Bounded Fractional Intersecting Families are Linear in Size
Using the sunflower method, we show that if $\theta \in (0,1) \cap \mathbb{Q}$ and $\mathcal{F}$ is a $O(n^{1/3})$-bounded $\theta$-intersecting family over $[n]$, then $\lvert \mathcal{F} \rvert = O(n)$, and that if $\mathcal{F}$ is $o(n^{1/3})$-bounded, then $\lvert \mathcal{F} \rvert \leq (\frac{...
Saved in:
Published in | The Electronic journal of combinatorics Vol. 32; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
22.08.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | Using the sunflower method, we show that if $\theta \in (0,1) \cap \mathbb{Q}$ and $\mathcal{F}$ is a $O(n^{1/3})$-bounded $\theta$-intersecting family over $[n]$, then $\lvert \mathcal{F} \rvert = O(n)$, and that if $\mathcal{F}$ is $o(n^{1/3})$-bounded, then $\lvert \mathcal{F} \rvert \leq (\frac{3}{2} + o(1))n$. This partially solves a conjecture of Balachandran, Mathew and Mishra that any $\theta$-intersecting family over $[n]$ has size at most linear in $n$, in the regime where we have no very large sets. |
---|---|
AbstractList | Using the sunflower method, we show that if $\theta \in (0,1) \cap \mathbb{Q}$ and $\mathcal{F}$ is a $O(n^{1/3})$-bounded $\theta$-intersecting family over $[n]$, then $\lvert \mathcal{F} \rvert = O(n)$, and that if $\mathcal{F}$ is $o(n^{1/3})$-bounded, then $\lvert \mathcal{F} \rvert \leq (\frac{3}{2} + o(1))n$. This partially solves a conjecture of Balachandran, Mathew and Mishra that any $\theta$-intersecting family over $[n]$ has size at most linear in $n$, in the regime where we have no very large sets. |
Author | Balachandran, Niranjan Das, Shagnik Sankarnarayanan, Brahadeesh |
Author_xml | – sequence: 1 givenname: Niranjan surname: Balachandran fullname: Balachandran, Niranjan – sequence: 2 givenname: Shagnik surname: Das fullname: Das, Shagnik – sequence: 3 givenname: Brahadeesh surname: Sankarnarayanan fullname: Sankarnarayanan, Brahadeesh |
BookMark | eNpNjztPwzAUhS1UJNoCv8ETW-DaTvwQE1QEKkVioHt0E98go9RBdhng1xOVDkznoaMjfSu2iFMkxq4F3Cojlb4T0gGcsaUAYwrrpF788xdslfMHwDxy1ZLdP05f0ZPndcL-EKaII9_GA6VMc4zvvMZ9GANljol4EyJh4iHyt_BDl-x8wDHT1UnXbFc_7TYvRfP6vN08NEWvFRSGfKc1KifEgEYKqKztbA-lJ-1L6zoDjrzTQHMtBoFyMBWiRW1KIapSrdnN322fppwTDe1nCntM362A9kjcHonVLwO7SEg |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.37236/12900 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1077-8926 |
ExternalDocumentID | 10_37236_12900 |
GroupedDBID | -~9 29G 2WC 5GY 5VS AAFWJ AAYXX ACGFO ACIPV ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION E3Z EBS EJD FRP GROUPED_DOAJ H13 KWQ M~E OK1 OVT P2P REM RNS TR2 XSB |
ID | FETCH-LOGICAL-c630-7edb66a3911fa7210588b8c04de6d489b709ed960e8b81f1a2f75aa8a67411543 |
ISSN | 1077-8926 |
IngestDate | Wed Aug 27 16:31:18 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c630-7edb66a3911fa7210588b8c04de6d489b709ed960e8b81f1a2f75aa8a67411543 |
OpenAccessLink | https://www.combinatorics.org/ojs/index.php/eljc/article/download/v32i3p34/pdf |
ParticipantIDs | crossref_primary_10_37236_12900 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-22 |
PublicationDateYYYYMMDD | 2025-08-22 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | The Electronic journal of combinatorics |
PublicationYear | 2025 |
SSID | ssj0012995 |
Score | 2.374038 |
Snippet | Using the sunflower method, we show that if $\theta \in (0,1) \cap \mathbb{Q}$ and $\mathcal{F}$ is a $O(n^{1/3})$-bounded $\theta$-intersecting family over... |
SourceID | crossref |
SourceType | Index Database |
Title | Bounded Fractional Intersecting Families are Linear in Size |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLDAgnuJZPLChQJq3xUShVYXULi1St-oSu20ABZSWgQ78ds52mqRVJR5LFFlxlORzfPedfd8RcukwXqv5kW9E6GwYTuQxI3TY0GBgCwFInAFk7nC747WenMe-2y_qd6rskml4Hc1W5pX8B1VsQ1xlluwfkM1vig14jvjiERHG468wrsuaSOgxNlOdnqB0M6RcppzFkpGuaoFU-Epu70LWKUV7Yvyf49nCBiA5VBpFOZySmAQ-NDJnUEIiRTwdXkHmC_NUB087MZ48F6PsQeeIdccwSuI8EagLyQvgfVP4hKwmcl1maXMhJuNy7MFyZTDVKoUjkTuijWNWJma9oi2bY4sY5pyCL0_dtm-p4jIyLmYWxmm-IL9ks_KdhMhhVM-B6rdONiykC3K-a3818tUkNLmu3nuqn0zXmFL9blS_klNS8i56O2Q7owX0TmO8S9ZEske22rmm7mSf3GZo0wJtWkabztGmiDbVaNM4oRLtA9JrNnr3LSMrfWFEnm0avuCh54GNlmgIyNFNNwjCIDIdLjzuBCz0TSY4kk-BzbVhDayh7wIE4KGDiE6xfUgqyVsijgi1XZAUPUI3mTtM2CEAi5gjFTs97gb2MbmYv_rgXQucDBY_6smPV5ySzWJ0nJHKNP0Q5-irTcOqinFUFRzfeq5A4Q |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bounded+Fractional+Intersecting+Families+are+Linear+in+Size&rft.jtitle=The+Electronic+journal+of+combinatorics&rft.au=Balachandran%2C+Niranjan&rft.au=Das%2C+Shagnik&rft.au=Sankarnarayanan%2C+Brahadeesh&rft.date=2025-08-22&rft.issn=1077-8926&rft.eissn=1077-8926&rft.volume=32&rft.issue=3&rft_id=info:doi/10.37236%2F12900&rft.externalDBID=n%2Fa&rft.externalDocID=10_37236_12900 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-8926&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-8926&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-8926&client=summon |