Myosin Va Mediates Docking of Secretory Granules at the Plasma Membrane

Myosin Va (MyoVa) is a prime candidate for controlling actin-based organelle motion in neurons and neuroendocrine cells. Its function in secretory granule (SG) trafficking was investigated in enterochromaffin cells by wide-field and total internal reflection fluorescence microscopy. The distribution...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 27; no. 39; pp. 10636 - 10645
Main Authors Desnos, Claire, Huet, Sebastien, Fanget, Isabelle, Chapuis, Catherine, Bottiger, Caroline, Racine, Victor, Sibarita, Jean-Baptiste, Henry, Jean-Pierre, Darchen, Francois
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 26.09.2007
Society for Neuroscience
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Myosin Va (MyoVa) is a prime candidate for controlling actin-based organelle motion in neurons and neuroendocrine cells. Its function in secretory granule (SG) trafficking was investigated in enterochromaffin cells by wide-field and total internal reflection fluorescence microscopy. The distribution of endogenous MyoVa partially overlapped with SGs and microtubules. Impairing MyoVa function by means of a truncated construct (MyoVa tail) or RNA interference prevented the formation of SG-rich regions at the cell periphery and reduced SG density in the subplasmalemmal region. Individual SG trajectories were tracked to analyze SG mobility. A wide distribution of their diffusion coefficient, D(xy), was observed. Almost immobile SGs (D(xy) < 5 x 10(-4) microm2 x s(-1)) were considered as docked at the plasma membrane based on two properties: (1) SGs that undergo exocytosis have a D(xy) below this threshold value for at least 2 s before fusion; (2) a negative autocorrelation of the vertical motion was found in subtrajectories with a D(xy) below the threshold. Using this criterion of docking, we found that the main effect of MyoVa inhibition was to reduce the number of docked granules, leading to reduced secretory responses. Surprisingly, this reduction was not attributable to a decreased transport of SGs toward release sites. In contrast, MyoVa silencing reduced the occurrence of long-lasting, but not short-lasting, docking periods. We thus propose that, despite its known motor activity, MyoVa directly mediates stable attachment of SGs at the plasma membrane.
AbstractList Myosin Va (MyoVa) is a prime candidate for controlling actin-based organelle motion in neurons and neuroendocrine cells. Its function in secretory granule (SG) trafficking was investigated in enterochromaffin cells by wide-field and total internal reflection fluorescence microscopy. The distribution of endogenous MyoVa partially overlapped with SGs and microtubules. Impairing MyoVa function by means of a truncated construct (MyoVa tail) or RNA interference prevented the formation of SG-rich regions at the cell periphery and reduced SG density in the subplasmalemmal region. Individual SG trajectories were tracked to analyze SG mobility. A wide distribution of their diffusion coefficient, D xy , was observed. Almost immobile SGs ( D xy < 5 × 10 −4 μm 2 · s −1 ) were considered as docked at the plasma membrane based on two properties: (1) SGs that undergo exocytosis have a D xy below this threshold value for at least 2 s before fusion; (2) a negative autocorrelation of the vertical motion was found in subtrajectories with a D xy below the threshold. Using this criterion of docking, we found that the main effect of MyoVa inhibition was to reduce the number of docked granules, leading to reduced secretory responses. Surprisingly, this reduction was not attributable to a decreased transport of SGs toward release sites. In contrast, MyoVa silencing reduced the occurrence of long-lasting, but not short-lasting, docking periods. We thus propose that, despite its known motor activity, MyoVa directly mediates stable attachment of SGs at the plasma membrane.
Myosin Va (MyoVa) is a prime candidate for controlling actin-based organelle motion in neurons and neuroendocrine cells. Its function in secretory granule (SG) trafficking was investigated in enterochromaffin cells by wide-field and total internal reflection fluorescence microscopy. The distribution of endogenous MyoVa partially overlapped with SGs and microtubules. Impairing MyoVa function by means of a truncated construct (MyoVa tail) or RNA interference prevented the formation of SG-rich regions at the cell periphery and reduced SG density in the subplasmalemmal region. Individual SG trajectories were tracked to analyze SG mobility. A wide distribution of their diffusion coefficient, D(xy), was observed. Almost immobile SGs (D(xy) < 5 x 10(-4) microm2 x s(-1)) were considered as docked at the plasma membrane based on two properties: (1) SGs that undergo exocytosis have a D(xy) below this threshold value for at least 2 s before fusion; (2) a negative autocorrelation of the vertical motion was found in subtrajectories with a D(xy) below the threshold. Using this criterion of docking, we found that the main effect of MyoVa inhibition was to reduce the number of docked granules, leading to reduced secretory responses. Surprisingly, this reduction was not attributable to a decreased transport of SGs toward release sites. In contrast, MyoVa silencing reduced the occurrence of long-lasting, but not short-lasting, docking periods. We thus propose that, despite its known motor activity, MyoVa directly mediates stable attachment of SGs at the plasma membrane.
Myosin Va (MyoVa) is a prime candidate for controlling actin-based organelle motion in neurons and neuroendocrine cells. Its function in secretory granule (SG) trafficking was investigated in enterochromaffin cells by wide-field and total internal reflection fluorescence microscopy. The distribution of endogenous MyoVa partially overlapped with SGs and microtubules. Impairing MyoVa function by means of a truncated construct (MyoVa tail) or RNA interference prevented the formation of SG-rich regions at the cell periphery and reduced SG density in the subplasmalemmal region. Individual SG trajectories were tracked to analyze SG mobility. A wide distribution of their diffusion coefficient, Dxy, was observed. Almost immobile SGs (Dxy < 5 × 10−4 μm2 · s−1) were considered as docked at the plasma membrane based on two properties: (1) SGs that undergo exocytosis have a Dxy below this threshold value for at least 2 s before fusion; (2) a negative autocorrelation of the vertical motion was found in subtrajectories with a Dxy below the threshold. Using this criterion of docking, we found that the main effect of MyoVa inhibition was to reduce the number of docked granules, leading to reduced secretory responses. Surprisingly, this reduction was not attributable to a decreased transport of SGs toward release sites. In contrast, MyoVa silencing reduced the occurrence of long-lasting, but not short-lasting, docking periods. We thus propose that, despite its known motor activity, MyoVa directly mediates stable attachment of SGs at the plasma membrane.
Myosin Va (MyoVa) is a prime candidate for controlling actin-based organelle motion in neurons and neuroendocrine cells. Its function in secretory granule (SG) trafficking was investigated in enterochromaffin cells by wide-field and total internal reflection fluorescence microscopy. The distribution of endogenous MyoVa partially overlapped with SGs and microtubules. Impairing MyoVa function by means of a truncated construct (MyoVa tail) or RNA interference prevented the formation of SG-rich regions at the cell periphery and reduced SG density in the subplasmalemmal region. Individual SG trajectories were tracked to analyze SG mobility. A wide distribution of their diffusion coefficient, D sub(xy), was observed. Almost immobile SGs (D sub(xy) < 5 x 10 super(-4) mu m super(2) . s super(-1)) were considered as docked at the plasma membrane based on two properties: (1) SGs that undergo exocytosis have a D sub(xy) below this threshold value for at least 2 s before fusion; (2) a negative autocorrelation of the vertical motion was found in subtrajectories with a D sub(xy) below the threshold. Using this criterion of docking, we found that the main effect of MyoVa inhibition was to reduce the number of docked granules, leading to reduced secretory responses. Surprisingly, this reduction was not attributable to a decreased transport of SGs toward release sites. In contrast, MyoVa silencing reduced the occurrence of long-lasting, but not short-lasting, docking periods. We thus propose that, despite its known motor activity, MyoVa directly mediates stable attachment of SGs at the plasma membrane.
Author Chapuis, Catherine
Racine, Victor
Henry, Jean-Pierre
Sibarita, Jean-Baptiste
Fanget, Isabelle
Desnos, Claire
Huet, Sebastien
Darchen, Francois
Bottiger, Caroline
Author_xml – sequence: 1
  fullname: Desnos, Claire
– sequence: 2
  fullname: Huet, Sebastien
– sequence: 3
  fullname: Fanget, Isabelle
– sequence: 4
  fullname: Chapuis, Catherine
– sequence: 5
  fullname: Bottiger, Caroline
– sequence: 6
  fullname: Racine, Victor
– sequence: 7
  fullname: Sibarita, Jean-Baptiste
– sequence: 8
  fullname: Henry, Jean-Pierre
– sequence: 9
  fullname: Darchen, Francois
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17898234$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01144040$$DView record in HAL
BookMark eNqFkUtvEzEUhS1URNOWv1DNCsFigt8eb5CqUNKi9CFK2VqOcycxzIxbe9Io_x6PEpXHphtb8vnOPb46R-igCx0gdErwmAjKPn69Pr__dnM3uRwTSqsSqzHFWL1Co6zqknJMDtAIU4VLyRU_REcp_cSZwES9QYdEVbqijI_Q9Gobku-KH7a4goW3PaTic3C_fLcsQl3cgYvQh7gtptF26yarti_6FRS3jU3tYGrnWYET9Lq2TYK3-_sY3X85_z65KGc308vJ2ax0kuq-nOtFjtYYLBeOSFXVFhZAQAtgFpwWEtdKCUuUckKIOQFrRV1RISmm-WTH6NNu7sN63sLCQddH25iH6FsbtyZYb_5VOr8yy_BkpFSMcJYHfNgNWP1nuzibmeENE8I55viJZPbdPiyGxzWk3rQ-OWiavHBYJyMrRgnF_EWQKKkl1wMod6CLIaUI9fMXCDZDsea5WDMUa7AyQ7HZePr33n9s-yYz8H6_l1-uNj6CyfU0TcaJ2Ww2VBmmc4hkkv0GqvSuYA
CitedBy_id crossref_primary_10_1038_nrm3248
crossref_primary_10_1016_j_tins_2019_03_001
crossref_primary_10_1111_j_1600_0854_2010_01048_x
crossref_primary_10_1016_j_neuron_2010_09_039
crossref_primary_10_1016_j_cub_2013_03_068
crossref_primary_10_2337_db20_0069
crossref_primary_10_3390_pharmaceutics14040886
crossref_primary_10_1016_j_bbamcr_2015_11_022
crossref_primary_10_1038_ncb2000
crossref_primary_10_1091_mbc_e14_07_1229
crossref_primary_10_1111_boc_201700026
crossref_primary_10_1016_j_cub_2008_05_046
crossref_primary_10_1016_j_ibmb_2020_103364
crossref_primary_10_1007_s10571_009_9459_2
crossref_primary_10_1091_mbc_E14_09_1373
crossref_primary_10_1186_1465_9921_12_118
crossref_primary_10_1186_1471_2202_11_32
crossref_primary_10_1016_j_brainres_2013_08_018
crossref_primary_10_1042_BJ20091839
crossref_primary_10_1007_s10571_010_9597_6
crossref_primary_10_1085_jgp_201812299
crossref_primary_10_1016_j_trac_2019_01_013
crossref_primary_10_1210_me_2008_0209
crossref_primary_10_1111_j_1600_0854_2011_01248_x
crossref_primary_10_1038_ncomms1500
crossref_primary_10_1016_j_immuni_2011_07_008
crossref_primary_10_1091_mbc_e10_05_0404
crossref_primary_10_1016_j_tins_2016_07_003
crossref_primary_10_1038_ncb2132
crossref_primary_10_1016_j_brainres_2009_03_070
crossref_primary_10_1016_j_brainresbull_2012_05_003
crossref_primary_10_1007_s12031_012_9718_4
crossref_primary_10_1111_j_1600_0854_2008_00759_x
crossref_primary_10_1371_journal_pone_0099428
crossref_primary_10_1371_journal_pone_0109082
crossref_primary_10_1016_j_gene_2012_07_035
crossref_primary_10_1091_mbc_e08_08_0865
crossref_primary_10_1074_jbc_M802957200
crossref_primary_10_1073_pnas_2407330121
crossref_primary_10_1085_jgp_201711944
crossref_primary_10_3390_ijms21010067
crossref_primary_10_1002_ange_201101148
crossref_primary_10_1242_jcs_252585
crossref_primary_10_7554_eLife_26174
crossref_primary_10_1091_mbc_e10_08_0720
crossref_primary_10_1152_jn_00949_2007
crossref_primary_10_1007_s00441_008_0630_8
crossref_primary_10_1111_j_1471_4159_2010_07110_x
crossref_primary_10_3389_fphys_2023_1304537
crossref_primary_10_1371_journal_pone_0012738
crossref_primary_10_1042_BST0380199
crossref_primary_10_7554_eLife_39440
crossref_primary_10_1016_j_tcb_2009_03_003
crossref_primary_10_1074_jbc_M110_187286
crossref_primary_10_1210_en_2012_1436
crossref_primary_10_1042_BST0391115
crossref_primary_10_1091_mbc_e08_10_1048
crossref_primary_10_1091_mbc_E21_03_0094
crossref_primary_10_1002_anie_201101148
crossref_primary_10_1523_JNEUROSCI_2724_11_2012
crossref_primary_10_1007_s10571_009_9352_z
crossref_primary_10_1083_jcb_201204092
crossref_primary_10_1007_s00018_012_1156_5
crossref_primary_10_1111_j_1600_0854_2011_01301_x
crossref_primary_10_1111_tra_12587
crossref_primary_10_1038_emboj_2011_361
crossref_primary_10_3389_fnsyn_2021_650334
Cites_doi 10.1083/jcb.119.6.1541
10.1042/BC20070021
10.1016/S0006-3495(00)76828-7
10.1038/ng0797-289
10.1016/S0955-0674(01)00296-4
10.1016/S0896-6273(00)00099-4
10.1242/jcs.00317
10.1091/mbc.12.5.1353
10.1016/j.ceb.2005.12.014
10.1083/jcb.200503028
10.1523/JNEUROSCI.23-03-00837.2003
10.1111/j.1398-9219.2004.00190.x
10.1196/annals.1294.019
10.1038/23072
10.1016/j.conb.2006.05.006
10.1038/sj.emboj.7601256
10.1529/biophysj.105.080622
10.1146/annurev.neuro.28.061604.135757
10.1111/j.1600-0854.2005.00342.x
10.1016/j.neuron.2006.06.031
10.1016/S0076-6879(05)03038-7
10.1016/j.bbamcr.2006.09.004
10.1242/jcs.00083
10.1046/j.1471-4159.2003.01649.x
10.1038/nn1640
10.1016/0304-3940(96)12967-0
10.1007/s002490050253
10.1529/biophysj.105.061663
10.1091/mbc.E05-10-0938
10.1083/jcb.200308093
10.1083/jcb.153.1.177
10.1038/sj.emboj.7600464
10.1113/jphysiol.2005.095943
10.1091/mbc.E03-01-0022
10.1091/mbc.E05-03-0252
10.1083/jcb.143.7.1899
10.1074/jbc.M203862200
10.1007/s002490050114
10.1017/CBO9780511564352
10.1016/S0006-3495(99)77382-0
10.1083/jcb.200302157
10.1083/jcb.200105055
10.1016/S0300-9084(00)00193-0
10.1073/pnas.0611471104
10.1152/jn.2001.85.4.1498
10.1083/jcb.89.1.141
10.1083/jcb.143.6.1505
10.1038/nrm2002
10.1016/0016-5085(91)90004-5
10.1091/mbc.E04-11-1001
10.1038/41329
10.1038/349709a0
10.1529/biophysj.105.075556
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2007 Society for Neuroscience 0270-6474/07/2710636-10$15.00/0 2007
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2007 Society for Neuroscience 0270-6474/07/2710636-10$15.00/0 2007
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
1XC
5PM
DOI 10.1523/JNEUROSCI.1228-07.2007
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Neurosciences Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 10645
ExternalDocumentID oai_HAL_hal_01144040v1
10_1523_JNEUROSCI_1228_07_2007
17898234
www27_39_10636
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RPM
TFN
UQL
WH7
WOQ
X
X7M
XJT
ZA5
---
-DZ
-~X
.55
18M
AAFWJ
ABBAR
ACGUR
AFCFT
AFHIN
AFOSN
AHWXS
AOIJS
BTFSW
CGR
CUY
CVF
ECM
EIF
NPM
TR2
W8F
YBU
YHG
YKV
YNH
YSK
AAYXX
CITATION
7TK
7X8
.GJ
1CY
1XC
AI.
RIG
VH1
YYP
ZGI
ZXP
5PM
ID FETCH-LOGICAL-c629t-b9d78990ea45c1678faede1e95e3aec9560f775a177c555b1eaa5f82562022563
IEDL.DBID RPM
ISSN 0270-6474
IngestDate Tue Sep 17 20:38:26 EDT 2024
Tue Oct 15 15:54:46 EDT 2024
Fri Oct 25 04:24:16 EDT 2024
Fri Oct 25 07:11:38 EDT 2024
Thu Sep 26 18:36:18 EDT 2024
Sat Sep 28 08:36:41 EDT 2024
Tue Nov 10 19:50:53 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c629t-b9d78990ea45c1678faede1e95e3aec9560f775a177c555b1eaa5f82562022563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC6673143
C.D. and S.H. contributed equally to this work.
S. Huet's present address: Gene Expression Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
ORCID 0000-0002-3765-0969
OpenAccessLink https://www.jneurosci.org/content/jneuro/27/39/10636.full.pdf
PMID 17898234
PQID 17696494
PQPubID 23462
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6673143
hal_primary_oai_HAL_hal_01144040v1
proquest_miscellaneous_68321204
proquest_miscellaneous_17696494
crossref_primary_10_1523_JNEUROSCI_1228_07_2007
pubmed_primary_17898234
highwire_smallpub1_www27_39_10636
ProviderPackageCode RHF
RHI
PublicationCentury 2000
PublicationDate 2007-09-26
PublicationDateYYYYMMDD 2007-09-26
PublicationDate_xml – month: 09
  year: 2007
  text: 2007-09-26
  day: 26
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2007
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
References 2023041303273824000_27.39.10636.1
2023041303273824000_27.39.10636.5
2023041303273824000_27.39.10636.4
2023041303273824000_27.39.10636.3
2023041303273824000_27.39.10636.2
Li (2023041303273824000_27.39.10636.22) 2005; 288
Schnell (2023041303273824000_27.39.10636.36) 2001; 85
Steyer (2023041303273824000_27.39.10636.41) 1999; 76
2023041303273824000_27.39.10636.52
2023041303273824000_27.39.10636.51
2023041303273824000_27.39.10636.50
2023041303273824000_27.39.10636.12
2023041303273824000_27.39.10636.11
2023041303273824000_27.39.10636.55
2023041303273824000_27.39.10636.10
2023041303273824000_27.39.10636.54
2023041303273824000_27.39.10636.53
2023041303273824000_27.39.10636.16
Trifaro (2023041303273824000_27.39.10636.48) 2000; 82
2023041303273824000_27.39.10636.15
2023041303273824000_27.39.10636.14
2023041303273824000_27.39.10636.13
2023041303273824000_27.39.10636.19
2023041303273824000_27.39.10636.18
2023041303273824000_27.39.10636.17
2023041303273824000_27.39.10636.23
2023041303273824000_27.39.10636.21
2023041303273824000_27.39.10636.27
Lang (2023041303273824000_27.39.10636.20) 2000; 78
2023041303273824000_27.39.10636.26
2023041303273824000_27.39.10636.25
2023041303273824000_27.39.10636.24
2023041303273824000_27.39.10636.29
2023041303273824000_27.39.10636.28
Evers (2023041303273824000_27.39.10636.9) 1991; 101
2023041303273824000_27.39.10636.30
2023041303273824000_27.39.10636.34
2023041303273824000_27.39.10636.32
2023041303273824000_27.39.10636.31
2023041303273824000_27.39.10636.38
2023041303273824000_27.39.10636.37
2023041303273824000_27.39.10636.39
Sakaba (2023041303273824000_27.39.10636.35) 2003; 23
2023041303273824000_27.39.10636.40
2023041303273824000_27.39.10636.45
2023041303273824000_27.39.10636.44
2023041303273824000_27.39.10636.43
2023041303273824000_27.39.10636.42
2023041303273824000_27.39.10636.49
2023041303273824000_27.39.10636.8
2023041303273824000_27.39.10636.7
2023041303273824000_27.39.10636.47
2023041303273824000_27.39.10636.6
2023041303273824000_27.39.10636.46
Rudolf (2023041303273824000_27.39.10636.33) 2001; 12
References_xml – ident: 2023041303273824000_27.39.10636.8
  doi: 10.1083/jcb.119.6.1541
– ident: 2023041303273824000_27.39.10636.6
  doi: 10.1042/BC20070021
– volume: 78
  start-page: 2863
  year: 2000
  ident: 2023041303273824000_27.39.10636.20
  article-title: Role of actin cortex in the subplasmalemmal transport of secretory granules in PC-12 cells
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(00)76828-7
  contributor:
    fullname: Lang
– ident: 2023041303273824000_27.39.10636.30
  doi: 10.1038/ng0797-289
– ident: 2023041303273824000_27.39.10636.13
  doi: 10.1016/S0955-0674(01)00296-4
– ident: 2023041303273824000_27.39.10636.26
  doi: 10.1016/S0896-6273(00)00099-4
– ident: 2023041303273824000_27.39.10636.34
  doi: 10.1242/jcs.00317
– volume: 12
  start-page: 1353
  year: 2001
  ident: 2023041303273824000_27.39.10636.33
  article-title: Dynamics of immature secretory granules: role of cytoskeletal elements during transport, cortical restriction, and F-actin-dependent tethering
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.12.5.1353
  contributor:
    fullname: Rudolf
– ident: 2023041303273824000_27.39.10636.39
  doi: 10.1016/j.ceb.2005.12.014
– ident: 2023041303273824000_27.39.10636.55
  doi: 10.1083/jcb.200503028
– volume: 23
  start-page: 837
  year: 2003
  ident: 2023041303273824000_27.39.10636.35
  article-title: Involvement of actin polymerization in vesicle recruitment at the calyx of Held synapse
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-03-00837.2003
  contributor:
    fullname: Sakaba
– ident: 2023041303273824000_27.39.10636.38
  doi: 10.1111/j.1398-9219.2004.00190.x
– ident: 2023041303273824000_27.39.10636.47
  doi: 10.1196/annals.1294.019
– ident: 2023041303273824000_27.39.10636.24
  doi: 10.1038/23072
– ident: 2023041303273824000_27.39.10636.37
  doi: 10.1016/j.conb.2006.05.006
– ident: 2023041303273824000_27.39.10636.46
  doi: 10.1038/sj.emboj.7601256
– ident: 2023041303273824000_27.39.10636.14
  doi: 10.1529/biophysj.105.080622
– ident: 2023041303273824000_27.39.10636.7
  doi: 10.1146/annurev.neuro.28.061604.135757
– ident: 2023041303273824000_27.39.10636.15
  doi: 10.1111/j.1600-0854.2005.00342.x
– ident: 2023041303273824000_27.39.10636.11
  doi: 10.1016/j.neuron.2006.06.031
– ident: 2023041303273824000_27.39.10636.19
  doi: 10.1016/S0076-6879(05)03038-7
– ident: 2023041303273824000_27.39.10636.23
  doi: 10.1016/j.bbamcr.2006.09.004
– ident: 2023041303273824000_27.39.10636.50
  doi: 10.1242/jcs.00083
– ident: 2023041303273824000_27.39.10636.32
  doi: 10.1046/j.1471-4159.2003.01649.x
– volume: 288
  start-page: G213
  year: 2005
  ident: 2023041303273824000_27.39.10636.22
  article-title: Inhibition of mitochondrial gene transcription suppresses neurotensin secretion in the human carcinoid cell line BON
  publication-title: Am J Physiol
  contributor:
    fullname: Li
– ident: 2023041303273824000_27.39.10636.4
  doi: 10.1038/nn1640
– ident: 2023041303273824000_27.39.10636.44
  doi: 10.1016/0304-3940(96)12967-0
– ident: 2023041303273824000_27.39.10636.28
  doi: 10.1007/s002490050253
– ident: 2023041303273824000_27.39.10636.18
  doi: 10.1529/biophysj.105.061663
– ident: 2023041303273824000_27.39.10636.2
  doi: 10.1091/mbc.E05-10-0938
– ident: 2023041303273824000_27.39.10636.49
  doi: 10.1083/jcb.200308093
– ident: 2023041303273824000_27.39.10636.17
  doi: 10.1083/jcb.153.1.177
– ident: 2023041303273824000_27.39.10636.27
  doi: 10.1038/sj.emboj.7600464
– ident: 2023041303273824000_27.39.10636.45
  doi: 10.1113/jphysiol.2005.095943
– ident: 2023041303273824000_27.39.10636.52
  doi: 10.1091/mbc.E03-01-0022
– ident: 2023041303273824000_27.39.10636.53
  doi: 10.1091/mbc.E05-03-0252
– ident: 2023041303273824000_27.39.10636.54
  doi: 10.1083/jcb.143.7.1899
– ident: 2023041303273824000_27.39.10636.10
  doi: 10.1074/jbc.M203862200
– ident: 2023041303273824000_27.39.10636.29
  doi: 10.1007/s002490050114
– ident: 2023041303273824000_27.39.10636.40
  doi: 10.1017/CBO9780511564352
– volume: 76
  start-page: 2262
  year: 1999
  ident: 2023041303273824000_27.39.10636.41
  article-title: Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(99)77382-0
  contributor:
    fullname: Steyer
– ident: 2023041303273824000_27.39.10636.5
  doi: 10.1083/jcb.200302157
– ident: 2023041303273824000_27.39.10636.12
  doi: 10.1083/jcb.200105055
– volume: 82
  start-page: 339
  year: 2000
  ident: 2023041303273824000_27.39.10636.48
  article-title: Two pathways control chromaffin cell cortical F-actin dynamics during exocytosis
  publication-title: Biochimie
  doi: 10.1016/S0300-9084(00)00193-0
  contributor:
    fullname: Trifaro
– ident: 2023041303273824000_27.39.10636.1
  doi: 10.1073/pnas.0611471104
– volume: 85
  start-page: 1498
  year: 2001
  ident: 2023041303273824000_27.39.10636.36
  article-title: Hippocampal synaptic transmission and plasticity are preserved in myosin Va mutant mice
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2001.85.4.1498
  contributor:
    fullname: Schnell
– ident: 2023041303273824000_27.39.10636.3
  doi: 10.1083/jcb.89.1.141
– ident: 2023041303273824000_27.39.10636.43
  doi: 10.1083/jcb.143.6.1505
– ident: 2023041303273824000_27.39.10636.16
  doi: 10.1038/nrm2002
– volume: 101
  start-page: 303
  year: 1991
  ident: 2023041303273824000_27.39.10636.9
  article-title: Establishment and characterization of a human carcinoid in nude mice and effect of various agents on tumor growth
  publication-title: Gastroenterology
  doi: 10.1016/0016-5085(91)90004-5
  contributor:
    fullname: Evers
– ident: 2023041303273824000_27.39.10636.51
  doi: 10.1091/mbc.E04-11-1001
– ident: 2023041303273824000_27.39.10636.42
  doi: 10.1038/41329
– ident: 2023041303273824000_27.39.10636.31
– ident: 2023041303273824000_27.39.10636.25
  doi: 10.1038/349709a0
– ident: 2023041303273824000_27.39.10636.21
  doi: 10.1529/biophysj.105.075556
SSID ssj0007017
Score 2.2413359
Snippet Myosin Va (MyoVa) is a prime candidate for controlling actin-based organelle motion in neurons and neuroendocrine cells. Its function in secretory granule (SG)...
SourceID pubmedcentral
hal
proquest
crossref
pubmed
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 10636
SubjectTerms Cell Membrane - physiology
Cells, Cultured
Cellular Biology
Humans
Life Sciences
Myosin Heavy Chains - physiology
Myosin Type V - physiology
Secretory Vesicles - physiology
Subcellular Processes
Transport Vesicles - physiology
Title Myosin Va Mediates Docking of Secretory Granules at the Plasma Membrane
URI http://www.jneurosci.org/cgi/content/abstract/27/39/10636
https://www.ncbi.nlm.nih.gov/pubmed/17898234
https://search.proquest.com/docview/17696494
https://search.proquest.com/docview/68321204
https://hal.science/hal-01144040
https://pubmed.ncbi.nlm.nih.gov/PMC6673143
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-te-IFAeOjfAyDEG9p4sQf8WNVsZVBp6ExtDfLSWytUpNOtEXaf89dmhSK4IXXxFbsu4vvfuf7AHgX0tSIUpN7KbhIVLyKnKEskEKHLA8qVwW5Bmbnanolzq7l9QHIPhemDdovi_moWdSjZn7Txlbe1mXcx4nFF7MJtapEPR8PYIAC2kP07vjVSdtmF-EW4iKhRZcWjIArPjun8LjLyccRT6kws24z0aluqM5NnmZiTzkNbig0clc2-G8m6J-RlL-pppMHcL-zKdl4u_aHcOCbR3A0bhBP13fsPWujPFv3-RGczu6Wq3nDvjk2a7t0-BVDRUMOc7YM7JKsSLp3Z6eoxDZICebWDI1EdoFmdk2TasTXjX8MVycfvk6mUddMISpVatZRYSrcpEm8E7LkqKKC85Xn3kifOV8STApaS8e1LqWUBffOyYD4UaWo5qXKnsBhs2z8M2ChCj5TiQgmCWh_lHhEyqLkmfQ607mTQ4h7Ktrbbc0MS1gDWWB3LLDEApto6oOph_AWib0bTCWvp-PPlp4RYBN40vzgQ3jT88LihhcLJD23KDCptpnBL6hMDeF1zySL_wldfiBJlpuV5VoZJYz49whFTZvSBEc83TL11-I78RiC3mP33oL336DotrW6O1F9_t8zX8C9rTvZRKl6CYfr7xv_Cu2gdXEMg09f8uNW-n8CtpUFpQ
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWS9NBeuqWLuoUtit60cxGPhtHESS0jQBbkRlAyiRi15aCWC6Rf3xktbh20h_YqUqCoN-TMGw5nCPnokkSxUqJ7yRmfTeOpbxTeAimkSzMnMlGgayCfiNEFO7niVzuE93dhmqD9spgF1XwRVLPrJrbyZlGGfZxYeJoPsVQl6Plwl9yD9RqxnqR3G7CMmkK7QLiAGTHJuovBQLnCkwkGyJ0Nj4M4wdTMsrmLjplDZaayJGVb6mn3GoMjN4mD_2SE3o2l_E05HT4il_202piUr8G6LoLyx52Mj_8878fkYWeu0kHb_ITs2Oop2R9UQNUXt_QTbQJIG8_8PjnKb5erWUUvDc2bAiB2RUGHoS-eLh09QwMVj_TpEejHNQxGTU3B_qSnYMEv8KUFUPfKPiMXh5_PhyO_q9PglyJRtV-oKfw9FVnDeBmD9nPGTm1sFbepsSUyMCclN7GUJee8iK0x3AE1FQlYEFykz8letazsS0Ld1NlURMypyIFpU8Luy4syTrmVqcwM90jYw6Nv2nQcGmkMYKs32GrEVkcSS2xKj3wAFDedMZv2aDDW-Ay5IINN7Hvskfc9yBomPJ8DprEGTBKpUwUjiFR45KBHX8MSxHMV-CXL9UrHUijBFPt7D4H1oJIIerxopeXXx3dy5xG5JUdbH7zdAtLRpAHvpOHVf795QO6PzvOxHh9PvrwmD1qvtfIT8Ybs1d_W9i2YW3XxrllcPwESEyak
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZbxMxELZokRAvXOUIVw1CvO3tY_0YBdK0NFGkUlTxYnl3bTUi2URkg1R-PTN7hKaCl77ujuVjxp75xuMZQj64OFYsl-hecsZjRVR4RuErkEy6JHUiFRm6BsYTMTpnJxf84lqprzpoP89mfjlf-OXsso6tXC3yoIsTC6bjAZaqBD0frAoX7JG7sGdD0QH19hCWYV1sF0AXoCMmWfs4GGBXcDLBILmzwbEfxZieWdbv0TF7qExVGidsR0XtXWKA5DZ58L8M0ZvxlNcU1PAh-d5NrYlL-eFvqszPf9_I-niruT8iD1qzlfYbksfkji2fkIN-CZB9cUU_0jqQtPbQH5Cj8dVyPSvpN0PHdSEQu6agy9AnT5eOnqGhilf79Aj05AY6pKaiYIfSKVjyC2y0AAhf2qfkfPj562DktfUavFzEqvIyVcAKqtAaxvMItKAztrCRVdwmxuaIxJyU3ERS5pzzLLLGcAcQVcRgSXCRPCP75bK0Lwh1hbOJCJlToQMTJ4dTmGd5lHArE5ka3iNBxyK9atJyaIQzwF-95a9G_upQYqlN2SPvgZNbYsyqPeqfavyGmJDBYfYr6pF3HaM1THg-B75GGvgSS50o6EEkokcOOwnQsBXxfgWWZLlZ60gKJZhi_6cQWBcqDoHieSMxfwffyl6PyB1Z2hnw7h-QkDodeCsRL2_d8pDcm34a6tPjyZdX5H7jvFZeLF6T_ernxr4Bq6vK3tb76w9V-ykk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Myosin+Va+Mediates+Docking+of+Secretory+Granules+at+the+Plasma+Membrane&rft.jtitle=The+Journal+of+neuroscience&rft.au=Desnos%2C+Claire&rft.au=Huet%2C+Sebastien&rft.au=Fanget%2C+Isabelle&rft.au=Chapuis%2C+Catherine&rft.date=2007-09-26&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=27&rft.issue=39&rft.spage=10636&rft.epage=10645&rft_id=info:doi/10.1523%2FJNEUROSCI.1228-07.2007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon