Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and mortality rates in critically ill patients. In recent years, many bioactive ingredients extracted from herbs have been reported to effectively...

Full description

Saved in:
Bibliographic Details
Published inJournal of translational medicine Vol. 19; no. 1; pp. 96 - 14
Main Authors Li, Jiucui, Lu, Kongmiao, Sun, Fenglan, Tan, Shanjuan, Zhang, Xiao, Sheng, Wei, Hao, Wanming, Liu, Min, Lv, Weihong, Han, Wei
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 02.03.2021
BioMed Central
BMC
Subjects
Online AccessGet full text
ISSN1479-5876
1479-5876
DOI10.1186/s12967-021-02745-1

Cover

Loading…
Abstract Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and mortality rates in critically ill patients. In recent years, many bioactive ingredients extracted from herbs have been reported to effectively ameliorate ALI/ARDS via different mechanisms. Ferroptosis, categorized as regulated necrosis, is more immunogenic than apoptosis and contributes to the progression of ALI. In this study, we examined the impact of panaxydol (PX), isolated from the roots of Panax ginseng, on lipopolysaccharide (LPS)-induced ALI in mice. In vivo, the role of PX on LPS-induced ALI in mice was tested by determination of LPS-induced pulmonary inflammation, pulmonary edema and ferroptosis. In vitro, BEAS-2B cells were used to investigate the molecular mechanisms by which PX functions via determination of inflammation, ferroptosis and their relationship. Administration of PX protected mice against LPS-induced ALI, including significantly ameliorated lung pathological changes, and decreased the extent of lung edema, inflammation, and ferroptosis. In vitro, PX inhibited LPS-induced ferroptosis and inflammation in bronchial epithelial cell line BEAS-2B cells. The relationship between ferroptosis and inflammation was investigated. The results showed that ferroptosis mediated inflammation in LPS-treated BEAS-2B cells, and PX might ameliorate LPS-induced inflammation via inhibiting ferroptosis. Meanwhile, PX could upregulate Keap1-Nrf2/HO-1 pathway, and selective inhibition of Keap1-Nrf2/HO-1 pathway significantly abolished the anti-ferroptotic and anti-inflammatory functions of PX in LPS-treated cells. PX attenuates ferroptosis against LPS-induced ALI via Keap1-Nrf2/HO-1 pathway, and is a promising novel therapeutic candidate for ALI.
AbstractList Abstract Background Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and mortality rates in critically ill patients. In recent years, many bioactive ingredients extracted from herbs have been reported to effectively ameliorate ALI/ARDS via different mechanisms. Ferroptosis, categorized as regulated necrosis, is more immunogenic than apoptosis and contributes to the progression of ALI. In this study, we examined the impact of panaxydol (PX), isolated from the roots of Panax ginseng, on lipopolysaccharide (LPS)-induced ALI in mice. Methods In vivo, the role of PX on LPS-induced ALI in mice was tested by determination of LPS-induced pulmonary inflammation, pulmonary edema and ferroptosis. In vitro, BEAS-2B cells were used to investigate the molecular mechanisms by which PX functions via determination of inflammation, ferroptosis and their relationship. Results Administration of PX protected mice against LPS-induced ALI, including significantly ameliorated lung pathological changes, and decreased the extent of lung edema, inflammation, and ferroptosis. In vitro, PX inhibited LPS-induced ferroptosis and inflammation in bronchial epithelial cell line BEAS-2B cells. The relationship between ferroptosis and inflammation was investigated. The results showed that ferroptosis mediated inflammation in LPS-treated BEAS-2B cells, and PX might ameliorate LPS-induced inflammation via inhibiting ferroptosis. Meanwhile, PX could upregulate Keap1-Nrf2/HO-1 pathway, and selective inhibition of Keap1-Nrf2/HO-1 pathway significantly abolished the anti-ferroptotic and anti-inflammatory functions of PX in LPS-treated cells. Conclusion PX attenuates ferroptosis against LPS-induced ALI via Keap1-Nrf2/HO-1 pathway, and is a promising novel therapeutic candidate for ALI.
Background Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and mortality rates in critically ill patients. In recent years, many bioactive ingredients extracted from herbs have been reported to effectively ameliorate ALI/ARDS via different mechanisms. Ferroptosis, categorized as regulated necrosis, is more immunogenic than apoptosis and contributes to the progression of ALI. In this study, we examined the impact of panaxydol (PX), isolated from the roots of Panax ginseng, on lipopolysaccharide (LPS)-induced ALI in mice. Methods In vivo, the role of PX on LPS-induced ALI in mice was tested by determination of LPS-induced pulmonary inflammation, pulmonary edema and ferroptosis. In vitro, BEAS-2B cells were used to investigate the molecular mechanisms by which PX functions via determination of inflammation, ferroptosis and their relationship. Results Administration of PX protected mice against LPS-induced ALI, including significantly ameliorated lung pathological changes, and decreased the extent of lung edema, inflammation, and ferroptosis. In vitro, PX inhibited LPS-induced ferroptosis and inflammation in bronchial epithelial cell line BEAS-2B cells. The relationship between ferroptosis and inflammation was investigated. The results showed that ferroptosis mediated inflammation in LPS-treated BEAS-2B cells, and PX might ameliorate LPS-induced inflammation via inhibiting ferroptosis. Meanwhile, PX could upregulate Keap1-Nrf2/HO-1 pathway, and selective inhibition of Keap1-Nrf2/HO-1 pathway significantly abolished the anti-ferroptotic and anti-inflammatory functions of PX in LPS-treated cells. Conclusion PX attenuates ferroptosis against LPS-induced ALI via Keap1-Nrf2/HO-1 pathway, and is a promising novel therapeutic candidate for ALI. Keywords: Panaxydol, Ferroptosis, Acute lung injury, LPS, Inflammation
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and mortality rates in critically ill patients. In recent years, many bioactive ingredients extracted from herbs have been reported to effectively ameliorate ALI/ARDS via different mechanisms. Ferroptosis, categorized as regulated necrosis, is more immunogenic than apoptosis and contributes to the progression of ALI. In this study, we examined the impact of panaxydol (PX), isolated from the roots of Panax ginseng, on lipopolysaccharide (LPS)-induced ALI in mice. In vivo, the role of PX on LPS-induced ALI in mice was tested by determination of LPS-induced pulmonary inflammation, pulmonary edema and ferroptosis. In vitro, BEAS-2B cells were used to investigate the molecular mechanisms by which PX functions via determination of inflammation, ferroptosis and their relationship. Administration of PX protected mice against LPS-induced ALI, including significantly ameliorated lung pathological changes, and decreased the extent of lung edema, inflammation, and ferroptosis. In vitro, PX inhibited LPS-induced ferroptosis and inflammation in bronchial epithelial cell line BEAS-2B cells. The relationship between ferroptosis and inflammation was investigated. The results showed that ferroptosis mediated inflammation in LPS-treated BEAS-2B cells, and PX might ameliorate LPS-induced inflammation via inhibiting ferroptosis. Meanwhile, PX could upregulate Keap1-Nrf2/HO-1 pathway, and selective inhibition of Keap1-Nrf2/HO-1 pathway significantly abolished the anti-ferroptotic and anti-inflammatory functions of PX in LPS-treated cells. PX attenuates ferroptosis against LPS-induced ALI via Keap1-Nrf2/HO-1 pathway, and is a promising novel therapeutic candidate for ALI.
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and mortality rates in critically ill patients. In recent years, many bioactive ingredients extracted from herbs have been reported to effectively ameliorate ALI/ARDS via different mechanisms. Ferroptosis, categorized as regulated necrosis, is more immunogenic than apoptosis and contributes to the progression of ALI. In this study, we examined the impact of panaxydol (PX), isolated from the roots of Panax ginseng, on lipopolysaccharide (LPS)-induced ALI in mice.BACKGROUNDAcute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and mortality rates in critically ill patients. In recent years, many bioactive ingredients extracted from herbs have been reported to effectively ameliorate ALI/ARDS via different mechanisms. Ferroptosis, categorized as regulated necrosis, is more immunogenic than apoptosis and contributes to the progression of ALI. In this study, we examined the impact of panaxydol (PX), isolated from the roots of Panax ginseng, on lipopolysaccharide (LPS)-induced ALI in mice.In vivo, the role of PX on LPS-induced ALI in mice was tested by determination of LPS-induced pulmonary inflammation, pulmonary edema and ferroptosis. In vitro, BEAS-2B cells were used to investigate the molecular mechanisms by which PX functions via determination of inflammation, ferroptosis and their relationship.METHODSIn vivo, the role of PX on LPS-induced ALI in mice was tested by determination of LPS-induced pulmonary inflammation, pulmonary edema and ferroptosis. In vitro, BEAS-2B cells were used to investigate the molecular mechanisms by which PX functions via determination of inflammation, ferroptosis and their relationship.Administration of PX protected mice against LPS-induced ALI, including significantly ameliorated lung pathological changes, and decreased the extent of lung edema, inflammation, and ferroptosis. In vitro, PX inhibited LPS-induced ferroptosis and inflammation in bronchial epithelial cell line BEAS-2B cells. The relationship between ferroptosis and inflammation was investigated. The results showed that ferroptosis mediated inflammation in LPS-treated BEAS-2B cells, and PX might ameliorate LPS-induced inflammation via inhibiting ferroptosis. Meanwhile, PX could upregulate Keap1-Nrf2/HO-1 pathway, and selective inhibition of Keap1-Nrf2/HO-1 pathway significantly abolished the anti-ferroptotic and anti-inflammatory functions of PX in LPS-treated cells.RESULTSAdministration of PX protected mice against LPS-induced ALI, including significantly ameliorated lung pathological changes, and decreased the extent of lung edema, inflammation, and ferroptosis. In vitro, PX inhibited LPS-induced ferroptosis and inflammation in bronchial epithelial cell line BEAS-2B cells. The relationship between ferroptosis and inflammation was investigated. The results showed that ferroptosis mediated inflammation in LPS-treated BEAS-2B cells, and PX might ameliorate LPS-induced inflammation via inhibiting ferroptosis. Meanwhile, PX could upregulate Keap1-Nrf2/HO-1 pathway, and selective inhibition of Keap1-Nrf2/HO-1 pathway significantly abolished the anti-ferroptotic and anti-inflammatory functions of PX in LPS-treated cells.PX attenuates ferroptosis against LPS-induced ALI via Keap1-Nrf2/HO-1 pathway, and is a promising novel therapeutic candidate for ALI.CONCLUSIONPX attenuates ferroptosis against LPS-induced ALI via Keap1-Nrf2/HO-1 pathway, and is a promising novel therapeutic candidate for ALI.
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and mortality rates in critically ill patients. In recent years, many bioactive ingredients extracted from herbs have been reported to effectively ameliorate ALI/ARDS via different mechanisms. Ferroptosis, categorized as regulated necrosis, is more immunogenic than apoptosis and contributes to the progression of ALI. In this study, we examined the impact of panaxydol (PX), isolated from the roots of Panax ginseng, on lipopolysaccharide (LPS)-induced ALI in mice. In vivo, the role of PX on LPS-induced ALI in mice was tested by determination of LPS-induced pulmonary inflammation, pulmonary edema and ferroptosis. In vitro, BEAS-2B cells were used to investigate the molecular mechanisms by which PX functions via determination of inflammation, ferroptosis and their relationship. Administration of PX protected mice against LPS-induced ALI, including significantly ameliorated lung pathological changes, and decreased the extent of lung edema, inflammation, and ferroptosis. In vitro, PX inhibited LPS-induced ferroptosis and inflammation in bronchial epithelial cell line BEAS-2B cells. The relationship between ferroptosis and inflammation was investigated. The results showed that ferroptosis mediated inflammation in LPS-treated BEAS-2B cells, and PX might ameliorate LPS-induced inflammation via inhibiting ferroptosis. Meanwhile, PX could upregulate Keap1-Nrf2/HO-1 pathway, and selective inhibition of Keap1-Nrf2/HO-1 pathway significantly abolished the anti-ferroptotic and anti-inflammatory functions of PX in LPS-treated cells. PX attenuates ferroptosis against LPS-induced ALI via Keap1-Nrf2/HO-1 pathway, and is a promising novel therapeutic candidate for ALI.
Background Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and mortality rates in critically ill patients. In recent years, many bioactive ingredients extracted from herbs have been reported to effectively ameliorate ALI/ARDS via different mechanisms. Ferroptosis, categorized as regulated necrosis, is more immunogenic than apoptosis and contributes to the progression of ALI. In this study, we examined the impact of panaxydol (PX), isolated from the roots of Panax ginseng, on lipopolysaccharide (LPS)-induced ALI in mice. Methods In vivo, the role of PX on LPS-induced ALI in mice was tested by determination of LPS-induced pulmonary inflammation, pulmonary edema and ferroptosis. In vitro, BEAS-2B cells were used to investigate the molecular mechanisms by which PX functions via determination of inflammation, ferroptosis and their relationship. Results Administration of PX protected mice against LPS-induced ALI, including significantly ameliorated lung pathological changes, and decreased the extent of lung edema, inflammation, and ferroptosis. In vitro, PX inhibited LPS-induced ferroptosis and inflammation in bronchial epithelial cell line BEAS-2B cells. The relationship between ferroptosis and inflammation was investigated. The results showed that ferroptosis mediated inflammation in LPS-treated BEAS-2B cells, and PX might ameliorate LPS-induced inflammation via inhibiting ferroptosis. Meanwhile, PX could upregulate Keap1-Nrf2/HO-1 pathway, and selective inhibition of Keap1-Nrf2/HO-1 pathway significantly abolished the anti-ferroptotic and anti-inflammatory functions of PX in LPS-treated cells. Conclusion PX attenuates ferroptosis against LPS-induced ALI via Keap1-Nrf2/HO-1 pathway, and is a promising novel therapeutic candidate for ALI.
ArticleNumber 96
Audience Academic
Author Sun, Fenglan
Tan, Shanjuan
Zhang, Xiao
Han, Wei
Lv, Weihong
Lu, Kongmiao
Hao, Wanming
Liu, Min
Li, Jiucui
Sheng, Wei
Author_xml – sequence: 1
  givenname: Jiucui
  surname: Li
  fullname: Li, Jiucui
– sequence: 2
  givenname: Kongmiao
  surname: Lu
  fullname: Lu, Kongmiao
– sequence: 3
  givenname: Fenglan
  surname: Sun
  fullname: Sun, Fenglan
– sequence: 4
  givenname: Shanjuan
  surname: Tan
  fullname: Tan, Shanjuan
– sequence: 5
  givenname: Xiao
  surname: Zhang
  fullname: Zhang, Xiao
– sequence: 6
  givenname: Wei
  surname: Sheng
  fullname: Sheng, Wei
– sequence: 7
  givenname: Wanming
  surname: Hao
  fullname: Hao, Wanming
– sequence: 8
  givenname: Min
  surname: Liu
  fullname: Liu, Min
– sequence: 9
  givenname: Weihong
  surname: Lv
  fullname: Lv, Weihong
– sequence: 10
  givenname: Wei
  surname: Han
  fullname: Han, Wei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33653364$$D View this record in MEDLINE/PubMed
BookMark eNp9Ul1rFDEUHaRiP_QP-CADvvgy7SSbzxehFLXFxRbU53AnH9sss8maZKr77027rXaLSLjccHPOCSc5h81eiME2zWvUHyMk2ElGWDLe9RjV4oR26FlzgAiXHRWc7T3a7zeHOS_7HhNK5ItmfzZjtBY5aPwVBPi1MXFsoRQbJig2t86mFNclZp9bWIAPubTzq6-dD2bS1rSgp2LbcQqL1ofllDa1tSuvbTts2s8W1qj7khw-Ob_sULuGcv0TNi-b5w7GbF_d96Pm-8cP387Ou_nlp4uz03mnGZalA2kJMlg6bK2xzDnKEJJGg-gZmmmjB0c5NzOBtHSVwfQgER4oMRwYY2J21FxsdU2EpVonv4K0URG8uhvEtFCQitejVUTrXmJhhaCODFYCwCCEIeB65jDvq9b7rdZ6GlbWaBtKgnFHdPck-Gu1iDeKS8wxYVXg3b1Aij8mm4ta-aztOEKwccoKE8kw4YjiCn37BLqMUwr1qRSmPZZIUsL_ohZQDfjgYr1X34qqU0YpxqzCKur4H6i6jK2_VFPkfJ3vEN48NvrH4UNQKkBsATrFnJN1SvsCxcdb335UqFe3mVTbTKqaSXWXSYUqFT-hPqj_h_Qbffvisw
CitedBy_id crossref_primary_10_1016_j_intimp_2023_111398
crossref_primary_10_1016_j_jep_2023_116689
crossref_primary_10_1152_ajplung_00362_2023
crossref_primary_10_3892_mmr_2024_13383
crossref_primary_10_1016_j_intimp_2024_113734
crossref_primary_10_1016_j_ijbiomac_2024_137381
crossref_primary_10_3389_fimmu_2024_1511015
crossref_primary_10_1186_s11658_021_00294_5
crossref_primary_10_1038_s41418_024_01381_8
crossref_primary_10_1016_j_freeradbiomed_2024_07_009
crossref_primary_10_1016_j_ejphar_2023_175835
crossref_primary_10_31083_j_rcm2505149
crossref_primary_10_1039_D4TB02351J
crossref_primary_10_1007_s00408_023_00639_1
crossref_primary_10_1016_j_taap_2024_117127
crossref_primary_10_1186_s10020_022_00515_3
crossref_primary_10_1080_01902148_2024_2339269
crossref_primary_10_3390_cells10040897
crossref_primary_10_1016_j_exger_2023_112335
crossref_primary_10_1016_j_bbadis_2024_167101
crossref_primary_10_1016_j_intimp_2023_109762
crossref_primary_10_1002_mnfr_202300123
crossref_primary_10_1186_s12931_024_02678_5
crossref_primary_10_1016_j_biopha_2023_115463
crossref_primary_10_2147_JIR_S420676
crossref_primary_10_1016_j_jep_2024_118333
crossref_primary_10_1002_efd2_183
crossref_primary_10_1016_j_heliyon_2023_e21093
crossref_primary_10_2147_JMDH_S382643
crossref_primary_10_3389_fphar_2022_1108836
crossref_primary_10_3892_ijmm_2024_5402
crossref_primary_10_1007_s13273_023_00408_4
crossref_primary_10_1021_acsomega_3c10269
crossref_primary_10_3389_fphar_2024_1364328
crossref_primary_10_1155_2022_3192607
crossref_primary_10_3389_fmolb_2022_925700
crossref_primary_10_1080_10715762_2023_2247555
crossref_primary_10_1016_j_jep_2024_117831
crossref_primary_10_1186_s11658_022_00318_8
crossref_primary_10_1007_s11684_023_0992_z
crossref_primary_10_1016_j_biopha_2023_115333
crossref_primary_10_1111_eci_14229
crossref_primary_10_3390_antiox12111925
crossref_primary_10_1002_mco2_70116
crossref_primary_10_1016_j_bbadis_2023_166984
crossref_primary_10_1016_j_envpol_2022_119449
crossref_primary_10_1016_j_jgr_2023_09_002
crossref_primary_10_3389_fimmu_2024_1380846
crossref_primary_10_1016_j_heliyon_2023_e22272
crossref_primary_10_1089_ars_2024_0556
crossref_primary_10_1177_1934578X241239843
crossref_primary_10_3390_ani13172745
crossref_primary_10_1007_s11010_021_04327_7
crossref_primary_10_1016_j_phytochem_2022_113288
crossref_primary_10_1007_s10620_024_08398_6
crossref_primary_10_1016_j_intimp_2024_111529
crossref_primary_10_1016_j_intimp_2023_110516
crossref_primary_10_12677_jcpm_2024_34380
crossref_primary_10_31083_j_jin2104109
crossref_primary_10_2147_JIR_S414316
crossref_primary_10_3390_cells11132040
crossref_primary_10_1021_acsami_2c10506
crossref_primary_10_1016_j_intimp_2024_112852
crossref_primary_10_1016_j_intimp_2024_113941
crossref_primary_10_1016_j_ijbiomac_2024_133427
crossref_primary_10_1016_j_jep_2024_118353
crossref_primary_10_1039_D1SC05930K
crossref_primary_10_1016_j_foodchem_2022_135365
crossref_primary_10_4103_ejpi_EJPI_D_24_00008
crossref_primary_10_1016_j_jep_2024_118230
crossref_primary_10_1038_s41419_022_04971_x
crossref_primary_10_1016_j_ajpath_2024_02_011
crossref_primary_10_3389_fneur_2023_1130378
crossref_primary_10_3390_cancers13153670
crossref_primary_10_1080_10495398_2024_2418516
crossref_primary_10_1142_S0192415X24500691
crossref_primary_10_1007_s10753_024_02041_2
crossref_primary_10_1016_j_intimp_2024_111911
crossref_primary_10_1016_j_ejphar_2024_176572
crossref_primary_10_3389_fphar_2021_808480
crossref_primary_10_3389_fphar_2022_940261
crossref_primary_10_1016_j_heliyon_2023_e22772
crossref_primary_10_7717_peerj_17692
crossref_primary_10_1186_s12890_023_02361_3
crossref_primary_10_1016_j_freeradbiomed_2025_01_022
crossref_primary_10_2147_JIR_S307081
crossref_primary_10_3390_ijms242015315
crossref_primary_10_1007_s00011_022_01672_1
crossref_primary_10_1097_JTCCM_D_23_00016
crossref_primary_10_1016_j_imlet_2023_10_008
crossref_primary_10_1016_j_jri_2024_104263
crossref_primary_10_1177_09603271231155098
crossref_primary_10_1016_j_phymed_2023_154807
crossref_primary_10_3390_molecules28227527
crossref_primary_10_1016_j_intimp_2022_108690
crossref_primary_10_1615_JEnvironPatholToxicolOncol_2024053754
crossref_primary_10_1016_j_cellsig_2024_111509
crossref_primary_10_1186_s40001_024_01930_4
crossref_primary_10_1007_s11655_023_3550_2
crossref_primary_10_1016_j_ecoenv_2024_117417
crossref_primary_10_14245_ns_2448038_019
crossref_primary_10_1016_j_intimp_2025_114111
crossref_primary_10_1016_j_jep_2022_115262
crossref_primary_10_1186_s10020_024_00820_z
crossref_primary_10_1016_j_ejmech_2024_117152
crossref_primary_10_2174_0113862073236899230919062725
crossref_primary_10_1016_j_intimp_2024_112426
crossref_primary_10_1016_j_jff_2024_106036
crossref_primary_10_3724_abbs_2024232
crossref_primary_10_3389_fphar_2022_1039022
crossref_primary_10_1016_j_toxicon_2024_107652
crossref_primary_10_1007_s12015_024_10784_6
crossref_primary_10_1016_j_ejphar_2024_176553
crossref_primary_10_1007_s13273_023_00341_6
crossref_primary_10_3389_fmolb_2022_919187
crossref_primary_10_1016_j_phymed_2025_156362
crossref_primary_10_1097_gscm_0000000000000029
crossref_primary_10_1155_2022_7784148
crossref_primary_10_1186_s12931_023_02595_z
crossref_primary_10_1007_s00011_024_01919_z
crossref_primary_10_1016_j_jep_2023_117048
crossref_primary_10_1002_brb3_70311
crossref_primary_10_1016_j_intimp_2024_111565
crossref_primary_10_1016_j_drup_2024_101160
crossref_primary_10_1016_j_biopha_2022_114096
crossref_primary_10_1097_SHK_0000000000001824
crossref_primary_10_1166_jbn_2024_3855
crossref_primary_10_12677_ACM_2023_1392016
crossref_primary_10_1016_j_jpha_2024_101050
crossref_primary_10_3389_fmolb_2022_1051866
crossref_primary_10_1016_j_jep_2025_119384
crossref_primary_10_1016_j_jgr_2023_10_002
crossref_primary_10_1007_s10495_022_01791_4
crossref_primary_10_18632_aging_205457
crossref_primary_10_1016_j_lfs_2022_121091
crossref_primary_10_1007_s12035_024_04443_7
crossref_primary_10_1021_acschemneuro_3c00406
crossref_primary_10_3390_nu16193361
crossref_primary_10_1016_j_phymed_2024_155651
crossref_primary_10_1089_dna_2021_1072
crossref_primary_10_1080_13510002_2023_2243423
crossref_primary_10_1016_j_tice_2024_102447
crossref_primary_10_1186_s40360_024_00787_x
crossref_primary_10_1016_j_jhazmat_2024_134949
crossref_primary_10_1016_j_phymed_2023_154729
crossref_primary_10_1186_s13020_025_01063_8
crossref_primary_10_1016_j_cyto_2025_156868
crossref_primary_10_1016_j_intimp_2022_108770
crossref_primary_10_3389_fphar_2022_857502
crossref_primary_10_1039_D1FO01036K
crossref_primary_10_1007_s12035_022_03092_y
crossref_primary_10_1016_j_jep_2023_116292
crossref_primary_10_1088_1361_6528_acd198
crossref_primary_10_1002_iid3_70111
crossref_primary_10_1016_S1875_5364_24_60727_2
crossref_primary_10_1007_s10735_024_10231_3
crossref_primary_10_1186_s11658_024_00602_9
crossref_primary_10_1016_j_fct_2022_113468
crossref_primary_10_1186_s12931_023_02332_6
crossref_primary_10_3390_biom11040589
crossref_primary_10_3389_fimmu_2024_1330021
crossref_primary_10_1038_s41419_024_07224_1
crossref_primary_10_3389_fphar_2023_1067402
crossref_primary_10_3390_molecules28237929
crossref_primary_10_1002_ptr_7606
crossref_primary_10_1016_j_heliyon_2024_e37326
crossref_primary_10_1177_1721727X231158310
crossref_primary_10_1016_j_jep_2025_119459
crossref_primary_10_1002_mco2_70074
crossref_primary_10_1016_j_brainresbull_2021_06_014
crossref_primary_10_1016_j_molimm_2024_11_003
crossref_primary_10_7717_peerj_16703
crossref_primary_10_1016_j_ejphar_2024_176354
crossref_primary_10_1038_s41392_025_02127_9
crossref_primary_10_1007_s11033_025_10267_y
crossref_primary_10_2147_JIR_S457092
crossref_primary_10_1007_s12011_024_04240_2
crossref_primary_10_1016_j_jep_2025_119691
crossref_primary_10_1016_j_tiv_2023_105655
crossref_primary_10_1097_CAD_0000000000001573
crossref_primary_10_3389_fcell_2021_789517
crossref_primary_10_3389_fmicb_2024_1451303
crossref_primary_10_1002_cbin_11960
crossref_primary_10_18632_aging_205527
crossref_primary_10_1016_j_dcmed_2022_06_011
crossref_primary_10_1177_03946320251318147
crossref_primary_10_1016_j_pestbp_2023_105698
crossref_primary_10_2147_JIR_S508098
crossref_primary_10_1039_D2FO03331C
crossref_primary_10_1007_s12013_024_01354_1
crossref_primary_10_3390_cimb46110777
crossref_primary_10_1016_j_jgr_2023_11_001
crossref_primary_10_1016_j_phymed_2024_155627
crossref_primary_10_3390_antiox12061173
crossref_primary_10_3390_ijms232416134
crossref_primary_10_1016_j_phymed_2023_154992
crossref_primary_10_1080_13510002_2022_2096339
crossref_primary_10_1186_s12931_024_02733_1
crossref_primary_10_3389_fphar_2024_1496874
crossref_primary_10_3389_fphys_2022_993904
crossref_primary_10_3389_fphar_2022_973611
crossref_primary_10_1002_ptr_7807
crossref_primary_10_1016_j_micpath_2025_107347
crossref_primary_10_1016_j_biopha_2022_113374
crossref_primary_10_1007_s10753_024_02068_5
crossref_primary_10_1016_j_intimp_2024_113250
crossref_primary_10_2174_0109298673273833231220062213
crossref_primary_10_1155_2022_3159717
crossref_primary_10_3389_fmed_2023_1181286
crossref_primary_10_1007_s00210_024_03352_9
crossref_primary_10_1002_jbt_23618
crossref_primary_10_3892_mmr_2023_13089
crossref_primary_10_1007_s10753_023_01962_8
crossref_primary_10_1038_s41420_021_00807_3
crossref_primary_10_3390_antiox13081012
crossref_primary_10_1039_D4MD00858H
crossref_primary_10_1016_j_ijbiomac_2024_129669
crossref_primary_10_1016_j_phymed_2022_154112
crossref_primary_10_1016_j_freeradbiomed_2024_01_013
crossref_primary_10_4103_cjop_CJOP_D_23_00107
crossref_primary_10_1016_j_lfs_2024_123124
crossref_primary_10_1186_s13020_024_00918_w
crossref_primary_10_1016_j_intimp_2024_112277
crossref_primary_10_1111_jcmm_18386
crossref_primary_10_3390_cells12010099
crossref_primary_10_1016_j_intimp_2023_110548
crossref_primary_10_1016_j_repbio_2024_100913
crossref_primary_10_1186_s40635_025_00713_3
crossref_primary_10_1016_j_tjnut_2023_09_012
crossref_primary_10_1080_21655979_2021_2021065
crossref_primary_10_1016_j_bbadis_2024_167354
crossref_primary_10_1016_j_isci_2024_110751
crossref_primary_10_1007_s12026_024_09503_7
crossref_primary_10_12677_ACM_2023_1351213
crossref_primary_10_7717_peerj_16748
crossref_primary_10_1002_tox_23467
crossref_primary_10_3389_fphar_2024_1436624
crossref_primary_10_1016_j_ejphar_2024_177004
crossref_primary_10_1016_j_biopha_2023_115415
crossref_primary_10_3390_biom12091308
crossref_primary_10_1186_s10020_024_00993_7
crossref_primary_10_12677_acm_2025_151178
crossref_primary_10_1007_s10528_023_10405_w
crossref_primary_10_3389_fphar_2024_1507194
crossref_primary_10_1016_j_ejphar_2024_176839
crossref_primary_10_1002_iid3_1175
crossref_primary_10_1016_j_bbrc_2023_01_002
crossref_primary_10_1002_jcla_24115
crossref_primary_10_1007_s11033_023_08756_z
crossref_primary_10_3892_br_2023_1715
crossref_primary_10_1007_s10565_023_09815_8
crossref_primary_10_1186_s43094_024_00605_5
crossref_primary_10_1007_s12010_025_05214_3
crossref_primary_10_1016_j_intimp_2023_111423
crossref_primary_10_1016_j_intimp_2022_109162
crossref_primary_10_1016_j_intimp_2023_111426
crossref_primary_10_1007_s00011_023_01769_1
crossref_primary_10_1016_j_phrs_2022_106386
crossref_primary_10_1016_j_intimp_2024_113227
crossref_primary_10_1016_j_critrevonc_2024_104349
crossref_primary_10_3390_ijms25189826
crossref_primary_10_1007_s10753_025_02240_5
crossref_primary_10_1016_j_jep_2024_119123
crossref_primary_10_1016_j_lfs_2022_121127
crossref_primary_10_3389_fphar_2021_709538
crossref_primary_10_1016_j_bcp_2024_116193
crossref_primary_10_3389_fmed_2021_651552
crossref_primary_10_1002_iid3_1163
crossref_primary_10_1002_iid3_1164
crossref_primary_10_1007_s00210_023_02854_2
crossref_primary_10_1016_j_heliyon_2023_e19759
crossref_primary_10_1016_j_prmcm_2024_100488
crossref_primary_10_1016_j_prmcm_2024_100483
crossref_primary_10_1186_s12890_024_03415_w
crossref_primary_10_1186_s12931_023_02429_y
Cites_doi 10.5142/jgr.2010.34.3.160
10.1002/jbt.22619
10.1007/s10753-009-9161-z
10.1007/s00134-011-2380-4
10.3390/ijms151119355
10.18632/aging.103378
10.1164/rccm.201302-0385ED
10.1016/S0006-2952(02)01153-X
10.1016/S2213-2600(13)70093-6
10.1016/j.ajpath.2019.09.012
10.1001/jama.2017.21907
10.3892/ijmm.2016.2669
10.1038/nature25986
10.3831/KPI.2019.22.008
10.1164/rccm.201610-2035CI
10.1016/j.tiv.2019.104715
10.1002/ijc.29879
10.1038/s41418-020-0528-x
10.1016/j.cell.2012.03.042
10.1038/s41419-019-1678-y
10.1016/j.jgr.2016.01.001
10.1164/ajrccm-conference.2020.201.1_MeetingAbstracts.A5560
10.4103/1673-5374.239439
10.4103/2045-8932.83454
10.1021/np50010a005
10.1016/j.ecoenv.2019.109500
10.1016/j.redox.2019.101266
10.33549/physiolres.933672
10.1016/j.redox.2017.01.021
10.1016/j.intimp.2016.12.026
10.1016/j.jchemneu.2020.101807
10.1186/s12931-020-01500-2
10.3389/fphar.2018.00982
10.1073/pnas.1415518111
10.1371/journal.pone.0056407
10.1007/s00134-012-2682-1
10.3109/01902148.2015.1093566
10.1073/pnas.1821022116
10.1186/s11658-020-00205-0
10.1016/j.bcp.2018.09.002
ContentType Journal Article
Copyright COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2021
Copyright_xml – notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12967-021-02745-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Proquest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1479-5876
EndPage 14
ExternalDocumentID oai_doaj_org_article_4cc0928e885f4be9aaab88d4af06f270
PMC7927246
A655226954
33653364
10_1186_s12967_021_02745_1
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
United States--US
GeographicLocations_xml – name: China
– name: United States--US
GrantInformation_xml – fundername: ;
  grantid: 81973012
GroupedDBID ---
0R~
29L
2WC
53G
5VS
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PMFND
3V.
7T5
7XB
8FK
AZQEC
DWQXO
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c629t-a9e41d29f2eede6ff56119dca80613cdcbf577d381c9f6296cb912b54d7a66683
IEDL.DBID M48
ISSN 1479-5876
IngestDate Wed Aug 27 01:31:00 EDT 2025
Thu Aug 21 14:05:59 EDT 2025
Fri Jul 11 09:38:05 EDT 2025
Fri Jul 25 06:21:36 EDT 2025
Tue Jun 17 20:53:46 EDT 2025
Tue Jun 10 20:28:14 EDT 2025
Mon Jul 21 06:05:53 EDT 2025
Thu Apr 24 23:10:22 EDT 2025
Tue Jul 01 03:51:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Acute lung injury
Ferroptosis
Inflammation
LPS
Panaxydol
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c629t-a9e41d29f2eede6ff56119dca80613cdcbf577d381c9f6296cb912b54d7a66683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/4cc0928e885f4be9aaab88d4af06f270
PMID 33653364
PQID 2502919547
PQPubID 43076
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_4cc0928e885f4be9aaab88d4af06f270
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7927246
proquest_miscellaneous_2496247152
proquest_journals_2502919547
gale_infotracmisc_A655226954
gale_infotracacademiconefile_A655226954
pubmed_primary_33653364
crossref_citationtrail_10_1186_s12967_021_02745_1
crossref_primary_10_1186_s12967_021_02745_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-02
PublicationDateYYYYMMDD 2021-03-02
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-02
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of translational medicine
PublicationTitleAlternate J Transl Med
PublicationYear 2021
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References N Wang (2745_CR25) 2019; 183
N Guo (2745_CR32) 2015; 41
A Linkermann (2745_CR12) 2014; 111
HS Kim (2745_CR22) 2016; 138
Y Wang (2745_CR26) 2018; 156
Y Li (2745_CR14) 2020; 27
H Dong (2745_CR15) 2020; 12
H Zhou (2745_CR42) 2020; 107
WP Li (2745_CR23) 2018; 13
E Fan (2745_CR2) 2018; 319
SK Sahetya (2745_CR1) 2017; 195
BT Thompson (2745_CR29) 2013; 187
S Tsurusaki (2745_CR36) 2019; 10
J Villar (2745_CR4) 2011; 37
SJ Dixon (2745_CR9) 2012; 149
T Jiang (2745_CR40) 2020; 62
X Fang (2745_CR13) 2019; 116
CS Yuan (2745_CR19) 2010; 34
SE Chen (2745_CR18) 1980; 43
2745_CR37
WU Can (2745_CR41) 2018; 27
EL Mills (2745_CR39) 2018; 556
Y Guo (2745_CR24) 2020; 35
L Qu (2745_CR31) 2019; 11
M Kolomaznik (2745_CR6) 2017; 66
Z Zhou (2745_CR11) 2020; 190
IS Shin (2745_CR21) 2019; 22
ND Ferguson (2745_CR27) 2012; 38
T Zhu (2745_CR30) 2013; 8
MC Lu (2745_CR38) 2019; 26
P Liu (2745_CR17) 2020; 25
JW Lee (2745_CR33) 2016; 38
WS Hambright (2745_CR10) 2017; 12
YB Qiu (2745_CR16) 2020; 21
M Xiao (2745_CR34) 2014; 15
S Guo (2745_CR35) 2018; 9
LB Ware (2745_CR28) 2013; 1
M Donahoe (2745_CR3) 2011; 1
YH Hsieh (2745_CR5) 2017; 44
I Rahman (2745_CR8) 2002; 64
E Hwang (2745_CR20) 2017; 41
HB Bae (2745_CR7) 2010; 33
References_xml – volume: 34
  start-page: 160
  year: 2010
  ident: 2745_CR19
  publication-title: J Ginseng Res.
  doi: 10.5142/jgr.2010.34.3.160
– volume: 35
  start-page: e22619
  year: 2020
  ident: 2745_CR24
  publication-title: J Biochem Mol Toxicol
  doi: 10.1002/jbt.22619
– volume: 33
  start-page: 82
  year: 2010
  ident: 2745_CR7
  publication-title: Inflammation.
  doi: 10.1007/s10753-009-9161-z
– volume: 37
  start-page: 1932
  year: 2011
  ident: 2745_CR4
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-011-2380-4
– volume: 15
  start-page: 19355
  year: 2014
  ident: 2745_CR34
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms151119355
– volume: 12
  start-page: 12943
  year: 2020
  ident: 2745_CR15
  publication-title: Aging
  doi: 10.18632/aging.103378
– volume: 187
  start-page: 675
  year: 2013
  ident: 2745_CR29
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201302-0385ED
– volume: 11
  start-page: 2042
  year: 2019
  ident: 2745_CR31
  publication-title: Am J Transl Res.
– volume: 64
  start-page: 935
  year: 2002
  ident: 2745_CR8
  publication-title: Biochem Pharmacol
  doi: 10.1016/S0006-2952(02)01153-X
– volume: 1
  start-page: 352
  year: 2013
  ident: 2745_CR28
  publication-title: Lancet Respir Med.
  doi: 10.1016/S2213-2600(13)70093-6
– volume: 190
  start-page: 82
  year: 2020
  ident: 2745_CR11
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2019.09.012
– volume: 319
  start-page: 698
  year: 2018
  ident: 2745_CR2
  publication-title: JAMA
  doi: 10.1001/jama.2017.21907
– volume: 38
  start-page: 834
  year: 2016
  ident: 2745_CR33
  publication-title: Int J Mol Med
  doi: 10.3892/ijmm.2016.2669
– volume: 556
  start-page: 113
  year: 2018
  ident: 2745_CR39
  publication-title: Nature
  doi: 10.1038/nature25986
– volume: 22
  start-page: 68
  year: 2019
  ident: 2745_CR21
  publication-title: J Pharmacopunct.
  doi: 10.3831/KPI.2019.22.008
– volume: 195
  start-page: 1429
  year: 2017
  ident: 2745_CR1
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201610-2035CI
– volume: 62
  start-page: 104715
  year: 2020
  ident: 2745_CR40
  publication-title: Toxicol In Vitro
  doi: 10.1016/j.tiv.2019.104715
– volume: 138
  start-page: 1432
  year: 2016
  ident: 2745_CR22
  publication-title: Int J Cancer
  doi: 10.1002/ijc.29879
– volume: 27
  start-page: 2635
  year: 2020
  ident: 2745_CR14
  publication-title: Cell Death Differ
  doi: 10.1038/s41418-020-0528-x
– volume: 149
  start-page: 1060
  year: 2012
  ident: 2745_CR9
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.042
– volume: 10
  start-page: 449
  year: 2019
  ident: 2745_CR36
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-019-1678-y
– volume: 41
  start-page: 69
  year: 2017
  ident: 2745_CR20
  publication-title: J Ginseng Res.
  doi: 10.1016/j.jgr.2016.01.001
– ident: 2745_CR37
  doi: 10.1164/ajrccm-conference.2020.201.1_MeetingAbstracts.A5560
– volume: 13
  start-page: 1927
  year: 2018
  ident: 2745_CR23
  publication-title: Neural Regen Res.
  doi: 10.4103/1673-5374.239439
– volume: 1
  start-page: 192
  year: 2011
  ident: 2745_CR3
  publication-title: Pulm Circ.
  doi: 10.4103/2045-8932.83454
– volume: 43
  start-page: 463
  year: 1980
  ident: 2745_CR18
  publication-title: J Nat Prod
  doi: 10.1021/np50010a005
– volume: 183
  start-page: 109500
  year: 2019
  ident: 2745_CR25
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2019.109500
– volume: 26
  start-page: 101266
  year: 2019
  ident: 2745_CR38
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2019.101266
– volume: 66
  start-page: S147
  year: 2017
  ident: 2745_CR6
  publication-title: Physiol Res
  doi: 10.33549/physiolres.933672
– volume: 12
  start-page: 8
  year: 2017
  ident: 2745_CR10
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2017.01.021
– volume: 44
  start-page: 16
  year: 2017
  ident: 2745_CR5
  publication-title: Int Immunopharmacol
  doi: 10.1016/j.intimp.2016.12.026
– volume: 107
  start-page: 101807
  year: 2020
  ident: 2745_CR42
  publication-title: J Chem Neuroanat
  doi: 10.1016/j.jchemneu.2020.101807
– volume: 21
  start-page: 232
  year: 2020
  ident: 2745_CR16
  publication-title: Respir Res
  doi: 10.1186/s12931-020-01500-2
– volume: 9
  start-page: 982
  year: 2018
  ident: 2745_CR35
  publication-title: Front Pharmacol.
  doi: 10.3389/fphar.2018.00982
– volume: 111
  start-page: 16836
  year: 2014
  ident: 2745_CR12
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1415518111
– volume: 8
  start-page: e56407
  year: 2013
  ident: 2745_CR30
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0056407
– volume: 38
  start-page: 1573
  year: 2012
  ident: 2745_CR27
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-012-2682-1
– volume: 41
  start-page: 514
  year: 2015
  ident: 2745_CR32
  publication-title: Exp Lung Res
  doi: 10.3109/01902148.2015.1093566
– volume: 116
  start-page: 2672
  year: 2019
  ident: 2745_CR13
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1821022116
– volume: 25
  start-page: 10
  year: 2020
  ident: 2745_CR17
  publication-title: Cell Mol Biol Lett
  doi: 10.1186/s11658-020-00205-0
– volume: 156
  start-page: 385
  year: 2018
  ident: 2745_CR26
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2018.09.002
– volume: 27
  start-page: 2686
  issue: 22
  year: 2018
  ident: 2745_CR41
  publication-title: Chin J New Drugs.
SSID ssj0024549
Score 2.6754606
Snippet Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and...
Background Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high...
Abstract Background Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 96
SubjectTerms Acute lung injury
Acute Lung Injury - chemically induced
Acute Lung Injury - drug therapy
Acute respiratory distress syndrome
Animals
Apoptosis
Biomarkers
Care and treatment
Cell culture
Cell Line
Chemical properties
Cytokines
Development and progression
Diynes - pharmacology
Edema
Epithelial cells
Fatty alcohols
Fatty Alcohols - pharmacology
Ferroptosis
Ginseng
Health aspects
Heme Oxygenase-1
Humans
Immunogenicity
Inflammation
Kelch-Like ECH-Associated Protein 1
Lipopolysaccharides
LPS
Lung - metabolism
Lungs
Mice
Mice, Inbred C57BL
Molecular modelling
Morbidity
Mortality
Neutrophils
NF-E2-Related Factor 2 - metabolism
Panaxydol
Physiological aspects
Phytochemicals
Proteins
Respiratory distress syndrome
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yD-KL-G31lAiCDxJ2k-bz8RSPRb3zQA_uLaRpoj2Wdtnt4u1_f5N-LFsEffGp0CSlycxkfkMmv0HorchZnBfaEW24IVwGRkwoYDOEfUHT6KXquPTOzuXikn--ElcHpb5STlhPD9wv3Ix7PzdMB61F5EUwzrlC65K7OJeRqS5aB583BlMjyx6EPeMVGS1nG_BqsCGkdIQUhglCJ26oY-v_c08-cErThMkDD3T6AN0foCM-6X_5IboT6kfo7tlwOP4YVReudje7slniRJpZbxOMxDGs182qbTbVBrufrgI4iL9efCcQi4NUS-z8tg14CTaPq_oaVhgeONWox8UOfwluRcn5OrLZ4huhONUv_u12T9Dl6acfHxdkqKRAvGSmJc4ETktmIgOXGGSMgJqoKb3TyZ370hdRKFWC9_YmwgjpC0NZIXipHMQ3On-KjuqmDs8R1owGzkOYC2_SqakDfKOpCjnEXV4znyE6Lqz1A814qnaxtF24oaXthWFBGLYThqUZer8fs-pJNv7a-0OS175nIsjuXoDa2EFt7L_UJkPvkrRtMmP4Pe-G2wgwyUSIZU-kSMjUCJ6h40lPMD8_bR71xQ7mv7GAK5lJXHoqQ2_2zWlkSmmrQ7OFPtxIBtBAsAw969VrP6U8lwDDJXxcTRRvMudpS1396sjBlWGKcfnifyzSS3SPdTaTjvqP0VG73oZXgMHa4nVnbrc3aizr
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA66gvgi3q2uEkHwQcJM0jSXJ1nFZVB3XdCFeQtpmuxWhnacCzr_3nM6ndktwj4VmqQ0PbfvJOl3CHlb5CKNS-OZsdIyqaJgNpbgDMEvGJ6C0h2X3smpmpzLL9Ni2i-4LftjlTuf2Dnqqg24Rj6CUC0s0pPpD_PfDKtG4e5qX0LjNrmD1GWYfOnpVcIlIfnZ_Shj1GgJsQ3cAh5KwGSsYHwQjDrO_v8987XQNDw2eS0OHT8g93sASY-2En9IbsXmEbl70m-RPyb1mW_8303VzihSZzZrBJM0xcWina_aZb2k_sLXAArpt7MfDDJykG1FfVivIp2B5dO6-QXfGS4UK9XTckO_Rj_n7HSRxGjynXGKVYz_-M0Tcn78-eenCevrKbCghF0xb6PklbBJQGCMKiXATtxWwRsM6qEKZSq0riCGB5tghAql5aIsZKU9ZDkmf0oOmraJzwk1gkcpYxwXweLeqQeUY7iOOWRfwYiQEb77sC70ZONY82LmuqTDKLcVhgNhuE4Yjmfk_X7MfEu1cWPvjyivfU-kye5utIsL11udkyGMrTDRmCLJMlrvfWlMJX0aqyT0OCPvUNoOjRleL_j-nwSYJNJiuSNVID4FrcvI4aAnGGEYNu_0xfVOYOmuVDYjb_bNOBIPtjWxXUMfaZUAgFCIjDzbqtd-SnmuAIwreLgeKN5gzsOWpr7sKMK1FVpI9eLm13pJ7onOGnAr_5AcrBbr-Aow1qp83RnSP0CTI4k
  priority: 102
  providerName: ProQuest
Title Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway
URI https://www.ncbi.nlm.nih.gov/pubmed/33653364
https://www.proquest.com/docview/2502919547
https://www.proquest.com/docview/2496247152
https://pubmed.ncbi.nlm.nih.gov/PMC7927246
https://doaj.org/article/4cc0928e885f4be9aaab88d4af06f270
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbGJiFeEPcFRmUkJB6QWeP6-oDQijZVQEs1qDTxYjmOPYqqpKStWP89x2laFjEhXlqptpM65_ad2P4OQi95j4ZupixRmmnChKdE-wycIfgFlQYnZM2lNxyJwYR9uOAXe2hb7qh5gIsbU7tYT2pSzd5c_Vy_A4N_Wxu8EscLiFlg7nGzQUyyOIFs6AAik4ylHIZM_eHe4zUcTpnUhIMb2B6iufEarUBV8_n_7bWvha32lsprMersHrrbgEt8stGG-2jPFw_Q7WGzfP4QTce2sFfrvJzhSKtZrCLQxMFXVTlflovpAttLOwXAiD-NvxDI1kHuObZutfR4Bl4BT4sfIAP4wrGKPc7W-KO385SMqkCPB59JimOF4192_QhNzk6_vh-QptYCcYLqJbHaszSnOlAIml6EALgq1bmzKgZ8l7sscClziO9OBxghXKZTmnGWSwsZkOo9RvtFWfhDhBVNPWPed7nTcV3VAgJSqfQ9yMycoi5B6fbBGtcQkcd6GDNTJyRKmI0wDAjD1MIwaYJe78bMNzQc_-zdj_La9YwU2vUPZXVpGos0zLmupsorxQPLvLbWZkrlzIauCFR2E_QqSttE1YO_52xzXgEmGSmzzIngEbtqzhJ01OoJBurazVt9MVv9NoA8qY5sezJBL3bNcWTc9Fb4cgV9mBYUwAOnCXqyUa_dlHo9AUBdwMVlS_Fac263FNPvNX241FRSJp7-x32foTu0Nom41n-E9pfVyj8HELbMOuiWvJAddNA_HY3PO_WrjE5tbfB53v_2GzUwLyk
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgIuiDeBAkYCcUDRrh3HsQ8ItdBqyz6ooJV6M45jl6AlWfahsn-K38g4m2wbIfXWU6T4odjz-iYezyD0Oo6o66VCh0IyGTJuaShtCsoQ9IIgzvCkyqU3GvP-Cft8Gp9uob_NXRgfVtnoxEpRZ6Xx_8i7YKqp9OnJkg_T36GvGuVPV5sSGmu2GNjVObhs8_eHn4C-byg92D_-2A_rqgKh4VQuQi0tIxmVjoJ5sNw5QBBEZkYLb9pMZlIXJ0kGlsxIByO4SSWhacyyRAPWFxHMewNtswigQgdt7-2Pj75eZPcDd6u5miN4dw7WFBSRD4Pw7l8ckpb5q6oE_G8LLhnDdqDmJct3cBfdqSEr3l3z2D20ZYv76OaoPpR_gPIjXeg_q6ycYJ-ss1h6-Iqdnc3K6aKc53Osz3QOMBQPj76FeZEBN2VYm-XC4gnoGpwXP4Gy8MC_QG3hdIUHVk9JOJ452u1_CQn2dZPP9eohOrmWvX6EOkVZ2CcIC0osY9b2YiP9aa0GXCVIYiPw94ygJkCk2Vhl6vTmvsrGRFVujuBqTQwFxFAVMRQJ0LvNmOk6uceVvfc8vTY9fWLu6kU5O1O1nCtmTE9SYYWIHUut1FqnQmRMux53NOkF6K2ntvLqAz7P6PoWBCzSJ-JSuzz2iBj4PEA7rZ4g9qbd3PCLqtXOXF0ISYBebZr9SB9KV9hyCX2Y5BQgSUwD9HjNXpslRREH-M9h8qTFeK01t1uK_EeVlDyRNKGMP736s16iW_3j0VAND8eDZ-g2rSTDBxLsoM5itrTPAeEt0he1WGH0_bol-R8xnmKO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Panaxydol+attenuates+ferroptosis+against+LPS-induced+acute+lung+injury+in+mice+by+Keap1-Nrf2%2FHO-1+pathway&rft.jtitle=Journal+of+translational+medicine&rft.au=Li%2C+Jiucui&rft.au=Lu%2C+Kongmiao&rft.au=Sun%2C+Fenglan&rft.au=Tan%2C+Shanjuan&rft.date=2021-03-02&rft.issn=1479-5876&rft.eissn=1479-5876&rft.volume=19&rft.issue=1&rft.spage=96&rft_id=info:doi/10.1186%2Fs12967-021-02745-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-5876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-5876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-5876&client=summon