Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and mortality rates in critically ill patients. In recent years, many bioactive ingredients extracted from herbs have been reported to effectively...
Saved in:
Published in | Journal of translational medicine Vol. 19; no. 1; pp. 96 - 14 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
02.03.2021
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1479-5876 1479-5876 |
DOI | 10.1186/s12967-021-02745-1 |
Cover
Loading…
Abstract | Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and mortality rates in critically ill patients. In recent years, many bioactive ingredients extracted from herbs have been reported to effectively ameliorate ALI/ARDS via different mechanisms. Ferroptosis, categorized as regulated necrosis, is more immunogenic than apoptosis and contributes to the progression of ALI. In this study, we examined the impact of panaxydol (PX), isolated from the roots of Panax ginseng, on lipopolysaccharide (LPS)-induced ALI in mice.
In vivo, the role of PX on LPS-induced ALI in mice was tested by determination of LPS-induced pulmonary inflammation, pulmonary edema and ferroptosis. In vitro, BEAS-2B cells were used to investigate the molecular mechanisms by which PX functions via determination of inflammation, ferroptosis and their relationship.
Administration of PX protected mice against LPS-induced ALI, including significantly ameliorated lung pathological changes, and decreased the extent of lung edema, inflammation, and ferroptosis. In vitro, PX inhibited LPS-induced ferroptosis and inflammation in bronchial epithelial cell line BEAS-2B cells. The relationship between ferroptosis and inflammation was investigated. The results showed that ferroptosis mediated inflammation in LPS-treated BEAS-2B cells, and PX might ameliorate LPS-induced inflammation via inhibiting ferroptosis. Meanwhile, PX could upregulate Keap1-Nrf2/HO-1 pathway, and selective inhibition of Keap1-Nrf2/HO-1 pathway significantly abolished the anti-ferroptotic and anti-inflammatory functions of PX in LPS-treated cells.
PX attenuates ferroptosis against LPS-induced ALI via Keap1-Nrf2/HO-1 pathway, and is a promising novel therapeutic candidate for ALI. |
---|---|
AbstractList | Abstract Background Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and mortality rates in critically ill patients. In recent years, many bioactive ingredients extracted from herbs have been reported to effectively ameliorate ALI/ARDS via different mechanisms. Ferroptosis, categorized as regulated necrosis, is more immunogenic than apoptosis and contributes to the progression of ALI. In this study, we examined the impact of panaxydol (PX), isolated from the roots of Panax ginseng, on lipopolysaccharide (LPS)-induced ALI in mice. Methods In vivo, the role of PX on LPS-induced ALI in mice was tested by determination of LPS-induced pulmonary inflammation, pulmonary edema and ferroptosis. In vitro, BEAS-2B cells were used to investigate the molecular mechanisms by which PX functions via determination of inflammation, ferroptosis and their relationship. Results Administration of PX protected mice against LPS-induced ALI, including significantly ameliorated lung pathological changes, and decreased the extent of lung edema, inflammation, and ferroptosis. In vitro, PX inhibited LPS-induced ferroptosis and inflammation in bronchial epithelial cell line BEAS-2B cells. The relationship between ferroptosis and inflammation was investigated. The results showed that ferroptosis mediated inflammation in LPS-treated BEAS-2B cells, and PX might ameliorate LPS-induced inflammation via inhibiting ferroptosis. Meanwhile, PX could upregulate Keap1-Nrf2/HO-1 pathway, and selective inhibition of Keap1-Nrf2/HO-1 pathway significantly abolished the anti-ferroptotic and anti-inflammatory functions of PX in LPS-treated cells. Conclusion PX attenuates ferroptosis against LPS-induced ALI via Keap1-Nrf2/HO-1 pathway, and is a promising novel therapeutic candidate for ALI. Background Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and mortality rates in critically ill patients. In recent years, many bioactive ingredients extracted from herbs have been reported to effectively ameliorate ALI/ARDS via different mechanisms. Ferroptosis, categorized as regulated necrosis, is more immunogenic than apoptosis and contributes to the progression of ALI. In this study, we examined the impact of panaxydol (PX), isolated from the roots of Panax ginseng, on lipopolysaccharide (LPS)-induced ALI in mice. Methods In vivo, the role of PX on LPS-induced ALI in mice was tested by determination of LPS-induced pulmonary inflammation, pulmonary edema and ferroptosis. In vitro, BEAS-2B cells were used to investigate the molecular mechanisms by which PX functions via determination of inflammation, ferroptosis and their relationship. Results Administration of PX protected mice against LPS-induced ALI, including significantly ameliorated lung pathological changes, and decreased the extent of lung edema, inflammation, and ferroptosis. In vitro, PX inhibited LPS-induced ferroptosis and inflammation in bronchial epithelial cell line BEAS-2B cells. The relationship between ferroptosis and inflammation was investigated. The results showed that ferroptosis mediated inflammation in LPS-treated BEAS-2B cells, and PX might ameliorate LPS-induced inflammation via inhibiting ferroptosis. Meanwhile, PX could upregulate Keap1-Nrf2/HO-1 pathway, and selective inhibition of Keap1-Nrf2/HO-1 pathway significantly abolished the anti-ferroptotic and anti-inflammatory functions of PX in LPS-treated cells. Conclusion PX attenuates ferroptosis against LPS-induced ALI via Keap1-Nrf2/HO-1 pathway, and is a promising novel therapeutic candidate for ALI. Keywords: Panaxydol, Ferroptosis, Acute lung injury, LPS, Inflammation Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and mortality rates in critically ill patients. In recent years, many bioactive ingredients extracted from herbs have been reported to effectively ameliorate ALI/ARDS via different mechanisms. Ferroptosis, categorized as regulated necrosis, is more immunogenic than apoptosis and contributes to the progression of ALI. In this study, we examined the impact of panaxydol (PX), isolated from the roots of Panax ginseng, on lipopolysaccharide (LPS)-induced ALI in mice. In vivo, the role of PX on LPS-induced ALI in mice was tested by determination of LPS-induced pulmonary inflammation, pulmonary edema and ferroptosis. In vitro, BEAS-2B cells were used to investigate the molecular mechanisms by which PX functions via determination of inflammation, ferroptosis and their relationship. Administration of PX protected mice against LPS-induced ALI, including significantly ameliorated lung pathological changes, and decreased the extent of lung edema, inflammation, and ferroptosis. In vitro, PX inhibited LPS-induced ferroptosis and inflammation in bronchial epithelial cell line BEAS-2B cells. The relationship between ferroptosis and inflammation was investigated. The results showed that ferroptosis mediated inflammation in LPS-treated BEAS-2B cells, and PX might ameliorate LPS-induced inflammation via inhibiting ferroptosis. Meanwhile, PX could upregulate Keap1-Nrf2/HO-1 pathway, and selective inhibition of Keap1-Nrf2/HO-1 pathway significantly abolished the anti-ferroptotic and anti-inflammatory functions of PX in LPS-treated cells. PX attenuates ferroptosis against LPS-induced ALI via Keap1-Nrf2/HO-1 pathway, and is a promising novel therapeutic candidate for ALI. Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and mortality rates in critically ill patients. In recent years, many bioactive ingredients extracted from herbs have been reported to effectively ameliorate ALI/ARDS via different mechanisms. Ferroptosis, categorized as regulated necrosis, is more immunogenic than apoptosis and contributes to the progression of ALI. In this study, we examined the impact of panaxydol (PX), isolated from the roots of Panax ginseng, on lipopolysaccharide (LPS)-induced ALI in mice.BACKGROUNDAcute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and mortality rates in critically ill patients. In recent years, many bioactive ingredients extracted from herbs have been reported to effectively ameliorate ALI/ARDS via different mechanisms. Ferroptosis, categorized as regulated necrosis, is more immunogenic than apoptosis and contributes to the progression of ALI. In this study, we examined the impact of panaxydol (PX), isolated from the roots of Panax ginseng, on lipopolysaccharide (LPS)-induced ALI in mice.In vivo, the role of PX on LPS-induced ALI in mice was tested by determination of LPS-induced pulmonary inflammation, pulmonary edema and ferroptosis. In vitro, BEAS-2B cells were used to investigate the molecular mechanisms by which PX functions via determination of inflammation, ferroptosis and their relationship.METHODSIn vivo, the role of PX on LPS-induced ALI in mice was tested by determination of LPS-induced pulmonary inflammation, pulmonary edema and ferroptosis. In vitro, BEAS-2B cells were used to investigate the molecular mechanisms by which PX functions via determination of inflammation, ferroptosis and their relationship.Administration of PX protected mice against LPS-induced ALI, including significantly ameliorated lung pathological changes, and decreased the extent of lung edema, inflammation, and ferroptosis. In vitro, PX inhibited LPS-induced ferroptosis and inflammation in bronchial epithelial cell line BEAS-2B cells. The relationship between ferroptosis and inflammation was investigated. The results showed that ferroptosis mediated inflammation in LPS-treated BEAS-2B cells, and PX might ameliorate LPS-induced inflammation via inhibiting ferroptosis. Meanwhile, PX could upregulate Keap1-Nrf2/HO-1 pathway, and selective inhibition of Keap1-Nrf2/HO-1 pathway significantly abolished the anti-ferroptotic and anti-inflammatory functions of PX in LPS-treated cells.RESULTSAdministration of PX protected mice against LPS-induced ALI, including significantly ameliorated lung pathological changes, and decreased the extent of lung edema, inflammation, and ferroptosis. In vitro, PX inhibited LPS-induced ferroptosis and inflammation in bronchial epithelial cell line BEAS-2B cells. The relationship between ferroptosis and inflammation was investigated. The results showed that ferroptosis mediated inflammation in LPS-treated BEAS-2B cells, and PX might ameliorate LPS-induced inflammation via inhibiting ferroptosis. Meanwhile, PX could upregulate Keap1-Nrf2/HO-1 pathway, and selective inhibition of Keap1-Nrf2/HO-1 pathway significantly abolished the anti-ferroptotic and anti-inflammatory functions of PX in LPS-treated cells.PX attenuates ferroptosis against LPS-induced ALI via Keap1-Nrf2/HO-1 pathway, and is a promising novel therapeutic candidate for ALI.CONCLUSIONPX attenuates ferroptosis against LPS-induced ALI via Keap1-Nrf2/HO-1 pathway, and is a promising novel therapeutic candidate for ALI. Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and mortality rates in critically ill patients. In recent years, many bioactive ingredients extracted from herbs have been reported to effectively ameliorate ALI/ARDS via different mechanisms. Ferroptosis, categorized as regulated necrosis, is more immunogenic than apoptosis and contributes to the progression of ALI. In this study, we examined the impact of panaxydol (PX), isolated from the roots of Panax ginseng, on lipopolysaccharide (LPS)-induced ALI in mice. In vivo, the role of PX on LPS-induced ALI in mice was tested by determination of LPS-induced pulmonary inflammation, pulmonary edema and ferroptosis. In vitro, BEAS-2B cells were used to investigate the molecular mechanisms by which PX functions via determination of inflammation, ferroptosis and their relationship. Administration of PX protected mice against LPS-induced ALI, including significantly ameliorated lung pathological changes, and decreased the extent of lung edema, inflammation, and ferroptosis. In vitro, PX inhibited LPS-induced ferroptosis and inflammation in bronchial epithelial cell line BEAS-2B cells. The relationship between ferroptosis and inflammation was investigated. The results showed that ferroptosis mediated inflammation in LPS-treated BEAS-2B cells, and PX might ameliorate LPS-induced inflammation via inhibiting ferroptosis. Meanwhile, PX could upregulate Keap1-Nrf2/HO-1 pathway, and selective inhibition of Keap1-Nrf2/HO-1 pathway significantly abolished the anti-ferroptotic and anti-inflammatory functions of PX in LPS-treated cells. PX attenuates ferroptosis against LPS-induced ALI via Keap1-Nrf2/HO-1 pathway, and is a promising novel therapeutic candidate for ALI. Background Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and mortality rates in critically ill patients. In recent years, many bioactive ingredients extracted from herbs have been reported to effectively ameliorate ALI/ARDS via different mechanisms. Ferroptosis, categorized as regulated necrosis, is more immunogenic than apoptosis and contributes to the progression of ALI. In this study, we examined the impact of panaxydol (PX), isolated from the roots of Panax ginseng, on lipopolysaccharide (LPS)-induced ALI in mice. Methods In vivo, the role of PX on LPS-induced ALI in mice was tested by determination of LPS-induced pulmonary inflammation, pulmonary edema and ferroptosis. In vitro, BEAS-2B cells were used to investigate the molecular mechanisms by which PX functions via determination of inflammation, ferroptosis and their relationship. Results Administration of PX protected mice against LPS-induced ALI, including significantly ameliorated lung pathological changes, and decreased the extent of lung edema, inflammation, and ferroptosis. In vitro, PX inhibited LPS-induced ferroptosis and inflammation in bronchial epithelial cell line BEAS-2B cells. The relationship between ferroptosis and inflammation was investigated. The results showed that ferroptosis mediated inflammation in LPS-treated BEAS-2B cells, and PX might ameliorate LPS-induced inflammation via inhibiting ferroptosis. Meanwhile, PX could upregulate Keap1-Nrf2/HO-1 pathway, and selective inhibition of Keap1-Nrf2/HO-1 pathway significantly abolished the anti-ferroptotic and anti-inflammatory functions of PX in LPS-treated cells. Conclusion PX attenuates ferroptosis against LPS-induced ALI via Keap1-Nrf2/HO-1 pathway, and is a promising novel therapeutic candidate for ALI. |
ArticleNumber | 96 |
Audience | Academic |
Author | Sun, Fenglan Tan, Shanjuan Zhang, Xiao Han, Wei Lv, Weihong Lu, Kongmiao Hao, Wanming Liu, Min Li, Jiucui Sheng, Wei |
Author_xml | – sequence: 1 givenname: Jiucui surname: Li fullname: Li, Jiucui – sequence: 2 givenname: Kongmiao surname: Lu fullname: Lu, Kongmiao – sequence: 3 givenname: Fenglan surname: Sun fullname: Sun, Fenglan – sequence: 4 givenname: Shanjuan surname: Tan fullname: Tan, Shanjuan – sequence: 5 givenname: Xiao surname: Zhang fullname: Zhang, Xiao – sequence: 6 givenname: Wei surname: Sheng fullname: Sheng, Wei – sequence: 7 givenname: Wanming surname: Hao fullname: Hao, Wanming – sequence: 8 givenname: Min surname: Liu fullname: Liu, Min – sequence: 9 givenname: Weihong surname: Lv fullname: Lv, Weihong – sequence: 10 givenname: Wei surname: Han fullname: Han, Wei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33653364$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ul1rFDEUHaRiP_QP-CADvvgy7SSbzxehFLXFxRbU53AnH9sss8maZKr77027rXaLSLjccHPOCSc5h81eiME2zWvUHyMk2ElGWDLe9RjV4oR26FlzgAiXHRWc7T3a7zeHOS_7HhNK5ItmfzZjtBY5aPwVBPi1MXFsoRQbJig2t86mFNclZp9bWIAPubTzq6-dD2bS1rSgp2LbcQqL1ofllDa1tSuvbTts2s8W1qj7khw-Ob_sULuGcv0TNi-b5w7GbF_d96Pm-8cP387Ou_nlp4uz03mnGZalA2kJMlg6bK2xzDnKEJJGg-gZmmmjB0c5NzOBtHSVwfQgER4oMRwYY2J21FxsdU2EpVonv4K0URG8uhvEtFCQitejVUTrXmJhhaCODFYCwCCEIeB65jDvq9b7rdZ6GlbWaBtKgnFHdPck-Gu1iDeKS8wxYVXg3b1Aij8mm4ta-aztOEKwccoKE8kw4YjiCn37BLqMUwr1qRSmPZZIUsL_ohZQDfjgYr1X34qqU0YpxqzCKur4H6i6jK2_VFPkfJ3vEN48NvrH4UNQKkBsATrFnJN1SvsCxcdb335UqFe3mVTbTKqaSXWXSYUqFT-hPqj_h_Qbffvisw |
CitedBy_id | crossref_primary_10_1016_j_intimp_2023_111398 crossref_primary_10_1016_j_jep_2023_116689 crossref_primary_10_1152_ajplung_00362_2023 crossref_primary_10_3892_mmr_2024_13383 crossref_primary_10_1016_j_intimp_2024_113734 crossref_primary_10_1016_j_ijbiomac_2024_137381 crossref_primary_10_3389_fimmu_2024_1511015 crossref_primary_10_1186_s11658_021_00294_5 crossref_primary_10_1038_s41418_024_01381_8 crossref_primary_10_1016_j_freeradbiomed_2024_07_009 crossref_primary_10_1016_j_ejphar_2023_175835 crossref_primary_10_31083_j_rcm2505149 crossref_primary_10_1039_D4TB02351J crossref_primary_10_1007_s00408_023_00639_1 crossref_primary_10_1016_j_taap_2024_117127 crossref_primary_10_1186_s10020_022_00515_3 crossref_primary_10_1080_01902148_2024_2339269 crossref_primary_10_3390_cells10040897 crossref_primary_10_1016_j_exger_2023_112335 crossref_primary_10_1016_j_bbadis_2024_167101 crossref_primary_10_1016_j_intimp_2023_109762 crossref_primary_10_1002_mnfr_202300123 crossref_primary_10_1186_s12931_024_02678_5 crossref_primary_10_1016_j_biopha_2023_115463 crossref_primary_10_2147_JIR_S420676 crossref_primary_10_1016_j_jep_2024_118333 crossref_primary_10_1002_efd2_183 crossref_primary_10_1016_j_heliyon_2023_e21093 crossref_primary_10_2147_JMDH_S382643 crossref_primary_10_3389_fphar_2022_1108836 crossref_primary_10_3892_ijmm_2024_5402 crossref_primary_10_1007_s13273_023_00408_4 crossref_primary_10_1021_acsomega_3c10269 crossref_primary_10_3389_fphar_2024_1364328 crossref_primary_10_1155_2022_3192607 crossref_primary_10_3389_fmolb_2022_925700 crossref_primary_10_1080_10715762_2023_2247555 crossref_primary_10_1016_j_jep_2024_117831 crossref_primary_10_1186_s11658_022_00318_8 crossref_primary_10_1007_s11684_023_0992_z crossref_primary_10_1016_j_biopha_2023_115333 crossref_primary_10_1111_eci_14229 crossref_primary_10_3390_antiox12111925 crossref_primary_10_1002_mco2_70116 crossref_primary_10_1016_j_bbadis_2023_166984 crossref_primary_10_1016_j_envpol_2022_119449 crossref_primary_10_1016_j_jgr_2023_09_002 crossref_primary_10_3389_fimmu_2024_1380846 crossref_primary_10_1016_j_heliyon_2023_e22272 crossref_primary_10_1089_ars_2024_0556 crossref_primary_10_1177_1934578X241239843 crossref_primary_10_3390_ani13172745 crossref_primary_10_1007_s11010_021_04327_7 crossref_primary_10_1016_j_phytochem_2022_113288 crossref_primary_10_1007_s10620_024_08398_6 crossref_primary_10_1016_j_intimp_2024_111529 crossref_primary_10_1016_j_intimp_2023_110516 crossref_primary_10_12677_jcpm_2024_34380 crossref_primary_10_31083_j_jin2104109 crossref_primary_10_2147_JIR_S414316 crossref_primary_10_3390_cells11132040 crossref_primary_10_1021_acsami_2c10506 crossref_primary_10_1016_j_intimp_2024_112852 crossref_primary_10_1016_j_intimp_2024_113941 crossref_primary_10_1016_j_ijbiomac_2024_133427 crossref_primary_10_1016_j_jep_2024_118353 crossref_primary_10_1039_D1SC05930K crossref_primary_10_1016_j_foodchem_2022_135365 crossref_primary_10_4103_ejpi_EJPI_D_24_00008 crossref_primary_10_1016_j_jep_2024_118230 crossref_primary_10_1038_s41419_022_04971_x crossref_primary_10_1016_j_ajpath_2024_02_011 crossref_primary_10_3389_fneur_2023_1130378 crossref_primary_10_3390_cancers13153670 crossref_primary_10_1080_10495398_2024_2418516 crossref_primary_10_1142_S0192415X24500691 crossref_primary_10_1007_s10753_024_02041_2 crossref_primary_10_1016_j_intimp_2024_111911 crossref_primary_10_1016_j_ejphar_2024_176572 crossref_primary_10_3389_fphar_2021_808480 crossref_primary_10_3389_fphar_2022_940261 crossref_primary_10_1016_j_heliyon_2023_e22772 crossref_primary_10_7717_peerj_17692 crossref_primary_10_1186_s12890_023_02361_3 crossref_primary_10_1016_j_freeradbiomed_2025_01_022 crossref_primary_10_2147_JIR_S307081 crossref_primary_10_3390_ijms242015315 crossref_primary_10_1007_s00011_022_01672_1 crossref_primary_10_1097_JTCCM_D_23_00016 crossref_primary_10_1016_j_imlet_2023_10_008 crossref_primary_10_1016_j_jri_2024_104263 crossref_primary_10_1177_09603271231155098 crossref_primary_10_1016_j_phymed_2023_154807 crossref_primary_10_3390_molecules28227527 crossref_primary_10_1016_j_intimp_2022_108690 crossref_primary_10_1615_JEnvironPatholToxicolOncol_2024053754 crossref_primary_10_1016_j_cellsig_2024_111509 crossref_primary_10_1186_s40001_024_01930_4 crossref_primary_10_1007_s11655_023_3550_2 crossref_primary_10_1016_j_ecoenv_2024_117417 crossref_primary_10_14245_ns_2448038_019 crossref_primary_10_1016_j_intimp_2025_114111 crossref_primary_10_1016_j_jep_2022_115262 crossref_primary_10_1186_s10020_024_00820_z crossref_primary_10_1016_j_ejmech_2024_117152 crossref_primary_10_2174_0113862073236899230919062725 crossref_primary_10_1016_j_intimp_2024_112426 crossref_primary_10_1016_j_jff_2024_106036 crossref_primary_10_3724_abbs_2024232 crossref_primary_10_3389_fphar_2022_1039022 crossref_primary_10_1016_j_toxicon_2024_107652 crossref_primary_10_1007_s12015_024_10784_6 crossref_primary_10_1016_j_ejphar_2024_176553 crossref_primary_10_1007_s13273_023_00341_6 crossref_primary_10_3389_fmolb_2022_919187 crossref_primary_10_1016_j_phymed_2025_156362 crossref_primary_10_1097_gscm_0000000000000029 crossref_primary_10_1155_2022_7784148 crossref_primary_10_1186_s12931_023_02595_z crossref_primary_10_1007_s00011_024_01919_z crossref_primary_10_1016_j_jep_2023_117048 crossref_primary_10_1002_brb3_70311 crossref_primary_10_1016_j_intimp_2024_111565 crossref_primary_10_1016_j_drup_2024_101160 crossref_primary_10_1016_j_biopha_2022_114096 crossref_primary_10_1097_SHK_0000000000001824 crossref_primary_10_1166_jbn_2024_3855 crossref_primary_10_12677_ACM_2023_1392016 crossref_primary_10_1016_j_jpha_2024_101050 crossref_primary_10_3389_fmolb_2022_1051866 crossref_primary_10_1016_j_jep_2025_119384 crossref_primary_10_1016_j_jgr_2023_10_002 crossref_primary_10_1007_s10495_022_01791_4 crossref_primary_10_18632_aging_205457 crossref_primary_10_1016_j_lfs_2022_121091 crossref_primary_10_1007_s12035_024_04443_7 crossref_primary_10_1021_acschemneuro_3c00406 crossref_primary_10_3390_nu16193361 crossref_primary_10_1016_j_phymed_2024_155651 crossref_primary_10_1089_dna_2021_1072 crossref_primary_10_1080_13510002_2023_2243423 crossref_primary_10_1016_j_tice_2024_102447 crossref_primary_10_1186_s40360_024_00787_x crossref_primary_10_1016_j_jhazmat_2024_134949 crossref_primary_10_1016_j_phymed_2023_154729 crossref_primary_10_1186_s13020_025_01063_8 crossref_primary_10_1016_j_cyto_2025_156868 crossref_primary_10_1016_j_intimp_2022_108770 crossref_primary_10_3389_fphar_2022_857502 crossref_primary_10_1039_D1FO01036K crossref_primary_10_1007_s12035_022_03092_y crossref_primary_10_1016_j_jep_2023_116292 crossref_primary_10_1088_1361_6528_acd198 crossref_primary_10_1002_iid3_70111 crossref_primary_10_1016_S1875_5364_24_60727_2 crossref_primary_10_1007_s10735_024_10231_3 crossref_primary_10_1186_s11658_024_00602_9 crossref_primary_10_1016_j_fct_2022_113468 crossref_primary_10_1186_s12931_023_02332_6 crossref_primary_10_3390_biom11040589 crossref_primary_10_3389_fimmu_2024_1330021 crossref_primary_10_1038_s41419_024_07224_1 crossref_primary_10_3389_fphar_2023_1067402 crossref_primary_10_3390_molecules28237929 crossref_primary_10_1002_ptr_7606 crossref_primary_10_1016_j_heliyon_2024_e37326 crossref_primary_10_1177_1721727X231158310 crossref_primary_10_1016_j_jep_2025_119459 crossref_primary_10_1002_mco2_70074 crossref_primary_10_1016_j_brainresbull_2021_06_014 crossref_primary_10_1016_j_molimm_2024_11_003 crossref_primary_10_7717_peerj_16703 crossref_primary_10_1016_j_ejphar_2024_176354 crossref_primary_10_1038_s41392_025_02127_9 crossref_primary_10_1007_s11033_025_10267_y crossref_primary_10_2147_JIR_S457092 crossref_primary_10_1007_s12011_024_04240_2 crossref_primary_10_1016_j_jep_2025_119691 crossref_primary_10_1016_j_tiv_2023_105655 crossref_primary_10_1097_CAD_0000000000001573 crossref_primary_10_3389_fcell_2021_789517 crossref_primary_10_3389_fmicb_2024_1451303 crossref_primary_10_1002_cbin_11960 crossref_primary_10_18632_aging_205527 crossref_primary_10_1016_j_dcmed_2022_06_011 crossref_primary_10_1177_03946320251318147 crossref_primary_10_1016_j_pestbp_2023_105698 crossref_primary_10_2147_JIR_S508098 crossref_primary_10_1039_D2FO03331C crossref_primary_10_1007_s12013_024_01354_1 crossref_primary_10_3390_cimb46110777 crossref_primary_10_1016_j_jgr_2023_11_001 crossref_primary_10_1016_j_phymed_2024_155627 crossref_primary_10_3390_antiox12061173 crossref_primary_10_3390_ijms232416134 crossref_primary_10_1016_j_phymed_2023_154992 crossref_primary_10_1080_13510002_2022_2096339 crossref_primary_10_1186_s12931_024_02733_1 crossref_primary_10_3389_fphar_2024_1496874 crossref_primary_10_3389_fphys_2022_993904 crossref_primary_10_3389_fphar_2022_973611 crossref_primary_10_1002_ptr_7807 crossref_primary_10_1016_j_micpath_2025_107347 crossref_primary_10_1016_j_biopha_2022_113374 crossref_primary_10_1007_s10753_024_02068_5 crossref_primary_10_1016_j_intimp_2024_113250 crossref_primary_10_2174_0109298673273833231220062213 crossref_primary_10_1155_2022_3159717 crossref_primary_10_3389_fmed_2023_1181286 crossref_primary_10_1007_s00210_024_03352_9 crossref_primary_10_1002_jbt_23618 crossref_primary_10_3892_mmr_2023_13089 crossref_primary_10_1007_s10753_023_01962_8 crossref_primary_10_1038_s41420_021_00807_3 crossref_primary_10_3390_antiox13081012 crossref_primary_10_1039_D4MD00858H crossref_primary_10_1016_j_ijbiomac_2024_129669 crossref_primary_10_1016_j_phymed_2022_154112 crossref_primary_10_1016_j_freeradbiomed_2024_01_013 crossref_primary_10_4103_cjop_CJOP_D_23_00107 crossref_primary_10_1016_j_lfs_2024_123124 crossref_primary_10_1186_s13020_024_00918_w crossref_primary_10_1016_j_intimp_2024_112277 crossref_primary_10_1111_jcmm_18386 crossref_primary_10_3390_cells12010099 crossref_primary_10_1016_j_intimp_2023_110548 crossref_primary_10_1016_j_repbio_2024_100913 crossref_primary_10_1186_s40635_025_00713_3 crossref_primary_10_1016_j_tjnut_2023_09_012 crossref_primary_10_1080_21655979_2021_2021065 crossref_primary_10_1016_j_bbadis_2024_167354 crossref_primary_10_1016_j_isci_2024_110751 crossref_primary_10_1007_s12026_024_09503_7 crossref_primary_10_12677_ACM_2023_1351213 crossref_primary_10_7717_peerj_16748 crossref_primary_10_1002_tox_23467 crossref_primary_10_3389_fphar_2024_1436624 crossref_primary_10_1016_j_ejphar_2024_177004 crossref_primary_10_1016_j_biopha_2023_115415 crossref_primary_10_3390_biom12091308 crossref_primary_10_1186_s10020_024_00993_7 crossref_primary_10_12677_acm_2025_151178 crossref_primary_10_1007_s10528_023_10405_w crossref_primary_10_3389_fphar_2024_1507194 crossref_primary_10_1016_j_ejphar_2024_176839 crossref_primary_10_1002_iid3_1175 crossref_primary_10_1016_j_bbrc_2023_01_002 crossref_primary_10_1002_jcla_24115 crossref_primary_10_1007_s11033_023_08756_z crossref_primary_10_3892_br_2023_1715 crossref_primary_10_1007_s10565_023_09815_8 crossref_primary_10_1186_s43094_024_00605_5 crossref_primary_10_1007_s12010_025_05214_3 crossref_primary_10_1016_j_intimp_2023_111423 crossref_primary_10_1016_j_intimp_2022_109162 crossref_primary_10_1016_j_intimp_2023_111426 crossref_primary_10_1007_s00011_023_01769_1 crossref_primary_10_1016_j_phrs_2022_106386 crossref_primary_10_1016_j_intimp_2024_113227 crossref_primary_10_1016_j_critrevonc_2024_104349 crossref_primary_10_3390_ijms25189826 crossref_primary_10_1007_s10753_025_02240_5 crossref_primary_10_1016_j_jep_2024_119123 crossref_primary_10_1016_j_lfs_2022_121127 crossref_primary_10_3389_fphar_2021_709538 crossref_primary_10_1016_j_bcp_2024_116193 crossref_primary_10_3389_fmed_2021_651552 crossref_primary_10_1002_iid3_1163 crossref_primary_10_1002_iid3_1164 crossref_primary_10_1007_s00210_023_02854_2 crossref_primary_10_1016_j_heliyon_2023_e19759 crossref_primary_10_1016_j_prmcm_2024_100488 crossref_primary_10_1016_j_prmcm_2024_100483 crossref_primary_10_1186_s12890_024_03415_w crossref_primary_10_1186_s12931_023_02429_y |
Cites_doi | 10.5142/jgr.2010.34.3.160 10.1002/jbt.22619 10.1007/s10753-009-9161-z 10.1007/s00134-011-2380-4 10.3390/ijms151119355 10.18632/aging.103378 10.1164/rccm.201302-0385ED 10.1016/S0006-2952(02)01153-X 10.1016/S2213-2600(13)70093-6 10.1016/j.ajpath.2019.09.012 10.1001/jama.2017.21907 10.3892/ijmm.2016.2669 10.1038/nature25986 10.3831/KPI.2019.22.008 10.1164/rccm.201610-2035CI 10.1016/j.tiv.2019.104715 10.1002/ijc.29879 10.1038/s41418-020-0528-x 10.1016/j.cell.2012.03.042 10.1038/s41419-019-1678-y 10.1016/j.jgr.2016.01.001 10.1164/ajrccm-conference.2020.201.1_MeetingAbstracts.A5560 10.4103/1673-5374.239439 10.4103/2045-8932.83454 10.1021/np50010a005 10.1016/j.ecoenv.2019.109500 10.1016/j.redox.2019.101266 10.33549/physiolres.933672 10.1016/j.redox.2017.01.021 10.1016/j.intimp.2016.12.026 10.1016/j.jchemneu.2020.101807 10.1186/s12931-020-01500-2 10.3389/fphar.2018.00982 10.1073/pnas.1415518111 10.1371/journal.pone.0056407 10.1007/s00134-012-2682-1 10.3109/01902148.2015.1093566 10.1073/pnas.1821022116 10.1186/s11658-020-00205-0 10.1016/j.bcp.2018.09.002 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 BioMed Central Ltd. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021 |
Copyright_xml | – notice: COPYRIGHT 2021 BioMed Central Ltd. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7T5 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12967-021-02745-1 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Immunology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Proquest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1479-5876 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_4cc0928e885f4be9aaab88d4af06f270 PMC7927246 A655226954 33653364 10_1186_s12967_021_02745_1 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China United States--US |
GeographicLocations_xml | – name: China – name: United States--US |
GrantInformation_xml | – fundername: ; grantid: 81973012 |
GroupedDBID | --- 0R~ 29L 2WC 53G 5VS 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY PMFND 3V. 7T5 7XB 8FK AZQEC DWQXO H94 K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c629t-a9e41d29f2eede6ff56119dca80613cdcbf577d381c9f6296cb912b54d7a66683 |
IEDL.DBID | M48 |
ISSN | 1479-5876 |
IngestDate | Wed Aug 27 01:31:00 EDT 2025 Thu Aug 21 14:05:59 EDT 2025 Fri Jul 11 09:38:05 EDT 2025 Fri Jul 25 06:21:36 EDT 2025 Tue Jun 17 20:53:46 EDT 2025 Tue Jun 10 20:28:14 EDT 2025 Mon Jul 21 06:05:53 EDT 2025 Thu Apr 24 23:10:22 EDT 2025 Tue Jul 01 03:51:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Acute lung injury Ferroptosis Inflammation LPS Panaxydol |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c629t-a9e41d29f2eede6ff56119dca80613cdcbf577d381c9f6296cb912b54d7a66683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/4cc0928e885f4be9aaab88d4af06f270 |
PMID | 33653364 |
PQID | 2502919547 |
PQPubID | 43076 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4cc0928e885f4be9aaab88d4af06f270 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7927246 proquest_miscellaneous_2496247152 proquest_journals_2502919547 gale_infotracmisc_A655226954 gale_infotracacademiconefile_A655226954 pubmed_primary_33653364 crossref_citationtrail_10_1186_s12967_021_02745_1 crossref_primary_10_1186_s12967_021_02745_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-02 |
PublicationDateYYYYMMDD | 2021-03-02 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of translational medicine |
PublicationTitleAlternate | J Transl Med |
PublicationYear | 2021 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | N Wang (2745_CR25) 2019; 183 N Guo (2745_CR32) 2015; 41 A Linkermann (2745_CR12) 2014; 111 HS Kim (2745_CR22) 2016; 138 Y Wang (2745_CR26) 2018; 156 Y Li (2745_CR14) 2020; 27 H Dong (2745_CR15) 2020; 12 H Zhou (2745_CR42) 2020; 107 WP Li (2745_CR23) 2018; 13 E Fan (2745_CR2) 2018; 319 SK Sahetya (2745_CR1) 2017; 195 BT Thompson (2745_CR29) 2013; 187 S Tsurusaki (2745_CR36) 2019; 10 J Villar (2745_CR4) 2011; 37 SJ Dixon (2745_CR9) 2012; 149 T Jiang (2745_CR40) 2020; 62 X Fang (2745_CR13) 2019; 116 CS Yuan (2745_CR19) 2010; 34 SE Chen (2745_CR18) 1980; 43 2745_CR37 WU Can (2745_CR41) 2018; 27 EL Mills (2745_CR39) 2018; 556 Y Guo (2745_CR24) 2020; 35 L Qu (2745_CR31) 2019; 11 M Kolomaznik (2745_CR6) 2017; 66 Z Zhou (2745_CR11) 2020; 190 IS Shin (2745_CR21) 2019; 22 ND Ferguson (2745_CR27) 2012; 38 T Zhu (2745_CR30) 2013; 8 MC Lu (2745_CR38) 2019; 26 P Liu (2745_CR17) 2020; 25 JW Lee (2745_CR33) 2016; 38 WS Hambright (2745_CR10) 2017; 12 YB Qiu (2745_CR16) 2020; 21 M Xiao (2745_CR34) 2014; 15 S Guo (2745_CR35) 2018; 9 LB Ware (2745_CR28) 2013; 1 M Donahoe (2745_CR3) 2011; 1 YH Hsieh (2745_CR5) 2017; 44 I Rahman (2745_CR8) 2002; 64 E Hwang (2745_CR20) 2017; 41 HB Bae (2745_CR7) 2010; 33 |
References_xml | – volume: 34 start-page: 160 year: 2010 ident: 2745_CR19 publication-title: J Ginseng Res. doi: 10.5142/jgr.2010.34.3.160 – volume: 35 start-page: e22619 year: 2020 ident: 2745_CR24 publication-title: J Biochem Mol Toxicol doi: 10.1002/jbt.22619 – volume: 33 start-page: 82 year: 2010 ident: 2745_CR7 publication-title: Inflammation. doi: 10.1007/s10753-009-9161-z – volume: 37 start-page: 1932 year: 2011 ident: 2745_CR4 publication-title: Intensive Care Med doi: 10.1007/s00134-011-2380-4 – volume: 15 start-page: 19355 year: 2014 ident: 2745_CR34 publication-title: Int J Mol Sci doi: 10.3390/ijms151119355 – volume: 12 start-page: 12943 year: 2020 ident: 2745_CR15 publication-title: Aging doi: 10.18632/aging.103378 – volume: 187 start-page: 675 year: 2013 ident: 2745_CR29 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201302-0385ED – volume: 11 start-page: 2042 year: 2019 ident: 2745_CR31 publication-title: Am J Transl Res. – volume: 64 start-page: 935 year: 2002 ident: 2745_CR8 publication-title: Biochem Pharmacol doi: 10.1016/S0006-2952(02)01153-X – volume: 1 start-page: 352 year: 2013 ident: 2745_CR28 publication-title: Lancet Respir Med. doi: 10.1016/S2213-2600(13)70093-6 – volume: 190 start-page: 82 year: 2020 ident: 2745_CR11 publication-title: Am J Pathol doi: 10.1016/j.ajpath.2019.09.012 – volume: 319 start-page: 698 year: 2018 ident: 2745_CR2 publication-title: JAMA doi: 10.1001/jama.2017.21907 – volume: 38 start-page: 834 year: 2016 ident: 2745_CR33 publication-title: Int J Mol Med doi: 10.3892/ijmm.2016.2669 – volume: 556 start-page: 113 year: 2018 ident: 2745_CR39 publication-title: Nature doi: 10.1038/nature25986 – volume: 22 start-page: 68 year: 2019 ident: 2745_CR21 publication-title: J Pharmacopunct. doi: 10.3831/KPI.2019.22.008 – volume: 195 start-page: 1429 year: 2017 ident: 2745_CR1 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201610-2035CI – volume: 62 start-page: 104715 year: 2020 ident: 2745_CR40 publication-title: Toxicol In Vitro doi: 10.1016/j.tiv.2019.104715 – volume: 138 start-page: 1432 year: 2016 ident: 2745_CR22 publication-title: Int J Cancer doi: 10.1002/ijc.29879 – volume: 27 start-page: 2635 year: 2020 ident: 2745_CR14 publication-title: Cell Death Differ doi: 10.1038/s41418-020-0528-x – volume: 149 start-page: 1060 year: 2012 ident: 2745_CR9 publication-title: Cell doi: 10.1016/j.cell.2012.03.042 – volume: 10 start-page: 449 year: 2019 ident: 2745_CR36 publication-title: Cell Death Dis. doi: 10.1038/s41419-019-1678-y – volume: 41 start-page: 69 year: 2017 ident: 2745_CR20 publication-title: J Ginseng Res. doi: 10.1016/j.jgr.2016.01.001 – ident: 2745_CR37 doi: 10.1164/ajrccm-conference.2020.201.1_MeetingAbstracts.A5560 – volume: 13 start-page: 1927 year: 2018 ident: 2745_CR23 publication-title: Neural Regen Res. doi: 10.4103/1673-5374.239439 – volume: 1 start-page: 192 year: 2011 ident: 2745_CR3 publication-title: Pulm Circ. doi: 10.4103/2045-8932.83454 – volume: 43 start-page: 463 year: 1980 ident: 2745_CR18 publication-title: J Nat Prod doi: 10.1021/np50010a005 – volume: 183 start-page: 109500 year: 2019 ident: 2745_CR25 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2019.109500 – volume: 26 start-page: 101266 year: 2019 ident: 2745_CR38 publication-title: Redox Biol. doi: 10.1016/j.redox.2019.101266 – volume: 66 start-page: S147 year: 2017 ident: 2745_CR6 publication-title: Physiol Res doi: 10.33549/physiolres.933672 – volume: 12 start-page: 8 year: 2017 ident: 2745_CR10 publication-title: Redox Biol. doi: 10.1016/j.redox.2017.01.021 – volume: 44 start-page: 16 year: 2017 ident: 2745_CR5 publication-title: Int Immunopharmacol doi: 10.1016/j.intimp.2016.12.026 – volume: 107 start-page: 101807 year: 2020 ident: 2745_CR42 publication-title: J Chem Neuroanat doi: 10.1016/j.jchemneu.2020.101807 – volume: 21 start-page: 232 year: 2020 ident: 2745_CR16 publication-title: Respir Res doi: 10.1186/s12931-020-01500-2 – volume: 9 start-page: 982 year: 2018 ident: 2745_CR35 publication-title: Front Pharmacol. doi: 10.3389/fphar.2018.00982 – volume: 111 start-page: 16836 year: 2014 ident: 2745_CR12 publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.1415518111 – volume: 8 start-page: e56407 year: 2013 ident: 2745_CR30 publication-title: PLoS ONE doi: 10.1371/journal.pone.0056407 – volume: 38 start-page: 1573 year: 2012 ident: 2745_CR27 publication-title: Intensive Care Med doi: 10.1007/s00134-012-2682-1 – volume: 41 start-page: 514 year: 2015 ident: 2745_CR32 publication-title: Exp Lung Res doi: 10.3109/01902148.2015.1093566 – volume: 116 start-page: 2672 year: 2019 ident: 2745_CR13 publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.1821022116 – volume: 25 start-page: 10 year: 2020 ident: 2745_CR17 publication-title: Cell Mol Biol Lett doi: 10.1186/s11658-020-00205-0 – volume: 156 start-page: 385 year: 2018 ident: 2745_CR26 publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2018.09.002 – volume: 27 start-page: 2686 issue: 22 year: 2018 ident: 2745_CR41 publication-title: Chin J New Drugs. |
SSID | ssj0024549 |
Score | 2.6754606 |
Snippet | Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high morbidity and... Background Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has high... Abstract Background Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induces uncontrolled and self-amplified pulmonary inflammation, and has... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 96 |
SubjectTerms | Acute lung injury Acute Lung Injury - chemically induced Acute Lung Injury - drug therapy Acute respiratory distress syndrome Animals Apoptosis Biomarkers Care and treatment Cell culture Cell Line Chemical properties Cytokines Development and progression Diynes - pharmacology Edema Epithelial cells Fatty alcohols Fatty Alcohols - pharmacology Ferroptosis Ginseng Health aspects Heme Oxygenase-1 Humans Immunogenicity Inflammation Kelch-Like ECH-Associated Protein 1 Lipopolysaccharides LPS Lung - metabolism Lungs Mice Mice, Inbred C57BL Molecular modelling Morbidity Mortality Neutrophils NF-E2-Related Factor 2 - metabolism Panaxydol Physiological aspects Phytochemicals Proteins Respiratory distress syndrome |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yD-KL-G31lAiCDxJ2k-bz8RSPRb3zQA_uLaRpoj2Wdtnt4u1_f5N-LFsEffGp0CSlycxkfkMmv0HorchZnBfaEW24IVwGRkwoYDOEfUHT6KXquPTOzuXikn--ElcHpb5STlhPD9wv3Ix7PzdMB61F5EUwzrlC65K7OJeRqS5aB583BlMjyx6EPeMVGS1nG_BqsCGkdIQUhglCJ26oY-v_c08-cErThMkDD3T6AN0foCM-6X_5IboT6kfo7tlwOP4YVReudje7slniRJpZbxOMxDGs182qbTbVBrufrgI4iL9efCcQi4NUS-z8tg14CTaPq_oaVhgeONWox8UOfwluRcn5OrLZ4huhONUv_u12T9Dl6acfHxdkqKRAvGSmJc4ETktmIgOXGGSMgJqoKb3TyZ370hdRKFWC9_YmwgjpC0NZIXipHMQ3On-KjuqmDs8R1owGzkOYC2_SqakDfKOpCjnEXV4znyE6Lqz1A814qnaxtF24oaXthWFBGLYThqUZer8fs-pJNv7a-0OS175nIsjuXoDa2EFt7L_UJkPvkrRtMmP4Pe-G2wgwyUSIZU-kSMjUCJ6h40lPMD8_bR71xQ7mv7GAK5lJXHoqQ2_2zWlkSmmrQ7OFPtxIBtBAsAw969VrP6U8lwDDJXxcTRRvMudpS1396sjBlWGKcfnifyzSS3SPdTaTjvqP0VG73oZXgMHa4nVnbrc3aizr priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA66gvgi3q2uEkHwQcJM0jSXJ1nFZVB3XdCFeQtpmuxWhnacCzr_3nM6ndktwj4VmqQ0PbfvJOl3CHlb5CKNS-OZsdIyqaJgNpbgDMEvGJ6C0h2X3smpmpzLL9Ni2i-4LftjlTuf2Dnqqg24Rj6CUC0s0pPpD_PfDKtG4e5qX0LjNrmD1GWYfOnpVcIlIfnZ_Shj1GgJsQ3cAh5KwGSsYHwQjDrO_v8987XQNDw2eS0OHT8g93sASY-2En9IbsXmEbl70m-RPyb1mW_8303VzihSZzZrBJM0xcWina_aZb2k_sLXAArpt7MfDDJykG1FfVivIp2B5dO6-QXfGS4UK9XTckO_Rj_n7HSRxGjynXGKVYz_-M0Tcn78-eenCevrKbCghF0xb6PklbBJQGCMKiXATtxWwRsM6qEKZSq0riCGB5tghAql5aIsZKU9ZDkmf0oOmraJzwk1gkcpYxwXweLeqQeUY7iOOWRfwYiQEb77sC70ZONY82LmuqTDKLcVhgNhuE4Yjmfk_X7MfEu1cWPvjyivfU-kye5utIsL11udkyGMrTDRmCLJMlrvfWlMJX0aqyT0OCPvUNoOjRleL_j-nwSYJNJiuSNVID4FrcvI4aAnGGEYNu_0xfVOYOmuVDYjb_bNOBIPtjWxXUMfaZUAgFCIjDzbqtd-SnmuAIwreLgeKN5gzsOWpr7sKMK1FVpI9eLm13pJ7onOGnAr_5AcrBbr-Aow1qp83RnSP0CTI4k priority: 102 providerName: ProQuest |
Title | Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33653364 https://www.proquest.com/docview/2502919547 https://www.proquest.com/docview/2496247152 https://pubmed.ncbi.nlm.nih.gov/PMC7927246 https://doaj.org/article/4cc0928e885f4be9aaab88d4af06f270 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbGJiFeEPcFRmUkJB6QWeP6-oDQijZVQEs1qDTxYjmOPYqqpKStWP89x2laFjEhXlqptpM65_ad2P4OQi95j4ZupixRmmnChKdE-wycIfgFlQYnZM2lNxyJwYR9uOAXe2hb7qh5gIsbU7tYT2pSzd5c_Vy_A4N_Wxu8EscLiFlg7nGzQUyyOIFs6AAik4ylHIZM_eHe4zUcTpnUhIMb2B6iufEarUBV8_n_7bWvha32lsprMersHrrbgEt8stGG-2jPFw_Q7WGzfP4QTce2sFfrvJzhSKtZrCLQxMFXVTlflovpAttLOwXAiD-NvxDI1kHuObZutfR4Bl4BT4sfIAP4wrGKPc7W-KO385SMqkCPB59JimOF4192_QhNzk6_vh-QptYCcYLqJbHaszSnOlAIml6EALgq1bmzKgZ8l7sscClziO9OBxghXKZTmnGWSwsZkOo9RvtFWfhDhBVNPWPed7nTcV3VAgJSqfQ9yMycoi5B6fbBGtcQkcd6GDNTJyRKmI0wDAjD1MIwaYJe78bMNzQc_-zdj_La9YwU2vUPZXVpGos0zLmupsorxQPLvLbWZkrlzIauCFR2E_QqSttE1YO_52xzXgEmGSmzzIngEbtqzhJ01OoJBurazVt9MVv9NoA8qY5sezJBL3bNcWTc9Fb4cgV9mBYUwAOnCXqyUa_dlHo9AUBdwMVlS_Fac263FNPvNX241FRSJp7-x32foTu0Nom41n-E9pfVyj8HELbMOuiWvJAddNA_HY3PO_WrjE5tbfB53v_2GzUwLyk |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgIuiDeBAkYCcUDRrh3HsQ8ItdBqyz6ooJV6M45jl6AlWfahsn-K38g4m2wbIfXWU6T4odjz-iYezyD0Oo6o66VCh0IyGTJuaShtCsoQ9IIgzvCkyqU3GvP-Cft8Gp9uob_NXRgfVtnoxEpRZ6Xx_8i7YKqp9OnJkg_T36GvGuVPV5sSGmu2GNjVObhs8_eHn4C-byg92D_-2A_rqgKh4VQuQi0tIxmVjoJ5sNw5QBBEZkYLb9pMZlIXJ0kGlsxIByO4SSWhacyyRAPWFxHMewNtswigQgdt7-2Pj75eZPcDd6u5miN4dw7WFBSRD4Pw7l8ckpb5q6oE_G8LLhnDdqDmJct3cBfdqSEr3l3z2D20ZYv76OaoPpR_gPIjXeg_q6ycYJ-ss1h6-Iqdnc3K6aKc53Osz3QOMBQPj76FeZEBN2VYm-XC4gnoGpwXP4Gy8MC_QG3hdIUHVk9JOJ452u1_CQn2dZPP9eohOrmWvX6EOkVZ2CcIC0osY9b2YiP9aa0GXCVIYiPw94ygJkCk2Vhl6vTmvsrGRFVujuBqTQwFxFAVMRQJ0LvNmOk6uceVvfc8vTY9fWLu6kU5O1O1nCtmTE9SYYWIHUut1FqnQmRMux53NOkF6K2ntvLqAz7P6PoWBCzSJ-JSuzz2iBj4PEA7rZ4g9qbd3PCLqtXOXF0ISYBebZr9SB9KV9hyCX2Y5BQgSUwD9HjNXpslRREH-M9h8qTFeK01t1uK_EeVlDyRNKGMP736s16iW_3j0VAND8eDZ-g2rSTDBxLsoM5itrTPAeEt0he1WGH0_bol-R8xnmKO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Panaxydol+attenuates+ferroptosis+against+LPS-induced+acute+lung+injury+in+mice+by+Keap1-Nrf2%2FHO-1+pathway&rft.jtitle=Journal+of+translational+medicine&rft.au=Li%2C+Jiucui&rft.au=Lu%2C+Kongmiao&rft.au=Sun%2C+Fenglan&rft.au=Tan%2C+Shanjuan&rft.date=2021-03-02&rft.issn=1479-5876&rft.eissn=1479-5876&rft.volume=19&rft.issue=1&rft.spage=96&rft_id=info:doi/10.1186%2Fs12967-021-02745-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-5876&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-5876&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-5876&client=summon |