Unveiling of novel regio-selective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono- and di-hydroxy fatty acids

ABSTRACT The aim of this study is the first time demonstration of cis‐12 regio‐selective linoleate double‐bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acid...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 112; no. 11; pp. 2206 - 2213
Main Authors Kim, Kyoung-Rok, Oh, Hye-Jin, Park, Chul-Soon, Hong, Seung-Hye, Park, Ji-Young, Oh, Deok-Kun
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.11.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0006-3592
1097-0290
DOI10.1002/bit.25643

Cover

Loading…
Abstract ABSTRACT The aim of this study is the first time demonstration of cis‐12 regio‐selective linoleate double‐bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis‐9 and cis‐12 double‐bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio‐selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13‐dihydroxyoctadecanoic acid biosynthesis. Linoleate 13‐hydratase (LHT‐13) selectively converted 10 mM linoleic acid to 13S‐hydroxy‐9(Z)‐octadecenoic acid with high titer (8.1 mM) and yield (81%). Our study will expand knowledge for microbial fatty acid‐hydroxylation enzymes and facilitate the designed production of the regio‐selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks. Biotechnol. Bioeng. 2015;112: 2206–2213. © 2015 Wiley Periodicals, Inc. By genomic analysis and comparison, two hydratases were isolated and characterized as novel cis‐12 and cis‐10 position‐selective linoleate hydratase. Function of two linoleated hydratase are involved in the dihydroxy fatty acid formation. A novel cis‐12 linoleate hydrates selectively produced 10‐ and 13‐hydroxy fatty acids from polyunsaturated fatty acids with high yield. These hydratases will be feasible tool for mono‐ and dihydroxy fatty acid oxyfunctionalization.
AbstractList ABSTRACT The aim of this study is the first time demonstration of cis‐12 regio‐selective linoleate double‐bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis‐9 and cis‐12 double‐bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio‐selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13‐dihydroxyoctadecanoic acid biosynthesis. Linoleate 13‐hydratase (LHT‐13) selectively converted 10 mM linoleic acid to 13S‐hydroxy‐9(Z)‐octadecenoic acid with high titer (8.1 mM) and yield (81%). Our study will expand knowledge for microbial fatty acid‐hydroxylation enzymes and facilitate the designed production of the regio‐selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks. Biotechnol. Bioeng. 2015;112: 2206–2213. © 2015 Wiley Periodicals, Inc. By genomic analysis and comparison, two hydratases were isolated and characterized as novel cis‐12 and cis‐10 position‐selective linoleate hydratase. Function of two linoleated hydratase are involved in the dihydroxy fatty acid formation. A novel cis‐12 linoleate hydrates selectively produced 10‐ and 13‐hydroxy fatty acids from polyunsaturated fatty acids with high yield. These hydratases will be feasible tool for mono‐ and dihydroxy fatty acid oxyfunctionalization.
The aim of this study is the first time demonstration of cis-12 regio-selective linoleate double-bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis-9 and cis-12 double-bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio-selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13-dihydroxyoctadecanoic acid biosynthesis. Linoleate 13-hydratase (LHT-13) selectively converted 10mM linoleic acid to 13S-hydroxy-9(Z)-octadecenoic acid with high titer (8.1mM) and yield (81%). Our study will expand knowledge for microbial fatty acid-hydroxylation enzymes and facilitate the designed production of the regio-selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks. Biotechnol. Bioeng. 2015; 112: 2206-2213. By genomic analysis and comparison, two hydratases were isolated and characterized as novel cis-12 and cis-10 position-selective linoleate hydratase. Function of two linoleated hydratase are involved in the dihydroxy fatty acid formation. A novel cis-12 linoleate hydrates selectively produced 10- and 13-hydroxy fatty acids from polyunsaturated fatty acids with high yield. These hydratases will be feasible tool for mono- and dihydroxy fatty acid oxyfunctionalization.
The aim of this study is the first time demonstration of cis-12 regio-selective linoleate double-bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis-9 and cis-12 double-bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio-selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13-dihydroxyoctadecanoic acid biosynthesis. Linoleate 13-hydratase (LHT-13) selectively converted 10 mM linoleic acid to 13S-hydroxy-9(Z)-octadecenoic acid with high titer (8.1 mM) and yield (81%). Our study will expand knowledge for microbial fatty acid-hydroxylation enzymes and facilitate the designed production of the regio-selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks.
Author Oh, Hye-Jin
Oh, Deok-Kun
Park, Ji-Young
Hong, Seung-Hye
Kim, Kyoung-Rok
Park, Chul-Soon
Author_xml – sequence: 1
  givenname: Kyoung-Rok
  surname: Kim
  fullname: Kim, Kyoung-Rok
  organization: Department of Bioscience and Biotechnology, Konkuk University, 143-701, Seoul, Republic of Korea
– sequence: 2
  givenname: Hye-Jin
  surname: Oh
  fullname: Oh, Hye-Jin
  organization: Department of Bioscience and Biotechnology, Konkuk University, 143-701, Seoul, Republic of Korea
– sequence: 3
  givenname: Chul-Soon
  surname: Park
  fullname: Park, Chul-Soon
  organization: Department of Bioscience and Biotechnology, Konkuk University, 143-701, Seoul, Republic of Korea
– sequence: 4
  givenname: Seung-Hye
  surname: Hong
  fullname: Hong, Seung-Hye
  organization: Department of Bioscience and Biotechnology, Konkuk University, 143-701, Seoul, Republic of Korea
– sequence: 5
  givenname: Ji-Young
  surname: Park
  fullname: Park, Ji-Young
  organization: Department of Bioscience and Biotechnology, Konkuk University, 143-701, Seoul, Republic of Korea
– sequence: 6
  givenname: Deok-Kun
  surname: Oh
  fullname: Oh, Deok-Kun
  email: deokkun@konkuk.ac.kr
  organization: Department of Bioscience and Biotechnology, Konkuk University, 143-701, Seoul, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25952266$$D View this record in MEDLINE/PubMed
BookMark eNqNks1uEzEUhS1URNPCghdAltjAYlr_jH9mCRUtFVFZ0MLS8sx4GhfHTm1PaHgwng8naQuqBOrKx9J3zr269-6BHR-8AeAlRgcYIXLY2nxAGK_pEzDBqBEVIg3aAROEEK8oa8gu2EvpqnyF5PwZ2CWsYYRwPgG_LvzSWGf9JQwD9GFpHIzm0oYqGWe6bJcGDjrnFdSd7WEfxtYZ2Abfw9mqjzrrZBIcYpjDqe5yaAvm3Jg2eFjM7FpbvwxuafoiYJ4Z-Cc63KyG0RcdvHb2p16LdSPz4EMFdanS22pdqIB_9ZGeg6eDdsm8uH33wcXxh_Ojj9X088np0btp1XGKaCWEZIT1LZGtbDFhtTbccFJTLHAjac9ozwUZaonagXFUk1YYXRM9cCo045zugzfb3EUM16NJWc1t6oxz2pswJoUFo4xRSvAjUEKwxA1-TCqWSAhKmoK-foBehTGWYW0CMZOUCVmoV7fU2M5NrxbRznVcqbs9F-DtFuhiSCma4R7BSK1vSJUbUpsbKuzhA7azebOZHLV1_3P8sM6s_h2t3p-e3zmqrcOmbG7uHTp-V1xQwdS3sxN1fPb1C_kka8Xob-MR6EU
CODEN BIBIAU
CitedBy_id crossref_primary_10_1007_s00253_020_10627_7
crossref_primary_10_1002_jsfa_11559
crossref_primary_10_1002_cctc_201601329
crossref_primary_10_1371_journal_pone_0230915
crossref_primary_10_1007_s11746_016_2809_6
crossref_primary_10_1128_MMBR_00019_18
crossref_primary_10_3390_catal10030287
crossref_primary_10_1002_ange_201810005
crossref_primary_10_3389_fmicb_2016_01561
crossref_primary_10_1016_j_plipres_2023_101257
crossref_primary_10_1016_j_plipres_2016_06_001
crossref_primary_10_1016_j_mimet_2021_106209
crossref_primary_10_1002_adsc_201701029
crossref_primary_10_1016_j_ccr_2016_10_003
crossref_primary_10_1016_j_cjche_2020_02_008
crossref_primary_10_1186_s12934_022_01777_6
crossref_primary_10_1016_j_plipres_2017_09_002
crossref_primary_10_1016_j_jenvman_2021_112692
crossref_primary_10_3390_catal10101122
crossref_primary_10_1002_cbic_201900389
crossref_primary_10_1002_anie_201810005
crossref_primary_10_1016_j_cbpa_2017_10_030
crossref_primary_10_1016_j_foodchem_2024_142010
crossref_primary_10_1016_j_cell_2024_07_029
crossref_primary_10_1007_s00253_018_9065_7
crossref_primary_10_1146_annurev_food_030117_012336
crossref_primary_10_3390_catal8030109
crossref_primary_10_1016_j_ymben_2019_08_009
crossref_primary_10_3390_catal10020154
Cites_doi 10.1006/anae.1999.0306
10.1002/(SICI)1097-0290(19990805)64:3<333::AID-BIT9>3.0.CO;2-2
10.1128/aem.59.1.281-284.1993
10.1002/anie.201002767
10.1007/s00253-011-3805-2
10.1128/AEM.67.3.1246-1252.2001
10.1002/anie.201209187
10.1016/j.cej.2013.07.064
10.1016/j.cej.2012.11.090
10.1007/s11745-003-1188-4
10.1107/S0907444913000991
10.1002/bit.24904
10.1007/s10529-012-1044-y
10.1016/S0065-2164(00)47005-X
10.1074/jbc.M109.081851
10.1128/aem.58.7.2116-2122.1992
10.1007/s00253-006-0335-4
10.1007/s00253-007-1280-6
10.1002/ejlt.201200414
10.1007/BF00164472
10.1016/j.biotechadv.2013.07.004
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
Copyright Wiley Subscription Services, Inc. Nov 2015
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
– notice: Copyright Wiley Subscription Services, Inc. Nov 2015
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7QL
DOI 10.1002/bit.25643
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
DatabaseTitleList
Engineering Research Database
Solid State and Superconductivity Abstracts
MEDLINE - Academic
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 2213
ExternalDocumentID 3833525211
25952266
10_1002_bit_25643
BIT25643
ark_67375_WNG_FNVS2K84_5
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Korea Healthcare Technology R&D Project, Ministry for Health & Welfare, Republic of Korea
  funderid: No. 2012‐009
– fundername: Ministry of Education
  funderid: 2014R1A1A2057370
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7QL
ID FETCH-LOGICAL-c6303-778525db28b8b1254ae6e6243171983d53d672f480bf56042b7ea42af637a5663
IEDL.DBID DR2
ISSN 0006-3592
IngestDate Fri Jul 11 09:12:29 EDT 2025
Fri Jul 11 10:11:43 EDT 2025
Fri Jul 11 16:27:21 EDT 2025
Fri Jul 25 09:42:32 EDT 2025
Mon Jul 21 05:56:07 EDT 2025
Thu Apr 24 23:05:26 EDT 2025
Tue Jul 01 01:08:54 EDT 2025
Wed Jan 22 16:21:38 EST 2025
Wed Oct 30 09:51:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords regio-selective hydroxylation
linoleate 13-hydratase
13-hydroxy-9(Z)-octadecenoic acid
linoleic acid
hydroxy fatty acid
10,13-dihydroxy-octadecanoic acid
Lactobacillus acidophilus
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6303-778525db28b8b1254ae6e6243171983d53d672f480bf56042b7ea42af637a5663
Notes ark:/67375/WNG-FNVS2K84-5
ArticleID:BIT25643
Korea Healthcare Technology R&D Project, Ministry for Health & Welfare, Republic of Korea - No. 2012-009
istex:339CCD4126636368D158B0FD16CD3771A0EC2DC7
Ministry of Education - No. 2014R1A1A2057370
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 25952266
PQID 1721583578
PQPubID 48814
PageCount 8
ParticipantIDs proquest_miscellaneous_1753553321
proquest_miscellaneous_1722181916
proquest_miscellaneous_1718077329
proquest_journals_1721583578
pubmed_primary_25952266
crossref_primary_10_1002_bit_25643
crossref_citationtrail_10_1002_bit_25643
wiley_primary_10_1002_bit_25643_BIT25643
istex_primary_ark_67375_WNG_FNVS2K84_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2015
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: November 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol. Bioeng
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Kishimoto N, Yamamoto I, Toraishi K, Yoshioka S, Saito K, Masuda H, Fujita T. 2003. Two distinct pathways for the formation of hydroxy FA from linoleic acid by lactic acid bacteria. Lipids 38(12):1269-1274.
Kim B-N, Joo Y-C, Kim Y-S, Kim K-R, Oh D-K. 2012. Production of 10-hydroxystearic acid from oleic acid and olive oil hydrolyzate by an oleate hydratase from Lysinibacillus fusiformis. Appl Microbiol Biotechnol 95(4):929-937.
Song J-W, Jeon E-Y, Song D-H, Jang H-Y, Bornscheuer UT, Oh D-K, Park J-B. 2013. Multistep enzymatic synthesis of long-chain a,w-dicarboxylic and w-hydroxycarboxylic acids from renewable fatty acids and plant oils. Angew Chem Int Ed 52(9):2534-2537.
Yang W, Dostal L, Rosazza JPN. 1993. Stereospecificity of microbial hydrations of oleic Acid to 10-hydroxystearic Acid. Appl Environ Microbiol 59(1):281-284.
Babot ED, del Río JC, Kalum L, Martínez AT, Gutiérrez A. 2013. Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea. Biotechnol Bioeng 110(9):2323-2332.
Schneider S, Wubbolts MG, Oesterhelt G, Sanglard D, Witholt B. 1999. Controlled regioselectivity of fatty acid oxidation by whole cells producing cytochrome P450BM-3 monooxygenase under varied dissolved oxygen concentrations. Biotechnol Bioeng 64(3):333-341.
Hou CT. 2000. Biotransformation of unsaturated fatty acids to industrial products. Adv Appl Microbiol: Academic Press. p 201-220.
Villaverde JJ, van der Vlist V, Santos SAO, Haarmann T, Langfelder K, Pirttimaa M, Nyyssölä A, Jylhä S, Tamminen T, Kruus K, de Graaff L, Neto CP, Simões MMQ, Domingues MRM, Silvestre AJD, Eidner J, Buchert J. 2013b Hydroperoxide production from linoleic acid by heterologous Gaeumannomyces graminis tritici lipoxygenase: Optimization and scale-up. Cheml Eng J 217(0):82-90.
Volkov A, Liavonchanka A, Kamneva O, Fiedler T, Goebel C, Kreikemeyer B, Feussner I. 2010. Myosin cross-reactive antigen of Streptococcus pyogenes M49 encodes a fatty acid double bond hydratase that plays a role in oleic acid detoxification and bacterial virulence. J Biol Chem 285(14):10353-10361.
Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ. 2011. Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed 50(17):3854-3871.
Yu I-S, Yeom S-J, Kim H-J, Lee J-K, Kim Y-H, Oh D-K. 2008. Substrate specificity of Stenotrophomonas nitritireducens in the hydroxylation of unsaturated fatty acid. Appl Microbiol Biotechnol 78(1):157-163.
Hudson JA, MacKenzie CAM, Joblin KN. 1995. Conversion of oleic acid to 10-hydroxystearic acid by two species of ruminal bacteria. Appl Microbiol Biotechnol 44(1-2):1-6.
Metzger JO, Bornscheuer U. 2006. Lipids as renewable resources: Current state of chemical and biotechnological conversion and diversification. Appl Microbiol Biotechnol 71(1):13-22.
Volkov A, Khoshnevis S, Neumann P, Herrfurth C, Wohlwend D, Ficner R, Feussner I. 2013. Crystal structure analysis of a fatty acid double-bond hydratase from Lactobacillus acidophilus. Acta Crystallogr D 69(4):648-657.
el-Sharkawy SH, Yang W, Dostal L, Rosazza JP. 1992. Microbial oxidation of oleic acid. Appl Environ Microbiol 58(7):2116-2122.
Kim K-R, Oh D-K. 2013. Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes. Biotechnol Adv 31(8):1473-1485.
Morvan B, Joblin KN. 1999. Hydration of oleic acid by Enterococcus gallinarum, Pediococcus acidilactici and Lactobacillus sp. isolated from the rumen. Anaerobe 5(6):605-611.
Ogawa J, Matsumura K, Kishino S, Omura Y, Shimizu S. 2001. Conjugated linoleic acid accumulation via 10-hydroxy-12-octadecaenoic acid during microaerobic transformation of linoleic acid by Lactobacillus acidophilus. Appl Environ Microbiol 67(3):1246-1252.
Takeuchi M, Kishino S, Tanabe K, Hirata A, Park S-B, Shimizu S, Ogawa J. 2013. Hydroxy fatty acid production by Pediococcus sp. Eur J Lipid Sci Technol 115(4):386-393.
Yang B, Chen H, Song Y, Chen Y, Zhang H, Chen W. 2013. Myosin-cross-reactive antigens from four different lactic acid bacteria are fatty acid hydratases. Biotechnol Lett 35(1):75-81.
Villaverde JJ, Santos SAO, Haarmann T, Neto CP, Simões MMQ, Domingues MRM, Silvestre AJD. 2013a Cloned Pseudomonas aeruginosa lipoxygenase as efficient approach for the clean conversion of linoleic acid into valuable hydroperoxides. Chem Eng J 231(0):519-525.
1993; 59
2006; 71
2013; 69
2000
2013; 35
2013; 115
1995; 44
2013; 31
2011; 50
2013; 52
2008; 78
2003; 38
2013a; 231
2010; 285
1999; 64
1992; 58
2013; 110
2001; 67
1999; 5
2013b; 217
2012; 95
e_1_2_6_21_1
e_1_2_6_10_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_22_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – reference: Ogawa J, Matsumura K, Kishino S, Omura Y, Shimizu S. 2001. Conjugated linoleic acid accumulation via 10-hydroxy-12-octadecaenoic acid during microaerobic transformation of linoleic acid by Lactobacillus acidophilus. Appl Environ Microbiol 67(3):1246-1252.
– reference: Kim B-N, Joo Y-C, Kim Y-S, Kim K-R, Oh D-K. 2012. Production of 10-hydroxystearic acid from oleic acid and olive oil hydrolyzate by an oleate hydratase from Lysinibacillus fusiformis. Appl Microbiol Biotechnol 95(4):929-937.
– reference: Song J-W, Jeon E-Y, Song D-H, Jang H-Y, Bornscheuer UT, Oh D-K, Park J-B. 2013. Multistep enzymatic synthesis of long-chain a,w-dicarboxylic and w-hydroxycarboxylic acids from renewable fatty acids and plant oils. Angew Chem Int Ed 52(9):2534-2537.
– reference: Villaverde JJ, van der Vlist V, Santos SAO, Haarmann T, Langfelder K, Pirttimaa M, Nyyssölä A, Jylhä S, Tamminen T, Kruus K, de Graaff L, Neto CP, Simões MMQ, Domingues MRM, Silvestre AJD, Eidner J, Buchert J. 2013b Hydroperoxide production from linoleic acid by heterologous Gaeumannomyces graminis tritici lipoxygenase: Optimization and scale-up. Cheml Eng J 217(0):82-90.
– reference: Kim K-R, Oh D-K. 2013. Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes. Biotechnol Adv 31(8):1473-1485.
– reference: el-Sharkawy SH, Yang W, Dostal L, Rosazza JP. 1992. Microbial oxidation of oleic acid. Appl Environ Microbiol 58(7):2116-2122.
– reference: Volkov A, Khoshnevis S, Neumann P, Herrfurth C, Wohlwend D, Ficner R, Feussner I. 2013. Crystal structure analysis of a fatty acid double-bond hydratase from Lactobacillus acidophilus. Acta Crystallogr D 69(4):648-657.
– reference: Kishimoto N, Yamamoto I, Toraishi K, Yoshioka S, Saito K, Masuda H, Fujita T. 2003. Two distinct pathways for the formation of hydroxy FA from linoleic acid by lactic acid bacteria. Lipids 38(12):1269-1274.
– reference: Metzger JO, Bornscheuer U. 2006. Lipids as renewable resources: Current state of chemical and biotechnological conversion and diversification. Appl Microbiol Biotechnol 71(1):13-22.
– reference: Morvan B, Joblin KN. 1999. Hydration of oleic acid by Enterococcus gallinarum, Pediococcus acidilactici and Lactobacillus sp. isolated from the rumen. Anaerobe 5(6):605-611.
– reference: Yu I-S, Yeom S-J, Kim H-J, Lee J-K, Kim Y-H, Oh D-K. 2008. Substrate specificity of Stenotrophomonas nitritireducens in the hydroxylation of unsaturated fatty acid. Appl Microbiol Biotechnol 78(1):157-163.
– reference: Schneider S, Wubbolts MG, Oesterhelt G, Sanglard D, Witholt B. 1999. Controlled regioselectivity of fatty acid oxidation by whole cells producing cytochrome P450BM-3 monooxygenase under varied dissolved oxygen concentrations. Biotechnol Bioeng 64(3):333-341.
– reference: Villaverde JJ, Santos SAO, Haarmann T, Neto CP, Simões MMQ, Domingues MRM, Silvestre AJD. 2013a Cloned Pseudomonas aeruginosa lipoxygenase as efficient approach for the clean conversion of linoleic acid into valuable hydroperoxides. Chem Eng J 231(0):519-525.
– reference: Volkov A, Liavonchanka A, Kamneva O, Fiedler T, Goebel C, Kreikemeyer B, Feussner I. 2010. Myosin cross-reactive antigen of Streptococcus pyogenes M49 encodes a fatty acid double bond hydratase that plays a role in oleic acid detoxification and bacterial virulence. J Biol Chem 285(14):10353-10361.
– reference: Yang B, Chen H, Song Y, Chen Y, Zhang H, Chen W. 2013. Myosin-cross-reactive antigens from four different lactic acid bacteria are fatty acid hydratases. Biotechnol Lett 35(1):75-81.
– reference: Yang W, Dostal L, Rosazza JPN. 1993. Stereospecificity of microbial hydrations of oleic Acid to 10-hydroxystearic Acid. Appl Environ Microbiol 59(1):281-284.
– reference: Hudson JA, MacKenzie CAM, Joblin KN. 1995. Conversion of oleic acid to 10-hydroxystearic acid by two species of ruminal bacteria. Appl Microbiol Biotechnol 44(1-2):1-6.
– reference: Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ. 2011. Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed 50(17):3854-3871.
– reference: Takeuchi M, Kishino S, Tanabe K, Hirata A, Park S-B, Shimizu S, Ogawa J. 2013. Hydroxy fatty acid production by Pediococcus sp. Eur J Lipid Sci Technol 115(4):386-393.
– reference: Babot ED, del Río JC, Kalum L, Martínez AT, Gutiérrez A. 2013. Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea. Biotechnol Bioeng 110(9):2323-2332.
– reference: Hou CT. 2000. Biotransformation of unsaturated fatty acids to industrial products. Adv Appl Microbiol: Academic Press. p 201-220.
– volume: 5
  start-page: 605
  issue: 6
  year: 1999
  end-page: 611
  article-title: Hydration of oleic acid by , and sp. isolated from the rumen
  publication-title: Anaerobe
– volume: 50
  start-page: 3854
  issue: 17
  year: 2011
  end-page: 3871
  article-title: Oils and fats as renewable raw materials in chemistry
  publication-title: Angew Chem Int Ed
– volume: 95
  start-page: 929
  issue: 4
  year: 2012
  end-page: 937
  article-title: Production of 10‐hydroxystearic acid from oleic acid and olive oil hydrolyzate by an oleate hydratase from
  publication-title: Appl Microbiol Biotechnol
– volume: 67
  start-page: 1246
  issue: 3
  year: 2001
  end-page: 1252
  article-title: Conjugated linoleic acid accumulation via 10‐hydroxy‐12‐octadecaenoic acid during microaerobic transformation of linoleic acid by
  publication-title: Appl Environ Microbiol
– volume: 52
  start-page: 2534
  issue: 9
  year: 2013
  end-page: 2537
  article-title: Multistep enzymatic synthesis of long‐chain a,w‐dicarboxylic and w‐hydroxycarboxylic acids from renewable fatty acids and plant oils
  publication-title: Angew Chem Int Ed
– volume: 115
  start-page: 386
  issue: 4
  year: 2013
  end-page: 393
  article-title: Hydroxy fatty acid production by sp
  publication-title: Eur J Lipid Sci Technol
– volume: 110
  start-page: 2323
  issue: 9
  year: 2013
  end-page: 2332
  article-title: Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from
  publication-title: Biotechnol Bioeng
– volume: 58
  start-page: 2116
  issue: 7
  year: 1992
  end-page: 2122
  article-title: Microbial oxidation of oleic acid
  publication-title: Appl Environ Microbiol
– volume: 69
  start-page: 648
  issue: 4
  year: 2013
  end-page: 657
  article-title: Crystal structure analysis of a fatty acid double‐bond hydratase from
  publication-title: Acta Crystallogr D
– volume: 64
  start-page: 333
  issue: 3
  year: 1999
  end-page: 341
  article-title: Controlled regioselectivity of fatty acid oxidation by whole cells producing cytochrome P450BM‐3 monooxygenase under varied dissolved oxygen concentrations
  publication-title: Biotechnol Bioeng
– start-page: 201
  year: 2000
  end-page: 220
  article-title: Biotransformation of unsaturated fatty acids to industrial products
  publication-title: Adv Appl Microbiol
– volume: 38
  start-page: 1269
  issue: 12
  year: 2003
  end-page: 1274
  article-title: Two distinct pathways for the formation of hydroxy FA from linoleic acid by lactic acid bacteria
  publication-title: Lipids
– volume: 71
  start-page: 13
  issue: 1
  year: 2006
  end-page: 22
  article-title: Lipids as renewable resources: Current state of chemical and biotechnological conversion and diversification
  publication-title: Appl Microbiol Biotechnol
– volume: 44
  start-page: 1
  issue: 1–2
  year: 1995
  end-page: 6
  article-title: Conversion of oleic acid to 10‐hydroxystearic acid by two species of ruminal bacteria
  publication-title: Appl Microbiol Biotechnol
– volume: 231
  start-page: 519
  issue: 0
  year: 2013a
  end-page: 525
  article-title: Cloned lipoxygenase as efficient approach for the clean conversion of linoleic acid into valuable hydroperoxides
  publication-title: Chem Eng J
– volume: 59
  start-page: 281
  issue: 1
  year: 1993
  end-page: 284
  article-title: Stereospecificity of microbial hydrations of oleic Acid to 10‐hydroxystearic Acid
  publication-title: Appl Environ Microbiol
– volume: 35
  start-page: 75
  issue: 1
  year: 2013
  end-page: 81
  article-title: Myosin‐cross‐reactive antigens from four different lactic acid bacteria are fatty acid hydratases
  publication-title: Biotechnol Lett
– volume: 31
  start-page: 1473
  issue: 8
  year: 2013
  end-page: 1485
  article-title: Production of hydroxy fatty acids by microbial fatty acid‐hydroxylation enzymes
  publication-title: Biotechnol Adv
– volume: 78
  start-page: 157
  issue: 1
  year: 2008
  end-page: 163
  article-title: Substrate specificity of in the hydroxylation of unsaturated fatty acid
  publication-title: Appl Microbiol Biotechnol
– volume: 217
  start-page: 82
  issue: 0
  year: 2013b
  end-page: 90
  article-title: Hydroperoxide production from linoleic acid by heterologous lipoxygenase: Optimization and scale‐up
  publication-title: Cheml Eng J
– volume: 285
  start-page: 10353
  issue: 14
  year: 2010
  end-page: 10361
  article-title: Myosin cross‐reactive antigen of M49 encodes a fatty acid double bond hydratase that plays a role in oleic acid detoxification and bacterial virulence
  publication-title: J Biol Chem
– ident: e_1_2_6_11_1
  doi: 10.1006/anae.1999.0306
– ident: e_1_2_6_13_1
  doi: 10.1002/(SICI)1097-0290(19990805)64:3<333::AID-BIT9>3.0.CO;2-2
– ident: e_1_2_6_21_1
  doi: 10.1128/aem.59.1.281-284.1993
– ident: e_1_2_6_3_1
  doi: 10.1002/anie.201002767
– ident: e_1_2_6_7_1
  doi: 10.1007/s00253-011-3805-2
– ident: e_1_2_6_12_1
  doi: 10.1128/AEM.67.3.1246-1252.2001
– ident: e_1_2_6_14_1
  doi: 10.1002/anie.201209187
– ident: e_1_2_6_16_1
  doi: 10.1016/j.cej.2013.07.064
– ident: e_1_2_6_17_1
  doi: 10.1016/j.cej.2012.11.090
– ident: e_1_2_6_9_1
  doi: 10.1007/s11745-003-1188-4
– ident: e_1_2_6_18_1
  doi: 10.1107/S0907444913000991
– ident: e_1_2_6_2_1
  doi: 10.1002/bit.24904
– ident: e_1_2_6_20_1
  doi: 10.1007/s10529-012-1044-y
– ident: e_1_2_6_5_1
  doi: 10.1016/S0065-2164(00)47005-X
– ident: e_1_2_6_19_1
  doi: 10.1074/jbc.M109.081851
– ident: e_1_2_6_4_1
  doi: 10.1128/aem.58.7.2116-2122.1992
– ident: e_1_2_6_10_1
  doi: 10.1007/s00253-006-0335-4
– ident: e_1_2_6_22_1
  doi: 10.1007/s00253-007-1280-6
– ident: e_1_2_6_15_1
  doi: 10.1002/ejlt.201200414
– ident: e_1_2_6_6_1
  doi: 10.1007/BF00164472
– ident: e_1_2_6_8_1
  doi: 10.1016/j.biotechadv.2013.07.004
SSID ssj0007866
Score 2.3212247
Snippet ABSTRACT The aim of this study is the first time demonstration of cis‐12 regio‐selective linoleate double‐bond hydratase. Hydroxylation of fatty acids,...
The aim of this study is the first time demonstration of cis-12 regio-selective linoleate double-bond hydratase. Hydroxylation of fatty acids, abundant...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2206
SubjectTerms 10,13‐dihydroxy‐octadecanoic acid
13-dihydroxy-octadecanoic acid
13-hydroxy-9(Z)-octadecenoic acid
Bioengineering
Biosynthesis
Biotechnology
Carboxylic acids
Enzymes
Fatty acids
Fatty Acids - metabolism
Feedstock
Genes
Genomics
Gram-positive bacteria
Hydro-Lyases - genetics
Hydro-Lyases - metabolism
hydroxy fatty acid
Hydroxylation
Kinetics
Lactobacillus acidophilus
Lactobacillus acidophilus - enzymology
Lactobacillus acidophilus - genetics
linoleate 13-hydratase
linoleic acid
Polyunsaturated fatty acids
Recombinant
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
regio-selective hydroxylation
Substrate Specificity
Title Unveiling of novel regio-selective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono- and di-hydroxy fatty acids
URI https://api.istex.fr/ark:/67375/WNG-FNVS2K84-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.25643
https://www.ncbi.nlm.nih.gov/pubmed/25952266
https://www.proquest.com/docview/1721583578
https://www.proquest.com/docview/1718077329
https://www.proquest.com/docview/1722181916
https://www.proquest.com/docview/1753553321
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQ98NgCDRRkEKp6Sbtx4jzEqa1YymsP0IUeKkV27KhRQ1I12RXLiZ_AD-LX8EuYcR7bolIhbiPtZDOJ5_GN45kh5HnkpENfBcyWUSptL0q4LV2hbMECpj1HRK7GrYH3Y39_4r055IdL5EVXC9P0h-g33NAyjL9GAxey2l40DZUZDriGgAr-F89qISD6sGgdFYTNd0rMmF0esa6r0JBt91deiEXX8LV-vQxoXsStJvCMbpOjTuTmvMnJ1rSWW8m3P7o5_ucz3SG3WkBKdxoNukuWdDEgqzsFJONf5nSDmiOiZu99QK7vdtSNvW5Q3ICsnOtpuEp-ToqZzrDInZYpLcqZzilOfyh_ff9RmaE74F9pKup6TkWSKarKqcw1lWWh6PFcgUZCYK0o1r3QdzgNSAJbnk8rw16eHmdIZwX41ZlWQFDAsHTx1_CaMFg3e5xtlSmKAvaGMlAB91EZUHgzYD4nS3WPTEYvD_b27XZEhJ34EHwhNwg540qyUIYSsJontK99hqjIiUJXcVf5AUu9cChTwHYek4EWHhOp7wYCkKx7nywXZaHXCHUwlfI0QBqlIQ1kofZUFEhfJCIFUJVYZLNTljhp-6fjGI88bjo_sxhWLzarZ5FnPetp0zTkMqYNo3E9hzg7wVN2AY8_j1_Fo_Gnj-xt6MXcIuudSsatg6lizNx5iK2KLPK0_xkWHr_3iEKXU-RxwmEQuCy6iochyIMk4SoeDqjUdZljkQeNSfRCQ_aMCB6u3jSK_ffnjXdfHxji4b-zPiI3AaDypvZznSzXZ1P9GEBgLZ8Ya_8NgJxc0g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VVqhw4JHyCBRYEKp6cRuvvX5IXNpCSGmaAyTQC1rteteq1WBXzUOEEz-BH8Sv4Zcws46dFpUKcRsp43jsndn5ZrwzQ8jL2E1bgQ6Zo-JUOX6ccEd5UjuShcz4row9g6mBw17QGfjvjvjREnlV1cKU_SHqhBtaht2v0cAxIb296BqqMpxwDR71GlnBid5olq_fL5pHhVH5pRJjZo_HrOor1GLb9aUXvNEKvtivl0HNi8jVup72bfK5Ero8cXKyNRmrreTbH_0c__ep7pBbc0xKd0olukuWTN4gazs5xONfZnSD2lOiNv3eINd3K2p1r5oV1yA3z7U1XCM_B_nUZFjnTouU5sXUDCkOgCh-ff8xsnN3YIulqRyPZ1Qmmaa6mKihoarINT2eaVBK8K0jiqUvtIsDgRSwDYeTkWUvTo8zpLMcttap0UBQgLF08dfwntBfl2nOeaEpigImhzJQCffRGVB4M2A-J8voHhm03_T3Os58SoSTBOB_ITyIOONasUhFCuCaL01gAobAyI0jT3NPByFL_ailUoB3PlOhkT6TaeCFEsCsd58s50VuHhLqYjTlG0A12kAkyCLj6zhUgUxkCrgqaZLNSltEMm-hjpM8hqJs_swErJ6wq9ckL2rW07JvyGVMG1blag55doIH7UIuPvXeinbv4wd2EPmCN8l6pZNivseMBAbvPMJuRU3yvP4ZFh4_-cjcFBPkcaNWGHosvoqHIc6DOOEqHg7A1POY2yQPSpuohYYAGkE8XL1pNfvvzyt29_uWePTvrM_Iaqd_2BXd_d7BY3ID8CovS0HXyfL4bGKeACYcq6fW9H8DAGlg6w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKKygc-NlSWChgEKp6Sbtx4sQRp_6wtLSsEO1CD0iWHTtq1CVZdX_EcuIReCCehidhJtlkW1QqxG2k_bJx4hnPN45nhpCXkZu0AhMyR0eJdvwo5o72lHEUC5n1XRV5FrcG3nWC3a7_9pgfz5FXVS5MWR-i3nBDyyjWazTwvkk2ZkVDdYoNrsGhXiMLftASGHntfJjVjgpF-aESQ2aPR6wqK9RiG_WlF5zRAr7Xr5cxzYvEtfA87TvkczXm8sDJ6fpoqNfjb3-Uc_zPh7pLbk8ZKd0sVegembNZgyxtZhCNf5nQVVqcES023xvk-lYlLW5XneIa5Na5ooZL5Gc3G9sUs9xpntAsH9sexfYP-a_vPwZF1x1YYGmihsMJVXFqqMlHumepzjNDTyYGVBI864Bi4gs9wHZAGmC93mhQwPP-SYpymsHCOrYGBAokls7-Gl4Teutyk3OaZopDAYPDMVAF9zEpSHgzAJ8by-A-6bZfH23vOtMeEU4cgPeF4EBwxo1mQgsNZM1XNrABQ1rkRsIz3DNByBJftHQC5M5nOrTKZyoJvFABlfWWyXyWZ_YhoS7GUr4FTmMsxIFMWN9EoQ5UrBJgVXGTrFXKIuNpAXXs49GTZelnJmH2ZDF7TfKihvbLqiGXgVYLjasR6uwUj9mFXH7qvJHtzsdDti98yZtkpVJJOV1hBhJDdy6wVlGTPK9_honHDz4qs_kIMa5ohaHHoqswDFkeRAlXYTjQUs9jbpM8KE2iHjSEz0jh4eq1QrH__rxya--oEB79O_QZufF-py0P9jr7j8lNIKu8zANdIfPDs5F9AoRwqJ8Whv8bwmtfow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+of+novel+regio-selective+fatty+acid+double+bond+hydratases+from+Lactobacillus+acidophilus+involved+in+the+selective+oxyfunctionalization+of+mono-+and+di-hydroxy+fatty+acids&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Kim%2C+Kyoung-Rok&rft.au=Oh%2C+Hye-Jin&rft.au=Park%2C+Chul-Soon&rft.au=Hong%2C+Seung-Hye&rft.date=2015-11-01&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=112&rft.issue=11&rft.spage=2206&rft.epage=2213&rft_id=info:doi/10.1002%2Fbit.25643&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon