Towards a consensus regarding global signal regression for resting state functional connectivity MRI
The number of resting state functional connectivity MRI studies continues to expand at a rapid rate along with the options for data processing. Of the processing options, few have generated as much controversy as global signal regression and the subsequent observation of negative correlations (anti-...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 154; pp. 169 - 173 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.07.2017
Elsevier Limited Academic Press |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 |
DOI | 10.1016/j.neuroimage.2016.11.052 |
Cover
Loading…
Abstract | The number of resting state functional connectivity MRI studies continues to expand at a rapid rate along with the options for data processing. Of the processing options, few have generated as much controversy as global signal regression and the subsequent observation of negative correlations (anti-correlations). This debate has motivated new processing strategies and advancement in the field, but has also generated significant confusion and contradictory guidelines. In this article, we work towards a consensus regarding global signal regression. We highlight several points of agreement including the fact that there is not a single “right” way to process resting state data that reveals the “true” nature of the brain. Although further work is needed, different processing approaches likely reveal complementary insights about the brain's functional organisation.
•Global signal regression is a controversial resting state fMRI pre-processing option.•The debate about GSR has generated significant confusion and contradictory guidelines.•Here, we present our consensus statement on the use of GSR in resting state analyses.•There is no “right” way to pre-process that reveals the “true” nature of the brain.•Different processing approaches reveal complimentary insights about brain function. |
---|---|
AbstractList | The number of resting state functional connectivity MRI studies continues to expand at a rapid rate along with the options for data processing. Of the processing options, few have generated as much controversy as global signal regression and the subsequent observation of negative correlations (anti-correlations). This debate has motivated new processing strategies and advancement in the field, but has also generated significant confusion and contradictory guidelines. In this article, we work towards a consensus regarding global signal regression. We highlight several points of agreement including the fact that there is not a single “right” way to process resting state data that reveals the “true” nature of the brain. Although further work is needed, different processing approaches likely reveal complementary insights about the brain's functional organisation.
•
Global signal regression is a controversial resting state fMRI pre-processing option.
•
The debate about GSR has generated significant confusion and contradictory guidelines.
•
Here, we present our consensus statement on the use of GSR in resting state analyses.
•
There is no “right” way to pre-process that reveals the “true” nature of the brain.
•
Different processing approaches reveal complimentary insights about brain function. The number of resting state functional connectivity MRI studies continues to expand at a rapid rate along with the options for data processing. Of the processing options, few have generated as much controversy as global signal regression and the subsequent observation of negative correlations (anti-correlations). This debate has motivated new processing strategies and advancement in the field, but has also generated significant confusion and contradictory guidelines. In this article, we work towards a consensus regarding global signal regression. We highlight several points of agreement including the fact that there is not a single “right” way to process resting state data that reveals the “true” nature of the brain. Although further work is needed, different processing approaches likely reveal complementary insights about the brain's functional organisation. The number of resting state functional connectivity MRI studies continues to expand at a rapid rate along with the options for data processing. Of the processing options, few have generated as much controversy as global signal regression and the subsequent observation of negative correlations (anti-correlations). This debate has motivated new processing strategies and advancement in the field, but has also generated significant confusion and contradictory guidelines. In this article, we work towards a consensus regarding global signal regression. We highlight several points of agreement including the fact that there is not a single “right” way to process resting state data that reveals the “true” nature of the brain. Although further work is needed, different processing approaches likely reveal complementary insights about the brain's functional organisation. •Global signal regression is a controversial resting state fMRI pre-processing option.•The debate about GSR has generated significant confusion and contradictory guidelines.•Here, we present our consensus statement on the use of GSR in resting state analyses.•There is no “right” way to pre-process that reveals the “true” nature of the brain.•Different processing approaches reveal complimentary insights about brain function. |
Author | Fox, Michael D. Murphy, Kevin |
AuthorAffiliation | e Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, United States c Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States d Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States a Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom b Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, CF24 4HQ, United Kingdom |
AuthorAffiliation_xml | – name: d Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States – name: c Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States – name: a Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom – name: b Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, CF24 4HQ, United Kingdom – name: e Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, United States |
Author_xml | – sequence: 1 givenname: Kevin surname: Murphy fullname: Murphy, Kevin email: murphyk2@cardiff.ac.uk organization: Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom – sequence: 2 givenname: Michael D. surname: Fox fullname: Fox, Michael D. email: foxmdphd@gmail.com organization: Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27888059$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAQhi1URD_gL6BIXLgk2E6c2BcErfioVISEytly7EnwkrWLnSzaf8-stmyhpz3ZHj9-NePnnJyEGICQgtGKUda-WVUBlhT92oxQcaxUjFVU8CfkjFElSiU6frLbi7qUjKlTcp7zilKqWCOfkVPeSSmpUGfE3cbfJrlcmMLGkCHkJRcJRqz5MBbjFHszFdmPAResJ8jZx1AMMeExzzsoz2aGYliCnfEKOUwKgIeNn7fFl2_Xz8nTwUwZXtyvF-T7xw-3V5_Lm6-frq_e35S2relcMgu24artOO9N7YQynXFCCMdr1datlaYbTCudaSwMfWM5a2XvXM8cF-CMqi_I233u3dKvwVkIczKTvkv4UWmro_H6_5vgf-gxbrRopOK0w4DX9wEp_lpwPL322cI0mQBxyZrJpqE1Y6JG9NUjdBWXhNMjpRhvW1V3FKmX_3Z0aOWvAATkHrAp5pxgOCCM6p1rvdIPrvXOtWZMo-uHaQ9PrUcTqABn89MxAZf7AEAnGw9JZ-shWHA-oT7toj8m5N2jEDv54K2ZfsL2uIg_YNvlwg |
CitedBy_id | crossref_primary_10_1007_s00787_025_02679_9 crossref_primary_10_1016_j_neuroimage_2023_120110 crossref_primary_10_1002_ana_26724 crossref_primary_10_1017_S003329172200157X crossref_primary_10_3389_fnins_2020_560878 crossref_primary_10_1007_s11682_023_00826_x crossref_primary_10_3390_biomedicines10112728 crossref_primary_10_3389_fneur_2018_00828 crossref_primary_10_3389_fnins_2020_00676 crossref_primary_10_1038_s41598_018_36329_9 crossref_primary_10_7554_eLife_62324 crossref_primary_10_1016_j_ijchp_2023_100401 crossref_primary_10_1016_j_nicl_2021_102666 crossref_primary_10_1016_j_biopsych_2019_06_013 crossref_primary_10_3389_fnins_2024_1397234 crossref_primary_10_3389_fnagi_2020_607445 crossref_primary_10_1002_hbm_25305 crossref_primary_10_1002_hbm_25547 crossref_primary_10_1038_s41467_021_27336_y crossref_primary_10_1002_hbm_25308 crossref_primary_10_1523_JNEUROSCI_0779_20_2020 crossref_primary_10_1002_hbm_24692 crossref_primary_10_1016_j_bandl_2020_104893 crossref_primary_10_1016_j_jpsychires_2024_07_036 crossref_primary_10_1093_braincomms_fcae196 crossref_primary_10_1038_s41598_022_11724_5 crossref_primary_10_1186_s12915_024_02039_0 crossref_primary_10_1002_hbm_26751 crossref_primary_10_1016_j_jad_2018_12_107 crossref_primary_10_1016_j_neurobiolaging_2023_11_009 crossref_primary_10_1016_j_ynstr_2021_100414 crossref_primary_10_1001_jamaneurol_2023_1988 crossref_primary_10_1016_j_schres_2023_09_018 crossref_primary_10_1002_aur_2120 crossref_primary_10_1038_s41467_019_14166_2 crossref_primary_10_1088_1741_2552_ac0b33 crossref_primary_10_1016_j_bpsc_2021_11_004 crossref_primary_10_3233_JAD_180541 crossref_primary_10_1016_j_bpsc_2020_01_007 crossref_primary_10_7554_eLife_88173_4 crossref_primary_10_1016_j_neuroimage_2023_120238 crossref_primary_10_1093_brain_awz405 crossref_primary_10_1007_s13311_023_01442_9 crossref_primary_10_1016_j_neuroimage_2023_120132 crossref_primary_10_1002_hbm_25330 crossref_primary_10_3390_brainsci10030175 crossref_primary_10_1038_s41583_020_0367_2 crossref_primary_10_1002_hbm_25456 crossref_primary_10_1016_j_neuroimage_2023_120136 crossref_primary_10_1002_hbm_26423 crossref_primary_10_1523_JNEUROSCI_0079_18_2018 crossref_primary_10_1016_j_nicl_2019_101860 crossref_primary_10_1017_S0954579421001449 crossref_primary_10_1002_hbm_25332 crossref_primary_10_1016_j_nicl_2019_101741 crossref_primary_10_1007_s00787_020_01545_0 crossref_primary_10_1016_j_bpsc_2018_03_003 crossref_primary_10_1038_s41386_018_0264_9 crossref_primary_10_1109_TNSRE_2019_2912416 crossref_primary_10_1016_j_neuroimage_2017_12_082 crossref_primary_10_1016_j_neuroimage_2020_117205 crossref_primary_10_1016_j_neuroimage_2019_06_050 crossref_primary_10_1093_cercor_bhab307 crossref_primary_10_1016_j_neuroimage_2017_02_036 crossref_primary_10_1016_j_neuroimage_2018_04_049 crossref_primary_10_1016_j_neuroimage_2024_120604 crossref_primary_10_1016_j_bpsc_2020_10_019 crossref_primary_10_1016_j_neuroimage_2020_117680 crossref_primary_10_1002_hbm_25447 crossref_primary_10_1002_hbm_26535 crossref_primary_10_1038_s41467_024_48781_5 crossref_primary_10_3389_fnhum_2021_748919 crossref_primary_10_1016_j_neuroimage_2017_03_056 crossref_primary_10_1002_hbm_24350 crossref_primary_10_1002_hbm_26655 crossref_primary_10_1016_j_bpsc_2017_10_007 crossref_primary_10_1093_ntr_nty266 crossref_primary_10_1016_j_bpsc_2017_10_006 crossref_primary_10_1016_j_neuroimage_2023_120265 crossref_primary_10_1002_jmri_29148 crossref_primary_10_1007_s00787_025_02643_7 crossref_primary_10_1155_2020_8838498 crossref_primary_10_1016_j_ynstr_2018_06_001 crossref_primary_10_1038_s41398_023_02428_z crossref_primary_10_1093_cercor_bhac407 crossref_primary_10_1016_j_neuroimage_2020_116580 crossref_primary_10_1117_1_NPh_8_2_025011 crossref_primary_10_1016_j_schres_2021_06_010 crossref_primary_10_1002_hbm_25314 crossref_primary_10_1016_j_neuroimage_2017_10_004 crossref_primary_10_1038_s41467_024_46975_5 crossref_primary_10_3389_fnins_2022_816331 crossref_primary_10_1007_s11682_023_00823_0 crossref_primary_10_1038_s41598_021_86792_0 crossref_primary_10_1016_j_biopsych_2024_01_003 crossref_primary_10_1089_brain_2017_0571 crossref_primary_10_3233_JAD_191113 crossref_primary_10_1126_sciadv_adq2754 crossref_primary_10_1186_s13063_023_07551_2 crossref_primary_10_1002_brb3_1358 crossref_primary_10_1016_j_neuroimage_2020_116699 crossref_primary_10_1016_j_procs_2018_01_052 crossref_primary_10_3389_fnins_2019_00856 crossref_primary_10_3389_fnins_2019_00736 crossref_primary_10_1016_j_jad_2020_02_029 crossref_primary_10_1073_pnas_1815321116 crossref_primary_10_3389_fnins_2019_00618 crossref_primary_10_1038_s41467_019_08944_1 crossref_primary_10_1016_j_neuroimage_2020_116571 crossref_primary_10_1016_j_jad_2023_03_062 crossref_primary_10_1002_hbm_24417 crossref_primary_10_1016_j_neuron_2018_01_032 crossref_primary_10_1016_j_neuroimage_2017_11_011 crossref_primary_10_1002_hbm_23682 crossref_primary_10_1002_hbm_24892 crossref_primary_10_1038_s41380_020_0814_5 crossref_primary_10_1016_j_nicl_2019_101653 crossref_primary_10_1038_s41596_018_0065_y crossref_primary_10_7554_eLife_60336 crossref_primary_10_1038_s41467_022_31347_8 crossref_primary_10_7554_eLife_41836 crossref_primary_10_1371_journal_pbio_3002653 crossref_primary_10_1016_j_neuroimage_2019_06_063 crossref_primary_10_1016_j_neuroimage_2020_116688 crossref_primary_10_1016_j_nicl_2020_102183 crossref_primary_10_1038_s42003_025_07889_0 crossref_primary_10_3389_fnins_2020_601088 crossref_primary_10_1016_j_nicl_2020_102188 crossref_primary_10_1038_s42003_024_06807_0 crossref_primary_10_3389_fnagi_2022_806032 crossref_primary_10_1016_j_pnpbp_2021_110468 crossref_primary_10_1093_cercor_bhaa407 crossref_primary_10_1038_s41598_021_91211_5 crossref_primary_10_1038_s41598_023_30672_2 crossref_primary_10_1016_j_neuroimage_2020_116680 crossref_primary_10_1016_j_neuroimage_2020_117650 crossref_primary_10_1016_j_jad_2017_12_012 crossref_primary_10_1038_s41598_022_21905_x crossref_primary_10_1016_j_neuroimage_2024_120658 crossref_primary_10_1038_s41598_023_29321_5 crossref_primary_10_1016_j_neuroimage_2022_119185 crossref_primary_10_1111_jon_12978 crossref_primary_10_3390_brainsci14090880 crossref_primary_10_1002_hbm_24444 crossref_primary_10_1007_s10548_019_00697_w crossref_primary_10_1002_brb3_3436 crossref_primary_10_3389_fnins_2020_00214 crossref_primary_10_1016_j_ynirp_2024_100222 crossref_primary_10_1016_j_jad_2023_04_099 crossref_primary_10_1016_j_pnpbp_2024_111187 crossref_primary_10_1016_j_neuroimage_2019_01_074 crossref_primary_10_1016_j_dcn_2023_101244 crossref_primary_10_1016_j_neuroimage_2019_01_076 crossref_primary_10_1038_s41467_017_02815_3 crossref_primary_10_1093_schbul_sby138 crossref_primary_10_1016_j_neuroimage_2023_120205 crossref_primary_10_1038_s41562_024_01942_4 crossref_primary_10_1007_s11682_021_00570_0 crossref_primary_10_1016_j_celrep_2021_109081 crossref_primary_10_1038_s42003_024_07160_y crossref_primary_10_1002_hbm_24559 crossref_primary_10_1186_s13229_024_00616_2 crossref_primary_10_1016_j_neuroimage_2024_120884 crossref_primary_10_3389_fnhum_2021_736512 crossref_primary_10_1017_S0033291722002628 crossref_primary_10_1126_sciadv_abf2709 crossref_primary_10_7554_eLife_45045 crossref_primary_10_3390_tomography9020072 crossref_primary_10_1016_j_pnpbp_2024_111076 crossref_primary_10_1016_j_neuroimage_2020_117628 crossref_primary_10_1016_j_neuroimage_2018_04_076 crossref_primary_10_1007_s11682_022_00673_2 crossref_primary_10_7554_eLife_60673 crossref_primary_10_3389_fnins_2020_601063 crossref_primary_10_1016_j_neuroimage_2019_01_068 crossref_primary_10_1016_j_neuroimage_2019_04_016 crossref_primary_10_1002_hbm_24304 crossref_primary_10_1016_j_ynirp_2023_100171 crossref_primary_10_1016_j_cub_2019_06_006 crossref_primary_10_1016_j_neuroimage_2022_119051 crossref_primary_10_1093_cercor_bhy023 crossref_primary_10_1002_hbm_23890 crossref_primary_10_1038_s44220_023_00110_3 crossref_primary_10_1093_cercor_bhaa393 crossref_primary_10_1016_j_neuroimage_2020_117180 crossref_primary_10_1038_s41380_021_01154_6 crossref_primary_10_3389_fnhum_2021_655576 crossref_primary_10_1016_j_cortex_2020_04_028 crossref_primary_10_1016_j_schres_2020_03_068 crossref_primary_10_1177_25158163211009477 crossref_primary_10_1016_j_parkreldis_2020_09_005 crossref_primary_10_1371_journal_pone_0207385 crossref_primary_10_1038_s41598_019_50750_8 crossref_primary_10_1371_journal_pcbi_1009279 crossref_primary_10_1002_hbm_23887 crossref_primary_10_1093_cercor_bhac336 crossref_primary_10_1002_ana_25901 crossref_primary_10_1002_hbm_24735 crossref_primary_10_1093_braincomms_fcac046 crossref_primary_10_1016_j_biopsych_2022_04_008 crossref_primary_10_1016_j_neuroimage_2024_120585 crossref_primary_10_1126_sciadv_aaz0087 crossref_primary_10_1016_j_jad_2021_04_081 crossref_primary_10_1093_cercor_bhac100 crossref_primary_10_1016_j_cortex_2020_04_015 crossref_primary_10_1038_s41598_018_28237_9 crossref_primary_10_1177_10738584221081752 crossref_primary_10_1111_psyp_13921 crossref_primary_10_1186_s12916_022_02678_6 crossref_primary_10_1038_s41467_020_18823_9 crossref_primary_10_1038_s41598_020_63540_4 crossref_primary_10_1016_j_neuroimage_2018_02_028 crossref_primary_10_1038_s41598_020_66100_y crossref_primary_10_3389_fnins_2019_00825 crossref_primary_10_1038_s41467_023_37330_1 crossref_primary_10_3389_fpsyt_2020_538333 crossref_primary_10_1016_j_neuroimage_2021_118449 crossref_primary_10_1371_journal_pbio_3000284 crossref_primary_10_1016_j_neuroimage_2021_118326 crossref_primary_10_1002_hbm_23996 crossref_primary_10_1093_cercor_bhz219 crossref_primary_10_1002_hbm_24602 crossref_primary_10_1038_s41467_020_15541_0 crossref_primary_10_1017_S0033291723000181 crossref_primary_10_3389_fnimg_2022_869454 crossref_primary_10_1016_j_biopsych_2018_11_011 crossref_primary_10_1093_cercor_bhab263 crossref_primary_10_1002_hbm_25851 crossref_primary_10_1073_pnas_1909848116 crossref_primary_10_3389_fncom_2019_00094 crossref_primary_10_1002_hipo_23259 crossref_primary_10_1016_j_neuroimage_2021_118408 crossref_primary_10_1007_s11571_022_09831_0 crossref_primary_10_1007_s11571_023_09939_x crossref_primary_10_1038_s41598_019_51793_7 crossref_primary_10_1016_j_dcn_2022_101087 crossref_primary_10_1002_hbm_24755 crossref_primary_10_1093_cercor_bhab149 crossref_primary_10_1002_hbm_25843 crossref_primary_10_1038_s42003_023_05029_0 crossref_primary_10_1002_hbm_24518 crossref_primary_10_1093_cercor_bhab024 crossref_primary_10_1038_s41593_020_00726_z crossref_primary_10_1007_s11682_020_00397_1 crossref_primary_10_1016_j_ijpsycho_2018_03_014 crossref_primary_10_1038_s41467_025_57392_7 crossref_primary_10_1016_j_dcn_2020_100877 crossref_primary_10_1017_S0954579420000772 crossref_primary_10_1080_14459795_2018_1449884 crossref_primary_10_1007_s11682_018_9829_9 crossref_primary_10_1038_s41467_019_13785_z crossref_primary_10_1038_s41386_020_0624_0 crossref_primary_10_1177_13872877241291236 crossref_primary_10_1016_j_pnpbp_2020_109928 crossref_primary_10_1016_j_heliyon_2023_e20389 crossref_primary_10_1093_arclin_acz073 crossref_primary_10_1093_cercor_bhy032 crossref_primary_10_1016_j_mri_2018_05_006 crossref_primary_10_1002_hbm_26809 crossref_primary_10_1016_j_jpain_2022_07_011 crossref_primary_10_1016_j_ynirp_2022_100079 crossref_primary_10_3389_fnins_2018_00624 crossref_primary_10_3389_fnins_2018_00861 crossref_primary_10_1007_s00234_017_1973_1 crossref_primary_10_1002_hbm_26801 crossref_primary_10_1007_s11682_020_00276_9 crossref_primary_10_1002_hbm_23532 crossref_primary_10_7554_eLife_69320 crossref_primary_10_1093_cercor_bhac003 crossref_primary_10_1093_cercor_bhab156 crossref_primary_10_1089_brain_2019_0693 crossref_primary_10_1093_cercor_bhz157 crossref_primary_10_3233_JAD_170496 crossref_primary_10_1016_j_neuroimage_2019_116157 crossref_primary_10_3390_cancers13195008 crossref_primary_10_1016_j_brs_2023_08_003 crossref_primary_10_1093_comnet_cnz044 crossref_primary_10_1007_s40263_023_01008_5 crossref_primary_10_1162_netn_a_00244 crossref_primary_10_1016_j_neuroimage_2021_118758 crossref_primary_10_1016_j_neuroimage_2022_118907 crossref_primary_10_1016_j_biopsych_2024_07_021 crossref_primary_10_1007_s00429_024_02796_2 crossref_primary_10_1016_j_jad_2019_07_066 crossref_primary_10_1016_j_neuroimage_2021_117787 crossref_primary_10_1093_brain_awz332 crossref_primary_10_1016_j_neuroimage_2020_117268 crossref_primary_10_1093_brain_awab224 crossref_primary_10_1002_hbm_23843 crossref_primary_10_1016_j_neuroimage_2019_116150 crossref_primary_10_1016_j_neuroimage_2021_117781 crossref_primary_10_3389_fpsyt_2020_00400 crossref_primary_10_1016_j_bpsc_2024_04_001 crossref_primary_10_1038_s41398_022_02011_y crossref_primary_10_1016_j_neuroimage_2019_116289 crossref_primary_10_3389_fnhum_2021_644892 crossref_primary_10_1016_j_biopsych_2020_09_024 crossref_primary_10_1016_j_bpsc_2024_12_016 crossref_primary_10_1044_2019_PERS_SIG6_2019_0001 crossref_primary_10_1016_j_bpsc_2024_12_015 crossref_primary_10_1162_netn_a_00236 crossref_primary_10_1162_netn_a_00116 crossref_primary_10_1016_j_pscychresns_2024_111880 crossref_primary_10_1038_s41467_018_04920_3 crossref_primary_10_3389_fnagi_2017_00264 crossref_primary_10_1016_j_jad_2023_11_074 crossref_primary_10_3389_fnagi_2017_00266 crossref_primary_10_1016_j_jad_2019_09_084 crossref_primary_10_1093_cercor_bhab335 crossref_primary_10_1259_bjr_20180910 crossref_primary_10_1016_j_neurobiolaging_2018_11_004 crossref_primary_10_1038_s41598_020_73192_z crossref_primary_10_1177_0271678X18809547 crossref_primary_10_1016_j_biopsycho_2023_108717 crossref_primary_10_1093_cercor_bhab220 crossref_primary_10_1002_jmri_26522 crossref_primary_10_1016_j_neuroimage_2023_120059 crossref_primary_10_1007_s11682_019_00152_1 crossref_primary_10_1016_j_cub_2024_03_021 crossref_primary_10_1016_j_pnpbp_2022_110574 crossref_primary_10_1017_S0033291724000254 crossref_primary_10_1016_j_neuroimage_2021_118728 crossref_primary_10_1016_j_neuroscience_2021_10_009 crossref_primary_10_1111_ejn_15970 crossref_primary_10_1038_s41598_021_93190_z crossref_primary_10_1016_j_pneurobio_2022_102263 crossref_primary_10_1097_ALN_0000000000003197 crossref_primary_10_1016_j_neuroimage_2020_117002 crossref_primary_10_1016_j_neuroimage_2021_118733 crossref_primary_10_1016_j_ynirp_2022_100144 crossref_primary_10_1093_brain_awz112 crossref_primary_10_1093_cercor_bhad407 crossref_primary_10_1016_j_neuroimage_2020_117126 crossref_primary_10_1016_j_neuroimage_2020_117241 crossref_primary_10_1002_hbm_24954 crossref_primary_10_1016_j_neuroimage_2021_117761 crossref_primary_10_1007_s12144_023_04312_x crossref_primary_10_1109_JBHI_2019_2907189 crossref_primary_10_3389_fpsyt_2020_00422 crossref_primary_10_1080_20008198_2019_1583525 crossref_primary_10_1002_hbm_23745 crossref_primary_10_1016_j_dcn_2020_100797 crossref_primary_10_1093_cercor_bhaa260 crossref_primary_10_1093_cercor_bhaa021 crossref_primary_10_1038_s41380_020_00993_z crossref_primary_10_3389_fneur_2021_735689 crossref_primary_10_3389_fnins_2021_602170 crossref_primary_10_1002_brb3_2735 crossref_primary_10_1016_j_neuroimage_2022_118923 crossref_primary_10_1038_s41380_024_02406_x crossref_primary_10_1016_j_jneumeth_2021_109410 crossref_primary_10_1038_s42003_022_04297_6 crossref_primary_10_1016_j_jad_2024_05_125 crossref_primary_10_1002_hbm_24943 crossref_primary_10_1016_j_neuroscience_2022_12_001 crossref_primary_10_3389_fpsyt_2019_00620 crossref_primary_10_1093_cercor_bhy302 crossref_primary_10_1002_jbio_202100218 crossref_primary_10_1016_j_neures_2020_05_006 crossref_primary_10_1016_j_nicl_2023_103515 crossref_primary_10_1038_s41598_025_91465_3 crossref_primary_10_3389_fnins_2022_1097244 crossref_primary_10_1016_j_neuroimage_2023_119926 crossref_primary_10_1016_j_neuroimage_2020_116810 crossref_primary_10_1162_netn_a_00163 crossref_primary_10_1371_journal_pcbi_1008347 crossref_primary_10_1016_j_bpsc_2019_10_015 crossref_primary_10_3389_fnhum_2017_00344 crossref_primary_10_1002_hbm_23929 crossref_primary_10_1016_j_nic_2017_06_008 crossref_primary_10_1016_j_jad_2022_11_022 crossref_primary_10_1162_netn_a_00160 crossref_primary_10_1371_journal_pcbi_1008580 crossref_primary_10_3389_fneur_2018_00025 crossref_primary_10_1109_JTEHM_2024_3463720 crossref_primary_10_1134_S0006350921040199 crossref_primary_10_1016_j_dcn_2020_100814 crossref_primary_10_1016_j_nicl_2019_102023 crossref_primary_10_3389_fpsyt_2022_1016807 crossref_primary_10_1148_radiol_2018180268 crossref_primary_10_1016_j_neuroimage_2019_03_075 crossref_primary_10_1038_s41398_018_0092_z crossref_primary_10_1162_netn_a_00275 crossref_primary_10_1016_j_ejpn_2023_09_005 crossref_primary_10_1002_hbm_26194 crossref_primary_10_1016_j_pscychresns_2024_111846 crossref_primary_10_1038_s41593_023_01425_1 crossref_primary_10_3758_s13415_024_01156_1 crossref_primary_10_1002_mrm_29824 crossref_primary_10_1016_j_brainres_2023_148635 crossref_primary_10_1016_j_brainres_2023_148634 crossref_primary_10_1016_j_neuroimage_2021_118288 crossref_primary_10_1111_pcn_13162 crossref_primary_10_1016_j_neuroimage_2021_118289 crossref_primary_10_1016_j_neuroimage_2021_118045 crossref_primary_10_1016_j_neuroimage_2021_118042 crossref_primary_10_1093_braincomms_fcac214 crossref_primary_10_1016_j_cortex_2024_06_014 crossref_primary_10_1016_j_envint_2024_109245 crossref_primary_10_1002_jnr_25121 crossref_primary_10_1002_jnr_25242 crossref_primary_10_1038_s41562_025_02121_9 crossref_primary_10_1016_j_jad_2023_05_016 crossref_primary_10_1016_j_neubiorev_2024_105846 crossref_primary_10_1155_2021_9963824 crossref_primary_10_1016_j_nicl_2019_102035 crossref_primary_10_1016_j_plrev_2020_06_005 crossref_primary_10_1016_j_neuroimage_2022_119424 crossref_primary_10_1162_netn_a_00148 crossref_primary_10_1016_j_jad_2019_04_033 crossref_primary_10_1016_j_nbd_2024_106425 crossref_primary_10_1016_j_neuroimage_2023_119944 crossref_primary_10_1177_13872877251321187 crossref_primary_10_1007_s00429_024_02807_2 crossref_primary_10_1016_j_nicl_2023_103421 crossref_primary_10_3390_brainsci11101312 crossref_primary_10_1080_09602011_2024_2314878 crossref_primary_10_1016_j_nicl_2018_01_012 crossref_primary_10_1016_j_ensci_2021_100314 crossref_primary_10_3389_fnins_2018_00353 crossref_primary_10_1016_j_dcn_2022_101129 crossref_primary_10_1016_j_neuroimage_2019_116496 crossref_primary_10_1186_s12868_024_00854_3 crossref_primary_10_7554_eLife_88173 crossref_primary_10_1016_j_bandl_2021_105026 crossref_primary_10_1002_hbm_26099 crossref_primary_10_1038_s41598_017_06864_y crossref_primary_10_1093_cercor_bhae263 crossref_primary_10_1016_j_isci_2023_106784 crossref_primary_10_1016_j_eswa_2024_125922 crossref_primary_10_1016_j_jrp_2021_104064 crossref_primary_10_1016_j_neuroimage_2022_119775 crossref_primary_10_1002_hbm_26091 crossref_primary_10_1038_s41583_019_0212_7 crossref_primary_10_1038_s41467_024_51837_1 crossref_primary_10_1162_netn_a_00132 crossref_primary_10_3389_fpsyg_2019_02945 crossref_primary_10_1016_j_neuropharm_2018_10_025 crossref_primary_10_3390_sym13112004 crossref_primary_10_3389_fpsyt_2023_1232015 crossref_primary_10_1162_imag_a_00191 crossref_primary_10_1073_pnas_2200511119 crossref_primary_10_1002_aur_1971 crossref_primary_10_1016_j_tics_2023_08_009 crossref_primary_10_1073_pnas_2218949120 crossref_primary_10_1093_cercor_bhab041 crossref_primary_10_1093_cercor_bhy342 crossref_primary_10_1016_j_neuroimage_2019_116435 crossref_primary_10_1093_cercor_bhy222 crossref_primary_10_2214_AJR_24_32163 crossref_primary_10_1371_journal_pbio_3000921 crossref_primary_10_1016_j_neuroimage_2022_119720 crossref_primary_10_1038_s41598_019_39243_w crossref_primary_10_1007_s00406_023_01683_x crossref_primary_10_3390_s23218722 crossref_primary_10_3389_fnins_2018_00528 crossref_primary_10_1093_cercor_bhy340 crossref_primary_10_1016_j_nicl_2023_103445 crossref_primary_10_1093_braincomms_fcac009 crossref_primary_10_1371_journal_pcbi_1011942 crossref_primary_10_1038_s41537_022_00328_7 crossref_primary_10_3389_fnagi_2016_00330 crossref_primary_10_1038_s42003_024_06016_9 crossref_primary_10_3390_brainsci13111508 crossref_primary_10_1002_ana_26015 crossref_primary_10_1093_cercor_bhac016 crossref_primary_10_1093_cercor_bhad351 crossref_primary_10_1055_a_1721_2914 crossref_primary_10_1093_brain_awaa095 crossref_primary_10_1016_j_neuroimage_2018_06_006 crossref_primary_10_1364_BOE_10_002889 crossref_primary_10_52294_8944e106_c54b_40d7_a620_925f7b074f99 crossref_primary_10_1002_hbm_26031 crossref_primary_10_1002_hbm_26030 crossref_primary_10_1038_s41398_024_02995_9 crossref_primary_10_3389_fnins_2022_1050240 crossref_primary_10_1007_s00787_025_02685_x crossref_primary_10_1038_s41598_024_59476_8 crossref_primary_10_1162_netn_a_00074 crossref_primary_10_1002_acn3_52091 crossref_primary_10_1162_netn_a_00071 crossref_primary_10_3389_fnins_2022_952940 crossref_primary_10_1016_j_mri_2021_10_028 crossref_primary_10_1016_j_neuroimage_2018_06_001 crossref_primary_10_3389_fgene_2020_00890 crossref_primary_10_1017_pen_2018_8 crossref_primary_10_1093_braincomms_fcad105 crossref_primary_10_1093_cercor_bhae204 crossref_primary_10_1016_j_cortex_2022_03_016 crossref_primary_10_1093_cercor_bhac387 crossref_primary_10_1093_cercor_bhad113 crossref_primary_10_1016_j_tjnut_2023_12_016 crossref_primary_10_1093_cercor_bhx273 crossref_primary_10_1093_cercor_bhac150 crossref_primary_10_1002_jnr_25169 crossref_primary_10_1002_hbm_25096 crossref_primary_10_1016_j_eplepsyres_2021_106590 crossref_primary_10_1177_13623613211004058 crossref_primary_10_3390_biomedicines9101420 crossref_primary_10_1162_imag_a_00261 crossref_primary_10_1016_j_psyneuen_2020_105123 crossref_primary_10_1017_S0033291725000303 crossref_primary_10_1007_s00787_023_02242_4 crossref_primary_10_1016_j_jad_2022_12_088 crossref_primary_10_1007_s11682_019_00205_5 crossref_primary_10_1016_j_neuroimage_2021_118332 crossref_primary_10_1016_j_neuroscience_2019_10_024 crossref_primary_10_1038_s41598_022_24365_5 crossref_primary_10_1016_j_biopsych_2019_12_027 crossref_primary_10_1186_s12879_025_10780_2 crossref_primary_10_1007_s00787_022_01959_y crossref_primary_10_1016_j_neuroimage_2021_118570 crossref_primary_10_3174_ajnr_A8067 crossref_primary_10_1007_s11682_018_9976_z crossref_primary_10_3389_fnagi_2020_584863 crossref_primary_10_1093_cercor_bhac279 crossref_primary_10_1007_s12264_021_00812_7 crossref_primary_10_1016_j_neuroimage_2022_119612 crossref_primary_10_1038_s41598_020_80346_6 crossref_primary_10_1016_j_nicl_2023_103468 crossref_primary_10_1162_imag_a_00030 crossref_primary_10_1162_netn_a_00054 crossref_primary_10_1016_j_jad_2023_08_095 crossref_primary_10_1016_j_neuroimage_2021_118466 crossref_primary_10_1016_j_neuropsychologia_2020_107500 crossref_primary_10_1016_j_tics_2017_04_002 crossref_primary_10_1016_j_neuroimage_2021_118467 crossref_primary_10_1162_netn_a_00171 crossref_primary_10_1007_s11682_022_00658_1 crossref_primary_10_1016_j_neuroimage_2018_08_053 crossref_primary_10_1016_j_neuroimage_2018_08_057 crossref_primary_10_1162_imag_a_00033 crossref_primary_10_1002_hbm_26484 crossref_primary_10_1016_j_ebiom_2023_104455 crossref_primary_10_1016_j_neubiorev_2023_105144 crossref_primary_10_1016_j_neuroimage_2022_119364 crossref_primary_10_1002_hbm_26247 crossref_primary_10_1016_j_neuroimage_2022_119124 crossref_primary_10_1038_s41597_022_01329_y crossref_primary_10_1371_journal_pbio_3000602 crossref_primary_10_1016_j_neuroimage_2022_119125 crossref_primary_10_3389_fnhum_2022_972375 crossref_primary_10_1002_hbm_26245 crossref_primary_10_1016_j_neuroimage_2019_07_004 crossref_primary_10_1007_s10803_021_05191_6 crossref_primary_10_1007_s10548_023_00977_6 crossref_primary_10_3389_fneur_2023_1213224 crossref_primary_10_1016_j_neuroimage_2020_116896 crossref_primary_10_1089_brain_2023_0032 crossref_primary_10_1016_j_jneumeth_2018_09_017 crossref_primary_10_1038_s41593_019_0400_9 crossref_primary_10_1093_schbul_sbae020 crossref_primary_10_1093_sleep_zsy108 crossref_primary_10_1186_s12987_023_00407_6 crossref_primary_10_3389_fneur_2021_712071 crossref_primary_10_1016_j_cortex_2021_09_013 crossref_primary_10_3389_fncir_2020_570583 crossref_primary_10_1111_stan_12219 crossref_primary_10_1259_bjr_20220762 crossref_primary_10_1016_j_neuroimage_2022_119358 crossref_primary_10_3389_fnins_2019_00279 crossref_primary_10_1186_s13195_025_01683_0 crossref_primary_10_1371_journal_pcbi_1006309 crossref_primary_10_1126_sciadv_abd1327 crossref_primary_10_1016_j_neuroimage_2019_07_018 crossref_primary_10_1002_hbm_25018 crossref_primary_10_1523_JNEUROSCI_2322_23_2024 crossref_primary_10_1016_j_dcn_2019_100747 crossref_primary_10_1016_j_neuroimage_2021_118093 crossref_primary_10_1093_brain_awab096 crossref_primary_10_1111_pcn_13782 crossref_primary_10_1002_brb3_3198 crossref_primary_10_1016_j_isci_2024_111365 crossref_primary_10_1038_s41598_022_07578_6 crossref_primary_10_1124_pharmrev_121_000514 crossref_primary_10_1016_j_nicl_2020_102401 crossref_primary_10_1007_s00429_024_02864_7 crossref_primary_10_1016_j_schres_2018_01_019 crossref_primary_10_1111_psyp_13495 crossref_primary_10_3724_SP_J_1041_2021_00055 crossref_primary_10_1016_j_neuroimage_2020_116756 crossref_primary_10_1016_j_dib_2022_108454 crossref_primary_10_1093_texcom_tgaa073 crossref_primary_10_1016_j_dcn_2023_101322 crossref_primary_10_1007_s00406_024_01765_4 crossref_primary_10_1162_imag_a_00101 crossref_primary_10_1016_j_neuroimage_2023_120407 crossref_primary_10_1007_s00429_020_02205_4 crossref_primary_10_1016_j_jad_2019_01_012 crossref_primary_10_1016_j_bandc_2023_105976 crossref_primary_10_1016_j_nicl_2021_102819 crossref_primary_10_1016_j_neuropsychologia_2019_02_011 crossref_primary_10_1016_j_neuroimage_2019_116306 crossref_primary_10_1016_j_euroneuro_2021_06_001 crossref_primary_10_1016_j_neuroimage_2023_120300 crossref_primary_10_3389_fpsyt_2018_00046 crossref_primary_10_1016_j_mrl_2024_200156 crossref_primary_10_1109_TMI_2024_3351907 crossref_primary_10_1002_hbm_24190 crossref_primary_10_1371_journal_pbio_3000733 crossref_primary_10_1016_j_neuroimage_2020_116614 crossref_primary_10_1002_hbm_25161 crossref_primary_10_1089_brain_2018_0597 crossref_primary_10_1016_j_neuroimage_2020_116621 crossref_primary_10_1016_j_pscychresns_2022_111541 crossref_primary_10_1016_j_cortex_2020_08_012 crossref_primary_10_1016_j_neuroimage_2020_116980 crossref_primary_10_1016_j_jad_2021_12_098 crossref_primary_10_1002_hbm_70049 crossref_primary_10_1007_s00234_023_03135_8 crossref_primary_10_1016_j_neuroimage_2023_120414 crossref_primary_10_1002_hbm_25352 crossref_primary_10_1002_hbm_26320 crossref_primary_10_3390_brainsci13030429 crossref_primary_10_1007_s12194_022_00670_6 crossref_primary_10_1017_S0954579420001133 crossref_primary_10_1016_j_jad_2019_04_096 crossref_primary_10_1152_japplphysiol_00917_2017 crossref_primary_10_1016_j_neuroimage_2022_119208 crossref_primary_10_1016_j_neuroimage_2017_03_020 crossref_primary_10_1289_EHP9737 crossref_primary_10_1038_s41398_021_01321_x crossref_primary_10_1523_JNEUROSCI_0613_22_2022 crossref_primary_10_1016_j_neuroimage_2020_116612 crossref_primary_10_1016_j_pscychresns_2020_111134 crossref_primary_10_1089_brain_2020_0740 crossref_primary_10_1016_j_neuroimage_2024_120709 crossref_primary_10_1007_s11682_021_00476_x crossref_primary_10_1016_j_bpsc_2017_08_006 crossref_primary_10_1089_brain_2021_0061 crossref_primary_10_3389_fpsyt_2022_1036997 crossref_primary_10_1002_hbm_25102 crossref_primary_10_1016_j_neuroimage_2022_119554 crossref_primary_10_1007_s11682_020_00379_3 crossref_primary_10_1016_j_nic_2019_09_012 crossref_primary_10_1016_j_psychres_2023_115598 crossref_primary_10_1016_j_jad_2020_04_028 crossref_primary_10_1016_j_neuroimage_2020_116720 crossref_primary_10_1007_s00429_019_02008_2 crossref_primary_10_1038_s41467_022_35764_7 crossref_primary_10_1017_S0033291724003088 crossref_primary_10_7554_eLife_84683 crossref_primary_10_1016_j_brainres_2023_148559 crossref_primary_10_1038_s41467_022_32592_7 crossref_primary_10_3389_fnimg_2022_952084 crossref_primary_10_1002_hbm_25458 crossref_primary_10_1016_j_biopsych_2022_09_024 crossref_primary_10_1016_j_media_2021_102063 crossref_primary_10_1038_s41386_020_0785_x crossref_primary_10_3758_s13415_018_0611_7 crossref_primary_10_1038_s42003_023_05262_7 crossref_primary_10_1016_j_neuroimage_2022_119460 crossref_primary_10_1002_hbm_26342 crossref_primary_10_1002_hbm_25010 crossref_primary_10_1038_s41398_019_0670_8 crossref_primary_10_1016_j_neuroimage_2020_116707 crossref_primary_10_1093_cercor_bhx312 crossref_primary_10_1016_j_neuroimage_2020_116945 crossref_primary_10_1038_s41562_024_01908_6 crossref_primary_10_1152_jn_00362_2020 crossref_primary_10_3389_fpsyt_2019_00052 crossref_primary_10_1038_s41467_019_14159_1 crossref_primary_10_1093_cercor_bhx307 crossref_primary_10_3389_fpsyt_2022_973921 crossref_primary_10_1002_hbm_25009 crossref_primary_10_1016_j_neuroimage_2018_12_048 crossref_primary_10_1016_j_neubiorev_2020_07_019 crossref_primary_10_3389_fnsys_2024_1425491 crossref_primary_10_1016_j_neuroimage_2021_118177 crossref_primary_10_1093_cercor_bhaf029 crossref_primary_10_1007_s00429_022_02508_8 crossref_primary_10_1016_j_neuroimage_2024_120920 crossref_primary_10_1002_brb3_2174 crossref_primary_10_1002_hbm_24033 crossref_primary_10_1016_j_tics_2020_06_003 crossref_primary_10_1038_s41380_024_02807_y crossref_primary_10_1038_s41598_017_12993_1 crossref_primary_10_1016_j_neuroimage_2024_120918 crossref_primary_10_1093_schbul_sbab086 crossref_primary_10_1111_ejn_16390 crossref_primary_10_1162_imag_a_00314 crossref_primary_10_1038_s41398_021_01221_0 crossref_primary_10_1002_hbm_26209 |
Cites_doi | 10.1016/j.mri.2010.03.021 10.1073/pnas.98.2.676 10.1016/j.neuroimage.2011.08.048 10.1016/j.neuroimage.2013.10.013 10.1016/j.neuroimage.2010.12.047 10.1002/mrm.1910350312 10.1152/jn.90463.2008 10.1523/JNEUROSCI.4263-15.2016 10.1016/j.mri.2006.09.042 10.1152/jn.90777.2008 10.1089/brain.2012.0080 10.1016/j.neuroimage.2013.05.118 10.1089/brain.2015.0354 10.1016/j.mri.2012.05.004 10.1016/j.neuroimage.2009.05.005 10.1016/j.neuroimage.2011.08.044 10.1016/j.neuroimage.2007.07.037 10.1016/j.neuroimage.2006.02.048 10.1016/j.neuroimage.2012.06.035 10.1016/j.neuroimage.2013.01.050 10.1016/j.neuroimage.2011.08.009 10.1016/j.neuroimage.2003.12.042 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E 10.1073/pnas.0913110107 10.1523/JNEUROSCI.4837-12.2013 10.3389/fnhum.2012.00245 10.1002/hbm.23111 10.1016/j.neuroimage.2015.08.053 10.1016/j.neuroimage.2012.01.016 10.1006/nimg.1998.0367 10.1016/j.neuroimage.2007.04.042 10.1186/1752-0509-1-54 10.1016/j.neuroimage.2003.11.025 10.1073/pnas.0135058100 10.1016/j.neuroimage.2012.10.017 10.1016/j.neuroimage.2013.08.048 10.1073/pnas.0504136102 10.1016/j.neuroimage.2012.03.027 10.1016/j.neuroimage.2011.09.018 10.1016/j.neuroimage.2012.09.040 10.1016/j.neuroimage.2008.09.036 10.1016/j.mri.2015.07.011 10.1016/j.jneumeth.2015.05.020 10.1016/j.neuroimage.2015.07.048 10.1038/jcbfm.2015.166 10.1016/j.neuroimage.2014.03.034 10.1002/mrm.24201 10.1371/journal.pone.0104947 10.1016/j.neuroimage.2013.03.004 10.1016/j.neuroimage.2013.07.057 10.1002/hbm.22900 10.1002/hbm.20113 10.1093/brain/awv228 10.3389/fnhum.2013.00356 10.1016/j.neuroimage.2009.05.012 10.1006/nimg.1997.0263 10.1002/hbm.21079 10.1016/j.neuroimage.2013.04.001 10.1155/2013/935154 |
ContentType | Journal Article |
Copyright | 2016 The Authors Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jul 1, 2017 2016 The Authors 2016 |
Copyright_xml | – notice: 2016 The Authors – notice: Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jul 1, 2017 – notice: 2016 The Authors 2016 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1016/j.neuroimage.2016.11.052 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 173 |
ExternalDocumentID | PMC5489207 27888059 10_1016_j_neuroimage_2016_11_052 S1053811916306711 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: K23 NS083741 – fundername: Wellcome Trust grantid: 200804/Z/16/Z |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT 0SF CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c630t-1cec4296722ba3d59a7ad555d239636c8a7fa68da4cefb4c2168bddb1d25eda93 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 |
IngestDate | Thu Aug 21 17:28:59 EDT 2025 Fri Jul 11 00:59:26 EDT 2025 Wed Aug 13 09:25:37 EDT 2025 Wed Feb 19 02:26:11 EST 2025 Thu Apr 24 23:16:11 EDT 2025 Tue Jul 01 03:01:49 EDT 2025 Fri Feb 23 02:25:06 EST 2024 Tue Aug 26 20:08:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c630t-1cec4296722ba3d59a7ad555d239636c8a7fa68da4cefb4c2168bddb1d25eda93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811916306711 |
PMID | 27888059 |
PQID | 1912669370 |
PQPubID | 2031077 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5489207 proquest_miscellaneous_1844031153 proquest_journals_1912669370 pubmed_primary_27888059 crossref_primary_10_1016_j_neuroimage_2016_11_052 crossref_citationtrail_10_1016_j_neuroimage_2016_11_052 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2016_11_052 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2016_11_052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 2017-07-00 20170701 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier Limited Academic Press |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Academic Press |
References | Langfelder, Horvath (bib33) 2007; 1 Anderson, Druzgal, Lopez-Larson, Jeong, Desai, Yurgelun-Todd (bib3) 2010; 32 Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bib17) 2005; 102 Keller, Bickel, Honey, Groppe, Entz, Craddock, Lado, Kelly, Milham, Mehta (bib31) 2013; 33 Shmueli, van Gelderen, de Zwart, Horovitz, Fukunaga, Jansma, Duyn (bib47) 2007; 38 Chen, Ryali, Qin, Menon (bib14) 2013; 82 Jo, Gotts, Reynolds, Bandettini, Martin, Cox, Saad (bib30) 2013 Schwarz, McGonigle (bib46) 2010; 55 Power, Mitra, Laumann, Snyder, Schlaggar, Petersen (bib41) 2014; 84 Chai, Castanan, Ongur, Whitfield-Gabrieli (bib11) 2011; 59 Greicius, Krasnow, Reiss, Menon (bib24) 2003; 100 Qing, Dong, Li, Zang, Liu (bib42) 2013; 33 Murphy, Birn, Bandettini (bib38) 2013; 80 Gotts, Saad, Jo, Wallace, Cox, Martin (bib23) 2013 Boes, Prasad, Liu, Liu, Pascual-Leone, Caviness, Fox (bib7) 2015; 138 Saad, Gotts, Murphy, Chen, Jo, Martin, Cox (bib44) 2012; 2 Birn, Diamond, Smith, Bandettini (bib6) 2006; 31 Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay, Moeller, Xu, Yacoub, Baselli, Ugurbil, Miller, Smith (bib25) 2014; 95 Weissenbacher, Kasess, Gerstl, Lanzenberger, Moser, Windischberger (bib52) 2009; 47 Yan, Cheung, Kelly, Colcombe, Craddock, Di Martino, Li, Zuo, Castellanos, Milham (bib57) 2013; 76 Braun, Plichta, Esslinger, Sauer, Haddad, Grimm, Mier, Mohnke, Heinz, Erk, Walter, Seiferth, Kirsch, Meyer-Lindenberg (bib9) 2011; 59 Raichle, MacLeod, Snyder, Powers, Gusnard, Shulman (bib43) 2001; 98 Schoelvinck, Maier, Ye, Duyn, Leopold (bib45) 2010; 107 Borchardt, Lord, Li, van der Meer, Heinze, Bogerts, Breakspear, Walter (bib8) 2016; 37 Chang, Glover (bib12) 2009; 47 Andellini, CannatÃ, Gazzellini, Bernardi, Napolitano (bib2) 2015; 253 Wong, Olafsson, Tal, Liu (bib56) 2013; 83 Friston, Williams, Howard, Frackowiak, Turner (bib20) 1996; 35 Zhang, Snyder, Fox, Sansbury, Shimony, Raichle (bib59) 2008; 100 Wong, DeYoung, Liu (bib54) 2015; 124 Zuo, Xu, Jiang, Yang, Cao, He, Zang, Castellanos, Milham (bib62) 2012; 65 Zhu, Fan, Zou, Wang, Gao, Niu (bib61) 2014; 9 Liang, King, Zhang (bib35) 2011; 59 Wise, Ide, Poulin, Tracey (bib53) 2004; 21 Macey, Macey, Kumar, Harper (bib36) 2004; 22 Liang, Wang, Yan, Shu, Xu, Gong, He (bib34) 2012; 7 Birn (bib5) 2012; 62 Hampson, Driesen, Roth, Gore, Constable (bib27) 2010; 28 He, Liu (bib28) 2011; 59 Wong, Olafsson, Tal, Liu (bib55) 2012; 63 Zhu, Tarumi, Khan, Zhang (bib60) 2015; 35 Song, Desphande, Meier, Tudorascu, Vergun, Nair, Biswal, Meyerand, Birn, Bellec, Prabhakaran (bib49) 2012 Chen, Xie, Ward, Li, Antuono, Li (bib13) 2012; 68 Gorgolewski, Storkey, Bastin, Pernet (bib22) 2012 Carbonell, Bellec, Shmuel (bib10) 2013; 86 Murphy, Birn, Handwerker, Jones, Bandettini (bib39) 2009; 44 Glover, Li, Ress (bib21) 2000; 44 Sinclair, Hansell, Blokland, Martin, Thompson, Breakspear, de Zubicaray, Wright, McMahon (bib48) 2015; 121 Driver, Whittaker, Bright, Murphy (bib15) 2016 Guo, Kurth, Zhou, Mayer, Eickhoff, Kramer, Seeley (bib26) 2012; 61 Falahpour, Refai, Bodurka (bib16) 2013; 72 Ibinson, Vogt, Taylor, Dua, Becker, Loggia, Wasan (bib29) 2015; 5 Aguirre, Zarahn, D'Esposito (bib1) 1998; 8 Fox, Zhang, Snyder, Raichle (bib18) 2009; 101 Spisak, Jakab, Kis, Opposits, Aranyi, Beranyi, Emri (bib50) 2014; 9 Zarahn, Aguirre, D'Esposito (bib58) 1997; 5 Wang (bib51) 2012; 30 Behzadi, Restom, Liau, Liu (bib4) 2007; 37 Kruschwitz, Meyer-Lindenberg, Veer, Wackerhagen, Erk, Mohnke, Pöhland, Haddad, Grimm, Tost, Romanczuk-Seiferth, Heinz, Walter, Walter (bib32) 2015; 36 Marx, Pauly, Chang (bib37) 2012; 64 Perlbarg, Bellec, Anton, Pelegrini-Issac, Doyon, Benali (bib40) 2007; 25 Fransson (bib19) 2005; 26 Aguirre (10.1016/j.neuroimage.2016.11.052_bib1) 1998; 8 Gorgolewski (10.1016/j.neuroimage.2016.11.052_bib22) 2012 He (10.1016/j.neuroimage.2016.11.052_bib28) 2011; 59 Ibinson (10.1016/j.neuroimage.2016.11.052_bib29) 2015; 5 Wong (10.1016/j.neuroimage.2016.11.052_bib55) 2012; 63 Gotts (10.1016/j.neuroimage.2016.11.052_bib23) 2013 Guo (10.1016/j.neuroimage.2016.11.052_bib26) 2012; 61 Jo (10.1016/j.neuroimage.2016.11.052_bib30) 2013 Fransson (10.1016/j.neuroimage.2016.11.052_bib19) 2005; 26 Glover (10.1016/j.neuroimage.2016.11.052_bib21) 2000; 44 Zuo (10.1016/j.neuroimage.2016.11.052_bib62) 2012; 65 Anderson (10.1016/j.neuroimage.2016.11.052_bib3) 2010; 32 Borchardt (10.1016/j.neuroimage.2016.11.052_bib8) 2016; 37 Chang (10.1016/j.neuroimage.2016.11.052_bib12) 2009; 47 Zarahn (10.1016/j.neuroimage.2016.11.052_bib58) 1997; 5 Saad (10.1016/j.neuroimage.2016.11.052_bib44) 2012; 2 Greicius (10.1016/j.neuroimage.2016.11.052_bib24) 2003; 100 Macey (10.1016/j.neuroimage.2016.11.052_bib36) 2004; 22 Murphy (10.1016/j.neuroimage.2016.11.052_bib38) 2013; 80 Langfelder (10.1016/j.neuroimage.2016.11.052_bib33) 2007; 1 Carbonell (10.1016/j.neuroimage.2016.11.052_bib10) 2013; 86 Boes (10.1016/j.neuroimage.2016.11.052_bib7) 2015; 138 Falahpour (10.1016/j.neuroimage.2016.11.052_bib16) 2013; 72 Schwarz (10.1016/j.neuroimage.2016.11.052_bib46) 2010; 55 Wang (10.1016/j.neuroimage.2016.11.052_bib51) 2012; 30 Zhu (10.1016/j.neuroimage.2016.11.052_bib61) 2014; 9 Song (10.1016/j.neuroimage.2016.11.052_bib49) 2012 Spisak (10.1016/j.neuroimage.2016.11.052_bib50) 2014; 9 Birn (10.1016/j.neuroimage.2016.11.052_bib6) 2006; 31 Griffanti (10.1016/j.neuroimage.2016.11.052_bib25) 2014; 95 Yan (10.1016/j.neuroimage.2016.11.052_bib57) 2013; 76 Liang (10.1016/j.neuroimage.2016.11.052_bib34) 2012; 7 Chai (10.1016/j.neuroimage.2016.11.052_bib11) 2011; 59 Zhu (10.1016/j.neuroimage.2016.11.052_bib60) 2015; 35 Sinclair (10.1016/j.neuroimage.2016.11.052_bib48) 2015; 121 Liang (10.1016/j.neuroimage.2016.11.052_bib35) 2011; 59 Raichle (10.1016/j.neuroimage.2016.11.052_bib43) 2001; 98 Braun (10.1016/j.neuroimage.2016.11.052_bib9) 2011; 59 Chen (10.1016/j.neuroimage.2016.11.052_bib14) 2013; 82 Fox (10.1016/j.neuroimage.2016.11.052_bib18) 2009; 101 Keller (10.1016/j.neuroimage.2016.11.052_bib31) 2013; 33 Shmueli (10.1016/j.neuroimage.2016.11.052_bib47) 2007; 38 Andellini (10.1016/j.neuroimage.2016.11.052_bib2) 2015; 253 Driver (10.1016/j.neuroimage.2016.11.052_bib15) 2016 Wise (10.1016/j.neuroimage.2016.11.052_bib53) 2004; 21 Hampson (10.1016/j.neuroimage.2016.11.052_bib27) 2010; 28 Kruschwitz (10.1016/j.neuroimage.2016.11.052_bib32) 2015; 36 Power (10.1016/j.neuroimage.2016.11.052_bib41) 2014; 84 Qing (10.1016/j.neuroimage.2016.11.052_bib42) 2013; 33 Weissenbacher (10.1016/j.neuroimage.2016.11.052_bib52) 2009; 47 Zhang (10.1016/j.neuroimage.2016.11.052_bib59) 2008; 100 Friston (10.1016/j.neuroimage.2016.11.052_bib20) 1996; 35 Marx (10.1016/j.neuroimage.2016.11.052_bib37) 2012; 64 Perlbarg (10.1016/j.neuroimage.2016.11.052_bib40) 2007; 25 Schoelvinck (10.1016/j.neuroimage.2016.11.052_bib45) 2010; 107 Chen (10.1016/j.neuroimage.2016.11.052_bib13) 2012; 68 Behzadi (10.1016/j.neuroimage.2016.11.052_bib4) 2007; 37 Fox (10.1016/j.neuroimage.2016.11.052_bib17) 2005; 102 Birn (10.1016/j.neuroimage.2016.11.052_bib5) 2012; 62 Murphy (10.1016/j.neuroimage.2016.11.052_bib39) 2009; 44 Wong (10.1016/j.neuroimage.2016.11.052_bib56) 2013; 83 Wong (10.1016/j.neuroimage.2016.11.052_bib54) 2015; 124 |
References_xml | – volume: 62 start-page: 864 year: 2012 end-page: 870 ident: bib5 article-title: The role of physiological noise in resting-state functional connectivity publication-title: NeuroImage – volume: 68 start-page: 1828 year: 2012 end-page: 1835 ident: bib13 article-title: A method to determine the necessity for global signal regression in resting-state fMRI studies publication-title: Magn. Reson. Med. – year: 2013 ident: bib23 article-title: The perils of global signal regression for group comparisons: a case study of Autism Spectrum Disorders publication-title: Front. Hum. Neurosci. – volume: 83 start-page: 983 year: 2013 end-page: 990 ident: bib56 article-title: The amplitude of the resting-state fMRI global signal is related to EEG vigilance measures publication-title: NeuroImage – volume: 38 start-page: 306 year: 2007 end-page: 320 ident: bib47 article-title: Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal publication-title: NeuroImage – volume: 7 year: 2012 ident: bib34 article-title: Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study publication-title: PLoS One – year: 2012 ident: bib22 article-title: Adaptive thresholding for reliable topological inference in single subject fMRI analysis publication-title: Front. Hum. Neurosci. – volume: 59 start-page: 1190 year: 2011 end-page: 1199 ident: bib35 article-title: Anticorrelated resting-state functional connectivity in awake rat brain publication-title: NeuroImage – volume: 35 start-page: 1910 year: 2015 end-page: 1920 ident: bib60 article-title: Vascular coupling in resting-state fMRI: evidence from multiple modalities publication-title: J. Cereb. Blood Flow. Metab. – year: 2013 ident: bib30 article-title: Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI publication-title: J. Appl. Math. – volume: 22 start-page: 360 year: 2004 end-page: 366 ident: bib36 article-title: A method for removal of global effects from fMRI time series publication-title: NeuroImage – volume: 44 start-page: 893 year: 2009 end-page: 905 ident: bib39 article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? publication-title: NeuroImage – volume: 31 start-page: 1536 year: 2006 end-page: 1548 ident: bib6 article-title: Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI publication-title: NeuroImage – volume: 33 start-page: 1306 year: 2013 end-page: 1313 ident: bib42 article-title: Global signal regression has complex effects on regional homogeneity of resting state fMRI signal publication-title: Magn. Reson. Imaging – volume: 32 start-page: 919 year: 2010 end-page: 934 ident: bib3 article-title: Network anticorrelations, global regression, and phase-shifted soft tissue correction publication-title: Hum. Brain Mapp. – volume: 59 start-page: 2339 year: 2011 end-page: 2348 ident: bib28 article-title: A geometric view of global signal confounds in resting-state functional MRI publication-title: NeuroImage – volume: 64 start-page: 19 year: 2012 end-page: 31 ident: bib37 article-title: A novel approach for global noise reduction in resting-state fMRI: applecor publication-title: NeuroImage – volume: 72 start-page: 252 year: 2013 end-page: 264 ident: bib16 article-title: Subject specific BOLD fMRI respiratory and cardiac response functions obtained from global signal publication-title: NeuroImage – volume: 33 start-page: 6333 year: 2013 end-page: 6342 ident: bib31 article-title: Neurophysiological investigation of spontaneous correlated and anticorrelated fluctuations of the BOLD signal publication-title: J. Neurosci. – volume: 44 start-page: 162 year: 2000 end-page: 167 ident: bib21 article-title: Image-based method for retrospective correction of physiological motion effects in fMRI: retroicor publication-title: Magn. Reson. Med. – volume: 9 year: 2014 ident: bib61 article-title: Temporal reliability and lateralization of the resting-state language network publication-title: PLoS One – volume: 107 start-page: 10238 year: 2010 end-page: 10243 ident: bib45 article-title: Neural basis of global resting-state fMRI activity publication-title: Proc. Natl. Acad. Sci. USA – volume: 30 start-page: 1409 year: 2012 end-page: 1415 ident: bib51 article-title: Improving cerebral blood flow quantification for arterial spin labeled perfusion MRI by removing residual motion artifacts and global signal fluctuations publication-title: Magn. Reson. Imaging – volume: 61 start-page: 1471 year: 2012 end-page: 1483 ident: bib26 article-title: One-year test-retest reliability of intrinsic connectivity network fMRI in older adults publication-title: NeuroImage – volume: 100 start-page: 1740 year: 2008 end-page: 1748 ident: bib59 article-title: Intrinsic functional relations between human cerebral cortex and thalamus publication-title: J. Neurophysiol. – volume: 9 year: 2014 ident: bib50 article-title: Voxel-wise motion artifacts in population-level whole-brain connectivity analysis of resting-state fMRI publication-title: PLoS One – volume: 5 start-page: 179 year: 1997 end-page: 197 ident: bib58 article-title: Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions publication-title: NeuroImage – volume: 98 start-page: 676 year: 2001 end-page: 682 ident: bib43 article-title: A default mode of brain function publication-title: Proc. Natl. Acad. Sci. USA – volume: 47 start-page: 1448 year: 2009 end-page: 1459 ident: bib12 article-title: Effects of model-based physiological noise correction on default mode network anti-correlations and correlations publication-title: NeuroImage – volume: 101 start-page: 3270 year: 2009 end-page: 3283 ident: bib18 article-title: The global signal and observed anticorrelated resting state brain networks publication-title: J. Neurophysiol. – volume: 37 start-page: 90 year: 2007 end-page: 101 ident: bib4 article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI publication-title: NeuroImage – volume: 59 start-page: 1404 year: 2011 end-page: 1412 ident: bib9 article-title: Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures publication-title: NeuroImage – volume: 253 start-page: 183 year: 2015 end-page: 192 ident: bib2 article-title: Test-retest reliability of graph metrics of resting state MRI functional brain networks: a review publication-title: J. Neurosci. Methods – volume: 65 start-page: 374 year: 2012 end-page: 386 ident: bib62 article-title: Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space publication-title: NeuroImage – start-page: 7 year: 2012 ident: bib49 article-title: Age-related differences in test-retest reliability in resting-state brain functional connectivity publication-title: PLoS One – volume: 86 start-page: 343 year: 2013 end-page: 353 ident: bib10 article-title: Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state publication-title: NeuroImage – volume: 63 start-page: 356 year: 2012 end-page: 364 ident: bib55 article-title: Anti-correlated networks, global signal regression, and the effects of caffeine in resting-state functional MRI publication-title: NeuroImage – volume: 100 start-page: 253 year: 2003 end-page: 258 ident: bib24 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: Proc. Natl. Acad. Sci. USA – year: 2016 ident: bib15 article-title: Arterial CO publication-title: J. Neurosci. – volume: 121 start-page: 243 year: 2015 end-page: 252 ident: bib48 article-title: Heritability of the network architecture of intrinsic brain functional connectivity publication-title: NeuroImage – volume: 2 start-page: 25 year: 2012 end-page: 32 ident: bib44 article-title: Trouble at rest: how correlation patterns and group differences become distorted after global signal regression publication-title: Brain Connect – volume: 8 start-page: 302 year: 1998 end-page: 306 ident: bib1 article-title: The inferential impact of global signal covariates in functional neuroimaging analyses publication-title: NeuroImage – volume: 82 start-page: 87 year: 2013 end-page: 100 ident: bib14 article-title: Estimation of resting-state functional connectivity using random subspace based partial correlation: a novel method for reducing global artifacts publication-title: NeuroImage – volume: 35 start-page: 346 year: 1996 end-page: 355 ident: bib20 article-title: Movement-related effects in fMRI time-series publication-title: Magn. Reson. Med. – volume: 21 start-page: 1652 year: 2004 end-page: 1664 ident: bib53 article-title: Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal publication-title: NeuroImage – volume: 95 start-page: 232 year: 2014 end-page: 247 ident: bib25 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: NeuroImage – volume: 80 start-page: 349 year: 2013 end-page: 359 ident: bib38 article-title: Resting-state fMRI confounds and cleanup publication-title: NeuroImage – volume: 55 start-page: 1132 year: 2010 end-page: 1146 ident: bib46 article-title: Negative edges and soft thresholding in complex network analysis of resting state functional connectivity data publication-title: NeuroImage – volume: 47 start-page: 1408 year: 2009 end-page: 1416 ident: bib52 article-title: Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies publication-title: NeuroImage – volume: 28 start-page: 1051 year: 2010 end-page: 1057 ident: bib27 article-title: Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance publication-title: Magn. Reson. Imaging – volume: 37 start-page: 1422 year: 2016 end-page: 1442 ident: bib8 article-title: Preprocessing strategy influences graph-based exploration of altered functional networks in major depression publication-title: Hum. Brain Mapp. – volume: 26 start-page: 15 year: 2005 end-page: 29 ident: bib19 article-title: Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis publication-title: Hum. Brain Mapp. – volume: 25 start-page: 35 year: 2007 end-page: 46 ident: bib40 article-title: CORSICA: correction of structured noise in fMRI by automatic identification of ICA components publication-title: Magn. Reson Imaging – volume: 84 start-page: 320 year: 2014 end-page: 341 ident: bib41 article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI publication-title: NeuroImage – volume: 5 start-page: 649 year: 2015 end-page: 657 ident: bib29 article-title: Optimizing and interpreting insular functional connectivity maps obtained during acute experimental pain: the effects of global signal and task paradigm regression publication-title: Brain Connect. – volume: 59 start-page: 1420 year: 2011 end-page: 1428 ident: bib11 article-title: Anticorrelations in resting state networks without global signal regression publication-title: NeuroImage – volume: 124 start-page: 24 year: 2015 end-page: 31 ident: bib54 article-title: Differences in the resting-state fMRI global signal amplitude between the eyes open and eyes closed states are related to changes in EEG vigilance publication-title: NeuroImage – volume: 36 start-page: 4089 year: 2015 end-page: 4103 ident: bib32 article-title: Segregation of face sensitive areas within the fusiform gyrus using global signal regression? A study on amygdala resting-state functional connectivity publication-title: Human. Brain Mapp. – volume: 138 start-page: 3061 year: 2015 end-page: 3075 ident: bib7 article-title: Network localization of neurological symptoms from focal brain lesions publication-title: Brain – volume: 1 start-page: 54 year: 2007 ident: bib33 article-title: Eigengene networks for studying the relationships between co-expression modules publication-title: BMC Syst. Biol. – volume: 102 start-page: 9673 year: 2005 end-page: 9678 ident: bib17 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. USA – volume: 76 start-page: 183 year: 2013 end-page: 201 ident: bib57 article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics publication-title: NeuroImage – volume: 28 start-page: 1051 year: 2010 ident: 10.1016/j.neuroimage.2016.11.052_bib27 article-title: Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2010.03.021 – volume: 98 start-page: 676 year: 2001 ident: 10.1016/j.neuroimage.2016.11.052_bib43 article-title: A default mode of brain function publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.98.2.676 – volume: 59 start-page: 1420 year: 2011 ident: 10.1016/j.neuroimage.2016.11.052_bib11 article-title: Anticorrelations in resting state networks without global signal regression publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.08.048 – volume: 86 start-page: 343 year: 2013 ident: 10.1016/j.neuroimage.2016.11.052_bib10 article-title: Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.10.013 – volume: 7 year: 2012 ident: 10.1016/j.neuroimage.2016.11.052_bib34 article-title: Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study publication-title: PLoS One – volume: 55 start-page: 1132 year: 2010 ident: 10.1016/j.neuroimage.2016.11.052_bib46 article-title: Negative edges and soft thresholding in complex network analysis of resting state functional connectivity data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.12.047 – volume: 35 start-page: 346 year: 1996 ident: 10.1016/j.neuroimage.2016.11.052_bib20 article-title: Movement-related effects in fMRI time-series publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910350312 – volume: 100 start-page: 1740 year: 2008 ident: 10.1016/j.neuroimage.2016.11.052_bib59 article-title: Intrinsic functional relations between human cerebral cortex and thalamus publication-title: J. Neurophysiol. doi: 10.1152/jn.90463.2008 – volume: 9 year: 2014 ident: 10.1016/j.neuroimage.2016.11.052_bib61 article-title: Temporal reliability and lateralization of the resting-state language network publication-title: PLoS One – year: 2016 ident: 10.1016/j.neuroimage.2016.11.052_bib15 article-title: Arterial CO2 fluctuations modulate neuronal rhythmicity: implications for MEG and fMRI studies of resting state networks publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4263-15.2016 – volume: 25 start-page: 35 year: 2007 ident: 10.1016/j.neuroimage.2016.11.052_bib40 article-title: CORSICA: correction of structured noise in fMRI by automatic identification of ICA components publication-title: Magn. Reson Imaging doi: 10.1016/j.mri.2006.09.042 – volume: 101 start-page: 3270 year: 2009 ident: 10.1016/j.neuroimage.2016.11.052_bib18 article-title: The global signal and observed anticorrelated resting state brain networks publication-title: J. Neurophysiol. doi: 10.1152/jn.90777.2008 – volume: 2 start-page: 25 year: 2012 ident: 10.1016/j.neuroimage.2016.11.052_bib44 article-title: Trouble at rest: how correlation patterns and group differences become distorted after global signal regression publication-title: Brain Connect doi: 10.1089/brain.2012.0080 – volume: 82 start-page: 87 year: 2013 ident: 10.1016/j.neuroimage.2016.11.052_bib14 article-title: Estimation of resting-state functional connectivity using random subspace based partial correlation: a novel method for reducing global artifacts publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.118 – volume: 5 start-page: 649 year: 2015 ident: 10.1016/j.neuroimage.2016.11.052_bib29 article-title: Optimizing and interpreting insular functional connectivity maps obtained during acute experimental pain: the effects of global signal and task paradigm regression publication-title: Brain Connect. doi: 10.1089/brain.2015.0354 – volume: 30 start-page: 1409 year: 2012 ident: 10.1016/j.neuroimage.2016.11.052_bib51 article-title: Improving cerebral blood flow quantification for arterial spin labeled perfusion MRI by removing residual motion artifacts and global signal fluctuations publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2012.05.004 – volume: 47 start-page: 1408 year: 2009 ident: 10.1016/j.neuroimage.2016.11.052_bib52 article-title: Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.005 – volume: 59 start-page: 1404 year: 2011 ident: 10.1016/j.neuroimage.2016.11.052_bib9 article-title: Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.08.044 – volume: 38 start-page: 306 year: 2007 ident: 10.1016/j.neuroimage.2016.11.052_bib47 article-title: Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.07.037 – volume: 31 start-page: 1536 year: 2006 ident: 10.1016/j.neuroimage.2016.11.052_bib6 article-title: Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.02.048 – start-page: 7 year: 2012 ident: 10.1016/j.neuroimage.2016.11.052_bib49 article-title: Age-related differences in test-retest reliability in resting-state brain functional connectivity publication-title: PLoS One – volume: 63 start-page: 356 year: 2012 ident: 10.1016/j.neuroimage.2016.11.052_bib55 article-title: Anti-correlated networks, global signal regression, and the effects of caffeine in resting-state functional MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.06.035 – volume: 72 start-page: 252 year: 2013 ident: 10.1016/j.neuroimage.2016.11.052_bib16 article-title: Subject specific BOLD fMRI respiratory and cardiac response functions obtained from global signal publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.01.050 – volume: 59 start-page: 1190 year: 2011 ident: 10.1016/j.neuroimage.2016.11.052_bib35 article-title: Anticorrelated resting-state functional connectivity in awake rat brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.08.009 – volume: 22 start-page: 360 year: 2004 ident: 10.1016/j.neuroimage.2016.11.052_bib36 article-title: A method for removal of global effects from fMRI time series publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.12.042 – volume: 44 start-page: 162 year: 2000 ident: 10.1016/j.neuroimage.2016.11.052_bib21 article-title: Image-based method for retrospective correction of physiological motion effects in fMRI: retroicor publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E – volume: 107 start-page: 10238 year: 2010 ident: 10.1016/j.neuroimage.2016.11.052_bib45 article-title: Neural basis of global resting-state fMRI activity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0913110107 – volume: 33 start-page: 6333 year: 2013 ident: 10.1016/j.neuroimage.2016.11.052_bib31 article-title: Neurophysiological investigation of spontaneous correlated and anticorrelated fluctuations of the BOLD signal publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4837-12.2013 – year: 2012 ident: 10.1016/j.neuroimage.2016.11.052_bib22 article-title: Adaptive thresholding for reliable topological inference in single subject fMRI analysis publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2012.00245 – volume: 37 start-page: 1422 year: 2016 ident: 10.1016/j.neuroimage.2016.11.052_bib8 article-title: Preprocessing strategy influences graph-based exploration of altered functional networks in major depression publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23111 – volume: 124 start-page: 24 year: 2015 ident: 10.1016/j.neuroimage.2016.11.052_bib54 article-title: Differences in the resting-state fMRI global signal amplitude between the eyes open and eyes closed states are related to changes in EEG vigilance publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.08.053 – volume: 62 start-page: 864 year: 2012 ident: 10.1016/j.neuroimage.2016.11.052_bib5 article-title: The role of physiological noise in resting-state functional connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.016 – volume: 8 start-page: 302 year: 1998 ident: 10.1016/j.neuroimage.2016.11.052_bib1 article-title: The inferential impact of global signal covariates in functional neuroimaging analyses publication-title: NeuroImage doi: 10.1006/nimg.1998.0367 – volume: 37 start-page: 90 year: 2007 ident: 10.1016/j.neuroimage.2016.11.052_bib4 article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.04.042 – volume: 1 start-page: 54 year: 2007 ident: 10.1016/j.neuroimage.2016.11.052_bib33 article-title: Eigengene networks for studying the relationships between co-expression modules publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-1-54 – volume: 21 start-page: 1652 year: 2004 ident: 10.1016/j.neuroimage.2016.11.052_bib53 article-title: Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.11.025 – volume: 100 start-page: 253 year: 2003 ident: 10.1016/j.neuroimage.2016.11.052_bib24 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0135058100 – volume: 65 start-page: 374 year: 2012 ident: 10.1016/j.neuroimage.2016.11.052_bib62 article-title: Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.10.017 – volume: 84 start-page: 320 year: 2014 ident: 10.1016/j.neuroimage.2016.11.052_bib41 article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.08.048 – volume: 102 start-page: 9673 year: 2005 ident: 10.1016/j.neuroimage.2016.11.052_bib17 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0504136102 – volume: 61 start-page: 1471 year: 2012 ident: 10.1016/j.neuroimage.2016.11.052_bib26 article-title: One-year test-retest reliability of intrinsic connectivity network fMRI in older adults publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.03.027 – volume: 59 start-page: 2339 year: 2011 ident: 10.1016/j.neuroimage.2016.11.052_bib28 article-title: A geometric view of global signal confounds in resting-state functional MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.018 – volume: 64 start-page: 19 year: 2012 ident: 10.1016/j.neuroimage.2016.11.052_bib37 article-title: A novel approach for global noise reduction in resting-state fMRI: applecor publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.09.040 – volume: 44 start-page: 893 year: 2009 ident: 10.1016/j.neuroimage.2016.11.052_bib39 article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.09.036 – volume: 33 start-page: 1306 year: 2013 ident: 10.1016/j.neuroimage.2016.11.052_bib42 article-title: Global signal regression has complex effects on regional homogeneity of resting state fMRI signal publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2015.07.011 – volume: 253 start-page: 183 year: 2015 ident: 10.1016/j.neuroimage.2016.11.052_bib2 article-title: Test-retest reliability of graph metrics of resting state MRI functional brain networks: a review publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.05.020 – volume: 121 start-page: 243 year: 2015 ident: 10.1016/j.neuroimage.2016.11.052_bib48 article-title: Heritability of the network architecture of intrinsic brain functional connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.07.048 – volume: 35 start-page: 1910 year: 2015 ident: 10.1016/j.neuroimage.2016.11.052_bib60 article-title: Vascular coupling in resting-state fMRI: evidence from multiple modalities publication-title: J. Cereb. Blood Flow. Metab. doi: 10.1038/jcbfm.2015.166 – volume: 95 start-page: 232 year: 2014 ident: 10.1016/j.neuroimage.2016.11.052_bib25 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.03.034 – volume: 68 start-page: 1828 year: 2012 ident: 10.1016/j.neuroimage.2016.11.052_bib13 article-title: A method to determine the necessity for global signal regression in resting-state fMRI studies publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24201 – volume: 9 year: 2014 ident: 10.1016/j.neuroimage.2016.11.052_bib50 article-title: Voxel-wise motion artifacts in population-level whole-brain connectivity analysis of resting-state fMRI publication-title: PLoS One doi: 10.1371/journal.pone.0104947 – volume: 76 start-page: 183 year: 2013 ident: 10.1016/j.neuroimage.2016.11.052_bib57 article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.03.004 – volume: 83 start-page: 983 year: 2013 ident: 10.1016/j.neuroimage.2016.11.052_bib56 article-title: The amplitude of the resting-state fMRI global signal is related to EEG vigilance measures publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.07.057 – volume: 36 start-page: 4089 year: 2015 ident: 10.1016/j.neuroimage.2016.11.052_bib32 article-title: Segregation of face sensitive areas within the fusiform gyrus using global signal regression? A study on amygdala resting-state functional connectivity publication-title: Human. Brain Mapp. doi: 10.1002/hbm.22900 – volume: 26 start-page: 15 year: 2005 ident: 10.1016/j.neuroimage.2016.11.052_bib19 article-title: Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20113 – volume: 138 start-page: 3061 year: 2015 ident: 10.1016/j.neuroimage.2016.11.052_bib7 article-title: Network localization of neurological symptoms from focal brain lesions publication-title: Brain doi: 10.1093/brain/awv228 – year: 2013 ident: 10.1016/j.neuroimage.2016.11.052_bib23 article-title: The perils of global signal regression for group comparisons: a case study of Autism Spectrum Disorders publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00356 – volume: 47 start-page: 1448 year: 2009 ident: 10.1016/j.neuroimage.2016.11.052_bib12 article-title: Effects of model-based physiological noise correction on default mode network anti-correlations and correlations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.012 – volume: 5 start-page: 179 year: 1997 ident: 10.1016/j.neuroimage.2016.11.052_bib58 article-title: Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions publication-title: NeuroImage doi: 10.1006/nimg.1997.0263 – volume: 32 start-page: 919 year: 2010 ident: 10.1016/j.neuroimage.2016.11.052_bib3 article-title: Network anticorrelations, global regression, and phase-shifted soft tissue correction publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21079 – volume: 80 start-page: 349 year: 2013 ident: 10.1016/j.neuroimage.2016.11.052_bib38 article-title: Resting-state fMRI confounds and cleanup publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.001 – year: 2013 ident: 10.1016/j.neuroimage.2016.11.052_bib30 article-title: Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI publication-title: J. Appl. Math. doi: 10.1155/2013/935154 |
SSID | ssj0009148 |
Score | 2.683442 |
Snippet | The number of resting state functional connectivity MRI studies continues to expand at a rapid rate along with the options for data processing. Of the... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 169 |
SubjectTerms | Blood Caffeine Carbon dioxide Connectome - methods Consensus Data processing Functional magnetic resonance imaging Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Neural networks Time series |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhh9BL6SvtpmlRoVdnbT1tcgohIS1sD20CuQlZUtItjRKyu9f-9s5IstNNKSz0ZLAlY8-MZr6xvxkR8rHtghaqcZUIta1Er1hlg-WVqh1ECO7ATDBRnH1RZxfi86W83CLHQy0M0iqL788-PXnrcmZapDm9m8-n3wAZQLiBfEMh7E31vUJotPKDXw80j64RuRxO8gpHFzZP5nilnpHzG1i5SPJSB9jPU7J_hai_IehjJuUfoen0GXlaMCU9yo_9nGyF-ILszMpf85fEnydu7IJa6pA8HRerBb0P12gc8ZrmniAUmRxwgPOZGhsp4FmKW3fgoFR4RDEK5o-HeKeYnCXAeDr7-ukVuTg9OT8-q8ruCpUDgS2rxgXQRKc0Y73lXnZWWy-l9IzDolSutfrKqtZb4cJVLxxrVNt73zeeyeBtx3fJdryN4Q2hWnjII3nfeQA4kF-2dc91HWTgCtIpzidEDwI1rrQexx0wfpqBY_bDPKjCoCogMzGgiglpxpl3uf3GBnO6QWdmKC8Fh2ggRmww93Ccu2aGG87eH0zEFFewMGCgAIIABdYT8mG8DIsY_8zYGG5XMKYVosa-RyCq19mixtdl-JECQDAIcc3WxgHYIHz9Spx_T43CIRvtWK33_uul3pInDKFMoijvk-3l_Sq8AyC27N-nlfYbsvc1LA priority: 102 providerName: Elsevier |
Title | Towards a consensus regarding global signal regression for resting state functional connectivity MRI |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811916306711 https://dx.doi.org/10.1016/j.neuroimage.2016.11.052 https://www.ncbi.nlm.nih.gov/pubmed/27888059 https://www.proquest.com/docview/1912669370 https://www.proquest.com/docview/1844031153 https://pubmed.ncbi.nlm.nih.gov/PMC5489207 |
Volume | 154 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELYGSNNeEPvdwSpP2qtZYjt2oj1MDIHKtlaoAqlvlmMbBoKUkfZ1f_vuEicdmzb1yVLji1Lf2fed_fmOkPd5EbRUqWMyJJbJUnFmgxVMJQ48hHBgJhgojidqdC6_zLJZ3HCrI62yWxObhdrPHe6Rf4C4AnwJONPk090PhlWj8HQ1ltDYIFuYugwpXXqmV0l3U9lehcsEy6FDZPK0_K4mX-TVLcxaJHipfczlmfF_uae_4eefLMrf3NLxDtmOeJIetAbwlDwK1TPyeBxPzJ8Tf9bwYmtqqUPidFUva3ofLtEwqkva5gOhyOKABn5vabEVBSxLsWwHdmouHVH0gO3GIb6pahZKgPB0PD15Qc6Pj84ORyxWVmBOiWTBUhdAC4XSnJdW-Kyw2vosyzwXMCGVy62-sCr3VrpwUUrHU5WX3pep51nwthAvyWY1r8JrQrX0EEOKsvAAbiC2zJMSdBSyIBSEUkIMiO4G1LiYdhyrX9yYjl92bVaqMKgKiEoMqGJA0l7yrk29sYZM0enMdFdLYTE04B_WkP3Yy0b40cKKNaX3OhMxcRmozcpoB-Rd_xgmMJ7K2CrMl9AnlzLBnEcwVK9ai-r_LscNCgDAMIgPbK3vgMnBHz6prr43ScIhEi14ot_8_7N2yROOOKXhH--RzcX9MrwFlLUoh2Rj_2c6bCbUkGwdHE6_nWJ78nU0gfbz0eR0-gt0WS-Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTgJeEHcKA4wEj4bEtyRCCHHZ1LK1QlMn7c04tjeGIB1LK8Sf4jdyTpykDATqy54qNT5V6nN8Lvbn7xDyJC9CJnXqmAyJZbLUnNlgBdOJgwghHJgJFoqTqR4dyPeH6nCD_OzuwiCssvOJjaP2c4d75M-hroBYAsE0eXX6jWHXKDxd7VpoRLPYDT--Q8lWvxy_A_0-5Xxne_Z2xNquAsxpkSxY6gK8QaEzzksrvCpsZr1SynMBxqhdbrMjq3NvpQtHpXQ81XnpfZl6roK3SL4ELn9TCihlBmTzzfb0w_6K5jeV8fKdEixP06LFDkVEWcNQefIV_ARCyvQzZA9V_F8B8e-E90_c5m-BcOcaudpmsPR1NLnrZCNUN8ilSXtGf5P4WYPEramlDqHaVb2s6Vk4RlOsjmlkIKGIG4EP-D4CcSsK2TPFRiE4qLnmRDHmxq1K_KWqcc1QNNDJ_vgWObiQWb9NBtW8CncJzaSHqlWUhYd0CqrZPCnBKoIKQkPxJsSQZN2EGtcSnWO_jS-mQ7R9NitVGFQF1EEGVDEkaS95Gsk-1pApOp2Z7jIruF8DEWkN2Re9bJvwxERmTemtzkRM63hqs1omQ_K4fwwuA8-BbBXmSxiTS5kgyxJM1Z1oUf3f5bglAik3TOI5W-sHIB35-SfVyaeGlhxq34In2b3_v9Yjcnk0m-yZvfF09z65wjFLatDPW2SwOFuGB5DjLcqH7cKi5ONFr-VfkllptA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIU28IO4UBhgJHsMSXxMhhBCjWhmdENqkvhnHdrchSMfSatpf26_bOXGSMhCoL3uq1PhUqX2u9ufvEPIyL4IWKnOJCKlNRKlYYoPliUodRAjuQE2wUBzvqZ0D8WkiJ2vkorsLg7DKzic2jtrPHO6Rb0FdAbEEgmm6NW1hEV-2h-9OfiXYQQpPWrt2GlFFdsP5GZRv9dvRNqz1K8aGH_c_7CRth4HEKZ7Ok8wFeJtCacZKy70srLZeSukZB8VULrd6alXurXBhWgrHMpWX3peZZzJ4i0RM4P5vaC4ztDE90UvC30zEa3iSJ3mWFS2KKGLLGq7K45_gMRBcpl4jj6hk_wqNf6e-fyI4fwuJw9vkVpvL0vdR-e6QtVDdJRvj9rT-HvH7DSa3ppY6BG1X9aKmp-EQlbI6pJGLhCKCBD7g-wjJrSjk0RRbhuCg5sITxegbNy3xl6rGSUP5QMdfR_fJwbXM-QOyXs2q8IhQLTzUr7wsPCRWUNfmaQn6EWTgCso4zgdEdxNqXEt5jp03fpgO2_bdLJfC4FJARWRgKQYk6yVPIu3HCjJFt2amu9YKjthAbFpB9k0v26Y-MaVZUXqzUxHTuqDaLA1mQF70j8F54ImQrcJsAWNyIVLkW4Kpehg1qv-7DDdHIPmGSbyia_0AJCa_-qQ6PmoIyqEKLliqH___tZ6TDbBg83m0t_uE3GSYLjUw6E2yPj9dhKeQ7M3LZ41VUfLtus34EhNXbIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+a+consensus+regarding+global+signal+regression+for+resting+state+functional+connectivity+MRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Murphy%2C+Kevin&rft.au=Fox%2C+Michael+D.&rft.date=2017-07-01&rft.pub=Academic+Press&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=154&rft.spage=169&rft.epage=173&rft_id=info:doi/10.1016%2Fj.neuroimage.2016.11.052&rft_id=info%3Apmid%2F27888059&rft.externalDocID=PMC5489207 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |