Myosin Va Mediates Docking of Secretory Granules at the Plasma Membrane
Myosin Va (MyoVa) is a prime candidate for controlling actin-based organelle motion in neurons and neuroendocrine cells. Its function in secretory granule (SG) trafficking was investigated in enterochromaffin cells by wide-field and total internal reflection fluorescence microscopy. The distribution...
Saved in:
Published in | The Journal of neuroscience Vol. 27; no. 39; pp. 10636 - 10645 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
26.09.2007
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Myosin Va (MyoVa) is a prime candidate for controlling actin-based organelle motion in neurons and neuroendocrine cells. Its function in secretory granule (SG) trafficking was investigated in enterochromaffin cells by wide-field and total internal reflection fluorescence microscopy. The distribution of endogenous MyoVa partially overlapped with SGs and microtubules. Impairing MyoVa function by means of a truncated construct (MyoVa tail) or RNA interference prevented the formation of SG-rich regions at the cell periphery and reduced SG density in the subplasmalemmal region. Individual SG trajectories were tracked to analyze SG mobility. A wide distribution of their diffusion coefficient, D(xy), was observed. Almost immobile SGs (D(xy) < 5 x 10(-4) microm2 x s(-1)) were considered as docked at the plasma membrane based on two properties: (1) SGs that undergo exocytosis have a D(xy) below this threshold value for at least 2 s before fusion; (2) a negative autocorrelation of the vertical motion was found in subtrajectories with a D(xy) below the threshold. Using this criterion of docking, we found that the main effect of MyoVa inhibition was to reduce the number of docked granules, leading to reduced secretory responses. Surprisingly, this reduction was not attributable to a decreased transport of SGs toward release sites. In contrast, MyoVa silencing reduced the occurrence of long-lasting, but not short-lasting, docking periods. We thus propose that, despite its known motor activity, MyoVa directly mediates stable attachment of SGs at the plasma membrane. |
---|---|
AbstractList | Myosin Va (MyoVa) is a prime candidate for controlling actin-based organelle motion in neurons and neuroendocrine cells. Its function in secretory granule (SG) trafficking was investigated in enterochromaffin cells by wide-field and total internal reflection fluorescence microscopy. The distribution of endogenous MyoVa partially overlapped with SGs and microtubules. Impairing MyoVa function by means of a truncated construct (MyoVa tail) or RNA interference prevented the formation of SG-rich regions at the cell periphery and reduced SG density in the subplasmalemmal region. Individual SG trajectories were tracked to analyze SG mobility. A wide distribution of their diffusion coefficient,
D
xy
, was observed. Almost immobile SGs (
D
xy
< 5 × 10
−4
μm
2
· s
−1
) were considered as docked at the plasma membrane based on two properties: (1) SGs that undergo exocytosis have a
D
xy
below this threshold value for at least 2 s before fusion; (2) a negative autocorrelation of the vertical motion was found in subtrajectories with a
D
xy
below the threshold. Using this criterion of docking, we found that the main effect of MyoVa inhibition was to reduce the number of docked granules, leading to reduced secretory responses. Surprisingly, this reduction was not attributable to a decreased transport of SGs toward release sites. In contrast, MyoVa silencing reduced the occurrence of long-lasting, but not short-lasting, docking periods. We thus propose that, despite its known motor activity, MyoVa directly mediates stable attachment of SGs at the plasma membrane. Myosin Va (MyoVa) is a prime candidate for controlling actin-based organelle motion in neurons and neuroendocrine cells. Its function in secretory granule (SG) trafficking was investigated in enterochromaffin cells by wide-field and total internal reflection fluorescence microscopy. The distribution of endogenous MyoVa partially overlapped with SGs and microtubules. Impairing MyoVa function by means of a truncated construct (MyoVa tail) or RNA interference prevented the formation of SG-rich regions at the cell periphery and reduced SG density in the subplasmalemmal region. Individual SG trajectories were tracked to analyze SG mobility. A wide distribution of their diffusion coefficient, D(xy), was observed. Almost immobile SGs (D(xy) < 5 x 10(-4) microm2 x s(-1)) were considered as docked at the plasma membrane based on two properties: (1) SGs that undergo exocytosis have a D(xy) below this threshold value for at least 2 s before fusion; (2) a negative autocorrelation of the vertical motion was found in subtrajectories with a D(xy) below the threshold. Using this criterion of docking, we found that the main effect of MyoVa inhibition was to reduce the number of docked granules, leading to reduced secretory responses. Surprisingly, this reduction was not attributable to a decreased transport of SGs toward release sites. In contrast, MyoVa silencing reduced the occurrence of long-lasting, but not short-lasting, docking periods. We thus propose that, despite its known motor activity, MyoVa directly mediates stable attachment of SGs at the plasma membrane. Myosin Va (MyoVa) is a prime candidate for controlling actin-based organelle motion in neurons and neuroendocrine cells. Its function in secretory granule (SG) trafficking was investigated in enterochromaffin cells by wide-field and total internal reflection fluorescence microscopy. The distribution of endogenous MyoVa partially overlapped with SGs and microtubules. Impairing MyoVa function by means of a truncated construct (MyoVa tail) or RNA interference prevented the formation of SG-rich regions at the cell periphery and reduced SG density in the subplasmalemmal region. Individual SG trajectories were tracked to analyze SG mobility. A wide distribution of their diffusion coefficient, Dxy, was observed. Almost immobile SGs (Dxy < 5 × 10−4 μm2 · s−1) were considered as docked at the plasma membrane based on two properties: (1) SGs that undergo exocytosis have a Dxy below this threshold value for at least 2 s before fusion; (2) a negative autocorrelation of the vertical motion was found in subtrajectories with a Dxy below the threshold. Using this criterion of docking, we found that the main effect of MyoVa inhibition was to reduce the number of docked granules, leading to reduced secretory responses. Surprisingly, this reduction was not attributable to a decreased transport of SGs toward release sites. In contrast, MyoVa silencing reduced the occurrence of long-lasting, but not short-lasting, docking periods. We thus propose that, despite its known motor activity, MyoVa directly mediates stable attachment of SGs at the plasma membrane. Myosin Va (MyoVa) is a prime candidate for controlling actin-based organelle motion in neurons and neuroendocrine cells. Its function in secretory granule (SG) trafficking was investigated in enterochromaffin cells by wide-field and total internal reflection fluorescence microscopy. The distribution of endogenous MyoVa partially overlapped with SGs and microtubules. Impairing MyoVa function by means of a truncated construct (MyoVa tail) or RNA interference prevented the formation of SG-rich regions at the cell periphery and reduced SG density in the subplasmalemmal region. Individual SG trajectories were tracked to analyze SG mobility. A wide distribution of their diffusion coefficient, D sub(xy), was observed. Almost immobile SGs (D sub(xy) < 5 x 10 super(-4) mu m super(2) . s super(-1)) were considered as docked at the plasma membrane based on two properties: (1) SGs that undergo exocytosis have a D sub(xy) below this threshold value for at least 2 s before fusion; (2) a negative autocorrelation of the vertical motion was found in subtrajectories with a D sub(xy) below the threshold. Using this criterion of docking, we found that the main effect of MyoVa inhibition was to reduce the number of docked granules, leading to reduced secretory responses. Surprisingly, this reduction was not attributable to a decreased transport of SGs toward release sites. In contrast, MyoVa silencing reduced the occurrence of long-lasting, but not short-lasting, docking periods. We thus propose that, despite its known motor activity, MyoVa directly mediates stable attachment of SGs at the plasma membrane. |
Author | Chapuis, Catherine Racine, Victor Henry, Jean-Pierre Sibarita, Jean-Baptiste Fanget, Isabelle Desnos, Claire Huet, Sebastien Darchen, Francois Bottiger, Caroline |
Author_xml | – sequence: 1 fullname: Desnos, Claire – sequence: 2 fullname: Huet, Sebastien – sequence: 3 fullname: Fanget, Isabelle – sequence: 4 fullname: Chapuis, Catherine – sequence: 5 fullname: Bottiger, Caroline – sequence: 6 fullname: Racine, Victor – sequence: 7 fullname: Sibarita, Jean-Baptiste – sequence: 8 fullname: Henry, Jean-Pierre – sequence: 9 fullname: Darchen, Francois |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17898234$$D View this record in MEDLINE/PubMed https://hal.science/hal-01144040$$DView record in HAL |
BookMark | eNqFkUtvEzEUhS1URNOWv1DNCsFigt8eb5CqUNKi9CFK2VqOcycxzIxbe9Io_x6PEpXHphtb8vnOPb46R-igCx0gdErwmAjKPn69Pr__dnM3uRwTSqsSqzHFWL1Co6zqknJMDtAIU4VLyRU_REcp_cSZwES9QYdEVbqijI_Q9Gobku-KH7a4goW3PaTic3C_fLcsQl3cgYvQh7gtptF26yarti_6FRS3jU3tYGrnWYET9Lq2TYK3-_sY3X85_z65KGc308vJ2ax0kuq-nOtFjtYYLBeOSFXVFhZAQAtgFpwWEtdKCUuUckKIOQFrRV1RISmm-WTH6NNu7sN63sLCQddH25iH6FsbtyZYb_5VOr8yy_BkpFSMcJYHfNgNWP1nuzibmeENE8I55viJZPbdPiyGxzWk3rQ-OWiavHBYJyMrRgnF_EWQKKkl1wMod6CLIaUI9fMXCDZDsea5WDMUa7AyQ7HZePr33n9s-yYz8H6_l1-uNj6CyfU0TcaJ2Ww2VBmmc4hkkv0GqvSuYA |
CitedBy_id | crossref_primary_10_1038_nrm3248 crossref_primary_10_1016_j_tins_2019_03_001 crossref_primary_10_1111_j_1600_0854_2010_01048_x crossref_primary_10_1016_j_neuron_2010_09_039 crossref_primary_10_1016_j_cub_2013_03_068 crossref_primary_10_2337_db20_0069 crossref_primary_10_3390_pharmaceutics14040886 crossref_primary_10_1016_j_bbamcr_2015_11_022 crossref_primary_10_1038_ncb2000 crossref_primary_10_1091_mbc_e14_07_1229 crossref_primary_10_1111_boc_201700026 crossref_primary_10_1016_j_cub_2008_05_046 crossref_primary_10_1016_j_ibmb_2020_103364 crossref_primary_10_1007_s10571_009_9459_2 crossref_primary_10_1091_mbc_E14_09_1373 crossref_primary_10_1186_1465_9921_12_118 crossref_primary_10_1186_1471_2202_11_32 crossref_primary_10_1016_j_brainres_2013_08_018 crossref_primary_10_1042_BJ20091839 crossref_primary_10_1007_s10571_010_9597_6 crossref_primary_10_1085_jgp_201812299 crossref_primary_10_1016_j_trac_2019_01_013 crossref_primary_10_1210_me_2008_0209 crossref_primary_10_1111_j_1600_0854_2011_01248_x crossref_primary_10_1038_ncomms1500 crossref_primary_10_1016_j_immuni_2011_07_008 crossref_primary_10_1091_mbc_e10_05_0404 crossref_primary_10_1016_j_tins_2016_07_003 crossref_primary_10_1038_ncb2132 crossref_primary_10_1016_j_brainres_2009_03_070 crossref_primary_10_1016_j_brainresbull_2012_05_003 crossref_primary_10_1007_s12031_012_9718_4 crossref_primary_10_1111_j_1600_0854_2008_00759_x crossref_primary_10_1371_journal_pone_0099428 crossref_primary_10_1371_journal_pone_0109082 crossref_primary_10_1016_j_gene_2012_07_035 crossref_primary_10_1091_mbc_e08_08_0865 crossref_primary_10_1074_jbc_M802957200 crossref_primary_10_1073_pnas_2407330121 crossref_primary_10_1085_jgp_201711944 crossref_primary_10_3390_ijms21010067 crossref_primary_10_1002_ange_201101148 crossref_primary_10_1242_jcs_252585 crossref_primary_10_7554_eLife_26174 crossref_primary_10_1091_mbc_e10_08_0720 crossref_primary_10_1152_jn_00949_2007 crossref_primary_10_1007_s00441_008_0630_8 crossref_primary_10_1111_j_1471_4159_2010_07110_x crossref_primary_10_3389_fphys_2023_1304537 crossref_primary_10_1371_journal_pone_0012738 crossref_primary_10_1042_BST0380199 crossref_primary_10_7554_eLife_39440 crossref_primary_10_1016_j_tcb_2009_03_003 crossref_primary_10_1074_jbc_M110_187286 crossref_primary_10_1210_en_2012_1436 crossref_primary_10_1042_BST0391115 crossref_primary_10_1091_mbc_e08_10_1048 crossref_primary_10_1091_mbc_E21_03_0094 crossref_primary_10_1002_anie_201101148 crossref_primary_10_1523_JNEUROSCI_2724_11_2012 crossref_primary_10_1007_s10571_009_9352_z crossref_primary_10_1083_jcb_201204092 crossref_primary_10_1007_s00018_012_1156_5 crossref_primary_10_1111_j_1600_0854_2011_01301_x crossref_primary_10_1111_tra_12587 crossref_primary_10_1038_emboj_2011_361 crossref_primary_10_3389_fnsyn_2021_650334 |
Cites_doi | 10.1083/jcb.119.6.1541 10.1042/BC20070021 10.1016/S0006-3495(00)76828-7 10.1038/ng0797-289 10.1016/S0955-0674(01)00296-4 10.1016/S0896-6273(00)00099-4 10.1242/jcs.00317 10.1091/mbc.12.5.1353 10.1016/j.ceb.2005.12.014 10.1083/jcb.200503028 10.1523/JNEUROSCI.23-03-00837.2003 10.1111/j.1398-9219.2004.00190.x 10.1196/annals.1294.019 10.1038/23072 10.1016/j.conb.2006.05.006 10.1038/sj.emboj.7601256 10.1529/biophysj.105.080622 10.1146/annurev.neuro.28.061604.135757 10.1111/j.1600-0854.2005.00342.x 10.1016/j.neuron.2006.06.031 10.1016/S0076-6879(05)03038-7 10.1016/j.bbamcr.2006.09.004 10.1242/jcs.00083 10.1046/j.1471-4159.2003.01649.x 10.1038/nn1640 10.1016/0304-3940(96)12967-0 10.1007/s002490050253 10.1529/biophysj.105.061663 10.1091/mbc.E05-10-0938 10.1083/jcb.200308093 10.1083/jcb.153.1.177 10.1038/sj.emboj.7600464 10.1113/jphysiol.2005.095943 10.1091/mbc.E03-01-0022 10.1091/mbc.E05-03-0252 10.1083/jcb.143.7.1899 10.1074/jbc.M203862200 10.1007/s002490050114 10.1017/CBO9780511564352 10.1016/S0006-3495(99)77382-0 10.1083/jcb.200302157 10.1083/jcb.200105055 10.1016/S0300-9084(00)00193-0 10.1073/pnas.0611471104 10.1152/jn.2001.85.4.1498 10.1083/jcb.89.1.141 10.1083/jcb.143.6.1505 10.1038/nrm2002 10.1016/0016-5085(91)90004-5 10.1091/mbc.E04-11-1001 10.1038/41329 10.1038/349709a0 10.1529/biophysj.105.075556 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2007 Society for Neuroscience 0270-6474/07/2710636-10$15.00/0 2007 |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2007 Society for Neuroscience 0270-6474/07/2710636-10$15.00/0 2007 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7X8 1XC 5PM |
DOI | 10.1523/JNEUROSCI.1228-07.2007 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Neurosciences Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Neurosciences Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 10645 |
ExternalDocumentID | oai_HAL_hal_01144040v1 10_1523_JNEUROSCI_1228_07_2007 17898234 www27_39_10636 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GX1 H13 HYE H~9 KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RPM TFN UQL WH7 WOQ X X7M XJT ZA5 --- -DZ -~X .55 18M AAFWJ ABBAR ACGUR AFCFT AFHIN AFOSN AHWXS AOIJS BTFSW CGR CUY CVF ECM EIF NPM TR2 W8F YBU YHG YKV YNH YSK AAYXX CITATION 7TK 7X8 .GJ 1CY 1XC AI. RIG VH1 YYP ZGI ZXP 5PM |
ID | FETCH-LOGICAL-c629t-b9d78990ea45c1678faede1e95e3aec9560f775a177c555b1eaa5f82562022563 |
IEDL.DBID | RPM |
ISSN | 0270-6474 |
IngestDate | Tue Sep 17 20:38:26 EDT 2024 Tue Oct 15 15:54:46 EDT 2024 Fri Oct 25 04:24:16 EDT 2024 Fri Oct 25 07:11:38 EDT 2024 Thu Sep 26 18:36:18 EDT 2024 Sat Sep 28 08:36:41 EDT 2024 Tue Nov 10 19:50:53 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c629t-b9d78990ea45c1678faede1e95e3aec9560f775a177c555b1eaa5f82562022563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC6673143 C.D. and S.H. contributed equally to this work. S. Huet's present address: Gene Expression Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany. |
ORCID | 0000-0002-3765-0969 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/27/39/10636.full.pdf |
PMID | 17898234 |
PQID | 17696494 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6673143 hal_primary_oai_HAL_hal_01144040v1 proquest_miscellaneous_68321204 proquest_miscellaneous_17696494 crossref_primary_10_1523_JNEUROSCI_1228_07_2007 pubmed_primary_17898234 highwire_smallpub1_www27_39_10636 |
ProviderPackageCode | RHF RHI |
PublicationCentury | 2000 |
PublicationDate | 2007-09-26 |
PublicationDateYYYYMMDD | 2007-09-26 |
PublicationDate_xml | – month: 09 year: 2007 text: 2007-09-26 day: 26 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2007 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
References | 2023041303273824000_27.39.10636.1 2023041303273824000_27.39.10636.5 2023041303273824000_27.39.10636.4 2023041303273824000_27.39.10636.3 2023041303273824000_27.39.10636.2 Li (2023041303273824000_27.39.10636.22) 2005; 288 Schnell (2023041303273824000_27.39.10636.36) 2001; 85 Steyer (2023041303273824000_27.39.10636.41) 1999; 76 2023041303273824000_27.39.10636.52 2023041303273824000_27.39.10636.51 2023041303273824000_27.39.10636.50 2023041303273824000_27.39.10636.12 2023041303273824000_27.39.10636.11 2023041303273824000_27.39.10636.55 2023041303273824000_27.39.10636.10 2023041303273824000_27.39.10636.54 2023041303273824000_27.39.10636.53 2023041303273824000_27.39.10636.16 Trifaro (2023041303273824000_27.39.10636.48) 2000; 82 2023041303273824000_27.39.10636.15 2023041303273824000_27.39.10636.14 2023041303273824000_27.39.10636.13 2023041303273824000_27.39.10636.19 2023041303273824000_27.39.10636.18 2023041303273824000_27.39.10636.17 2023041303273824000_27.39.10636.23 2023041303273824000_27.39.10636.21 2023041303273824000_27.39.10636.27 Lang (2023041303273824000_27.39.10636.20) 2000; 78 2023041303273824000_27.39.10636.26 2023041303273824000_27.39.10636.25 2023041303273824000_27.39.10636.24 2023041303273824000_27.39.10636.29 2023041303273824000_27.39.10636.28 Evers (2023041303273824000_27.39.10636.9) 1991; 101 2023041303273824000_27.39.10636.30 2023041303273824000_27.39.10636.34 2023041303273824000_27.39.10636.32 2023041303273824000_27.39.10636.31 2023041303273824000_27.39.10636.38 2023041303273824000_27.39.10636.37 2023041303273824000_27.39.10636.39 Sakaba (2023041303273824000_27.39.10636.35) 2003; 23 2023041303273824000_27.39.10636.40 2023041303273824000_27.39.10636.45 2023041303273824000_27.39.10636.44 2023041303273824000_27.39.10636.43 2023041303273824000_27.39.10636.42 2023041303273824000_27.39.10636.49 2023041303273824000_27.39.10636.8 2023041303273824000_27.39.10636.7 2023041303273824000_27.39.10636.47 2023041303273824000_27.39.10636.6 2023041303273824000_27.39.10636.46 Rudolf (2023041303273824000_27.39.10636.33) 2001; 12 |
References_xml | – ident: 2023041303273824000_27.39.10636.8 doi: 10.1083/jcb.119.6.1541 – ident: 2023041303273824000_27.39.10636.6 doi: 10.1042/BC20070021 – volume: 78 start-page: 2863 year: 2000 ident: 2023041303273824000_27.39.10636.20 article-title: Role of actin cortex in the subplasmalemmal transport of secretory granules in PC-12 cells publication-title: Biophys J doi: 10.1016/S0006-3495(00)76828-7 contributor: fullname: Lang – ident: 2023041303273824000_27.39.10636.30 doi: 10.1038/ng0797-289 – ident: 2023041303273824000_27.39.10636.13 doi: 10.1016/S0955-0674(01)00296-4 – ident: 2023041303273824000_27.39.10636.26 doi: 10.1016/S0896-6273(00)00099-4 – ident: 2023041303273824000_27.39.10636.34 doi: 10.1242/jcs.00317 – volume: 12 start-page: 1353 year: 2001 ident: 2023041303273824000_27.39.10636.33 article-title: Dynamics of immature secretory granules: role of cytoskeletal elements during transport, cortical restriction, and F-actin-dependent tethering publication-title: Mol Biol Cell doi: 10.1091/mbc.12.5.1353 contributor: fullname: Rudolf – ident: 2023041303273824000_27.39.10636.39 doi: 10.1016/j.ceb.2005.12.014 – ident: 2023041303273824000_27.39.10636.55 doi: 10.1083/jcb.200503028 – volume: 23 start-page: 837 year: 2003 ident: 2023041303273824000_27.39.10636.35 article-title: Involvement of actin polymerization in vesicle recruitment at the calyx of Held synapse publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-03-00837.2003 contributor: fullname: Sakaba – ident: 2023041303273824000_27.39.10636.38 doi: 10.1111/j.1398-9219.2004.00190.x – ident: 2023041303273824000_27.39.10636.47 doi: 10.1196/annals.1294.019 – ident: 2023041303273824000_27.39.10636.24 doi: 10.1038/23072 – ident: 2023041303273824000_27.39.10636.37 doi: 10.1016/j.conb.2006.05.006 – ident: 2023041303273824000_27.39.10636.46 doi: 10.1038/sj.emboj.7601256 – ident: 2023041303273824000_27.39.10636.14 doi: 10.1529/biophysj.105.080622 – ident: 2023041303273824000_27.39.10636.7 doi: 10.1146/annurev.neuro.28.061604.135757 – ident: 2023041303273824000_27.39.10636.15 doi: 10.1111/j.1600-0854.2005.00342.x – ident: 2023041303273824000_27.39.10636.11 doi: 10.1016/j.neuron.2006.06.031 – ident: 2023041303273824000_27.39.10636.19 doi: 10.1016/S0076-6879(05)03038-7 – ident: 2023041303273824000_27.39.10636.23 doi: 10.1016/j.bbamcr.2006.09.004 – ident: 2023041303273824000_27.39.10636.50 doi: 10.1242/jcs.00083 – ident: 2023041303273824000_27.39.10636.32 doi: 10.1046/j.1471-4159.2003.01649.x – volume: 288 start-page: G213 year: 2005 ident: 2023041303273824000_27.39.10636.22 article-title: Inhibition of mitochondrial gene transcription suppresses neurotensin secretion in the human carcinoid cell line BON publication-title: Am J Physiol contributor: fullname: Li – ident: 2023041303273824000_27.39.10636.4 doi: 10.1038/nn1640 – ident: 2023041303273824000_27.39.10636.44 doi: 10.1016/0304-3940(96)12967-0 – ident: 2023041303273824000_27.39.10636.28 doi: 10.1007/s002490050253 – ident: 2023041303273824000_27.39.10636.18 doi: 10.1529/biophysj.105.061663 – ident: 2023041303273824000_27.39.10636.2 doi: 10.1091/mbc.E05-10-0938 – ident: 2023041303273824000_27.39.10636.49 doi: 10.1083/jcb.200308093 – ident: 2023041303273824000_27.39.10636.17 doi: 10.1083/jcb.153.1.177 – ident: 2023041303273824000_27.39.10636.27 doi: 10.1038/sj.emboj.7600464 – ident: 2023041303273824000_27.39.10636.45 doi: 10.1113/jphysiol.2005.095943 – ident: 2023041303273824000_27.39.10636.52 doi: 10.1091/mbc.E03-01-0022 – ident: 2023041303273824000_27.39.10636.53 doi: 10.1091/mbc.E05-03-0252 – ident: 2023041303273824000_27.39.10636.54 doi: 10.1083/jcb.143.7.1899 – ident: 2023041303273824000_27.39.10636.10 doi: 10.1074/jbc.M203862200 – ident: 2023041303273824000_27.39.10636.29 doi: 10.1007/s002490050114 – ident: 2023041303273824000_27.39.10636.40 doi: 10.1017/CBO9780511564352 – volume: 76 start-page: 2262 year: 1999 ident: 2023041303273824000_27.39.10636.41 article-title: Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy publication-title: Biophys J doi: 10.1016/S0006-3495(99)77382-0 contributor: fullname: Steyer – ident: 2023041303273824000_27.39.10636.5 doi: 10.1083/jcb.200302157 – ident: 2023041303273824000_27.39.10636.12 doi: 10.1083/jcb.200105055 – volume: 82 start-page: 339 year: 2000 ident: 2023041303273824000_27.39.10636.48 article-title: Two pathways control chromaffin cell cortical F-actin dynamics during exocytosis publication-title: Biochimie doi: 10.1016/S0300-9084(00)00193-0 contributor: fullname: Trifaro – ident: 2023041303273824000_27.39.10636.1 doi: 10.1073/pnas.0611471104 – volume: 85 start-page: 1498 year: 2001 ident: 2023041303273824000_27.39.10636.36 article-title: Hippocampal synaptic transmission and plasticity are preserved in myosin Va mutant mice publication-title: J Neurophysiol doi: 10.1152/jn.2001.85.4.1498 contributor: fullname: Schnell – ident: 2023041303273824000_27.39.10636.3 doi: 10.1083/jcb.89.1.141 – ident: 2023041303273824000_27.39.10636.43 doi: 10.1083/jcb.143.6.1505 – ident: 2023041303273824000_27.39.10636.16 doi: 10.1038/nrm2002 – volume: 101 start-page: 303 year: 1991 ident: 2023041303273824000_27.39.10636.9 article-title: Establishment and characterization of a human carcinoid in nude mice and effect of various agents on tumor growth publication-title: Gastroenterology doi: 10.1016/0016-5085(91)90004-5 contributor: fullname: Evers – ident: 2023041303273824000_27.39.10636.51 doi: 10.1091/mbc.E04-11-1001 – ident: 2023041303273824000_27.39.10636.42 doi: 10.1038/41329 – ident: 2023041303273824000_27.39.10636.31 – ident: 2023041303273824000_27.39.10636.25 doi: 10.1038/349709a0 – ident: 2023041303273824000_27.39.10636.21 doi: 10.1529/biophysj.105.075556 |
SSID | ssj0007017 |
Score | 2.2413359 |
Snippet | Myosin Va (MyoVa) is a prime candidate for controlling actin-based organelle motion in neurons and neuroendocrine cells. Its function in secretory granule (SG)... |
SourceID | pubmedcentral hal proquest crossref pubmed highwire |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 10636 |
SubjectTerms | Cell Membrane - physiology Cells, Cultured Cellular Biology Humans Life Sciences Myosin Heavy Chains - physiology Myosin Type V - physiology Secretory Vesicles - physiology Subcellular Processes Transport Vesicles - physiology |
Title | Myosin Va Mediates Docking of Secretory Granules at the Plasma Membrane |
URI | http://www.jneurosci.org/cgi/content/abstract/27/39/10636 https://www.ncbi.nlm.nih.gov/pubmed/17898234 https://search.proquest.com/docview/17696494 https://search.proquest.com/docview/68321204 https://hal.science/hal-01144040 https://pubmed.ncbi.nlm.nih.gov/PMC6673143 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-te-IFAeOjfAyDEG9p4sQf8WNVsZVBp6ExtDfLSWytUpNOtEXaf89dmhSK4IXXxFbsu4vvfuf7AHgX0tSIUpN7KbhIVLyKnKEskEKHLA8qVwW5Bmbnanolzq7l9QHIPhemDdovi_moWdSjZn7Txlbe1mXcx4nFF7MJtapEPR8PYIAC2kP07vjVSdtmF-EW4iKhRZcWjIArPjun8LjLyccRT6kws24z0aluqM5NnmZiTzkNbig0clc2-G8m6J-RlL-pppMHcL-zKdl4u_aHcOCbR3A0bhBP13fsPWujPFv3-RGczu6Wq3nDvjk2a7t0-BVDRUMOc7YM7JKsSLp3Z6eoxDZICebWDI1EdoFmdk2TasTXjX8MVycfvk6mUddMISpVatZRYSrcpEm8E7LkqKKC85Xn3kifOV8STApaS8e1LqWUBffOyYD4UaWo5qXKnsBhs2z8M2ChCj5TiQgmCWh_lHhEyqLkmfQ607mTQ4h7Ktrbbc0MS1gDWWB3LLDEApto6oOph_AWib0bTCWvp-PPlp4RYBN40vzgQ3jT88LihhcLJD23KDCptpnBL6hMDeF1zySL_wldfiBJlpuV5VoZJYz49whFTZvSBEc83TL11-I78RiC3mP33oL336DotrW6O1F9_t8zX8C9rTvZRKl6CYfr7xv_Cu2gdXEMg09f8uNW-n8CtpUFpQ |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWS9NBeuqWLuoUtit60cxGPhtHESS0jQBbkRlAyiRi15aCWC6Rf3xktbh20h_YqUqCoN-TMGw5nCPnokkSxUqJ7yRmfTeOpbxTeAimkSzMnMlGgayCfiNEFO7niVzuE93dhmqD9spgF1XwRVLPrJrbyZlGGfZxYeJoPsVQl6Plwl9yD9RqxnqR3G7CMmkK7QLiAGTHJuovBQLnCkwkGyJ0Nj4M4wdTMsrmLjplDZaayJGVb6mn3GoMjN4mD_2SE3o2l_E05HT4il_202piUr8G6LoLyx52Mj_8878fkYWeu0kHb_ITs2Oop2R9UQNUXt_QTbQJIG8_8PjnKb5erWUUvDc2bAiB2RUGHoS-eLh09QwMVj_TpEejHNQxGTU3B_qSnYMEv8KUFUPfKPiMXh5_PhyO_q9PglyJRtV-oKfw9FVnDeBmD9nPGTm1sFbepsSUyMCclN7GUJee8iK0x3AE1FQlYEFykz8letazsS0Ld1NlURMypyIFpU8Luy4syTrmVqcwM90jYw6Nv2nQcGmkMYKs32GrEVkcSS2xKj3wAFDedMZv2aDDW-Ay5IINN7Hvskfc9yBomPJ8DprEGTBKpUwUjiFR45KBHX8MSxHMV-CXL9UrHUijBFPt7D4H1oJIIerxopeXXx3dy5xG5JUdbH7zdAtLRpAHvpOHVf795QO6PzvOxHh9PvrwmD1qvtfIT8Ybs1d_W9i2YW3XxrllcPwESEyak |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZbxMxELZokRAvXOUIVw1CvO3tY_0YBdK0NFGkUlTxYnl3bTUi2URkg1R-PTN7hKaCl77ujuVjxp75xuMZQj64OFYsl-hecsZjRVR4RuErkEy6JHUiFRm6BsYTMTpnJxf84lqprzpoP89mfjlf-OXsso6tXC3yoIsTC6bjAZaqBD0frAoX7JG7sGdD0QH19hCWYV1sF0AXoCMmWfs4GGBXcDLBILmzwbEfxZieWdbv0TF7qExVGidsR0XtXWKA5DZ58L8M0ZvxlNcU1PAh-d5NrYlL-eFvqszPf9_I-niruT8iD1qzlfYbksfkji2fkIN-CZB9cUU_0jqQtPbQH5Cj8dVyPSvpN0PHdSEQu6agy9AnT5eOnqGhilf79Aj05AY6pKaiYIfSKVjyC2y0AAhf2qfkfPj562DktfUavFzEqvIyVcAKqtAaxvMItKAztrCRVdwmxuaIxJyU3ERS5pzzLLLGcAcQVcRgSXCRPCP75bK0Lwh1hbOJCJlToQMTJ4dTmGd5lHArE5ka3iNBxyK9atJyaIQzwF-95a9G_upQYqlN2SPvgZNbYsyqPeqfavyGmJDBYfYr6pF3HaM1THg-B75GGvgSS50o6EEkokcOOwnQsBXxfgWWZLlZ60gKJZhi_6cQWBcqDoHieSMxfwffyl6PyB1Z2hnw7h-QkDodeCsRL2_d8pDcm34a6tPjyZdX5H7jvFZeLF6T_ernxr4Bq6vK3tb76w9V-ykk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Myosin+Va+Mediates+Docking+of+Secretory+Granules+at+the+Plasma+Membrane&rft.jtitle=The+Journal+of+neuroscience&rft.au=Desnos%2C+Claire&rft.au=Huet%2C+Sebastien&rft.au=Fanget%2C+Isabelle&rft.au=Chapuis%2C+Catherine&rft.date=2007-09-26&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=27&rft.issue=39&rft.spage=10636&rft.epage=10645&rft_id=info:doi/10.1523%2FJNEUROSCI.1228-07.2007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |