Bounded Fractional Intersecting Families are Linear in Size

Using the sunflower method, we show that if $\theta \in (0,1) \cap \mathbb{Q}$ and $\mathcal{F}$ is a $O(n^{1/3})$-bounded $\theta$-intersecting family over $[n]$, then $\lvert \mathcal{F} \rvert = O(n)$, and that if $\mathcal{F}$ is $o(n^{1/3})$-bounded, then $\lvert \mathcal{F} \rvert \leq (\frac{...

Full description

Saved in:
Bibliographic Details
Published inThe Electronic journal of combinatorics Vol. 32; no. 3
Main Authors Balachandran, Niranjan, Das, Shagnik, Sankarnarayanan, Brahadeesh
Format Journal Article
LanguageEnglish
Published 22.08.2025
Online AccessGet full text

Cover

Loading…
Abstract Using the sunflower method, we show that if $\theta \in (0,1) \cap \mathbb{Q}$ and $\mathcal{F}$ is a $O(n^{1/3})$-bounded $\theta$-intersecting family over $[n]$, then $\lvert \mathcal{F} \rvert = O(n)$, and that if $\mathcal{F}$ is $o(n^{1/3})$-bounded, then $\lvert \mathcal{F} \rvert \leq (\frac{3}{2} + o(1))n$. This partially solves a conjecture of Balachandran, Mathew and Mishra that any $\theta$-intersecting family over $[n]$ has size at most linear in $n$, in the regime where we have no very large sets.
AbstractList Using the sunflower method, we show that if $\theta \in (0,1) \cap \mathbb{Q}$ and $\mathcal{F}$ is a $O(n^{1/3})$-bounded $\theta$-intersecting family over $[n]$, then $\lvert \mathcal{F} \rvert = O(n)$, and that if $\mathcal{F}$ is $o(n^{1/3})$-bounded, then $\lvert \mathcal{F} \rvert \leq (\frac{3}{2} + o(1))n$. This partially solves a conjecture of Balachandran, Mathew and Mishra that any $\theta$-intersecting family over $[n]$ has size at most linear in $n$, in the regime where we have no very large sets.
Author Balachandran, Niranjan
Das, Shagnik
Sankarnarayanan, Brahadeesh
Author_xml – sequence: 1
  givenname: Niranjan
  surname: Balachandran
  fullname: Balachandran, Niranjan
– sequence: 2
  givenname: Shagnik
  surname: Das
  fullname: Das, Shagnik
– sequence: 3
  givenname: Brahadeesh
  surname: Sankarnarayanan
  fullname: Sankarnarayanan, Brahadeesh
BookMark eNpNjztPwzAUhS1UJNoCv8ETW-DaTvwQE1QEKkVioHt0E98go9RBdhng1xOVDkznoaMjfSu2iFMkxq4F3Cojlb4T0gGcsaUAYwrrpF788xdslfMHwDxy1ZLdP05f0ZPndcL-EKaII9_GA6VMc4zvvMZ9GANljol4EyJh4iHyt_BDl-x8wDHT1UnXbFc_7TYvRfP6vN08NEWvFRSGfKc1KifEgEYKqKztbA-lJ-1L6zoDjrzTQHMtBoFyMBWiRW1KIapSrdnN322fppwTDe1nCntM362A9kjcHonVLwO7SEg
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.37236/12900
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1077-8926
ExternalDocumentID 10_37236_12900
GroupedDBID -~9
29G
2WC
5GY
5VS
AAFWJ
AAYXX
ACGFO
ACIPV
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
E3Z
EBS
EJD
FRP
GROUPED_DOAJ
H13
KWQ
M~E
OK1
OVT
P2P
REM
RNS
TR2
XSB
ID FETCH-LOGICAL-c630-7edb66a3911fa7210588b8c04de6d489b709ed960e8b81f1a2f75aa8a67411543
ISSN 1077-8926
IngestDate Wed Aug 27 16:31:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c630-7edb66a3911fa7210588b8c04de6d489b709ed960e8b81f1a2f75aa8a67411543
OpenAccessLink https://www.combinatorics.org/ojs/index.php/eljc/article/download/v32i3p34/pdf
ParticipantIDs crossref_primary_10_37236_12900
PublicationCentury 2000
PublicationDate 2025-08-22
PublicationDateYYYYMMDD 2025-08-22
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-22
  day: 22
PublicationDecade 2020
PublicationTitle The Electronic journal of combinatorics
PublicationYear 2025
SSID ssj0012995
Score 2.374038
Snippet Using the sunflower method, we show that if $\theta \in (0,1) \cap \mathbb{Q}$ and $\mathcal{F}$ is a $O(n^{1/3})$-bounded $\theta$-intersecting family over...
SourceID crossref
SourceType Index Database
Title Bounded Fractional Intersecting Families are Linear in Size
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLDAgnuJZPLChQJq3xUShVYXULi1St-oSu20ABZSWgQ78ds52mqRVJR5LFFlxlORzfPedfd8RcukwXqv5kW9E6GwYTuQxI3TY0GBgCwFInAFk7nC747WenMe-2y_qd6rskml4Hc1W5pX8B1VsQ1xlluwfkM1vig14jvjiERHG468wrsuaSOgxNlOdnqB0M6RcppzFkpGuaoFU-Epu70LWKUV7Yvyf49nCBiA5VBpFOZySmAQ-NDJnUEIiRTwdXkHmC_NUB087MZ48F6PsQeeIdccwSuI8EagLyQvgfVP4hKwmcl1maXMhJuNy7MFyZTDVKoUjkTuijWNWJma9oi2bY4sY5pyCL0_dtm-p4jIyLmYWxmm-IL9ks_KdhMhhVM-B6rdONiykC3K-a3818tUkNLmu3nuqn0zXmFL9blS_klNS8i56O2Q7owX0TmO8S9ZEske22rmm7mSf3GZo0wJtWkabztGmiDbVaNM4oRLtA9JrNnr3LSMrfWFEnm0avuCh54GNlmgIyNFNNwjCIDIdLjzuBCz0TSY4kk-BzbVhDayh7wIE4KGDiE6xfUgqyVsijgi1XZAUPUI3mTtM2CEAi5gjFTs97gb2MbmYv_rgXQucDBY_6smPV5ySzWJ0nJHKNP0Q5-irTcOqinFUFRzfeq5A4Q
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bounded+Fractional+Intersecting+Families+are+Linear+in+Size&rft.jtitle=The+Electronic+journal+of+combinatorics&rft.au=Balachandran%2C+Niranjan&rft.au=Das%2C+Shagnik&rft.au=Sankarnarayanan%2C+Brahadeesh&rft.date=2025-08-22&rft.issn=1077-8926&rft.eissn=1077-8926&rft.volume=32&rft.issue=3&rft_id=info:doi/10.37236%2F12900&rft.externalDBID=n%2Fa&rft.externalDocID=10_37236_12900
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-8926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-8926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-8926&client=summon