Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex
Goal-driven and feedforward-only convolutional neural networks (CNN) have been shown to be able to predict and decode cortical responses to natural images or videos. Here, we explored an alternative deep neural network, variational auto-encoder (VAE), as a computational model of the visual cortex. W...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 198; pp. 125 - 136 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Goal-driven and feedforward-only convolutional neural networks (CNN) have been shown to be able to predict and decode cortical responses to natural images or videos. Here, we explored an alternative deep neural network, variational auto-encoder (VAE), as a computational model of the visual cortex. We trained a VAE with a five-layer encoder and a five-layer decoder to learn visual representations from a diverse set of unlabeled images. Using the trained VAE, we predicted and decoded cortical activity observed with functional magnetic resonance imaging (fMRI) from three human subjects passively watching natural videos. Compared to CNN, VAE could predict the video-evoked cortical responses with comparable accuracy in early visual areas, but relatively lower accuracy in higher-order visual areas. The distinction between CNN and VAE in terms of encoding performance was primarily attributed to their different learning objectives, rather than their different model architecture or number of parameters. Despite lower encoding accuracies, VAE offered a more convenient strategy for decoding the fMRI activity to reconstruct the video input, by first converting the fMRI activity to the VAE's latent variables, and then converting the latent variables to the reconstructed video frames through the VAE's decoder. This strategy was more advantageous than alternative decoding methods, e.g. partial least squares regression, for being able to reconstruct both the spatial structure and color of the visual input. Such findings highlight VAE as an unsupervised model for learning visual representation, as well as its potential and limitations for explaining cortical responses and reconstructing naturalistic and diverse visual experiences.
•Variational auto-encoder implements 1 an unsupervised model of “Bayesian brain”.•Variational auto-encoder explains and predicts fMRI responses to natural videos.•Variational auto-encoder decodes fMRI responses to directly reconstruct visual input.•Convolutional neural networks trained for image classification better predict fMRI responses than variational auto-encoder trained for image reconstruction. |
---|---|
AbstractList | Goal-driven and feedforward-only convolutional neural networks (CNN) have been shown to be able to predict and decode cortical responses to natural images or videos. Here, we explored an alternative deep neural network, variational auto-encoder (VAE), as a computational model of the visual cortex. We trained a VAE with a five-layer encoder and a five-layer decoder to learn visual representations from a diverse set of unlabeled images. Using the trained VAE, we predicted and decoded cortical activity observed with functional magnetic resonance imaging (fMRI) from three human subjects passively watching natural videos. Compared to CNN, VAE could predict the video-evoked cortical responses with comparable accuracy in early visual areas, but relatively lower accuracy in higher-order visual areas. The distinction between CNN and VAE in terms of encoding performance was primarily attributed to their different learning objectives, rather than their different model architecture or number of parameters. Despite lower encoding accuracies, VAE offered a more convenient strategy for decoding the fMRI activity to reconstruct the video input, by first converting the fMRI activity to the VAE's latent variables, and then converting the latent variables to the reconstructed video frames through the VAE's decoder. This strategy was more advantageous than alternative decoding methods, e.g. partial least squares regression, for being able to reconstruct both the spatial structure and color of the visual input. Such findings highlight VAE as an unsupervised model for learning visual representation, as well as its potential and limitations for explaining cortical responses and reconstructing naturalistic and diverse visual experiences. Goal-driven and feedforward-only convolutional neural networks (CNN) have been shown to be able to predict and decode cortical responses to natural images or videos. Here, we explored an alternative deep neural network, variational auto-encoder (VAE), as a computational model of the visual cortex. We trained a VAE with a five-layer encoder and a five-layer decoder to learn visual representations from a diverse set of unlabeled images. Using the trained VAE, we predicted and decoded cortical activity observed with functional magnetic resonance imaging (fMRI) from three human subjects passively watching natural videos. Compared to CNN, VAE could predict the video-evoked cortical responses with comparable accuracy in early visual areas, but relatively lower accuracy in higher-order visual areas. The distinction between CNN and VAE in terms of encoding performance was primarily attributed to their different learning objectives, rather than their different model architecture or number of parameters. Despite lower encoding accuracies, VAE offered a more convenient strategy for decoding the fMRI activity to reconstruct the video input, by first converting the fMRI activity to the VAE's latent variables, and then converting the latent variables to the reconstructed video frames through the VAE's decoder. This strategy was more advantageous than alternative decoding methods, e.g. partial least squares regression, for being able to reconstruct both the spatial structure and color of the visual input. Such findings highlight VAE as an unsupervised model for learning visual representation, as well as its potential and limitations for explaining cortical responses and reconstructing naturalistic and diverse visual experiences. •Variational auto-encoder implements 1 an unsupervised model of “Bayesian brain”.•Variational auto-encoder explains and predicts fMRI responses to natural videos.•Variational auto-encoder decodes fMRI responses to directly reconstruct visual input.•Convolutional neural networks trained for image classification better predict fMRI responses than variational auto-encoder trained for image reconstruction. Goal-driven and feedforward-only convolutional neural networks (CNN) have been shown to be able to predict and decode cortical responses to natural images or videos. Here, we explored an alternative deep neural network, variational auto-encoder (VAE), as a computational model of the visual cortex. We trained a VAE with a five-layer encoder and a five-layer decoder to learn visual representations from a diverse set of unlabeled images. Using the trained VAE, we predicted and decoded cortical activity observed with functional magnetic resonance imaging (fMRI) from three human subjects passively watching natural videos. Compared to CNN, VAE could predict the video-evoked cortical responses with comparable accuracy in early visual areas, but relatively lower accuracy in higher-order visual areas. The distinction between CNN and VAE in terms of encoding performance was primarily attributed to their different learning objectives, rather than their different model architecture or number of parameters. Despite lower encoding accuracies, VAE offered a more convenient strategy for decoding the fMRI activity to reconstruct the video input, by first converting the fMRI activity to the VAE's latent variables, and then converting the latent variables to the reconstructed video frames through the VAE's decoder. This strategy was more advantageous than alternative decoding methods, e.g. partial least squares regression, for being able to reconstruct both the spatial structure and color of the visual input. Such findings highlight VAE as an unsupervised model for learning visual representation, as well as its potential and limitations for explaining cortical responses and reconstructing naturalistic and diverse visual experiences.Goal-driven and feedforward-only convolutional neural networks (CNN) have been shown to be able to predict and decode cortical responses to natural images or videos. Here, we explored an alternative deep neural network, variational auto-encoder (VAE), as a computational model of the visual cortex. We trained a VAE with a five-layer encoder and a five-layer decoder to learn visual representations from a diverse set of unlabeled images. Using the trained VAE, we predicted and decoded cortical activity observed with functional magnetic resonance imaging (fMRI) from three human subjects passively watching natural videos. Compared to CNN, VAE could predict the video-evoked cortical responses with comparable accuracy in early visual areas, but relatively lower accuracy in higher-order visual areas. The distinction between CNN and VAE in terms of encoding performance was primarily attributed to their different learning objectives, rather than their different model architecture or number of parameters. Despite lower encoding accuracies, VAE offered a more convenient strategy for decoding the fMRI activity to reconstruct the video input, by first converting the fMRI activity to the VAE's latent variables, and then converting the latent variables to the reconstructed video frames through the VAE's decoder. This strategy was more advantageous than alternative decoding methods, e.g. partial least squares regression, for being able to reconstruct both the spatial structure and color of the visual input. Such findings highlight VAE as an unsupervised model for learning visual representation, as well as its potential and limitations for explaining cortical responses and reconstructing naturalistic and diverse visual experiences. Goal-driven and feedforward-only convolutional neural networks (CNN) have been shown to be able to predict and decode cortical responses to natural images or videos. Here, we explored an alternative deep neural network, variational auto-encoder (VAE), as a computational model of the visual cortex. We trained a VAE with a five-layer encoder and a five-layer decoder to learn visual representations from a diverse set of unlabeled images. Using the trained VAE, we predicted and decoded cortical activity observed with functional magnetic resonance imaging (fMRI) from three human subjects passively watching natural videos. Compared to CNN, VAE could predict the video-evoked cortical responses with comparable accuracy in early visual areas, but relatively lower accuracy in higher-order visual areas. The distinction between CNN and VAE in terms of encoding performance was primarily attributed to their different learning objectives, rather than their different model architecture or number of parameters. Despite lower encoding accuracies, VAE offered a more convenient strategy for decoding the fMRI activity to reconstruct the video input, by first converting the fMRI activity to the VAE’s latent variables, and then converting the latent variables to the reconstructed video frames through the VAE’s decoder. This strategy was more advantageous than alternative decoding methods, e.g. partial least square regression, for being able to reconstruct both the spatial structure and color of the visual input. Such findings highlight VAE as an unsupervised model for learning visual representation, as well as its potential and limitations for explaining cortical responses and reconstructing naturalistic and diverse visual experiences. |
Author | Fu, Di Liu, Zhongming Zhang, Yizhen Lu, Kun-Han Shi, Junxing Han, Kuan Wen, Haiguang |
AuthorAffiliation | 2 School of Electrical and Computer Engineering Purdue University, West Lafayette, Indiana, 47906, USA 3 Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, 47906, USA 1 Weldon School of Biomedical Engineering Purdue University, West Lafayette, Indiana, 47906, USA |
AuthorAffiliation_xml | – name: 1 Weldon School of Biomedical Engineering Purdue University, West Lafayette, Indiana, 47906, USA – name: 2 School of Electrical and Computer Engineering Purdue University, West Lafayette, Indiana, 47906, USA – name: 3 Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, 47906, USA |
Author_xml | – sequence: 1 givenname: Kuan surname: Han fullname: Han, Kuan organization: School of Electrical and Computer Engineering, USA – sequence: 2 givenname: Haiguang surname: Wen fullname: Wen, Haiguang organization: School of Electrical and Computer Engineering, USA – sequence: 3 givenname: Junxing surname: Shi fullname: Shi, Junxing organization: School of Electrical and Computer Engineering, USA – sequence: 4 givenname: Kun-Han surname: Lu fullname: Lu, Kun-Han organization: School of Electrical and Computer Engineering, USA – sequence: 5 givenname: Yizhen surname: Zhang fullname: Zhang, Yizhen organization: School of Electrical and Computer Engineering, USA – sequence: 6 givenname: Di surname: Fu fullname: Fu, Di organization: School of Electrical and Computer Engineering, USA – sequence: 7 givenname: Zhongming surname: Liu fullname: Liu, Zhongming email: zmliu@purdue.edu organization: Weldon School of Biomedical Engineering, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31103784$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAUhS1URH_gFZAlNmwS_BPHMQtEqShUKkJCwNYy9s3gIWMPdjJi3r5OO6Uwq1k5Ts79cnS_U3QUYgCEMCU1JbR9tawDTCn6lVlAzQhVNRE14eoROqFEiUoJyY7mZ8GrjlJ1jE5zXhJCFG26J-iYU0q47JoTtPhukjejj8EM2ExjhGCjg_Qanwc8hTytIW18BodX5fWA-5jwbcSHBTbBYQe7S__pyxU2dvQbP26xD7iMTQVqYxrhz1P0uDdDhme78wx9u3z_9eJjdf35w9XF-XVlW07GijpGZGlney6IVMJZ00vXS2qbxjVGCMpZb_rWSMGFY6y30jaKgIWua53p-Bl6c8ddTz9W4CyEMZlBr1PZVdrqaLz-_0vwP_UibnQrFJOsLYCXO0CKvyfIo175bGEYTIA4Zc0Yp13LCFMl-mIvuoxTKoucU00z91eypJ7_2-hvlXsHD5Vtijkn6LX1462SUtAPmhI9S9dL_SBdz9I1EbpIL4BuD3D_jwNG392NQnGy8ZB0tr74BecT2FG76A-BvN2D2MEHb83wC7aHIW4AmGPliw |
CitedBy_id | crossref_primary_10_1177_0954406220941037 crossref_primary_10_1016_j_neuroimage_2023_120395 crossref_primary_10_1016_j_neuroimage_2022_119121 crossref_primary_10_1007_s11783_024_1768_7 crossref_primary_10_1088_1741_2552_ac1179 crossref_primary_10_1016_j_cmpb_2022_106979 crossref_primary_10_1109_TCDS_2020_3007761 crossref_primary_10_1088_1757_899X_1043_2_022032 crossref_primary_10_3389_fnins_2022_940972 crossref_primary_10_1016_j_neucom_2020_05_113 crossref_primary_10_3390_make2030020 crossref_primary_10_1109_TSP_2020_3028701 crossref_primary_10_1117_1_NPh_11_3_035005 crossref_primary_10_1007_s11633_023_1484_y crossref_primary_10_3390_s22166148 crossref_primary_10_1016_j_cobme_2021_100298 crossref_primary_10_3389_fnins_2022_1032696 crossref_primary_10_1016_j_jbiosc_2020_01_006 crossref_primary_10_3390_brainsci11081004 crossref_primary_10_1109_LSP_2020_2998361 crossref_primary_10_1371_journal_pone_0297947 crossref_primary_10_1109_TIP_2020_2984360 crossref_primary_10_1142_S0218001422560158 crossref_primary_10_1145_3448302 crossref_primary_10_1117_1_JEI_33_2_023032 crossref_primary_10_1016_j_ecoinf_2024_102588 crossref_primary_10_2174_1568026620666200704135327 crossref_primary_10_1016_j_eng_2019_03_010 crossref_primary_10_1007_s10845_021_01822_y crossref_primary_10_3390_brainsci12020228 crossref_primary_10_1371_journal_pcbi_1012822 crossref_primary_10_1016_j_neuroscience_2022_11_021 crossref_primary_10_1016_j_patter_2021_100198 crossref_primary_10_1016_j_neuroimage_2021_118203 crossref_primary_10_3758_s13423_023_02281_7 crossref_primary_10_3390_bioengineering10101117 crossref_primary_10_1007_s12264_020_00613_4 crossref_primary_10_1016_j_jfranklin_2023_07_015 crossref_primary_10_1016_j_neunet_2023_07_016 crossref_primary_10_1093_cercor_bhab498 crossref_primary_10_1016_j_neucom_2022_02_017 crossref_primary_10_1016_j_compmedimag_2024_102372 crossref_primary_10_1016_j_measurement_2019_107459 crossref_primary_10_1016_j_neunet_2023_11_024 crossref_primary_10_1109_TNNLS_2020_3028167 crossref_primary_10_1186_s13640_023_00618_9 crossref_primary_10_1007_s10044_024_01347_z crossref_primary_10_1016_j_neunet_2022_06_034 crossref_primary_10_1016_j_compbiomed_2022_105603 crossref_primary_10_1371_journal_pcbi_1008558 crossref_primary_10_1016_j_neunet_2021_08_006 crossref_primary_10_1038_s41467_024_50310_3 crossref_primary_10_1016_j_neuri_2021_100031 crossref_primary_10_1142_S0129065724500163 crossref_primary_10_1371_journal_pcbi_1011887 crossref_primary_10_1016_j_neuroimage_2020_117602 crossref_primary_10_1109_JBHI_2022_3175928 crossref_primary_10_1371_journal_pcbi_1012058 crossref_primary_10_1109_TCDS_2022_3176977 crossref_primary_10_1109_TNSRE_2022_3217344 crossref_primary_10_1016_j_neuroimage_2020_116790 crossref_primary_10_1038_s42003_023_05257_4 crossref_primary_10_1016_j_neucom_2024_128123 crossref_primary_10_1155_2022_1124927 crossref_primary_10_1167_tvst_11_2_11 crossref_primary_10_1093_cercor_bhae257 crossref_primary_10_1007_s11633_022_1335_2 crossref_primary_10_1002_hbm_26573 crossref_primary_10_1016_j_cortex_2021_07_008 crossref_primary_10_1016_j_jncc_2022_11_004 crossref_primary_10_3389_fnins_2019_00692 crossref_primary_10_1038_s41598_020_80675_6 crossref_primary_10_1007_s10926_020_09886_y crossref_primary_10_1007_s11277_023_10759_9 crossref_primary_10_1007_s12559_022_09992_4 crossref_primary_10_1016_j_fmre_2023_08_010 crossref_primary_10_1017_dsj_2020_23 crossref_primary_10_1162_neco_a_01628 crossref_primary_10_1371_journal_pcbi_1008943 crossref_primary_10_1016_j_bspc_2021_103397 crossref_primary_10_3390_s21227432 crossref_primary_10_3389_fnins_2021_614182 crossref_primary_10_1016_j_iswa_2025_200490 crossref_primary_10_1109_TCDS_2022_3181469 crossref_primary_10_1016_j_neuroimage_2021_118423 crossref_primary_10_3389_fnins_2022_928841 crossref_primary_10_3390_computers13110293 crossref_primary_10_1016_j_compbiomed_2023_107395 crossref_primary_10_1016_j_neuroimage_2023_120412 |
Cites_doi | 10.1016/j.tics.2006.05.002 10.1038/ncomms15037 10.1016/j.neuroimage.2010.07.073 10.1371/journal.pcbi.1003724 10.1152/jn.00105.2013 10.1109/TIP.2003.819861 10.1098/rspb.1998.0303 10.1016/j.neuroimage.2013.04.127 10.1016/j.neuron.2009.09.006 10.1038/srep27755 10.1113/jphysiol.1962.sp006837 10.1002/hbm.24006 10.1038/nature18933 10.1016/j.neuroimage.2017.07.018 10.1523/JNEUROSCI.2807-09.2009 10.1016/j.tins.2004.10.007 10.1098/rstb.2008.0300 10.1093/cercor/bhx268 10.1007/s11263-015-0816-y 10.1038/s41598-018-22160-9 10.1038/4580 10.1162/neco.1995.7.5.889 10.3389/fninf.2014.00072 10.1016/j.neuroimage.2014.03.018 10.1146/annurev.neuro.29.051605.113024 10.1126/science.290.5500.2268 10.1523/JNEUROSCI.5023-14.2015 10.1371/journal.pcbi.1003553 10.1038/nn.4244 10.1038/381607a0 10.1162/neco.1989.1.3.295 10.1007/BF00204594 10.1016/j.neuroimage.2018.07.043 10.1162/NECO_a_00047 10.1371/journal.pcbi.1003915 10.1038/nature06713 10.1038/nrn2787 10.1038/nature14539 10.1016/j.cub.2011.08.031 10.1080/09548980500464030 10.3389/fnsys.2016.00081 10.1016/j.neuroimage.2016.10.001 10.1146/annurev-vision-082114-035447 10.1016/j.csda.2004.03.005 10.1371/journal.pcbi.1006633 10.1152/physrev.1995.75.1.107 10.1007/s12559-016-9445-1 10.1126/science.7761831 10.1364/JOSA.70.001297 10.1016/j.tics.2009.04.005 10.1016/j.neuron.2012.10.038 10.1523/JNEUROSCI.4911-09.2010 10.1073/pnas.1403112111 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. 2019. Elsevier Inc. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. – notice: 2019. Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1016/j.neuroimage.2019.05.039 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 136 |
ExternalDocumentID | PMC6592726 31103784 10_1016_j_neuroimage_2019_05_039 S1053811919304318 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH104402 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION 0SF CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c630t-1d207311cf350795dcaf7df71c44d4a55132faf6a7535d22fc7c490ece886da83 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 14:11:26 EDT 2025 Fri Jul 11 16:11:43 EDT 2025 Wed Aug 13 10:53:10 EDT 2025 Wed Feb 19 02:30:54 EST 2025 Thu Apr 24 22:56:07 EDT 2025 Tue Jul 01 03:02:08 EDT 2025 Fri Feb 23 02:36:57 EST 2024 Tue Aug 26 20:02:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Neural coding Variational autoencoder Bayesian brain Visual reconstruction |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c630t-1d207311cf350795dcaf7df71c44d4a55132faf6a7535d22fc7c490ece886da83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6592726 |
PMID | 31103784 |
PQID | 2244079597 |
PQPubID | 2031077 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6592726 proquest_miscellaneous_2231862029 proquest_journals_2244079597 pubmed_primary_31103784 crossref_citationtrail_10_1016_j_neuroimage_2019_05_039 crossref_primary_10_1016_j_neuroimage_2019_05_039 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_05_039 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_05_039 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Tenenhaus, Vinzi, Chatelin, Lauro (bib66) 2005; 48 Barlow (bib3) 1989; 1 Mirza, Courville, Bengio (bib49) 2016 Wen, Han, Shi, Zhang, Culurciello, Liu (bib71) 2018 Seeliger, Güçlü, Ambrogioni, Güçlütürk, Van Gerven (bib59) 2018; 181 Simonyan, Zisserman (bib63) 2014 Nili, Wingfield, Walther, Su, Marslen-Wilson, Kriegeskorte (bib53) 2014; 10 Cowen, Chun, Kuhl (bib8) 2014; 94 David, Gallant (bib10) 2005; 16 Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson (bib20) 2016; 536 Gregor, Danihelka, Graves, Rezende, Wierstra (bib22) 2015 Bastos, Usrey, Adams, Mangun, Fries, Friston (bib4) 2012; 76 van Gerven, de Lange, Heskes (bib67) 2010; 22 Wen, Shi, Chen, Liu (bib72) 2018; 8 Friston, Kiebel (bib19) 2009; 364 Huth, Lee, Nishimoto, Bilenko, Vu, Gallant (bib33) 2016; 10 Wu, David, Gallant (bib75) 2006; 29 Nair, Hinton (bib50) 2010 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (bib56) 2015; 115 Deshpande, Lu, Yeh, Chong, Forsyth (bib12) 2017 Horikawa, Kamitani (bib31) 2017; 8 Lin, Chen, Yan (bib46) 2013 Jammalamadaka, Sengupta (bib34) 2001 Olshausen, Field (bib1a) 1996; 381 Friston (bib17) 2009; 13 Yan, Yang, Sohn, Lee (bib78) 2016 LeCun, Bengio, Hinton (bib45) 2015; 521 Yeh, Liu, Dan, Agarwala (bib79) 2016 Hinton, Sejnowski, Poggio (bib29) 1999 Yuille, Kersten (bib80) 2006; 10 Lotter, Kreiman, Cox (bib47) 2016 Spratling (bib64) 2010; 30 Hinton, Dayan, Frey, Neal (bib28) 1995; 268 Kulkarni, Whitney, Kohli, Tenenbaum (bib44) 2015; 2 Kriegeskorte (bib42) 2015; 1 Kingma, Welling (bib40) 2013 Salin, Bullier (bib57) 1995; 75 Yamins, DiCarlo (bib77) 2016; 19 Zhao, Song, Ermon (bib81) 2017 van Hateren, van der Schaaf (bib68) 1998; 265 Wang, Bovik, Sheikh, Simoncelli (bib70) 2004; 13 Dayan, Hinton, Neal, Zemel (bib11) 1995; 7 Seung, Lee (bib60) 2000; 290 Hubel, Wiesel (bib32) 1962; 160 Kingma, Ba (bib39) 2014 Wetzel (bib74) 2017; 96 Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo (bib76) 2014; 111 Han, Wen, Zhang, Fu, Culurciello, Liu (bib26) 2018 Berens (bib5) 2009; 31 Eickenberg, Gramfort, Varoquaux, Thirion (bib15) 2017; 152 Khaligh-Razavi, Kriegeskorte (bib37) 2014; 10 Güçlütürk, Güçlü, Seeliger, Bosch, van Lier, van Gerven (bib25) 2017 Adolf, Weston, Baecke, Luchtmann, Bernarding, Kropf (bib1) 2014; 8 Rao, Ballard (bib55) 1999; 2 Knill, Pouget (bib41) 2004; 27 Kay, Winawer, Mezer, Wandell (bib36) 2013; 110 Kay, Naselaris, Prenger, Gallant (bib35) 2008; 452 Hinton, Zemel (bib30) 1994 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni (bib21) 2013; 80 Doersch (bib13) 2016 Dai, Wang, Aston, Hua, Wipf (bib9) 2017 Guclu, van Gerven (bib23) 2015; 35 Naselaris, Prenger, Kay, Oliver, Gallant (bib52) 2009; 63 Nishimoto, Vu, Naselaris, Benjamini, Yu, Gallant (bib54) 2011; 21 Seeliger, Fritsche, Güçlü, Schoenmakers, Schoffelen, Bosch, van Gerven (bib58) 2018; 180 Krizhevsky, Sutskever, Hinton (bib43) 2012 Shi, Wen, Zhang, Han, Liu (bib62) 2017; 39 Arcaro, McMains, Singer, Kastner (bib2) 2009; 29 Naselaris, Kay, Nishimoto, Gallant (bib51) 2011; 56 Friston (bib18) 2010; 11 Kietzmann, McClure, Kriegeskorte (bib38) 2019 Fogel, Sagi (bib16) 1989; 61 Güçlü, van Gerven (bib24) 2014; 10 Cichy, Khosla, Pantazis, Torralba, Oliva (bib7) 2016; 6 Wen, Shi, Zhang, Lu, Cao, Liu (bib73) 2018; 28 He, Zhang, Ren, Sun (bib27) 2016 Marcelja (bib48) 1980; 70 Du, Du, Huang, He (bib14) 2018 Bouchacourt, Tomioka, Nowozin (bib6) 2017 Shen, Horikawa, Majima, Kamitani (bib61) 2019; 15 Spratling (bib65) 2017; 9 Walker, Doersch, Gupta, Hebert (bib69) 2016 Simonyan (10.1016/j.neuroimage.2019.05.039_bib63) 2014 Fogel (10.1016/j.neuroimage.2019.05.039_bib16) 1989; 61 Lotter (10.1016/j.neuroimage.2019.05.039_bib47) 2016 Wetzel (10.1016/j.neuroimage.2019.05.039_bib74) 2017; 96 Shen (10.1016/j.neuroimage.2019.05.039_bib61) 2019; 15 Wang (10.1016/j.neuroimage.2019.05.039_bib70) 2004; 13 Güçlü (10.1016/j.neuroimage.2019.05.039_bib24) 2014; 10 Friston (10.1016/j.neuroimage.2019.05.039_bib18) 2010; 11 Naselaris (10.1016/j.neuroimage.2019.05.039_bib51) 2011; 56 Salin (10.1016/j.neuroimage.2019.05.039_bib57) 1995; 75 Russakovsky (10.1016/j.neuroimage.2019.05.039_bib56) 2015; 115 LeCun (10.1016/j.neuroimage.2019.05.039_bib45) 2015; 521 David (10.1016/j.neuroimage.2019.05.039_bib10) 2005; 16 Hinton (10.1016/j.neuroimage.2019.05.039_bib30) 1994 Kingma (10.1016/j.neuroimage.2019.05.039_bib39) 2014 Nili (10.1016/j.neuroimage.2019.05.039_bib53) 2014; 10 Horikawa (10.1016/j.neuroimage.2019.05.039_bib31) 2017; 8 van Gerven (10.1016/j.neuroimage.2019.05.039_bib67) 2010; 22 Yamins (10.1016/j.neuroimage.2019.05.039_bib76) 2014; 111 Mirza (10.1016/j.neuroimage.2019.05.039_bib49) 2016 Hinton (10.1016/j.neuroimage.2019.05.039_bib28) 1995; 268 Olshausen (10.1016/j.neuroimage.2019.05.039_bib1a) 1996; 381 Glasser (10.1016/j.neuroimage.2019.05.039_bib20) 2016; 536 Marcelja (10.1016/j.neuroimage.2019.05.039_bib48) 1980; 70 Seung (10.1016/j.neuroimage.2019.05.039_bib60) 2000; 290 Wen (10.1016/j.neuroimage.2019.05.039_bib72) 2018; 8 Wu (10.1016/j.neuroimage.2019.05.039_bib75) 2006; 29 Shi (10.1016/j.neuroimage.2019.05.039_bib62) 2017; 39 He (10.1016/j.neuroimage.2019.05.039_bib27) 2016 Hinton (10.1016/j.neuroimage.2019.05.039_bib29) 1999 Guclu (10.1016/j.neuroimage.2019.05.039_bib23) 2015; 35 Han (10.1016/j.neuroimage.2019.05.039_bib26) 2018 Seeliger (10.1016/j.neuroimage.2019.05.039_bib59) 2018; 181 Güçlütürk (10.1016/j.neuroimage.2019.05.039_bib25) 2017 Eickenberg (10.1016/j.neuroimage.2019.05.039_bib15) 2017; 152 Friston (10.1016/j.neuroimage.2019.05.039_bib19) 2009; 364 Nishimoto (10.1016/j.neuroimage.2019.05.039_bib54) 2011; 21 Kingma (10.1016/j.neuroimage.2019.05.039_bib40) 2013 Nair (10.1016/j.neuroimage.2019.05.039_bib50) 2010 Lin (10.1016/j.neuroimage.2019.05.039_bib46) 2013 Berens (10.1016/j.neuroimage.2019.05.039_bib5) 2009; 31 Hubel (10.1016/j.neuroimage.2019.05.039_bib32) 1962; 160 Cichy (10.1016/j.neuroimage.2019.05.039_bib7) 2016; 6 Glasser (10.1016/j.neuroimage.2019.05.039_bib21) 2013; 80 Wen (10.1016/j.neuroimage.2019.05.039_bib73) 2018; 28 Spratling (10.1016/j.neuroimage.2019.05.039_bib64) 2010; 30 Khaligh-Razavi (10.1016/j.neuroimage.2019.05.039_bib37) 2014; 10 Dai (10.1016/j.neuroimage.2019.05.039_bib9) 2017 Doersch (10.1016/j.neuroimage.2019.05.039_bib13) 2016 Seeliger (10.1016/j.neuroimage.2019.05.039_bib58) 2018; 180 Deshpande (10.1016/j.neuroimage.2019.05.039_bib12) 2017 Adolf (10.1016/j.neuroimage.2019.05.039_bib1) 2014; 8 Tenenhaus (10.1016/j.neuroimage.2019.05.039_bib66) 2005; 48 Friston (10.1016/j.neuroimage.2019.05.039_bib17) 2009; 13 Rao (10.1016/j.neuroimage.2019.05.039_bib55) 1999; 2 Kietzmann (10.1016/j.neuroimage.2019.05.039_bib38) 2019 Kulkarni (10.1016/j.neuroimage.2019.05.039_bib44) 2015; 2 Du (10.1016/j.neuroimage.2019.05.039_bib14) 2018 Yeh (10.1016/j.neuroimage.2019.05.039_bib79) 2016 Yan (10.1016/j.neuroimage.2019.05.039_bib78) 2016 Kay (10.1016/j.neuroimage.2019.05.039_bib36) 2013; 110 Naselaris (10.1016/j.neuroimage.2019.05.039_bib52) 2009; 63 Walker (10.1016/j.neuroimage.2019.05.039_bib69) 2016 Gregor (10.1016/j.neuroimage.2019.05.039_bib22) 2015 Kay (10.1016/j.neuroimage.2019.05.039_bib35) 2008; 452 Zhao (10.1016/j.neuroimage.2019.05.039_bib81) 2017 Jammalamadaka (10.1016/j.neuroimage.2019.05.039_bib34) 2001 Arcaro (10.1016/j.neuroimage.2019.05.039_bib2) 2009; 29 Knill (10.1016/j.neuroimage.2019.05.039_bib41) 2004; 27 van Hateren (10.1016/j.neuroimage.2019.05.039_bib68) 1998; 265 Yuille (10.1016/j.neuroimage.2019.05.039_bib80) 2006; 10 Cowen (10.1016/j.neuroimage.2019.05.039_bib8) 2014; 94 Bastos (10.1016/j.neuroimage.2019.05.039_bib4) 2012; 76 Bouchacourt (10.1016/j.neuroimage.2019.05.039_bib6) 2017 Dayan (10.1016/j.neuroimage.2019.05.039_bib11) 1995; 7 Yamins (10.1016/j.neuroimage.2019.05.039_bib77) 2016; 19 Huth (10.1016/j.neuroimage.2019.05.039_bib33) 2016; 10 Kriegeskorte (10.1016/j.neuroimage.2019.05.039_bib42) 2015; 1 Spratling (10.1016/j.neuroimage.2019.05.039_bib65) 2017; 9 Wen (10.1016/j.neuroimage.2019.05.039_bib71) 2018 Krizhevsky (10.1016/j.neuroimage.2019.05.039_bib43) 2012 Barlow (10.1016/j.neuroimage.2019.05.039_bib3) 1989; 1 |
References_xml | – volume: 16 start-page: 239 year: 2005 end-page: 260 ident: bib10 article-title: Predicting neuronal responses during natural vision publication-title: Netw. Comput. Neural Syst. – volume: 96 start-page: 022140 year: 2017 ident: bib74 article-title: Unsupervised learning of phase transitions: from principal component analysis to variational autoencoders publication-title: Phys. Rev. – volume: 364 start-page: 1211 year: 2009 end-page: 1221 ident: bib19 article-title: Predictive coding under the free-energy principle publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 8 start-page: 3752 year: 2018 ident: bib72 article-title: Deep residual network predicts cortical representation and organization of visual features for rapid categorization publication-title: Sci. Rep. – volume: 15 start-page: e1006633 year: 2019 ident: bib61 article-title: Deep image reconstruction from human brain activity publication-title: PLoS Comput. Biol. – volume: 2 start-page: 2539 year: 2015 end-page: 2547 ident: bib44 article-title: Deep convolutional inverse graphics network publication-title: Proceedings of the 28th International Conference on Neural Information Processing Systems – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: bib56 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. – volume: 181 start-page: 775 year: 2018 end-page: 785 ident: bib59 article-title: Generative adversarial networks for reconstructing natural images from brain activity publication-title: Neuroimage – volume: 7 start-page: 889 year: 1995 end-page: 904 ident: bib11 article-title: The helmholtz machine publication-title: Neural Comput. – start-page: 9201 year: 2018 end-page: 9213 ident: bib26 article-title: Deep predictive coding network with local recurrent processing for object recognition publication-title: Adv. Neural Inf. Process. Syst. – volume: 29 start-page: 477 year: 2006 end-page: 505 ident: bib75 article-title: Complete functional characterization of sensory neurons by system identification publication-title: Annu. Rev. Neurosci. – volume: 56 start-page: 400 year: 2011 end-page: 410 ident: bib51 article-title: Encoding and decoding in fMRI publication-title: Neuroimage – year: 2017 ident: bib9 article-title: Hidden Talents of the Variational Autoencoder – year: 2019 ident: bib38 article-title: Deep Neural Networks in Computational Neuroscience. Oxford Research Encyclopedia of Neuroscience – volume: 290 start-page: 2268 year: 2000 end-page: 2269 ident: bib60 article-title: The manifold ways of perception publication-title: Science – volume: 8 start-page: 15037 year: 2017 ident: bib31 article-title: Generic decoding of seen and imagined objects using hierarchical visual features publication-title: Nat. Commun. – volume: 31 start-page: 1 year: 2009 end-page: 21 ident: bib5 article-title: CircStat: a MATLAB toolbox for circular statistics publication-title: J. Stat. Softw. – volume: 152 start-page: 184 year: 2017 end-page: 194 ident: bib15 article-title: Seeing it all: convolutional network layers map the function of the human visual system publication-title: Neuroimage – volume: 76 start-page: 695 year: 2012 end-page: 711 ident: bib4 article-title: Canonical microcircuits for predictive coding publication-title: Neuron – volume: 110 start-page: 481 year: 2013 end-page: 494 ident: bib36 article-title: Compressive spatial summation in human visual cortex publication-title: J. Neurophysiol. – volume: 1 start-page: 417 year: 2015 end-page: 446 ident: bib42 article-title: Deep neural networks: a new framework for modeling biological vision and brain information processing publication-title: Ann. Rev. Vis. Sci. – volume: 180 start-page: 253 year: 2018 end-page: 266 ident: bib58 article-title: Convolutional neural network-based encoding and decoding of visual object recognition in space and time publication-title: Neuroimage – start-page: 776 year: 2016 end-page: 791 ident: bib78 article-title: Attribute2Image: conditional image generation from visual attributes publication-title: Euro. Conf. Comp. Vision – volume: 48 start-page: 159 year: 2005 end-page: 205 ident: bib66 article-title: PLS path modeling publication-title: Comput. Stat. Data Anal. – year: 2015 ident: bib22 article-title: DRAW: A Recurrent Neural Network for Image Generation – volume: 1 start-page: 295 year: 1989 end-page: 311 ident: bib3 article-title: Unsupervised learning publication-title: Neural Comput. – volume: 160 start-page: 106 year: 1962 end-page: 154 ident: bib32 article-title: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex publication-title: J. Physiol. – volume: 75 start-page: 107 year: 1995 end-page: 154 ident: bib57 article-title: Corticocortical connections in the visual system: structure and function publication-title: Physiol. Rev. – year: 1999 ident: bib29 article-title: Unsupervised Learning: Foundations of Neural Computation – year: 2014 ident: bib39 article-title: Adam: A Method for Stochastic Optimization – start-page: 835 year: 2016 end-page: 851 ident: bib69 article-title: An Uncertain Future: Forecasting from Static Images Using Variational Autoencoders – start-page: 1097 year: 2012 end-page: 1105 ident: bib43 article-title: ImageNet Classification with Deep Convolutional Neural Networks – volume: 63 start-page: 902 year: 2009 end-page: 915 ident: bib52 article-title: Bayesian reconstruction of natural images from human brain activity publication-title: Neuron – volume: 536 start-page: 171 year: 2016 end-page: 178 ident: bib20 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib45 article-title: Deep learning publication-title: Nature – year: 2016 ident: bib47 article-title: Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning – volume: 8 start-page: 72 year: 2014 ident: bib1 article-title: Increasing the reliability of data analysis of functional magnetic resonance imaging by applying a new blockwise permutation method publication-title: Front. Neuroinf. – year: 2016 ident: bib49 article-title: Generalizable Features from Unsupervised Learning – year: 2014 ident: bib63 article-title: Very Deep Convolutional Networks for Large-Scale Image Recognition – volume: 10 start-page: 301 year: 2006 end-page: 308 ident: bib80 article-title: Vision as Bayesian inference: analysis by synthesis? publication-title: Trends Cognit. Sci. – volume: 70 start-page: 1297 year: 1980 ident: bib48 article-title: Mathematical description of the responses of simple cortical cells publication-title: J. Opt. Soc. Am. – start-page: 770 year: 2016 end-page: 778 ident: bib27 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2013 ident: bib40 article-title: Auto-encoding Variational Bayes – volume: 9 start-page: 151 year: 2017 end-page: 167 ident: bib65 article-title: A hierarchical predictive coding model of object recognition in natural images publication-title: Cogn. Comput. – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: bib70 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – volume: 6 start-page: 27755 year: 2016 ident: bib7 article-title: Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence publication-title: Sci. Rep. – start-page: 3 year: 1994 end-page: 10 ident: bib30 article-title: Autoencoders, minimum description length and Helmholtz free energy publication-title: Adv. Neural Inf. Process. Syst. – volume: 10 start-page: e1003724 year: 2014 ident: bib24 article-title: Unsupervised feature learning improves prediction of human brain activity in response to natural images publication-title: PLoS Comput. Biol. – year: 2017 ident: bib81 article-title: Learning Hierarchical Features from Generative Models – year: 2018 ident: bib14 article-title: Reconstructing Perceived Images from Human Brain Activities with Bayesian Deep Multiview Learning – volume: 19 start-page: 356 year: 2016 end-page: 365 ident: bib77 article-title: Using goal-driven deep learning models to understand sensory cortex publication-title: Nat. Neurosci. – volume: 268 start-page: 1158 year: 1995 end-page: 1161 ident: bib28 article-title: The wake-sleep algorithm for unsupervised neural networks publication-title: Science – volume: 10 start-page: 81 year: 2016 ident: bib33 article-title: Decoding the semantic content of natural movies from human brain activity publication-title: Front. Syst. Neurosci. – volume: 29 start-page: 10638 year: 2009 end-page: 10652 ident: bib2 article-title: Retinotopic organization of human ventral visual cortex publication-title: J. Neurosci. – volume: 21 start-page: 1641 year: 2011 end-page: 1646 ident: bib54 article-title: Reconstructing visual experiences from brain activity evoked by natural movies publication-title: Curr. Biol. – volume: 22 start-page: 3127 year: 2010 end-page: 3142 ident: bib67 article-title: Neural decoding with hierarchical generative models publication-title: Neural Comput. – start-page: 2877 year: 2017 end-page: 2885 ident: bib12 article-title: Learning Diverse Image Colorization – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bib21 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: Neuroimage – volume: 27 start-page: 712 year: 2004 end-page: 719 ident: bib41 article-title: The Bayesian brain: the role of uncertainty in neural coding and computation publication-title: Trends Neurosci. – volume: 61 start-page: 103 year: 1989 end-page: 113 ident: bib16 article-title: Gabor filters as texture discriminator publication-title: Biol. Cybern. – volume: 2 start-page: 79 year: 1999 end-page: 87 ident: bib55 article-title: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects publication-title: Nat. Neurosci. – start-page: 5263 year: 2018 end-page: 5272 ident: bib71 article-title: Deep Predictive Coding Network for Object Recognition – year: 2016 ident: bib79 article-title: Semantic Facial Expression Editing Using Autoencoded Flow – start-page: 4246 year: 2017 end-page: 4257 ident: bib25 article-title: Reconstructing perceived faces from brain activations with deep adversarial neural decoding publication-title: Adv. Neural Inf. Process. Syst. – volume: 265 start-page: 359 year: 1998 end-page: 366 ident: bib68 article-title: Independent component filters of natural images compared with simple cells in primary visual cortex publication-title: Proc. Biol. Sci. – volume: 11 start-page: 127 year: 2010 end-page: 138 ident: bib18 article-title: The free-energy principle: a unified brain theory? publication-title: Nat. Rev. Neurosci. – volume: 35 start-page: 10005 year: 2015 end-page: 10014 ident: bib23 article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream publication-title: J. Neurosci. – start-page: 807 year: 2010 end-page: 814 ident: bib50 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proceedings of the 27th international conference on machine learning (ICML-10) – volume: 30 start-page: 3531 year: 2010 end-page: 3543 ident: bib64 article-title: Predictive coding as a model of response properties in cortical area V1 publication-title: J. Neurosci. – volume: 13 start-page: 293 year: 2009 end-page: 301 ident: bib17 article-title: The free-energy principle: a rough guide to the brain? publication-title: Trends Cognit. Sci. – volume: 10 start-page: e1003915 year: 2014 ident: bib37 article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation publication-title: PLoS Comput. Biol. – volume: 39 start-page: 2269 year: 2017 end-page: 2282 ident: bib62 article-title: Deep Recurrent Neural Network Reveals a Hierarchy of Process Memory during Dynamic Natural Vision publication-title: Hum. Brain Mapp. – year: 2017 ident: bib6 article-title: Multi-Level Variational Autoencoder: Learning Disentangled Representations from Grouped Observations – volume: 94 start-page: 12 year: 2014 end-page: 22 ident: bib8 article-title: Neural portraits of perception: reconstructing face images from evoked brain activity publication-title: Neuroimage – volume: 111 start-page: 8619 year: 2014 end-page: 8624 ident: bib76 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 2016 ident: bib13 article-title: Tutorial on Variational Autoencoders – volume: 381 start-page: 607 year: 1996 ident: bib1a article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature – volume: 452 start-page: 352 year: 2008 end-page: 355 ident: bib35 article-title: Identifying natural images from human brain activity publication-title: Nature – year: 2001 ident: bib34 article-title: Topics in Circular Statistics – year: 2013 ident: bib46 article-title: Network in Network – volume: 10 start-page: e1003553 year: 2014 ident: bib53 article-title: A toolbox for representational similarity analysis publication-title: PLoS Comput. Biol. – volume: 28 start-page: 4136 year: 2018 end-page: 4160 ident: bib73 article-title: Neural encoding and decoding with deep learning for dynamic natural vision publication-title: Cerebr. Cortex – volume: 10 start-page: 301 year: 2006 ident: 10.1016/j.neuroimage.2019.05.039_bib80 article-title: Vision as Bayesian inference: analysis by synthesis? publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2006.05.002 – volume: 8 start-page: 15037 year: 2017 ident: 10.1016/j.neuroimage.2019.05.039_bib31 article-title: Generic decoding of seen and imagined objects using hierarchical visual features publication-title: Nat. Commun. doi: 10.1038/ncomms15037 – volume: 56 start-page: 400 year: 2011 ident: 10.1016/j.neuroimage.2019.05.039_bib51 article-title: Encoding and decoding in fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.07.073 – volume: 10 start-page: e1003724 year: 2014 ident: 10.1016/j.neuroimage.2019.05.039_bib24 article-title: Unsupervised feature learning improves prediction of human brain activity in response to natural images publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003724 – volume: 110 start-page: 481 year: 2013 ident: 10.1016/j.neuroimage.2019.05.039_bib36 article-title: Compressive spatial summation in human visual cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.00105.2013 – volume: 13 start-page: 600 year: 2004 ident: 10.1016/j.neuroimage.2019.05.039_bib70 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – start-page: 776 year: 2016 ident: 10.1016/j.neuroimage.2019.05.039_bib78 article-title: Attribute2Image: conditional image generation from visual attributes publication-title: Euro. Conf. Comp. Vision – volume: 265 start-page: 359 year: 1998 ident: 10.1016/j.neuroimage.2019.05.039_bib68 article-title: Independent component filters of natural images compared with simple cells in primary visual cortex publication-title: Proc. Biol. Sci. doi: 10.1098/rspb.1998.0303 – year: 2016 ident: 10.1016/j.neuroimage.2019.05.039_bib13 – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.neuroimage.2019.05.039_bib21 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 63 start-page: 902 year: 2009 ident: 10.1016/j.neuroimage.2019.05.039_bib52 article-title: Bayesian reconstruction of natural images from human brain activity publication-title: Neuron doi: 10.1016/j.neuron.2009.09.006 – volume: 6 start-page: 27755 year: 2016 ident: 10.1016/j.neuroimage.2019.05.039_bib7 article-title: Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence publication-title: Sci. Rep. doi: 10.1038/srep27755 – start-page: 5263 year: 2018 ident: 10.1016/j.neuroimage.2019.05.039_bib71 – volume: 160 start-page: 106 year: 1962 ident: 10.1016/j.neuroimage.2019.05.039_bib32 article-title: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex publication-title: J. Physiol. doi: 10.1113/jphysiol.1962.sp006837 – volume: 39 start-page: 2269 year: 2017 ident: 10.1016/j.neuroimage.2019.05.039_bib62 article-title: Deep Recurrent Neural Network Reveals a Hierarchy of Process Memory during Dynamic Natural Vision publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24006 – volume: 536 start-page: 171 year: 2016 ident: 10.1016/j.neuroimage.2019.05.039_bib20 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature doi: 10.1038/nature18933 – volume: 180 start-page: 253 year: 2018 ident: 10.1016/j.neuroimage.2019.05.039_bib58 article-title: Convolutional neural network-based encoding and decoding of visual object recognition in space and time publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.018 – volume: 29 start-page: 10638 year: 2009 ident: 10.1016/j.neuroimage.2019.05.039_bib2 article-title: Retinotopic organization of human ventral visual cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2807-09.2009 – volume: 27 start-page: 712 year: 2004 ident: 10.1016/j.neuroimage.2019.05.039_bib41 article-title: The Bayesian brain: the role of uncertainty in neural coding and computation publication-title: Trends Neurosci. doi: 10.1016/j.tins.2004.10.007 – year: 2013 ident: 10.1016/j.neuroimage.2019.05.039_bib40 – year: 2017 ident: 10.1016/j.neuroimage.2019.05.039_bib9 – year: 2015 ident: 10.1016/j.neuroimage.2019.05.039_bib22 – volume: 364 start-page: 1211 year: 2009 ident: 10.1016/j.neuroimage.2019.05.039_bib19 article-title: Predictive coding under the free-energy principle publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2008.0300 – volume: 28 start-page: 4136 year: 2018 ident: 10.1016/j.neuroimage.2019.05.039_bib73 article-title: Neural encoding and decoding with deep learning for dynamic natural vision publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhx268 – volume: 115 start-page: 211 year: 2015 ident: 10.1016/j.neuroimage.2019.05.039_bib56 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – volume: 8 start-page: 3752 year: 2018 ident: 10.1016/j.neuroimage.2019.05.039_bib72 article-title: Deep residual network predicts cortical representation and organization of visual features for rapid categorization publication-title: Sci. Rep. doi: 10.1038/s41598-018-22160-9 – volume: 2 start-page: 79 year: 1999 ident: 10.1016/j.neuroimage.2019.05.039_bib55 article-title: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects publication-title: Nat. Neurosci. doi: 10.1038/4580 – start-page: 2877 year: 2017 ident: 10.1016/j.neuroimage.2019.05.039_bib12 – volume: 7 start-page: 889 year: 1995 ident: 10.1016/j.neuroimage.2019.05.039_bib11 article-title: The helmholtz machine publication-title: Neural Comput. doi: 10.1162/neco.1995.7.5.889 – start-page: 770 year: 2016 ident: 10.1016/j.neuroimage.2019.05.039_bib27 article-title: Deep residual learning for image recognition – volume: 8 start-page: 72 year: 2014 ident: 10.1016/j.neuroimage.2019.05.039_bib1 article-title: Increasing the reliability of data analysis of functional magnetic resonance imaging by applying a new blockwise permutation method publication-title: Front. Neuroinf. doi: 10.3389/fninf.2014.00072 – year: 2014 ident: 10.1016/j.neuroimage.2019.05.039_bib63 – year: 2013 ident: 10.1016/j.neuroimage.2019.05.039_bib46 – year: 2019 ident: 10.1016/j.neuroimage.2019.05.039_bib38 – volume: 94 start-page: 12 year: 2014 ident: 10.1016/j.neuroimage.2019.05.039_bib8 article-title: Neural portraits of perception: reconstructing face images from evoked brain activity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.018 – volume: 29 start-page: 477 year: 2006 ident: 10.1016/j.neuroimage.2019.05.039_bib75 article-title: Complete functional characterization of sensory neurons by system identification publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.29.051605.113024 – year: 1999 ident: 10.1016/j.neuroimage.2019.05.039_bib29 – volume: 290 start-page: 2268 year: 2000 ident: 10.1016/j.neuroimage.2019.05.039_bib60 article-title: The manifold ways of perception publication-title: Science doi: 10.1126/science.290.5500.2268 – volume: 35 start-page: 10005 year: 2015 ident: 10.1016/j.neuroimage.2019.05.039_bib23 article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5023-14.2015 – volume: 10 start-page: e1003553 year: 2014 ident: 10.1016/j.neuroimage.2019.05.039_bib53 article-title: A toolbox for representational similarity analysis publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003553 – volume: 19 start-page: 356 year: 2016 ident: 10.1016/j.neuroimage.2019.05.039_bib77 article-title: Using goal-driven deep learning models to understand sensory cortex publication-title: Nat. Neurosci. doi: 10.1038/nn.4244 – volume: 381 start-page: 607 year: 1996 ident: 10.1016/j.neuroimage.2019.05.039_bib1a article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature doi: 10.1038/381607a0 – year: 2016 ident: 10.1016/j.neuroimage.2019.05.039_bib47 – volume: 1 start-page: 295 year: 1989 ident: 10.1016/j.neuroimage.2019.05.039_bib3 article-title: Unsupervised learning publication-title: Neural Comput. doi: 10.1162/neco.1989.1.3.295 – volume: 61 start-page: 103 year: 1989 ident: 10.1016/j.neuroimage.2019.05.039_bib16 article-title: Gabor filters as texture discriminator publication-title: Biol. Cybern. doi: 10.1007/BF00204594 – year: 2016 ident: 10.1016/j.neuroimage.2019.05.039_bib49 – volume: 181 start-page: 775 year: 2018 ident: 10.1016/j.neuroimage.2019.05.039_bib59 article-title: Generative adversarial networks for reconstructing natural images from brain activity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.07.043 – volume: 22 start-page: 3127 year: 2010 ident: 10.1016/j.neuroimage.2019.05.039_bib67 article-title: Neural decoding with hierarchical generative models publication-title: Neural Comput. doi: 10.1162/NECO_a_00047 – volume: 10 start-page: e1003915 year: 2014 ident: 10.1016/j.neuroimage.2019.05.039_bib37 article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003915 – volume: 452 start-page: 352 year: 2008 ident: 10.1016/j.neuroimage.2019.05.039_bib35 article-title: Identifying natural images from human brain activity publication-title: Nature doi: 10.1038/nature06713 – volume: 11 start-page: 127 year: 2010 ident: 10.1016/j.neuroimage.2019.05.039_bib18 article-title: The free-energy principle: a unified brain theory? publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2787 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.neuroimage.2019.05.039_bib45 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 21 start-page: 1641 year: 2011 ident: 10.1016/j.neuroimage.2019.05.039_bib54 article-title: Reconstructing visual experiences from brain activity evoked by natural movies publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.08.031 – start-page: 3 year: 1994 ident: 10.1016/j.neuroimage.2019.05.039_bib30 article-title: Autoencoders, minimum description length and Helmholtz free energy publication-title: Adv. Neural Inf. Process. Syst. – start-page: 1097 year: 2012 ident: 10.1016/j.neuroimage.2019.05.039_bib43 – year: 2017 ident: 10.1016/j.neuroimage.2019.05.039_bib81 – volume: 16 start-page: 239 year: 2005 ident: 10.1016/j.neuroimage.2019.05.039_bib10 article-title: Predicting neuronal responses during natural vision publication-title: Netw. Comput. Neural Syst. doi: 10.1080/09548980500464030 – year: 2001 ident: 10.1016/j.neuroimage.2019.05.039_bib34 – volume: 96 start-page: 022140 year: 2017 ident: 10.1016/j.neuroimage.2019.05.039_bib74 article-title: Unsupervised learning of phase transitions: from principal component analysis to variational autoencoders publication-title: Phys. Rev. – volume: 10 start-page: 81 year: 2016 ident: 10.1016/j.neuroimage.2019.05.039_bib33 article-title: Decoding the semantic content of natural movies from human brain activity publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2016.00081 – volume: 152 start-page: 184 year: 2017 ident: 10.1016/j.neuroimage.2019.05.039_bib15 article-title: Seeing it all: convolutional network layers map the function of the human visual system publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.001 – volume: 1 start-page: 417 year: 2015 ident: 10.1016/j.neuroimage.2019.05.039_bib42 article-title: Deep neural networks: a new framework for modeling biological vision and brain information processing publication-title: Ann. Rev. Vis. Sci. doi: 10.1146/annurev-vision-082114-035447 – volume: 48 start-page: 159 year: 2005 ident: 10.1016/j.neuroimage.2019.05.039_bib66 article-title: PLS path modeling publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2004.03.005 – start-page: 835 year: 2016 ident: 10.1016/j.neuroimage.2019.05.039_bib69 – volume: 15 start-page: e1006633 year: 2019 ident: 10.1016/j.neuroimage.2019.05.039_bib61 article-title: Deep image reconstruction from human brain activity publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006633 – year: 2016 ident: 10.1016/j.neuroimage.2019.05.039_bib79 – volume: 75 start-page: 107 year: 1995 ident: 10.1016/j.neuroimage.2019.05.039_bib57 article-title: Corticocortical connections in the visual system: structure and function publication-title: Physiol. Rev. doi: 10.1152/physrev.1995.75.1.107 – year: 2018 ident: 10.1016/j.neuroimage.2019.05.039_bib14 – volume: 9 start-page: 151 year: 2017 ident: 10.1016/j.neuroimage.2019.05.039_bib65 article-title: A hierarchical predictive coding model of object recognition in natural images publication-title: Cogn. Comput. doi: 10.1007/s12559-016-9445-1 – volume: 268 start-page: 1158 year: 1995 ident: 10.1016/j.neuroimage.2019.05.039_bib28 article-title: The wake-sleep algorithm for unsupervised neural networks publication-title: Science doi: 10.1126/science.7761831 – volume: 70 start-page: 1297 year: 1980 ident: 10.1016/j.neuroimage.2019.05.039_bib48 article-title: Mathematical description of the responses of simple cortical cells publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.70.001297 – start-page: 9201 year: 2018 ident: 10.1016/j.neuroimage.2019.05.039_bib26 article-title: Deep predictive coding network with local recurrent processing for object recognition publication-title: Adv. Neural Inf. Process. Syst. – volume: 13 start-page: 293 year: 2009 ident: 10.1016/j.neuroimage.2019.05.039_bib17 article-title: The free-energy principle: a rough guide to the brain? publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2009.04.005 – volume: 31 start-page: 1 year: 2009 ident: 10.1016/j.neuroimage.2019.05.039_bib5 article-title: CircStat: a MATLAB toolbox for circular statistics publication-title: J. Stat. Softw. – volume: 76 start-page: 695 year: 2012 ident: 10.1016/j.neuroimage.2019.05.039_bib4 article-title: Canonical microcircuits for predictive coding publication-title: Neuron doi: 10.1016/j.neuron.2012.10.038 – year: 2014 ident: 10.1016/j.neuroimage.2019.05.039_bib39 – volume: 30 start-page: 3531 year: 2010 ident: 10.1016/j.neuroimage.2019.05.039_bib64 article-title: Predictive coding as a model of response properties in cortical area V1 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4911-09.2010 – start-page: 4246 year: 2017 ident: 10.1016/j.neuroimage.2019.05.039_bib25 article-title: Reconstructing perceived faces from brain activations with deep adversarial neural decoding publication-title: Adv. Neural Inf. Process. Syst. – year: 2017 ident: 10.1016/j.neuroimage.2019.05.039_bib6 – volume: 2 start-page: 2539 year: 2015 ident: 10.1016/j.neuroimage.2019.05.039_bib44 article-title: Deep convolutional inverse graphics network – start-page: 807 year: 2010 ident: 10.1016/j.neuroimage.2019.05.039_bib50 article-title: Rectified linear units improve restricted Boltzmann machines – volume: 111 start-page: 8619 year: 2014 ident: 10.1016/j.neuroimage.2019.05.039_bib76 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1403112111 |
SSID | ssj0009148 |
Score | 2.6105037 |
Snippet | Goal-driven and feedforward-only convolutional neural networks (CNN) have been shown to be able to predict and decode cortical responses to natural images or... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 125 |
SubjectTerms | Adult Artificial intelligence Bayesian brain Brain Mapping - methods Computer applications Deep learning Economic models Female Functional magnetic resonance imaging Humans Hypotheses Image Processing, Computer-Assisted Magnetic Resonance Imaging Models, Neurological Neural coding Neural networks Neural Networks, Computer Neuroimaging Neurosciences Pattern Recognition, Visual - physiology Random variables Supervision Unsupervised Machine Learning Variational autoencoder Visual cortex Visual Cortex - physiology Visual discrimination learning Visual reconstruction Young Adult |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqHiouiDcLpTIS17Bx4tgxnKqqVUFaDkBRb5bjB6QC76q7kTjx25lJnLQLHFbimMRjxZ7xzNj-ZoaQV8pw24SKZaF0IeNNEFndcJYxK0wVfOWKBg_0Fx_E-QV_f1ld7pGTMRYGYZVJ9w86vdfW6c08zeZ81bbzT-AZgLmB_YYqMUMMBvxyLlHKX_-6gXkoxodwuKrMsHVC8wwYrz5nZPsDVi6CvFSfwxPLhv_bRP3tgv6JpLxlms7ukbvJp6THw2_fJ3s-PiAHi3Rr_pB8_QIb4nToR023WWLySuev39DjSLu47laoMNbe0b4uDgU_lvZNwKxREx11Pj2Excd3FEMhsOIEbSMFsg46tQjZ_fmIXJydfj45z1KBhcyKMt9kzBWwwhmzoQS3UFXOmiBdkMxy7rjB2i9FMEEY2NMA14pgpeUq99bXtXCmLh-T_biM_imhNjQ1sMxLD6zGKtaqDFVTGlOrAqjEjMhxTrVN2cexCMZ3PcLMrvQNNzRyQ-eVBm7MCJsoV0MGjh1o1Mg2PUaYgk7UYCZ2oH070W5J4o7Uh6OU6KQN1hrcJI7zq-SMvJw-wzrGyxkT_bLDNiDCosgL6OLJIFTTcIFFeSlrDpO4JW5TA8wRvv0ltt_6XOF4ay4L8ey_BvWc3MGnAVp3SPY3151_Ab7YpjnqF9tvxgc4Bw priority: 102 providerName: Elsevier |
Title | Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919304318 https://dx.doi.org/10.1016/j.neuroimage.2019.05.039 https://www.ncbi.nlm.nih.gov/pubmed/31103784 https://www.proquest.com/docview/2244079597 https://www.proquest.com/docview/2231862029 https://pubmed.ncbi.nlm.nih.gov/PMC6592726 |
Volume | 198 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJiFeJr4pjMpIvAbixHESeEBl2tQBraaKob5Zjj-gaLhlbSSe-Nu5S5yUAUJ9iqL4osR3vjvb59-PkOel4rpyGYtcalzEKyeiouIsYlqozNnMJBUu6E-mYnzB382zeVhwW4eyys4nNo7aLDWukb-EUANzjxLy3zer7xGyRuHuaqDQ2CMHCF2GVp3P8y3oLuPtUbgsjQpoECp52vquBi9y8Q1GLRZ4lQ1-J1KG_zs8_Z1-_llF-VtYOr1NDkM-SUetAdwhN6y_S25Owo75PfL5E0yGw4IfVfVmicCVxl69oiNPa7-uV-gs1tbQhhOHQg5LmyYQ0qjyhhobbtxkdkbxGASyTdCFpyBWw0s1luv-uE8uTk8-Ho-jQK4QaZHGm4iZBEY3Y9qlGfar0crlxuVMc264Qt6XxCknFMxnQGOJ07nmZWy1LQphVJE-IPt-6e0jQrWrCm2NzS2oGRmsy9RlVapUUSYgJQYk7_pU6oA8jgQYl7IrMfsqt9qQqA0ZZxK0MSCsl1y16Bs7yJSd2mR3uhT8oYQQsYPs6142ZCBtZrGj9FFnJTJ4grXc2u2APOsfwxjGjRnl7bLGNuBZRRIn8IqHrVH1vwsqitO84NCJ18ytb4D44Nef-MWXBiccd8zzRDz-_2c9IbfwH9q6uSOyv7mq7VNItDbVkOy9-MmGzZgakoPR8ezDOV7P3o-ncH17Mj2f_QKG1DJn |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkYAL4k3aAkaCo8Xa632BEKqAKqFND6hFuRmvHxAETtpkVfhT_EZm9hUKCOXS48oey-sZz4w94_kIeVJoaUqfcOZj65ksfcryUnLGTaoT7xIrSrzQHx-mw2P5bpJMNsjP7i0MplV2OrFW1HZm8I78GZgaOHsU4P--mp8wRI3C6GoHodGIxb77cQZHtsXL0Rvg71Mh9t4evR6yFlWAmTSOloxbAWLNufFxggNao31mfcaNlFZqBDwRXvtUgyMPUxXeZEYWkTMuz1Or8xjGvUQug-GN8LCXTbJVkV8um6d3Scxyzos2c6jJJ6vrU06_gZbAhLKirheKEOX_Nod_u7t_Zm3-Zgb3bpDrrf9KdxuBu0k2XLhFrozbCP1t8ukDHL7bC0aqq-UMC2Vad_qc7gZahUU1R-W0cJbWGDwUfGZadwETSnWw1Lr2w4_fjyg-u0B0CzoNFMgqGNRgevD3O-T4Qpb9LtkMs-DuE2p8mRtnXeZArBAxu4h9UsZa54UAqnRAsm5NlWkrnSPgxlfVpbR9UStuKOSGihIF3BgQ3lPOm2ofa9AUHdtU95oV9K8Ck7QG7YuetvV4Gk9mTeqdTkpUq3kWarVPBuRx3ww6AwNBOrhZhX1Ak6ciEjDEvUao-t8FFkVxlktYxHPi1nfAeuTnW8L0c12XHCP0mUi3_j-tR-Tq8Gh8oA5Gh_vb5Br-T5Ozt0M2l6eVewBO3rJ8WO8sSj5e9Fb-BWBZaaM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJ028THxTGGAkeIwWO87XJoQGW7UyWk0TQ3szjj9GEaRlbQT8a_x13CVOygChvuwxis9KfOe7s_3z_Qh5liuhCxezwEXGBaJwSZAVggVMJyp2Nja8wA390Tg5PBVvzuKzNfKzvQuDsMrWJ9aO2kw17pFvQ6iBtUcO-e-287CI4_3By9nXABmk8KS1pdNoTOTI_vgGy7f5i-E-6Po554ODd68PA88wEOgkChcBMxxMnDHtohg7N1q51LiUaSGMUEh-wp1yiYKkHj6bO51qkYdW2yxLjMoi6PcaWU9xVdQj668Oxscny5K_TDQX8eIoyBjLPY6oQZfV1SonX8BnILwsr6uHImH5v4Pj38nvnxjO34Li4AbZ9Nks3WvM7yZZs-UtsjHy5_W3yfl7WIr77UaqqsUUy2Yae7FD90palfNqhq5qbg2tGXkoZNC0bgIBlarSUGP9gxudDClewkCuCzopKYhV0KlGsPD3O-T0Sgb-LumV09LeJ1S7ItPW2NSCkSF_dh65uIiUynIOUkmfpO2YSu3rniP9xmfZAtw-yaU2JGpDhrEEbfQJ6yRnTe2PFWTyVm2yvdsK3lhCgFpBdreT9flPk9esKL3VWon0fmgul7OmT552r8GD4LGQKu20wjbg1xMecujiXmNU3e-CisIozQQM4iVz6xpgdfLLb8rJx7pKOZ7Xpzx58P_PekI2YBrLt8Px0UNyHX-nAfBtkd7iorKPIONbFI_91KLkw1XP5l8jP28- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+autoencoder%3A+An+unsupervised+model+for+encoding+and+decoding+fMRI+activity+in+visual+cortex&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Han%2C+Kuan&rft.au=Wen%2C+Haiguang&rft.au=Shi%2C+Junxing&rft.au=Lu%2C+Kun-Han&rft.date=2019-09-01&rft.eissn=1095-9572&rft.volume=198&rft.spage=125&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.05.039&rft_id=info%3Apmid%2F31103784&rft.externalDocID=31103784 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |