Unveiling of novel regio-selective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono- and di-hydroxy fatty acids
ABSTRACT The aim of this study is the first time demonstration of cis‐12 regio‐selective linoleate double‐bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acid...
Saved in:
Published in | Biotechnology and bioengineering Vol. 112; no. 11; pp. 2206 - 2213 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.11.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0006-3592 1097-0290 |
DOI | 10.1002/bit.25643 |
Cover
Loading…
Abstract | ABSTRACT
The aim of this study is the first time demonstration of cis‐12 regio‐selective linoleate double‐bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis‐9 and cis‐12 double‐bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio‐selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13‐dihydroxyoctadecanoic acid biosynthesis. Linoleate 13‐hydratase (LHT‐13) selectively converted 10 mM linoleic acid to 13S‐hydroxy‐9(Z)‐octadecenoic acid with high titer (8.1 mM) and yield (81%). Our study will expand knowledge for microbial fatty acid‐hydroxylation enzymes and facilitate the designed production of the regio‐selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks. Biotechnol. Bioeng. 2015;112: 2206–2213. © 2015 Wiley Periodicals, Inc.
By genomic analysis and comparison, two hydratases were isolated and characterized as novel cis‐12 and cis‐10 position‐selective linoleate hydratase. Function of two linoleated hydratase are involved in the dihydroxy fatty acid formation. A novel cis‐12 linoleate hydrates selectively produced 10‐ and 13‐hydroxy fatty acids from polyunsaturated fatty acids with high yield. These hydratases will be feasible tool for mono‐ and dihydroxy fatty acid oxyfunctionalization. |
---|---|
AbstractList | ABSTRACT
The aim of this study is the first time demonstration of cis‐12 regio‐selective linoleate double‐bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis‐9 and cis‐12 double‐bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio‐selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13‐dihydroxyoctadecanoic acid biosynthesis. Linoleate 13‐hydratase (LHT‐13) selectively converted 10 mM linoleic acid to 13S‐hydroxy‐9(Z)‐octadecenoic acid with high titer (8.1 mM) and yield (81%). Our study will expand knowledge for microbial fatty acid‐hydroxylation enzymes and facilitate the designed production of the regio‐selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks. Biotechnol. Bioeng. 2015;112: 2206–2213. © 2015 Wiley Periodicals, Inc.
By genomic analysis and comparison, two hydratases were isolated and characterized as novel cis‐12 and cis‐10 position‐selective linoleate hydratase. Function of two linoleated hydratase are involved in the dihydroxy fatty acid formation. A novel cis‐12 linoleate hydrates selectively produced 10‐ and 13‐hydroxy fatty acids from polyunsaturated fatty acids with high yield. These hydratases will be feasible tool for mono‐ and dihydroxy fatty acid oxyfunctionalization. The aim of this study is the first time demonstration of cis-12 regio-selective linoleate double-bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis-9 and cis-12 double-bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio-selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13-dihydroxyoctadecanoic acid biosynthesis. Linoleate 13-hydratase (LHT-13) selectively converted 10mM linoleic acid to 13S-hydroxy-9(Z)-octadecenoic acid with high titer (8.1mM) and yield (81%). Our study will expand knowledge for microbial fatty acid-hydroxylation enzymes and facilitate the designed production of the regio-selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks. Biotechnol. Bioeng. 2015; 112: 2206-2213. By genomic analysis and comparison, two hydratases were isolated and characterized as novel cis-12 and cis-10 position-selective linoleate hydratase. Function of two linoleated hydratase are involved in the dihydroxy fatty acid formation. A novel cis-12 linoleate hydrates selectively produced 10- and 13-hydroxy fatty acids from polyunsaturated fatty acids with high yield. These hydratases will be feasible tool for mono- and dihydroxy fatty acid oxyfunctionalization. The aim of this study is the first time demonstration of cis-12 regio-selective linoleate double-bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis-9 and cis-12 double-bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio-selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13-dihydroxyoctadecanoic acid biosynthesis. Linoleate 13-hydratase (LHT-13) selectively converted 10 mM linoleic acid to 13S-hydroxy-9(Z)-octadecenoic acid with high titer (8.1 mM) and yield (81%). Our study will expand knowledge for microbial fatty acid-hydroxylation enzymes and facilitate the designed production of the regio-selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks. |
Author | Oh, Hye-Jin Oh, Deok-Kun Park, Ji-Young Hong, Seung-Hye Kim, Kyoung-Rok Park, Chul-Soon |
Author_xml | – sequence: 1 givenname: Kyoung-Rok surname: Kim fullname: Kim, Kyoung-Rok organization: Department of Bioscience and Biotechnology, Konkuk University, 143-701, Seoul, Republic of Korea – sequence: 2 givenname: Hye-Jin surname: Oh fullname: Oh, Hye-Jin organization: Department of Bioscience and Biotechnology, Konkuk University, 143-701, Seoul, Republic of Korea – sequence: 3 givenname: Chul-Soon surname: Park fullname: Park, Chul-Soon organization: Department of Bioscience and Biotechnology, Konkuk University, 143-701, Seoul, Republic of Korea – sequence: 4 givenname: Seung-Hye surname: Hong fullname: Hong, Seung-Hye organization: Department of Bioscience and Biotechnology, Konkuk University, 143-701, Seoul, Republic of Korea – sequence: 5 givenname: Ji-Young surname: Park fullname: Park, Ji-Young organization: Department of Bioscience and Biotechnology, Konkuk University, 143-701, Seoul, Republic of Korea – sequence: 6 givenname: Deok-Kun surname: Oh fullname: Oh, Deok-Kun email: deokkun@konkuk.ac.kr organization: Department of Bioscience and Biotechnology, Konkuk University, 143-701, Seoul, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25952266$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1uEzEUhS1URNPCghdAltjAYlr_jH9mCRUtFVFZ0MLS8sx4GhfHTm1PaHgwng8naQuqBOrKx9J3zr269-6BHR-8AeAlRgcYIXLY2nxAGK_pEzDBqBEVIg3aAROEEK8oa8gu2EvpqnyF5PwZ2CWsYYRwPgG_LvzSWGf9JQwD9GFpHIzm0oYqGWe6bJcGDjrnFdSd7WEfxtYZ2Abfw9mqjzrrZBIcYpjDqe5yaAvm3Jg2eFjM7FpbvwxuafoiYJ4Z-Cc63KyG0RcdvHb2p16LdSPz4EMFdanS22pdqIB_9ZGeg6eDdsm8uH33wcXxh_Ojj9X088np0btp1XGKaCWEZIT1LZGtbDFhtTbccFJTLHAjac9ozwUZaonagXFUk1YYXRM9cCo045zugzfb3EUM16NJWc1t6oxz2pswJoUFo4xRSvAjUEKwxA1-TCqWSAhKmoK-foBehTGWYW0CMZOUCVmoV7fU2M5NrxbRznVcqbs9F-DtFuhiSCma4R7BSK1vSJUbUpsbKuzhA7azebOZHLV1_3P8sM6s_h2t3p-e3zmqrcOmbG7uHTp-V1xQwdS3sxN1fPb1C_kka8Xob-MR6EU |
CODEN | BIBIAU |
CitedBy_id | crossref_primary_10_1007_s00253_020_10627_7 crossref_primary_10_1002_jsfa_11559 crossref_primary_10_1002_cctc_201601329 crossref_primary_10_1371_journal_pone_0230915 crossref_primary_10_1007_s11746_016_2809_6 crossref_primary_10_1128_MMBR_00019_18 crossref_primary_10_3390_catal10030287 crossref_primary_10_1002_ange_201810005 crossref_primary_10_3389_fmicb_2016_01561 crossref_primary_10_1016_j_plipres_2023_101257 crossref_primary_10_1016_j_plipres_2016_06_001 crossref_primary_10_1016_j_mimet_2021_106209 crossref_primary_10_1002_adsc_201701029 crossref_primary_10_1016_j_ccr_2016_10_003 crossref_primary_10_1016_j_cjche_2020_02_008 crossref_primary_10_1186_s12934_022_01777_6 crossref_primary_10_1016_j_plipres_2017_09_002 crossref_primary_10_1016_j_jenvman_2021_112692 crossref_primary_10_3390_catal10101122 crossref_primary_10_1002_cbic_201900389 crossref_primary_10_1002_anie_201810005 crossref_primary_10_1016_j_cbpa_2017_10_030 crossref_primary_10_1016_j_foodchem_2024_142010 crossref_primary_10_1016_j_cell_2024_07_029 crossref_primary_10_1007_s00253_018_9065_7 crossref_primary_10_1146_annurev_food_030117_012336 crossref_primary_10_3390_catal8030109 crossref_primary_10_1016_j_ymben_2019_08_009 crossref_primary_10_3390_catal10020154 |
Cites_doi | 10.1006/anae.1999.0306 10.1002/(SICI)1097-0290(19990805)64:3<333::AID-BIT9>3.0.CO;2-2 10.1128/aem.59.1.281-284.1993 10.1002/anie.201002767 10.1007/s00253-011-3805-2 10.1128/AEM.67.3.1246-1252.2001 10.1002/anie.201209187 10.1016/j.cej.2013.07.064 10.1016/j.cej.2012.11.090 10.1007/s11745-003-1188-4 10.1107/S0907444913000991 10.1002/bit.24904 10.1007/s10529-012-1044-y 10.1016/S0065-2164(00)47005-X 10.1074/jbc.M109.081851 10.1128/aem.58.7.2116-2122.1992 10.1007/s00253-006-0335-4 10.1007/s00253-007-1280-6 10.1002/ejlt.201200414 10.1007/BF00164472 10.1016/j.biotechadv.2013.07.004 |
ContentType | Journal Article |
Copyright | 2015 Wiley Periodicals, Inc. Copyright Wiley Subscription Services, Inc. Nov 2015 |
Copyright_xml | – notice: 2015 Wiley Periodicals, Inc. – notice: Copyright Wiley Subscription Services, Inc. Nov 2015 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7QL |
DOI | 10.1002/bit.25643 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic Bacteriology Abstracts (Microbiology B) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic Bacteriology Abstracts (Microbiology B) |
DatabaseTitleList | Engineering Research Database Solid State and Superconductivity Abstracts MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology Anatomy & Physiology |
EISSN | 1097-0290 |
EndPage | 2213 |
ExternalDocumentID | 3833525211 25952266 10_1002_bit_25643 BIT25643 ark_67375_WNG_FNVS2K84_5 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Korea Healthcare Technology R&D Project, Ministry for Health & Welfare, Republic of Korea funderid: No. 2012‐009 – fundername: Ministry of Education funderid: 2014R1A1A2057370 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7QL |
ID | FETCH-LOGICAL-c6303-778525db28b8b1254ae6e6243171983d53d672f480bf56042b7ea42af637a5663 |
IEDL.DBID | DR2 |
ISSN | 0006-3592 |
IngestDate | Fri Jul 11 09:12:29 EDT 2025 Fri Jul 11 10:11:43 EDT 2025 Fri Jul 11 16:27:21 EDT 2025 Fri Jul 25 09:42:32 EDT 2025 Mon Jul 21 05:56:07 EDT 2025 Thu Apr 24 23:05:26 EDT 2025 Tue Jul 01 01:08:54 EDT 2025 Wed Jan 22 16:21:38 EST 2025 Wed Oct 30 09:51:15 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | regio-selective hydroxylation linoleate 13-hydratase 13-hydroxy-9(Z)-octadecenoic acid linoleic acid hydroxy fatty acid 10,13-dihydroxy-octadecanoic acid Lactobacillus acidophilus |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6303-778525db28b8b1254ae6e6243171983d53d672f480bf56042b7ea42af637a5663 |
Notes | ark:/67375/WNG-FNVS2K84-5 ArticleID:BIT25643 Korea Healthcare Technology R&D Project, Ministry for Health & Welfare, Republic of Korea - No. 2012-009 istex:339CCD4126636368D158B0FD16CD3771A0EC2DC7 Ministry of Education - No. 2014R1A1A2057370 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 25952266 |
PQID | 1721583578 |
PQPubID | 48814 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1753553321 proquest_miscellaneous_1722181916 proquest_miscellaneous_1718077329 proquest_journals_1721583578 pubmed_primary_25952266 crossref_primary_10_1002_bit_25643 crossref_citationtrail_10_1002_bit_25643 wiley_primary_10_1002_bit_25643_BIT25643 istex_primary_ark_67375_WNG_FNVS2K84_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2015 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: November 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Biotechnology and bioengineering |
PublicationTitleAlternate | Biotechnol. Bioeng |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Kishimoto N, Yamamoto I, Toraishi K, Yoshioka S, Saito K, Masuda H, Fujita T. 2003. Two distinct pathways for the formation of hydroxy FA from linoleic acid by lactic acid bacteria. Lipids 38(12):1269-1274. Kim B-N, Joo Y-C, Kim Y-S, Kim K-R, Oh D-K. 2012. Production of 10-hydroxystearic acid from oleic acid and olive oil hydrolyzate by an oleate hydratase from Lysinibacillus fusiformis. Appl Microbiol Biotechnol 95(4):929-937. Song J-W, Jeon E-Y, Song D-H, Jang H-Y, Bornscheuer UT, Oh D-K, Park J-B. 2013. Multistep enzymatic synthesis of long-chain a,w-dicarboxylic and w-hydroxycarboxylic acids from renewable fatty acids and plant oils. Angew Chem Int Ed 52(9):2534-2537. Yang W, Dostal L, Rosazza JPN. 1993. Stereospecificity of microbial hydrations of oleic Acid to 10-hydroxystearic Acid. Appl Environ Microbiol 59(1):281-284. Babot ED, del Río JC, Kalum L, Martínez AT, Gutiérrez A. 2013. Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea. Biotechnol Bioeng 110(9):2323-2332. Schneider S, Wubbolts MG, Oesterhelt G, Sanglard D, Witholt B. 1999. Controlled regioselectivity of fatty acid oxidation by whole cells producing cytochrome P450BM-3 monooxygenase under varied dissolved oxygen concentrations. Biotechnol Bioeng 64(3):333-341. Hou CT. 2000. Biotransformation of unsaturated fatty acids to industrial products. Adv Appl Microbiol: Academic Press. p 201-220. Villaverde JJ, van der Vlist V, Santos SAO, Haarmann T, Langfelder K, Pirttimaa M, Nyyssölä A, Jylhä S, Tamminen T, Kruus K, de Graaff L, Neto CP, Simões MMQ, Domingues MRM, Silvestre AJD, Eidner J, Buchert J. 2013b Hydroperoxide production from linoleic acid by heterologous Gaeumannomyces graminis tritici lipoxygenase: Optimization and scale-up. Cheml Eng J 217(0):82-90. Volkov A, Liavonchanka A, Kamneva O, Fiedler T, Goebel C, Kreikemeyer B, Feussner I. 2010. Myosin cross-reactive antigen of Streptococcus pyogenes M49 encodes a fatty acid double bond hydratase that plays a role in oleic acid detoxification and bacterial virulence. J Biol Chem 285(14):10353-10361. Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ. 2011. Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed 50(17):3854-3871. Yu I-S, Yeom S-J, Kim H-J, Lee J-K, Kim Y-H, Oh D-K. 2008. Substrate specificity of Stenotrophomonas nitritireducens in the hydroxylation of unsaturated fatty acid. Appl Microbiol Biotechnol 78(1):157-163. Hudson JA, MacKenzie CAM, Joblin KN. 1995. Conversion of oleic acid to 10-hydroxystearic acid by two species of ruminal bacteria. Appl Microbiol Biotechnol 44(1-2):1-6. Metzger JO, Bornscheuer U. 2006. Lipids as renewable resources: Current state of chemical and biotechnological conversion and diversification. Appl Microbiol Biotechnol 71(1):13-22. Volkov A, Khoshnevis S, Neumann P, Herrfurth C, Wohlwend D, Ficner R, Feussner I. 2013. Crystal structure analysis of a fatty acid double-bond hydratase from Lactobacillus acidophilus. Acta Crystallogr D 69(4):648-657. el-Sharkawy SH, Yang W, Dostal L, Rosazza JP. 1992. Microbial oxidation of oleic acid. Appl Environ Microbiol 58(7):2116-2122. Kim K-R, Oh D-K. 2013. Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes. Biotechnol Adv 31(8):1473-1485. Morvan B, Joblin KN. 1999. Hydration of oleic acid by Enterococcus gallinarum, Pediococcus acidilactici and Lactobacillus sp. isolated from the rumen. Anaerobe 5(6):605-611. Ogawa J, Matsumura K, Kishino S, Omura Y, Shimizu S. 2001. Conjugated linoleic acid accumulation via 10-hydroxy-12-octadecaenoic acid during microaerobic transformation of linoleic acid by Lactobacillus acidophilus. Appl Environ Microbiol 67(3):1246-1252. Takeuchi M, Kishino S, Tanabe K, Hirata A, Park S-B, Shimizu S, Ogawa J. 2013. Hydroxy fatty acid production by Pediococcus sp. Eur J Lipid Sci Technol 115(4):386-393. Yang B, Chen H, Song Y, Chen Y, Zhang H, Chen W. 2013. Myosin-cross-reactive antigens from four different lactic acid bacteria are fatty acid hydratases. Biotechnol Lett 35(1):75-81. Villaverde JJ, Santos SAO, Haarmann T, Neto CP, Simões MMQ, Domingues MRM, Silvestre AJD. 2013a Cloned Pseudomonas aeruginosa lipoxygenase as efficient approach for the clean conversion of linoleic acid into valuable hydroperoxides. Chem Eng J 231(0):519-525. 1993; 59 2006; 71 2013; 69 2000 2013; 35 2013; 115 1995; 44 2013; 31 2011; 50 2013; 52 2008; 78 2003; 38 2013a; 231 2010; 285 1999; 64 1992; 58 2013; 110 2001; 67 1999; 5 2013b; 217 2012; 95 e_1_2_6_21_1 e_1_2_6_10_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_19_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_3_1 e_1_2_6_11_1 e_1_2_6_2_1 e_1_2_6_12_1 e_1_2_6_22_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 |
References_xml | – reference: Ogawa J, Matsumura K, Kishino S, Omura Y, Shimizu S. 2001. Conjugated linoleic acid accumulation via 10-hydroxy-12-octadecaenoic acid during microaerobic transformation of linoleic acid by Lactobacillus acidophilus. Appl Environ Microbiol 67(3):1246-1252. – reference: Kim B-N, Joo Y-C, Kim Y-S, Kim K-R, Oh D-K. 2012. Production of 10-hydroxystearic acid from oleic acid and olive oil hydrolyzate by an oleate hydratase from Lysinibacillus fusiformis. Appl Microbiol Biotechnol 95(4):929-937. – reference: Song J-W, Jeon E-Y, Song D-H, Jang H-Y, Bornscheuer UT, Oh D-K, Park J-B. 2013. Multistep enzymatic synthesis of long-chain a,w-dicarboxylic and w-hydroxycarboxylic acids from renewable fatty acids and plant oils. Angew Chem Int Ed 52(9):2534-2537. – reference: Villaverde JJ, van der Vlist V, Santos SAO, Haarmann T, Langfelder K, Pirttimaa M, Nyyssölä A, Jylhä S, Tamminen T, Kruus K, de Graaff L, Neto CP, Simões MMQ, Domingues MRM, Silvestre AJD, Eidner J, Buchert J. 2013b Hydroperoxide production from linoleic acid by heterologous Gaeumannomyces graminis tritici lipoxygenase: Optimization and scale-up. Cheml Eng J 217(0):82-90. – reference: Kim K-R, Oh D-K. 2013. Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes. Biotechnol Adv 31(8):1473-1485. – reference: el-Sharkawy SH, Yang W, Dostal L, Rosazza JP. 1992. Microbial oxidation of oleic acid. Appl Environ Microbiol 58(7):2116-2122. – reference: Volkov A, Khoshnevis S, Neumann P, Herrfurth C, Wohlwend D, Ficner R, Feussner I. 2013. Crystal structure analysis of a fatty acid double-bond hydratase from Lactobacillus acidophilus. Acta Crystallogr D 69(4):648-657. – reference: Kishimoto N, Yamamoto I, Toraishi K, Yoshioka S, Saito K, Masuda H, Fujita T. 2003. Two distinct pathways for the formation of hydroxy FA from linoleic acid by lactic acid bacteria. Lipids 38(12):1269-1274. – reference: Metzger JO, Bornscheuer U. 2006. Lipids as renewable resources: Current state of chemical and biotechnological conversion and diversification. Appl Microbiol Biotechnol 71(1):13-22. – reference: Morvan B, Joblin KN. 1999. Hydration of oleic acid by Enterococcus gallinarum, Pediococcus acidilactici and Lactobacillus sp. isolated from the rumen. Anaerobe 5(6):605-611. – reference: Yu I-S, Yeom S-J, Kim H-J, Lee J-K, Kim Y-H, Oh D-K. 2008. Substrate specificity of Stenotrophomonas nitritireducens in the hydroxylation of unsaturated fatty acid. Appl Microbiol Biotechnol 78(1):157-163. – reference: Schneider S, Wubbolts MG, Oesterhelt G, Sanglard D, Witholt B. 1999. Controlled regioselectivity of fatty acid oxidation by whole cells producing cytochrome P450BM-3 monooxygenase under varied dissolved oxygen concentrations. Biotechnol Bioeng 64(3):333-341. – reference: Villaverde JJ, Santos SAO, Haarmann T, Neto CP, Simões MMQ, Domingues MRM, Silvestre AJD. 2013a Cloned Pseudomonas aeruginosa lipoxygenase as efficient approach for the clean conversion of linoleic acid into valuable hydroperoxides. Chem Eng J 231(0):519-525. – reference: Volkov A, Liavonchanka A, Kamneva O, Fiedler T, Goebel C, Kreikemeyer B, Feussner I. 2010. Myosin cross-reactive antigen of Streptococcus pyogenes M49 encodes a fatty acid double bond hydratase that plays a role in oleic acid detoxification and bacterial virulence. J Biol Chem 285(14):10353-10361. – reference: Yang B, Chen H, Song Y, Chen Y, Zhang H, Chen W. 2013. Myosin-cross-reactive antigens from four different lactic acid bacteria are fatty acid hydratases. Biotechnol Lett 35(1):75-81. – reference: Yang W, Dostal L, Rosazza JPN. 1993. Stereospecificity of microbial hydrations of oleic Acid to 10-hydroxystearic Acid. Appl Environ Microbiol 59(1):281-284. – reference: Hudson JA, MacKenzie CAM, Joblin KN. 1995. Conversion of oleic acid to 10-hydroxystearic acid by two species of ruminal bacteria. Appl Microbiol Biotechnol 44(1-2):1-6. – reference: Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ. 2011. Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed 50(17):3854-3871. – reference: Takeuchi M, Kishino S, Tanabe K, Hirata A, Park S-B, Shimizu S, Ogawa J. 2013. Hydroxy fatty acid production by Pediococcus sp. Eur J Lipid Sci Technol 115(4):386-393. – reference: Babot ED, del Río JC, Kalum L, Martínez AT, Gutiérrez A. 2013. Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea. Biotechnol Bioeng 110(9):2323-2332. – reference: Hou CT. 2000. Biotransformation of unsaturated fatty acids to industrial products. Adv Appl Microbiol: Academic Press. p 201-220. – volume: 5 start-page: 605 issue: 6 year: 1999 end-page: 611 article-title: Hydration of oleic acid by , and sp. isolated from the rumen publication-title: Anaerobe – volume: 50 start-page: 3854 issue: 17 year: 2011 end-page: 3871 article-title: Oils and fats as renewable raw materials in chemistry publication-title: Angew Chem Int Ed – volume: 95 start-page: 929 issue: 4 year: 2012 end-page: 937 article-title: Production of 10‐hydroxystearic acid from oleic acid and olive oil hydrolyzate by an oleate hydratase from publication-title: Appl Microbiol Biotechnol – volume: 67 start-page: 1246 issue: 3 year: 2001 end-page: 1252 article-title: Conjugated linoleic acid accumulation via 10‐hydroxy‐12‐octadecaenoic acid during microaerobic transformation of linoleic acid by publication-title: Appl Environ Microbiol – volume: 52 start-page: 2534 issue: 9 year: 2013 end-page: 2537 article-title: Multistep enzymatic synthesis of long‐chain a,w‐dicarboxylic and w‐hydroxycarboxylic acids from renewable fatty acids and plant oils publication-title: Angew Chem Int Ed – volume: 115 start-page: 386 issue: 4 year: 2013 end-page: 393 article-title: Hydroxy fatty acid production by sp publication-title: Eur J Lipid Sci Technol – volume: 110 start-page: 2323 issue: 9 year: 2013 end-page: 2332 article-title: Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from publication-title: Biotechnol Bioeng – volume: 58 start-page: 2116 issue: 7 year: 1992 end-page: 2122 article-title: Microbial oxidation of oleic acid publication-title: Appl Environ Microbiol – volume: 69 start-page: 648 issue: 4 year: 2013 end-page: 657 article-title: Crystal structure analysis of a fatty acid double‐bond hydratase from publication-title: Acta Crystallogr D – volume: 64 start-page: 333 issue: 3 year: 1999 end-page: 341 article-title: Controlled regioselectivity of fatty acid oxidation by whole cells producing cytochrome P450BM‐3 monooxygenase under varied dissolved oxygen concentrations publication-title: Biotechnol Bioeng – start-page: 201 year: 2000 end-page: 220 article-title: Biotransformation of unsaturated fatty acids to industrial products publication-title: Adv Appl Microbiol – volume: 38 start-page: 1269 issue: 12 year: 2003 end-page: 1274 article-title: Two distinct pathways for the formation of hydroxy FA from linoleic acid by lactic acid bacteria publication-title: Lipids – volume: 71 start-page: 13 issue: 1 year: 2006 end-page: 22 article-title: Lipids as renewable resources: Current state of chemical and biotechnological conversion and diversification publication-title: Appl Microbiol Biotechnol – volume: 44 start-page: 1 issue: 1–2 year: 1995 end-page: 6 article-title: Conversion of oleic acid to 10‐hydroxystearic acid by two species of ruminal bacteria publication-title: Appl Microbiol Biotechnol – volume: 231 start-page: 519 issue: 0 year: 2013a end-page: 525 article-title: Cloned lipoxygenase as efficient approach for the clean conversion of linoleic acid into valuable hydroperoxides publication-title: Chem Eng J – volume: 59 start-page: 281 issue: 1 year: 1993 end-page: 284 article-title: Stereospecificity of microbial hydrations of oleic Acid to 10‐hydroxystearic Acid publication-title: Appl Environ Microbiol – volume: 35 start-page: 75 issue: 1 year: 2013 end-page: 81 article-title: Myosin‐cross‐reactive antigens from four different lactic acid bacteria are fatty acid hydratases publication-title: Biotechnol Lett – volume: 31 start-page: 1473 issue: 8 year: 2013 end-page: 1485 article-title: Production of hydroxy fatty acids by microbial fatty acid‐hydroxylation enzymes publication-title: Biotechnol Adv – volume: 78 start-page: 157 issue: 1 year: 2008 end-page: 163 article-title: Substrate specificity of in the hydroxylation of unsaturated fatty acid publication-title: Appl Microbiol Biotechnol – volume: 217 start-page: 82 issue: 0 year: 2013b end-page: 90 article-title: Hydroperoxide production from linoleic acid by heterologous lipoxygenase: Optimization and scale‐up publication-title: Cheml Eng J – volume: 285 start-page: 10353 issue: 14 year: 2010 end-page: 10361 article-title: Myosin cross‐reactive antigen of M49 encodes a fatty acid double bond hydratase that plays a role in oleic acid detoxification and bacterial virulence publication-title: J Biol Chem – ident: e_1_2_6_11_1 doi: 10.1006/anae.1999.0306 – ident: e_1_2_6_13_1 doi: 10.1002/(SICI)1097-0290(19990805)64:3<333::AID-BIT9>3.0.CO;2-2 – ident: e_1_2_6_21_1 doi: 10.1128/aem.59.1.281-284.1993 – ident: e_1_2_6_3_1 doi: 10.1002/anie.201002767 – ident: e_1_2_6_7_1 doi: 10.1007/s00253-011-3805-2 – ident: e_1_2_6_12_1 doi: 10.1128/AEM.67.3.1246-1252.2001 – ident: e_1_2_6_14_1 doi: 10.1002/anie.201209187 – ident: e_1_2_6_16_1 doi: 10.1016/j.cej.2013.07.064 – ident: e_1_2_6_17_1 doi: 10.1016/j.cej.2012.11.090 – ident: e_1_2_6_9_1 doi: 10.1007/s11745-003-1188-4 – ident: e_1_2_6_18_1 doi: 10.1107/S0907444913000991 – ident: e_1_2_6_2_1 doi: 10.1002/bit.24904 – ident: e_1_2_6_20_1 doi: 10.1007/s10529-012-1044-y – ident: e_1_2_6_5_1 doi: 10.1016/S0065-2164(00)47005-X – ident: e_1_2_6_19_1 doi: 10.1074/jbc.M109.081851 – ident: e_1_2_6_4_1 doi: 10.1128/aem.58.7.2116-2122.1992 – ident: e_1_2_6_10_1 doi: 10.1007/s00253-006-0335-4 – ident: e_1_2_6_22_1 doi: 10.1007/s00253-007-1280-6 – ident: e_1_2_6_15_1 doi: 10.1002/ejlt.201200414 – ident: e_1_2_6_6_1 doi: 10.1007/BF00164472 – ident: e_1_2_6_8_1 doi: 10.1016/j.biotechadv.2013.07.004 |
SSID | ssj0007866 |
Score | 2.3212247 |
Snippet | ABSTRACT
The aim of this study is the first time demonstration of cis‐12 regio‐selective linoleate double‐bond hydratase. Hydroxylation of fatty acids,... The aim of this study is the first time demonstration of cis-12 regio-selective linoleate double-bond hydratase. Hydroxylation of fatty acids, abundant... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2206 |
SubjectTerms | 10,13‐dihydroxy‐octadecanoic acid 13-dihydroxy-octadecanoic acid 13-hydroxy-9(Z)-octadecenoic acid Bioengineering Biosynthesis Biotechnology Carboxylic acids Enzymes Fatty acids Fatty Acids - metabolism Feedstock Genes Genomics Gram-positive bacteria Hydro-Lyases - genetics Hydro-Lyases - metabolism hydroxy fatty acid Hydroxylation Kinetics Lactobacillus acidophilus Lactobacillus acidophilus - enzymology Lactobacillus acidophilus - genetics linoleate 13-hydratase linoleic acid Polyunsaturated fatty acids Recombinant Recombinant Proteins - genetics Recombinant Proteins - metabolism regio-selective hydroxylation Substrate Specificity |
Title | Unveiling of novel regio-selective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono- and di-hydroxy fatty acids |
URI | https://api.istex.fr/ark:/67375/WNG-FNVS2K84-5/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.25643 https://www.ncbi.nlm.nih.gov/pubmed/25952266 https://www.proquest.com/docview/1721583578 https://www.proquest.com/docview/1718077329 https://www.proquest.com/docview/1722181916 https://www.proquest.com/docview/1753553321 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQ98NgCDRRkEKp6Sbtx4jzEqa1YymsP0IUeKkV27KhRQ1I12RXLiZ_AD-LX8EuYcR7bolIhbiPtZDOJ5_GN45kh5HnkpENfBcyWUSptL0q4LV2hbMECpj1HRK7GrYH3Y39_4r055IdL5EVXC9P0h-g33NAyjL9GAxey2l40DZUZDriGgAr-F89qISD6sGgdFYTNd0rMmF0esa6r0JBt91deiEXX8LV-vQxoXsStJvCMbpOjTuTmvMnJ1rSWW8m3P7o5_ucz3SG3WkBKdxoNukuWdDEgqzsFJONf5nSDmiOiZu99QK7vdtSNvW5Q3ICsnOtpuEp-ToqZzrDInZYpLcqZzilOfyh_ff9RmaE74F9pKup6TkWSKarKqcw1lWWh6PFcgUZCYK0o1r3QdzgNSAJbnk8rw16eHmdIZwX41ZlWQFDAsHTx1_CaMFg3e5xtlSmKAvaGMlAB91EZUHgzYD4nS3WPTEYvD_b27XZEhJ34EHwhNwg540qyUIYSsJontK99hqjIiUJXcVf5AUu9cChTwHYek4EWHhOp7wYCkKx7nywXZaHXCHUwlfI0QBqlIQ1kofZUFEhfJCIFUJVYZLNTljhp-6fjGI88bjo_sxhWLzarZ5FnPetp0zTkMqYNo3E9hzg7wVN2AY8_j1_Fo_Gnj-xt6MXcIuudSsatg6lizNx5iK2KLPK0_xkWHr_3iEKXU-RxwmEQuCy6iochyIMk4SoeDqjUdZljkQeNSfRCQ_aMCB6u3jSK_ffnjXdfHxji4b-zPiI3AaDypvZznSzXZ1P9GEBgLZ8Ya_8NgJxc0g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VVqhw4JHyCBRYEKp6cRuvvX5IXNpCSGmaAyTQC1rteteq1WBXzUOEEz-BH8Sv4Zcws46dFpUKcRsp43jsndn5ZrwzQ8jL2E1bgQ6Zo-JUOX6ccEd5UjuShcz4row9g6mBw17QGfjvjvjREnlV1cKU_SHqhBtaht2v0cAxIb296BqqMpxwDR71GlnBid5olq_fL5pHhVH5pRJjZo_HrOor1GLb9aUXvNEKvtivl0HNi8jVup72bfK5Ero8cXKyNRmrreTbH_0c__ep7pBbc0xKd0olukuWTN4gazs5xONfZnSD2lOiNv3eINd3K2p1r5oV1yA3z7U1XCM_B_nUZFjnTouU5sXUDCkOgCh-ff8xsnN3YIulqRyPZ1Qmmaa6mKihoarINT2eaVBK8K0jiqUvtIsDgRSwDYeTkWUvTo8zpLMcttap0UBQgLF08dfwntBfl2nOeaEpigImhzJQCffRGVB4M2A-J8voHhm03_T3Os58SoSTBOB_ITyIOONasUhFCuCaL01gAobAyI0jT3NPByFL_ailUoB3PlOhkT6TaeCFEsCsd58s50VuHhLqYjTlG0A12kAkyCLj6zhUgUxkCrgqaZLNSltEMm-hjpM8hqJs_swErJ6wq9ckL2rW07JvyGVMG1blag55doIH7UIuPvXeinbv4wd2EPmCN8l6pZNivseMBAbvPMJuRU3yvP4ZFh4_-cjcFBPkcaNWGHosvoqHIc6DOOEqHg7A1POY2yQPSpuohYYAGkE8XL1pNfvvzyt29_uWePTvrM_Iaqd_2BXd_d7BY3ID8CovS0HXyfL4bGKeACYcq6fW9H8DAGlg6w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKKygc-NlSWChgEKp6Sbtx4sQRp_6wtLSsEO1CD0iWHTtq1CVZdX_EcuIReCCehidhJtlkW1QqxG2k_bJx4hnPN45nhpCXkZu0AhMyR0eJdvwo5o72lHEUC5n1XRV5FrcG3nWC3a7_9pgfz5FXVS5MWR-i3nBDyyjWazTwvkk2ZkVDdYoNrsGhXiMLftASGHntfJjVjgpF-aESQ2aPR6wqK9RiG_WlF5zRAr7Xr5cxzYvEtfA87TvkczXm8sDJ6fpoqNfjb3-Uc_zPh7pLbk8ZKd0sVegembNZgyxtZhCNf5nQVVqcES023xvk-lYlLW5XneIa5Na5ooZL5Gc3G9sUs9xpntAsH9sexfYP-a_vPwZF1x1YYGmihsMJVXFqqMlHumepzjNDTyYGVBI864Bi4gs9wHZAGmC93mhQwPP-SYpymsHCOrYGBAokls7-Gl4Teutyk3OaZopDAYPDMVAF9zEpSHgzAJ8by-A-6bZfH23vOtMeEU4cgPeF4EBwxo1mQgsNZM1XNrABQ1rkRsIz3DNByBJftHQC5M5nOrTKZyoJvFABlfWWyXyWZ_YhoS7GUr4FTmMsxIFMWN9EoQ5UrBJgVXGTrFXKIuNpAXXs49GTZelnJmH2ZDF7TfKihvbLqiGXgVYLjasR6uwUj9mFXH7qvJHtzsdDti98yZtkpVJJOV1hBhJDdy6wVlGTPK9_honHDz4qs_kIMa5ohaHHoqswDFkeRAlXYTjQUs9jbpM8KE2iHjSEz0jh4eq1QrH__rxya--oEB79O_QZufF-py0P9jr7j8lNIKu8zANdIfPDs5F9AoRwqJ8Whv8bwmtfow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+of+novel+regio-selective+fatty+acid+double+bond+hydratases+from+Lactobacillus+acidophilus+involved+in+the+selective+oxyfunctionalization+of+mono-+and+di-hydroxy+fatty+acids&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Kim%2C+Kyoung-Rok&rft.au=Oh%2C+Hye-Jin&rft.au=Park%2C+Chul-Soon&rft.au=Hong%2C+Seung-Hye&rft.date=2015-11-01&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=112&rft.issue=11&rft.spage=2206&rft.epage=2213&rft_id=info:doi/10.1002%2Fbit.25643&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |