Numerical study on active wave devouring propulsion
The possibility of extracting energy from gravity waves for marine propulsion was numerically studied by a two-dimensional oscillating hydrofoil in this study. The commercially available computational fluid dynamics software FLUENT was used for the unstructured grid based on the Reynolds-average Nav...
Saved in:
Published in | Journal of marine science and technology Vol. 17; no. 3; pp. 261 - 275 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Japan
Springer Japan
01.09.2012
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The possibility of extracting energy from gravity waves for marine propulsion was numerically studied by a two-dimensional oscillating hydrofoil in this study. The commercially available computational fluid dynamics software FLUENT was used for the unstructured grid based on the Reynolds-average Navier–Stokes equation. The free surface waves and motion of the flapping foil were implemented by customizing the FLUENT solver using a user-defined function technique. In addition, dynamic mesh technology and post processing capabilities were fully utilized. The validation of the model was carried out using experimental data for an oscillation hydrofoil under the waves. The results of the simulation were investigated in detail in order to explain the increase of propeller efficiency in gravity waves. Eight design parameters were identified and it was found that some of them greatly affected the performance of wave energy extraction by the active oscillating hydrofoil. Finally, the overall results suggested that when the design parameters are correctly maintained, the present approach can increase the performance of the oscillating hydrofoil by absorbing energy from sea waves. |
---|---|
AbstractList | The possibility of extracting energy from gravity waves for marine propulsion was numerically studied by a two-dimensional oscillating hydrofoil in this study. The commercially available computational fluid dynamics software FLUENT was used for the unstructured grid based on the Reynolds-average Navier-Stokes equation. The free surface waves and motion of the flapping foil were implemented by customizing the FLUENT solver using a user-defined function technique. In addition, dynamic mesh technology and post processing capabilities were fully utilized. The validation of the model was carried out using experimental data for an oscillation hydrofoil under the waves. The results of the simulation were investigated in detail in order to explain the increase of propeller efficiency in gravity waves. Eight design parameters were identified and it was found that some of them greatly affected the performance of wave energy extraction by the active oscillating hydrofoil. Finally, the overall results suggested that when the design parameters are correctly maintained, the present approach can increase the performance of the oscillating hydrofoil by absorbing energy from sea waves. The possibility of extracting energy from gravity waves for marine propulsion was numerically studied by a two-dimensional oscillating hydrofoil in this study. The commercially available computational fluid dynamics software FLUENT was used for the unstructured grid based on the Reynolds-average Navier-Stokes equation. The free surface waves and motion of the flapping foil were implemented by customizing the FLUENT solver using a user-defined function technique. In addition, dynamic mesh technology and post processing capabilities were fully utilized. The validation of the model was carried out using experimental data for an oscillation hydrofoil under the waves. The results of the simulation were investigated in detail in order to explain the increase of propeller efficiency in gravity waves. Eight design parameters were identified and it was found that some of them greatly affected the performance of wave energy extraction by the active oscillating hydrofoil. Finally, the overall results suggested that when the design parameters are correctly maintained, the present approach can increase the performance of the oscillating hydrofoil by absorbing energy from sea waves.[PUBLICATION ABSTRACT] |
Audience | Academic |
Author | DE SILVA Liyanarachchi Waruna Arampath YAMAGUCHI Hajime |
Author_xml | – sequence: 1 givenname: Liyanarachchi Waruna Arampath surname: De Silva fullname: De Silva, Liyanarachchi Waruna Arampath email: waruna@fluidlab.sys.t.u-tokyo.ac.jp organization: The University of Tokyo – sequence: 2 givenname: Hajime surname: Yamaguchi fullname: Yamaguchi, Hajime organization: The University of Tokyo |
BackLink | https://cir.nii.ac.jp/crid/1571135651152445568$$DView record in CiNii |
BookMark | eNqFkUtr3TAQhUVJoTePH9CdoV1041QjWSNrGUIfgdBu0rVQJDko-Mq3kp1y_33HuIsSaIPQCMT5jjRzTtlJnnJk7C3wS-Bcf6xUtGw5CNpo2uMrtoNO6rYXIE_YjpuubzvR8zfstNZHzkErw3dMflv2sSTvxqbOSzg2U26cn9NTbH45KiE-TUtJ-aE5lOmwjDVN-Zy9HtxY48Wf84z9-Pzp7vpre_v9y8311W3rUZi5DTAor42P9713GB34IFwIQQWE4FUXHKA3WodoTJSA6OSAEhG1VBz7KM_Yh82Xnv65xDrbfao-jqPLcVqqBdSgVG8IeFEKIIUAIQ1J3z2TPlKHmRqxwDVqoQ1HUl1uqgc3RpvyMM3FeVoh7pOn2Q-J7q80dD0xerXVG-DLVGuJg_VpdjONi8A0krddg7JbUJaCsmtQ9kgkPCMPJe1dOf6XERtTD2s4sfzdxL-h9xuUU6LfrRWUpskoVABKdJ1S2MvfR4uwnw |
CitedBy_id | crossref_primary_10_1007_s12206_016_1229_8 crossref_primary_10_3390_biomimetics8030311 crossref_primary_10_3390_app10186226 crossref_primary_10_1016_j_oceaneng_2025_120735 crossref_primary_10_1016_j_oceaneng_2023_114330 crossref_primary_10_1063_5_0212506 crossref_primary_10_1371_journal_pone_0218832 crossref_primary_10_1016_j_oceaneng_2022_112709 crossref_primary_10_1016_j_procs_2022_10_042 crossref_primary_10_1007_s40868_024_00153_w crossref_primary_10_1007_s00773_023_00927_8 crossref_primary_10_1016_j_oceaneng_2022_113316 crossref_primary_10_2139_ssrn_3916210 crossref_primary_10_1016_j_oceaneng_2023_115710 crossref_primary_10_1063_5_0060409 crossref_primary_10_1177_1475090213489674 crossref_primary_10_1016_j_oceaneng_2017_06_037 crossref_primary_10_1016_j_enganabound_2017_08_014 crossref_primary_10_1007_s00773_018_0583_x crossref_primary_10_1016_j_oceaneng_2020_107875 crossref_primary_10_1007_s00348_013_1491_9 crossref_primary_10_3390_jmse8010056 crossref_primary_10_3390_app8060934 crossref_primary_10_1016_j_jfluidstructs_2016_07_003 crossref_primary_10_3390_jmse11030632 crossref_primary_10_1016_j_renene_2021_11_109 crossref_primary_10_1016_j_oceaneng_2018_02_028 crossref_primary_10_1016_j_oceaneng_2021_110157 crossref_primary_10_1088_1742_6596_2767_5_052045 crossref_primary_10_1016_j_oceaneng_2022_110590 crossref_primary_10_1016_j_oceaneng_2023_116175 crossref_primary_10_1016_j_renene_2024_119956 crossref_primary_10_1177_14750902221140968 crossref_primary_10_1016_j_apor_2022_103148 crossref_primary_10_1007_s13344_016_0026_6 crossref_primary_10_1016_j_oceaneng_2022_111358 crossref_primary_10_1016_j_oceaneng_2019_106151 crossref_primary_10_1016_j_oceaneng_2019_106553 crossref_primary_10_3390_jmse8070479 crossref_primary_10_1016_j_ijnaoe_2019_02_006 crossref_primary_10_1016_j_enganabound_2014_01_008 crossref_primary_10_1177_14750902211062069 crossref_primary_10_1177_14750902231221873 crossref_primary_10_1016_j_oceaneng_2013_06_028 crossref_primary_10_1016_j_rser_2023_113589 crossref_primary_10_1063_5_0190664 crossref_primary_10_1016_j_renene_2024_121518 crossref_primary_10_1016_j_apor_2022_103374 crossref_primary_10_1016_j_oceaneng_2024_120134 crossref_primary_10_1016_j_oceaneng_2022_112118 |
Cites_doi | 10.1016/j.euromechflu.2003.10.002 10.1017/S0022112071000570 10.1017/S0022112060001110 10.2534/jjasnaoe1968.1982.54 10.2534/jjasnaoe1968.1984.156_102 10.1017/S0022112094002016 10.1017/S0022112071000685 10.1017/S0022112071000697 10.1017/S0022112097008392 10.1017/S0022112061000949 10.1115/1.1412235 10.1002/fld.525 10.2534/jjasnaoe1968.1984.156_82 10.1017/S0022112088000205 |
ContentType | Journal Article |
Copyright | The Author(s) 2012 COPYRIGHT 2012 Springer JASNAOE 2012 |
Copyright_xml | – notice: The Author(s) 2012 – notice: COPYRIGHT 2012 Springer – notice: JASNAOE 2012 |
DBID | RYH C6C AAYXX CITATION 3V. 7ST 7TB 7TN 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ L.G L6V M2P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI |
DOI | 10.1007/s00773-012-0169-y |
DatabaseName | CiNii Complete Springer Nature OA Free Journals (WRLC) CrossRef ProQuest Central (Corporate) Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest SciTech Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Technology Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Oceanography Engineering |
EISSN | 1437-8213 |
EndPage | 275 |
ExternalDocumentID | 2770635251 A714876779 10_1007_s00773_012_0169_y 10031060265 |
Genre | Feature |
GroupedDBID | -~C .86 .VR 06D 0R~ 0VY 199 1N0 203 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7XC 88I 8CJ 8FE 8FG 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CCPQU COF CS3 CSCUP D-I D1J D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IEP IJ- IKXTQ ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV L6V LAS LK5 LLZTM M2P M4Y M7R M7S MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9P PATMY PCBAR PF0 PHGZM PHGZT PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV ROL RPX RSV RYH S16 S27 S3B SAP SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TR2 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 ZMTXR ~A9 ~EX -5B -5G -BR -EM -Y2 1SB 2.D 28- 2P1 2VQ 3V. 5QI ADINQ AEFIE AFEXP AGGDS AHAVH ARCEE BBWZM C6C CAG GQ6 H13 IHE KOW NDZJH RIG RNI RZK S1Z S26 S28 SCLPG SCV T16 Z5O Z7R Z7Z Z86 Z8M Z8T _50 AAYXX AFOHR CITATION AEIIB PMFND 7ST 7TB 7TN 7XB 8FD 8FK ABRTQ C1K F1W FR3 H96 L.G PKEHL PQEST PQGLB PQUKI Q9U SOI |
ID | FETCH-LOGICAL-c629t-d1f5c79ceb8ca6ea1cd2addd5d61dc54da16c977de99e3166a3f63666735068e3 |
IEDL.DBID | C6C |
ISSN | 0948-4280 |
IngestDate | Fri Jul 11 00:32:42 EDT 2025 Fri Jul 11 09:21:15 EDT 2025 Fri Jul 25 19:12:09 EDT 2025 Tue Jun 10 20:19:25 EDT 2025 Thu Apr 24 23:03:14 EDT 2025 Tue Jul 01 01:16:21 EDT 2025 Fri Feb 21 02:33:28 EST 2025 Thu Jun 26 21:26:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Wave devouring propulsion Numerical simulation Flapping foil |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c629t-d1f5c79ceb8ca6ea1cd2addd5d61dc54da16c977de99e3166a3f63666735068e3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1007/s00773-012-0169-y |
PQID | 1076727906 |
PQPubID | 54119 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1671558967 proquest_miscellaneous_1113221239 proquest_journals_1076727906 gale_infotracacademiconefile_A714876779 crossref_citationtrail_10_1007_s00773_012_0169_y crossref_primary_10_1007_s00773_012_0169_y springer_journals_10_1007_s00773_012_0169_y nii_cinii_1571135651152445568 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-01 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationSubtitle | Official Journal of the Japan Society of Naval Architects and Ocean Engineers (JASNAOE) |
PublicationTitle | Journal of marine science and technology |
PublicationTitleAbbrev | J Mar Sci Technol |
PublicationYear | 2012 |
Publisher | Springer Japan Springer Springer Nature B.V |
Publisher_xml | – name: Springer Japan – name: Springer – name: Springer Nature B.V |
References | Jakobsen E (1981) The foil propeller, wave power for propulsion. 2nd International Symposium on Wave and Tidal Energy. BHRA fluid Engineering, pp 363–369 WuTYHydromechanics of swimming propulsion. Part 1. Swimming of a two dimensional flexible plate at variable forward speeds in inviscid fluidJ Fluid Mech1971463373550242.7600910.1017/S0022112071000570 IsshikiHMurakamiMA theory of wave devouring propulsion (4th report)J Soc Nav Archit Jpn1984156102114 Yamaguchi H, Bose N (1994) Oscillating foils for marine propulsion. Proceedings of the Fourth International offshore and polar engineering conference, Osaka, pp 539–544 WuTYHydromechanics of swimming propulsion. Part 3. Swimming and optimum movement of slender fish with side finsJ Fluid Mech19714654556810.1017/S0022112071000697 GuglielminiLBlondeauxPPropulsive efficiency of oscillating foilsEur J Mech B Fluid2004232552781068.7601610.1016/j.euromechflu.2003.10.002 WuTYSwimming of a waving plateJ Fluid Mech1961103213441270530116.1680110.1017/S0022112061000949 Isshiki H, Murakami M, Terao Y (1984) Utilization of wave energy into propulsion of ships-wave devouring propulsion. In: 15th Symposium on Naval Hydrodynamics. National Academy Press, Washington, D.C., pp 539–552 TeraoYA floating structure which moves towards the wave (possibility of wave devouring propulsion)J Kansai Soc Nav Archit19821845154(in Japanese) LaiPSKBoseNMcgregorRCWave propulsion from flexible-armed, rigid-foil propulsorMarine Technol19933012836 KudoTKubotaAYamaguchiHStudy on propulsion by practically elastic foil (2nd report) (in Japanese)J Soc Nav Archit Jpn19841568594 GrueJMoAPalmEPropulsion of a foil moving in water wavesJ Fluid Mech19881863934170662.7601710.1017/S0022112088000205 LighthillMJNote on the swimming of slender fishJ Fluid Mech1960930531711545410.1017/S0022112060001110 WuTYHydromechanics of swimming propulsion. Part 2. Some optimum shape problemsJ Fluid Mech19714652154410.1017/S0022112071000685 PedroGSulemanADjilaliNA numerical study of the propulsive efficiency of a flapping hydrofoilInt J Numer Meth Fluids20034249352619848971030.7606510.1002/fld.525 Bose N (1992) A time-domain panel method for analysis of foils in unsteady motion as oscillating propulsors. Proceedings of the 11th Australian Fluid Mechanics Conference, University of Tasmania, Hobart, pp 1201–1204 AndersonJMStreitlienKBarrettDSOscillating foils of high propulsive efficiencyJ Fluid Mech1998360417216215350922.7602310.1017/S0022112097008392 SternFWilsonRVColemanHWComprehensive approach to verification and validation of CFD simulation-part1: methodology and proceduresJ Fluid Eng200112379380210.1115/1.1412235 IsshikiHA theory of wave devouring propulsion (1st report)J Soc Nav Archit Jpn1982151546410.2534/jjasnaoe1968.1982.54 GopalkrishnanRTriantafyllouMSTriatafyllouGSActive vorticity control in a shear flow using flapping foilJ Fluid Mech199427412110.1017/S0022112094002016 KubotaAKudoTKatoHStudy on propulsion by practically elastic foil (1st report)J Soc Nav Archit Jpn198415695105(in Japanese) WuTYExtraction of flow energy by a wing oscillating in wavesJ Ship Res19721416678 TY Wu (169_CR7) 1971; 46 L Guglielmini (169_CR14) 2004; 23 R Gopalkrishnan (169_CR17) 1994; 27 TY Wu (169_CR6) 1971; 46 TY Wu (169_CR5) 1961; 10 F Stern (169_CR22) 2001; 123 G Pedro (169_CR13) 2003; 42 J Grue (169_CR21) 1988; 186 169_CR18 169_CR20 169_CR1 169_CR10 JM Anderson (169_CR16) 1998; 360 169_CR12 T Kudo (169_CR11) 1984; 156 169_CR9 MJ Lighthill (169_CR4) 1960; 9 PSK Lai (169_CR15) 1993; 30 169_CR2 H Isshiki (169_CR19) 1982; 151 169_CR3 TY Wu (169_CR8) 1971; 46 |
References_xml | – reference: WuTYHydromechanics of swimming propulsion. Part 3. Swimming and optimum movement of slender fish with side finsJ Fluid Mech19714654556810.1017/S0022112071000697 – reference: Jakobsen E (1981) The foil propeller, wave power for propulsion. 2nd International Symposium on Wave and Tidal Energy. BHRA fluid Engineering, pp 363–369 – reference: Yamaguchi H, Bose N (1994) Oscillating foils for marine propulsion. Proceedings of the Fourth International offshore and polar engineering conference, Osaka, pp 539–544 – reference: IsshikiHA theory of wave devouring propulsion (1st report)J Soc Nav Archit Jpn1982151546410.2534/jjasnaoe1968.1982.54 – reference: SternFWilsonRVColemanHWComprehensive approach to verification and validation of CFD simulation-part1: methodology and proceduresJ Fluid Eng200112379380210.1115/1.1412235 – reference: GuglielminiLBlondeauxPPropulsive efficiency of oscillating foilsEur J Mech B Fluid2004232552781068.7601610.1016/j.euromechflu.2003.10.002 – reference: GrueJMoAPalmEPropulsion of a foil moving in water wavesJ Fluid Mech19881863934170662.7601710.1017/S0022112088000205 – reference: LighthillMJNote on the swimming of slender fishJ Fluid Mech1960930531711545410.1017/S0022112060001110 – reference: IsshikiHMurakamiMA theory of wave devouring propulsion (4th report)J Soc Nav Archit Jpn1984156102114 – reference: TeraoYA floating structure which moves towards the wave (possibility of wave devouring propulsion)J Kansai Soc Nav Archit19821845154(in Japanese) – reference: WuTYHydromechanics of swimming propulsion. Part 1. Swimming of a two dimensional flexible plate at variable forward speeds in inviscid fluidJ Fluid Mech1971463373550242.7600910.1017/S0022112071000570 – reference: GopalkrishnanRTriantafyllouMSTriatafyllouGSActive vorticity control in a shear flow using flapping foilJ Fluid Mech199427412110.1017/S0022112094002016 – reference: KubotaAKudoTKatoHStudy on propulsion by practically elastic foil (1st report)J Soc Nav Archit Jpn198415695105(in Japanese) – reference: WuTYHydromechanics of swimming propulsion. Part 2. Some optimum shape problemsJ Fluid Mech19714652154410.1017/S0022112071000685 – reference: WuTYExtraction of flow energy by a wing oscillating in wavesJ Ship Res19721416678 – reference: AndersonJMStreitlienKBarrettDSOscillating foils of high propulsive efficiencyJ Fluid Mech1998360417216215350922.7602310.1017/S0022112097008392 – reference: KudoTKubotaAYamaguchiHStudy on propulsion by practically elastic foil (2nd report) (in Japanese)J Soc Nav Archit Jpn19841568594 – reference: LaiPSKBoseNMcgregorRCWave propulsion from flexible-armed, rigid-foil propulsorMarine Technol19933012836 – reference: PedroGSulemanADjilaliNA numerical study of the propulsive efficiency of a flapping hydrofoilInt J Numer Meth Fluids20034249352619848971030.7606510.1002/fld.525 – reference: WuTYSwimming of a waving plateJ Fluid Mech1961103213441270530116.1680110.1017/S0022112061000949 – reference: Isshiki H, Murakami M, Terao Y (1984) Utilization of wave energy into propulsion of ships-wave devouring propulsion. In: 15th Symposium on Naval Hydrodynamics. National Academy Press, Washington, D.C., pp 539–552 – reference: Bose N (1992) A time-domain panel method for analysis of foils in unsteady motion as oscillating propulsors. Proceedings of the 11th Australian Fluid Mechanics Conference, University of Tasmania, Hobart, pp 1201–1204 – ident: 169_CR12 – volume: 23 start-page: 255 year: 2004 ident: 169_CR14 publication-title: Eur J Mech B Fluid doi: 10.1016/j.euromechflu.2003.10.002 – volume: 46 start-page: 337 year: 1971 ident: 169_CR6 publication-title: J Fluid Mech doi: 10.1017/S0022112071000570 – volume: 9 start-page: 305 year: 1960 ident: 169_CR4 publication-title: J Fluid Mech doi: 10.1017/S0022112060001110 – volume: 30 start-page: 28 issue: 1 year: 1993 ident: 169_CR15 publication-title: Marine Technol – volume: 151 start-page: 54 year: 1982 ident: 169_CR19 publication-title: J Soc Nav Archit Jpn doi: 10.2534/jjasnaoe1968.1982.54 – ident: 169_CR20 doi: 10.2534/jjasnaoe1968.1984.156_102 – volume: 27 start-page: 1 issue: 4 year: 1994 ident: 169_CR17 publication-title: J Fluid Mech doi: 10.1017/S0022112094002016 – volume: 46 start-page: 521 year: 1971 ident: 169_CR7 publication-title: J Fluid Mech doi: 10.1017/S0022112071000685 – volume: 46 start-page: 545 year: 1971 ident: 169_CR8 publication-title: J Fluid Mech doi: 10.1017/S0022112071000697 – volume: 360 start-page: 41 year: 1998 ident: 169_CR16 publication-title: J Fluid Mech doi: 10.1017/S0022112097008392 – volume: 10 start-page: 321 year: 1961 ident: 169_CR5 publication-title: J Fluid Mech doi: 10.1017/S0022112061000949 – ident: 169_CR3 – ident: 169_CR18 – volume: 123 start-page: 793 year: 2001 ident: 169_CR22 publication-title: J Fluid Eng doi: 10.1115/1.1412235 – ident: 169_CR1 – ident: 169_CR2 – volume: 42 start-page: 493 year: 2003 ident: 169_CR13 publication-title: Int J Numer Meth Fluids doi: 10.1002/fld.525 – ident: 169_CR10 doi: 10.2534/jjasnaoe1968.1984.156_82 – volume: 156 start-page: 85 year: 1984 ident: 169_CR11 publication-title: J Soc Nav Archit Jpn – volume: 186 start-page: 393 year: 1988 ident: 169_CR21 publication-title: J Fluid Mech doi: 10.1017/S0022112088000205 – ident: 169_CR9 |
SSID | ssj0017590 |
Score | 2.165073 |
Snippet | The possibility of extracting energy from gravity waves for marine propulsion was numerically studied by a two-dimensional oscillating hydrofoil in this study.... |
SourceID | proquest gale crossref springer nii |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 261 |
SubjectTerms | Analysis Automotive Engineering Design parameters Engineering Engineering Design Engineering Fluid Dynamics Flapping foil Fluid dynamics Free surfaces Gravity Gravity waves Hydrodynamics Hydrofoils Marine Mathematical analysis Mathematical models Mechanical Engineering Navier-Stokes equations Numerical analysis Numerical simulation Offshore Engineering Original Article Oscillating Surface waves Wave devouring propulsion Wave energy Wave power |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_a9GUMxtptzFtbPCgMNgyWZUvW0-hGSyksHWOFvomLpECh2OmSrPS_752ieOugeREGy7Z8ujvdh_Q7gCPOrZEr3RZT4piixgkW6EzgMIeWoRLOR5zt72N1dlmfXzVXKeA2T9sq1zoxKmrfO46Rk3RrThqaUn2Z3RZcNYqzq6mExjbskApu2xHsfD0Z__g55BF0s4qyGA6bVe2Q1ywjjCgNh1xp3pqgTHH_aGVK-nm7u75-ZHv-ly6Nq9DpS3iRzMf8eDXfu7AVuj14fuECdgl7-hXI8XKVhrnJI3hs3nc5RrWW3yE1Pvzp4-HEfBbLd3G87DVcnp78-nZWpNoIhVOVWRReTBunjQuT1qEKSEStSFX5xivhXVN7FMqRbeeDMUEKpVBOlVRc5LMpVRvkGxh1fRfeQu68DlgLUysvSZwnOKVLiVKVAbHyKoNyTRfrEnA416-4sQPkcSSlJVJaJqW9z-DT8MhshZqxqfNHJrZliaL3OkwHA2h0jE1ljzW5bDT52mRwQPNBg-BWNFoISfYo2bRkozCSWgb765mySRTn9i_jZPBhuE1CxJkR7EK_nLMbRIqNFnGzoY_SZHu1RukMPq-54N_PPPF77zYP6j08qyIP8ra1fRgtfi_DAdk5i8lhYuYHa5H12w priority: 102 providerName: ProQuest |
Title | Numerical study on active wave devouring propulsion |
URI | https://cir.nii.ac.jp/crid/1571135651152445568 https://link.springer.com/article/10.1007/s00773-012-0169-y https://www.proquest.com/docview/1076727906 https://www.proquest.com/docview/1113221239 https://www.proquest.com/docview/1671558967 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB-89kUF0aq42h4rCIKycNnsTjaP53nXovYU9aA-LXNJDgplr9g7pf-9M7m9pS1a8CVZ2HxOMslkJvkNwCuxrfFRusoWPGOyguaUkbNB1BxGh1w5H3G2j6d4NCs-nJQnLVi0vIW5Yb8XsE_OxAdeuUCANrvswW6ptBEvDSMcdQYDU27UKVb0Y3nVGTD_VsS1LahdiHvN6ek1IfOGXTRuN5OH8KCVE9PhZmAfwZ3Q7MG9K-iBe3D_swvUtJDTj0FP1xvry1kaMWPTZZNSXM3S38SBD7-W8U1ieh69doma7AnMJuPvo6OsdYmQOcztKvNqUTpjXZhXjjAQ0zLnFcqXHpV3ZeFJoWORzgdrg1aIpBeoUXx7lgOsgn4KO82yCc8gdd4EKpQt0Gvm4jkt-FOTxkEgyj0mMNhSqXYtXri4rTirO6TjSNiaCVsLYevLBN50Wc43YBm3JX4tpK-FkbhcR-17AG6dQFLVQ8MnNYPG2AQOeHS4ERKq0iilWQxlUZZFEwFQS2B_O251y4EXXKkRI7MdcEdedr-Zd8QgQk1Yri_k9MPrGe_d9pY0aFjkqiyaBN5u58TVav7Rvef_lfoF3M3jBJXLa_uws_q5Dgcs7azmfehVk8M-7A7fH3_6JvHhj49jjt-Np1--9iMXcDjLh38AcPD4bg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swED_68bAxGOs-mLd29WBjsGGwLFuyHkopW9N0bbOXFvqmKZIChWJnS7KSf2p_4-7kj62D5q0vJhDHkU93p9_dSb8DeEe1NQyly2SCGpPkZmwSY5WnNIfkPmPWBZ7ts5EYXuRfL4vLNfjdnYWhbZWdTwyO2tWWcuRo3ZKKhioV-9MfCXWNoupq10KjUYsTv7zBkG22d_wF5_d9lg0Ozz8Pk7arQGJFpuaJY5PCSmX9uLRGeIPDydDIXeEEc7bInWHCIipyXinPmRCGTwQX1B6zSEXpOT53HTZzjis5nUwfHPVVC1k0OR1FSbqs7KuoaSAtxZfHwJ02QgiVLG-tg-1qsF5dXd1Cuv8VZ8OaN3gCj1uwGh802rUFa756Co--WW-qlun6GfDRoin6XMeBqjauq9gEJxrfGLw4_6sORyHjaWgWRtm553BxLzJ7ARtVXfmXEFsnvcmZyoXj6DzGZoIfueEi9cZkTkSQdnLRtqUpp24Z17onWA6i1ChKTaLUywg-9j-ZNhwdq27-QMLWZL_4XGvaYwg4OmLC0gcSA0RUNaki2MH5wEHQlRWSMY7oFxE0IiLibYtgu5sp3Rr-TP9V0wje9l-jyVIdxlS-Xswo6EI3ipBBrbhHSER6pRIygk-dFvz7N3e83qvVg9qFB8Pzs1N9ejw6eQ0Ps6CPtGFuGzbmPxd-BxHWfPwmqHUM3-_bjv4AXuQy4g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3faxQxEB7aCqIF0Wpxa6srKIKy9LLZnWwefChXj9bq6YOFvq25JAuFsnd4d5b7q_wXncn-oBUt-NCXZWGzu8lkknyTmfkC8Ip9a2RKF0lFGpNkZmISY7XnbQ4lfSqsCzzbn8d4dJp9PMvP1uBXlwsTot07l2ST08AsTfVif-aq_T7xjVloOA6IwwpQJ6s2qvLEry7JZpu_Pz6kDn6dpqMP34ZHSXusQGIx1YvEiSq3Sls_KaxBb6g-KY1ylzsUzuaZMwItwSLntfZSIBpZoUQ-HzMfYOElfXcd7pBhJNjaG-Kwd1uovNnU0bxLlxa9G_VvVb62ELbLwXp9fn4N6v7hnQ2L3ughPGjRanzQqNcjWPP1Fty_wmG4BZtfrDd1S3z9GOR42fiALuLAXBtP69iEOTW-NHRx_uc0ZEbGs3B2GG_WPYHTW5HgNmzU09o_hdg65U0mdIZO0lwyMRXdSiNx4I1JHUYw6KRU2pa1nA_PuCh7vuUg2JIEW7Jgy1UEb_tXZg1lx02F37DoSx7O9F1r2qwEqh0TY5UHiuxFhUrpCPaod6gSfBW5EkISGCZATQCJadwi2O36rWzngTn9VLGrWw-oIS_7xzSC2S1jaj9dztkGo1mVEIS-oQwqAn6FRhXBu04nrv7mH83b-a_SL-Du18NR-el4fPIM7qVBVzmabhc2Fj-Wfo_g12LyPKh8DN9ve4z9BthmOLM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+study+on+active+wave+devouring+propulsion&rft.jtitle=Journal+of+marine+science+and+technology&rft.au=De+Silva%2C+Liyanarachchi+Waruna+Arampath&rft.au=Yamaguchi%2C+Hajime&rft.date=2012-09-01&rft.issn=0948-4280&rft.eissn=1437-8213&rft.volume=17&rft.issue=3&rft.spage=261&rft.epage=275&rft_id=info:doi/10.1007%2Fs00773-012-0169-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0948-4280&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0948-4280&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0948-4280&client=summon |