Low autophagy capacity implicated in motor system vulnerability to mutant superoxide dismutase
The motor system is selectively vulnerable to mutations in the ubiquitously expressed aggregation-prone enzyme superoxide dismutase-1 (SOD1). Autophagy clears aggregates, and factors involved in the process were analyzed in multiple areas of the CNS from human control subjects (n = 10) and amyotroph...
Saved in:
Published in | Acta neuropathologica communications Vol. 4; no. 1; p. 6 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
25.01.2016
BioMed Central |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The motor system is selectively vulnerable to mutations in the ubiquitously expressed aggregation-prone enzyme superoxide dismutase-1 (SOD1).
Autophagy clears aggregates, and factors involved in the process were analyzed in multiple areas of the CNS from human control subjects (n = 10) and amyotrophic lateral sclerosis (ALS) patients (n = 18) with or without SOD1 mutations. In control subjects, the key regulatory protein Beclin 1 and downstream factors were remarkably scarce in spinal motor areas. In ALS patients, there was evidence of moderate autophagy activation and also dysregulation. These changes were largest in SOD1 mutation carriers. To explore consequences of low autophagy capacity, effects of a heterozygous deletion of Beclin 1 were examined in ALS mouse models expressing mutant SOD1s. This caused earlier SOD1 aggregation, onset of symptoms, motor neuron loss, and a markedly shortened survival. In contrast, the levels of soluble misfolded SOD1 species were reduced.
The findings suggest that an inherent low autophagy capacity might cause the vulnerability of the motor system, and that SOD1 aggregation plays a crucial role in the pathogenesis. |
---|---|
AbstractList | Introduction: The motor system is selectively vulnerable to mutations in the ubiquitously expressed aggregation-prone enzyme superoxide dismutase-1 (SOD1).
Results: Autophagy clears aggregates, and factors involved in the process were analyzed in multiple areas of the CNS from human control subjects ( n = 10) and amyotrophic lateral sclerosis (ALS) patients ( n = 18) with or without SOD1 mutations. In control subjects, the key regulatory protein Beclin 1 and downstream factors were remarkably scarce in spinal motor areas. In ALS patients, there was evidence of moderate autophagy activation and also dysregulation. These changes were largest in SOD1 mutation carriers. To explore consequences of low autophagy capacity, effects of a heterozygous deletion of Beclin 1 were examined in ALS mouse models expressing mutant SOD1s. This caused earlier SOD1 aggregation, onset of symptoms, motor neuron loss, and a markedly shortened survival. In contrast, the levels of soluble misfolded SOD1 species were reduced.
Conclusions: The findings suggest that an inherent low autophagy capacity might cause the vulnerability of the motor system, and that SOD1 aggregation plays a crucial role in the pathogenesis. Introduction The motor system is selectively vulnerable to mutations in the ubiquitously expressed aggregation-prone enzyme superoxide dismutase-1 (SOD1). Results Autophagy clears aggregates, and factors involved in the process were analyzed in multiple areas of the CNS from human control subjects (n = 10) and amyotrophic lateral sclerosis (ALS) patients (n = 18) with or without SOD1 mutations. In control subjects, the key regulatory protein Beclin 1 and downstream factors were remarkably scarce in spinal motor areas. In ALS patients, there was evidence of moderate autophagy activation and also dysregulation. These changes were largest in SOD1 mutation carriers. To explore consequences of low autophagy capacity, effects of a heterozygous deletion of Beclin 1 were examined in ALS mouse models expressing mutant SOD1s. This caused earlier SOD1 aggregation, onset of symptoms, motor neuron loss, and a markedly shortened survival. In contrast, the levels of soluble misfolded SOD1 species were reduced. Conclusions The findings suggest that an inherent low autophagy capacity might cause the vulnerability of the motor system, and that SOD1 aggregation plays a crucial role in the pathogenesis. Keywords: Amyotrophic lateral sclerosis, Autophagy, Motor system vulnerability, Protein aggregates, Superoxide disumutase-1 The motor system is selectively vulnerable to mutations in the ubiquitously expressed aggregation-prone enzyme superoxide dismutase-1 (SOD1).INTRODUCTIONThe motor system is selectively vulnerable to mutations in the ubiquitously expressed aggregation-prone enzyme superoxide dismutase-1 (SOD1).Autophagy clears aggregates, and factors involved in the process were analyzed in multiple areas of the CNS from human control subjects (n = 10) and amyotrophic lateral sclerosis (ALS) patients (n = 18) with or without SOD1 mutations. In control subjects, the key regulatory protein Beclin 1 and downstream factors were remarkably scarce in spinal motor areas. In ALS patients, there was evidence of moderate autophagy activation and also dysregulation. These changes were largest in SOD1 mutation carriers. To explore consequences of low autophagy capacity, effects of a heterozygous deletion of Beclin 1 were examined in ALS mouse models expressing mutant SOD1s. This caused earlier SOD1 aggregation, onset of symptoms, motor neuron loss, and a markedly shortened survival. In contrast, the levels of soluble misfolded SOD1 species were reduced.RESULTSAutophagy clears aggregates, and factors involved in the process were analyzed in multiple areas of the CNS from human control subjects (n = 10) and amyotrophic lateral sclerosis (ALS) patients (n = 18) with or without SOD1 mutations. In control subjects, the key regulatory protein Beclin 1 and downstream factors were remarkably scarce in spinal motor areas. In ALS patients, there was evidence of moderate autophagy activation and also dysregulation. These changes were largest in SOD1 mutation carriers. To explore consequences of low autophagy capacity, effects of a heterozygous deletion of Beclin 1 were examined in ALS mouse models expressing mutant SOD1s. This caused earlier SOD1 aggregation, onset of symptoms, motor neuron loss, and a markedly shortened survival. In contrast, the levels of soluble misfolded SOD1 species were reduced.The findings suggest that an inherent low autophagy capacity might cause the vulnerability of the motor system, and that SOD1 aggregation plays a crucial role in the pathogenesis.CONCLUSIONSThe findings suggest that an inherent low autophagy capacity might cause the vulnerability of the motor system, and that SOD1 aggregation plays a crucial role in the pathogenesis. The motor system is selectively vulnerable to mutations in the ubiquitously expressed aggregation-prone enzyme superoxide dismutase-1 (SOD1). Autophagy clears aggregates, and factors involved in the process were analyzed in multiple areas of the CNS from human control subjects (n = 10) and amyotrophic lateral sclerosis (ALS) patients (n = 18) with or without SOD1 mutations. In control subjects, the key regulatory protein Beclin 1 and downstream factors were remarkably scarce in spinal motor areas. In ALS patients, there was evidence of moderate autophagy activation and also dysregulation. These changes were largest in SOD1 mutation carriers. To explore consequences of low autophagy capacity, effects of a heterozygous deletion of Beclin 1 were examined in ALS mouse models expressing mutant SOD1s. This caused earlier SOD1 aggregation, onset of symptoms, motor neuron loss, and a markedly shortened survival. In contrast, the levels of soluble misfolded SOD1 species were reduced. The findings suggest that an inherent low autophagy capacity might cause the vulnerability of the motor system, and that SOD1 aggregation plays a crucial role in the pathogenesis. The motor system is selectively vulnerable to mutations in the ubiquitously expressed aggregation-prone enzyme superoxide dismutase-1 (SOD1). Autophagy clears aggregates, and factors involved in the process were analyzed in multiple areas of the CNS from human control subjects (n = 10) and amyotrophic lateral sclerosis (ALS) patients (n = 18) with or without SOD1 mutations. In control subjects, the key regulatory protein Beclin 1 and downstream factors were remarkably scarce in spinal motor areas. In ALS patients, there was evidence of moderate autophagy activation and also dysregulation. These changes were largest in SOD1 mutation carriers. To explore consequences of low autophagy capacity, effects of a heterozygous deletion of Beclin 1 were examined in ALS mouse models expressing mutant SOD1s. This caused earlier SOD1 aggregation, onset of symptoms, motor neuron loss, and a markedly shortened survival. In contrast, the levels of soluble misfolded SOD1 species were reduced. The findings suggest that an inherent low autophagy capacity might cause the vulnerability of the motor system, and that SOD1 aggregation plays a crucial role in the pathogenesis. |
ArticleNumber | 6 |
Audience | Academic |
Author | Tokuda, Eiichi Brännström, Thomas Andersen, Peter M. Marklund, Stefan L. |
Author_xml | – sequence: 1 givenname: Eiichi surname: Tokuda fullname: Tokuda, Eiichi – sequence: 2 givenname: Thomas surname: Brännström fullname: Brännström, Thomas – sequence: 3 givenname: Peter M. surname: Andersen fullname: Andersen, Peter M. – sequence: 4 givenname: Stefan L. surname: Marklund fullname: Marklund, Stefan L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26810478$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-116740$$DView record from Swedish Publication Index |
BookMark | eNp1kl1rFDEUhgep2Fr7A7yRAUG8mZpk8jFzIyz1Exa8US8N2cyZ3ZRMMiaZ1vn3ZthWd4smhITked8TDu_T4sR5B0XxHKNLjBv-JlJERVMhzCtEBK3mR8UZQQxXrOXo5OB8WlzEeI3yaDGum-ZJcUp4gxf1WfFj7W9LNSU_7tR2LrUalTZpLs0wWqNVgq40rhx88qGMc0wwlDeTdRDUxtgFTL4cpqRcKuM0QvC_TAdlZ-JyGeFZ8bhXNsLF3X5efPvw_uvVp2r95ePnq9W60py0qdLAamj6tq7JRglKOOsFAgAqALeCIUwZ6TjDqBZcKdEphuoNbkmtddeRltbnRbX3jbcwThs5BjOoMEuvjHxnvq-kD1s5DZPEmAuKMv92z2d4gE6DS0HZI9nxizM7ufU3kgoiarwUfH1nEPzPCWKSg4karFUO_BQlFhy1hOaV0ZcP0Gs_BZfbkSmBSU0ZxX-prbIgjet9rqsXU7miVLC2RYxn6vIfVJ4dDEbngPQm3x8JXh0IdqBs2kVvp2S8i8fgi8OO_GnFfVQyIPaADj7GAL3MQVGLT_6CsRIjueRS7nMpcy7lkks5ZyV-oLw3_7_mNxMj5JU |
CitedBy_id | crossref_primary_10_1016_j_neulet_2018_10_025 crossref_primary_10_1016_j_jmb_2020_02_018 crossref_primary_10_1016_j_bbadis_2018_03_015 crossref_primary_10_1007_s11033_019_05071_4 crossref_primary_10_1111_jnc_15718 crossref_primary_10_1016_j_plaphy_2018_11_026 crossref_primary_10_1080_15548627_2018_1432327 crossref_primary_10_1007_s00401_018_1915_y crossref_primary_10_1016_j_mcn_2018_04_009 crossref_primary_10_1093_hmg_ddx274 crossref_primary_10_1084_jem_20180729 crossref_primary_10_1248_yakushi_18_00165_5 crossref_primary_10_3390_ijms23179946 crossref_primary_10_1016_j_jmb_2019_12_035 crossref_primary_10_1038_s41401_022_00972_w crossref_primary_10_1172_JCI84360 crossref_primary_10_1155_2016_4732837 crossref_primary_10_3389_fnmol_2017_00263 crossref_primary_10_3389_fnmol_2017_00123 crossref_primary_10_1080_21678421_2019_1646991 crossref_primary_10_1111_cns_12855 crossref_primary_10_1002_med_21661 crossref_primary_10_1186_s13024_019_0313_9 crossref_primary_10_1186_s40659_024_00567_1 crossref_primary_10_1111_bpa_12467 crossref_primary_10_1016_j_bbadis_2016_11_025 crossref_primary_10_1523_JNEUROSCI_1970_20_2020 crossref_primary_10_1016_j_brainres_2016_03_032 crossref_primary_10_1016_j_neuropharm_2023_109812 crossref_primary_10_1021_acschemneuro_8b00516 crossref_primary_10_1016_j_jmb_2020_01_017 crossref_primary_10_1080_27694127_2025_2474796 crossref_primary_10_1126_sciadv_abq0651 crossref_primary_10_3390_cells9112413 |
Cites_doi | 10.1038/onc.2009.51 10.1016/j.ab.2009.12.026 10.1073/pnas.0906809106 10.1016/j.nbd.2013.01.001 10.1007/s13311-015-0342-1 10.1093/brain/awh704 10.1101/gad.1830709 10.1038/ncb1846 10.1073/pnas.1006551107 10.1172/JCI20039 10.1002/mus.20495 10.1038/nrneurol.2011.150 10.1083/jcb.200908164 10.1016/j.cell.2007.10.035 10.1371/journal.pgen.1004626 10.1007/s12017-012-8204-z 10.1073/pnas.1503328112 10.1080/17482960802146106 10.4161/auto.28784 10.1016/j.tips.2014.09.002 10.1038/cdd.2012.72 10.1093/hmg/dds399 10.1080/15548627.2015.1017191 10.1002/ana.21356 10.1038/onc.2009.60 10.1073/pnas.1312245111 10.1371/journal.pone.0011552 10.1080/14660820050515160 10.1016/j.nbd.2008.02.009 10.1080/146608200300079536 10.1038/nn.2660 10.1093/hmg/ddm320 10.1093/brain/awh005 10.1073/pnas.0700477104 10.1523/JNEUROSCI.5461-05.2006 10.1038/onc.2008.310 10.1038/nn.4000 10.1016/j.molcel.2009.01.021 10.1385/1-59259-275-9:27 10.1016/j.nbd.2009.08.006 10.1126/science.8209258 10.4161/auto.7.4.14541 10.1126/science.aaa3650 10.1212/WNL.0b013e3181b6bbbd 10.1038/ng1123 10.1016/j.expneurol.2013.11.006 10.1523/JNEUROSCI.0800-08.2008 10.1056/NEJMra1205406 10.1126/science.1123511 10.1073/pnas.1419228112 10.1523/JNEUROSCI.2315-06.2006 10.1007/s00401-011-0805-3 10.1016/j.neuron.2013.06.046 10.1073/pnas.1201795109 10.1093/brain/120.10.1723 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2016 BioMed Central Ltd. Copyright BioMed Central 2016 Tokuda et al. 2016 |
Copyright_xml | – notice: COPYRIGHT 2016 BioMed Central Ltd. – notice: Copyright BioMed Central 2016 – notice: Tokuda et al. 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADHXS ADTPV AOWAS D8T D93 ZZAVC |
DOI | 10.1186/s40478-016-0274-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (New) ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Umeå universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Umeå universitet SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2051-5960 |
ExternalDocumentID | oai_DiVA_org_umu_116740 PMC4727314 3973821391 A447599056 26810478 10_1186_s40478_016_0274_y |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFS ACIHN ACMJI ACUHS ADBBV ADRAZ ADUKV AEAQA AFKRA AFPKN AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ASPBG AVWKF BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION DIK EBLON EBS EJD FYUFA GROUPED_DOAJ GX1 H13 HMCUK HYE IAO IHR IHW INH INR ITC KQ8 M1P M48 M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SOJ TUS UKHRP CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM ADHXS ADTPV AOWAS D8T D93 LGEZI LOTEE NADUK NXXTH ZZAVC |
ID | FETCH-LOGICAL-c629t-ce53e8f9332ba74265f70eee47e197501452d6510376aa7da503b1923ccdd2943 |
IEDL.DBID | M48 |
ISSN | 2051-5960 |
IngestDate | Thu Aug 21 06:47:29 EDT 2025 Thu Aug 21 14:10:55 EDT 2025 Fri Jul 11 08:39:40 EDT 2025 Fri Jul 25 02:34:29 EDT 2025 Tue Jun 17 20:57:02 EDT 2025 Tue Jun 10 20:32:19 EDT 2025 Thu May 22 20:50:02 EDT 2025 Thu Apr 03 07:01:24 EDT 2025 Tue Jul 01 02:28:21 EDT 2025 Thu Apr 24 23:09:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c629t-ce53e8f9332ba74265f70eee47e197501452d6510376aa7da503b1923ccdd2943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1771234541?pq-origsite=%requestingapplication% |
PMID | 26810478 |
PQID | 1771234541 |
PQPubID | 2040178 |
ParticipantIDs | swepub_primary_oai_DiVA_org_umu_116740 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4727314 proquest_miscellaneous_1760924092 proquest_journals_1771234541 gale_infotracmisc_A447599056 gale_infotracacademiconefile_A447599056 gale_healthsolutions_A447599056 pubmed_primary_26810478 crossref_citationtrail_10_1186_s40478_016_0274_y crossref_primary_10_1186_s40478_016_0274_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-25 |
PublicationDateYYYYMMDD | 2016-01-25 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Acta neuropathologica communications |
PublicationTitleAlternate | Acta Neuropathol Commun |
PublicationYear | 2016 |
Publisher | BioMed Central Ltd BioMed Central |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central |
References | PA Jonsson (274_CR30) 2009; 36 NC McKnight (274_CR38) 2014; 10 AM Choi (274_CR12) 2013; 368 D Bergemalm (274_CR4) 2006; 26 VI Korolchuk (274_CR33) 2009; 33 R Wroe (274_CR53) 2008; 9 KS Graffmo (274_CR22) 2013; 22 J Hardy (274_CR24) 2014; 262pb C Hetz (274_CR25) 2009; 23 274_CR21 M Komatsu (274_CR32) 2007; 131 JD Atkin (274_CR3) 2008; 30 PM Andersen (274_CR1) 2011; 7 ET Cirulli (274_CR14) 2015; 347 S Kato (274_CR31) 2000; 1 PA Jonsson (274_CR28) 2004; 127 S Shaid (274_CR46) 2013; 20 P Boya (274_CR9) 2008; 27 J Cooper-Knock (274_CR15) 2015; 12 R Burke (274_CR11) 2002 I Puls (274_CR43) 2003; 33 DA Bosco (274_CR8) 2010; 13 E Tokuda (274_CR51) 2013; 54 PM Andersen (274_CR2) 1997; 120 JM Ravits (274_CR45) 2009; 73 A Friese (274_CR19) 2009; 106 F Pickford (274_CR41) 2008; 118 P Zetterstrom (274_CR55) 2007; 104 M Nassif (274_CR39) 2014; 10 S Sinha (274_CR47) 2008; 27 A Freischmidt (274_CR18) 2015; 18 PA Jonsson (274_CR27) 2008; 63 274_CR35 274_CR34 KM Lucin (274_CR36) 2013; 79 X Zhang (274_CR56) 2011; 7 K Matsunaga (274_CR37) 2009; 11 ME Gurney (274_CR23) 1994; 264 X Qu (274_CR44) 2003; 112 HG Stewart (274_CR48) 2006; 33 S Boillee (274_CR6) 2006; 312 274_CR42 RL Vidal (274_CR52) 2014; 35 IA Ciechomska (274_CR13) 2009; 28 K Forsberg (274_CR17) 2010; 5 KH Strucksberg (274_CR49) 2010; 399 H Ilieva (274_CR26) 2009; 187 BR Brooks (274_CR10) 2000; 1 TW Gould (274_CR20) 2006; 26 J Bergh (274_CR5) 2015; 112 JM Pedro (274_CR40) 2015; 11 B Boland (274_CR7) 2008; 28 K Forsberg (274_CR16) 2011; 121 JM Tan (274_CR50) 2008; 17 PA Jonsson (274_CR29) 2006; 129 P Zetterstrom (274_CR54) 2013; 15 25275521 - PLoS Genet. 2014 Oct;10(10):e1004626 11464847 - Amyotroph Lateral Scler Other Motor Neuron Disord. 2000 Dec;1(5):293-9 25731823 - Neurotherapeutics. 2015 Apr;12(2):326-39 17715066 - Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):14157-62 19738176 - Neurology. 2009 Sep 8;73(10):805-11 25270767 - Trends Pharmacol Sci. 2014 Nov;35(11):583-91 9365366 - Brain. 1997 Oct;120 ( Pt 10):1723-37 24246281 - Exp Neurol. 2014 Dec;262 Pt B:75-83 14534160 - Brain. 2004 Jan;127(Pt 1):73-88 25700176 - Science. 2015 Mar 27;347(6229):1436-41 19250912 - Mol Cell. 2009 Feb 27;33(4):517-27 19762508 - Genes Dev. 2009 Oct 1;23(19):2294-306 23026746 - Hum Mol Genet. 2013 Jan 1;22(1):51-60 18440237 - Neurobiol Dis. 2008 Jun;30(3):400-7 25802384 - Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4489-94 25803835 - Nat Neurosci. 2015 May;18(5):631-6 21193837 - Autophagy. 2011 Apr;7(4):412-25 16330499 - Brain. 2006 Feb;129(Pt 2):451-64 26221023 - Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):9878-83 22722335 - Cell Death Differ. 2013 Jan;20(1):21-30 23406030 - N Engl J Med. 2013 Feb 14;368(7):651-62 21989245 - Nat Rev Neurol. 2011 Nov;7(11):603-15 19951898 - J Cell Biol. 2009 Dec 14;187(6):761-72 8209258 - Science. 1994 Jun 17;264(5166):1772-5 21287393 - Acta Neuropathol. 2011 May;121(5):623-34 19651609 - Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13588-93 12627231 - Nat Genet. 2003 Apr;33(4):455-6 19641499 - Oncogene. 2008 Dec;27 Suppl 1:S137-48 24905722 - Autophagy. 2014 Jul;10(7):1256-71 18608099 - Amyotroph Lateral Scler. 2008 Aug;9(4):249-50 25715028 - Autophagy. 2015;11(3):452-9 24012002 - Neuron. 2013 Sep 4;79(5):873-86 20644736 - PLoS One. 2010;5(7):e11552 18497889 - J Clin Invest. 2008 Jun;118(6):2190-9 19270696 - Nat Cell Biol. 2009 Apr;11(4):385-96 16435343 - Muscle Nerve. 2006 May;33(5):701-6 18955971 - Oncogene. 2008 Oct 27;27(50):6434-51 18596167 - J Neurosci. 2008 Jul 2;28(27):6926-37 19703565 - Neurobiol Dis. 2009 Dec;36(3):421-4 17981811 - Hum Mol Genet. 2008 Feb 1;17(3):431-9 18083104 - Cell. 2007 Dec 14;131(6):1149-63 20699386 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14508-13 16928866 - J Neurosci. 2006 Aug 23;26(34):8774-86 20034461 - Anal Biochem. 2010 Apr 15;399(2):225-9 14638851 - J Clin Invest. 2003 Dec;112(12):1809-20 22797895 - Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17868-73 16741123 - Science. 2006 Jun 2;312(5778):1389-92 23076707 - Neuromolecular Med. 2013 Mar;15(1):147-58 24550511 - Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3620-5 23321002 - Neurobiol Dis. 2013 Jun;54:308-19 16624935 - J Neurosci. 2006 Apr 19;26(16):4147-54 20953194 - Nat Neurosci. 2010 Nov;13(11):1396-403 18409196 - Ann Neurol. 2008 May;63(5):671-5 11464950 - Amyotroph Lateral Scler Other Motor Neuron Disord. 2000 Jun;1(3):163-84 19347031 - Oncogene. 2009 May 28;28(21):2128-41 |
References_xml | – volume: 27 start-page: S137 issue: Suppl 1 year: 2008 ident: 274_CR47 publication-title: Oncogene doi: 10.1038/onc.2009.51 – volume: 399 start-page: 225 year: 2010 ident: 274_CR49 publication-title: Anal Biochem doi: 10.1016/j.ab.2009.12.026 – volume: 106 start-page: 13588 year: 2009 ident: 274_CR19 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0906809106 – volume: 54 start-page: 308 year: 2013 ident: 274_CR51 publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2013.01.001 – volume: 12 start-page: 326 year: 2015 ident: 274_CR15 publication-title: Neurotherapeutics doi: 10.1007/s13311-015-0342-1 – volume: 129 start-page: 451 year: 2006 ident: 274_CR29 publication-title: Brain doi: 10.1093/brain/awh704 – volume: 23 start-page: 2294 year: 2009 ident: 274_CR25 publication-title: Genes Dev doi: 10.1101/gad.1830709 – volume: 11 start-page: 385 year: 2009 ident: 274_CR37 publication-title: Nat Cell Biol doi: 10.1038/ncb1846 – ident: 274_CR42 doi: 10.1073/pnas.1006551107 – volume: 112 start-page: 1809 year: 2003 ident: 274_CR44 publication-title: J Clin Invest doi: 10.1172/JCI20039 – volume: 33 start-page: 701 year: 2006 ident: 274_CR48 publication-title: Muscle Nerve doi: 10.1002/mus.20495 – volume: 7 start-page: 603 year: 2011 ident: 274_CR1 publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2011.150 – volume: 187 start-page: 761 year: 2009 ident: 274_CR26 publication-title: J Cell Biol doi: 10.1083/jcb.200908164 – volume: 131 start-page: 1149 year: 2007 ident: 274_CR32 publication-title: Cell doi: 10.1016/j.cell.2007.10.035 – volume: 10 start-page: e1004626 year: 2014 ident: 274_CR38 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004626 – volume: 15 start-page: 147 year: 2013 ident: 274_CR54 publication-title: Neuromolecular Med doi: 10.1007/s12017-012-8204-z – ident: 274_CR35 doi: 10.1073/pnas.1503328112 – volume: 9 start-page: 249 year: 2008 ident: 274_CR53 publication-title: Amyotroph Lateral Scler doi: 10.1080/17482960802146106 – volume: 10 start-page: 1256 year: 2014 ident: 274_CR39 publication-title: Autophagy doi: 10.4161/auto.28784 – volume: 35 start-page: 583 year: 2014 ident: 274_CR52 publication-title: Trends Pharmacol Sci doi: 10.1016/j.tips.2014.09.002 – volume: 20 start-page: 21 year: 2013 ident: 274_CR46 publication-title: Cell Death Differ doi: 10.1038/cdd.2012.72 – volume: 22 start-page: 51 year: 2013 ident: 274_CR22 publication-title: Hum Mol Genet doi: 10.1093/hmg/dds399 – volume: 11 start-page: 452 year: 2015 ident: 274_CR40 publication-title: Autophagy doi: 10.1080/15548627.2015.1017191 – volume: 63 start-page: 671 year: 2008 ident: 274_CR27 publication-title: Ann Neurol doi: 10.1002/ana.21356 – volume: 28 start-page: 2128 year: 2009 ident: 274_CR13 publication-title: Oncogene doi: 10.1038/onc.2009.60 – ident: 274_CR21 doi: 10.1073/pnas.1312245111 – volume: 5 start-page: e11552 year: 2010 ident: 274_CR17 publication-title: PLoS One doi: 10.1371/journal.pone.0011552 – volume: 1 start-page: 163 year: 2000 ident: 274_CR31 publication-title: Amyotroph Lateral Scler Other Motor Neuron Disord doi: 10.1080/14660820050515160 – volume: 30 start-page: 400 year: 2008 ident: 274_CR3 publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2008.02.009 – volume: 1 start-page: 293 year: 2000 ident: 274_CR10 publication-title: Amyotroph Lateral Scler Other Motor Neuron Disord doi: 10.1080/146608200300079536 – volume: 13 start-page: 1396 year: 2010 ident: 274_CR8 publication-title: Nat Neurosci doi: 10.1038/nn.2660 – volume: 17 start-page: 431 year: 2008 ident: 274_CR50 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddm320 – volume: 127 start-page: 73 year: 2004 ident: 274_CR28 publication-title: Brain doi: 10.1093/brain/awh005 – volume: 104 start-page: 14157 year: 2007 ident: 274_CR55 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0700477104 – volume: 26 start-page: 4147 year: 2006 ident: 274_CR4 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5461-05.2006 – volume: 27 start-page: 6434 year: 2008 ident: 274_CR9 publication-title: Oncogene doi: 10.1038/onc.2008.310 – volume: 18 start-page: 631 year: 2015 ident: 274_CR18 publication-title: Nat Neurosci doi: 10.1038/nn.4000 – volume: 33 start-page: 517 year: 2009 ident: 274_CR33 publication-title: Mol Cell doi: 10.1016/j.molcel.2009.01.021 – start-page: 27 volume-title: Computational Neuroanatomy year: 2002 ident: 274_CR11 doi: 10.1385/1-59259-275-9:27 – volume: 118 start-page: 2190 year: 2008 ident: 274_CR41 publication-title: J Clin Invest – volume: 36 start-page: 421 year: 2009 ident: 274_CR30 publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2009.08.006 – volume: 264 start-page: 1772 year: 1994 ident: 274_CR23 publication-title: Science doi: 10.1126/science.8209258 – volume: 7 start-page: 412 year: 2011 ident: 274_CR56 publication-title: Autophagy doi: 10.4161/auto.7.4.14541 – volume: 347 start-page: 1436 year: 2015 ident: 274_CR14 publication-title: Science doi: 10.1126/science.aaa3650 – volume: 73 start-page: 805 year: 2009 ident: 274_CR45 publication-title: Neurology doi: 10.1212/WNL.0b013e3181b6bbbd – volume: 33 start-page: 455 year: 2003 ident: 274_CR43 publication-title: Nat Genet doi: 10.1038/ng1123 – volume: 262pb start-page: 75 year: 2014 ident: 274_CR24 publication-title: Exp Neurol doi: 10.1016/j.expneurol.2013.11.006 – volume: 28 start-page: 6926 year: 2008 ident: 274_CR7 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0800-08.2008 – volume: 368 start-page: 651 year: 2013 ident: 274_CR12 publication-title: N Engl J Med doi: 10.1056/NEJMra1205406 – volume: 312 start-page: 1389 year: 2006 ident: 274_CR6 publication-title: Science doi: 10.1126/science.1123511 – volume: 112 start-page: 4489 year: 2015 ident: 274_CR5 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1419228112 – volume: 26 start-page: 8774 year: 2006 ident: 274_CR20 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2315-06.2006 – volume: 121 start-page: 623 year: 2011 ident: 274_CR16 publication-title: Acta Neuropathol doi: 10.1007/s00401-011-0805-3 – volume: 79 start-page: 873 year: 2013 ident: 274_CR36 publication-title: Neuron doi: 10.1016/j.neuron.2013.06.046 – ident: 274_CR34 doi: 10.1073/pnas.1201795109 – volume: 120 start-page: 1723 year: 1997 ident: 274_CR2 publication-title: Brain doi: 10.1093/brain/120.10.1723 – reference: 23026746 - Hum Mol Genet. 2013 Jan 1;22(1):51-60 – reference: 19347031 - Oncogene. 2009 May 28;28(21):2128-41 – reference: 11464950 - Amyotroph Lateral Scler Other Motor Neuron Disord. 2000 Jun;1(3):163-84 – reference: 19703565 - Neurobiol Dis. 2009 Dec;36(3):421-4 – reference: 21287393 - Acta Neuropathol. 2011 May;121(5):623-34 – reference: 25803835 - Nat Neurosci. 2015 May;18(5):631-6 – reference: 12627231 - Nat Genet. 2003 Apr;33(4):455-6 – reference: 17981811 - Hum Mol Genet. 2008 Feb 1;17(3):431-9 – reference: 25700176 - Science. 2015 Mar 27;347(6229):1436-41 – reference: 18608099 - Amyotroph Lateral Scler. 2008 Aug;9(4):249-50 – reference: 19250912 - Mol Cell. 2009 Feb 27;33(4):517-27 – reference: 16330499 - Brain. 2006 Feb;129(Pt 2):451-64 – reference: 22722335 - Cell Death Differ. 2013 Jan;20(1):21-30 – reference: 14638851 - J Clin Invest. 2003 Dec;112(12):1809-20 – reference: 16741123 - Science. 2006 Jun 2;312(5778):1389-92 – reference: 25731823 - Neurotherapeutics. 2015 Apr;12(2):326-39 – reference: 18440237 - Neurobiol Dis. 2008 Jun;30(3):400-7 – reference: 17715066 - Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):14157-62 – reference: 21193837 - Autophagy. 2011 Apr;7(4):412-25 – reference: 25270767 - Trends Pharmacol Sci. 2014 Nov;35(11):583-91 – reference: 18083104 - Cell. 2007 Dec 14;131(6):1149-63 – reference: 24905722 - Autophagy. 2014 Jul;10(7):1256-71 – reference: 25715028 - Autophagy. 2015;11(3):452-9 – reference: 19738176 - Neurology. 2009 Sep 8;73(10):805-11 – reference: 24012002 - Neuron. 2013 Sep 4;79(5):873-86 – reference: 23406030 - N Engl J Med. 2013 Feb 14;368(7):651-62 – reference: 24246281 - Exp Neurol. 2014 Dec;262 Pt B:75-83 – reference: 20953194 - Nat Neurosci. 2010 Nov;13(11):1396-403 – reference: 19951898 - J Cell Biol. 2009 Dec 14;187(6):761-72 – reference: 22797895 - Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17868-73 – reference: 25275521 - PLoS Genet. 2014 Oct;10(10):e1004626 – reference: 20034461 - Anal Biochem. 2010 Apr 15;399(2):225-9 – reference: 14534160 - Brain. 2004 Jan;127(Pt 1):73-88 – reference: 20644736 - PLoS One. 2010;5(7):e11552 – reference: 21989245 - Nat Rev Neurol. 2011 Nov;7(11):603-15 – reference: 16435343 - Muscle Nerve. 2006 May;33(5):701-6 – reference: 18955971 - Oncogene. 2008 Oct 27;27(50):6434-51 – reference: 18497889 - J Clin Invest. 2008 Jun;118(6):2190-9 – reference: 26221023 - Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):9878-83 – reference: 18409196 - Ann Neurol. 2008 May;63(5):671-5 – reference: 19641499 - Oncogene. 2008 Dec;27 Suppl 1:S137-48 – reference: 25802384 - Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4489-94 – reference: 24550511 - Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3620-5 – reference: 18596167 - J Neurosci. 2008 Jul 2;28(27):6926-37 – reference: 23076707 - Neuromolecular Med. 2013 Mar;15(1):147-58 – reference: 8209258 - Science. 1994 Jun 17;264(5166):1772-5 – reference: 20699386 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14508-13 – reference: 19762508 - Genes Dev. 2009 Oct 1;23(19):2294-306 – reference: 9365366 - Brain. 1997 Oct;120 ( Pt 10):1723-37 – reference: 16624935 - J Neurosci. 2006 Apr 19;26(16):4147-54 – reference: 23321002 - Neurobiol Dis. 2013 Jun;54:308-19 – reference: 19270696 - Nat Cell Biol. 2009 Apr;11(4):385-96 – reference: 19651609 - Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13588-93 – reference: 11464847 - Amyotroph Lateral Scler Other Motor Neuron Disord. 2000 Dec;1(5):293-9 – reference: 16928866 - J Neurosci. 2006 Aug 23;26(34):8774-86 |
SSID | ssj0000911388 |
Score | 2.1991847 |
Snippet | The motor system is selectively vulnerable to mutations in the ubiquitously expressed aggregation-prone enzyme superoxide dismutase-1 (SOD1).
Autophagy clears... Introduction The motor system is selectively vulnerable to mutations in the ubiquitously expressed aggregation-prone enzyme superoxide dismutase-1 (SOD1).... The motor system is selectively vulnerable to mutations in the ubiquitously expressed aggregation-prone enzyme superoxide dismutase-1 (SOD1). Autophagy clears... The motor system is selectively vulnerable to mutations in the ubiquitously expressed aggregation-prone enzyme superoxide dismutase-1 (SOD1).INTRODUCTIONThe... Introduction: The motor system is selectively vulnerable to mutations in the ubiquitously expressed aggregation-prone enzyme superoxide dismutase-1 (SOD1).... |
SourceID | swepub pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 6 |
SubjectTerms | Adult Aged Aged, 80 and over Amyotrophic lateral sclerosis Amyotrophic Lateral Sclerosis - genetics Amyotrophic Lateral Sclerosis - pathology Animals Apoptosis Regulatory Proteins - deficiency Apoptosis Regulatory Proteins - genetics Autophagy Autophagy (Cytology) Autophagy - genetics Beclin-1 C9orf72 Protein Disease Models, Animal Female Gene expression Gene Expression Regulation - genetics Genetic aspects Humans Male Mice Mice, Inbred C57BL Mice, Transgenic Middle Aged Motor ability Motor system vulnerability Mutation - genetics Parkinson Disease - genetics Parkinson Disease - pathology Phenotype Physiological aspects Properties Proteasome Endopeptidase Complex - metabolism Protein aggregates Protein Aggregation, Pathological - genetics Proteins - genetics Spinal Cord - metabolism Spinal Cord - pathology Superoxide dismutase Superoxide Dismutase - genetics Superoxide sumutase-1 Ubiquitinated Proteins - genetics Ubiquitinated Proteins - metabolism |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgL4k2ggJEQSEhWY8eP5IRWQFUhyomiPWE5trdEapOy2QD77_E43kB66CGXeKzEmac9k28QegUAK5YySwyrSsLFakWM8wVxXsoQ39PaxnY-x1_k0Qn_tBTLdODWp7LKnU2Mhtp1Fs7ID6hSwchywem7i58EukZBdjW10LiObgB0GZR0qaWazliCL6RFWaZkJi3lQc8BjSbsn6HyVnGynbmjy0b5P690uWJyhisafdHhHXQ7BZF4MXL9Lrrm23vo5nFKk99H3z93v7EZADPAnG6xDQ7RhmgbN6l83DvctDgwqVvjEcoZ_xrOAH86lspu8abD5wP0F8b9AEjifxrnsWt6uNn7B-jk8OPX90ckNVIgVrJqQ6wXhS9XVVGw2oS9sBQrlXvvufK0UjGzyJwEbD0ljVHOiLyoIfSz1jlW8eIh2mu71j9GuF6JugrGmgpDuZWqZqL2wrjCldbUhcpQvvue2iaUcWh2cabjbqOUemSBhsoyYIHeZujtNOVihNi4ivgFMEmPf4lO6qkXEbiwCuFcht5EClDQ8GRr0n8G4f0B6mpGuT-jDIpl58M7QdBJsXv9Twwz9HIahplQrNb6bgAamYdtbbgy9GiUm2lhDPDfwpIypGYSNREA3Pd8pG1-RNhvDqEm5Rl6PcrebMqH5ttCd-tTPZwPGnJrPH9y9fs_RbdY1ANKmNhHe5v14J-FAGtTP49a9Bem-Cae priority: 102 providerName: ProQuest |
Title | Low autophagy capacity implicated in motor system vulnerability to mutant superoxide dismutase |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26810478 https://www.proquest.com/docview/1771234541 https://www.proquest.com/docview/1760924092 https://pubmed.ncbi.nlm.nih.gov/PMC4727314 https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-116740 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_tQ0K8IL4JjGIkBBJSWOL4o3lAqMCmCdEJIYr6hOXY7ojUJdA2sP73-Jy0ItO0h7zE5ySO73y_iy-_A3iBBCsmpSbWNB_GjM9msbYui60TwuP7tDChnM_4VJxM2Kcpn-7AprxV9wKXV4Z2WE9qspi_ufi9fucN_m0w-KE4XDKkmPFBMabTShavd2HfOyaJdjru0H5YmL1hZ6ESJfWqGHMP3rt9ziuv0vNUl9fr_xzW5WTKHuVocFPHt-FWhy_JqFWIO7DjqrtwY9ztoN-DH5_rv0Q3SCegz9bEeF9pPBAnZZdZ7iwpK-Lnr16QluWZ_GnmSE0dsmjXZFWT8wZLD5NlgyTjF6V1xJZLPLl092FyfPTtw0nc1ViIjaD5KjaOZ244y7OMFtqHyYLPZOKcY9KluQybjtQKpN2TQmtpNU-yAlGhMdbSnGUPYK-qK_cISDHjRe7X8ZTrlBkhC8oLx7XN7NDoIpMRJJv3qUxHQI51MOYqBCJDodopUJh0hlOg1hG83nb51bJvXCf8DCdJtT-Qbi1XjQKnYe6RXgSvggRqk7-z0d0vCP75kQWrJ3nQk_Q2Z_rNG0VQG5VVqZQeBjDO0gieb5uxJ-axVa5uUEYkPuL1RwQPW73ZDowiNZwfUgSyp1FbAWQC77dU5c_ACM4QhaYsgpet7vW6fCy_j1S9OFPNeaNw240lj68f3hO4SYMdpDHlB7C3WjTuqcdeq2IAu3IqB7D__uj0y9dB-IIxCFb2D4LWLvk |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEG8ChRqJh4QUNXac1wGhhbba0t0VQi3qqcaxvSVSm5TNhrJ_it-IJ8kG0kNvPeQSj5PYHs8jM_4G4BUCrCjKlCtZErs8mM1cqY3vahOG1r6nqarL-Uym4eiQfz4Kjtbgz-osDKZVrmRiLah1ofAf-RaNIitkecDph_OfLlaNwujqqoRGwxb7ZnlhXbby_d62Xd_XjO3uHHwauW1VAVeFLFm4ygS-iWfWkWeptI5hGMwizxjDI0OTqA6zMR0i0FwUShlpGXh-inaQUlqzhPv2uTdgnfvWlRnA-sed6Zev3V8dq32pH8dt-JTG4VbJEf_GeuyY6xtxd9lTgJfVwH968HKOZg_JtNZ-u3fhTmu2kmHDZ_dgzeT34eakDcw_gONxcUFkhSgF8mRJlFXBytr3JGsT1o0mWU4sWxRz0oBHk1_VKSJe18m5S7IoyFmFFY1JWSF2-e9MG6KzEm-W5iEcXsskP4JBXuTmCZB0FqSJVQ80kJSrMEpZkJpAal_HSqZ-5IC3mk-hWlxzLK9xKmr_Jg5FswQCc9lwCcTSgXddl_MG1OMq4k1cJNGcS-0EghjWUImJNSAdeFtToEiwb1ayPdlgvx_BtXqUGz1Ku5VVv3nFCKIVJaX4x_gOvOyasSemx-WmqJAm9KwjbS8HHjd80w2MIeKcHZIDUY-jOgIEGO-35NmPGmico3FLuQNvGt7rddnOvg1FMT8R1VklMJrHvadXf_8m3BodTMZivDfdfwa3Wb0nqMuCDRgs5pV5bs27Rfqi3VMEvl_3Nv4LQMdjhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+autophagy+capacity+implicated+in+motor+system+vulnerability+to+mutant+superoxide+dismutase&rft.jtitle=Acta+neuropathologica+communications&rft.au=Tokuda%2C+Eiichi&rft.au=Br%C3%A4nnstr%C3%B6m%2C+Thomas&rft.au=Andersen%2C+Peter+M&rft.au=Marklund%2C+Stefan+L&rft.date=2016-01-25&rft.pub=BioMed+Central+Ltd&rft.issn=2051-5960&rft.eissn=2051-5960&rft.volume=4&rft.issue=6&rft_id=info:doi/10.1186%2Fs40478-016-0274-y&rft.externalDocID=A447599056 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-5960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-5960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-5960&client=summon |