antithetic variate to facilitate upper-stem height measurements for critical height sampling with importance sampling
Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location...
Saved in:
Published in | Canadian journal of forest research Vol. 43; no. 12; pp. 1151 - 1161 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Ottawa, ON
NRC Research Press
01.12.2013
National Research Council of Canada Canadian Science Publishing NRC Research Press |
Subjects | |
Online Access | Get full text |
ISSN | 1208-6037 0045-5067 1208-6037 |
DOI | 10.1139/cjfr-2013-0279 |
Cover
Loading…
Abstract | Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur quite high on the stem, making them difficult to view from the sample point. To surmount this difficulty, use of the âantithetic variateâ associated with the critical height together with importance sampling from the cylindrical shells integral is proposed. This antithetic variate will be u = (1 â b/B), where b is the cross-sectional area at âborderlineâ condition and B is the treeâs basal area. The cross-sectional area at borderline condition b can be determined with knowledge of the HPS gauge angle by measuring the distance to the sample tree. When the antithetic variate u is used in importance sampling, the upper-stem measurement will be low on tree stems close to the sample point and high on tree stems distant from the sample point, enhancing visibility and ease of measurement from the sample point. Computer simulations compared HPS, CHS, CHS with importance sampling (ICHS), ICHS and an antithetic variate (AICHS), and CHS with paired antithetic varariates (PAICHS) and found that HPS, ICHS, AICHS, and PAICHS were very nearly equally precise and were more precise than CHS. These results are favorable to AICHS, since it should require less time than either PAICHS or ICHS and is not subject to individual-tree volume equation bias. |
---|---|
AbstractList | Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur quite high on the stem, making them difficult to view from the sample point. To surmount this difficulty, use of the âantithetic variateâ associated with the critical height together with importance sampling from the cylindrical shells integral is proposed. This antithetic variate will be u = (1 â b/B), where b is the cross-sectional area at âborderlineâ condition and B is the treeâs basal area. The cross-sectional area at borderline condition b can be determined with knowledge of the HPS gauge angle by measuring the distance to the sample tree. When the antithetic variate u is used in importance sampling, the upper-stem measurement will be low on tree stems close to the sample point and high on tree stems distant from the sample point, enhancing visibility and ease of measurement from the sample point. Computer simulations compared HPS, CHS, CHS with importance sampling (ICHS), ICHS and an antithetic variate (AICHS), and CHS with paired antithetic varariates (PAICHS) and found that HPS, ICHS, AICHS, and PAICHS were very nearly equally precise and were more precise than CHS. These results are favorable to AICHS, since it should require less time than either PAICHS or ICHS and is not subject to individual-tree volume equation bias. Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur quite high on the stem, making them difficult to view from the sample point. To surmount this difficulty, use of the "antithetic variate" associated with the critical height together with importance sampling from the cylindrical shells integral is proposed. This antithetic variate will be u = (1 - b/B), where b is the cross-sectional area at "borderline" condition and B is the tree's basal area. The cross-sectional area at borderline condition b can be determined with knowledge of the HPS gauge angle by measuring the distance to the sample tree. When the antithetic variate u is used in importance sampling, the upper-stem measurement will be low on tree stems close to the sample point and high on tree stems distant from the sample point, enhancing visibility and ease of measurement from the sample point. Computer simulations compared HPS, CHS, CHS with importance sampling (ICHS), ICHS and an antithetic variate (AICHS), and CHS with paired antithetic varariates (PAICHS) and found that HPS, ICHS, AICHS, and PAICHS were very nearly equally precise and were more precise than CHS. These results are favorable to AICHS, since it should require less time than either PAICHS or ICHS and is not subject to individual-tree volume equation bias.Original Abstract: L'echantillonnage de la hauteur critique (EHC) permet d'estimer le volume de bois par unite de surface en multipliant la somme des hauteurs critiques mesurees sur les arbres inventories dans un echantillonnage horizontal par point (EHP) par le facteur de prisme de l'EHP. L'un des obstacles a l'application pratique de l'EHC vient du fait que les arbres proches de l'emplacement du point d'echantillonnage ont des hauteurs critiques qui se situent assez haut sur la tige. Ceci rend les hauteurs critiques difficilement visibles a partir du point d'echantillonnage. On suggere de surmonter cette difficulte en utilisant la << variable antithetique >> associee a la hauteur critique dans l'echantillonnage par importance basee sur l'integrale d'enveloppes cylindriques. Cette variable antithetique sera u = (1 - b/B) ou b est la section transversale a la limite de demarcation et B est la surface terriere de l'arbre. La section transversale a la limite de demarcation b peut etre determinee avec le facteur de prisme de l'EHP en mesurant la distance de l'arbre echantillonne. Lorsque la variable antithetique u est utilisee dans l'echantillonnage par importance, la mesure en haut de la tige est abaissee pour les arbres proches du point d'echantillonnage et haussee pour les arbres eloignes du point d'echantillonnage. La mesure a partir du point d'echantillonnage se trouve ainsi facilitee par une meilleure visibilite de la hauteur critique. Des simulations sur ordinateur ont permis de comparer l'EHP, l'echantillonnage de la hauteur critique (EHC), l'EHC avec l'echantillonnage par importance (EHCP), l'EHCP avec une variable antithetique (EHCPA) et l'echantillonnage de la hauteur critique avec des variables antithetiques appariees (EHCAA). Les comparaisons ont permis de constater que l'EHP, l'EHCP, l'EHCPA et l'EHCAA avaient pratiquement la meme precision et qu'ils etaient plus precis que l'EHC. Ces resultats privilegient l'EHCPA qui requiert moins de temps que l'EHCAA ou l'EHCP et qui n'est pas sujet au biais de l'equation de volume des arbres individuels. [Traduit par la Redaction] Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur quite high on the stem, making them difficult to view from the sample point. To surmount this difficulty, use of the "antithetic variate" associated with the critical height together with importance sampling from the cylindrical shells integral is proposed. This antithetic variate will be u = (1 - b/B), where b is the cross-sectional area at "borderline" condition and B is the tree's basal area. The cross-sectional area at borderline condition b can be determined with knowledge of the HPS gauge angle by measuring the distance to the sample tree. When the antithetic variate u is used in importance sampling, the upper-stem measurement will be low on tree stems close to the sample point and high on tree stems distant from the sample point, enhancing visibility and ease of measurement from the sample point. Computer simulations compared HPS, CHS, CHS with importance sampling (ICHS), ICHS and an antithetic variate (AICHS), and CHS with paired antithetic varariates (PAICHS) and found that HPS, ICHS, AICHS, and PAICHS were very nearly equally precise and were more precise than CHS. These results are favorable to AICHS, since it should require less time than either PAICHS or ICHS and is not subject to individual-tree volume equation bias. Resume: L'echantillonnage de la hauteur critique (EHC) permet d'estimer le volume de bois par unite de surface en multipliant la somme des hauteurs critiques mesurees sur les arbres inventories dans un echantillonnage horizontal par point (EHP) par le facteur de prisme de l'EHP. L'un des obstacles a l'application pratique de l'EHC vient du fait que les arbres proches de l'emplacement du point d'echantillonnage ont des hauteurs critiques qui se situent assez haut sur la tige. Ceci rend les hauteurs critiques difficilement visibles a partir du point d'echantillonnage. On suggere de surmonter cette difficulte en utilisant la ≪ variable antithetique [much greater than] associee a la hauteur critique dans l'echantillonnage par importance basee sur l'integrale d'enveloppes cylindriques. Cette variable antithetique sera u = (1 - b/B) ou b est la section transversale a la limite de demarcation et B est la surface terriere de l'arbre. La section transversale a la limite de demarcation b peut etre determinee avec le facteur de prisme de l'EHP en mesurant la distance de l'arbre echantillonne. Lorsque la variable antithetique u est utilisee dans l'echantillonnage par importance, la mesure en haut de la tige est abaissee pour les arbres proches du point d'echantillonnage et haussee pour les arbres eloignes du point d'echantillonnage. La mesure a partir du point d'echantillonnage se trouve ainsi facilitee par une meilleure visibilite de la hauteur critique. Des simulations sur ordinateur ont permis de comparer l'EHP, l'echantillonnage de la hauteur critique (EHC), l'EHC avec l'echantillonnage par importance (EHCP), l'EHCP avec une variable antithetique (EHCPA) et l'echantillonnage de la hauteur critique avec des variables antithetiques appariees (EHCAA). Les comparaisons ont permis de constater que l'EHP, l'EHCP, l'EHCPA et l'EHCAA avaient pratiquement la meme precision et qu'ils etaient plus precis que l'EHC. Ces resultats privilegient l'EHCPA qui requiert moins de temps que l'EHCAA ou l'EHCP et qui n'est pas sujet au biais de l'equation de volume des arbres individuels. [Traduit par la Redaction] Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur quite high on the stem, making them difficult to view from the sample point. To surmount this difficulty, use of the “antithetic variate” associated with the critical height together with importance sampling from the cylindrical shells integral is proposed. This antithetic variate will be u = (1 − b/B), where b is the cross-sectional area at “borderline” condition and B is the tree’s basal area. The cross-sectional area at borderline condition b can be determined with knowledge of the HPS gauge angle by measuring the distance to the sample tree. When the antithetic variate u is used in importance sampling, the upper-stem measurement will be low on tree stems close to the sample point and high on tree stems distant from the sample point, enhancing visibility and ease of measurement from the sample point. Computer simulations compared HPS, CHS, CHS with importance sampling (ICHS), ICHS and an antithetic variate (AICHS), and CHS with paired antithetic varariates (PAICHS) and found that HPS, ICHS, AICHS, and PAICHS were very nearly equally precise and were more precise than CHS. These results are favorable to AICHS, since it should require less time than either PAICHS or ICHS and is not subject to individual-tree volume equation bias. Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur quite high on the stem, making them difficult to view from the sample point. To surmount this difficulty, use of the "antithetic variate" associated with the critical height together with importance sampling from the cylindrical shells integral is proposed. This antithetic variate will be u = (1 - b/B), where b is the cross-sectional area at "borderline" condition and B is the tree's basal area. The cross-sectional area at borderline condition b can be determined with knowledge of the HPS gauge angle by measuring the distance to the sample tree. When the antithetic variate u is used in importance sampling, the upper-stem measurement will be low on tree stems close to the sample point and high on tree stems distant from the sample point, enhancing visibility and ease of measurement from the sample point. Computer simulations compared HPS, CHS, CHS with importance sampling (ICHS), ICHS and an antithetic variate (AICHS), and CHS with paired antithetic varariates (PAICHS) and found that HPS, ICHS, AICHS, and PAICHS were very nearly equally precise and were more precise than CHS. These results are favorable to AICHS, since it should require less time than either PAICHS or ICHS and is not subject to individual-tree volume equation bias. Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur quite high on the stem, making them difficult to view from the sample point. To surmount this difficulty, use of the "antithetic variate" associated with the critical height together with importance sampling from the cylindrical shells integral is proposed. This antithetic variate will be u = (1 - b/B), where b is the cross-sectional area at "borderline" condition and B is the tree's basal area. The cross-sectional area at borderline condition b can be determined with knowledge of the HPS gauge angle by measuring the distance to the sample tree. When the antithetic variate u is used in importance sampling, the upper-stem measurement will be low on tree stems close to the sample point and high on tree stems distant from the sample point, enhancing visibility and ease of measurement from the sample point. Computer simulations compared HPS, CHS, CHS with importance sampling (ICHS), ICHS and an antithetic variate (AICHS), and CHS with paired antithetic varariates (PAICHS) and found that HPS, ICHS, AICHS, and PAICHS were very nearly equally precise and were more precise than CHS. These results are favorable to AICHS, since it should require less time than either PAICHS or ICHS and is not subject to individual-tree volume equation bias. [PUBLICATION ABSTRACT] |
Abstract_FL | L’échantillonnage de la hauteur critique (EHC) permet d’estimer le volume de bois par unité de surface en multipliant la somme des hauteurs critiques mesurées sur les arbres inventoriés dans un échantillonnage horizontal par point (EHP) par le facteur de prisme de l’EHP. L’un des obstacles à l’application pratique de l’EHC vient du fait que les arbres proches de l’emplacement du point d’échantillonnage ont des hauteurs critiques qui se situent assez haut sur la tige. Ceci rend les hauteurs critiques difficilement visibles à partir du point d’échantillonnage. On suggère de surmonter cette difficulté en utilisant la « variable antithétique » associée à la hauteur critique dans l’échantillonnage par importance basée sur l’intégrale d’enveloppes cylindriques. Cette variable antithétique sera u = (1 − b/B) où b est la section transversale à la limite de démarcation et B est la surface terrière de l’arbre. La section transversale à la limite de démarcation b peut être déterminée avec le facteur de prisme de l’EHP en mesurant la distance de l’arbre échantillonné. Lorsque la variable antithétique u est utilisée dans l’échantillonnage par importance, la mesure en haut de la tige est abaissée pour les arbres proches du point d’échantillonnage et haussée pour les arbres éloignés du point d’échantillonnage. La mesure à partir du point d’échantillonnage se trouve ainsi facilitée par une meilleure visibilité de la hauteur critique. Des simulations sur ordinateur ont permis de comparer l’EHP, l’échantillonnage de la hauteur critique (EHC), l’EHC avec l’échantillonnage par importance (EHCP), l’EHCP avec une variable antithétique (EHCPA) et l’échantillonnage de la hauteur critique avec des variables antithétiques appariées (EHCAA). Les comparaisons ont permis de constater que l’EHP, l’EHCP, l’EHCPA et l’EHCAA avaient pratiquement la même précision et qu’ils étaient plus précis que l’EHC. Ces résultats privilégient l’EHCPA qui requiert moins de temps que l’EHCAA ou l’EHCP et qui n’est pas sujet au biais de l’équation de volume des arbres individuels. [Traduit par la Rédaction] |
Audience | Academic |
Author | Lynch, Thomas B Jeffrey H. Gove |
Author_xml | – sequence: 1 fullname: Lynch, Thomas B – sequence: 2 fullname: Jeffrey H. Gove |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28064154$$DView record in Pascal Francis |
BookMark | eNqVkktr3DAURk1JoMkk225rWgrtwoleluVlCH0EQgtNsxYa-cqjwZYdSU7bf1-ZSZNMmBKKFpas811dy-cw23ODgyx7hdEJxrQ-1WvjC4IwLRCp6hfZASZIFBzRau_R_GV2GMIaIUQ5RQfZpFy0cQXR6vxWeasi5HHIjdK2s3FeTeMIvggR-nwFtl3FvAcVJg89uBhyM_hce5vyqvsLBNWPnXVt_jOVzm0_Dj4qp-F-4yjbN6oLcHz3XGTXnz7-OP9SXH77fHF-dlloTupYNAJXS4FQKWhDhCCi4aJZVgShyrCKaVYtERGmWRrD-YxxaJqSc2BlugKD6SJ7v6k7-uFmghBlb4OGrlMOhilInA4QmAmCnkdZTTjmtKwT-vYJuh4m79KHJIpXdUVpyR-oVnUgrTND9ErPReUZLRlhNUvkIit2UC048KpL_9fY9HqLf7OD16O9kY-hkx1QGg30Vu-s-mErkJgIv2KrphDkxdX3_2C_brPv7m5KheSH8ckCG-Toba_8b0kE4gyX7KFh7YcQPJh7BCM5yy1nueUst5zlTgH2JKBnW23qxSvb_TuGNzHntYcAyuvV80e93mSMGqRqfer_-iptJ-GSiKRC9A_VZhUS |
CODEN | CJFRAR |
CitedBy_id | crossref_primary_10_3390_f8100393 crossref_primary_10_3390_f9050251 crossref_primary_10_1139_cjfr_2014_0375 crossref_primary_10_1139_cjfr_2014_0031 crossref_primary_10_1016_j_foreco_2015_04_033 crossref_primary_10_1016_j_fecs_2025_100298 |
Cites_doi | 10.1139/x99-119 10.1093/forestscience/41.1.194 10.1017/S0305004100031455 10.1201/9780203498880 10.1139/x86-231 10.1016/S0378-1127(00)00601-0 10.5558/tfc49136-3 10.1139/x03-056 10.1139/x92-042 10.1002/9780470316511 10.1139/x86-096 10.1139/x01-147 10.1093/forestscience/22.3.289 10.1139/x87-219 10.1016/j.foreco.2012.06.014 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS COPYRIGHT 2013 NRC Research Press Copyright Canadian Science Publishing NRC Research Press Dec 2013 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2013 NRC Research Press – notice: Copyright Canadian Science Publishing NRC Research Press Dec 2013 |
DBID | FBQ AAYXX CITATION IQODW ISN ISR 7SN 7SS 7T7 8FD C1K FR3 P64 RC3 U9A 7S9 L.6 |
DOI | 10.1139/cjfr-2013-0279 |
DatabaseName | AGRIS CrossRef Pascal-Francis Gale In Context: Canada Gale In Context: Science Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Engineering Research Database Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Career and Technical Education (Alumni Edition) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Ecology Abstracts CrossRef AGRICOLA Entomology Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry |
EISSN | 1208-6037 |
EndPage | 1161 |
ExternalDocumentID | 3156228991 A354249497 28064154 10_1139_cjfr_2013_0279 cjfr-2013-0279 US201600200270 |
Genre | Feature |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GroupedDBID | 00T 0R~ 29B 2XV 3V. 4.4 4P2 5GY 5RP 6J9 7RQ 7X2 7XC 88I 8AF 8FE 8FG 8FH 8FQ 8G5 AAYJJ ABDBF ABJCF ABJNI ABPTK ABTAH ABUWG ACGFO ACGFS ACGOD ACIWK ACPRK AEGXH AENEX AFKRA AFRAH AI. AIAGR ALMA_UNASSIGNED_HOLDINGS APEBS ATCPS AZQEC BCR BCU BEC BENPR BES BGLVJ BHPHI BKSAR BLC BPHCQ CAG CCPQU COF CS3 D8U DWQXO EAD EAP EAS EBC EBD EBS ECC ECGQY EDH EJD EMK EPL ESX FBQ GNUQQ GUQSH HCIFZ HZ~ I-F IAO ICQ IEA IEP IFM IOF IPNFZ IRD ISN ISR ITC ITF ITG ITH L6V LK5 M0K M2O M2P M2Q M3C M3G M7R M7S MV1 N95 NMEPN NRXXU NYCZX N~3 O9- ONR OVD P2P PATMY PCBAR PEA PQQKQ PRG PROAC PTHSS PV9 PYCSY QF4 QM4 QN7 QO4 QRP RIG RRCRK RRP RZL SJFOW TEORI TUS U5U UQL VH1 VQG XOL Y6R YV5 ZCG ZY4 08R 0R 1AW ABFLS ADKZR B4K HZ LA8 MBDVC PADUT PQEST PQUKI PRINS AAHBH AAYXX ACUHS AEUYN CITATION PHGZM PHGZT IQODW 7SN 7SS 7T7 8FD C1K FR3 P64 RC3 U9A 7S9 L.6 |
ID | FETCH-LOGICAL-c629t-d817b800583d28828d68db72007f474c47b028fdbff6600586edd566e45027f13 |
ISSN | 1208-6037 0045-5067 |
IngestDate | Thu Jul 10 18:17:58 EDT 2025 Fri Jul 11 16:06:50 EDT 2025 Sat Aug 16 00:51:58 EDT 2025 Tue Mar 18 20:34:40 EDT 2025 Fri Mar 14 02:59:25 EDT 2025 Tue Jun 10 15:34:15 EDT 2025 Sat Mar 08 18:45:00 EST 2025 Wed Mar 05 05:28:05 EST 2025 Wed Mar 05 05:20:00 EST 2025 Wed Apr 02 07:37:51 EDT 2025 Tue Jul 01 02:57:56 EDT 2025 Thu Apr 24 23:12:11 EDT 2025 Wed Nov 11 00:33:26 EST 2020 Wed Dec 27 19:24:40 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Facilitation Critical value Forestry Samplings Height Sampling Stem |
Language | English |
License | http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c629t-d817b800583d28828d68db72007f474c47b028fdbff6600586edd566e45027f13 |
Notes | http://dx.doi.org/10.1139/cjfr-2013-0279 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1467973356 |
PQPubID | 47747 |
PageCount | 11 |
ParticipantIDs | gale_infotracmisc_A354249497 crossref_primary_10_1139_cjfr_2013_0279 gale_infotracacademiconefile_A354249497 crossref_citationtrail_10_1139_cjfr_2013_0279 gale_infotracgeneralonefile_A354249497 gale_incontextgauss_ISN_A354249497 gale_incontextgauss_ISR_A354249497 fao_agris_US201600200270 proquest_miscellaneous_1492616359 proquest_journals_1467973356 pascalfrancis_primary_28064154 proquest_miscellaneous_1817814820 gale_infotraccpiq_354249497 nrcresearch_primary_10_1139_cjfr_2013_0279 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Ottawa, ON |
PublicationPlace_xml | – name: Ottawa, ON – name: Ottawa |
PublicationTitle | Canadian journal of forest research |
PublicationYear | 2013 |
Publisher | NRC Research Press National Research Council of Canada Canadian Science Publishing NRC Research Press |
Publisher_xml | – name: NRC Research Press – name: National Research Council of Canada – name: Canadian Science Publishing NRC Research Press |
References | refg22/ref22 Max T.A. (refg23/ref23) 1976; 22 Palley M.N. (refg26/ref26) 1961; 7 refg36/ref36 refg38/ref38 McTague J.P. (refg24/ref24) 1985; 31 refg11/ref11 refg25/ref25 refg15/ref15 refg29/ref29 Clutter J.L. (refg3/ref3) 1980; 27 Gregoire T.G. (refg9/ref9) 1982; 28 refg34/ref34 refg14/ref14 refg8/ref8 Valentine H.T. (refg31/ref31) 1992; 38 Ducey M.J. (refg4/ref4) 2004; 50 refg2/ref2 refg37/ref37 refg17/ref17 refg30/ref30 refg21/ref21 refg7/ref7 Lynch T.B. (refg19/ref19) 1986; 32 Lynch T.B. (refg20/ref20) 1995; 41 refg10/ref10 refg12/ref12 refg28/ref28 refg32/ref32 Van Deusen P.C. (refg33/ref33) 1987; 33 refg16/ref16 Bitterlich W. (refg1/ref1) 1976; 55 Kitamura M. (refg18/ref18) 1964; 4 refg13/ref13 |
References_xml | – ident: refg7/ref7 doi: 10.1139/x99-119 – volume: 41 start-page: 191 issue: 1 year: 1995 ident: refg20/ref20 publication-title: For. Sci. doi: 10.1093/forestscience/41.1.194 – volume: 31 start-page: 899 issue: 4 year: 1985 ident: refg24/ref24 publication-title: For. Sci. – ident: refg15/ref15 – ident: refg12/ref12 doi: 10.1017/S0305004100031455 – volume: 32 start-page: 829 year: 1986 ident: refg19/ref19 publication-title: For. Sci. – ident: refg22/ref22 – volume: 50 start-page: 427 issue: 4 year: 2004 ident: refg4/ref4 publication-title: For. Sci. – ident: refg10/ref10 doi: 10.1201/9780203498880 – ident: refg17/ref17 – ident: refg34/ref34 doi: 10.1139/x86-231 – ident: refg16/ref16 – volume: 33 start-page: 583 issue: 2 year: 1987 ident: refg33/ref33 publication-title: For. Sci. – ident: refg36/ref36 doi: 10.1016/S0378-1127(00)00601-0 – volume: 4 start-page: 365 year: 1964 ident: refg18/ref18 publication-title: Bull. Yamagata Univ. (Agric. Sci.) – volume: 28 start-page: 504 issue: 3 year: 1982 ident: refg9/ref9 publication-title: For. Sci. – ident: refg30/ref30 – ident: refg13/ref13 – volume: 38 start-page: 160 issue: 1 year: 1992 ident: refg31/ref31 publication-title: For. Sci. – ident: refg25/ref25 doi: 10.5558/tfc49136-3 – ident: refg29/ref29 – volume: 7 start-page: 52 year: 1961 ident: refg26/ref26 publication-title: For. Sci. – ident: refg38/ref38 doi: 10.1139/x03-056 – ident: refg21/ref21 doi: 10.1139/x92-042 – volume: 27 start-page: 117 issue: 1 year: 1980 ident: refg3/ref3 publication-title: For. Sci. – volume: 55 start-page: 319 issue: 4 year: 1976 ident: refg1/ref1 publication-title: Commonw. For. Rev. – ident: refg28/ref28 doi: 10.1002/9780470316511 – ident: refg11/ref11 doi: 10.1139/x86-096 – ident: refg37/ref37 doi: 10.1139/x01-147 – ident: refg14/ref14 – volume: 22 start-page: 289 year: 1976 ident: refg23/ref23 publication-title: For. Sci. doi: 10.1093/forestscience/22.3.289 – ident: refg32/ref32 doi: 10.1139/x87-219 – ident: refg2/ref2 – ident: refg8/ref8 doi: 10.1016/j.foreco.2012.06.014 |
SSID | ssj0003630 |
Score | 2.0909193 |
Snippet | Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point... |
SourceID | proquest gale pascalfrancis crossref nrcresearch fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1151 |
SubjectTerms | basal area Bias Biological and medical sciences Computer simulation equations Forestry Fundamental and applied biological sciences. Psychology Methods Monte Carlo method Observations Plant growth Sampling stand basal area Statistical sampling Stems Stems (Botany) Trees |
Title | antithetic variate to facilitate upper-stem height measurements for critical height sampling with importance sampling |
URI | http://www.nrcresearchpress.com/doi/abs/10.1139/cjfr-2013-0279 https://www.proquest.com/docview/1467973356 https://www.proquest.com/docview/1492616359 https://www.proquest.com/docview/1817814820 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZYJyF4QFy1sjEZhJhE5ZHEiZM8doNq8NCHbZX2FiWO3Q2xtPSCgF_PObFzYxswXqoq_uS4Pl99zrGOPxPyOop8T6duxDj4EuZnucNiFSkGoYMbipxrYdQ-x-Jo4n86C86aW1HL0yWrbF_-vPZcyf9YFZ6BXfGU7C0sW3cKD-A72Bc-wcLw-U82HmIl8QpPVaDs6jdIeyFyxGhSp9Kob6vBej5XC4ZyzRAUYiY-uGy2BUsxhoGsrjuwgGWKZebVJu3FZRmil1q0tqEd0dbyBi0NCugUnM3ACgmdt3cWXP5blcb4-LAu_-sUhJQLqR-wwDE3aewrs3Z6TsSEYzRcqsXVaDBVJPJaSyWEom7L7bquEWW_uqRzVESVn_WClYOEPDpunFddUtgFbJBND_IGr0c2hwfvD0a1c-aC21NJZvxWxxNe8q7bQydO2dDprPbZ94uFrCYQS2nTJVhIm2tQrnj0Mkw5fUge2PyCDg1ZHpE7qnhM7o5Kgyx-PCHfhwVtOEMtZ-hqRhvO0IYz1FCCtjlDwby04kwFqKhBkTO04Uzd8JRMRh9OD4-YvX2DSeHFK5ZHbphFeO0kzz3Iw6JcRHkW4t629kNf-mEGsanOM62FQJhQeQ7JgfIDmD_t8mekV8wKtUUol26qgjyMpcZz1W4agp_0lYwlZPtuGvcJq-Y6kVaaHm9I-ZKUKSqPE7RNgrZJ0DZ9slfj50aU5UbkFpguSafgMZPJiYd6ig7WJYVOn7xCeyYoglJgldU0XS-XyceTcTLkge-hbFN4I-i4A9qzID2DYcvUnmyBH4_iah3kdgcp5xdfk1brm07r1AjPX9fNTgcIHkF2mt-2KPrXGdrtMLiGY8kFRPc-vKyidGJXkiVuGIRxyHkg-uRl3YzjwJrNQs3WiIk9AeleEP8BAySLUIrYeX6bQW-Te82CtUN6q8VavYDkYJXt2j_8L_7QDu4 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+antithetic+variate+to+facilitate+upper-stem+height+measurements+for+critical+height+sampling+with+importance+sampling&rft.jtitle=Canadian+journal+of+forest+research&rft.date=2013-12-01&rft.pub=NRC+Research+Press&rft.issn=0045-5067&rft.eissn=1208-6037&rft.volume=43&rft.issue=12&rft.spage=1151&rft.epage=1161&rft_id=info:doi/10.1139%2Fcjfr-2013-0279&rft.externalDocID=cjfr-2013-0279 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1208-6037&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1208-6037&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1208-6037&client=summon |