SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis

Solute carrier family 7 member 11(SLC7A11) is a component of cysteine/glutamate transporter, which plays a key role in tumor growth; however, its underlying effect on radiosensitivity in esophageal squamous cell carcinoma (ESCC) remains unclear. This study aimed to clarify SLC7A11's expression...

Full description

Saved in:
Bibliographic Details
Published inJournal of translational medicine Vol. 19; no. 1; pp. 367 - 16
Main Authors Feng, Lei, Zhao, Kaikai, Sun, Liangchao, Yin, Xiaoyang, Zhang, Junpeng, Liu, Conghe, Li, Baosheng
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 26.08.2021
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solute carrier family 7 member 11(SLC7A11) is a component of cysteine/glutamate transporter, which plays a key role in tumor growth; however, its underlying effect on radiosensitivity in esophageal squamous cell carcinoma (ESCC) remains unclear. This study aimed to clarify SLC7A11's expression and correlation with nuclear expression of nuclear factor erythroid-2 (NRF2)-associated radioresistance in ESCC. We included 127 ESCC patients who received radical chemoradiotherapy. Immunohistochemical staining was used to detect SLC7A11 and NRF2 nuclear expression, and the relationship between clinicopathological characteristics and survival rates or therapy response were evaluated. Western blot, dual-reporter assays and Chromatin immunoprecipitation (ChIP)-sequencing were used to analyze their relationship in vitro. Their roles in radioresistance were then investigated through multiple validation steps. NRF2 nuclear expression and SLC7A11 expression were overexpressed in ESCC tissues and were positively correlated with one another. NRF2 nuclear expression was significantly associated with tumor length, lymph node metastasis, and TNM stage, while SLC7A11 expression was associated with lymph node metastasis. Patients with high NRF2 nuclear expression and SLC7A11 expression had significantly shorter overall and progression-free survival, and poor treatment response. The multivariate model showed that NRF2 nuclear expression and SLC7A11 expression, sex and tumor location are independent prognostic factors. In vitro analysis confirmed that hyperactivation of NRF2 induced SLC7A11 expression by directly binding to its promoter region, promoting radioresistance, reducing radiotherapy-induced lipid peroxidation levels, PTGS2 expression, and radiotherapy-related ferroptosis morphologic features. Our study reveals a connection between high SLC7A11 expression and NRF2 nuclear expression in patients with ESCC that was related to worse survival and poorer therapy outcomes. SLC7A11-mediated ferroptosis inhibition induced NRF2-associated radioresistance, highlighting potential of NRF2/SLC7A11/ferroptosis axis as future therapeutic targets against therapy resistance biomarker.
AbstractList Abstract Background Solute carrier family 7 member 11(SLC7A11) is a component of cysteine/glutamate transporter, which plays a key role in tumor growth; however, its underlying effect on radiosensitivity in esophageal squamous cell carcinoma (ESCC) remains unclear. This study aimed to clarify SLC7A11’s expression and correlation with nuclear expression of nuclear factor erythroid-2 (NRF2)-associated radioresistance in ESCC. Methods We included 127 ESCC patients who received radical chemoradiotherapy. Immunohistochemical staining was used to detect SLC7A11 and NRF2 nuclear expression, and the relationship between clinicopathological characteristics and survival rates or therapy response were evaluated. Western blot, dual-reporter assays and Chromatin immunoprecipitation (ChIP)-sequencing were used to analyze their relationship in vitro. Their roles in radioresistance were then investigated through multiple validation steps. Results NRF2 nuclear expression and SLC7A11 expression were overexpressed in ESCC tissues and were positively correlated with one another. NRF2 nuclear expression was significantly associated with tumor length, lymph node metastasis, and TNM stage, while SLC7A11 expression was associated with lymph node metastasis. Patients with high NRF2 nuclear expression and SLC7A11 expression had significantly shorter overall and progression-free survival, and poor treatment response. The multivariate model showed that NRF2 nuclear expression and SLC7A11 expression, sex and tumor location are independent prognostic factors. In vitro analysis confirmed that hyperactivation of NRF2 induced SLC7A11 expression by directly binding to its promoter region, promoting radioresistance, reducing radiotherapy-induced lipid peroxidation levels, PTGS2 expression, and radiotherapy-related ferroptosis morphologic features. Conclusion Our study reveals a connection between high SLC7A11 expression and NRF2 nuclear expression in patients with ESCC that was related to worse survival and poorer therapy outcomes. SLC7A11-mediated ferroptosis inhibition induced NRF2-associated radioresistance, highlighting potential of NRF2/SLC7A11/ferroptosis axis as future therapeutic targets against therapy resistance biomarker.
Background Solute carrier family 7 member 11(SLC7A11) is a component of cysteine/glutamate transporter, which plays a key role in tumor growth; however, its underlying effect on radiosensitivity in esophageal squamous cell carcinoma (ESCC) remains unclear. This study aimed to clarify SLC7A11’s expression and correlation with nuclear expression of nuclear factor erythroid-2 (NRF2)-associated radioresistance in ESCC. Methods We included 127 ESCC patients who received radical chemoradiotherapy. Immunohistochemical staining was used to detect SLC7A11 and NRF2 nuclear expression, and the relationship between clinicopathological characteristics and survival rates or therapy response were evaluated. Western blot, dual-reporter assays and Chromatin immunoprecipitation (ChIP)-sequencing were used to analyze their relationship in vitro. Their roles in radioresistance were then investigated through multiple validation steps. Results NRF2 nuclear expression and SLC7A11 expression were overexpressed in ESCC tissues and were positively correlated with one another. NRF2 nuclear expression was significantly associated with tumor length, lymph node metastasis, and TNM stage, while SLC7A11 expression was associated with lymph node metastasis. Patients with high NRF2 nuclear expression and SLC7A11 expression had significantly shorter overall and progression-free survival, and poor treatment response. The multivariate model showed that NRF2 nuclear expression and SLC7A11 expression, sex and tumor location are independent prognostic factors. In vitro analysis confirmed that hyperactivation of NRF2 induced SLC7A11 expression by directly binding to its promoter region, promoting radioresistance, reducing radiotherapy-induced lipid peroxidation levels, PTGS2 expression, and radiotherapy-related ferroptosis morphologic features. Conclusion Our study reveals a connection between high SLC7A11 expression and NRF2 nuclear expression in patients with ESCC that was related to worse survival and poorer therapy outcomes. SLC7A11-mediated ferroptosis inhibition induced NRF2-associated radioresistance, highlighting potential of NRF2/SLC7A11/ferroptosis axis as future therapeutic targets against therapy resistance biomarker.
Solute carrier family 7 member 11(SLC7A11) is a component of cysteine/glutamate transporter, which plays a key role in tumor growth; however, its underlying effect on radiosensitivity in esophageal squamous cell carcinoma (ESCC) remains unclear. This study aimed to clarify SLC7A11's expression and correlation with nuclear expression of nuclear factor erythroid-2 (NRF2)-associated radioresistance in ESCC. We included 127 ESCC patients who received radical chemoradiotherapy. Immunohistochemical staining was used to detect SLC7A11 and NRF2 nuclear expression, and the relationship between clinicopathological characteristics and survival rates or therapy response were evaluated. Western blot, dual-reporter assays and Chromatin immunoprecipitation (ChIP)-sequencing were used to analyze their relationship in vitro. Their roles in radioresistance were then investigated through multiple validation steps. NRF2 nuclear expression and SLC7A11 expression were overexpressed in ESCC tissues and were positively correlated with one another. NRF2 nuclear expression was significantly associated with tumor length, lymph node metastasis, and TNM stage, while SLC7A11 expression was associated with lymph node metastasis. Patients with high NRF2 nuclear expression and SLC7A11 expression had significantly shorter overall and progression-free survival, and poor treatment response. The multivariate model showed that NRF2 nuclear expression and SLC7A11 expression, sex and tumor location are independent prognostic factors. In vitro analysis confirmed that hyperactivation of NRF2 induced SLC7A11 expression by directly binding to its promoter region, promoting radioresistance, reducing radiotherapy-induced lipid peroxidation levels, PTGS2 expression, and radiotherapy-related ferroptosis morphologic features. Our study reveals a connection between high SLC7A11 expression and NRF2 nuclear expression in patients with ESCC that was related to worse survival and poorer therapy outcomes. SLC7A11-mediated ferroptosis inhibition induced NRF2-associated radioresistance, highlighting potential of NRF2/SLC7A11/ferroptosis axis as future therapeutic targets against therapy resistance biomarker.
Solute carrier family 7 member 11(SLC7A11) is a component of cysteine/glutamate transporter, which plays a key role in tumor growth; however, its underlying effect on radiosensitivity in esophageal squamous cell carcinoma (ESCC) remains unclear. This study aimed to clarify SLC7A11's expression and correlation with nuclear expression of nuclear factor erythroid-2 (NRF2)-associated radioresistance in ESCC. We included 127 ESCC patients who received radical chemoradiotherapy. Immunohistochemical staining was used to detect SLC7A11 and NRF2 nuclear expression, and the relationship between clinicopathological characteristics and survival rates or therapy response were evaluated. Western blot, dual-reporter assays and Chromatin immunoprecipitation (ChIP)-sequencing were used to analyze their relationship in vitro. Their roles in radioresistance were then investigated through multiple validation steps. NRF2 nuclear expression and SLC7A11 expression were overexpressed in ESCC tissues and were positively correlated with one another. NRF2 nuclear expression was significantly associated with tumor length, lymph node metastasis, and TNM stage, while SLC7A11 expression was associated with lymph node metastasis. Patients with high NRF2 nuclear expression and SLC7A11 expression had significantly shorter overall and progression-free survival, and poor treatment response. The multivariate model showed that NRF2 nuclear expression and SLC7A11 expression, sex and tumor location are independent prognostic factors. In vitro analysis confirmed that hyperactivation of NRF2 induced SLC7A11 expression by directly binding to its promoter region, promoting radioresistance, reducing radiotherapy-induced lipid peroxidation levels, PTGS2 expression, and radiotherapy-related ferroptosis morphologic features. Our study reveals a connection between high SLC7A11 expression and NRF2 nuclear expression in patients with ESCC that was related to worse survival and poorer therapy outcomes. SLC7A11-mediated ferroptosis inhibition induced NRF2-associated radioresistance, highlighting potential of NRF2/SLC7A11/ferroptosis axis as future therapeutic targets against therapy resistance biomarker.
Background Solute carrier family 7 member 11(SLC7A11) is a component of cysteine/glutamate transporter, which plays a key role in tumor growth; however, its underlying effect on radiosensitivity in esophageal squamous cell carcinoma (ESCC) remains unclear. This study aimed to clarify SLC7A11's expression and correlation with nuclear expression of nuclear factor erythroid-2 (NRF2)-associated radioresistance in ESCC. Methods We included 127 ESCC patients who received radical chemoradiotherapy. Immunohistochemical staining was used to detect SLC7A11 and NRF2 nuclear expression, and the relationship between clinicopathological characteristics and survival rates or therapy response were evaluated. Western blot, dual-reporter assays and Chromatin immunoprecipitation (ChIP)-sequencing were used to analyze their relationship in vitro. Their roles in radioresistance were then investigated through multiple validation steps. Results NRF2 nuclear expression and SLC7A11 expression were overexpressed in ESCC tissues and were positively correlated with one another. NRF2 nuclear expression was significantly associated with tumor length, lymph node metastasis, and TNM stage, while SLC7A11 expression was associated with lymph node metastasis. Patients with high NRF2 nuclear expression and SLC7A11 expression had significantly shorter overall and progression-free survival, and poor treatment response. The multivariate model showed that NRF2 nuclear expression and SLC7A11 expression, sex and tumor location are independent prognostic factors. In vitro analysis confirmed that hyperactivation of NRF2 induced SLC7A11 expression by directly binding to its promoter region, promoting radioresistance, reducing radiotherapy-induced lipid peroxidation levels, PTGS2 expression, and radiotherapy-related ferroptosis morphologic features. Conclusion Our study reveals a connection between high SLC7A11 expression and NRF2 nuclear expression in patients with ESCC that was related to worse survival and poorer therapy outcomes. SLC7A11-mediated ferroptosis inhibition induced NRF2-associated radioresistance, highlighting potential of NRF2/SLC7A11/ferroptosis axis as future therapeutic targets against therapy resistance biomarker. Keywords: Esophageal squamous cell carcinoma, NRF2, SLC7A11, Ferroptosis, Prognosis
Solute carrier family 7 member 11(SLC7A11) is a component of cysteine/glutamate transporter, which plays a key role in tumor growth; however, its underlying effect on radiosensitivity in esophageal squamous cell carcinoma (ESCC) remains unclear. This study aimed to clarify SLC7A11's expression and correlation with nuclear expression of nuclear factor erythroid-2 (NRF2)-associated radioresistance in ESCC.BACKGROUNDSolute carrier family 7 member 11(SLC7A11) is a component of cysteine/glutamate transporter, which plays a key role in tumor growth; however, its underlying effect on radiosensitivity in esophageal squamous cell carcinoma (ESCC) remains unclear. This study aimed to clarify SLC7A11's expression and correlation with nuclear expression of nuclear factor erythroid-2 (NRF2)-associated radioresistance in ESCC.We included 127 ESCC patients who received radical chemoradiotherapy. Immunohistochemical staining was used to detect SLC7A11 and NRF2 nuclear expression, and the relationship between clinicopathological characteristics and survival rates or therapy response were evaluated. Western blot, dual-reporter assays and Chromatin immunoprecipitation (ChIP)-sequencing were used to analyze their relationship in vitro. Their roles in radioresistance were then investigated through multiple validation steps.METHODSWe included 127 ESCC patients who received radical chemoradiotherapy. Immunohistochemical staining was used to detect SLC7A11 and NRF2 nuclear expression, and the relationship between clinicopathological characteristics and survival rates or therapy response were evaluated. Western blot, dual-reporter assays and Chromatin immunoprecipitation (ChIP)-sequencing were used to analyze their relationship in vitro. Their roles in radioresistance were then investigated through multiple validation steps.NRF2 nuclear expression and SLC7A11 expression were overexpressed in ESCC tissues and were positively correlated with one another. NRF2 nuclear expression was significantly associated with tumor length, lymph node metastasis, and TNM stage, while SLC7A11 expression was associated with lymph node metastasis. Patients with high NRF2 nuclear expression and SLC7A11 expression had significantly shorter overall and progression-free survival, and poor treatment response. The multivariate model showed that NRF2 nuclear expression and SLC7A11 expression, sex and tumor location are independent prognostic factors. In vitro analysis confirmed that hyperactivation of NRF2 induced SLC7A11 expression by directly binding to its promoter region, promoting radioresistance, reducing radiotherapy-induced lipid peroxidation levels, PTGS2 expression, and radiotherapy-related ferroptosis morphologic features.RESULTSNRF2 nuclear expression and SLC7A11 expression were overexpressed in ESCC tissues and were positively correlated with one another. NRF2 nuclear expression was significantly associated with tumor length, lymph node metastasis, and TNM stage, while SLC7A11 expression was associated with lymph node metastasis. Patients with high NRF2 nuclear expression and SLC7A11 expression had significantly shorter overall and progression-free survival, and poor treatment response. The multivariate model showed that NRF2 nuclear expression and SLC7A11 expression, sex and tumor location are independent prognostic factors. In vitro analysis confirmed that hyperactivation of NRF2 induced SLC7A11 expression by directly binding to its promoter region, promoting radioresistance, reducing radiotherapy-induced lipid peroxidation levels, PTGS2 expression, and radiotherapy-related ferroptosis morphologic features.Our study reveals a connection between high SLC7A11 expression and NRF2 nuclear expression in patients with ESCC that was related to worse survival and poorer therapy outcomes. SLC7A11-mediated ferroptosis inhibition induced NRF2-associated radioresistance, highlighting potential of NRF2/SLC7A11/ferroptosis axis as future therapeutic targets against therapy resistance biomarker.CONCLUSIONOur study reveals a connection between high SLC7A11 expression and NRF2 nuclear expression in patients with ESCC that was related to worse survival and poorer therapy outcomes. SLC7A11-mediated ferroptosis inhibition induced NRF2-associated radioresistance, highlighting potential of NRF2/SLC7A11/ferroptosis axis as future therapeutic targets against therapy resistance biomarker.
ArticleNumber 367
Audience Academic
Author Zhang, Junpeng
Sun, Liangchao
Liu, Conghe
Zhao, Kaikai
Li, Baosheng
Feng, Lei
Yin, Xiaoyang
Author_xml – sequence: 1
  givenname: Lei
  surname: Feng
  fullname: Feng, Lei
– sequence: 2
  givenname: Kaikai
  surname: Zhao
  fullname: Zhao, Kaikai
– sequence: 3
  givenname: Liangchao
  surname: Sun
  fullname: Sun, Liangchao
– sequence: 4
  givenname: Xiaoyang
  surname: Yin
  fullname: Yin, Xiaoyang
– sequence: 5
  givenname: Junpeng
  surname: Zhang
  fullname: Zhang, Junpeng
– sequence: 6
  givenname: Conghe
  surname: Liu
  fullname: Liu, Conghe
– sequence: 7
  givenname: Baosheng
  orcidid: 0000-0002-5390-7269
  surname: Li
  fullname: Li, Baosheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34446045$$D View this record in MEDLINE/PubMed
BookMark eNp9kktr3DAURk1JaR7tH-iiGLrpxqkk67kpDEPSBoYW-lgLvezRYFszkh2Yf195JmkzoRQvbF-fe8y9-i6LsyEMrijeQnANIacfE0SCsgogWIEaYFSxF8UFxExUhDN69uT5vLhMaQMAwgSLV8V5jTGmAJOLYvdjtWQLCMvo2qlTo7Ol3pdfv9-isg_2UEmlS2G7Vq1TXZl2k-rDlErjuq40Kho_hF6VUVkfkhuSH_29H_ezxQ9rr_P70JaNizFsx5B8el28bFSX3JuH-1Xx6_bm5_JLtfr2-W65WFWGIjFWjlqtidNMkQZZBhl3oK6RJRwTqlkjsAXC2ZpbRDDVRFNuFdeA0Aybuq6viruj1wa1kdvoexX3MigvD4UQW6ni6E3nJNTUCkGcYkBgAQxHxHIGtOFQK8RNdn06uraT7p01bhij6k6kp18Gv5ZtuJe8FjWHMAs-PAhi2E0ujbL3aV6hGlzepkSEzudBBcjo-2foJkxxyKvKFMsHB4SAf6lW5QH80IT8XzNL5YIyghDiBGXq-h9UvqzrvclpanyunzS8ezronwkfA5MBfgRMDClF10jjRzX6MM_tOwmBnLMpj9mUOZvykE3Jcit61vpo_0_Tb_gl5b0
CitedBy_id crossref_primary_10_3389_fphar_2023_1228985
crossref_primary_10_1016_j_phymed_2024_155775
crossref_primary_10_1038_s41389_024_00536_z
crossref_primary_10_1016_j_ijbiomac_2023_127976
crossref_primary_10_1016_j_jep_2023_117655
crossref_primary_10_1016_j_ejphar_2022_175317
crossref_primary_10_1007_s12672_025_01868_x
crossref_primary_10_3390_biomedicines12092091
crossref_primary_10_1111_jgh_16402
crossref_primary_10_1177_09603271251323753
crossref_primary_10_1016_j_neurot_2024_e00444
crossref_primary_10_1186_s12935_022_02685_w
crossref_primary_10_3389_fgene_2022_835265
crossref_primary_10_1038_s41388_025_03277_4
crossref_primary_10_7717_peerj_14931
crossref_primary_10_1016_j_prp_2023_154810
crossref_primary_10_1002_advs_202300824
crossref_primary_10_1016_j_biopha_2024_116574
crossref_primary_10_1002_cai2_120
crossref_primary_10_3390_biomedicines12122728
crossref_primary_10_1016_j_ncrna_2024_05_008
crossref_primary_10_2174_1871520623666230825110346
crossref_primary_10_3390_biology14010012
crossref_primary_10_1186_s12967_023_04664_9
crossref_primary_10_3389_fimmu_2024_1487966
crossref_primary_10_3390_cancers14133059
crossref_primary_10_18632_aging_206009
crossref_primary_10_1186_s13046_022_02567_z
crossref_primary_10_1038_s41419_023_06321_x
crossref_primary_10_12677_acm_2024_14102627
crossref_primary_10_1016_j_freeradbiomed_2023_06_025
crossref_primary_10_1097_MS9_0000000000002559
crossref_primary_10_7717_peerj_15216
crossref_primary_10_3389_fmolb_2022_1102158
crossref_primary_10_1038_s41419_024_06732_4
crossref_primary_10_1016_j_bbcan_2023_188946
crossref_primary_10_3390_cancers15133484
crossref_primary_10_1016_j_canlet_2023_216147
crossref_primary_10_3390_cells12020336
crossref_primary_10_3390_ijms25084264
crossref_primary_10_1016_j_fct_2022_112909
crossref_primary_10_1080_15548627_2024_2410619
crossref_primary_10_1111_nep_14334
crossref_primary_10_1038_s41573_025_01145_0
crossref_primary_10_1016_j_ejphar_2023_175655
crossref_primary_10_1186_s12014_023_09427_8
crossref_primary_10_2174_0113894501320839240918110656
crossref_primary_10_11569_wcjd_v30_i8_341
crossref_primary_10_3390_ma15103456
crossref_primary_10_1186_s12989_024_00579_5
crossref_primary_10_1016_j_gendis_2024_101254
crossref_primary_10_1016_j_ijbiomac_2025_142388
crossref_primary_10_1016_j_taap_2024_116936
crossref_primary_10_1155_2022_7291406
crossref_primary_10_3390_antiox14020228
crossref_primary_10_1186_s12943_023_01839_2
crossref_primary_10_3390_antiox13070778
crossref_primary_10_1016_j_freeradbiomed_2023_03_005
crossref_primary_10_3389_fonc_2023_1184079
crossref_primary_10_20517_cdr_2024_151
crossref_primary_10_3892_ijmm_2023_5248
crossref_primary_10_1016_j_biopha_2023_115567
crossref_primary_10_3390_ijms23158300
crossref_primary_10_1016_j_freeradbiomed_2024_12_040
crossref_primary_10_3892_br_2024_1839
crossref_primary_10_3892_ol_2024_14320
crossref_primary_10_1155_2022_7848811
crossref_primary_10_1016_j_jddst_2024_105998
crossref_primary_10_1155_2022_4505513
crossref_primary_10_1016_j_ijbiomac_2024_130703
crossref_primary_10_20517_cdr_2024_123
crossref_primary_10_1186_s12931_025_03151_7
crossref_primary_10_1016_j_biopha_2024_116363
crossref_primary_10_1016_j_jep_2025_119630
crossref_primary_10_1038_s41401_024_01233_8
crossref_primary_10_1155_2022_4607966
crossref_primary_10_14348_molcells_2023_2191
crossref_primary_10_3390_ijms222212603
crossref_primary_10_1016_j_cytogfr_2023_08_010
crossref_primary_10_1007_s12672_023_00761_9
crossref_primary_10_1038_s41598_024_73943_2
crossref_primary_10_1021_acs_jmedchem_2c01909
crossref_primary_10_3389_fonc_2024_1360638
crossref_primary_10_1002_mc_23816
crossref_primary_10_3389_fmolb_2022_1027912
crossref_primary_10_1007_s11010_024_05009_w
crossref_primary_10_1080_2162402X_2022_2101769
crossref_primary_10_1016_j_bbadis_2025_167764
crossref_primary_10_3389_fgene_2024_1418578
crossref_primary_10_1007_s12032_024_02483_6
crossref_primary_10_1016_j_radonc_2023_109689
crossref_primary_10_1007_s10735_025_10381_y
crossref_primary_10_1016_j_bbcan_2024_189190
crossref_primary_10_4103_1673_5374_355766
crossref_primary_10_3892_ol_2022_13479
crossref_primary_10_1016_j_biopha_2023_115419
crossref_primary_10_1016_j_semcancer_2022_10_001
crossref_primary_10_1038_s41419_025_07354_0
crossref_primary_10_1038_s41420_024_01800_2
crossref_primary_10_3390_antiox11122444
crossref_primary_10_1016_j_bcp_2022_115241
crossref_primary_10_1038_s41419_024_06558_0
crossref_primary_10_4236_jbm_2023_1110022
crossref_primary_10_1080_19768354_2024_2346981
crossref_primary_10_1002_cbin_12245
crossref_primary_10_1038_s41420_023_01407_z
crossref_primary_10_1038_s42255_023_00963_z
crossref_primary_10_1002_adbi_202300416
crossref_primary_10_1186_s40364_025_00748_4
crossref_primary_10_1155_2022_6857685
crossref_primary_10_1186_s12885_022_10465_y
crossref_primary_10_3389_fmolb_2022_974156
crossref_primary_10_3390_cancers14194702
crossref_primary_10_1039_D2EN00757F
crossref_primary_10_1002_INMD_20240105
crossref_primary_10_7717_peerj_17551
crossref_primary_10_3892_or_2024_8738
crossref_primary_10_1016_j_biopha_2024_116866
crossref_primary_10_3389_fonc_2022_858462
crossref_primary_10_1186_s13014_022_02171_7
crossref_primary_10_1016_j_molmet_2024_101952
crossref_primary_10_1016_j_radonc_2024_110686
crossref_primary_10_1186_s12958_024_01208_8
crossref_primary_10_14336_AD_2024_0083
crossref_primary_10_3389_fcell_2022_951116
crossref_primary_10_3892_ijo_2023_5524
crossref_primary_10_1016_j_mcp_2025_102013
crossref_primary_10_1038_s41419_023_05930_w
crossref_primary_10_3390_cancers16213660
crossref_primary_10_1007_s12640_023_00645_4
crossref_primary_10_3389_fphar_2022_851540
crossref_primary_10_1016_j_isci_2024_111553
crossref_primary_10_1016_j_heliyon_2024_e40590
crossref_primary_10_1016_j_prp_2023_154316
crossref_primary_10_1016_j_toxicon_2025_108233
crossref_primary_10_1186_s12967_024_05057_2
crossref_primary_10_1126_sciadv_adp6164
crossref_primary_10_4251_wjgo_v15_i7_1105
crossref_primary_10_3389_fmolb_2022_1051866
crossref_primary_10_1155_2022_7465880
crossref_primary_10_1186_s12943_024_02132_6
crossref_primary_10_1038_s41419_023_05778_0
crossref_primary_10_1002_ijc_34486
crossref_primary_10_1155_2022_7647976
crossref_primary_10_1016_j_intimp_2024_111959
crossref_primary_10_1016_j_jgr_2023_06_006
crossref_primary_10_1038_s41419_022_04628_9
crossref_primary_10_2139_ssrn_4076834
crossref_primary_10_1152_ajpcell_00533_2024
Cites_doi 10.1126/science.aaw9872
10.1007/s13238-020-00789-5
10.1016/j.placenta.2018.11.010
10.3892/or.2017.5976
10.1158/2159-8290.CD-16-0127
10.1038/s41419-019-2064-5
10.2217/fon-2017-0540
10.1227/NEU.0b013e318276b2de
10.1016/j.ccell.2018.03.022
10.1038/s41422-019-0263-3
10.3389/fcell.2021.639851
10.1593/neo.11750
10.1002/mc.22745
10.1016/j.jphotobiol.2019.111672
10.3389/fbioe.2020.598997
10.1016/j.cell.2017.09.021
10.1038/s41422-020-0333-6
10.1016/j.biopha.2017.04.095
10.1073/pnas.1619588114
10.1158/0008-5472.CAN-12-4499
10.1016/j.redox.2016.12.010
10.1186/s13578-020-00456-6
10.1158/2159-8290.CD-19-0338
10.4174/astr.2020.98.4.159
10.1016/j.critrevonc.2013.09.001
10.1016/j.freeradbiomed.2018.10.426
10.1186/s13046-021-02012-7
10.1093/nar/gkaa516
10.1155/2020/5146982
10.1016/j.molcel.2017.09.009
10.1371/journal.pone.0195151
10.1073/pnas.0806268105
10.1016/j.redox.2020.101791
10.3389/fphar.2018.01371
10.1007/s00535-013-0847-5
10.1016/j.cell.2012.03.042
10.18632/oncotarget.25794
10.1158/1541-7786.MCR-18-0055
10.1007/s12035-018-0961-8
10.1016/j.redox.2019.101107
10.3389/fncel.2020.00017
10.1016/j.ccell.2018.03.025
10.1111/cpr.13045
10.1002/jcp.29221
10.1038/s41556-018-0178-0
10.1038/oncsis.2017.65
10.1016/S0140-6736(17)31462-9
10.1016/j.biopha.2020.110710
10.1038/sj.bjc.6600786
10.1089/ars.2017.7176
10.3892/ijo.2015.3301
10.1016/j.biopha.2020.110676
10.1002/hep.28251
10.1002/jcb.21244
10.1016/j.molcel.2020.10.010
10.1038/cdd.2015.158
10.1126/scisignal.aao6604
10.1007/s13238-021-00841-y
10.1245/s10434-014-3600-2
10.1126/sciadv.aaw2238
10.1016/j.freeradbiomed.2018.01.023
ContentType Journal Article
Copyright 2021. The Author(s).
COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2021
Copyright_xml – notice: 2021. The Author(s).
– notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12967-021-03042-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1479-5876
EndPage 16
ExternalDocumentID oai_doaj_org_article_1b6d995ea709490c825d870bc81ba28c
PMC8393811
A675222852
34446045
10_1186_s12967_021_03042_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
Beijing China
United States--US
Massachusetts
Japan
Germany
GeographicLocations_xml – name: China
– name: Germany
– name: Beijing China
– name: United States--US
– name: Massachusetts
– name: Japan
GrantInformation_xml – fundername: Academic promotion program of Shandong First Medical University
  grantid: 2019LJ004
– fundername: National Key Research and Development Program of China
  grantid: 2016YFC0105106
– fundername: Tumor prevention and control Joint Fund of Shandong province natural science fund
  grantid: ZR2019LZL008
– fundername: Taishan Scholar Construction Project
  grantid: ts20120505
– fundername: National Natural Science Foundation of China
  grantid: No. 81874224
– fundername: Yantai Science and Technology Innovation Development Program
  grantid: 2020YT06121070
– fundername: ;
  grantid: 2016YFC0105106
– fundername: ;
  grantid: ZR2019LZL008
– fundername: ;
  grantid: 2020YT06121070
– fundername: ;
  grantid: ts20120505
– fundername: ;
  grantid: No. 81874224
– fundername: ;
  grantid: 2019LJ004
GroupedDBID ---
0R~
29L
2WC
53G
5VS
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7T5
7XB
8FK
AZQEC
DWQXO
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c629t-e6dbb5eb7a5f2d7178e0332d58456b7f94d09ed38d2546b5b68da8b056d71c333
IEDL.DBID 7X7
ISSN 1479-5876
IngestDate Wed Aug 27 01:30:08 EDT 2025
Thu Aug 21 14:34:54 EDT 2025
Mon Jul 21 10:08:09 EDT 2025
Fri Jul 25 21:39:13 EDT 2025
Tue Jun 17 21:03:13 EDT 2025
Tue Jun 10 20:36:13 EDT 2025
Thu Apr 03 07:07:26 EDT 2025
Thu Apr 24 22:51:55 EDT 2025
Tue Jul 01 02:59:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Esophageal squamous cell carcinoma
Ferroptosis
Prognosis
SLC7A11
NRF2
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c629t-e6dbb5eb7a5f2d7178e0332d58456b7f94d09ed38d2546b5b68da8b056d71c333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5390-7269
OpenAccessLink https://www.proquest.com/docview/2574440991?pq-origsite=%requestingapplication%
PMID 34446045
PQID 2574440991
PQPubID 43076
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_1b6d995ea709490c825d870bc81ba28c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8393811
proquest_miscellaneous_2566045690
proquest_journals_2574440991
gale_infotracmisc_A675222852
gale_infotracacademiconefile_A675222852
pubmed_primary_34446045
crossref_citationtrail_10_1186_s12967_021_03042_7
crossref_primary_10_1186_s12967_021_03042_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-26
PublicationDateYYYYMMDD 2021-08-26
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-26
  day: 26
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of translational medicine
PublicationTitleAlternate J Transl Med
PublicationYear 2021
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References MA Badgley (3042_CR4) 2020; 368
MJ Kerins (3042_CR49) 2018; 29
M Yang (3042_CR33) 2019; 5
R Carpi-Santos (3042_CR61) 2018; 55
D Xue (3042_CR54) 2020; 131
Y Xie (3042_CR30) 2016; 23
B Li (3042_CR29) 2020; 130
S Okuno (3042_CR8) 2003; 88
P Koppula (3042_CR12) 2020
G Lei (3042_CR10) 2020; 30
J Yang (3042_CR57) 2021; 40
A Shiozaki (3042_CR7) 2014; 49
Z Fan (3042_CR19) 2017; 6
J Lagergren (3042_CR1) 2017; 390
M Rojo de la Vega (3042_CR13) 2018; 34
T Shibata (3042_CR17) 2008; 105
D Shin (3042_CR51) 2018; 129
Y Kawasaki (3042_CR14) 2014; 21
S Tao (3042_CR46) 2018; 57
X Lang (3042_CR37) 2019; 9
Y Jeong (3042_CR44) 2017; 7
D Xia (3042_CR16) 2020; 10
X Sui (3042_CR50) 2018; 9
D Silva-Adaya (3042_CR62) 2020; 14
X Sun (3042_CR39) 2016; 63
K Ono (3042_CR63) 2019; 75
L Zhang (3042_CR64) 2018; 14
A Ferino (3042_CR28) 2020; 202
G Lei (3042_CR56) 2021
P Koppula (3042_CR3) 2020
J Tian (3042_CR22) 2020; 8
M Nagane (3042_CR60) 2018; 13
LJ Su (3042_CR55) 2019; 2019
L Cobler (3042_CR59) 2018; 9
S Dixon (3042_CR9) 2012; 149
JL Roh (3042_CR52) 2017; 11
C Gai (3042_CR53) 2020; 235
Y Cui (3042_CR2) 2020; 30
T Shibata (3042_CR36) 2011; 13
X Li (3042_CR26) 2021; 54
S Zhou (3042_CR34) 2013; 88
P La Rosa (3042_CR41) 2021; 38
YJ Lee (3042_CR20) 2020; 98
Q Zhao (3042_CR35) 2016; 48
D Chen (3042_CR42) 2017; 68
M Dodson (3042_CR40) 2019; 23
Z Ma (3042_CR21) 2017; 38
BR Stockwell (3042_CR32) 2017; 171
H Yang (3042_CR25) 2007; 101
O Fornes (3042_CR27) 2020; 48
W Zhong (3042_CR65) 2018; 117
E Park (3042_CR31) 2019; 10
Z Qiang (3042_CR47) 2020; 2020
Y Zhang (3042_CR24) 2018; 20
S Takeuchi (3042_CR5) 2013; 72
N Takahashi (3042_CR18) 2020; 80
F Dai (3042_CR23) 2017; 114
YS Lee (3042_CR48) 2018; 16
EC Lien (3042_CR6) 2017; 10
H Satoh (3042_CR45) 2013; 73
D Konieczkowski (3042_CR11) 2018; 33
X Zhao (3042_CR58) 2021; 9
G Zhang (3042_CR15) 2017; 91
Q Liu (3042_CR43) 2019; 2019
W Lin (3042_CR38) 2020; 10
References_xml – volume: 368
  start-page: 85
  year: 2020
  ident: 3042_CR4
  publication-title: Science
  doi: 10.1126/science.aaw9872
– year: 2020
  ident: 3042_CR12
  publication-title: Protein Cell
  doi: 10.1007/s13238-020-00789-5
– volume: 75
  start-page: 34
  year: 2019
  ident: 3042_CR63
  publication-title: Placenta
  doi: 10.1016/j.placenta.2018.11.010
– volume: 38
  start-page: 3019
  year: 2017
  ident: 3042_CR21
  publication-title: Oncol Rep
  doi: 10.3892/or.2017.5976
– volume: 7
  start-page: 86
  year: 2017
  ident: 3042_CR44
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-16-0127
– volume: 10
  start-page: 822
  year: 2019
  ident: 3042_CR31
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-019-2064-5
– volume: 14
  start-page: 927
  year: 2018
  ident: 3042_CR64
  publication-title: Future Oncol
  doi: 10.2217/fon-2017-0540
– volume: 72
  start-page: 33
  year: 2013
  ident: 3042_CR5
  publication-title: Neurosurgery.
  doi: 10.1227/NEU.0b013e318276b2de
– volume: 34
  start-page: 21
  year: 2018
  ident: 3042_CR13
  publication-title: Cancer Cell.
  doi: 10.1016/j.ccell.2018.03.022
– volume: 30
  start-page: 146
  year: 2020
  ident: 3042_CR10
  publication-title: Cell Res
  doi: 10.1038/s41422-019-0263-3
– volume: 9
  start-page: 639851
  year: 2021
  ident: 3042_CR58
  publication-title: Front Cell Dev Biol.
  doi: 10.3389/fcell.2021.639851
– volume: 13
  start-page: 864
  year: 2011
  ident: 3042_CR36
  publication-title: Neoplasia
  doi: 10.1593/neo.11750
– volume: 2019
  start-page: 7090534
  year: 2019
  ident: 3042_CR43
  publication-title: Oxid Med Cell Longev
– volume: 57
  start-page: 182
  year: 2018
  ident: 3042_CR46
  publication-title: Mol Carcinog.
  doi: 10.1002/mc.22745
– volume: 202
  start-page: 111672
  year: 2020
  ident: 3042_CR28
  publication-title: J Photochem Photobiol B.
  doi: 10.1016/j.jphotobiol.2019.111672
– year: 2020
  ident: 3042_CR3
  publication-title: Protein Cell
  doi: 10.1007/s13238-020-00789-5
– volume: 8
  start-page: 598997
  year: 2020
  ident: 3042_CR22
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2020.598997
– volume: 171
  start-page: 273
  year: 2017
  ident: 3042_CR32
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.021
– volume: 30
  start-page: 902
  year: 2020
  ident: 3042_CR2
  publication-title: Cell Res
  doi: 10.1038/s41422-020-0333-6
– volume: 91
  start-page: 147
  year: 2017
  ident: 3042_CR15
  publication-title: Biomed Pharmacother
  doi: 10.1016/j.biopha.2017.04.095
– volume: 114
  start-page: 3192
  year: 2017
  ident: 3042_CR23
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1619588114
– volume: 73
  start-page: 4158
  year: 2013
  ident: 3042_CR45
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-4499
– volume: 11
  start-page: 254
  year: 2017
  ident: 3042_CR52
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2016.12.010
– volume: 10
  start-page: 90
  year: 2020
  ident: 3042_CR16
  publication-title: Cell Biosci
  doi: 10.1186/s13578-020-00456-6
– volume: 9
  start-page: 1673
  year: 2019
  ident: 3042_CR37
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-19-0338
– volume: 98
  start-page: 159
  year: 2020
  ident: 3042_CR20
  publication-title: Ann Surg Treat Res
  doi: 10.4174/astr.2020.98.4.159
– volume: 88
  start-page: 706
  year: 2013
  ident: 3042_CR34
  publication-title: Crit Rev Oncol Hematol
  doi: 10.1016/j.critrevonc.2013.09.001
– volume: 2019
  start-page: 5080843
  year: 2019
  ident: 3042_CR55
  publication-title: Oxid Med Cell Longev
– volume: 129
  start-page: 454
  year: 2018
  ident: 3042_CR51
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2018.10.426
– volume: 40
  start-page: 206
  year: 2021
  ident: 3042_CR57
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-021-02012-7
– volume: 48
  start-page: D87
  year: 2020
  ident: 3042_CR27
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa516
– volume: 10
  start-page: 3106
  year: 2020
  ident: 3042_CR38
  publication-title: Am J Cancer Res
– volume: 2020
  start-page: 5146982
  year: 2020
  ident: 3042_CR47
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2020/5146982
– volume: 68
  start-page: 224
  year: 2017
  ident: 3042_CR42
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2017.09.009
– volume: 13
  start-page: e0195151
  year: 2018
  ident: 3042_CR60
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0195151
– volume: 105
  start-page: 13568
  year: 2008
  ident: 3042_CR17
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0806268105
– volume: 38
  start-page: 101791
  year: 2021
  ident: 3042_CR41
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2020.101791
– volume: 9
  start-page: 1371
  year: 2018
  ident: 3042_CR50
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2018.01371
– volume: 49
  start-page: 853
  year: 2014
  ident: 3042_CR7
  publication-title: J Gastroenterol
  doi: 10.1007/s00535-013-0847-5
– volume: 149
  start-page: 1060
  year: 2012
  ident: 3042_CR9
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.042
– volume: 9
  start-page: 32280
  year: 2018
  ident: 3042_CR59
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.25794
– volume: 16
  start-page: 1073
  year: 2018
  ident: 3042_CR48
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-18-0055
– volume: 55
  start-page: 7941
  year: 2018
  ident: 3042_CR61
  publication-title: Mol Neurobiol
  doi: 10.1007/s12035-018-0961-8
– volume: 23
  start-page: 101107
  year: 2019
  ident: 3042_CR40
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2019.101107
– volume: 14
  start-page: 17
  year: 2020
  ident: 3042_CR62
  publication-title: Front Cell Neurosci
  doi: 10.3389/fncel.2020.00017
– volume: 33
  start-page: 801
  year: 2018
  ident: 3042_CR11
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.03.025
– volume: 54
  start-page: e13045
  year: 2021
  ident: 3042_CR26
  publication-title: Cell Prolif.
  doi: 10.1111/cpr.13045
– volume: 235
  start-page: 3329
  year: 2020
  ident: 3042_CR53
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.29221
– volume: 20
  start-page: 1181
  year: 2018
  ident: 3042_CR24
  publication-title: Nat Cell Biol
  doi: 10.1038/s41556-018-0178-0
– volume: 6
  start-page: e371
  year: 2017
  ident: 3042_CR19
  publication-title: Oncogenesis.
  doi: 10.1038/oncsis.2017.65
– volume: 390
  start-page: 2383
  year: 2017
  ident: 3042_CR1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)31462-9
– volume: 130
  start-page: 110710
  year: 2020
  ident: 3042_CR29
  publication-title: Biomed Pharmacother.
  doi: 10.1016/j.biopha.2020.110710
– volume: 88
  start-page: 951
  year: 2003
  ident: 3042_CR8
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6600786
– volume: 29
  start-page: 1756
  year: 2018
  ident: 3042_CR49
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2017.7176
– volume: 48
  start-page: 765
  year: 2016
  ident: 3042_CR35
  publication-title: Int J Oncol
  doi: 10.3892/ijo.2015.3301
– volume: 131
  start-page: 110676
  year: 2020
  ident: 3042_CR54
  publication-title: Biomed Pharmacother.
  doi: 10.1016/j.biopha.2020.110676
– volume: 63
  start-page: 173
  year: 2016
  ident: 3042_CR39
  publication-title: Hepatology
  doi: 10.1002/hep.28251
– volume: 101
  start-page: 1198
  year: 2007
  ident: 3042_CR25
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.21244
– volume: 80
  start-page: 828
  year: 2020
  ident: 3042_CR18
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2020.10.010
– volume: 23
  start-page: 369
  year: 2016
  ident: 3042_CR30
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2015.158
– volume: 10
  start-page: eaao6604
  year: 2017
  ident: 3042_CR6
  publication-title: Sci Signal.
  doi: 10.1126/scisignal.aao6604
– year: 2021
  ident: 3042_CR56
  publication-title: Protein Cell.
  doi: 10.1007/s13238-021-00841-y
– volume: 21
  start-page: 2347
  year: 2014
  ident: 3042_CR14
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-014-3600-2
– volume: 5
  start-page: eaaw2238
  year: 2019
  ident: 3042_CR33
  publication-title: Sci Adv.
  doi: 10.1126/sciadv.aaw2238
– volume: 117
  start-page: 99
  year: 2018
  ident: 3042_CR65
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2018.01.023
SSID ssj0024549
Score 2.6452458
Snippet Solute carrier family 7 member 11(SLC7A11) is a component of cysteine/glutamate transporter, which plays a key role in tumor growth; however, its underlying...
Background Solute carrier family 7 member 11(SLC7A11) is a component of cysteine/glutamate transporter, which plays a key role in tumor growth; however, its...
Solute carrier family 7 member 11(SLC7A11) is a component of cysteine/glutamate transporter, which plays a key role in tumor growth; however, its underlying...
Abstract Background Solute carrier family 7 member 11(SLC7A11) is a component of cysteine/glutamate transporter, which plays a key role in tumor growth;...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 367
SubjectTerms Amino Acid Transport System y+ - genetics
Antibodies
Cancer therapies
Care and treatment
Carrier proteins
Cell death
Cell growth
Chemoradiotherapy
Chemotherapy
Chromatin
Development and progression
Esophageal cancer
Esophageal Neoplasms
Esophageal Squamous Cell Carcinoma
Esophagus
Ferroptosis
Genetic aspects
Glutamic acid transporter
Head and Neck Neoplasms
Health aspects
Humans
Immunoprecipitation
Laboratories
Lipid peroxidation
Lymph nodes
Metastases
NF-E2-Related Factor 2 - metabolism
NRF2
Patients
Physiological aspects
Prognosis
Proteins
Radiation therapy
Radiation Tolerance
Radioresistance
Radiosensitivity
Radiotherapy
SLC7A11
Squamous cell carcinoma
Therapeutic targets
Transcription factors
Tumors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlh9BLadOX2ySoUOihmFiWLMnHbcgSSpND20BuQi8TQ2Mn9ubQf98ZP5Y1hebSqzQykmY0D3n0DSEflbBaVqrCew2XChGy1MYoUjB2VQiZ5Uzge-eLS3l-Jb5eF9c7pb4wJ2yEBx437oQ5GcqyiFZBIFJmHiKaADLmPPhbNtcetS_YvDmYmlH2IOyZn8hoedKDVQOFgOkI-CsQfMqFGRrQ-v_WyTtGaZkwuWOB1s_Js8l1pKtxyi_Ik9gckP2L6ef4S3L_49upWjFGu7G-fAzU_aaX39c5vW3D0NLTiGULQIfAh_r7B4uBP8XLe-qxqFDT3lra2VC3PSa2j5Ul8Ct1c1O7GlOkaRW7rr3btH3dvyJX67Ofp-fpVFEh9TIvN2mUwbkiOmWLKg8QyemYcZ4H8EIK6VRVAq_KGLgOCJPvCid1sNqBkwTEnnP-muw1bRPfEiqs8K7SShcFF5m2lgUOGxQc41WVs5gQNm-w8RPcOFa9-GWGsENLMzLFAFPMwBSjEvJ5O-ZuBNv4J_UX5NuWEoGyhwYQHzOJj3lMfBLyCblu8DjD9LydXiXAIhEYy6wgoMJLsiJPyOGCEo6hX3bPcmMmNdAb0IdCQARdsoR82HbjSExtayLwGGikRL-6zBLyZhSz7ZI4jMbOhKiFAC7WvOxp6psBJBwcX3DG2Lv_sUnvydN8ODugVOUh2dt0D_EIfLGNOx6O3R98HDCX
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA9zgvgi87tuSgTBB6k2TZqkDyLX4WWIdw_qhb2FpEm3wtbutnfg_nvPaXuvK469Nielyfn6nfTkHELeKWG1LFWJ5xouFsInsQ1BxODsSu8Ty5nA-86LY3m0FN9PspMdsml3NG5gd2toh_2klu35xz-r6y-g8J97hdfyUwc-C9Qdkw3wRx8gxnvkPngmhYq6EPpf7T0IhjYXZ26dN3FOfQ3__y31DVc1TaO84Zfme-TRCCjpbJCAx2Qn1E_Ig8X4y_wpWf36cahmjNF26DofPHXX9PjnPKUXje-fdDRgMwOwLPCibnVl8TiA4pE-LbDVUN1cWNpaXzUdprsP_SbwLVV9VrkKE6dpGdq2uVw3XdU9I8v5t9-HR_HYZyEuZJqv4yC9c1lwymZl6iG-0yHhPPWATTLpVJkDB_PgufZYPN9lTmpvtQPoBMQF5_w52a2bOrwkVFhRuFIrnWVcJNpa5jlskHeMl2XKQkTYZoNNMRYhx14Y56YPRrQ0A1MMMMX0TDEqIh-2cy6HEhx3Un9Fvm0psXx2_6BpT82ojYY56fM8C1ZBdJsnBYTJHgyXKwDE21QXEXmPXDcodvB5hR3vKsAisVyWmUGYhUdnWRqRgwklKGcxHd7IjdnItgErKQTE1TmLyNvtMM7EhLc6AI-BRkpE23kSkReDmG2XxGE2DkZETQRwsubpSF2d9aXDAQ4DRGOv7v6sffIw7bUCjKg8ILvr9iq8Buy1dm96hfoLXZMrew
  priority: 102
  providerName: Scholars Portal
Title SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis
URI https://www.ncbi.nlm.nih.gov/pubmed/34446045
https://www.proquest.com/docview/2574440991
https://www.proquest.com/docview/2566045690
https://pubmed.ncbi.nlm.nih.gov/PMC8393811
https://doaj.org/article/1b6d995ea709490c825d870bc81ba28c
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9swUGwtjL2Mfc9bFzQY7GGY2pYsy08jKQ1lLGFkK4S9CH15Nax2YqcP-_e7s520ZtAXP1gnY-m-T6c7Qj5mXEtRZAXGNUzIuYtC7T0PQdkVzkWaxRzvOy-W4uKSf12n6yHg1g5plXuZ2AlqV1uMkZ8CaXEOzkgef9lsQ-wahaerQwuNh-QYS5dhSle2vnW4ODg_-4syUpy2oNtALGBSAh4IgmU5UkZdzf7_JfMd1TROm7yjh-ZPyZPBgKTTHuPPyANfPSePFsMR-Quy_fHtLJvGMW36LvPeUfOXLlfzhF7XrnvTUo_NC0CSwIfa7Y1G959iCJ9abC1U1deaNtqVdYvp7X1_CfxKWV2VpsREaVr4pqk3u7ot25fkcn7-8-wiHPoqhFYk-S70whmTepPptEgc-HPSR4wlDmyRVJisyAFjuXdMOiyWb1IjpNPSgKkEwJYx9oocVXXl3xDKNbemkJlMU8YjqXXsGGyQMzEriiT2AYn3G6zsUHQce1_8UZ3zIYXqkaIAKapDisoC8vkwZ9OX3LgXeoZ4O0BiuezuRd38VgP3qdgIl-ep1xl4s3lkwS12IKiMBaNdJ9IG5BNiXSFTw-9ZPdxNgEVieSw1BbcKQ2VpEpCTESQwox0P7-lGDcKgVbekG5APh2GciQlulQccA4wQaF3nUUBe92R2WBKD2TgYkGxEgKM1j0eq8qorFQ7mL5hk8dv7f-sdeZx0XAFCU5yQo11z49-DrbUzk46hJuR4dr78vpp0EQt4LriE52r26x9zLSzQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0Kq2EnBBvAkUMBKIA4qah-MkB4S2pdWW7q5QaaXeXL9CI9FkN9kK9af4Rmby2DZC6q3XeBzZnvd4PEPIh5jJhGdxhnEN5TJmPFday1xQdpkxngx9hu-dZ3M-OWHfT6PTDfK3fwuDaZW9TGwEtSk1xsi3gbQYA2ck9b8uli52jcLb1b6FRksWh_bqD7hs9ZeDb4Dfj0Gwv3e8O3G7rgKu5kG6ci03SkVWxTLKAgPeTGK9MAwMaOKIqzhLYb2pNWFisFS8ihRPjEwUGAoArEMMgILI32QhuDIjsrmzN_9xdF3dD9yt_mlOwrdr0KYgiDANAq8gwZYdqL-mS8D_uuCGMhwmat7QfPuPyMPOZKXjlsYekw1bPCH3Zt2l_FOy_Dndjce-T6u2r701VF3R-dF-QC9K03ypqcV2CSC74Ef18lJiwIHipQHV2MyoKC8kraTJyxoT6tuOFviXvDjPVY6p2TSzVVUuVmWd18_IyZ2c-XMyKsrCviSUSaZVlsRJFIXMS6T0TQgHZJQfZlngW4f4_QEL3ZU5x24bv0Xj7iRctEgRgBTRIEXEDvm8nrNoi3zcCr2DeFtDYoHu5kNZ_RIdvwtfcZOmkZUx-M-pp8ERNyAalQY3QQaJdsgnxLpAMQLL07J7DQGbxIJcYgyOHAbnosAhWwNIYH89HO7pRnTipxbXzOKQ9-thnIkpdYUFHAMM52jPp55DXrRktt5SCLNx0CHxgAAHex6OFPl5U5wcDG4wAv1Xty_rHbk_OZ5NxfRgfviaPAgaDgGRzbfIaFVd2jdg6a3U2469KDm7a47-B6rkZoU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SLC7A11+regulated+by+NRF2+modulates+esophageal+squamous+cell+carcinoma+radiosensitivity+by+inhibiting+ferroptosis&rft.jtitle=Journal+of+translational+medicine&rft.au=Feng%2C+Lei&rft.au=Zhao%2C+Kaikai&rft.au=Sun%2C+Liangchao&rft.au=Yin%2C+Xiaoyang&rft.date=2021-08-26&rft.pub=BioMed+Central&rft.eissn=1479-5876&rft.volume=19&rft.spage=1&rft_id=info:doi/10.1186%2Fs12967-021-03042-7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-5876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-5876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-5876&client=summon