Towards a consensus regarding global signal regression for resting state functional connectivity MRI

The number of resting state functional connectivity MRI studies continues to expand at a rapid rate along with the options for data processing. Of the processing options, few have generated as much controversy as global signal regression and the subsequent observation of negative correlations (anti-...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 154; pp. 169 - 173
Main Authors Murphy, Kevin, Fox, Michael D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2017
Elsevier Limited
Academic Press
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
DOI10.1016/j.neuroimage.2016.11.052

Cover

Loading…
Abstract The number of resting state functional connectivity MRI studies continues to expand at a rapid rate along with the options for data processing. Of the processing options, few have generated as much controversy as global signal regression and the subsequent observation of negative correlations (anti-correlations). This debate has motivated new processing strategies and advancement in the field, but has also generated significant confusion and contradictory guidelines. In this article, we work towards a consensus regarding global signal regression. We highlight several points of agreement including the fact that there is not a single “right” way to process resting state data that reveals the “true” nature of the brain. Although further work is needed, different processing approaches likely reveal complementary insights about the brain's functional organisation. •Global signal regression is a controversial resting state fMRI pre-processing option.•The debate about GSR has generated significant confusion and contradictory guidelines.•Here, we present our consensus statement on the use of GSR in resting state analyses.•There is no “right” way to pre-process that reveals the “true” nature of the brain.•Different processing approaches reveal complimentary insights about brain function.
AbstractList The number of resting state functional connectivity MRI studies continues to expand at a rapid rate along with the options for data processing. Of the processing options, few have generated as much controversy as global signal regression and the subsequent observation of negative correlations (anti-correlations). This debate has motivated new processing strategies and advancement in the field, but has also generated significant confusion and contradictory guidelines. In this article, we work towards a consensus regarding global signal regression. We highlight several points of agreement including the fact that there is not a single “right” way to process resting state data that reveals the “true” nature of the brain. Although further work is needed, different processing approaches likely reveal complementary insights about the brain's functional organisation. • Global signal regression is a controversial resting state fMRI pre-processing option. • The debate about GSR has generated significant confusion and contradictory guidelines. • Here, we present our consensus statement on the use of GSR in resting state analyses. • There is no “right” way to pre-process that reveals the “true” nature of the brain. • Different processing approaches reveal complimentary insights about brain function.
The number of resting state functional connectivity MRI studies continues to expand at a rapid rate along with the options for data processing. Of the processing options, few have generated as much controversy as global signal regression and the subsequent observation of negative correlations (anti-correlations). This debate has motivated new processing strategies and advancement in the field, but has also generated significant confusion and contradictory guidelines. In this article, we work towards a consensus regarding global signal regression. We highlight several points of agreement including the fact that there is not a single “right” way to process resting state data that reveals the “true” nature of the brain. Although further work is needed, different processing approaches likely reveal complementary insights about the brain's functional organisation.
The number of resting state functional connectivity MRI studies continues to expand at a rapid rate along with the options for data processing. Of the processing options, few have generated as much controversy as global signal regression and the subsequent observation of negative correlations (anti-correlations). This debate has motivated new processing strategies and advancement in the field, but has also generated significant confusion and contradictory guidelines. In this article, we work towards a consensus regarding global signal regression. We highlight several points of agreement including the fact that there is not a single “right” way to process resting state data that reveals the “true” nature of the brain. Although further work is needed, different processing approaches likely reveal complementary insights about the brain's functional organisation. •Global signal regression is a controversial resting state fMRI pre-processing option.•The debate about GSR has generated significant confusion and contradictory guidelines.•Here, we present our consensus statement on the use of GSR in resting state analyses.•There is no “right” way to pre-process that reveals the “true” nature of the brain.•Different processing approaches reveal complimentary insights about brain function.
Author Fox, Michael D.
Murphy, Kevin
AuthorAffiliation e Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, United States
c Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
d Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
a Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
b Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
AuthorAffiliation_xml – name: d Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
– name: c Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
– name: a Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
– name: b Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
– name: e Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, United States
Author_xml – sequence: 1
  givenname: Kevin
  surname: Murphy
  fullname: Murphy, Kevin
  email: murphyk2@cardiff.ac.uk
  organization: Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
– sequence: 2
  givenname: Michael D.
  surname: Fox
  fullname: Fox, Michael D.
  email: foxmdphd@gmail.com
  organization: Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27888059$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URD_gL6BIXLgk2E6c2BcErfioVISEytly7EnwkrWLnSzaf8-stmyhpz3ZHj9-NePnnJyEGICQgtGKUda-WVUBlhT92oxQcaxUjFVU8CfkjFElSiU6frLbi7qUjKlTcp7zilKqWCOfkVPeSSmpUGfE3cbfJrlcmMLGkCHkJRcJRqz5MBbjFHszFdmPAResJ8jZx1AMMeExzzsoz2aGYliCnfEKOUwKgIeNn7fFl2_Xz8nTwUwZXtyvF-T7xw-3V5_Lm6-frq_e35S2relcMgu24artOO9N7YQynXFCCMdr1datlaYbTCudaSwMfWM5a2XvXM8cF-CMqi_I233u3dKvwVkIczKTvkv4UWmro_H6_5vgf-gxbrRopOK0w4DX9wEp_lpwPL322cI0mQBxyZrJpqE1Y6JG9NUjdBWXhNMjpRhvW1V3FKmX_3Z0aOWvAATkHrAp5pxgOCCM6p1rvdIPrvXOtWZMo-uHaQ9PrUcTqABn89MxAZf7AEAnGw9JZ-shWHA-oT7toj8m5N2jEDv54K2ZfsL2uIg_YNvlwg
CitedBy_id crossref_primary_10_1007_s00787_025_02679_9
crossref_primary_10_1016_j_neuroimage_2023_120110
crossref_primary_10_1002_ana_26724
crossref_primary_10_1017_S003329172200157X
crossref_primary_10_3389_fnins_2020_560878
crossref_primary_10_1007_s11682_023_00826_x
crossref_primary_10_3390_biomedicines10112728
crossref_primary_10_3389_fneur_2018_00828
crossref_primary_10_3389_fnins_2020_00676
crossref_primary_10_1038_s41598_018_36329_9
crossref_primary_10_7554_eLife_62324
crossref_primary_10_1016_j_ijchp_2023_100401
crossref_primary_10_1016_j_nicl_2021_102666
crossref_primary_10_1016_j_biopsych_2019_06_013
crossref_primary_10_3389_fnins_2024_1397234
crossref_primary_10_3389_fnagi_2020_607445
crossref_primary_10_1002_hbm_25305
crossref_primary_10_1002_hbm_25547
crossref_primary_10_1038_s41467_021_27336_y
crossref_primary_10_1002_hbm_25308
crossref_primary_10_1523_JNEUROSCI_0779_20_2020
crossref_primary_10_1002_hbm_24692
crossref_primary_10_1016_j_bandl_2020_104893
crossref_primary_10_1016_j_jpsychires_2024_07_036
crossref_primary_10_1093_braincomms_fcae196
crossref_primary_10_1038_s41598_022_11724_5
crossref_primary_10_1186_s12915_024_02039_0
crossref_primary_10_1002_hbm_26751
crossref_primary_10_1016_j_jad_2018_12_107
crossref_primary_10_1016_j_neurobiolaging_2023_11_009
crossref_primary_10_1016_j_ynstr_2021_100414
crossref_primary_10_1001_jamaneurol_2023_1988
crossref_primary_10_1016_j_schres_2023_09_018
crossref_primary_10_1002_aur_2120
crossref_primary_10_1038_s41467_019_14166_2
crossref_primary_10_1088_1741_2552_ac0b33
crossref_primary_10_1016_j_bpsc_2021_11_004
crossref_primary_10_3233_JAD_180541
crossref_primary_10_1016_j_bpsc_2020_01_007
crossref_primary_10_7554_eLife_88173_4
crossref_primary_10_1016_j_neuroimage_2023_120238
crossref_primary_10_1093_brain_awz405
crossref_primary_10_1007_s13311_023_01442_9
crossref_primary_10_1016_j_neuroimage_2023_120132
crossref_primary_10_1002_hbm_25330
crossref_primary_10_3390_brainsci10030175
crossref_primary_10_1038_s41583_020_0367_2
crossref_primary_10_1002_hbm_25456
crossref_primary_10_1016_j_neuroimage_2023_120136
crossref_primary_10_1002_hbm_26423
crossref_primary_10_1523_JNEUROSCI_0079_18_2018
crossref_primary_10_1016_j_nicl_2019_101860
crossref_primary_10_1017_S0954579421001449
crossref_primary_10_1002_hbm_25332
crossref_primary_10_1016_j_nicl_2019_101741
crossref_primary_10_1007_s00787_020_01545_0
crossref_primary_10_1016_j_bpsc_2018_03_003
crossref_primary_10_1038_s41386_018_0264_9
crossref_primary_10_1109_TNSRE_2019_2912416
crossref_primary_10_1016_j_neuroimage_2017_12_082
crossref_primary_10_1016_j_neuroimage_2020_117205
crossref_primary_10_1016_j_neuroimage_2019_06_050
crossref_primary_10_1093_cercor_bhab307
crossref_primary_10_1016_j_neuroimage_2017_02_036
crossref_primary_10_1016_j_neuroimage_2018_04_049
crossref_primary_10_1016_j_neuroimage_2024_120604
crossref_primary_10_1016_j_bpsc_2020_10_019
crossref_primary_10_1016_j_neuroimage_2020_117680
crossref_primary_10_1002_hbm_25447
crossref_primary_10_1002_hbm_26535
crossref_primary_10_1038_s41467_024_48781_5
crossref_primary_10_3389_fnhum_2021_748919
crossref_primary_10_1016_j_neuroimage_2017_03_056
crossref_primary_10_1002_hbm_24350
crossref_primary_10_1002_hbm_26655
crossref_primary_10_1016_j_bpsc_2017_10_007
crossref_primary_10_1093_ntr_nty266
crossref_primary_10_1016_j_bpsc_2017_10_006
crossref_primary_10_1016_j_neuroimage_2023_120265
crossref_primary_10_1002_jmri_29148
crossref_primary_10_1007_s00787_025_02643_7
crossref_primary_10_1155_2020_8838498
crossref_primary_10_1016_j_ynstr_2018_06_001
crossref_primary_10_1038_s41398_023_02428_z
crossref_primary_10_1093_cercor_bhac407
crossref_primary_10_1016_j_neuroimage_2020_116580
crossref_primary_10_1117_1_NPh_8_2_025011
crossref_primary_10_1016_j_schres_2021_06_010
crossref_primary_10_1002_hbm_25314
crossref_primary_10_1016_j_neuroimage_2017_10_004
crossref_primary_10_1038_s41467_024_46975_5
crossref_primary_10_3389_fnins_2022_816331
crossref_primary_10_1007_s11682_023_00823_0
crossref_primary_10_1038_s41598_021_86792_0
crossref_primary_10_1016_j_biopsych_2024_01_003
crossref_primary_10_1089_brain_2017_0571
crossref_primary_10_3233_JAD_191113
crossref_primary_10_1126_sciadv_adq2754
crossref_primary_10_1186_s13063_023_07551_2
crossref_primary_10_1002_brb3_1358
crossref_primary_10_1016_j_neuroimage_2020_116699
crossref_primary_10_1016_j_procs_2018_01_052
crossref_primary_10_3389_fnins_2019_00856
crossref_primary_10_3389_fnins_2019_00736
crossref_primary_10_1016_j_jad_2020_02_029
crossref_primary_10_1073_pnas_1815321116
crossref_primary_10_3389_fnins_2019_00618
crossref_primary_10_1038_s41467_019_08944_1
crossref_primary_10_1016_j_neuroimage_2020_116571
crossref_primary_10_1016_j_jad_2023_03_062
crossref_primary_10_1002_hbm_24417
crossref_primary_10_1016_j_neuron_2018_01_032
crossref_primary_10_1016_j_neuroimage_2017_11_011
crossref_primary_10_1002_hbm_23682
crossref_primary_10_1002_hbm_24892
crossref_primary_10_1038_s41380_020_0814_5
crossref_primary_10_1016_j_nicl_2019_101653
crossref_primary_10_1038_s41596_018_0065_y
crossref_primary_10_7554_eLife_60336
crossref_primary_10_1038_s41467_022_31347_8
crossref_primary_10_7554_eLife_41836
crossref_primary_10_1371_journal_pbio_3002653
crossref_primary_10_1016_j_neuroimage_2019_06_063
crossref_primary_10_1016_j_neuroimage_2020_116688
crossref_primary_10_1016_j_nicl_2020_102183
crossref_primary_10_1038_s42003_025_07889_0
crossref_primary_10_3389_fnins_2020_601088
crossref_primary_10_1016_j_nicl_2020_102188
crossref_primary_10_1038_s42003_024_06807_0
crossref_primary_10_3389_fnagi_2022_806032
crossref_primary_10_1016_j_pnpbp_2021_110468
crossref_primary_10_1093_cercor_bhaa407
crossref_primary_10_1038_s41598_021_91211_5
crossref_primary_10_1038_s41598_023_30672_2
crossref_primary_10_1016_j_neuroimage_2020_116680
crossref_primary_10_1016_j_neuroimage_2020_117650
crossref_primary_10_1016_j_jad_2017_12_012
crossref_primary_10_1038_s41598_022_21905_x
crossref_primary_10_1016_j_neuroimage_2024_120658
crossref_primary_10_1038_s41598_023_29321_5
crossref_primary_10_1016_j_neuroimage_2022_119185
crossref_primary_10_1111_jon_12978
crossref_primary_10_3390_brainsci14090880
crossref_primary_10_1002_hbm_24444
crossref_primary_10_1007_s10548_019_00697_w
crossref_primary_10_1002_brb3_3436
crossref_primary_10_3389_fnins_2020_00214
crossref_primary_10_1016_j_ynirp_2024_100222
crossref_primary_10_1016_j_jad_2023_04_099
crossref_primary_10_1016_j_pnpbp_2024_111187
crossref_primary_10_1016_j_neuroimage_2019_01_074
crossref_primary_10_1016_j_dcn_2023_101244
crossref_primary_10_1016_j_neuroimage_2019_01_076
crossref_primary_10_1038_s41467_017_02815_3
crossref_primary_10_1093_schbul_sby138
crossref_primary_10_1016_j_neuroimage_2023_120205
crossref_primary_10_1038_s41562_024_01942_4
crossref_primary_10_1007_s11682_021_00570_0
crossref_primary_10_1016_j_celrep_2021_109081
crossref_primary_10_1038_s42003_024_07160_y
crossref_primary_10_1002_hbm_24559
crossref_primary_10_1186_s13229_024_00616_2
crossref_primary_10_1016_j_neuroimage_2024_120884
crossref_primary_10_3389_fnhum_2021_736512
crossref_primary_10_1017_S0033291722002628
crossref_primary_10_1126_sciadv_abf2709
crossref_primary_10_7554_eLife_45045
crossref_primary_10_3390_tomography9020072
crossref_primary_10_1016_j_pnpbp_2024_111076
crossref_primary_10_1016_j_neuroimage_2020_117628
crossref_primary_10_1016_j_neuroimage_2018_04_076
crossref_primary_10_1007_s11682_022_00673_2
crossref_primary_10_7554_eLife_60673
crossref_primary_10_3389_fnins_2020_601063
crossref_primary_10_1016_j_neuroimage_2019_01_068
crossref_primary_10_1016_j_neuroimage_2019_04_016
crossref_primary_10_1002_hbm_24304
crossref_primary_10_1016_j_ynirp_2023_100171
crossref_primary_10_1016_j_cub_2019_06_006
crossref_primary_10_1016_j_neuroimage_2022_119051
crossref_primary_10_1093_cercor_bhy023
crossref_primary_10_1002_hbm_23890
crossref_primary_10_1038_s44220_023_00110_3
crossref_primary_10_1093_cercor_bhaa393
crossref_primary_10_1016_j_neuroimage_2020_117180
crossref_primary_10_1038_s41380_021_01154_6
crossref_primary_10_3389_fnhum_2021_655576
crossref_primary_10_1016_j_cortex_2020_04_028
crossref_primary_10_1016_j_schres_2020_03_068
crossref_primary_10_1177_25158163211009477
crossref_primary_10_1016_j_parkreldis_2020_09_005
crossref_primary_10_1371_journal_pone_0207385
crossref_primary_10_1038_s41598_019_50750_8
crossref_primary_10_1371_journal_pcbi_1009279
crossref_primary_10_1002_hbm_23887
crossref_primary_10_1093_cercor_bhac336
crossref_primary_10_1002_ana_25901
crossref_primary_10_1002_hbm_24735
crossref_primary_10_1093_braincomms_fcac046
crossref_primary_10_1016_j_biopsych_2022_04_008
crossref_primary_10_1016_j_neuroimage_2024_120585
crossref_primary_10_1126_sciadv_aaz0087
crossref_primary_10_1016_j_jad_2021_04_081
crossref_primary_10_1093_cercor_bhac100
crossref_primary_10_1016_j_cortex_2020_04_015
crossref_primary_10_1038_s41598_018_28237_9
crossref_primary_10_1177_10738584221081752
crossref_primary_10_1111_psyp_13921
crossref_primary_10_1186_s12916_022_02678_6
crossref_primary_10_1038_s41467_020_18823_9
crossref_primary_10_1038_s41598_020_63540_4
crossref_primary_10_1016_j_neuroimage_2018_02_028
crossref_primary_10_1038_s41598_020_66100_y
crossref_primary_10_3389_fnins_2019_00825
crossref_primary_10_1038_s41467_023_37330_1
crossref_primary_10_3389_fpsyt_2020_538333
crossref_primary_10_1016_j_neuroimage_2021_118449
crossref_primary_10_1371_journal_pbio_3000284
crossref_primary_10_1016_j_neuroimage_2021_118326
crossref_primary_10_1002_hbm_23996
crossref_primary_10_1093_cercor_bhz219
crossref_primary_10_1002_hbm_24602
crossref_primary_10_1038_s41467_020_15541_0
crossref_primary_10_1017_S0033291723000181
crossref_primary_10_3389_fnimg_2022_869454
crossref_primary_10_1016_j_biopsych_2018_11_011
crossref_primary_10_1093_cercor_bhab263
crossref_primary_10_1002_hbm_25851
crossref_primary_10_1073_pnas_1909848116
crossref_primary_10_3389_fncom_2019_00094
crossref_primary_10_1002_hipo_23259
crossref_primary_10_1016_j_neuroimage_2021_118408
crossref_primary_10_1007_s11571_022_09831_0
crossref_primary_10_1007_s11571_023_09939_x
crossref_primary_10_1038_s41598_019_51793_7
crossref_primary_10_1016_j_dcn_2022_101087
crossref_primary_10_1002_hbm_24755
crossref_primary_10_1093_cercor_bhab149
crossref_primary_10_1002_hbm_25843
crossref_primary_10_1038_s42003_023_05029_0
crossref_primary_10_1002_hbm_24518
crossref_primary_10_1093_cercor_bhab024
crossref_primary_10_1038_s41593_020_00726_z
crossref_primary_10_1007_s11682_020_00397_1
crossref_primary_10_1016_j_ijpsycho_2018_03_014
crossref_primary_10_1038_s41467_025_57392_7
crossref_primary_10_1016_j_dcn_2020_100877
crossref_primary_10_1017_S0954579420000772
crossref_primary_10_1080_14459795_2018_1449884
crossref_primary_10_1007_s11682_018_9829_9
crossref_primary_10_1038_s41467_019_13785_z
crossref_primary_10_1038_s41386_020_0624_0
crossref_primary_10_1177_13872877241291236
crossref_primary_10_1016_j_pnpbp_2020_109928
crossref_primary_10_1016_j_heliyon_2023_e20389
crossref_primary_10_1093_arclin_acz073
crossref_primary_10_1093_cercor_bhy032
crossref_primary_10_1016_j_mri_2018_05_006
crossref_primary_10_1002_hbm_26809
crossref_primary_10_1016_j_jpain_2022_07_011
crossref_primary_10_1016_j_ynirp_2022_100079
crossref_primary_10_3389_fnins_2018_00624
crossref_primary_10_3389_fnins_2018_00861
crossref_primary_10_1007_s00234_017_1973_1
crossref_primary_10_1002_hbm_26801
crossref_primary_10_1007_s11682_020_00276_9
crossref_primary_10_1002_hbm_23532
crossref_primary_10_7554_eLife_69320
crossref_primary_10_1093_cercor_bhac003
crossref_primary_10_1093_cercor_bhab156
crossref_primary_10_1089_brain_2019_0693
crossref_primary_10_1093_cercor_bhz157
crossref_primary_10_3233_JAD_170496
crossref_primary_10_1016_j_neuroimage_2019_116157
crossref_primary_10_3390_cancers13195008
crossref_primary_10_1016_j_brs_2023_08_003
crossref_primary_10_1093_comnet_cnz044
crossref_primary_10_1007_s40263_023_01008_5
crossref_primary_10_1162_netn_a_00244
crossref_primary_10_1016_j_neuroimage_2021_118758
crossref_primary_10_1016_j_neuroimage_2022_118907
crossref_primary_10_1016_j_biopsych_2024_07_021
crossref_primary_10_1007_s00429_024_02796_2
crossref_primary_10_1016_j_jad_2019_07_066
crossref_primary_10_1016_j_neuroimage_2021_117787
crossref_primary_10_1093_brain_awz332
crossref_primary_10_1016_j_neuroimage_2020_117268
crossref_primary_10_1093_brain_awab224
crossref_primary_10_1002_hbm_23843
crossref_primary_10_1016_j_neuroimage_2019_116150
crossref_primary_10_1016_j_neuroimage_2021_117781
crossref_primary_10_3389_fpsyt_2020_00400
crossref_primary_10_1016_j_bpsc_2024_04_001
crossref_primary_10_1038_s41398_022_02011_y
crossref_primary_10_1016_j_neuroimage_2019_116289
crossref_primary_10_3389_fnhum_2021_644892
crossref_primary_10_1016_j_biopsych_2020_09_024
crossref_primary_10_1016_j_bpsc_2024_12_016
crossref_primary_10_1044_2019_PERS_SIG6_2019_0001
crossref_primary_10_1016_j_bpsc_2024_12_015
crossref_primary_10_1162_netn_a_00236
crossref_primary_10_1162_netn_a_00116
crossref_primary_10_1016_j_pscychresns_2024_111880
crossref_primary_10_1038_s41467_018_04920_3
crossref_primary_10_3389_fnagi_2017_00264
crossref_primary_10_1016_j_jad_2023_11_074
crossref_primary_10_3389_fnagi_2017_00266
crossref_primary_10_1016_j_jad_2019_09_084
crossref_primary_10_1093_cercor_bhab335
crossref_primary_10_1259_bjr_20180910
crossref_primary_10_1016_j_neurobiolaging_2018_11_004
crossref_primary_10_1038_s41598_020_73192_z
crossref_primary_10_1177_0271678X18809547
crossref_primary_10_1016_j_biopsycho_2023_108717
crossref_primary_10_1093_cercor_bhab220
crossref_primary_10_1002_jmri_26522
crossref_primary_10_1016_j_neuroimage_2023_120059
crossref_primary_10_1007_s11682_019_00152_1
crossref_primary_10_1016_j_cub_2024_03_021
crossref_primary_10_1016_j_pnpbp_2022_110574
crossref_primary_10_1017_S0033291724000254
crossref_primary_10_1016_j_neuroimage_2021_118728
crossref_primary_10_1016_j_neuroscience_2021_10_009
crossref_primary_10_1111_ejn_15970
crossref_primary_10_1038_s41598_021_93190_z
crossref_primary_10_1016_j_pneurobio_2022_102263
crossref_primary_10_1097_ALN_0000000000003197
crossref_primary_10_1016_j_neuroimage_2020_117002
crossref_primary_10_1016_j_neuroimage_2021_118733
crossref_primary_10_1016_j_ynirp_2022_100144
crossref_primary_10_1093_brain_awz112
crossref_primary_10_1093_cercor_bhad407
crossref_primary_10_1016_j_neuroimage_2020_117126
crossref_primary_10_1016_j_neuroimage_2020_117241
crossref_primary_10_1002_hbm_24954
crossref_primary_10_1016_j_neuroimage_2021_117761
crossref_primary_10_1007_s12144_023_04312_x
crossref_primary_10_1109_JBHI_2019_2907189
crossref_primary_10_3389_fpsyt_2020_00422
crossref_primary_10_1080_20008198_2019_1583525
crossref_primary_10_1002_hbm_23745
crossref_primary_10_1016_j_dcn_2020_100797
crossref_primary_10_1093_cercor_bhaa260
crossref_primary_10_1093_cercor_bhaa021
crossref_primary_10_1038_s41380_020_00993_z
crossref_primary_10_3389_fneur_2021_735689
crossref_primary_10_3389_fnins_2021_602170
crossref_primary_10_1002_brb3_2735
crossref_primary_10_1016_j_neuroimage_2022_118923
crossref_primary_10_1038_s41380_024_02406_x
crossref_primary_10_1016_j_jneumeth_2021_109410
crossref_primary_10_1038_s42003_022_04297_6
crossref_primary_10_1016_j_jad_2024_05_125
crossref_primary_10_1002_hbm_24943
crossref_primary_10_1016_j_neuroscience_2022_12_001
crossref_primary_10_3389_fpsyt_2019_00620
crossref_primary_10_1093_cercor_bhy302
crossref_primary_10_1002_jbio_202100218
crossref_primary_10_1016_j_neures_2020_05_006
crossref_primary_10_1016_j_nicl_2023_103515
crossref_primary_10_1038_s41598_025_91465_3
crossref_primary_10_3389_fnins_2022_1097244
crossref_primary_10_1016_j_neuroimage_2023_119926
crossref_primary_10_1016_j_neuroimage_2020_116810
crossref_primary_10_1162_netn_a_00163
crossref_primary_10_1371_journal_pcbi_1008347
crossref_primary_10_1016_j_bpsc_2019_10_015
crossref_primary_10_3389_fnhum_2017_00344
crossref_primary_10_1002_hbm_23929
crossref_primary_10_1016_j_nic_2017_06_008
crossref_primary_10_1016_j_jad_2022_11_022
crossref_primary_10_1162_netn_a_00160
crossref_primary_10_1371_journal_pcbi_1008580
crossref_primary_10_3389_fneur_2018_00025
crossref_primary_10_1109_JTEHM_2024_3463720
crossref_primary_10_1134_S0006350921040199
crossref_primary_10_1016_j_dcn_2020_100814
crossref_primary_10_1016_j_nicl_2019_102023
crossref_primary_10_3389_fpsyt_2022_1016807
crossref_primary_10_1148_radiol_2018180268
crossref_primary_10_1016_j_neuroimage_2019_03_075
crossref_primary_10_1038_s41398_018_0092_z
crossref_primary_10_1162_netn_a_00275
crossref_primary_10_1016_j_ejpn_2023_09_005
crossref_primary_10_1002_hbm_26194
crossref_primary_10_1016_j_pscychresns_2024_111846
crossref_primary_10_1038_s41593_023_01425_1
crossref_primary_10_3758_s13415_024_01156_1
crossref_primary_10_1002_mrm_29824
crossref_primary_10_1016_j_brainres_2023_148635
crossref_primary_10_1016_j_brainres_2023_148634
crossref_primary_10_1016_j_neuroimage_2021_118288
crossref_primary_10_1111_pcn_13162
crossref_primary_10_1016_j_neuroimage_2021_118289
crossref_primary_10_1016_j_neuroimage_2021_118045
crossref_primary_10_1016_j_neuroimage_2021_118042
crossref_primary_10_1093_braincomms_fcac214
crossref_primary_10_1016_j_cortex_2024_06_014
crossref_primary_10_1016_j_envint_2024_109245
crossref_primary_10_1002_jnr_25121
crossref_primary_10_1002_jnr_25242
crossref_primary_10_1038_s41562_025_02121_9
crossref_primary_10_1016_j_jad_2023_05_016
crossref_primary_10_1016_j_neubiorev_2024_105846
crossref_primary_10_1155_2021_9963824
crossref_primary_10_1016_j_nicl_2019_102035
crossref_primary_10_1016_j_plrev_2020_06_005
crossref_primary_10_1016_j_neuroimage_2022_119424
crossref_primary_10_1162_netn_a_00148
crossref_primary_10_1016_j_jad_2019_04_033
crossref_primary_10_1016_j_nbd_2024_106425
crossref_primary_10_1016_j_neuroimage_2023_119944
crossref_primary_10_1177_13872877251321187
crossref_primary_10_1007_s00429_024_02807_2
crossref_primary_10_1016_j_nicl_2023_103421
crossref_primary_10_3390_brainsci11101312
crossref_primary_10_1080_09602011_2024_2314878
crossref_primary_10_1016_j_nicl_2018_01_012
crossref_primary_10_1016_j_ensci_2021_100314
crossref_primary_10_3389_fnins_2018_00353
crossref_primary_10_1016_j_dcn_2022_101129
crossref_primary_10_1016_j_neuroimage_2019_116496
crossref_primary_10_1186_s12868_024_00854_3
crossref_primary_10_7554_eLife_88173
crossref_primary_10_1016_j_bandl_2021_105026
crossref_primary_10_1002_hbm_26099
crossref_primary_10_1038_s41598_017_06864_y
crossref_primary_10_1093_cercor_bhae263
crossref_primary_10_1016_j_isci_2023_106784
crossref_primary_10_1016_j_eswa_2024_125922
crossref_primary_10_1016_j_jrp_2021_104064
crossref_primary_10_1016_j_neuroimage_2022_119775
crossref_primary_10_1002_hbm_26091
crossref_primary_10_1038_s41583_019_0212_7
crossref_primary_10_1038_s41467_024_51837_1
crossref_primary_10_1162_netn_a_00132
crossref_primary_10_3389_fpsyg_2019_02945
crossref_primary_10_1016_j_neuropharm_2018_10_025
crossref_primary_10_3390_sym13112004
crossref_primary_10_3389_fpsyt_2023_1232015
crossref_primary_10_1162_imag_a_00191
crossref_primary_10_1073_pnas_2200511119
crossref_primary_10_1002_aur_1971
crossref_primary_10_1016_j_tics_2023_08_009
crossref_primary_10_1073_pnas_2218949120
crossref_primary_10_1093_cercor_bhab041
crossref_primary_10_1093_cercor_bhy342
crossref_primary_10_1016_j_neuroimage_2019_116435
crossref_primary_10_1093_cercor_bhy222
crossref_primary_10_2214_AJR_24_32163
crossref_primary_10_1371_journal_pbio_3000921
crossref_primary_10_1016_j_neuroimage_2022_119720
crossref_primary_10_1038_s41598_019_39243_w
crossref_primary_10_1007_s00406_023_01683_x
crossref_primary_10_3390_s23218722
crossref_primary_10_3389_fnins_2018_00528
crossref_primary_10_1093_cercor_bhy340
crossref_primary_10_1016_j_nicl_2023_103445
crossref_primary_10_1093_braincomms_fcac009
crossref_primary_10_1371_journal_pcbi_1011942
crossref_primary_10_1038_s41537_022_00328_7
crossref_primary_10_3389_fnagi_2016_00330
crossref_primary_10_1038_s42003_024_06016_9
crossref_primary_10_3390_brainsci13111508
crossref_primary_10_1002_ana_26015
crossref_primary_10_1093_cercor_bhac016
crossref_primary_10_1093_cercor_bhad351
crossref_primary_10_1055_a_1721_2914
crossref_primary_10_1093_brain_awaa095
crossref_primary_10_1016_j_neuroimage_2018_06_006
crossref_primary_10_1364_BOE_10_002889
crossref_primary_10_52294_8944e106_c54b_40d7_a620_925f7b074f99
crossref_primary_10_1002_hbm_26031
crossref_primary_10_1002_hbm_26030
crossref_primary_10_1038_s41398_024_02995_9
crossref_primary_10_3389_fnins_2022_1050240
crossref_primary_10_1007_s00787_025_02685_x
crossref_primary_10_1038_s41598_024_59476_8
crossref_primary_10_1162_netn_a_00074
crossref_primary_10_1002_acn3_52091
crossref_primary_10_1162_netn_a_00071
crossref_primary_10_3389_fnins_2022_952940
crossref_primary_10_1016_j_mri_2021_10_028
crossref_primary_10_1016_j_neuroimage_2018_06_001
crossref_primary_10_3389_fgene_2020_00890
crossref_primary_10_1017_pen_2018_8
crossref_primary_10_1093_braincomms_fcad105
crossref_primary_10_1093_cercor_bhae204
crossref_primary_10_1016_j_cortex_2022_03_016
crossref_primary_10_1093_cercor_bhac387
crossref_primary_10_1093_cercor_bhad113
crossref_primary_10_1016_j_tjnut_2023_12_016
crossref_primary_10_1093_cercor_bhx273
crossref_primary_10_1093_cercor_bhac150
crossref_primary_10_1002_jnr_25169
crossref_primary_10_1002_hbm_25096
crossref_primary_10_1016_j_eplepsyres_2021_106590
crossref_primary_10_1177_13623613211004058
crossref_primary_10_3390_biomedicines9101420
crossref_primary_10_1162_imag_a_00261
crossref_primary_10_1016_j_psyneuen_2020_105123
crossref_primary_10_1017_S0033291725000303
crossref_primary_10_1007_s00787_023_02242_4
crossref_primary_10_1016_j_jad_2022_12_088
crossref_primary_10_1007_s11682_019_00205_5
crossref_primary_10_1016_j_neuroimage_2021_118332
crossref_primary_10_1016_j_neuroscience_2019_10_024
crossref_primary_10_1038_s41598_022_24365_5
crossref_primary_10_1016_j_biopsych_2019_12_027
crossref_primary_10_1186_s12879_025_10780_2
crossref_primary_10_1007_s00787_022_01959_y
crossref_primary_10_1016_j_neuroimage_2021_118570
crossref_primary_10_3174_ajnr_A8067
crossref_primary_10_1007_s11682_018_9976_z
crossref_primary_10_3389_fnagi_2020_584863
crossref_primary_10_1093_cercor_bhac279
crossref_primary_10_1007_s12264_021_00812_7
crossref_primary_10_1016_j_neuroimage_2022_119612
crossref_primary_10_1038_s41598_020_80346_6
crossref_primary_10_1016_j_nicl_2023_103468
crossref_primary_10_1162_imag_a_00030
crossref_primary_10_1162_netn_a_00054
crossref_primary_10_1016_j_jad_2023_08_095
crossref_primary_10_1016_j_neuroimage_2021_118466
crossref_primary_10_1016_j_neuropsychologia_2020_107500
crossref_primary_10_1016_j_tics_2017_04_002
crossref_primary_10_1016_j_neuroimage_2021_118467
crossref_primary_10_1162_netn_a_00171
crossref_primary_10_1007_s11682_022_00658_1
crossref_primary_10_1016_j_neuroimage_2018_08_053
crossref_primary_10_1016_j_neuroimage_2018_08_057
crossref_primary_10_1162_imag_a_00033
crossref_primary_10_1002_hbm_26484
crossref_primary_10_1016_j_ebiom_2023_104455
crossref_primary_10_1016_j_neubiorev_2023_105144
crossref_primary_10_1016_j_neuroimage_2022_119364
crossref_primary_10_1002_hbm_26247
crossref_primary_10_1016_j_neuroimage_2022_119124
crossref_primary_10_1038_s41597_022_01329_y
crossref_primary_10_1371_journal_pbio_3000602
crossref_primary_10_1016_j_neuroimage_2022_119125
crossref_primary_10_3389_fnhum_2022_972375
crossref_primary_10_1002_hbm_26245
crossref_primary_10_1016_j_neuroimage_2019_07_004
crossref_primary_10_1007_s10803_021_05191_6
crossref_primary_10_1007_s10548_023_00977_6
crossref_primary_10_3389_fneur_2023_1213224
crossref_primary_10_1016_j_neuroimage_2020_116896
crossref_primary_10_1089_brain_2023_0032
crossref_primary_10_1016_j_jneumeth_2018_09_017
crossref_primary_10_1038_s41593_019_0400_9
crossref_primary_10_1093_schbul_sbae020
crossref_primary_10_1093_sleep_zsy108
crossref_primary_10_1186_s12987_023_00407_6
crossref_primary_10_3389_fneur_2021_712071
crossref_primary_10_1016_j_cortex_2021_09_013
crossref_primary_10_3389_fncir_2020_570583
crossref_primary_10_1111_stan_12219
crossref_primary_10_1259_bjr_20220762
crossref_primary_10_1016_j_neuroimage_2022_119358
crossref_primary_10_3389_fnins_2019_00279
crossref_primary_10_1186_s13195_025_01683_0
crossref_primary_10_1371_journal_pcbi_1006309
crossref_primary_10_1126_sciadv_abd1327
crossref_primary_10_1016_j_neuroimage_2019_07_018
crossref_primary_10_1002_hbm_25018
crossref_primary_10_1523_JNEUROSCI_2322_23_2024
crossref_primary_10_1016_j_dcn_2019_100747
crossref_primary_10_1016_j_neuroimage_2021_118093
crossref_primary_10_1093_brain_awab096
crossref_primary_10_1111_pcn_13782
crossref_primary_10_1002_brb3_3198
crossref_primary_10_1016_j_isci_2024_111365
crossref_primary_10_1038_s41598_022_07578_6
crossref_primary_10_1124_pharmrev_121_000514
crossref_primary_10_1016_j_nicl_2020_102401
crossref_primary_10_1007_s00429_024_02864_7
crossref_primary_10_1016_j_schres_2018_01_019
crossref_primary_10_1111_psyp_13495
crossref_primary_10_3724_SP_J_1041_2021_00055
crossref_primary_10_1016_j_neuroimage_2020_116756
crossref_primary_10_1016_j_dib_2022_108454
crossref_primary_10_1093_texcom_tgaa073
crossref_primary_10_1016_j_dcn_2023_101322
crossref_primary_10_1007_s00406_024_01765_4
crossref_primary_10_1162_imag_a_00101
crossref_primary_10_1016_j_neuroimage_2023_120407
crossref_primary_10_1007_s00429_020_02205_4
crossref_primary_10_1016_j_jad_2019_01_012
crossref_primary_10_1016_j_bandc_2023_105976
crossref_primary_10_1016_j_nicl_2021_102819
crossref_primary_10_1016_j_neuropsychologia_2019_02_011
crossref_primary_10_1016_j_neuroimage_2019_116306
crossref_primary_10_1016_j_euroneuro_2021_06_001
crossref_primary_10_1016_j_neuroimage_2023_120300
crossref_primary_10_3389_fpsyt_2018_00046
crossref_primary_10_1016_j_mrl_2024_200156
crossref_primary_10_1109_TMI_2024_3351907
crossref_primary_10_1002_hbm_24190
crossref_primary_10_1371_journal_pbio_3000733
crossref_primary_10_1016_j_neuroimage_2020_116614
crossref_primary_10_1002_hbm_25161
crossref_primary_10_1089_brain_2018_0597
crossref_primary_10_1016_j_neuroimage_2020_116621
crossref_primary_10_1016_j_pscychresns_2022_111541
crossref_primary_10_1016_j_cortex_2020_08_012
crossref_primary_10_1016_j_neuroimage_2020_116980
crossref_primary_10_1016_j_jad_2021_12_098
crossref_primary_10_1002_hbm_70049
crossref_primary_10_1007_s00234_023_03135_8
crossref_primary_10_1016_j_neuroimage_2023_120414
crossref_primary_10_1002_hbm_25352
crossref_primary_10_1002_hbm_26320
crossref_primary_10_3390_brainsci13030429
crossref_primary_10_1007_s12194_022_00670_6
crossref_primary_10_1017_S0954579420001133
crossref_primary_10_1016_j_jad_2019_04_096
crossref_primary_10_1152_japplphysiol_00917_2017
crossref_primary_10_1016_j_neuroimage_2022_119208
crossref_primary_10_1016_j_neuroimage_2017_03_020
crossref_primary_10_1289_EHP9737
crossref_primary_10_1038_s41398_021_01321_x
crossref_primary_10_1523_JNEUROSCI_0613_22_2022
crossref_primary_10_1016_j_neuroimage_2020_116612
crossref_primary_10_1016_j_pscychresns_2020_111134
crossref_primary_10_1089_brain_2020_0740
crossref_primary_10_1016_j_neuroimage_2024_120709
crossref_primary_10_1007_s11682_021_00476_x
crossref_primary_10_1016_j_bpsc_2017_08_006
crossref_primary_10_1089_brain_2021_0061
crossref_primary_10_3389_fpsyt_2022_1036997
crossref_primary_10_1002_hbm_25102
crossref_primary_10_1016_j_neuroimage_2022_119554
crossref_primary_10_1007_s11682_020_00379_3
crossref_primary_10_1016_j_nic_2019_09_012
crossref_primary_10_1016_j_psychres_2023_115598
crossref_primary_10_1016_j_jad_2020_04_028
crossref_primary_10_1016_j_neuroimage_2020_116720
crossref_primary_10_1007_s00429_019_02008_2
crossref_primary_10_1038_s41467_022_35764_7
crossref_primary_10_1017_S0033291724003088
crossref_primary_10_7554_eLife_84683
crossref_primary_10_1016_j_brainres_2023_148559
crossref_primary_10_1038_s41467_022_32592_7
crossref_primary_10_3389_fnimg_2022_952084
crossref_primary_10_1002_hbm_25458
crossref_primary_10_1016_j_biopsych_2022_09_024
crossref_primary_10_1016_j_media_2021_102063
crossref_primary_10_1038_s41386_020_0785_x
crossref_primary_10_3758_s13415_018_0611_7
crossref_primary_10_1038_s42003_023_05262_7
crossref_primary_10_1016_j_neuroimage_2022_119460
crossref_primary_10_1002_hbm_26342
crossref_primary_10_1002_hbm_25010
crossref_primary_10_1038_s41398_019_0670_8
crossref_primary_10_1016_j_neuroimage_2020_116707
crossref_primary_10_1093_cercor_bhx312
crossref_primary_10_1016_j_neuroimage_2020_116945
crossref_primary_10_1038_s41562_024_01908_6
crossref_primary_10_1152_jn_00362_2020
crossref_primary_10_3389_fpsyt_2019_00052
crossref_primary_10_1038_s41467_019_14159_1
crossref_primary_10_1093_cercor_bhx307
crossref_primary_10_3389_fpsyt_2022_973921
crossref_primary_10_1002_hbm_25009
crossref_primary_10_1016_j_neuroimage_2018_12_048
crossref_primary_10_1016_j_neubiorev_2020_07_019
crossref_primary_10_3389_fnsys_2024_1425491
crossref_primary_10_1016_j_neuroimage_2021_118177
crossref_primary_10_1093_cercor_bhaf029
crossref_primary_10_1007_s00429_022_02508_8
crossref_primary_10_1016_j_neuroimage_2024_120920
crossref_primary_10_1002_brb3_2174
crossref_primary_10_1002_hbm_24033
crossref_primary_10_1016_j_tics_2020_06_003
crossref_primary_10_1038_s41380_024_02807_y
crossref_primary_10_1038_s41598_017_12993_1
crossref_primary_10_1016_j_neuroimage_2024_120918
crossref_primary_10_1093_schbul_sbab086
crossref_primary_10_1111_ejn_16390
crossref_primary_10_1162_imag_a_00314
crossref_primary_10_1038_s41398_021_01221_0
crossref_primary_10_1002_hbm_26209
Cites_doi 10.1016/j.mri.2010.03.021
10.1073/pnas.98.2.676
10.1016/j.neuroimage.2011.08.048
10.1016/j.neuroimage.2013.10.013
10.1016/j.neuroimage.2010.12.047
10.1002/mrm.1910350312
10.1152/jn.90463.2008
10.1523/JNEUROSCI.4263-15.2016
10.1016/j.mri.2006.09.042
10.1152/jn.90777.2008
10.1089/brain.2012.0080
10.1016/j.neuroimage.2013.05.118
10.1089/brain.2015.0354
10.1016/j.mri.2012.05.004
10.1016/j.neuroimage.2009.05.005
10.1016/j.neuroimage.2011.08.044
10.1016/j.neuroimage.2007.07.037
10.1016/j.neuroimage.2006.02.048
10.1016/j.neuroimage.2012.06.035
10.1016/j.neuroimage.2013.01.050
10.1016/j.neuroimage.2011.08.009
10.1016/j.neuroimage.2003.12.042
10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
10.1073/pnas.0913110107
10.1523/JNEUROSCI.4837-12.2013
10.3389/fnhum.2012.00245
10.1002/hbm.23111
10.1016/j.neuroimage.2015.08.053
10.1016/j.neuroimage.2012.01.016
10.1006/nimg.1998.0367
10.1016/j.neuroimage.2007.04.042
10.1186/1752-0509-1-54
10.1016/j.neuroimage.2003.11.025
10.1073/pnas.0135058100
10.1016/j.neuroimage.2012.10.017
10.1016/j.neuroimage.2013.08.048
10.1073/pnas.0504136102
10.1016/j.neuroimage.2012.03.027
10.1016/j.neuroimage.2011.09.018
10.1016/j.neuroimage.2012.09.040
10.1016/j.neuroimage.2008.09.036
10.1016/j.mri.2015.07.011
10.1016/j.jneumeth.2015.05.020
10.1016/j.neuroimage.2015.07.048
10.1038/jcbfm.2015.166
10.1016/j.neuroimage.2014.03.034
10.1002/mrm.24201
10.1371/journal.pone.0104947
10.1016/j.neuroimage.2013.03.004
10.1016/j.neuroimage.2013.07.057
10.1002/hbm.22900
10.1002/hbm.20113
10.1093/brain/awv228
10.3389/fnhum.2013.00356
10.1016/j.neuroimage.2009.05.012
10.1006/nimg.1997.0263
10.1002/hbm.21079
10.1016/j.neuroimage.2013.04.001
10.1155/2013/935154
ContentType Journal Article
Copyright 2016 The Authors
Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jul 1, 2017
2016 The Authors 2016
Copyright_xml – notice: 2016 The Authors
– notice: Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jul 1, 2017
– notice: 2016 The Authors 2016
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1016/j.neuroimage.2016.11.052
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest One Psychology
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 173
ExternalDocumentID PMC5489207
27888059
10_1016_j_neuroimage_2016_11_052
S1053811916306711
Genre Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: K23 NS083741
– fundername: Wellcome Trust
  grantid: 200804/Z/16/Z
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c630t-1cec4296722ba3d59a7ad555d239636c8a7fa68da4cefb4c2168bddb1d25eda93
IEDL.DBID 7X7
ISSN 1053-8119
IngestDate Thu Aug 21 17:28:59 EDT 2025
Fri Jul 11 00:59:26 EDT 2025
Wed Aug 13 09:25:37 EDT 2025
Wed Feb 19 02:26:11 EST 2025
Thu Apr 24 23:16:11 EDT 2025
Tue Jul 01 03:01:49 EDT 2025
Fri Feb 23 02:25:06 EST 2024
Tue Aug 26 20:08:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY license.
Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-1cec4296722ba3d59a7ad555d239636c8a7fa68da4cefb4c2168bddb1d25eda93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811916306711
PMID 27888059
PQID 1912669370
PQPubID 2031077
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5489207
proquest_miscellaneous_1844031153
proquest_journals_1912669370
pubmed_primary_27888059
crossref_primary_10_1016_j_neuroimage_2016_11_052
crossref_citationtrail_10_1016_j_neuroimage_2016_11_052
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2016_11_052
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2016_11_052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
2017-07-00
20170701
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2017
Publisher Elsevier Inc
Elsevier Limited
Academic Press
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Academic Press
References Langfelder, Horvath (bib33) 2007; 1
Anderson, Druzgal, Lopez-Larson, Jeong, Desai, Yurgelun-Todd (bib3) 2010; 32
Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bib17) 2005; 102
Keller, Bickel, Honey, Groppe, Entz, Craddock, Lado, Kelly, Milham, Mehta (bib31) 2013; 33
Shmueli, van Gelderen, de Zwart, Horovitz, Fukunaga, Jansma, Duyn (bib47) 2007; 38
Chen, Ryali, Qin, Menon (bib14) 2013; 82
Jo, Gotts, Reynolds, Bandettini, Martin, Cox, Saad (bib30) 2013
Schwarz, McGonigle (bib46) 2010; 55
Power, Mitra, Laumann, Snyder, Schlaggar, Petersen (bib41) 2014; 84
Chai, Castanan, Ongur, Whitfield-Gabrieli (bib11) 2011; 59
Greicius, Krasnow, Reiss, Menon (bib24) 2003; 100
Qing, Dong, Li, Zang, Liu (bib42) 2013; 33
Murphy, Birn, Bandettini (bib38) 2013; 80
Gotts, Saad, Jo, Wallace, Cox, Martin (bib23) 2013
Boes, Prasad, Liu, Liu, Pascual-Leone, Caviness, Fox (bib7) 2015; 138
Saad, Gotts, Murphy, Chen, Jo, Martin, Cox (bib44) 2012; 2
Birn, Diamond, Smith, Bandettini (bib6) 2006; 31
Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay, Moeller, Xu, Yacoub, Baselli, Ugurbil, Miller, Smith (bib25) 2014; 95
Weissenbacher, Kasess, Gerstl, Lanzenberger, Moser, Windischberger (bib52) 2009; 47
Yan, Cheung, Kelly, Colcombe, Craddock, Di Martino, Li, Zuo, Castellanos, Milham (bib57) 2013; 76
Braun, Plichta, Esslinger, Sauer, Haddad, Grimm, Mier, Mohnke, Heinz, Erk, Walter, Seiferth, Kirsch, Meyer-Lindenberg (bib9) 2011; 59
Raichle, MacLeod, Snyder, Powers, Gusnard, Shulman (bib43) 2001; 98
Schoelvinck, Maier, Ye, Duyn, Leopold (bib45) 2010; 107
Borchardt, Lord, Li, van der Meer, Heinze, Bogerts, Breakspear, Walter (bib8) 2016; 37
Chang, Glover (bib12) 2009; 47
Andellini, CannatÃ, Gazzellini, Bernardi, Napolitano (bib2) 2015; 253
Wong, Olafsson, Tal, Liu (bib56) 2013; 83
Friston, Williams, Howard, Frackowiak, Turner (bib20) 1996; 35
Zhang, Snyder, Fox, Sansbury, Shimony, Raichle (bib59) 2008; 100
Wong, DeYoung, Liu (bib54) 2015; 124
Zuo, Xu, Jiang, Yang, Cao, He, Zang, Castellanos, Milham (bib62) 2012; 65
Zhu, Fan, Zou, Wang, Gao, Niu (bib61) 2014; 9
Liang, King, Zhang (bib35) 2011; 59
Wise, Ide, Poulin, Tracey (bib53) 2004; 21
Macey, Macey, Kumar, Harper (bib36) 2004; 22
Liang, Wang, Yan, Shu, Xu, Gong, He (bib34) 2012; 7
Birn (bib5) 2012; 62
Hampson, Driesen, Roth, Gore, Constable (bib27) 2010; 28
He, Liu (bib28) 2011; 59
Wong, Olafsson, Tal, Liu (bib55) 2012; 63
Zhu, Tarumi, Khan, Zhang (bib60) 2015; 35
Song, Desphande, Meier, Tudorascu, Vergun, Nair, Biswal, Meyerand, Birn, Bellec, Prabhakaran (bib49) 2012
Chen, Xie, Ward, Li, Antuono, Li (bib13) 2012; 68
Gorgolewski, Storkey, Bastin, Pernet (bib22) 2012
Carbonell, Bellec, Shmuel (bib10) 2013; 86
Murphy, Birn, Handwerker, Jones, Bandettini (bib39) 2009; 44
Glover, Li, Ress (bib21) 2000; 44
Sinclair, Hansell, Blokland, Martin, Thompson, Breakspear, de Zubicaray, Wright, McMahon (bib48) 2015; 121
Driver, Whittaker, Bright, Murphy (bib15) 2016
Guo, Kurth, Zhou, Mayer, Eickhoff, Kramer, Seeley (bib26) 2012; 61
Falahpour, Refai, Bodurka (bib16) 2013; 72
Ibinson, Vogt, Taylor, Dua, Becker, Loggia, Wasan (bib29) 2015; 5
Aguirre, Zarahn, D'Esposito (bib1) 1998; 8
Fox, Zhang, Snyder, Raichle (bib18) 2009; 101
Spisak, Jakab, Kis, Opposits, Aranyi, Beranyi, Emri (bib50) 2014; 9
Zarahn, Aguirre, D'Esposito (bib58) 1997; 5
Wang (bib51) 2012; 30
Behzadi, Restom, Liau, Liu (bib4) 2007; 37
Kruschwitz, Meyer-Lindenberg, Veer, Wackerhagen, Erk, Mohnke, Pöhland, Haddad, Grimm, Tost, Romanczuk-Seiferth, Heinz, Walter, Walter (bib32) 2015; 36
Marx, Pauly, Chang (bib37) 2012; 64
Perlbarg, Bellec, Anton, Pelegrini-Issac, Doyon, Benali (bib40) 2007; 25
Fransson (bib19) 2005; 26
Aguirre (10.1016/j.neuroimage.2016.11.052_bib1) 1998; 8
Gorgolewski (10.1016/j.neuroimage.2016.11.052_bib22) 2012
He (10.1016/j.neuroimage.2016.11.052_bib28) 2011; 59
Ibinson (10.1016/j.neuroimage.2016.11.052_bib29) 2015; 5
Wong (10.1016/j.neuroimage.2016.11.052_bib55) 2012; 63
Gotts (10.1016/j.neuroimage.2016.11.052_bib23) 2013
Guo (10.1016/j.neuroimage.2016.11.052_bib26) 2012; 61
Jo (10.1016/j.neuroimage.2016.11.052_bib30) 2013
Fransson (10.1016/j.neuroimage.2016.11.052_bib19) 2005; 26
Glover (10.1016/j.neuroimage.2016.11.052_bib21) 2000; 44
Zuo (10.1016/j.neuroimage.2016.11.052_bib62) 2012; 65
Anderson (10.1016/j.neuroimage.2016.11.052_bib3) 2010; 32
Borchardt (10.1016/j.neuroimage.2016.11.052_bib8) 2016; 37
Chang (10.1016/j.neuroimage.2016.11.052_bib12) 2009; 47
Zarahn (10.1016/j.neuroimage.2016.11.052_bib58) 1997; 5
Saad (10.1016/j.neuroimage.2016.11.052_bib44) 2012; 2
Greicius (10.1016/j.neuroimage.2016.11.052_bib24) 2003; 100
Macey (10.1016/j.neuroimage.2016.11.052_bib36) 2004; 22
Murphy (10.1016/j.neuroimage.2016.11.052_bib38) 2013; 80
Langfelder (10.1016/j.neuroimage.2016.11.052_bib33) 2007; 1
Carbonell (10.1016/j.neuroimage.2016.11.052_bib10) 2013; 86
Boes (10.1016/j.neuroimage.2016.11.052_bib7) 2015; 138
Falahpour (10.1016/j.neuroimage.2016.11.052_bib16) 2013; 72
Schwarz (10.1016/j.neuroimage.2016.11.052_bib46) 2010; 55
Wang (10.1016/j.neuroimage.2016.11.052_bib51) 2012; 30
Zhu (10.1016/j.neuroimage.2016.11.052_bib61) 2014; 9
Song (10.1016/j.neuroimage.2016.11.052_bib49) 2012
Spisak (10.1016/j.neuroimage.2016.11.052_bib50) 2014; 9
Birn (10.1016/j.neuroimage.2016.11.052_bib6) 2006; 31
Griffanti (10.1016/j.neuroimage.2016.11.052_bib25) 2014; 95
Yan (10.1016/j.neuroimage.2016.11.052_bib57) 2013; 76
Liang (10.1016/j.neuroimage.2016.11.052_bib34) 2012; 7
Chai (10.1016/j.neuroimage.2016.11.052_bib11) 2011; 59
Zhu (10.1016/j.neuroimage.2016.11.052_bib60) 2015; 35
Sinclair (10.1016/j.neuroimage.2016.11.052_bib48) 2015; 121
Liang (10.1016/j.neuroimage.2016.11.052_bib35) 2011; 59
Raichle (10.1016/j.neuroimage.2016.11.052_bib43) 2001; 98
Braun (10.1016/j.neuroimage.2016.11.052_bib9) 2011; 59
Chen (10.1016/j.neuroimage.2016.11.052_bib14) 2013; 82
Fox (10.1016/j.neuroimage.2016.11.052_bib18) 2009; 101
Keller (10.1016/j.neuroimage.2016.11.052_bib31) 2013; 33
Shmueli (10.1016/j.neuroimage.2016.11.052_bib47) 2007; 38
Andellini (10.1016/j.neuroimage.2016.11.052_bib2) 2015; 253
Driver (10.1016/j.neuroimage.2016.11.052_bib15) 2016
Wise (10.1016/j.neuroimage.2016.11.052_bib53) 2004; 21
Hampson (10.1016/j.neuroimage.2016.11.052_bib27) 2010; 28
Kruschwitz (10.1016/j.neuroimage.2016.11.052_bib32) 2015; 36
Power (10.1016/j.neuroimage.2016.11.052_bib41) 2014; 84
Qing (10.1016/j.neuroimage.2016.11.052_bib42) 2013; 33
Weissenbacher (10.1016/j.neuroimage.2016.11.052_bib52) 2009; 47
Zhang (10.1016/j.neuroimage.2016.11.052_bib59) 2008; 100
Friston (10.1016/j.neuroimage.2016.11.052_bib20) 1996; 35
Marx (10.1016/j.neuroimage.2016.11.052_bib37) 2012; 64
Perlbarg (10.1016/j.neuroimage.2016.11.052_bib40) 2007; 25
Schoelvinck (10.1016/j.neuroimage.2016.11.052_bib45) 2010; 107
Chen (10.1016/j.neuroimage.2016.11.052_bib13) 2012; 68
Behzadi (10.1016/j.neuroimage.2016.11.052_bib4) 2007; 37
Fox (10.1016/j.neuroimage.2016.11.052_bib17) 2005; 102
Birn (10.1016/j.neuroimage.2016.11.052_bib5) 2012; 62
Murphy (10.1016/j.neuroimage.2016.11.052_bib39) 2009; 44
Wong (10.1016/j.neuroimage.2016.11.052_bib56) 2013; 83
Wong (10.1016/j.neuroimage.2016.11.052_bib54) 2015; 124
References_xml – volume: 62
  start-page: 864
  year: 2012
  end-page: 870
  ident: bib5
  article-title: The role of physiological noise in resting-state functional connectivity
  publication-title: NeuroImage
– volume: 68
  start-page: 1828
  year: 2012
  end-page: 1835
  ident: bib13
  article-title: A method to determine the necessity for global signal regression in resting-state fMRI studies
  publication-title: Magn. Reson. Med.
– year: 2013
  ident: bib23
  article-title: The perils of global signal regression for group comparisons: a case study of Autism Spectrum Disorders
  publication-title: Front. Hum. Neurosci.
– volume: 83
  start-page: 983
  year: 2013
  end-page: 990
  ident: bib56
  article-title: The amplitude of the resting-state fMRI global signal is related to EEG vigilance measures
  publication-title: NeuroImage
– volume: 38
  start-page: 306
  year: 2007
  end-page: 320
  ident: bib47
  article-title: Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal
  publication-title: NeuroImage
– volume: 7
  year: 2012
  ident: bib34
  article-title: Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study
  publication-title: PLoS One
– year: 2012
  ident: bib22
  article-title: Adaptive thresholding for reliable topological inference in single subject fMRI analysis
  publication-title: Front. Hum. Neurosci.
– volume: 59
  start-page: 1190
  year: 2011
  end-page: 1199
  ident: bib35
  article-title: Anticorrelated resting-state functional connectivity in awake rat brain
  publication-title: NeuroImage
– volume: 35
  start-page: 1910
  year: 2015
  end-page: 1920
  ident: bib60
  article-title: Vascular coupling in resting-state fMRI: evidence from multiple modalities
  publication-title: J. Cereb. Blood Flow. Metab.
– year: 2013
  ident: bib30
  article-title: Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI
  publication-title: J. Appl. Math.
– volume: 22
  start-page: 360
  year: 2004
  end-page: 366
  ident: bib36
  article-title: A method for removal of global effects from fMRI time series
  publication-title: NeuroImage
– volume: 44
  start-page: 893
  year: 2009
  end-page: 905
  ident: bib39
  article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?
  publication-title: NeuroImage
– volume: 31
  start-page: 1536
  year: 2006
  end-page: 1548
  ident: bib6
  article-title: Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI
  publication-title: NeuroImage
– volume: 33
  start-page: 1306
  year: 2013
  end-page: 1313
  ident: bib42
  article-title: Global signal regression has complex effects on regional homogeneity of resting state fMRI signal
  publication-title: Magn. Reson. Imaging
– volume: 32
  start-page: 919
  year: 2010
  end-page: 934
  ident: bib3
  article-title: Network anticorrelations, global regression, and phase-shifted soft tissue correction
  publication-title: Hum. Brain Mapp.
– volume: 59
  start-page: 2339
  year: 2011
  end-page: 2348
  ident: bib28
  article-title: A geometric view of global signal confounds in resting-state functional MRI
  publication-title: NeuroImage
– volume: 64
  start-page: 19
  year: 2012
  end-page: 31
  ident: bib37
  article-title: A novel approach for global noise reduction in resting-state fMRI: applecor
  publication-title: NeuroImage
– volume: 72
  start-page: 252
  year: 2013
  end-page: 264
  ident: bib16
  article-title: Subject specific BOLD fMRI respiratory and cardiac response functions obtained from global signal
  publication-title: NeuroImage
– volume: 33
  start-page: 6333
  year: 2013
  end-page: 6342
  ident: bib31
  article-title: Neurophysiological investigation of spontaneous correlated and anticorrelated fluctuations of the BOLD signal
  publication-title: J. Neurosci.
– volume: 44
  start-page: 162
  year: 2000
  end-page: 167
  ident: bib21
  article-title: Image-based method for retrospective correction of physiological motion effects in fMRI: retroicor
  publication-title: Magn. Reson. Med.
– volume: 9
  year: 2014
  ident: bib61
  article-title: Temporal reliability and lateralization of the resting-state language network
  publication-title: PLoS One
– volume: 107
  start-page: 10238
  year: 2010
  end-page: 10243
  ident: bib45
  article-title: Neural basis of global resting-state fMRI activity
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 30
  start-page: 1409
  year: 2012
  end-page: 1415
  ident: bib51
  article-title: Improving cerebral blood flow quantification for arterial spin labeled perfusion MRI by removing residual motion artifacts and global signal fluctuations
  publication-title: Magn. Reson. Imaging
– volume: 61
  start-page: 1471
  year: 2012
  end-page: 1483
  ident: bib26
  article-title: One-year test-retest reliability of intrinsic connectivity network fMRI in older adults
  publication-title: NeuroImage
– volume: 100
  start-page: 1740
  year: 2008
  end-page: 1748
  ident: bib59
  article-title: Intrinsic functional relations between human cerebral cortex and thalamus
  publication-title: J. Neurophysiol.
– volume: 9
  year: 2014
  ident: bib50
  article-title: Voxel-wise motion artifacts in population-level whole-brain connectivity analysis of resting-state fMRI
  publication-title: PLoS One
– volume: 5
  start-page: 179
  year: 1997
  end-page: 197
  ident: bib58
  article-title: Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions
  publication-title: NeuroImage
– volume: 98
  start-page: 676
  year: 2001
  end-page: 682
  ident: bib43
  article-title: A default mode of brain function
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 47
  start-page: 1448
  year: 2009
  end-page: 1459
  ident: bib12
  article-title: Effects of model-based physiological noise correction on default mode network anti-correlations and correlations
  publication-title: NeuroImage
– volume: 101
  start-page: 3270
  year: 2009
  end-page: 3283
  ident: bib18
  article-title: The global signal and observed anticorrelated resting state brain networks
  publication-title: J. Neurophysiol.
– volume: 37
  start-page: 90
  year: 2007
  end-page: 101
  ident: bib4
  article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
  publication-title: NeuroImage
– volume: 59
  start-page: 1404
  year: 2011
  end-page: 1412
  ident: bib9
  article-title: Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures
  publication-title: NeuroImage
– volume: 253
  start-page: 183
  year: 2015
  end-page: 192
  ident: bib2
  article-title: Test-retest reliability of graph metrics of resting state MRI functional brain networks: a review
  publication-title: J. Neurosci. Methods
– volume: 65
  start-page: 374
  year: 2012
  end-page: 386
  ident: bib62
  article-title: Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space
  publication-title: NeuroImage
– start-page: 7
  year: 2012
  ident: bib49
  article-title: Age-related differences in test-retest reliability in resting-state brain functional connectivity
  publication-title: PLoS One
– volume: 86
  start-page: 343
  year: 2013
  end-page: 353
  ident: bib10
  article-title: Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state
  publication-title: NeuroImage
– volume: 63
  start-page: 356
  year: 2012
  end-page: 364
  ident: bib55
  article-title: Anti-correlated networks, global signal regression, and the effects of caffeine in resting-state functional MRI
  publication-title: NeuroImage
– volume: 100
  start-page: 253
  year: 2003
  end-page: 258
  ident: bib24
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2016
  ident: bib15
  article-title: Arterial CO
  publication-title: J. Neurosci.
– volume: 121
  start-page: 243
  year: 2015
  end-page: 252
  ident: bib48
  article-title: Heritability of the network architecture of intrinsic brain functional connectivity
  publication-title: NeuroImage
– volume: 2
  start-page: 25
  year: 2012
  end-page: 32
  ident: bib44
  article-title: Trouble at rest: how correlation patterns and group differences become distorted after global signal regression
  publication-title: Brain Connect
– volume: 8
  start-page: 302
  year: 1998
  end-page: 306
  ident: bib1
  article-title: The inferential impact of global signal covariates in functional neuroimaging analyses
  publication-title: NeuroImage
– volume: 82
  start-page: 87
  year: 2013
  end-page: 100
  ident: bib14
  article-title: Estimation of resting-state functional connectivity using random subspace based partial correlation: a novel method for reducing global artifacts
  publication-title: NeuroImage
– volume: 35
  start-page: 346
  year: 1996
  end-page: 355
  ident: bib20
  article-title: Movement-related effects in fMRI time-series
  publication-title: Magn. Reson. Med.
– volume: 21
  start-page: 1652
  year: 2004
  end-page: 1664
  ident: bib53
  article-title: Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal
  publication-title: NeuroImage
– volume: 95
  start-page: 232
  year: 2014
  end-page: 247
  ident: bib25
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: NeuroImage
– volume: 80
  start-page: 349
  year: 2013
  end-page: 359
  ident: bib38
  article-title: Resting-state fMRI confounds and cleanup
  publication-title: NeuroImage
– volume: 55
  start-page: 1132
  year: 2010
  end-page: 1146
  ident: bib46
  article-title: Negative edges and soft thresholding in complex network analysis of resting state functional connectivity data
  publication-title: NeuroImage
– volume: 47
  start-page: 1408
  year: 2009
  end-page: 1416
  ident: bib52
  article-title: Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies
  publication-title: NeuroImage
– volume: 28
  start-page: 1051
  year: 2010
  end-page: 1057
  ident: bib27
  article-title: Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance
  publication-title: Magn. Reson. Imaging
– volume: 37
  start-page: 1422
  year: 2016
  end-page: 1442
  ident: bib8
  article-title: Preprocessing strategy influences graph-based exploration of altered functional networks in major depression
  publication-title: Hum. Brain Mapp.
– volume: 26
  start-page: 15
  year: 2005
  end-page: 29
  ident: bib19
  article-title: Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis
  publication-title: Hum. Brain Mapp.
– volume: 25
  start-page: 35
  year: 2007
  end-page: 46
  ident: bib40
  article-title: CORSICA: correction of structured noise in fMRI by automatic identification of ICA components
  publication-title: Magn. Reson Imaging
– volume: 84
  start-page: 320
  year: 2014
  end-page: 341
  ident: bib41
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI
  publication-title: NeuroImage
– volume: 5
  start-page: 649
  year: 2015
  end-page: 657
  ident: bib29
  article-title: Optimizing and interpreting insular functional connectivity maps obtained during acute experimental pain: the effects of global signal and task paradigm regression
  publication-title: Brain Connect.
– volume: 59
  start-page: 1420
  year: 2011
  end-page: 1428
  ident: bib11
  article-title: Anticorrelations in resting state networks without global signal regression
  publication-title: NeuroImage
– volume: 124
  start-page: 24
  year: 2015
  end-page: 31
  ident: bib54
  article-title: Differences in the resting-state fMRI global signal amplitude between the eyes open and eyes closed states are related to changes in EEG vigilance
  publication-title: NeuroImage
– volume: 36
  start-page: 4089
  year: 2015
  end-page: 4103
  ident: bib32
  article-title: Segregation of face sensitive areas within the fusiform gyrus using global signal regression? A study on amygdala resting-state functional connectivity
  publication-title: Human. Brain Mapp.
– volume: 138
  start-page: 3061
  year: 2015
  end-page: 3075
  ident: bib7
  article-title: Network localization of neurological symptoms from focal brain lesions
  publication-title: Brain
– volume: 1
  start-page: 54
  year: 2007
  ident: bib33
  article-title: Eigengene networks for studying the relationships between co-expression modules
  publication-title: BMC Syst. Biol.
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  ident: bib17
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 76
  start-page: 183
  year: 2013
  end-page: 201
  ident: bib57
  article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics
  publication-title: NeuroImage
– volume: 28
  start-page: 1051
  year: 2010
  ident: 10.1016/j.neuroimage.2016.11.052_bib27
  article-title: Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2010.03.021
– volume: 98
  start-page: 676
  year: 2001
  ident: 10.1016/j.neuroimage.2016.11.052_bib43
  article-title: A default mode of brain function
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.98.2.676
– volume: 59
  start-page: 1420
  year: 2011
  ident: 10.1016/j.neuroimage.2016.11.052_bib11
  article-title: Anticorrelations in resting state networks without global signal regression
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.08.048
– volume: 86
  start-page: 343
  year: 2013
  ident: 10.1016/j.neuroimage.2016.11.052_bib10
  article-title: Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.10.013
– volume: 7
  year: 2012
  ident: 10.1016/j.neuroimage.2016.11.052_bib34
  article-title: Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study
  publication-title: PLoS One
– volume: 55
  start-page: 1132
  year: 2010
  ident: 10.1016/j.neuroimage.2016.11.052_bib46
  article-title: Negative edges and soft thresholding in complex network analysis of resting state functional connectivity data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.12.047
– volume: 35
  start-page: 346
  year: 1996
  ident: 10.1016/j.neuroimage.2016.11.052_bib20
  article-title: Movement-related effects in fMRI time-series
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910350312
– volume: 100
  start-page: 1740
  year: 2008
  ident: 10.1016/j.neuroimage.2016.11.052_bib59
  article-title: Intrinsic functional relations between human cerebral cortex and thalamus
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.90463.2008
– volume: 9
  year: 2014
  ident: 10.1016/j.neuroimage.2016.11.052_bib61
  article-title: Temporal reliability and lateralization of the resting-state language network
  publication-title: PLoS One
– year: 2016
  ident: 10.1016/j.neuroimage.2016.11.052_bib15
  article-title: Arterial CO2 fluctuations modulate neuronal rhythmicity: implications for MEG and fMRI studies of resting state networks
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4263-15.2016
– volume: 25
  start-page: 35
  year: 2007
  ident: 10.1016/j.neuroimage.2016.11.052_bib40
  article-title: CORSICA: correction of structured noise in fMRI by automatic identification of ICA components
  publication-title: Magn. Reson Imaging
  doi: 10.1016/j.mri.2006.09.042
– volume: 101
  start-page: 3270
  year: 2009
  ident: 10.1016/j.neuroimage.2016.11.052_bib18
  article-title: The global signal and observed anticorrelated resting state brain networks
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.90777.2008
– volume: 2
  start-page: 25
  year: 2012
  ident: 10.1016/j.neuroimage.2016.11.052_bib44
  article-title: Trouble at rest: how correlation patterns and group differences become distorted after global signal regression
  publication-title: Brain Connect
  doi: 10.1089/brain.2012.0080
– volume: 82
  start-page: 87
  year: 2013
  ident: 10.1016/j.neuroimage.2016.11.052_bib14
  article-title: Estimation of resting-state functional connectivity using random subspace based partial correlation: a novel method for reducing global artifacts
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.118
– volume: 5
  start-page: 649
  year: 2015
  ident: 10.1016/j.neuroimage.2016.11.052_bib29
  article-title: Optimizing and interpreting insular functional connectivity maps obtained during acute experimental pain: the effects of global signal and task paradigm regression
  publication-title: Brain Connect.
  doi: 10.1089/brain.2015.0354
– volume: 30
  start-page: 1409
  year: 2012
  ident: 10.1016/j.neuroimage.2016.11.052_bib51
  article-title: Improving cerebral blood flow quantification for arterial spin labeled perfusion MRI by removing residual motion artifacts and global signal fluctuations
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2012.05.004
– volume: 47
  start-page: 1408
  year: 2009
  ident: 10.1016/j.neuroimage.2016.11.052_bib52
  article-title: Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.05.005
– volume: 59
  start-page: 1404
  year: 2011
  ident: 10.1016/j.neuroimage.2016.11.052_bib9
  article-title: Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.08.044
– volume: 38
  start-page: 306
  year: 2007
  ident: 10.1016/j.neuroimage.2016.11.052_bib47
  article-title: Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.07.037
– volume: 31
  start-page: 1536
  year: 2006
  ident: 10.1016/j.neuroimage.2016.11.052_bib6
  article-title: Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.02.048
– start-page: 7
  year: 2012
  ident: 10.1016/j.neuroimage.2016.11.052_bib49
  article-title: Age-related differences in test-retest reliability in resting-state brain functional connectivity
  publication-title: PLoS One
– volume: 63
  start-page: 356
  year: 2012
  ident: 10.1016/j.neuroimage.2016.11.052_bib55
  article-title: Anti-correlated networks, global signal regression, and the effects of caffeine in resting-state functional MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.06.035
– volume: 72
  start-page: 252
  year: 2013
  ident: 10.1016/j.neuroimage.2016.11.052_bib16
  article-title: Subject specific BOLD fMRI respiratory and cardiac response functions obtained from global signal
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.01.050
– volume: 59
  start-page: 1190
  year: 2011
  ident: 10.1016/j.neuroimage.2016.11.052_bib35
  article-title: Anticorrelated resting-state functional connectivity in awake rat brain
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.08.009
– volume: 22
  start-page: 360
  year: 2004
  ident: 10.1016/j.neuroimage.2016.11.052_bib36
  article-title: A method for removal of global effects from fMRI time series
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.12.042
– volume: 44
  start-page: 162
  year: 2000
  ident: 10.1016/j.neuroimage.2016.11.052_bib21
  article-title: Image-based method for retrospective correction of physiological motion effects in fMRI: retroicor
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
– volume: 107
  start-page: 10238
  year: 2010
  ident: 10.1016/j.neuroimage.2016.11.052_bib45
  article-title: Neural basis of global resting-state fMRI activity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0913110107
– volume: 33
  start-page: 6333
  year: 2013
  ident: 10.1016/j.neuroimage.2016.11.052_bib31
  article-title: Neurophysiological investigation of spontaneous correlated and anticorrelated fluctuations of the BOLD signal
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4837-12.2013
– year: 2012
  ident: 10.1016/j.neuroimage.2016.11.052_bib22
  article-title: Adaptive thresholding for reliable topological inference in single subject fMRI analysis
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2012.00245
– volume: 37
  start-page: 1422
  year: 2016
  ident: 10.1016/j.neuroimage.2016.11.052_bib8
  article-title: Preprocessing strategy influences graph-based exploration of altered functional networks in major depression
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23111
– volume: 124
  start-page: 24
  year: 2015
  ident: 10.1016/j.neuroimage.2016.11.052_bib54
  article-title: Differences in the resting-state fMRI global signal amplitude between the eyes open and eyes closed states are related to changes in EEG vigilance
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.08.053
– volume: 62
  start-page: 864
  year: 2012
  ident: 10.1016/j.neuroimage.2016.11.052_bib5
  article-title: The role of physiological noise in resting-state functional connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.016
– volume: 8
  start-page: 302
  year: 1998
  ident: 10.1016/j.neuroimage.2016.11.052_bib1
  article-title: The inferential impact of global signal covariates in functional neuroimaging analyses
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0367
– volume: 37
  start-page: 90
  year: 2007
  ident: 10.1016/j.neuroimage.2016.11.052_bib4
  article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.04.042
– volume: 1
  start-page: 54
  year: 2007
  ident: 10.1016/j.neuroimage.2016.11.052_bib33
  article-title: Eigengene networks for studying the relationships between co-expression modules
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-1-54
– volume: 21
  start-page: 1652
  year: 2004
  ident: 10.1016/j.neuroimage.2016.11.052_bib53
  article-title: Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.11.025
– volume: 100
  start-page: 253
  year: 2003
  ident: 10.1016/j.neuroimage.2016.11.052_bib24
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0135058100
– volume: 65
  start-page: 374
  year: 2012
  ident: 10.1016/j.neuroimage.2016.11.052_bib62
  article-title: Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.10.017
– volume: 84
  start-page: 320
  year: 2014
  ident: 10.1016/j.neuroimage.2016.11.052_bib41
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.08.048
– volume: 102
  start-page: 9673
  year: 2005
  ident: 10.1016/j.neuroimage.2016.11.052_bib17
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0504136102
– volume: 61
  start-page: 1471
  year: 2012
  ident: 10.1016/j.neuroimage.2016.11.052_bib26
  article-title: One-year test-retest reliability of intrinsic connectivity network fMRI in older adults
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.03.027
– volume: 59
  start-page: 2339
  year: 2011
  ident: 10.1016/j.neuroimage.2016.11.052_bib28
  article-title: A geometric view of global signal confounds in resting-state functional MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.018
– volume: 64
  start-page: 19
  year: 2012
  ident: 10.1016/j.neuroimage.2016.11.052_bib37
  article-title: A novel approach for global noise reduction in resting-state fMRI: applecor
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.09.040
– volume: 44
  start-page: 893
  year: 2009
  ident: 10.1016/j.neuroimage.2016.11.052_bib39
  article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.09.036
– volume: 33
  start-page: 1306
  year: 2013
  ident: 10.1016/j.neuroimage.2016.11.052_bib42
  article-title: Global signal regression has complex effects on regional homogeneity of resting state fMRI signal
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2015.07.011
– volume: 253
  start-page: 183
  year: 2015
  ident: 10.1016/j.neuroimage.2016.11.052_bib2
  article-title: Test-retest reliability of graph metrics of resting state MRI functional brain networks: a review
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.05.020
– volume: 121
  start-page: 243
  year: 2015
  ident: 10.1016/j.neuroimage.2016.11.052_bib48
  article-title: Heritability of the network architecture of intrinsic brain functional connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.07.048
– volume: 35
  start-page: 1910
  year: 2015
  ident: 10.1016/j.neuroimage.2016.11.052_bib60
  article-title: Vascular coupling in resting-state fMRI: evidence from multiple modalities
  publication-title: J. Cereb. Blood Flow. Metab.
  doi: 10.1038/jcbfm.2015.166
– volume: 95
  start-page: 232
  year: 2014
  ident: 10.1016/j.neuroimage.2016.11.052_bib25
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.03.034
– volume: 68
  start-page: 1828
  year: 2012
  ident: 10.1016/j.neuroimage.2016.11.052_bib13
  article-title: A method to determine the necessity for global signal regression in resting-state fMRI studies
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24201
– volume: 9
  year: 2014
  ident: 10.1016/j.neuroimage.2016.11.052_bib50
  article-title: Voxel-wise motion artifacts in population-level whole-brain connectivity analysis of resting-state fMRI
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0104947
– volume: 76
  start-page: 183
  year: 2013
  ident: 10.1016/j.neuroimage.2016.11.052_bib57
  article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.03.004
– volume: 83
  start-page: 983
  year: 2013
  ident: 10.1016/j.neuroimage.2016.11.052_bib56
  article-title: The amplitude of the resting-state fMRI global signal is related to EEG vigilance measures
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.07.057
– volume: 36
  start-page: 4089
  year: 2015
  ident: 10.1016/j.neuroimage.2016.11.052_bib32
  article-title: Segregation of face sensitive areas within the fusiform gyrus using global signal regression? A study on amygdala resting-state functional connectivity
  publication-title: Human. Brain Mapp.
  doi: 10.1002/hbm.22900
– volume: 26
  start-page: 15
  year: 2005
  ident: 10.1016/j.neuroimage.2016.11.052_bib19
  article-title: Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20113
– volume: 138
  start-page: 3061
  year: 2015
  ident: 10.1016/j.neuroimage.2016.11.052_bib7
  article-title: Network localization of neurological symptoms from focal brain lesions
  publication-title: Brain
  doi: 10.1093/brain/awv228
– year: 2013
  ident: 10.1016/j.neuroimage.2016.11.052_bib23
  article-title: The perils of global signal regression for group comparisons: a case study of Autism Spectrum Disorders
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00356
– volume: 47
  start-page: 1448
  year: 2009
  ident: 10.1016/j.neuroimage.2016.11.052_bib12
  article-title: Effects of model-based physiological noise correction on default mode network anti-correlations and correlations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.05.012
– volume: 5
  start-page: 179
  year: 1997
  ident: 10.1016/j.neuroimage.2016.11.052_bib58
  article-title: Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions
  publication-title: NeuroImage
  doi: 10.1006/nimg.1997.0263
– volume: 32
  start-page: 919
  year: 2010
  ident: 10.1016/j.neuroimage.2016.11.052_bib3
  article-title: Network anticorrelations, global regression, and phase-shifted soft tissue correction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21079
– volume: 80
  start-page: 349
  year: 2013
  ident: 10.1016/j.neuroimage.2016.11.052_bib38
  article-title: Resting-state fMRI confounds and cleanup
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.001
– year: 2013
  ident: 10.1016/j.neuroimage.2016.11.052_bib30
  article-title: Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI
  publication-title: J. Appl. Math.
  doi: 10.1155/2013/935154
SSID ssj0009148
Score 2.683442
Snippet The number of resting state functional connectivity MRI studies continues to expand at a rapid rate along with the options for data processing. Of the...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 169
SubjectTerms Blood
Caffeine
Carbon dioxide
Connectome - methods
Consensus
Data processing
Functional magnetic resonance imaging
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Neural networks
Time series
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhh9BL6SvtpmlRoVdnbT1tcgohIS1sD20CuQlZUtItjRKyu9f-9s5IstNNKSz0ZLAlY8-MZr6xvxkR8rHtghaqcZUIta1Er1hlg-WVqh1ECO7ATDBRnH1RZxfi86W83CLHQy0M0iqL788-PXnrcmZapDm9m8-n3wAZQLiBfEMh7E31vUJotPKDXw80j64RuRxO8gpHFzZP5nilnpHzG1i5SPJSB9jPU7J_hai_IehjJuUfoen0GXlaMCU9yo_9nGyF-ILszMpf85fEnydu7IJa6pA8HRerBb0P12gc8ZrmniAUmRxwgPOZGhsp4FmKW3fgoFR4RDEK5o-HeKeYnCXAeDr7-ukVuTg9OT8-q8ruCpUDgS2rxgXQRKc0Y73lXnZWWy-l9IzDolSutfrKqtZb4cJVLxxrVNt73zeeyeBtx3fJdryN4Q2hWnjII3nfeQA4kF-2dc91HWTgCtIpzidEDwI1rrQexx0wfpqBY_bDPKjCoCogMzGgiglpxpl3uf3GBnO6QWdmKC8Fh2ggRmww93Ccu2aGG87eH0zEFFewMGCgAIIABdYT8mG8DIsY_8zYGG5XMKYVosa-RyCq19mixtdl-JECQDAIcc3WxgHYIHz9Spx_T43CIRvtWK33_uul3pInDKFMoijvk-3l_Sq8AyC27N-nlfYbsvc1LA
  priority: 102
  providerName: Elsevier
Title Towards a consensus regarding global signal regression for resting state functional connectivity MRI
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811916306711
https://dx.doi.org/10.1016/j.neuroimage.2016.11.052
https://www.ncbi.nlm.nih.gov/pubmed/27888059
https://www.proquest.com/docview/1912669370
https://www.proquest.com/docview/1844031153
https://pubmed.ncbi.nlm.nih.gov/PMC5489207
Volume 154
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELYGSNNeEPvdwSpP2qtZYjt2oj1MDIHKtlaoAqlvlmMbBoKUkfZ1f_vuEicdmzb1yVLji1Lf2fed_fmOkPd5EbRUqWMyJJbJUnFmgxVMJQ48hHBgJhgojidqdC6_zLJZ3HCrI62yWxObhdrPHe6Rf4C4AnwJONPk090PhlWj8HQ1ltDYIFuYugwpXXqmV0l3U9lehcsEy6FDZPK0_K4mX-TVLcxaJHipfczlmfF_uae_4eefLMrf3NLxDtmOeJIetAbwlDwK1TPyeBxPzJ8Tf9bwYmtqqUPidFUva3ofLtEwqkva5gOhyOKABn5vabEVBSxLsWwHdmouHVH0gO3GIb6pahZKgPB0PD15Qc6Pj84ORyxWVmBOiWTBUhdAC4XSnJdW-Kyw2vosyzwXMCGVy62-sCr3VrpwUUrHU5WX3pep51nwthAvyWY1r8JrQrX0EEOKsvAAbiC2zJMSdBSyIBSEUkIMiO4G1LiYdhyrX9yYjl92bVaqMKgKiEoMqGJA0l7yrk29sYZM0enMdFdLYTE04B_WkP3Yy0b40cKKNaX3OhMxcRmozcpoB-Rd_xgmMJ7K2CrMl9AnlzLBnEcwVK9ai-r_LscNCgDAMIgPbK3vgMnBHz6prr43ScIhEi14ot_8_7N2yROOOKXhH--RzcX9MrwFlLUoh2Rj_2c6bCbUkGwdHE6_nWJ78nU0gfbz0eR0-gt0WS-Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTgJeEHcKA4wEj4bEtyRCCHHZ1LK1QlMn7c04tjeGIB1LK8Sf4jdyTpykDATqy54qNT5V6nN8Lvbn7xDyJC9CJnXqmAyJZbLUnNlgBdOJgwghHJgJFoqTqR4dyPeH6nCD_OzuwiCssvOJjaP2c4d75M-hroBYAsE0eXX6jWHXKDxd7VpoRLPYDT--Q8lWvxy_A_0-5Xxne_Z2xNquAsxpkSxY6gK8QaEzzksrvCpsZr1SynMBxqhdbrMjq3NvpQtHpXQ81XnpfZl6roK3SL4ELn9TCihlBmTzzfb0w_6K5jeV8fKdEixP06LFDkVEWcNQefIV_ARCyvQzZA9V_F8B8e-E90_c5m-BcOcaudpmsPR1NLnrZCNUN8ilSXtGf5P4WYPEramlDqHaVb2s6Vk4RlOsjmlkIKGIG4EP-D4CcSsK2TPFRiE4qLnmRDHmxq1K_KWqcc1QNNDJ_vgWObiQWb9NBtW8CncJzaSHqlWUhYd0CqrZPCnBKoIKQkPxJsSQZN2EGtcSnWO_jS-mQ7R9NitVGFQF1EEGVDEkaS95Gsk-1pApOp2Z7jIruF8DEWkN2Re9bJvwxERmTemtzkRM63hqs1omQ_K4fwwuA8-BbBXmSxiTS5kgyxJM1Z1oUf3f5bglAik3TOI5W-sHIB35-SfVyaeGlhxq34In2b3_v9Yjcnk0m-yZvfF09z65wjFLatDPW2SwOFuGB5DjLcqH7cKi5ONFr-VfkllptA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIU28IO4UBhgJHsMSXxMhhBCjWhmdENqkvhnHdrchSMfSatpf26_bOXGSMhCoL3uq1PhUqX2u9ufvEPIyL4IWKnOJCKlNRKlYYoPliUodRAjuQE2wUBzvqZ0D8WkiJ2vkorsLg7DKzic2jtrPHO6Rb0FdAbEEgmm6NW1hEV-2h-9OfiXYQQpPWrt2GlFFdsP5GZRv9dvRNqz1K8aGH_c_7CRth4HEKZ7Ok8wFeJtCacZKy70srLZeSukZB8VULrd6alXurXBhWgrHMpWX3peZZzJ4i0RM4P5vaC4ztDE90UvC30zEa3iSJ3mWFS2KKGLLGq7K45_gMRBcpl4jj6hk_wqNf6e-fyI4fwuJw9vkVpvL0vdR-e6QtVDdJRvj9rT-HvH7DSa3ppY6BG1X9aKmp-EQlbI6pJGLhCKCBD7g-wjJrSjk0RRbhuCg5sITxegbNy3xl6rGSUP5QMdfR_fJwbXM-QOyXs2q8IhQLTzUr7wsPCRWUNfmaQn6EWTgCso4zgdEdxNqXEt5jp03fpgO2_bdLJfC4FJARWRgKQYk6yVPIu3HCjJFt2amu9YKjthAbFpB9k0v26Y-MaVZUXqzUxHTuqDaLA1mQF70j8F54ImQrcJsAWNyIVLkW4Kpehg1qv-7DDdHIPmGSbyia_0AJCa_-qQ6PmoIyqEKLliqH___tZ6TDbBg83m0t_uE3GSYLjUw6E2yPj9dhKeQ7M3LZ41VUfLtus34EhNXbIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+a+consensus+regarding+global+signal+regression+for+resting+state+functional+connectivity+MRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Murphy%2C+Kevin&rft.au=Fox%2C+Michael+D.&rft.date=2017-07-01&rft.pub=Academic+Press&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=154&rft.spage=169&rft.epage=173&rft_id=info:doi/10.1016%2Fj.neuroimage.2016.11.052&rft_id=info%3Apmid%2F27888059&rft.externalDocID=PMC5489207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon