antithetic variate to facilitate upper-stem height measurements for critical height sampling with importance sampling

Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of forest research Vol. 43; no. 12; pp. 1151 - 1161
Main Authors Lynch, Thomas B, Jeffrey H. Gove
Format Journal Article
LanguageEnglish
Published Ottawa, ON NRC Research Press 01.12.2013
National Research Council of Canada
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text
ISSN1208-6037
0045-5067
1208-6037
DOI10.1139/cjfr-2013-0279

Cover

Loading…
Abstract Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur quite high on the stem, making them difficult to view from the sample point. To surmount this difficulty, use of the “antithetic variate” associated with the critical height together with importance sampling from the cylindrical shells integral is proposed. This antithetic variate will be u = (1 − b/B), where b is the cross-sectional area at “borderline” condition and B is the tree’s basal area. The cross-sectional area at borderline condition b can be determined with knowledge of the HPS gauge angle by measuring the distance to the sample tree. When the antithetic variate u is used in importance sampling, the upper-stem measurement will be low on tree stems close to the sample point and high on tree stems distant from the sample point, enhancing visibility and ease of measurement from the sample point. Computer simulations compared HPS, CHS, CHS with importance sampling (ICHS), ICHS and an antithetic variate (AICHS), and CHS with paired antithetic varariates (PAICHS) and found that HPS, ICHS, AICHS, and PAICHS were very nearly equally precise and were more precise than CHS. These results are favorable to AICHS, since it should require less time than either PAICHS or ICHS and is not subject to individual-tree volume equation bias.
AbstractList Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur quite high on the stem, making them difficult to view from the sample point. To surmount this difficulty, use of the “antithetic variate” associated with the critical height together with importance sampling from the cylindrical shells integral is proposed. This antithetic variate will be u = (1 − b/B), where b is the cross-sectional area at “borderline” condition and B is the tree’s basal area. The cross-sectional area at borderline condition b can be determined with knowledge of the HPS gauge angle by measuring the distance to the sample tree. When the antithetic variate u is used in importance sampling, the upper-stem measurement will be low on tree stems close to the sample point and high on tree stems distant from the sample point, enhancing visibility and ease of measurement from the sample point. Computer simulations compared HPS, CHS, CHS with importance sampling (ICHS), ICHS and an antithetic variate (AICHS), and CHS with paired antithetic varariates (PAICHS) and found that HPS, ICHS, AICHS, and PAICHS were very nearly equally precise and were more precise than CHS. These results are favorable to AICHS, since it should require less time than either PAICHS or ICHS and is not subject to individual-tree volume equation bias.
Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur quite high on the stem, making them difficult to view from the sample point. To surmount this difficulty, use of the "antithetic variate" associated with the critical height together with importance sampling from the cylindrical shells integral is proposed. This antithetic variate will be u = (1 - b/B), where b is the cross-sectional area at "borderline" condition and B is the tree's basal area. The cross-sectional area at borderline condition b can be determined with knowledge of the HPS gauge angle by measuring the distance to the sample tree. When the antithetic variate u is used in importance sampling, the upper-stem measurement will be low on tree stems close to the sample point and high on tree stems distant from the sample point, enhancing visibility and ease of measurement from the sample point. Computer simulations compared HPS, CHS, CHS with importance sampling (ICHS), ICHS and an antithetic variate (AICHS), and CHS with paired antithetic varariates (PAICHS) and found that HPS, ICHS, AICHS, and PAICHS were very nearly equally precise and were more precise than CHS. These results are favorable to AICHS, since it should require less time than either PAICHS or ICHS and is not subject to individual-tree volume equation bias.Original Abstract: L'echantillonnage de la hauteur critique (EHC) permet d'estimer le volume de bois par unite de surface en multipliant la somme des hauteurs critiques mesurees sur les arbres inventories dans un echantillonnage horizontal par point (EHP) par le facteur de prisme de l'EHP. L'un des obstacles a l'application pratique de l'EHC vient du fait que les arbres proches de l'emplacement du point d'echantillonnage ont des hauteurs critiques qui se situent assez haut sur la tige. Ceci rend les hauteurs critiques difficilement visibles a partir du point d'echantillonnage. On suggere de surmonter cette difficulte en utilisant la << variable antithetique >> associee a la hauteur critique dans l'echantillonnage par importance basee sur l'integrale d'enveloppes cylindriques. Cette variable antithetique sera u = (1 - b/B) ou b est la section transversale a la limite de demarcation et B est la surface terriere de l'arbre. La section transversale a la limite de demarcation b peut etre determinee avec le facteur de prisme de l'EHP en mesurant la distance de l'arbre echantillonne. Lorsque la variable antithetique u est utilisee dans l'echantillonnage par importance, la mesure en haut de la tige est abaissee pour les arbres proches du point d'echantillonnage et haussee pour les arbres eloignes du point d'echantillonnage. La mesure a partir du point d'echantillonnage se trouve ainsi facilitee par une meilleure visibilite de la hauteur critique. Des simulations sur ordinateur ont permis de comparer l'EHP, l'echantillonnage de la hauteur critique (EHC), l'EHC avec l'echantillonnage par importance (EHCP), l'EHCP avec une variable antithetique (EHCPA) et l'echantillonnage de la hauteur critique avec des variables antithetiques appariees (EHCAA). Les comparaisons ont permis de constater que l'EHP, l'EHCP, l'EHCPA et l'EHCAA avaient pratiquement la meme precision et qu'ils etaient plus precis que l'EHC. Ces resultats privilegient l'EHCPA qui requiert moins de temps que l'EHCAA ou l'EHCP et qui n'est pas sujet au biais de l'equation de volume des arbres individuels. [Traduit par la Redaction]
Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur quite high on the stem, making them difficult to view from the sample point. To surmount this difficulty, use of the "antithetic variate" associated with the critical height together with importance sampling from the cylindrical shells integral is proposed. This antithetic variate will be u = (1 - b/B), where b is the cross-sectional area at "borderline" condition and B is the tree's basal area. The cross-sectional area at borderline condition b can be determined with knowledge of the HPS gauge angle by measuring the distance to the sample tree. When the antithetic variate u is used in importance sampling, the upper-stem measurement will be low on tree stems close to the sample point and high on tree stems distant from the sample point, enhancing visibility and ease of measurement from the sample point. Computer simulations compared HPS, CHS, CHS with importance sampling (ICHS), ICHS and an antithetic variate (AICHS), and CHS with paired antithetic varariates (PAICHS) and found that HPS, ICHS, AICHS, and PAICHS were very nearly equally precise and were more precise than CHS. These results are favorable to AICHS, since it should require less time than either PAICHS or ICHS and is not subject to individual-tree volume equation bias. Resume: L'echantillonnage de la hauteur critique (EHC) permet d'estimer le volume de bois par unite de surface en multipliant la somme des hauteurs critiques mesurees sur les arbres inventories dans un echantillonnage horizontal par point (EHP) par le facteur de prisme de l'EHP. L'un des obstacles a l'application pratique de l'EHC vient du fait que les arbres proches de l'emplacement du point d'echantillonnage ont des hauteurs critiques qui se situent assez haut sur la tige. Ceci rend les hauteurs critiques difficilement visibles a partir du point d'echantillonnage. On suggere de surmonter cette difficulte en utilisant la ≪ variable antithetique [much greater than] associee a la hauteur critique dans l'echantillonnage par importance basee sur l'integrale d'enveloppes cylindriques. Cette variable antithetique sera u = (1 - b/B) ou b est la section transversale a la limite de demarcation et B est la surface terriere de l'arbre. La section transversale a la limite de demarcation b peut etre determinee avec le facteur de prisme de l'EHP en mesurant la distance de l'arbre echantillonne. Lorsque la variable antithetique u est utilisee dans l'echantillonnage par importance, la mesure en haut de la tige est abaissee pour les arbres proches du point d'echantillonnage et haussee pour les arbres eloignes du point d'echantillonnage. La mesure a partir du point d'echantillonnage se trouve ainsi facilitee par une meilleure visibilite de la hauteur critique. Des simulations sur ordinateur ont permis de comparer l'EHP, l'echantillonnage de la hauteur critique (EHC), l'EHC avec l'echantillonnage par importance (EHCP), l'EHCP avec une variable antithetique (EHCPA) et l'echantillonnage de la hauteur critique avec des variables antithetiques appariees (EHCAA). Les comparaisons ont permis de constater que l'EHP, l'EHCP, l'EHCPA et l'EHCAA avaient pratiquement la meme precision et qu'ils etaient plus precis que l'EHC. Ces resultats privilegient l'EHCPA qui requiert moins de temps que l'EHCAA ou l'EHCP et qui n'est pas sujet au biais de l'equation de volume des arbres individuels. [Traduit par la Redaction]
Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur quite high on the stem, making them difficult to view from the sample point. To surmount this difficulty, use of the “antithetic variate” associated with the critical height together with importance sampling from the cylindrical shells integral is proposed. This antithetic variate will be u = (1 − b/B), where b is the cross-sectional area at “borderline” condition and B is the tree’s basal area. The cross-sectional area at borderline condition b can be determined with knowledge of the HPS gauge angle by measuring the distance to the sample tree. When the antithetic variate u is used in importance sampling, the upper-stem measurement will be low on tree stems close to the sample point and high on tree stems distant from the sample point, enhancing visibility and ease of measurement from the sample point. Computer simulations compared HPS, CHS, CHS with importance sampling (ICHS), ICHS and an antithetic variate (AICHS), and CHS with paired antithetic varariates (PAICHS) and found that HPS, ICHS, AICHS, and PAICHS were very nearly equally precise and were more precise than CHS. These results are favorable to AICHS, since it should require less time than either PAICHS or ICHS and is not subject to individual-tree volume equation bias.
Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur quite high on the stem, making them difficult to view from the sample point. To surmount this difficulty, use of the "antithetic variate" associated with the critical height together with importance sampling from the cylindrical shells integral is proposed. This antithetic variate will be u = (1 - b/B), where b is the cross-sectional area at "borderline" condition and B is the tree's basal area. The cross-sectional area at borderline condition b can be determined with knowledge of the HPS gauge angle by measuring the distance to the sample tree. When the antithetic variate u is used in importance sampling, the upper-stem measurement will be low on tree stems close to the sample point and high on tree stems distant from the sample point, enhancing visibility and ease of measurement from the sample point. Computer simulations compared HPS, CHS, CHS with importance sampling (ICHS), ICHS and an antithetic variate (AICHS), and CHS with paired antithetic varariates (PAICHS) and found that HPS, ICHS, AICHS, and PAICHS were very nearly equally precise and were more precise than CHS. These results are favorable to AICHS, since it should require less time than either PAICHS or ICHS and is not subject to individual-tree volume equation bias.
Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur quite high on the stem, making them difficult to view from the sample point. To surmount this difficulty, use of the "antithetic variate" associated with the critical height together with importance sampling from the cylindrical shells integral is proposed. This antithetic variate will be u = (1 - b/B), where b is the cross-sectional area at "borderline" condition and B is the tree's basal area. The cross-sectional area at borderline condition b can be determined with knowledge of the HPS gauge angle by measuring the distance to the sample tree. When the antithetic variate u is used in importance sampling, the upper-stem measurement will be low on tree stems close to the sample point and high on tree stems distant from the sample point, enhancing visibility and ease of measurement from the sample point. Computer simulations compared HPS, CHS, CHS with importance sampling (ICHS), ICHS and an antithetic variate (AICHS), and CHS with paired antithetic varariates (PAICHS) and found that HPS, ICHS, AICHS, and PAICHS were very nearly equally precise and were more precise than CHS. These results are favorable to AICHS, since it should require less time than either PAICHS or ICHS and is not subject to individual-tree volume equation bias. [PUBLICATION ABSTRACT]
Abstract_FL L’échantillonnage de la hauteur critique (EHC) permet d’estimer le volume de bois par unité de surface en multipliant la somme des hauteurs critiques mesurées sur les arbres inventoriés dans un échantillonnage horizontal par point (EHP) par le facteur de prisme de l’EHP. L’un des obstacles à l’application pratique de l’EHC vient du fait que les arbres proches de l’emplacement du point d’échantillonnage ont des hauteurs critiques qui se situent assez haut sur la tige. Ceci rend les hauteurs critiques difficilement visibles à partir du point d’échantillonnage. On suggère de surmonter cette difficulté en utilisant la « variable antithétique » associée à la hauteur critique dans l’échantillonnage par importance basée sur l’intégrale d’enveloppes cylindriques. Cette variable antithétique sera u = (1 − b/B) où b est la section transversale à la limite de démarcation et B est la surface terrière de l’arbre. La section transversale à la limite de démarcation b peut être déterminée avec le facteur de prisme de l’EHP en mesurant la distance de l’arbre échantillonné. Lorsque la variable antithétique u est utilisée dans l’échantillonnage par importance, la mesure en haut de la tige est abaissée pour les arbres proches du point d’échantillonnage et haussée pour les arbres éloignés du point d’échantillonnage. La mesure à partir du point d’échantillonnage se trouve ainsi facilitée par une meilleure visibilité de la hauteur critique. Des simulations sur ordinateur ont permis de comparer l’EHP, l’échantillonnage de la hauteur critique (EHC), l’EHC avec l’échantillonnage par importance (EHCP), l’EHCP avec une variable antithétique (EHCPA) et l’échantillonnage de la hauteur critique avec des variables antithétiques appariées (EHCAA). Les comparaisons ont permis de constater que l’EHP, l’EHCP, l’EHCPA et l’EHCAA avaient pratiquement la même précision et qu’ils étaient plus précis que l’EHC. Ces résultats privilégient l’EHCPA qui requiert moins de temps que l’EHCAA ou l’EHCP et qui n’est pas sujet au biais de l’équation de volume des arbres individuels. [Traduit par la Rédaction]
Audience Academic
Author Lynch, Thomas B
Jeffrey H. Gove
Author_xml – sequence: 1
  fullname: Lynch, Thomas B
– sequence: 2
  fullname: Jeffrey H. Gove
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28064154$$DView record in Pascal Francis
BookMark eNqVkktr3DAURk1JoMkk225rWgrtwoleluVlCH0EQgtNsxYa-cqjwZYdSU7bf1-ZSZNMmBKKFpas811dy-cw23ODgyx7hdEJxrQ-1WvjC4IwLRCp6hfZASZIFBzRau_R_GV2GMIaIUQ5RQfZpFy0cQXR6vxWeasi5HHIjdK2s3FeTeMIvggR-nwFtl3FvAcVJg89uBhyM_hce5vyqvsLBNWPnXVt_jOVzm0_Dj4qp-F-4yjbN6oLcHz3XGTXnz7-OP9SXH77fHF-dlloTupYNAJXS4FQKWhDhCCi4aJZVgShyrCKaVYtERGmWRrD-YxxaJqSc2BlugKD6SJ7v6k7-uFmghBlb4OGrlMOhilInA4QmAmCnkdZTTjmtKwT-vYJuh4m79KHJIpXdUVpyR-oVnUgrTND9ErPReUZLRlhNUvkIit2UC048KpL_9fY9HqLf7OD16O9kY-hkx1QGg30Vu-s-mErkJgIv2KrphDkxdX3_2C_brPv7m5KheSH8ckCG-Toba_8b0kE4gyX7KFh7YcQPJh7BCM5yy1nueUst5zlTgH2JKBnW23qxSvb_TuGNzHntYcAyuvV80e93mSMGqRqfer_-iptJ-GSiKRC9A_VZhUS
CODEN CJFRAR
CitedBy_id crossref_primary_10_3390_f8100393
crossref_primary_10_3390_f9050251
crossref_primary_10_1139_cjfr_2014_0375
crossref_primary_10_1139_cjfr_2014_0031
crossref_primary_10_1016_j_foreco_2015_04_033
crossref_primary_10_1016_j_fecs_2025_100298
Cites_doi 10.1139/x99-119
10.1093/forestscience/41.1.194
10.1017/S0305004100031455
10.1201/9780203498880
10.1139/x86-231
10.1016/S0378-1127(00)00601-0
10.5558/tfc49136-3
10.1139/x03-056
10.1139/x92-042
10.1002/9780470316511
10.1139/x86-096
10.1139/x01-147
10.1093/forestscience/22.3.289
10.1139/x87-219
10.1016/j.foreco.2012.06.014
ContentType Journal Article
Copyright 2015 INIST-CNRS
COPYRIGHT 2013 NRC Research Press
Copyright Canadian Science Publishing NRC Research Press Dec 2013
Copyright_xml – notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2013 NRC Research Press
– notice: Copyright Canadian Science Publishing NRC Research Press Dec 2013
DBID FBQ
AAYXX
CITATION
IQODW
ISN
ISR
7SN
7SS
7T7
8FD
C1K
FR3
P64
RC3
U9A
7S9
L.6
DOI 10.1139/cjfr-2013-0279
DatabaseName AGRIS
CrossRef
Pascal-Francis
Gale In Context: Canada
Gale In Context: Science
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Career and Technical Education (Alumni Edition)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Ecology Abstracts

CrossRef

AGRICOLA

Entomology Abstracts




Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISSN 1208-6037
EndPage 1161
ExternalDocumentID 3156228991
A354249497
28064154
10_1139_cjfr_2013_0279
cjfr-2013-0279
US201600200270
Genre Feature
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GroupedDBID 00T
0R~
29B
2XV
3V.
4.4
4P2
5GY
5RP
6J9
7RQ
7X2
7XC
88I
8AF
8FE
8FG
8FH
8FQ
8G5
AAYJJ
ABDBF
ABJCF
ABJNI
ABPTK
ABTAH
ABUWG
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
AEGXH
AENEX
AFKRA
AFRAH
AI.
AIAGR
ALMA_UNASSIGNED_HOLDINGS
APEBS
ATCPS
AZQEC
BCR
BCU
BEC
BENPR
BES
BGLVJ
BHPHI
BKSAR
BLC
BPHCQ
CAG
CCPQU
COF
CS3
D8U
DWQXO
EAD
EAP
EAS
EBC
EBD
EBS
ECC
ECGQY
EDH
EJD
EMK
EPL
ESX
FBQ
GNUQQ
GUQSH
HCIFZ
HZ~
I-F
IAO
ICQ
IEA
IEP
IFM
IOF
IPNFZ
IRD
ISN
ISR
ITC
ITF
ITG
ITH
L6V
LK5
M0K
M2O
M2P
M2Q
M3C
M3G
M7R
M7S
MV1
N95
NMEPN
NRXXU
NYCZX
N~3
O9-
ONR
OVD
P2P
PATMY
PCBAR
PEA
PQQKQ
PRG
PROAC
PTHSS
PV9
PYCSY
QF4
QM4
QN7
QO4
QRP
RIG
RRCRK
RRP
RZL
SJFOW
TEORI
TUS
U5U
UQL
VH1
VQG
XOL
Y6R
YV5
ZCG
ZY4
08R
0R
1AW
ABFLS
ADKZR
B4K
HZ
LA8
MBDVC
PADUT
PQEST
PQUKI
PRINS
AAHBH
AAYXX
ACUHS
AEUYN
CITATION
PHGZM
PHGZT
IQODW
7SN
7SS
7T7
8FD
C1K
FR3
P64
RC3
U9A
7S9
L.6
ID FETCH-LOGICAL-c629t-d817b800583d28828d68db72007f474c47b028fdbff6600586edd566e45027f13
ISSN 1208-6037
0045-5067
IngestDate Thu Jul 10 18:17:58 EDT 2025
Fri Jul 11 16:06:50 EDT 2025
Sat Aug 16 00:51:58 EDT 2025
Tue Mar 18 20:34:40 EDT 2025
Fri Mar 14 02:59:25 EDT 2025
Tue Jun 10 15:34:15 EDT 2025
Sat Mar 08 18:45:00 EST 2025
Wed Mar 05 05:28:05 EST 2025
Wed Mar 05 05:20:00 EST 2025
Wed Apr 02 07:37:51 EDT 2025
Tue Jul 01 02:57:56 EDT 2025
Thu Apr 24 23:12:11 EDT 2025
Wed Nov 11 00:33:26 EST 2020
Wed Dec 27 19:24:40 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Facilitation
Critical value
Forestry
Samplings
Height
Sampling
Stem
Language English
License http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c629t-d817b800583d28828d68db72007f474c47b028fdbff6600586edd566e45027f13
Notes http://dx.doi.org/10.1139/cjfr-2013-0279
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1467973356
PQPubID 47747
PageCount 11
ParticipantIDs gale_infotracmisc_A354249497
crossref_primary_10_1139_cjfr_2013_0279
gale_infotracacademiconefile_A354249497
crossref_citationtrail_10_1139_cjfr_2013_0279
gale_infotracgeneralonefile_A354249497
gale_incontextgauss_ISN_A354249497
gale_incontextgauss_ISR_A354249497
fao_agris_US201600200270
proquest_miscellaneous_1492616359
proquest_journals_1467973356
pascalfrancis_primary_28064154
proquest_miscellaneous_1817814820
gale_infotraccpiq_354249497
nrcresearch_primary_10_1139_cjfr_2013_0279
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Ottawa, ON
PublicationPlace_xml – name: Ottawa, ON
– name: Ottawa
PublicationTitle Canadian journal of forest research
PublicationYear 2013
Publisher NRC Research Press
National Research Council of Canada
Canadian Science Publishing NRC Research Press
Publisher_xml – name: NRC Research Press
– name: National Research Council of Canada
– name: Canadian Science Publishing NRC Research Press
References refg22/ref22
Max T.A. (refg23/ref23) 1976; 22
Palley M.N. (refg26/ref26) 1961; 7
refg36/ref36
refg38/ref38
McTague J.P. (refg24/ref24) 1985; 31
refg11/ref11
refg25/ref25
refg15/ref15
refg29/ref29
Clutter J.L. (refg3/ref3) 1980; 27
Gregoire T.G. (refg9/ref9) 1982; 28
refg34/ref34
refg14/ref14
refg8/ref8
Valentine H.T. (refg31/ref31) 1992; 38
Ducey M.J. (refg4/ref4) 2004; 50
refg2/ref2
refg37/ref37
refg17/ref17
refg30/ref30
refg21/ref21
refg7/ref7
Lynch T.B. (refg19/ref19) 1986; 32
Lynch T.B. (refg20/ref20) 1995; 41
refg10/ref10
refg12/ref12
refg28/ref28
refg32/ref32
Van Deusen P.C. (refg33/ref33) 1987; 33
refg16/ref16
Bitterlich W. (refg1/ref1) 1976; 55
Kitamura M. (refg18/ref18) 1964; 4
refg13/ref13
References_xml – ident: refg7/ref7
  doi: 10.1139/x99-119
– volume: 41
  start-page: 191
  issue: 1
  year: 1995
  ident: refg20/ref20
  publication-title: For. Sci.
  doi: 10.1093/forestscience/41.1.194
– volume: 31
  start-page: 899
  issue: 4
  year: 1985
  ident: refg24/ref24
  publication-title: For. Sci.
– ident: refg15/ref15
– ident: refg12/ref12
  doi: 10.1017/S0305004100031455
– volume: 32
  start-page: 829
  year: 1986
  ident: refg19/ref19
  publication-title: For. Sci.
– ident: refg22/ref22
– volume: 50
  start-page: 427
  issue: 4
  year: 2004
  ident: refg4/ref4
  publication-title: For. Sci.
– ident: refg10/ref10
  doi: 10.1201/9780203498880
– ident: refg17/ref17
– ident: refg34/ref34
  doi: 10.1139/x86-231
– ident: refg16/ref16
– volume: 33
  start-page: 583
  issue: 2
  year: 1987
  ident: refg33/ref33
  publication-title: For. Sci.
– ident: refg36/ref36
  doi: 10.1016/S0378-1127(00)00601-0
– volume: 4
  start-page: 365
  year: 1964
  ident: refg18/ref18
  publication-title: Bull. Yamagata Univ. (Agric. Sci.)
– volume: 28
  start-page: 504
  issue: 3
  year: 1982
  ident: refg9/ref9
  publication-title: For. Sci.
– ident: refg30/ref30
– ident: refg13/ref13
– volume: 38
  start-page: 160
  issue: 1
  year: 1992
  ident: refg31/ref31
  publication-title: For. Sci.
– ident: refg25/ref25
  doi: 10.5558/tfc49136-3
– ident: refg29/ref29
– volume: 7
  start-page: 52
  year: 1961
  ident: refg26/ref26
  publication-title: For. Sci.
– ident: refg38/ref38
  doi: 10.1139/x03-056
– ident: refg21/ref21
  doi: 10.1139/x92-042
– volume: 27
  start-page: 117
  issue: 1
  year: 1980
  ident: refg3/ref3
  publication-title: For. Sci.
– volume: 55
  start-page: 319
  issue: 4
  year: 1976
  ident: refg1/ref1
  publication-title: Commonw. For. Rev.
– ident: refg28/ref28
  doi: 10.1002/9780470316511
– ident: refg11/ref11
  doi: 10.1139/x86-096
– ident: refg37/ref37
  doi: 10.1139/x01-147
– ident: refg14/ref14
– volume: 22
  start-page: 289
  year: 1976
  ident: refg23/ref23
  publication-title: For. Sci.
  doi: 10.1093/forestscience/22.3.289
– ident: refg32/ref32
  doi: 10.1139/x87-219
– ident: refg2/ref2
– ident: refg8/ref8
  doi: 10.1016/j.foreco.2012.06.014
SSID ssj0003630
Score 2.0909193
Snippet Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point...
SourceID proquest
gale
pascalfrancis
crossref
nrcresearch
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1151
SubjectTerms basal area
Bias
Biological and medical sciences
Computer simulation
equations
Forestry
Fundamental and applied biological sciences. Psychology
Methods
Monte Carlo method
Observations
Plant growth
Sampling
stand basal area
Statistical sampling
Stems
Stems (Botany)
Trees
Title antithetic variate to facilitate upper-stem height measurements for critical height sampling with importance sampling
URI http://www.nrcresearchpress.com/doi/abs/10.1139/cjfr-2013-0279
https://www.proquest.com/docview/1467973356
https://www.proquest.com/docview/1492616359
https://www.proquest.com/docview/1817814820
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZYJyF4QFy1sjEZhJhE5ZHEiZM8doNq8NCHbZX2FiWO3Q2xtPSCgF_PObFzYxswXqoq_uS4Pl99zrGOPxPyOop8T6duxDj4EuZnucNiFSkGoYMbipxrYdQ-x-Jo4n86C86aW1HL0yWrbF_-vPZcyf9YFZ6BXfGU7C0sW3cKD-A72Bc-wcLw-U82HmIl8QpPVaDs6jdIeyFyxGhSp9Kob6vBej5XC4ZyzRAUYiY-uGy2BUsxhoGsrjuwgGWKZebVJu3FZRmil1q0tqEd0dbyBi0NCugUnM3ACgmdt3cWXP5blcb4-LAu_-sUhJQLqR-wwDE3aewrs3Z6TsSEYzRcqsXVaDBVJPJaSyWEom7L7bquEWW_uqRzVESVn_WClYOEPDpunFddUtgFbJBND_IGr0c2hwfvD0a1c-aC21NJZvxWxxNe8q7bQydO2dDprPbZ94uFrCYQS2nTJVhIm2tQrnj0Mkw5fUge2PyCDg1ZHpE7qnhM7o5Kgyx-PCHfhwVtOEMtZ-hqRhvO0IYz1FCCtjlDwby04kwFqKhBkTO04Uzd8JRMRh9OD4-YvX2DSeHFK5ZHbphFeO0kzz3Iw6JcRHkW4t629kNf-mEGsanOM62FQJhQeQ7JgfIDmD_t8mekV8wKtUUol26qgjyMpcZz1W4agp_0lYwlZPtuGvcJq-Y6kVaaHm9I-ZKUKSqPE7RNgrZJ0DZ9slfj50aU5UbkFpguSafgMZPJiYd6ig7WJYVOn7xCeyYoglJgldU0XS-XyceTcTLkge-hbFN4I-i4A9qzID2DYcvUnmyBH4_iah3kdgcp5xdfk1brm07r1AjPX9fNTgcIHkF2mt-2KPrXGdrtMLiGY8kFRPc-vKyidGJXkiVuGIRxyHkg-uRl3YzjwJrNQs3WiIk9AeleEP8BAySLUIrYeX6bQW-Te82CtUN6q8VavYDkYJXt2j_8L_7QDu4
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+antithetic+variate+to+facilitate+upper-stem+height+measurements+for+critical+height+sampling+with+importance+sampling&rft.jtitle=Canadian+journal+of+forest+research&rft.date=2013-12-01&rft.pub=NRC+Research+Press&rft.issn=0045-5067&rft.eissn=1208-6037&rft.volume=43&rft.issue=12&rft.spage=1151&rft.epage=1161&rft_id=info:doi/10.1139%2Fcjfr-2013-0279&rft.externalDocID=cjfr-2013-0279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1208-6037&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1208-6037&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1208-6037&client=summon