Numerical study on active wave devouring propulsion

The possibility of extracting energy from gravity waves for marine propulsion was numerically studied by a two-dimensional oscillating hydrofoil in this study. The commercially available computational fluid dynamics software FLUENT was used for the unstructured grid based on the Reynolds-average Nav...

Full description

Saved in:
Bibliographic Details
Published inJournal of marine science and technology Vol. 17; no. 3; pp. 261 - 275
Main Authors De Silva, Liyanarachchi Waruna Arampath, Yamaguchi, Hajime
Format Journal Article
LanguageEnglish
Published Japan Springer Japan 01.09.2012
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The possibility of extracting energy from gravity waves for marine propulsion was numerically studied by a two-dimensional oscillating hydrofoil in this study. The commercially available computational fluid dynamics software FLUENT was used for the unstructured grid based on the Reynolds-average Navier–Stokes equation. The free surface waves and motion of the flapping foil were implemented by customizing the FLUENT solver using a user-defined function technique. In addition, dynamic mesh technology and post processing capabilities were fully utilized. The validation of the model was carried out using experimental data for an oscillation hydrofoil under the waves. The results of the simulation were investigated in detail in order to explain the increase of propeller efficiency in gravity waves. Eight design parameters were identified and it was found that some of them greatly affected the performance of wave energy extraction by the active oscillating hydrofoil. Finally, the overall results suggested that when the design parameters are correctly maintained, the present approach can increase the performance of the oscillating hydrofoil by absorbing energy from sea waves.
AbstractList The possibility of extracting energy from gravity waves for marine propulsion was numerically studied by a two-dimensional oscillating hydrofoil in this study. The commercially available computational fluid dynamics software FLUENT was used for the unstructured grid based on the Reynolds-average Navier-Stokes equation. The free surface waves and motion of the flapping foil were implemented by customizing the FLUENT solver using a user-defined function technique. In addition, dynamic mesh technology and post processing capabilities were fully utilized. The validation of the model was carried out using experimental data for an oscillation hydrofoil under the waves. The results of the simulation were investigated in detail in order to explain the increase of propeller efficiency in gravity waves. Eight design parameters were identified and it was found that some of them greatly affected the performance of wave energy extraction by the active oscillating hydrofoil. Finally, the overall results suggested that when the design parameters are correctly maintained, the present approach can increase the performance of the oscillating hydrofoil by absorbing energy from sea waves.
The possibility of extracting energy from gravity waves for marine propulsion was numerically studied by a two-dimensional oscillating hydrofoil in this study. The commercially available computational fluid dynamics software FLUENT was used for the unstructured grid based on the Reynolds-average Navier-Stokes equation. The free surface waves and motion of the flapping foil were implemented by customizing the FLUENT solver using a user-defined function technique. In addition, dynamic mesh technology and post processing capabilities were fully utilized. The validation of the model was carried out using experimental data for an oscillation hydrofoil under the waves. The results of the simulation were investigated in detail in order to explain the increase of propeller efficiency in gravity waves. Eight design parameters were identified and it was found that some of them greatly affected the performance of wave energy extraction by the active oscillating hydrofoil. Finally, the overall results suggested that when the design parameters are correctly maintained, the present approach can increase the performance of the oscillating hydrofoil by absorbing energy from sea waves.[PUBLICATION ABSTRACT]
Audience Academic
Author DE SILVA Liyanarachchi Waruna Arampath
YAMAGUCHI Hajime
Author_xml – sequence: 1
  givenname: Liyanarachchi Waruna Arampath
  surname: De Silva
  fullname: De Silva, Liyanarachchi Waruna Arampath
  email: waruna@fluidlab.sys.t.u-tokyo.ac.jp
  organization: The University of Tokyo
– sequence: 2
  givenname: Hajime
  surname: Yamaguchi
  fullname: Yamaguchi, Hajime
  organization: The University of Tokyo
BackLink https://cir.nii.ac.jp/crid/1571135651152445568$$DView record in CiNii
BookMark eNqFkUtr3TAQhUVJoTePH9CdoV1041QjWSNrGUIfgdBu0rVQJDko-Mq3kp1y_33HuIsSaIPQCMT5jjRzTtlJnnJk7C3wS-Bcf6xUtGw5CNpo2uMrtoNO6rYXIE_YjpuubzvR8zfstNZHzkErw3dMflv2sSTvxqbOSzg2U26cn9NTbH45KiE-TUtJ-aE5lOmwjDVN-Zy9HtxY48Wf84z9-Pzp7vpre_v9y8311W3rUZi5DTAor42P9713GB34IFwIQQWE4FUXHKA3WodoTJSA6OSAEhG1VBz7KM_Yh82Xnv65xDrbfao-jqPLcVqqBdSgVG8IeFEKIIUAIQ1J3z2TPlKHmRqxwDVqoQ1HUl1uqgc3RpvyMM3FeVoh7pOn2Q-J7q80dD0xerXVG-DLVGuJg_VpdjONi8A0krddg7JbUJaCsmtQ9kgkPCMPJe1dOf6XERtTD2s4sfzdxL-h9xuUU6LfrRWUpskoVABKdJ1S2MvfR4uwnw
CitedBy_id crossref_primary_10_1007_s12206_016_1229_8
crossref_primary_10_3390_biomimetics8030311
crossref_primary_10_3390_app10186226
crossref_primary_10_1016_j_oceaneng_2025_120735
crossref_primary_10_1016_j_oceaneng_2023_114330
crossref_primary_10_1063_5_0212506
crossref_primary_10_1371_journal_pone_0218832
crossref_primary_10_1016_j_oceaneng_2022_112709
crossref_primary_10_1016_j_procs_2022_10_042
crossref_primary_10_1007_s40868_024_00153_w
crossref_primary_10_1007_s00773_023_00927_8
crossref_primary_10_1016_j_oceaneng_2022_113316
crossref_primary_10_2139_ssrn_3916210
crossref_primary_10_1016_j_oceaneng_2023_115710
crossref_primary_10_1063_5_0060409
crossref_primary_10_1177_1475090213489674
crossref_primary_10_1016_j_oceaneng_2017_06_037
crossref_primary_10_1016_j_enganabound_2017_08_014
crossref_primary_10_1007_s00773_018_0583_x
crossref_primary_10_1016_j_oceaneng_2020_107875
crossref_primary_10_1007_s00348_013_1491_9
crossref_primary_10_3390_jmse8010056
crossref_primary_10_3390_app8060934
crossref_primary_10_1016_j_jfluidstructs_2016_07_003
crossref_primary_10_3390_jmse11030632
crossref_primary_10_1016_j_renene_2021_11_109
crossref_primary_10_1016_j_oceaneng_2018_02_028
crossref_primary_10_1016_j_oceaneng_2021_110157
crossref_primary_10_1088_1742_6596_2767_5_052045
crossref_primary_10_1016_j_oceaneng_2022_110590
crossref_primary_10_1016_j_oceaneng_2023_116175
crossref_primary_10_1016_j_renene_2024_119956
crossref_primary_10_1177_14750902221140968
crossref_primary_10_1016_j_apor_2022_103148
crossref_primary_10_1007_s13344_016_0026_6
crossref_primary_10_1016_j_oceaneng_2022_111358
crossref_primary_10_1016_j_oceaneng_2019_106151
crossref_primary_10_1016_j_oceaneng_2019_106553
crossref_primary_10_3390_jmse8070479
crossref_primary_10_1016_j_ijnaoe_2019_02_006
crossref_primary_10_1016_j_enganabound_2014_01_008
crossref_primary_10_1177_14750902211062069
crossref_primary_10_1177_14750902231221873
crossref_primary_10_1016_j_oceaneng_2013_06_028
crossref_primary_10_1016_j_rser_2023_113589
crossref_primary_10_1063_5_0190664
crossref_primary_10_1016_j_renene_2024_121518
crossref_primary_10_1016_j_apor_2022_103374
crossref_primary_10_1016_j_oceaneng_2024_120134
crossref_primary_10_1016_j_oceaneng_2022_112118
Cites_doi 10.1016/j.euromechflu.2003.10.002
10.1017/S0022112071000570
10.1017/S0022112060001110
10.2534/jjasnaoe1968.1982.54
10.2534/jjasnaoe1968.1984.156_102
10.1017/S0022112094002016
10.1017/S0022112071000685
10.1017/S0022112071000697
10.1017/S0022112097008392
10.1017/S0022112061000949
10.1115/1.1412235
10.1002/fld.525
10.2534/jjasnaoe1968.1984.156_82
10.1017/S0022112088000205
ContentType Journal Article
Copyright The Author(s) 2012
COPYRIGHT 2012 Springer
JASNAOE 2012
Copyright_xml – notice: The Author(s) 2012
– notice: COPYRIGHT 2012 Springer
– notice: JASNAOE 2012
DBID RYH
C6C
AAYXX
CITATION
3V.
7ST
7TB
7TN
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
L.G
L6V
M2P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
DOI 10.1007/s00773-012-0169-y
DatabaseName CiNii Complete
Springer Nature OA Free Journals (WRLC)
CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Technology Research Database

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
Engineering
EISSN 1437-8213
EndPage 275
ExternalDocumentID 2770635251
A714876779
10_1007_s00773_012_0169_y
10031060265
Genre Feature
GroupedDBID -~C
.86
.VR
06D
0R~
0VY
199
1N0
203
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7XC
88I
8CJ
8FE
8FG
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CCPQU
COF
CS3
CSCUP
D-I
D1J
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IEP
IJ-
IKXTQ
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
L6V
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PATMY
PCBAR
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
ROL
RPX
RSV
RYH
S16
S27
S3B
SAP
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TR2
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
-5B
-5G
-BR
-EM
-Y2
1SB
2.D
28-
2P1
2VQ
3V.
5QI
ADINQ
AEFIE
AFEXP
AGGDS
AHAVH
ARCEE
BBWZM
C6C
CAG
GQ6
H13
IHE
KOW
NDZJH
RIG
RNI
RZK
S1Z
S26
S28
SCLPG
SCV
T16
Z5O
Z7R
Z7Z
Z86
Z8M
Z8T
_50
AAYXX
AFOHR
CITATION
AEIIB
PMFND
7ST
7TB
7TN
7XB
8FD
8FK
ABRTQ
C1K
F1W
FR3
H96
L.G
PKEHL
PQEST
PQGLB
PQUKI
Q9U
SOI
ID FETCH-LOGICAL-c629t-d1f5c79ceb8ca6ea1cd2addd5d61dc54da16c977de99e3166a3f63666735068e3
IEDL.DBID C6C
ISSN 0948-4280
IngestDate Fri Jul 11 00:32:42 EDT 2025
Fri Jul 11 09:21:15 EDT 2025
Fri Jul 25 19:12:09 EDT 2025
Tue Jun 10 20:19:25 EDT 2025
Thu Apr 24 23:03:14 EDT 2025
Tue Jul 01 01:16:21 EDT 2025
Fri Feb 21 02:33:28 EST 2025
Thu Jun 26 21:26:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Wave devouring propulsion
Numerical simulation
Flapping foil
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c629t-d1f5c79ceb8ca6ea1cd2addd5d61dc54da16c977de99e3166a3f63666735068e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1007/s00773-012-0169-y
PQID 1076727906
PQPubID 54119
PageCount 15
ParticipantIDs proquest_miscellaneous_1671558967
proquest_miscellaneous_1113221239
proquest_journals_1076727906
gale_infotracacademiconefile_A714876779
crossref_citationtrail_10_1007_s00773_012_0169_y
crossref_primary_10_1007_s00773_012_0169_y
springer_journals_10_1007_s00773_012_0169_y
nii_cinii_1571135651152445568
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-01
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationSubtitle Official Journal of the Japan Society of Naval Architects and Ocean Engineers (JASNAOE)
PublicationTitle Journal of marine science and technology
PublicationTitleAbbrev J Mar Sci Technol
PublicationYear 2012
Publisher Springer Japan
Springer
Springer Nature B.V
Publisher_xml – name: Springer Japan
– name: Springer
– name: Springer Nature B.V
References Jakobsen E (1981) The foil propeller, wave power for propulsion. 2nd International Symposium on Wave and Tidal Energy. BHRA fluid Engineering, pp 363–369
WuTYHydromechanics of swimming propulsion. Part 1. Swimming of a two dimensional flexible plate at variable forward speeds in inviscid fluidJ Fluid Mech1971463373550242.7600910.1017/S0022112071000570
IsshikiHMurakamiMA theory of wave devouring propulsion (4th report)J Soc Nav Archit Jpn1984156102114
Yamaguchi H, Bose N (1994) Oscillating foils for marine propulsion. Proceedings of the Fourth International offshore and polar engineering conference, Osaka, pp 539–544
WuTYHydromechanics of swimming propulsion. Part 3. Swimming and optimum movement of slender fish with side finsJ Fluid Mech19714654556810.1017/S0022112071000697
GuglielminiLBlondeauxPPropulsive efficiency of oscillating foilsEur J Mech B Fluid2004232552781068.7601610.1016/j.euromechflu.2003.10.002
WuTYSwimming of a waving plateJ Fluid Mech1961103213441270530116.1680110.1017/S0022112061000949
Isshiki H, Murakami M, Terao Y (1984) Utilization of wave energy into propulsion of ships-wave devouring propulsion. In: 15th Symposium on Naval Hydrodynamics. National Academy Press, Washington, D.C., pp 539–552
TeraoYA floating structure which moves towards the wave (possibility of wave devouring propulsion)J Kansai Soc Nav Archit19821845154(in Japanese)
LaiPSKBoseNMcgregorRCWave propulsion from flexible-armed, rigid-foil propulsorMarine Technol19933012836
KudoTKubotaAYamaguchiHStudy on propulsion by practically elastic foil (2nd report) (in Japanese)J Soc Nav Archit Jpn19841568594
GrueJMoAPalmEPropulsion of a foil moving in water wavesJ Fluid Mech19881863934170662.7601710.1017/S0022112088000205
LighthillMJNote on the swimming of slender fishJ Fluid Mech1960930531711545410.1017/S0022112060001110
WuTYHydromechanics of swimming propulsion. Part 2. Some optimum shape problemsJ Fluid Mech19714652154410.1017/S0022112071000685
PedroGSulemanADjilaliNA numerical study of the propulsive efficiency of a flapping hydrofoilInt J Numer Meth Fluids20034249352619848971030.7606510.1002/fld.525
Bose N (1992) A time-domain panel method for analysis of foils in unsteady motion as oscillating propulsors. Proceedings of the 11th Australian Fluid Mechanics Conference, University of Tasmania, Hobart, pp 1201–1204
AndersonJMStreitlienKBarrettDSOscillating foils of high propulsive efficiencyJ Fluid Mech1998360417216215350922.7602310.1017/S0022112097008392
SternFWilsonRVColemanHWComprehensive approach to verification and validation of CFD simulation-part1: methodology and proceduresJ Fluid Eng200112379380210.1115/1.1412235
IsshikiHA theory of wave devouring propulsion (1st report)J Soc Nav Archit Jpn1982151546410.2534/jjasnaoe1968.1982.54
GopalkrishnanRTriantafyllouMSTriatafyllouGSActive vorticity control in a shear flow using flapping foilJ Fluid Mech199427412110.1017/S0022112094002016
KubotaAKudoTKatoHStudy on propulsion by practically elastic foil (1st report)J Soc Nav Archit Jpn198415695105(in Japanese)
WuTYExtraction of flow energy by a wing oscillating in wavesJ Ship Res19721416678
TY Wu (169_CR7) 1971; 46
L Guglielmini (169_CR14) 2004; 23
R Gopalkrishnan (169_CR17) 1994; 27
TY Wu (169_CR6) 1971; 46
TY Wu (169_CR5) 1961; 10
F Stern (169_CR22) 2001; 123
G Pedro (169_CR13) 2003; 42
J Grue (169_CR21) 1988; 186
169_CR18
169_CR20
169_CR1
169_CR10
JM Anderson (169_CR16) 1998; 360
169_CR12
T Kudo (169_CR11) 1984; 156
169_CR9
MJ Lighthill (169_CR4) 1960; 9
PSK Lai (169_CR15) 1993; 30
169_CR2
H Isshiki (169_CR19) 1982; 151
169_CR3
TY Wu (169_CR8) 1971; 46
References_xml – reference: WuTYHydromechanics of swimming propulsion. Part 3. Swimming and optimum movement of slender fish with side finsJ Fluid Mech19714654556810.1017/S0022112071000697
– reference: Jakobsen E (1981) The foil propeller, wave power for propulsion. 2nd International Symposium on Wave and Tidal Energy. BHRA fluid Engineering, pp 363–369
– reference: Yamaguchi H, Bose N (1994) Oscillating foils for marine propulsion. Proceedings of the Fourth International offshore and polar engineering conference, Osaka, pp 539–544
– reference: IsshikiHA theory of wave devouring propulsion (1st report)J Soc Nav Archit Jpn1982151546410.2534/jjasnaoe1968.1982.54
– reference: SternFWilsonRVColemanHWComprehensive approach to verification and validation of CFD simulation-part1: methodology and proceduresJ Fluid Eng200112379380210.1115/1.1412235
– reference: GuglielminiLBlondeauxPPropulsive efficiency of oscillating foilsEur J Mech B Fluid2004232552781068.7601610.1016/j.euromechflu.2003.10.002
– reference: GrueJMoAPalmEPropulsion of a foil moving in water wavesJ Fluid Mech19881863934170662.7601710.1017/S0022112088000205
– reference: LighthillMJNote on the swimming of slender fishJ Fluid Mech1960930531711545410.1017/S0022112060001110
– reference: IsshikiHMurakamiMA theory of wave devouring propulsion (4th report)J Soc Nav Archit Jpn1984156102114
– reference: TeraoYA floating structure which moves towards the wave (possibility of wave devouring propulsion)J Kansai Soc Nav Archit19821845154(in Japanese)
– reference: WuTYHydromechanics of swimming propulsion. Part 1. Swimming of a two dimensional flexible plate at variable forward speeds in inviscid fluidJ Fluid Mech1971463373550242.7600910.1017/S0022112071000570
– reference: GopalkrishnanRTriantafyllouMSTriatafyllouGSActive vorticity control in a shear flow using flapping foilJ Fluid Mech199427412110.1017/S0022112094002016
– reference: KubotaAKudoTKatoHStudy on propulsion by practically elastic foil (1st report)J Soc Nav Archit Jpn198415695105(in Japanese)
– reference: WuTYHydromechanics of swimming propulsion. Part 2. Some optimum shape problemsJ Fluid Mech19714652154410.1017/S0022112071000685
– reference: WuTYExtraction of flow energy by a wing oscillating in wavesJ Ship Res19721416678
– reference: AndersonJMStreitlienKBarrettDSOscillating foils of high propulsive efficiencyJ Fluid Mech1998360417216215350922.7602310.1017/S0022112097008392
– reference: KudoTKubotaAYamaguchiHStudy on propulsion by practically elastic foil (2nd report) (in Japanese)J Soc Nav Archit Jpn19841568594
– reference: LaiPSKBoseNMcgregorRCWave propulsion from flexible-armed, rigid-foil propulsorMarine Technol19933012836
– reference: PedroGSulemanADjilaliNA numerical study of the propulsive efficiency of a flapping hydrofoilInt J Numer Meth Fluids20034249352619848971030.7606510.1002/fld.525
– reference: WuTYSwimming of a waving plateJ Fluid Mech1961103213441270530116.1680110.1017/S0022112061000949
– reference: Isshiki H, Murakami M, Terao Y (1984) Utilization of wave energy into propulsion of ships-wave devouring propulsion. In: 15th Symposium on Naval Hydrodynamics. National Academy Press, Washington, D.C., pp 539–552
– reference: Bose N (1992) A time-domain panel method for analysis of foils in unsteady motion as oscillating propulsors. Proceedings of the 11th Australian Fluid Mechanics Conference, University of Tasmania, Hobart, pp 1201–1204
– ident: 169_CR12
– volume: 23
  start-page: 255
  year: 2004
  ident: 169_CR14
  publication-title: Eur J Mech B Fluid
  doi: 10.1016/j.euromechflu.2003.10.002
– volume: 46
  start-page: 337
  year: 1971
  ident: 169_CR6
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112071000570
– volume: 9
  start-page: 305
  year: 1960
  ident: 169_CR4
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112060001110
– volume: 30
  start-page: 28
  issue: 1
  year: 1993
  ident: 169_CR15
  publication-title: Marine Technol
– volume: 151
  start-page: 54
  year: 1982
  ident: 169_CR19
  publication-title: J Soc Nav Archit Jpn
  doi: 10.2534/jjasnaoe1968.1982.54
– ident: 169_CR20
  doi: 10.2534/jjasnaoe1968.1984.156_102
– volume: 27
  start-page: 1
  issue: 4
  year: 1994
  ident: 169_CR17
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112094002016
– volume: 46
  start-page: 521
  year: 1971
  ident: 169_CR7
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112071000685
– volume: 46
  start-page: 545
  year: 1971
  ident: 169_CR8
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112071000697
– volume: 360
  start-page: 41
  year: 1998
  ident: 169_CR16
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112097008392
– volume: 10
  start-page: 321
  year: 1961
  ident: 169_CR5
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112061000949
– ident: 169_CR3
– ident: 169_CR18
– volume: 123
  start-page: 793
  year: 2001
  ident: 169_CR22
  publication-title: J Fluid Eng
  doi: 10.1115/1.1412235
– ident: 169_CR1
– ident: 169_CR2
– volume: 42
  start-page: 493
  year: 2003
  ident: 169_CR13
  publication-title: Int J Numer Meth Fluids
  doi: 10.1002/fld.525
– ident: 169_CR10
  doi: 10.2534/jjasnaoe1968.1984.156_82
– volume: 156
  start-page: 85
  year: 1984
  ident: 169_CR11
  publication-title: J Soc Nav Archit Jpn
– volume: 186
  start-page: 393
  year: 1988
  ident: 169_CR21
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112088000205
– ident: 169_CR9
SSID ssj0017590
Score 2.165073
Snippet The possibility of extracting energy from gravity waves for marine propulsion was numerically studied by a two-dimensional oscillating hydrofoil in this study....
SourceID proquest
gale
crossref
springer
nii
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 261
SubjectTerms Analysis
Automotive Engineering
Design parameters
Engineering
Engineering Design
Engineering Fluid Dynamics
Flapping foil
Fluid dynamics
Free surfaces
Gravity
Gravity waves
Hydrodynamics
Hydrofoils
Marine
Mathematical analysis
Mathematical models
Mechanical Engineering
Navier-Stokes equations
Numerical analysis
Numerical simulation
Offshore Engineering
Original Article
Oscillating
Surface waves
Wave devouring propulsion
Wave energy
Wave power
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_a9GUMxtptzFtbPCgMNgyWZUvW0-hGSyksHWOFvomLpECh2OmSrPS_752ieOugeREGy7Z8ujvdh_Q7gCPOrZEr3RZT4piixgkW6EzgMIeWoRLOR5zt72N1dlmfXzVXKeA2T9sq1zoxKmrfO46Rk3RrThqaUn2Z3RZcNYqzq6mExjbskApu2xHsfD0Z__g55BF0s4qyGA6bVe2Q1ywjjCgNh1xp3pqgTHH_aGVK-nm7u75-ZHv-ly6Nq9DpS3iRzMf8eDXfu7AVuj14fuECdgl7-hXI8XKVhrnJI3hs3nc5RrWW3yE1Pvzp4-HEfBbLd3G87DVcnp78-nZWpNoIhVOVWRReTBunjQuT1qEKSEStSFX5xivhXVN7FMqRbeeDMUEKpVBOlVRc5LMpVRvkGxh1fRfeQu68DlgLUysvSZwnOKVLiVKVAbHyKoNyTRfrEnA416-4sQPkcSSlJVJaJqW9z-DT8MhshZqxqfNHJrZliaL3OkwHA2h0jE1ljzW5bDT52mRwQPNBg-BWNFoISfYo2bRkozCSWgb765mySRTn9i_jZPBhuE1CxJkR7EK_nLMbRIqNFnGzoY_SZHu1RukMPq-54N_PPPF77zYP6j08qyIP8ra1fRgtfi_DAdk5i8lhYuYHa5H12w
  priority: 102
  providerName: ProQuest
Title Numerical study on active wave devouring propulsion
URI https://cir.nii.ac.jp/crid/1571135651152445568
https://link.springer.com/article/10.1007/s00773-012-0169-y
https://www.proquest.com/docview/1076727906
https://www.proquest.com/docview/1113221239
https://www.proquest.com/docview/1671558967
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB-89kUF0aq42h4rCIKycNnsTjaP53nXovYU9aA-LXNJDgplr9g7pf-9M7m9pS1a8CVZ2HxOMslkJvkNwCuxrfFRusoWPGOyguaUkbNB1BxGh1w5H3G2j6d4NCs-nJQnLVi0vIW5Yb8XsE_OxAdeuUCANrvswW6ptBEvDSMcdQYDU27UKVb0Y3nVGTD_VsS1LahdiHvN6ek1IfOGXTRuN5OH8KCVE9PhZmAfwZ3Q7MG9K-iBe3D_swvUtJDTj0FP1xvry1kaMWPTZZNSXM3S38SBD7-W8U1ieh69doma7AnMJuPvo6OsdYmQOcztKvNqUTpjXZhXjjAQ0zLnFcqXHpV3ZeFJoWORzgdrg1aIpBeoUXx7lgOsgn4KO82yCc8gdd4EKpQt0Gvm4jkt-FOTxkEgyj0mMNhSqXYtXri4rTirO6TjSNiaCVsLYevLBN50Wc43YBm3JX4tpK-FkbhcR-17AG6dQFLVQ8MnNYPG2AQOeHS4ERKq0iilWQxlUZZFEwFQS2B_O251y4EXXKkRI7MdcEdedr-Zd8QgQk1Yri_k9MPrGe_d9pY0aFjkqiyaBN5u58TVav7Rvef_lfoF3M3jBJXLa_uws_q5Dgcs7azmfehVk8M-7A7fH3_6JvHhj49jjt-Np1--9iMXcDjLh38AcPD4bg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swED_68bAxGOs-mLd29WBjsGGwLFuyHkopW9N0bbOXFvqmKZIChWJnS7KSf2p_4-7kj62D5q0vJhDHkU93p9_dSb8DeEe1NQyly2SCGpPkZmwSY5WnNIfkPmPWBZ7ts5EYXuRfL4vLNfjdnYWhbZWdTwyO2tWWcuRo3ZKKhioV-9MfCXWNoupq10KjUYsTv7zBkG22d_wF5_d9lg0Ozz8Pk7arQGJFpuaJY5PCSmX9uLRGeIPDydDIXeEEc7bInWHCIipyXinPmRCGTwQX1B6zSEXpOT53HTZzjis5nUwfHPVVC1k0OR1FSbqs7KuoaSAtxZfHwJ02QgiVLG-tg-1qsF5dXd1Cuv8VZ8OaN3gCj1uwGh802rUFa756Co--WW-qlun6GfDRoin6XMeBqjauq9gEJxrfGLw4_6sORyHjaWgWRtm553BxLzJ7ARtVXfmXEFsnvcmZyoXj6DzGZoIfueEi9cZkTkSQdnLRtqUpp24Z17onWA6i1ChKTaLUywg-9j-ZNhwdq27-QMLWZL_4XGvaYwg4OmLC0gcSA0RUNaki2MH5wEHQlRWSMY7oFxE0IiLibYtgu5sp3Rr-TP9V0wje9l-jyVIdxlS-Xswo6EI3ipBBrbhHSER6pRIygk-dFvz7N3e83qvVg9qFB8Pzs1N9ejw6eQ0Ps6CPtGFuGzbmPxd-BxHWfPwmqHUM3-_bjv4AXuQy4g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3faxQxEB7aCqIF0Wpxa6srKIKy9LLZnWwefChXj9bq6YOFvq25JAuFsnd4d5b7q_wXncn-oBUt-NCXZWGzu8lkknyTmfkC8Ip9a2RKF0lFGpNkZmISY7XnbQ4lfSqsCzzbn8d4dJp9PMvP1uBXlwsTot07l2ST08AsTfVif-aq_T7xjVloOA6IwwpQJ6s2qvLEry7JZpu_Pz6kDn6dpqMP34ZHSXusQGIx1YvEiSq3Sls_KaxBb6g-KY1ylzsUzuaZMwItwSLntfZSIBpZoUQ-HzMfYOElfXcd7pBhJNjaG-Kwd1uovNnU0bxLlxa9G_VvVb62ELbLwXp9fn4N6v7hnQ2L3ughPGjRanzQqNcjWPP1Fty_wmG4BZtfrDd1S3z9GOR42fiALuLAXBtP69iEOTW-NHRx_uc0ZEbGs3B2GG_WPYHTW5HgNmzU09o_hdg65U0mdIZO0lwyMRXdSiNx4I1JHUYw6KRU2pa1nA_PuCh7vuUg2JIEW7Jgy1UEb_tXZg1lx02F37DoSx7O9F1r2qwEqh0TY5UHiuxFhUrpCPaod6gSfBW5EkISGCZATQCJadwi2O36rWzngTn9VLGrWw-oIS_7xzSC2S1jaj9dztkGo1mVEIS-oQwqAn6FRhXBu04nrv7mH83b-a_SL-Du18NR-el4fPIM7qVBVzmabhc2Fj-Wfo_g12LyPKh8DN9ve4z9BthmOLM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+study+on+active+wave+devouring+propulsion&rft.jtitle=Journal+of+marine+science+and+technology&rft.au=De+Silva%2C+Liyanarachchi+Waruna+Arampath&rft.au=Yamaguchi%2C+Hajime&rft.date=2012-09-01&rft.issn=0948-4280&rft.eissn=1437-8213&rft.volume=17&rft.issue=3&rft.spage=261&rft.epage=275&rft_id=info:doi/10.1007%2Fs00773-012-0169-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0948-4280&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0948-4280&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0948-4280&client=summon