 2018
  end-page: 5272
  ident: bib71
  article-title: Deep Predictive Coding Network for Object Recognition
– year: 2016
  ident: bib79
  article-title: Semantic Facial Expression Editing Using Autoencoded Flow
– start-page: 4246
  year: 2017
  end-page: 4257
  ident: bib25
  article-title: Reconstructing perceived faces from brain activations with deep adversarial neural decoding
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 265
  start-page: 359
  year: 1998
  end-page: 366
  ident: bib68
  article-title: Independent component filters of natural images compared with simple cells in primary visual cortex
  publication-title: Proc. Biol. Sci.
– volume: 11
  start-page: 127
  year: 2010
  end-page: 138
  ident: bib18
  article-title: The free-energy principle: a unified brain theory?
  publication-title: Nat. Rev. Neurosci.
– volume: 35
  start-page: 10005
  year: 2015
  end-page: 10014
  ident: bib23
  article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream
  publication-title: J. Neurosci.
– start-page: 807
  year: 2010
  end-page: 814
  ident: bib50
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proceedings of the 27th international conference on machine learning (ICML-10)
– volume: 30
  start-page: 3531
  year: 2010
  end-page: 3543
  ident: bib64
  article-title: Predictive coding as a model of response properties in cortical area V1
  publication-title: J. Neurosci.
– volume: 13
  start-page: 293
  year: 2009
  end-page: 301
  ident: bib17
  article-title: The free-energy principle: a rough guide to the brain?
  publication-title: Trends Cognit. Sci.
– volume: 10
  start-page: e1003915
  year: 2014
  ident: bib37
  article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation
  publication-title: PLoS Comput. Biol.
– volume: 39
  start-page: 2269
  year: 2017
  end-page: 2282
  ident: bib62
  article-title: Deep Recurrent Neural Network Reveals a Hierarchy of Process Memory during Dynamic Natural Vision
  publication-title: Hum. Brain Mapp.
– year: 2017
  ident: bib6
  article-title: Multi-Level Variational Autoencoder: Learning Disentangled Representations from Grouped Observations
– volume: 94
  start-page: 12
  year: 2014
  end-page: 22
  ident: bib8
  article-title: Neural portraits of perception: reconstructing face images from evoked brain activity
  publication-title: Neuroimage
– volume: 111
  start-page: 8619
  year: 2014
  end-page: 8624
  ident: bib76
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 2016
  ident: bib13
  article-title: Tutorial on Variational Autoencoders
– volume: 381
  start-page: 607
  year: 1996
  ident: bib1a
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
– volume: 452
  start-page: 352
  year: 2008
  end-page: 355
  ident: bib35
  article-title: Identifying natural images from human brain activity
  publication-title: Nature
– year: 2001
  ident: bib34
  article-title: Topics in Circular Statistics
– year: 2013
  ident: bib46
  article-title: Network in Network
– volume: 10
  start-page: e1003553
  year: 2014
  ident: bib53
  article-title: A toolbox for representational similarity analysis
  publication-title: PLoS Comput. Biol.
– volume: 28
  start-page: 4136
  year: 2018
  end-page: 4160
  ident: bib73
  article-title: Neural encoding and decoding with deep learning for dynamic natural vision
  publication-title: Cerebr. Cortex
– volume: 10
  start-page: 301
  year: 2006
  ident: 10.1016/j.neuroimage.2019.05.039_bib80
  article-title: Vision as Bayesian inference: analysis by synthesis?
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2006.05.002
– volume: 8
  start-page: 15037
  year: 2017
  ident: 10.1016/j.neuroimage.2019.05.039_bib31
  article-title: Generic decoding of seen and imagined objects using hierarchical visual features
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15037
– volume: 56
  start-page: 400
  year: 2011
  ident: 10.1016/j.neuroimage.2019.05.039_bib51
  article-title: Encoding and decoding in fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.07.073
– volume: 10
  start-page: e1003724
  year: 2014
  ident: 10.1016/j.neuroimage.2019.05.039_bib24
  article-title: Unsupervised feature learning improves prediction of human brain activity in response to natural images
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003724
– volume: 110
  start-page: 481
  year: 2013
  ident: 10.1016/j.neuroimage.2019.05.039_bib36
  article-title: Compressive spatial summation in human visual cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00105.2013
– volume: 13
  start-page: 600
  year: 2004
  ident: 10.1016/j.neuroimage.2019.05.039_bib70
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– start-page: 776
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.039_bib78
  article-title: Attribute2Image: conditional image generation from visual attributes
  publication-title: Euro. Conf. Comp. Vision
– volume: 265
  start-page: 359
  year: 1998
  ident: 10.1016/j.neuroimage.2019.05.039_bib68
  article-title: Independent component filters of natural images compared with simple cells in primary visual cortex
  publication-title: Proc. Biol. Sci.
  doi: 10.1098/rspb.1998.0303
– year: 2016
  ident: 10.1016/j.neuroimage.2019.05.039_bib13
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.neuroimage.2019.05.039_bib21
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 63
  start-page: 902
  year: 2009
  ident: 10.1016/j.neuroimage.2019.05.039_bib52
  article-title: Bayesian reconstruction of natural images from human brain activity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.09.006
– volume: 6
  start-page: 27755
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.039_bib7
  article-title: Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence
  publication-title: Sci. Rep.
  doi: 10.1038/srep27755
– start-page: 5263
  year: 2018
  ident: 10.1016/j.neuroimage.2019.05.039_bib71
– volume: 160
  start-page: 106
  year: 1962
  ident: 10.1016/j.neuroimage.2019.05.039_bib32
  article-title: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1962.sp006837
– volume: 39
  start-page: 2269
  year: 2017
  ident: 10.1016/j.neuroimage.2019.05.039_bib62
  article-title: Deep Recurrent Neural Network Reveals a Hierarchy of Process Memory during Dynamic Natural Vision
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24006
– volume: 536
  start-page: 171
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.039_bib20
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
  doi: 10.1038/nature18933
– volume: 180
  start-page: 253
  year: 2018
  ident: 10.1016/j.neuroimage.2019.05.039_bib58
  article-title: Convolutional neural network-based encoding and decoding of visual object recognition in space and time
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.018
– volume: 29
  start-page: 10638
  year: 2009
  ident: 10.1016/j.neuroimage.2019.05.039_bib2
  article-title: Retinotopic organization of human ventral visual cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2807-09.2009
– volume: 27
  start-page: 712
  year: 2004
  ident: 10.1016/j.neuroimage.2019.05.039_bib41
  article-title: The Bayesian brain: the role of uncertainty in neural coding and computation
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2004.10.007
– year: 2013
  ident: 10.1016/j.neuroimage.2019.05.039_bib40
– year: 2017
  ident: 10.1016/j.neuroimage.2019.05.039_bib9
– year: 2015
  ident: 10.1016/j.neuroimage.2019.05.039_bib22
– volume: 364
  start-page: 1211
  year: 2009
  ident: 10.1016/j.neuroimage.2019.05.039_bib19
  article-title: Predictive coding under the free-energy principle
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2008.0300
– volume: 28
  start-page: 4136
  year: 2018
  ident: 10.1016/j.neuroimage.2019.05.039_bib73
  article-title: Neural encoding and decoding with deep learning for dynamic natural vision
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhx268
– volume: 115
  start-page: 211
  year: 2015
  ident: 10.1016/j.neuroimage.2019.05.039_bib56
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– volume: 8
  start-page: 3752
  year: 2018
  ident: 10.1016/j.neuroimage.2019.05.039_bib72
  article-title: Deep residual network predicts cortical representation and organization of visual features for rapid categorization
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22160-9
– volume: 2
  start-page: 79
  year: 1999
  ident: 10.1016/j.neuroimage.2019.05.039_bib55
  article-title: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects
  publication-title: Nat. Neurosci.
  doi: 10.1038/4580
– start-page: 2877
  year: 2017
  ident: 10.1016/j.neuroimage.2019.05.039_bib12
– volume: 7
  start-page: 889
  year: 1995
  ident: 10.1016/j.neuroimage.2019.05.039_bib11
  article-title: The helmholtz machine
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.5.889
– start-page: 770
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.039_bib27
  article-title: Deep residual learning for image recognition
– volume: 8
  start-page: 72
  year: 2014
  ident: 10.1016/j.neuroimage.2019.05.039_bib1
  article-title: Increasing the reliability of data analysis of functional magnetic resonance imaging by applying a new blockwise permutation method
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2014.00072
– year: 2014
  ident: 10.1016/j.neuroimage.2019.05.039_bib63
– year: 2013
  ident: 10.1016/j.neuroimage.2019.05.039_bib46
– year: 2019
  ident: 10.1016/j.neuroimage.2019.05.039_bib38
– volume: 94
  start-page: 12
  year: 2014
  ident: 10.1016/j.neuroimage.2019.05.039_bib8
  article-title: Neural portraits of perception: reconstructing face images from evoked brain activity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.018
– volume: 29
  start-page: 477
  year: 2006
  ident: 10.1016/j.neuroimage.2019.05.039_bib75
  article-title: Complete functional characterization of sensory neurons by system identification
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.29.051605.113024
– year: 1999
  ident: 10.1016/j.neuroimage.2019.05.039_bib29
– volume: 290
  start-page: 2268
  year: 2000
  ident: 10.1016/j.neuroimage.2019.05.039_bib60
  article-title: The manifold ways of perception
  publication-title: Science
  doi: 10.1126/science.290.5500.2268
– volume: 35
  start-page: 10005
  year: 2015
  ident: 10.1016/j.neuroimage.2019.05.039_bib23
  article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5023-14.2015
– volume: 10
  start-page: e1003553
  year: 2014
  ident: 10.1016/j.neuroimage.2019.05.039_bib53
  article-title: A toolbox for representational similarity analysis
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003553
– volume: 19
  start-page: 356
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.039_bib77
  article-title: Using goal-driven deep learning models to understand sensory cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4244
– volume: 381
  start-page: 607
  year: 1996
  ident: 10.1016/j.neuroimage.2019.05.039_bib1a
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
  doi: 10.1038/381607a0
– year: 2016
  ident: 10.1016/j.neuroimage.2019.05.039_bib47
– volume: 1
  start-page: 295
  year: 1989
  ident: 10.1016/j.neuroimage.2019.05.039_bib3
  article-title: Unsupervised learning
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.3.295
– volume: 61
  start-page: 103
  year: 1989
  ident: 10.1016/j.neuroimage.2019.05.039_bib16
  article-title: Gabor filters as texture discriminator
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00204594
– year: 2016
  ident: 10.1016/j.neuroimage.2019.05.039_bib49
– volume: 181
  start-page: 775
  year: 2018
  ident: 10.1016/j.neuroimage.2019.05.039_bib59
  article-title: Generative adversarial networks for reconstructing natural images from brain activity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.07.043
– volume: 22
  start-page: 3127
  year: 2010
  ident: 10.1016/j.neuroimage.2019.05.039_bib67
  article-title: Neural decoding with hierarchical generative models
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00047
– volume: 10
  start-page: e1003915
  year: 2014
  ident: 10.1016/j.neuroimage.2019.05.039_bib37
  article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003915
– volume: 452
  start-page: 352
  year: 2008
  ident: 10.1016/j.neuroimage.2019.05.039_bib35
  article-title: Identifying natural images from human brain activity
  publication-title: Nature
  doi: 10.1038/nature06713
– volume: 11
  start-page: 127
  year: 2010
  ident: 10.1016/j.neuroimage.2019.05.039_bib18
  article-title: The free-energy principle: a unified brain theory?
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2787
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.neuroimage.2019.05.039_bib45
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 21
  start-page: 1641
  year: 2011
  ident: 10.1016/j.neuroimage.2019.05.039_bib54
  article-title: Reconstructing visual experiences from brain activity evoked by natural movies
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2011.08.031
– start-page: 3
  year: 1994
  ident: 10.1016/j.neuroimage.2019.05.039_bib30
  article-title: Autoencoders, minimum description length and Helmholtz free energy
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1097
  year: 2012
  ident: 10.1016/j.neuroimage.2019.05.039_bib43
– year: 2017
  ident: 10.1016/j.neuroimage.2019.05.039_bib81
– volume: 16
  start-page: 239
  year: 2005
  ident: 10.1016/j.neuroimage.2019.05.039_bib10
  article-title: Predicting neuronal responses during natural vision
  publication-title: Netw. Comput. Neural Syst.
  doi: 10.1080/09548980500464030
– year: 2001
  ident: 10.1016/j.neuroimage.2019.05.039_bib34
– volume: 96
  start-page: 022140
  year: 2017
  ident: 10.1016/j.neuroimage.2019.05.039_bib74
  article-title: Unsupervised learning of phase transitions: from principal component analysis to variational autoencoders
  publication-title: Phys. Rev.
– volume: 10
  start-page: 81
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.039_bib33
  article-title: Decoding the semantic content of natural movies from human brain activity
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2016.00081
– volume: 152
  start-page: 184
  year: 2017
  ident: 10.1016/j.neuroimage.2019.05.039_bib15
  article-title: Seeing it all: convolutional network layers map the function of the human visual system
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.10.001
– volume: 1
  start-page: 417
  year: 2015
  ident: 10.1016/j.neuroimage.2019.05.039_bib42
  article-title: Deep neural networks: a new framework for modeling biological vision and brain information processing
  publication-title: Ann. Rev. Vis. Sci.
  doi: 10.1146/annurev-vision-082114-035447
– volume: 48
  start-page: 159
  year: 2005
  ident: 10.1016/j.neuroimage.2019.05.039_bib66
  article-title: PLS path modeling
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2004.03.005
– start-page: 835
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.039_bib69
– volume: 15
  start-page: e1006633
  year: 2019
  ident: 10.1016/j.neuroimage.2019.05.039_bib61
  article-title: Deep image reconstruction from human brain activity
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006633
– year: 2016
  ident: 10.1016/j.neuroimage.2019.05.039_bib79
– volume: 75
  start-page: 107
  year: 1995
  ident: 10.1016/j.neuroimage.2019.05.039_bib57
  article-title: Corticocortical connections in the visual system: structure and function
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1995.75.1.107
– year: 2018
  ident: 10.1016/j.neuroimage.2019.05.039_bib14
– volume: 9
  start-page: 151
  year: 2017
  ident: 10.1016/j.neuroimage.2019.05.039_bib65
  article-title: A hierarchical predictive coding model of object recognition in natural images
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-016-9445-1
– volume: 268
  start-page: 1158
  year: 1995
  ident: 10.1016/j.neuroimage.2019.05.039_bib28
  article-title: The wake-sleep algorithm for unsupervised neural networks
  publication-title: Science
  doi: 10.1126/science.7761831
– volume: 70
  start-page: 1297
  year: 1980
  ident: 10.1016/j.neuroimage.2019.05.039_bib48
  article-title: Mathematical description of the responses of simple cortical cells
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.70.001297
– start-page: 9201
  year: 2018
  ident: 10.1016/j.neuroimage.2019.05.039_bib26
  article-title: Deep predictive coding network with local recurrent processing for object recognition
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 13
  start-page: 293
  year: 2009
  ident: 10.1016/j.neuroimage.2019.05.039_bib17
  article-title: The free-energy principle: a rough guide to the brain?
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2009.04.005
– volume: 31
  start-page: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2019.05.039_bib5
  article-title: CircStat: a MATLAB toolbox for circular statistics
  publication-title: J. Stat. Softw.
– volume: 76
  start-page: 695
  year: 2012
  ident: 10.1016/j.neuroimage.2019.05.039_bib4
  article-title: Canonical microcircuits for predictive coding
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.10.038
– year: 2014
  ident: 10.1016/j.neuroimage.2019.05.039_bib39
– volume: 30
  start-page: 3531
  year: 2010
  ident: 10.1016/j.neuroimage.2019.05.039_bib64
  article-title: Predictive coding as a model of response properties in cortical area V1
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4911-09.2010
– start-page: 4246
  year: 2017
  ident: 10.1016/j.neuroimage.2019.05.039_bib25
  article-title: Reconstructing perceived faces from brain activations with deep adversarial neural decoding
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2017
  ident: 10.1016/j.neuroimage.2019.05.039_bib6
– volume: 2
  start-page: 2539
  year: 2015
  ident: 10.1016/j.neuroimage.2019.05.039_bib44
  article-title: Deep convolutional inverse graphics network
– start-page: 807
  year: 2010
  ident: 10.1016/j.neuroimage.2019.05.039_bib50
  article-title: Rectified linear units improve restricted Boltzmann machines
– volume: 111
  start-page: 8619
  year: 2014
  ident: 10.1016/j.neuroimage.2019.05.039_bib76
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1403112111
SSID ssj0009148
Score 2.6105037
Snippet Goal-driven and feedforward-only convolutional neural networks (CNN) have been shown to be able to predict and decode cortical responses to natural images or...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 125
SubjectTerms Adult
Artificial intelligence
Bayesian brain
Brain Mapping - methods
Computer applications
Deep learning
Economic models
Female
Functional magnetic resonance imaging
Humans
Hypotheses
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Models, Neurological
Neural coding
Neural networks
Neural Networks, Computer
Neuroimaging
Neurosciences
Pattern Recognition, Visual - physiology
Random variables
Supervision
Unsupervised Machine Learning
Variational autoencoder
Visual cortex
Visual Cortex - physiology
Visual discrimination learning
Visual reconstruction
Young Adult
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqHiouiDcLpTIS17Bx4tgxnKqqVUFaDkBRb5bjB6QC76q7kTjx25lJnLQLHFbimMRjxZ7xzNj-ZoaQV8pw24SKZaF0IeNNEFndcJYxK0wVfOWKBg_0Fx_E-QV_f1ld7pGTMRYGYZVJ9w86vdfW6c08zeZ81bbzT-AZgLmB_YYqMUMMBvxyLlHKX_-6gXkoxodwuKrMsHVC8wwYrz5nZPsDVi6CvFSfwxPLhv_bRP3tgv6JpLxlms7ukbvJp6THw2_fJ3s-PiAHi3Rr_pB8_QIb4nToR023WWLySuev39DjSLu47laoMNbe0b4uDgU_lvZNwKxREx11Pj2Excd3FEMhsOIEbSMFsg46tQjZ_fmIXJydfj45z1KBhcyKMt9kzBWwwhmzoQS3UFXOmiBdkMxy7rjB2i9FMEEY2NMA14pgpeUq99bXtXCmLh-T_biM_imhNjQ1sMxLD6zGKtaqDFVTGlOrAqjEjMhxTrVN2cexCMZ3PcLMrvQNNzRyQ-eVBm7MCJsoV0MGjh1o1Mg2PUaYgk7UYCZ2oH070W5J4o7Uh6OU6KQN1hrcJI7zq-SMvJw-wzrGyxkT_bLDNiDCosgL6OLJIFTTcIFFeSlrDpO4JW5TA8wRvv0ltt_6XOF4ay4L8ey_BvWc3MGnAVp3SPY3151_Ab7YpjnqF9tvxgc4Bw
  priority: 102
  providerName: Elsevier
Title Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919304318
https://dx.doi.org/10.1016/j.neuroimage.2019.05.039
https://www.ncbi.nlm.nih.gov/pubmed/31103784
https://www.proquest.com/docview/2244079597
https://www.proquest.com/docview/2231862029
https://pubmed.ncbi.nlm.nih.gov/PMC6592726
Volume 198
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJiFeJr4pjMpIvAbixHESeEBl2tQBraaKob5Zjj-gaLhlbSSe-Nu5S5yUAUJ9iqL4osR3vjvb59-PkOel4rpyGYtcalzEKyeiouIsYlqozNnMJBUu6E-mYnzB382zeVhwW4eyys4nNo7aLDWukb-EUANzjxLy3zer7xGyRuHuaqDQ2CMHCF2GVp3P8y3oLuPtUbgsjQpoECp52vquBi9y8Q1GLRZ4lQ1-J1KG_zs8_Z1-_llF-VtYOr1NDkM-SUetAdwhN6y_S25Owo75PfL5E0yGw4IfVfVmicCVxl69oiNPa7-uV-gs1tbQhhOHQg5LmyYQ0qjyhhobbtxkdkbxGASyTdCFpyBWw0s1luv-uE8uTk8-Ho-jQK4QaZHGm4iZBEY3Y9qlGfar0crlxuVMc264Qt6XxCknFMxnQGOJ07nmZWy1LQphVJE-IPt-6e0jQrWrCm2NzS2oGRmsy9RlVapUUSYgJQYk7_pU6oA8jgQYl7IrMfsqt9qQqA0ZZxK0MSCsl1y16Bs7yJSd2mR3uhT8oYQQsYPs6142ZCBtZrGj9FFnJTJ4grXc2u2APOsfwxjGjRnl7bLGNuBZRRIn8IqHrVH1vwsqitO84NCJ18ytb4D44Nef-MWXBiccd8zzRDz-_2c9IbfwH9q6uSOyv7mq7VNItDbVkOy9-MmGzZgakoPR8ezDOV7P3o-ncH17Mj2f_QKG1DJn
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkYAL4k3aAkaCo8Xa632BEKqAKqFND6hFuRmvHxAETtpkVfhT_EZm9hUKCOXS48oey-sZz4w94_kIeVJoaUqfcOZj65ksfcryUnLGTaoT7xIrSrzQHx-mw2P5bpJMNsjP7i0MplV2OrFW1HZm8I78GZgaOHsU4P--mp8wRI3C6GoHodGIxb77cQZHtsXL0Rvg71Mh9t4evR6yFlWAmTSOloxbAWLNufFxggNao31mfcaNlFZqBDwRXvtUgyMPUxXeZEYWkTMuz1Or8xjGvUQug-GN8LCXTbJVkV8um6d3Scxyzos2c6jJJ6vrU06_gZbAhLKirheKEOX_Nod_u7t_Zm3-Zgb3bpDrrf9KdxuBu0k2XLhFrozbCP1t8ukDHL7bC0aqq-UMC2Vad_qc7gZahUU1R-W0cJbWGDwUfGZadwETSnWw1Lr2w4_fjyg-u0B0CzoNFMgqGNRgevD3O-T4Qpb9LtkMs-DuE2p8mRtnXeZArBAxu4h9UsZa54UAqnRAsm5NlWkrnSPgxlfVpbR9UStuKOSGihIF3BgQ3lPOm2ofa9AUHdtU95oV9K8Ck7QG7YuetvV4Gk9mTeqdTkpUq3kWarVPBuRx3ww6AwNBOrhZhX1Ak6ciEjDEvUao-t8FFkVxlktYxHPi1nfAeuTnW8L0c12XHCP0mUi3_j-tR-Tq8Gh8oA5Gh_vb5Br-T5Ozt0M2l6eVewBO3rJ8WO8sSj5e9Fb-BWBZaaM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJ028THxTGGAkeIwWO87XJoQGW7UyWk0TQ3szjj9GEaRlbQT8a_x13CVOygChvuwxis9KfOe7s_3z_Qh5liuhCxezwEXGBaJwSZAVggVMJyp2Nja8wA390Tg5PBVvzuKzNfKzvQuDsMrWJ9aO2kw17pFvQ6iBtUcO-e-287CI4_3By9nXABmk8KS1pdNoTOTI_vgGy7f5i-E-6Po554ODd68PA88wEOgkChcBMxxMnDHtohg7N1q51LiUaSGMUEh-wp1yiYKkHj6bO51qkYdW2yxLjMoi6PcaWU9xVdQj668Oxscny5K_TDQX8eIoyBjLPY6oQZfV1SonX8BnILwsr6uHImH5v4Pj38nvnxjO34Li4AbZ9Nks3WvM7yZZs-UtsjHy5_W3yfl7WIr77UaqqsUUy2Yae7FD90palfNqhq5qbg2tGXkoZNC0bgIBlarSUGP9gxudDClewkCuCzopKYhV0KlGsPD3O-T0Sgb-LumV09LeJ1S7ItPW2NSCkSF_dh65uIiUynIOUkmfpO2YSu3rniP9xmfZAtw-yaU2JGpDhrEEbfQJ6yRnTe2PFWTyVm2yvdsK3lhCgFpBdreT9flPk9esKL3VWon0fmgul7OmT552r8GD4LGQKu20wjbg1xMecujiXmNU3e-CisIozQQM4iVz6xpgdfLLb8rJx7pKOZ7Xpzx58P_PekI2YBrLt8Px0UNyHX-nAfBtkd7iorKPIONbFI_91KLkw1XP5l8jP28-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+autoencoder%3A+An+unsupervised+model+for+encoding+and+decoding+fMRI+activity+in+visual+cortex&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Han%2C+Kuan&rft.au=Wen%2C+Haiguang&rft.au=Shi%2C+Junxing&rft.au=Lu%2C+Kun-Han&rft.date=2019-09-01&rft.eissn=1095-9572&rft.volume=198&rft.spage=125&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.05.039&rft_id=info%3Apmid%2F31103784&rft.externalDocID=31103784
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon