Tuberculosis Exacerbates HIV-1 Infection through IL-10/STAT3-Dependent Tunneling Nanotube Formation in Macrophages

The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 26; no. 13; pp. 3586 - 3599.e7
Main Authors Souriant, Shanti, Balboa, Luciana, Dupont, Maeva, Pingris, Karine, Kviatcovsky, Denise, Cougoule, Céline, Lastrucci, Claire, Bah, Aicha, Gasser, Romain, Poincloux, Renaud, Raynaud-Messina, Brigitte, Al Saati, Talal, Inwentarz, Sandra, Poggi, Susana, Moraña, Eduardo Jose, González-Montaner, Pablo, Corti, Marcelo, Lagane, Bernard, Vergne, Isabelle, Allers, Carolina, Kaushal, Deepak, Kuroda, Marcelo J., Sasiain, Maria del Carmen, Neyrolles, Olivier, Maridonneau-Parini, Isabelle, Lugo-Villarino, Geanncarlo, Vérollet, Christel
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 26.03.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironment, produce high levels of HIV-1. In vivo, M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity. Furthermore, HIV-1/Mtb co-infected patients display an accumulation of M(IL-10) macrophage markers (soluble CD163 and MerTK). These M(IL-10) macrophages form direct cell-to-cell bridges, which we identified as tunneling nanotubes (TNTs) involved in viral transfer. TNT formation requires the IL-10/STAT3 signaling pathway, and targeted inhibition of TNTs substantially reduces the enhancement of HIV-1 cell-to-cell transfer and overproduction in M(IL-10) macrophages. Our study reveals that TNTs facilitate viral transfer and amplification, thereby promoting TNT formation as a mechanism to be explored in TB/AIDS potential therapeutics. [Display omitted] •TB-induced anti-inflammatory M(IL-10) macrophages are prone to HIV-1 overproduction•Tunneling nanotubes between TB-induced M(IL-10) macrophages promote HIV-1 spread•The IL-10/STAT3 axis triggers tunneling nanotube induction in the TB microenvironment•M(IL-10) macrophages accumulate in TB/HIV co-infected patients and non-human primates Tuberculosis is a clear, yet confounding, risk factor for HIV-1-induced morbidity and mortality. In this issue, Souriant et al. reveal that a tuberculosis-associated microenvironment triggers IL-10/STAT3-dependent tunneling nanotube formation in M(IL-10) macrophages, which promotes HIV-1 exacerbation during co-infection. M(IL-10) macrophage accumulation is also observed in vivo in co-infected subjects.
AbstractList The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironments, produce high levels of HIV-1. In vivo, M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity. Further, HIV-1/Mtb co-infected patients display an accumulation of M(IL-10) macrophage markers (soluble CD163 and MerTK). These M(IL-10) macrophages form direct cell-to-cell bridges, which we identified as tunneling nanotubes (TNTs) involved in viral transfer. TNT formation requires the IL-10/STAT3 signaling pathway, and targeted inhibition of TNTs substantially reduces the enhancement of HIV-1 cell-to-cell transfer and overproduction in M(IL-10) macrophages. Our study reveals that TNTs facilitate viral transfer and amplification, thereby promoting TNT formation as a mechanism to be explored in TB/AIDS potential therapeutics.
The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironment, produce high levels of HIV-1. In vivo, M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity. Furthermore, HIV-1/Mtb co-infected patients display an accumulation of M(IL-10) macrophage markers (soluble CD163 and MerTK). These M(IL-10) macrophages form direct cell-to-cell bridges, which we identified as tunneling nanotubes (TNTs) involved in viral transfer. TNT formation requires the IL-10/STAT3 signaling pathway, and targeted inhibition of TNTs substantially reduces the enhancement of HIV-1 cell-to-cell transfer and overproduction in M(IL-10) macrophages. Our study reveals that TNTs facilitate viral transfer and amplification, thereby promoting TNT formation as a mechanism to be explored in TB/AIDS potential therapeutics.
The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironment, produce high levels of HIV-1. In vivo, M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity. Furthermore, HIV-1/Mtb co-infected patients display an accumulation of M(IL-10) macrophage markers (soluble CD163 and MerTK). These M(IL-10) macrophages form direct cell-to-cell bridges, which we identified as tunneling nanotubes (TNTs) involved in viral transfer. TNT formation requires the IL-10/STAT3 signaling pathway, and targeted inhibition of TNTs substantially reduces the enhancement of HIV-1 cell-to-cell transfer and overproduction in M(IL-10) macrophages. Our study reveals that TNTs facilitate viral transfer and amplification, thereby promoting TNT formation as a mechanism to be explored in TB/AIDS potential therapeutics. : Tuberculosis is a clear, yet confounding, risk factor for HIV-1-induced morbidity and mortality. In this issue, Souriant et al. reveal that a tuberculosis-associated microenvironment triggers IL-10/STAT3-dependent tunneling nanotube formation in M(IL-10) macrophages, which promotes HIV-1 exacerbation during co-infection. M(IL-10) macrophage accumulation is also observed in vivo in co-infected subjects. Keywords: AIDS, HIV-1, tuberculosis, Mycobacterium tuberculosis, co-infection, macrophage, monocyte, IL-10, STAT3, viral spread, tunneling nanotubes, biomarker
The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironment, produce high levels of HIV-1. In vivo, M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity. Furthermore, HIV-1/Mtb co-infected patients display an accumulation of M(IL-10) macrophage markers (soluble CD163 and MerTK). These M(IL-10) macrophages form direct cell-to-cell bridges, which we identified as tunneling nanotubes (TNTs) involved in viral transfer. TNT formation requires the IL-10/STAT3 signaling pathway, and targeted inhibition of TNTs substantially reduces the enhancement of HIV-1 cell-to-cell transfer and overproduction in M(IL-10) macrophages. Our study reveals that TNTs facilitate viral transfer and amplification, thereby promoting TNT formation as a mechanism to be explored in TB/AIDS potential therapeutics. [Display omitted] •TB-induced anti-inflammatory M(IL-10) macrophages are prone to HIV-1 overproduction•Tunneling nanotubes between TB-induced M(IL-10) macrophages promote HIV-1 spread•The IL-10/STAT3 axis triggers tunneling nanotube induction in the TB microenvironment•M(IL-10) macrophages accumulate in TB/HIV co-infected patients and non-human primates Tuberculosis is a clear, yet confounding, risk factor for HIV-1-induced morbidity and mortality. In this issue, Souriant et al. reveal that a tuberculosis-associated microenvironment triggers IL-10/STAT3-dependent tunneling nanotube formation in M(IL-10) macrophages, which promotes HIV-1 exacerbation during co-infection. M(IL-10) macrophage accumulation is also observed in vivo in co-infected subjects.
The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironment, produce high levels of HIV-1. In vivo, M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity. Furthermore, HIV-1/Mtb co-infected patients display an accumulation of M(IL-10) macrophage markers (soluble CD163 and MerTK). These M(IL-10) macrophages form direct cell-to-cell bridges, which we identified as tunneling nanotubes (TNTs) involved in viral transfer. TNT formation requires the IL-10/STAT3 signaling pathway, and targeted inhibition of TNTs substantially reduces the enhancement of HIV-1 cell-to-cell transfer and overproduction in M(IL-10) macrophages. Our study reveals that TNTs facilitate viral transfer and amplification, thereby promoting TNT formation as a mechanism to be explored in TB/AIDS potential therapeutics.The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironment, produce high levels of HIV-1. In vivo, M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity. Furthermore, HIV-1/Mtb co-infected patients display an accumulation of M(IL-10) macrophage markers (soluble CD163 and MerTK). These M(IL-10) macrophages form direct cell-to-cell bridges, which we identified as tunneling nanotubes (TNTs) involved in viral transfer. TNT formation requires the IL-10/STAT3 signaling pathway, and targeted inhibition of TNTs substantially reduces the enhancement of HIV-1 cell-to-cell transfer and overproduction in M(IL-10) macrophages. Our study reveals that TNTs facilitate viral transfer and amplification, thereby promoting TNT formation as a mechanism to be explored in TB/AIDS potential therapeutics.
The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironments, produce high levels of HIV-1. In vivo , M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity. Further, HIV-1/Mtb co-infected patients display an accumulation of M(IL-10) macrophage markers (soluble CD163 and MerTK). These M(IL-10) macrophages form direct cell-to-cell bridges, which we identified as tunneling nanotubes (TNTs) involved in viral transfer. TNT formation requires the IL-10/STAT3 signaling pathway, and targeted inhibition of TNTs substantially reduces the enhancement of HIV-1 cell-to-cell transfer and overproduction in M(IL-10) macrophages. Our study reveals that TNTs facilitate viral transfer and amplification, thereby promoting TNT formation as a mechanism to be explored in TB/AIDS potential therapeutics.
Author Allers, Carolina
González-Montaner, Pablo
Balboa, Luciana
Kuroda, Marcelo J.
Gasser, Romain
Neyrolles, Olivier
Raynaud-Messina, Brigitte
Al Saati, Talal
Lugo-Villarino, Geanncarlo
Vérollet, Christel
Maridonneau-Parini, Isabelle
Dupont, Maeva
Bah, Aicha
Poggi, Susana
Kviatcovsky, Denise
Pingris, Karine
Cougoule, Céline
Sasiain, Maria del Carmen
Moraña, Eduardo Jose
Lastrucci, Claire
Corti, Marcelo
Lagane, Bernard
Kaushal, Deepak
Poincloux, Renaud
Souriant, Shanti
Vergne, Isabelle
Inwentarz, Sandra
AuthorAffiliation 2 International associated laboratory (LIA) CNRS “IM-TB/HIV” , Toulouse, France and Buenos Aires, Argentina
7 Instituto de Tisioneumonologia « Raúl F. Vaccarezza », Universitad de Buenos Aires, Argentina
1 Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
5 Centre de Physiopathologie de Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Toulouse III Paul Sabatier, Toulouse, France
9 Tulane National Primate Research Center, Covington, LA 70433; Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112
4 Centre for Genomic Regulation, Barcelona, Spain
6 INSERM/UPS/ENVT - US006/CREFRE, Service d’Histopathologie, CHU Purpan, 31024, Toulouse, France
8 Division de SIDA, Hospital de Infecciosas Dr. F.J. Muñiz, Buenos Aires, Argentina
3 Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina
AuthorAffiliation_xml – name: 4 Centre for Genomic Regulation, Barcelona, Spain
– name: 2 International associated laboratory (LIA) CNRS “IM-TB/HIV” , Toulouse, France and Buenos Aires, Argentina
– name: 8 Division de SIDA, Hospital de Infecciosas Dr. F.J. Muñiz, Buenos Aires, Argentina
– name: 9 Tulane National Primate Research Center, Covington, LA 70433; Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112
– name: 1 Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
– name: 5 Centre de Physiopathologie de Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Toulouse III Paul Sabatier, Toulouse, France
– name: 6 INSERM/UPS/ENVT - US006/CREFRE, Service d’Histopathologie, CHU Purpan, 31024, Toulouse, France
– name: 3 Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina
– name: 7 Instituto de Tisioneumonologia « Raúl F. Vaccarezza », Universitad de Buenos Aires, Argentina
Author_xml – sequence: 1
  givenname: Shanti
  surname: Souriant
  fullname: Souriant, Shanti
  organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
– sequence: 2
  givenname: Luciana
  surname: Balboa
  fullname: Balboa, Luciana
  organization: International Associated Laboratory (LIA) CNRS “IM-TB/HIV” , Toulouse, France, and Buenos Aires, Argentina
– sequence: 3
  givenname: Maeva
  surname: Dupont
  fullname: Dupont, Maeva
  organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
– sequence: 4
  givenname: Karine
  surname: Pingris
  fullname: Pingris, Karine
  organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
– sequence: 5
  givenname: Denise
  surname: Kviatcovsky
  fullname: Kviatcovsky, Denise
  organization: International Associated Laboratory (LIA) CNRS “IM-TB/HIV” , Toulouse, France, and Buenos Aires, Argentina
– sequence: 6
  givenname: Céline
  surname: Cougoule
  fullname: Cougoule, Céline
  organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
– sequence: 7
  givenname: Claire
  surname: Lastrucci
  fullname: Lastrucci, Claire
  organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
– sequence: 8
  givenname: Aicha
  surname: Bah
  fullname: Bah, Aicha
  organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
– sequence: 9
  givenname: Romain
  surname: Gasser
  fullname: Gasser, Romain
  organization: Centre de Physiopathologie de Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Toulouse III Paul Sabatier, Toulouse, France
– sequence: 10
  givenname: Renaud
  surname: Poincloux
  fullname: Poincloux, Renaud
  organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
– sequence: 11
  givenname: Brigitte
  surname: Raynaud-Messina
  fullname: Raynaud-Messina, Brigitte
  organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
– sequence: 12
  givenname: Talal
  surname: Al Saati
  fullname: Al Saati, Talal
  organization: INSERM/UPS/ENVT–US006/CREFRE, Service d’Histopathologie, CHU Purpan, 31024 Toulouse, France
– sequence: 13
  givenname: Sandra
  surname: Inwentarz
  fullname: Inwentarz, Sandra
  organization: Instituto de Tisioneumonologia “Raúl F. Vaccarezza,” Universitad de Buenos Aires, Argentina
– sequence: 14
  givenname: Susana
  surname: Poggi
  fullname: Poggi, Susana
  organization: Instituto de Tisioneumonologia “Raúl F. Vaccarezza,” Universitad de Buenos Aires, Argentina
– sequence: 15
  givenname: Eduardo Jose
  surname: Moraña
  fullname: Moraña, Eduardo Jose
  organization: Instituto de Tisioneumonologia “Raúl F. Vaccarezza,” Universitad de Buenos Aires, Argentina
– sequence: 16
  givenname: Pablo
  surname: González-Montaner
  fullname: González-Montaner, Pablo
  organization: Instituto de Tisioneumonologia “Raúl F. Vaccarezza,” Universitad de Buenos Aires, Argentina
– sequence: 17
  givenname: Marcelo
  surname: Corti
  fullname: Corti, Marcelo
  organization: Division de SIDA, Hospital de Infecciosas Dr. F.J. Muñiz, Buenos Aires, Argentina
– sequence: 18
  givenname: Bernard
  surname: Lagane
  fullname: Lagane, Bernard
  organization: Centre de Physiopathologie de Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Toulouse III Paul Sabatier, Toulouse, France
– sequence: 19
  givenname: Isabelle
  surname: Vergne
  fullname: Vergne, Isabelle
  organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
– sequence: 20
  givenname: Carolina
  surname: Allers
  fullname: Allers, Carolina
  organization: Tulane National Primate Research Center, Covington, LA 70433, USA
– sequence: 21
  givenname: Deepak
  surname: Kaushal
  fullname: Kaushal, Deepak
  organization: Tulane National Primate Research Center, Covington, LA 70433, USA
– sequence: 22
  givenname: Marcelo J.
  surname: Kuroda
  fullname: Kuroda, Marcelo J.
  organization: Tulane National Primate Research Center, Covington, LA 70433, USA
– sequence: 23
  givenname: Maria del Carmen
  surname: Sasiain
  fullname: Sasiain, Maria del Carmen
  organization: International Associated Laboratory (LIA) CNRS “IM-TB/HIV” , Toulouse, France, and Buenos Aires, Argentina
– sequence: 24
  givenname: Olivier
  surname: Neyrolles
  fullname: Neyrolles, Olivier
  organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
– sequence: 25
  givenname: Isabelle
  surname: Maridonneau-Parini
  fullname: Maridonneau-Parini, Isabelle
  organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
– sequence: 26
  givenname: Geanncarlo
  orcidid: 0000-0003-4620-8491
  surname: Lugo-Villarino
  fullname: Lugo-Villarino, Geanncarlo
  email: lugo@ipbs.fr
  organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
– sequence: 27
  givenname: Christel
  surname: Vérollet
  fullname: Vérollet, Christel
  email: verollet@ipbs.fr
  organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30917314$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03034321$$DView record in HAL
BookMark eNqFkstuEzEUhkeoiJbSN0BolnQxqY_tubFAikpLIgVYMGJreTzHiaOJHeyZCN4e50LVdgHe2Dr-_88-l9fJmXUWk-QtkAkQKG7WE4W9x-2EEqgnhE5IDS-SC0oBMqC8PHt0Pk-uQliTuAoCUPNXyTmL8pIBv0h8M7bo1di7YEJ690sq9K0cMKSz-Y8M0rnVqAbjbDqsvBuXq3S-yIDcfG-mDcs-4RZth3ZIm9Fa7I1dpl-ldUOEpvfOb-TBamz6RSrvtiu5xPAmeallH_DqtF8mzf1dczvLFt8-z2-ni0wVtB6yQoICzSsOXV7WrM3jCQqOsmDIVJ5rXbREV1yrVue0UJVCXraUy1KSum7ZZTI_Yjsn12LrzUb638JJIw4B55dC-sGoHkWn204rxlpZa95VKBFb0rEyrzoNWGJkfTyytmO7wU7FjL3sn0Cf3lizEku3E0XJGC2qCLg-AlbPbLPpQuxjhBHGGYUdjdr3p8e8-zliGMTGhNjuXlp0YxAU6hoqyiiL0neP__VA_tvfKOBHQax-CB71gwSI2E-SWIvjJIn9JAlCRbRG24dnNmWGQy9jdqb_n_lULIzN3Rn0IiiDVmFnfJylWH7zb8AfgTXnOg
CitedBy_id crossref_primary_10_1128_mBio_02457_19
crossref_primary_10_3390_jcm9113575
crossref_primary_10_1016_j_ceb_2021_03_003
crossref_primary_10_1515_nipt_2022_0015
crossref_primary_10_1038_s41579_020_00449_9
crossref_primary_10_1016_j_isci_2020_101450
crossref_primary_10_1097_QAD_0000000000003716
crossref_primary_10_3390_cancers14030659
crossref_primary_10_1038_s41467_020_18800_2
crossref_primary_10_1152_ajpcell_00351_2020
crossref_primary_10_1371_journal_ppat_1012919
crossref_primary_10_3390_v12050492
crossref_primary_10_3390_vaccines11051013
crossref_primary_10_3390_ijms21093154
crossref_primary_10_3390_fib10090075
crossref_primary_10_1042_BCJ20200710
crossref_primary_10_3389_fimmu_2021_647728
crossref_primary_10_1016_j_phrs_2021_105541
crossref_primary_10_1093_jleuko_qiad024
crossref_primary_10_1080_22221751_2024_2366359
crossref_primary_10_1016_j_isci_2024_110324
crossref_primary_10_3390_v16020288
crossref_primary_10_1128_mBio_03293_19
crossref_primary_10_3389_fimmu_2023_1260859
crossref_primary_10_1371_journal_ppat_1010212
crossref_primary_10_1038_s41598_022_10134_x
crossref_primary_10_1038_s41598_024_79397_w
crossref_primary_10_1016_j_trecan_2020_04_012
crossref_primary_10_3390_cells12182295
crossref_primary_10_3390_microorganisms11040853
crossref_primary_10_1002_JLB_4MA0422_730R
crossref_primary_10_1097_QAD_0000000000002753
crossref_primary_10_1073_pnas_2305195120
crossref_primary_10_1002_JLB_4MR0322_737R
crossref_primary_10_3389_fmicb_2021_664386
crossref_primary_10_1371_journal_ppat_1010126
crossref_primary_10_2217_fvl_2019_0069
crossref_primary_10_1016_j_tim_2020_03_015
crossref_primary_10_1016_j_celrep_2020_108547
crossref_primary_10_1186_s12977_020_00540_2
crossref_primary_10_1002_rmv_2480
crossref_primary_10_1007_s11356_021_16008_5
crossref_primary_10_1016_j_jhazmat_2024_133831
crossref_primary_10_1016_j_abb_2023_109624
crossref_primary_10_1038_s41419_023_05835_8
crossref_primary_10_1039_D2NA00415A
crossref_primary_10_1128_JVI_02120_19
crossref_primary_10_3390_ijms22157971
crossref_primary_10_3390_ijms25158141
crossref_primary_10_1083_jcb_202205103
crossref_primary_10_1186_s12977_020_00528_y
crossref_primary_10_1126_sciadv_abo0171
crossref_primary_10_3389_fcimb_2021_761521
crossref_primary_10_3390_ijms22052306
crossref_primary_10_1007_s15010_024_02429_0
crossref_primary_10_3390_biom12020313
crossref_primary_10_1051_medsci_2019159
crossref_primary_10_1096_fj_202302551
crossref_primary_10_1038_s41467_024_45283_2
crossref_primary_10_3389_fimmu_2021_726984
crossref_primary_10_1080_08830185_2021_1931171
crossref_primary_10_1042_BST20200113
crossref_primary_10_3389_fimmu_2021_742822
crossref_primary_10_15252_embj_2020105789
crossref_primary_10_3389_fimmu_2021_680891
crossref_primary_10_3389_fmicb_2024_1356415
crossref_primary_10_1038_s41598_019_50971_x
crossref_primary_10_3389_fcimb_2021_585919
crossref_primary_10_1021_acs_estlett_3c00625
crossref_primary_10_2174_1570180820666230822093545
crossref_primary_10_1021_acs_molpharmaceut_0c01248
crossref_primary_10_7554_eLife_52535
crossref_primary_10_1007_s00018_021_03875_x
Cites_doi 10.2174/1570162X14666160324124558
10.1073/pnas.1713370115
10.1189/jlb.0206125
10.1182/blood-2007-12-130070
10.4049/jimmunol.177.12.8476
10.1371/journal.ppat.1000842
10.1189/jlb.0806510
10.3389/fimmu.2017.01863
10.1086/323649
10.1182/blood-2006-05-021634
10.4049/jimmunol.178.10.6581
10.1078/0171-2985-00098
10.1128/JVI.76.4.1697-1706.2002
10.1172/JCI84456
10.1126/science.1184784
10.1128/JVI.01237-17
10.1126/science.aal3535
10.1086/378676
10.1073/pnas.0304859101
10.1038/nature10117
10.1093/infdis/jix626
10.1016/j.imbio.2005.05.010
10.1089/aid.2014.0133
10.1371/journal.pone.0069450
10.1097/00042560-199708150-00001
10.4049/jimmunol.1500845
10.3389/fimmu.2018.00459
10.1128/IAI.00381-07
10.1038/srep29297
10.4049/jimmunol.0803447
10.1111/j.1600-0684.2011.00485.x
10.1164/ajrccm.155.3.9117038
10.1051/medsci/20153108010
10.1038/ni.1753
10.1189/jlb.4A0914-441R
10.1146/annurev-immunol-042617-053420
10.1111/imr.12223
10.1016/j.tube.2016.02.010
10.1016/j.tcb.2008.07.003
10.1111/imr.12214
10.3389/fimmu.2011.00043
10.1038/s41598-017-16600-1
10.1016/j.chom.2014.10.010
10.1016/j.cellimm.2008.08.005
10.1073/pnas.1611987113
10.3389/fimmu.2018.00043
10.1016/S0140-6736(07)60284-0
10.1111/j.1600-0854.2004.00209.x
10.1042/bj3030481
10.3389/fcimb.2015.00049
10.1038/cr.2015.123
10.1086/515276
10.1111/j.1469-0691.2005.01229.x
10.4161/cib.4.3.14855
10.1086/381554
10.1038/nrm2399
10.1086/315640
10.1128/JVI.73.8.6680-6690.1999
10.1002/stem.1835
10.1055/s-0036-1572553
10.1016/j.immuni.2014.06.008
10.1093/infdis/jix625
10.1128/JVI.00290-16
10.1186/s12977-015-0177-1
10.1182/blood-2014-08-596775
10.1111/j.1600-0684.2012.00536.x
10.1038/nm.4319
10.1016/j.chom.2016.02.013
10.1002/JLB.2RI0517-200R
10.1084/jem.20011614
10.1093/infdis/jit621
10.1038/nbt745
10.1128/IAI.68.8.4736-4745.2000
10.1086/516494
10.1128/IAI.01126-10
10.4049/jimmunol.0903345
10.1093/infdis/jir214
10.1146/annurev-immunol-032712-095939
10.1016/j.biocel.2015.12.006
10.1038/nrmicro.2017.128
10.1172/JCI117924
10.1126/scitranslmed.aaj2347
10.1038/ncb1682
10.1111/j.1440-1843.2010.01723.x
10.1189/jlb.1010577
10.3389/fnmol.2017.00333
10.1038/ncb1990
10.1165/rcmb.2005-0140OC
10.1126/science.276.5320.1857
ContentType Journal Article
Copyright 2019 The Author(s)
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 The Author(s)
– notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.1016/j.celrep.2019.02.091
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 3599.e7
ExternalDocumentID oai_doaj_org_article_dfbdfc33ba9f4d8eaeeb0d3758df1e7e
PMC6733268
oai_HAL_hal_03034321v2
30917314
10_1016_j_celrep_2019_02_091
S2211124719302773
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH HHS
  grantid: P51 OD011107
– fundername: NIAID NIH HHS
  grantid: R01 AI097059
– fundername: NIAID NIH HHS
  grantid: R21 AI110163
– fundername: NIH HHS
  grantid: P51 OD011104
– fundername: NIAID NIH HHS
  grantid: R33 AI110163
– fundername: NIAID NIH HHS
  grantid: UC6 AI058609
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c629t-6a1c1f4841d5793b5841164ea63e3c55ff6b0f84fcbf526c8ce47b24a7a099b3
IEDL.DBID M48
ISSN 2211-1247
IngestDate Wed Aug 27 01:18:41 EDT 2025
Thu Aug 21 14:05:51 EDT 2025
Fri May 09 12:19:19 EDT 2025
Fri Jul 11 14:49:06 EDT 2025
Thu Jan 02 22:31:29 EST 2025
Thu Apr 24 23:13:30 EDT 2025
Tue Jul 01 02:59:01 EDT 2025
Wed May 17 00:10:08 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords HIV-1
Mycobacterium tuberculosis
co-infection
tuberculosis
STAT3
AIDS
macrophage
monocyte
tunneling nanotubes
viral spread
biomarker
IL-10
Biomarker
Co-infection
Tuberculosis
Monocyte
Tunneling nanotubes
Viral spread
Macrophage
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c629t-6a1c1f4841d5793b5841164ea63e3c55ff6b0f84fcbf526c8ce47b24a7a099b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC6733268
These authors contributed equally to this work
AUTHOR CONTRIBUTIONS
Conceptualization & methodology: SS, LB, MdCS, ON, IMP, GLV, CV. Software: SS, RP. Investigation: SS, LB, MD, KP, CL, DK, CC, AB, RG, RP, BRM. Resources: SI, EJM, PGM, SP, MC. Writing: SS, ON, IMP, GLV, CV. Visualization: SS. Supervision: ON, IMP, GLV, CV. Corresponding authors: GLV is responsible for ownership and responsibility that are inherent to aspects on tuberculosis and CV on HIV1.
Lead contact
ORCID 0000-0003-4620-8491
0000-0003-0047-5885
0000-0002-0514-4447
0000-0003-0189-0976
0000-0002-6795-5448
0000-0002-7637-1997
0000-0003-1924-9474
0000-0001-7045-3572
0000-0003-2884-1744
0000-0002-1079-9085
OpenAccessLink https://doaj.org/article/dfbdfc33ba9f4d8eaeeb0d3758df1e7e
PMID 30917314
PQID 2199182323
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_dfbdfc33ba9f4d8eaeeb0d3758df1e7e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6733268
hal_primary_oai_HAL_hal_03034321v2
proquest_miscellaneous_2199182323
pubmed_primary_30917314
crossref_primary_10_1016_j_celrep_2019_02_091
crossref_citationtrail_10_1016_j_celrep_2019_02_091
elsevier_sciencedirect_doi_10_1016_j_celrep_2019_02_091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-26
PublicationDateYYYYMMDD 2019-03-26
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2019
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Ziegler-Heitbrock (bib91) 2007; 81
Knudsen, Gustafson, Kronborg, Kristiansen, Moestrup, Nielsen, Gomes, Aaby, Lisse, Moller (bib45) 2005; 11
Le Cabec, Cols, Maridonneau-Parini (bib51) 2000; 68
Ariazi, Benowitz, De Biasi, Den Boer, Cherqui, Cui, Douillet, Eugenin, Favre, Goodman (bib2) 2017; 10
Foreman, Mehra, LoBato, Malek, Alvarez, Golden, Bucşan, Didier, Doyle-Meyers, Russell-Lodrigue (bib25) 2016; 113
Garcia-Perez, Staropoli, Azoulay, Heinrich, Cascajero, Colin, Lortat-Jacob, Arenzana-Seisdedos, Alcami, Kellenberger, Lagane (bib26) 2015; 12
Kuroda, Sugimoto, Cai, Merino, Mehra, Araínga, Roy, Midkiff, Alvarez, Didier, Kaushal (bib46) 2018; 217
Fabriek, Dijkstra, van den Berg (bib24) 2005; 210
Ellery, Tippett, Chiu, Paukovics, Cameron, Solomon, Lewin, Gorry, Jaworowski, Greene (bib20) 2007; 178
Cribbs, Lennox, Caliendo, Brown, Guidot (bib15) 2015; 31
Kaushal, Mehra, Didier, Lackner (bib43) 2012; 41
Malik, Eugenin (bib55) 2016; 14
Getahun, Harrington, O’Brien, Nunn (bib29) 2007; 369
Cassol, Cassetta, Rizzi, Alfano, Poli (bib11) 2009; 182
Zhang, Nakata, Weiden, Rom (bib90) 1995; 95
Collins, Quiñones-Mateu, Wu, Luzze, Johnson, Hirsch, Toossi, Arts (bib14) 2002; 76
Balboa, Romero, Basile, Sabio y García, Schierloh, Yokobori, Geffner, Musella, Castagnino, Abbate (bib4) 2011; 90
Lastrucci, Bénard, Balboa, Pingris, Souriant, Poincloux, Al Saati, Rasolofo, González-Montaner, Inwentarz (bib48) 2015; 25
Okafo, Prevedel, Eugenin (bib64) 2017; 7
Gordon, Plüddemann, Martinez Estrada (bib32) 2014; 262
Espert, Beaumelle, Vergne (bib22) 2015; 5
Raynaud-Messina, Bracq, Dupont, Souriant, Usmani, Proag, Pingris, Soldan, Thibault, Capilla (bib70) 2018; 115
Vérollet, Souriant, Raynaud-Messina, Maridonneau-Parini (bib85) 2015; 31
Honeycutt, Thayer, Baker, Ribeiro, Lada, Cao, Cleary, Hudgens, Richman, Garcia (bib37) 2017; 23
Orenstein (bib66) 2000; 182
Avalos, Price, Forsyth, Pin, Shirk, Bullock, Queen, Li, Gellerup, O’Connor (bib3) 2016; 90
Lugo-Villarino, Vérollet, Maridonneau-Parini, Neyrolles (bib54) 2011; 2
Goletti, Carrara, Vincenti, Giacomini, Fattorini, Garbuglia, Capobianchi, Alonzi, Fimia, Federico (bib31) 2004; 189
Groot, Welsch, Sattentau (bib33) 2008; 111
Schierloh, Yokobori, Alemán, Landoni, Geffner, Musella, Castagnino, Baldini, Abbate, de la Barrera, Sasiain (bib75) 2007; 75
Esmail, Riou, du Bruyn, Lai, Harley, Meintjes, Wilkinson, Wilkinson (bib21) 2018; 36
Genoula, Marín Franco, Dupont, Kviatcovsky, Milillo, Schierloh, Moraña, Poggi, Palmero, Mata-Espinosa (bib28) 2018; 9
Bell, Noursadeghi (bib6) 2018; 16
Onfelt, Nedvetzki, Benninger, Purbhoo, Sowinski, Hume, Seabra, Neil, French, Davis (bib65) 2006; 177
Nakata, Rom, Honda, Condos, Kanegasaki, Cao, Weiden (bib61) 1997; 155
Queval, Song, Deboosère, Delorme, Debrie, Iantomasi, Veyron-Churlet, Jouny, Redhage, Deloison (bib69) 2016; 6
Baxter, Russell, Duncan, Moore, Willberg, Pablos, Finzi, Kaufmann, Ochsenbauer, Kappes (bib5) 2014; 16
Diedrich, O’Hern, Wilkinson (bib18) 2016; 98
Russell, Barry, Flynn (bib72) 2010; 328
Toossi (bib81) 2003; 188
Vorster, Allwood, Diacon, Koegelenberg (bib86) 2015; 7
Hase, Kimura, Takatsu, Ohmae, Kawano, Kitamura, Ito, Watarai, Hazelett, Yeaman, Ohno (bib34) 2009; 11
O’Garra, Redford, McNab, Bloom, Wilkinson, Berry (bib63) 2013; 31
Bracq, Xie, Lambelé, Vu, Matz, Schmitt, Delon, Zhou, Randriamampita, Bouchet, Benichou (bib7) 2017
Cai, Sugimoto, Liu, Midkiff, Alvarez, Lackner, Kim, Didier, Kuroda (bib10) 2015; 97
Orenstein (bib67) 2001; 204
Charles, Shellito (bib13) 2016; 37
Hashimoto, Bhuyan, Hiyoshi, Noyori, Nasser, Miyazaki, Saito, Kondoh, Osada, Kimura (bib35) 2016; 196
Hoshino, Nakata, Hoshino, Honda, Tse, Shioda, Rom, Weiden (bib38) 2002; 195
Gaudin, Berre, Cunha de Alencar, Decalf, Schindler, Gobert, Jouve, Benaroch (bib27) 2013; 8
Karaji, Sattentau (bib42) 2017; 8
Toossi, Nicolacakis, Xia, Ferrari, Rich (bib82) 1997; 15
Jolly, Sattentau (bib40) 2004; 5
Orenstein, Fox, Wahl (bib68) 1997; 276
Sather, Kenyon, Lefkowitz, Liang, Varnum, Henson, Graham (bib73) 2007; 109
Light (bib53) 2010; 15
Vérollet, Zhang, Le Cabec, Mazzolini, Charrière, Labrousse, Bouchet, Medina, Biessen, Niedergang (bib83) 2010; 184
Dupont, Souriant, Lugo-Villarino, Maridonneau-Parini, Vérollet (bib19) 2018; 9
Sherer, Mothes (bib76) 2008; 18
Cavrois, De Noronha, Greene (bib12) 2002; 20
Tanaka, Hoshino, Gold, Hoshino, Martiniuk, Kurata, Pine, Levy, Rom, Weiden (bib79) 2005; 33
Rocca, Goodman, Dulin, Haquang, Gertsman, Blondelle, Smith, Heyser, Cherqui (bib71) 2017; 9
Xu, Santini, Sullivan, He, Shan, Ball, Dyer, Ketas, Chadburn, Cohen-Gould (bib88) 2009; 10
Goletti, Weissman, Jackson, Collins, Kinter, Fauci (bib30) 1998; 177
Eugenin, Gaskill, Berman (bib23) 2009; 254
Mehra, Golden, Dutta, Midkiff, Alvarez, Doyle, Asher, Russell-Lodrigue, Monjure, Roy (bib59) 2011; 40
Ip, Hoshi, Shouval, Snapper, Medzhitov (bib39) 2017; 356
Sowinski, Jolly, Berninghausen, Purbhoo, Chauveau, Köhler, Oddos, Eissmann, Brodsky, Hopkins (bib78) 2008; 10
Lawn, Pisell, Hirsch, Wu, Butera, Toossi (bib49) 2001; 184
Laguette, Sobhian, Casartelli, Ringeard, Chable-Bessia, Ségéral, Yatim, Emiliani, Schwartz, Benkirane (bib47) 2011; 474
Lederman, Georges, Kusner, Mudido, Giam, Toossi (bib52) 1994; 7
Ancuta, Wang, Gabuzda (bib1) 2006; 80
Maridonneau-Parini (bib57) 2014; 262
Khan, Divangahi (bib44) 2018; 217
Diedrich, Flynn (bib17) 2011; 79
Davis, Sowinski (bib16) 2008; 9
Sattentau, Stevenson (bib74) 2016; 19
Xu, Kulkosky, Acheampong, Nunnari, Sullivan, Pomerantz (bib87) 2004; 101
Burdo, Soulas, Orzechowski, Button, Krishnan, Sugimoto, Alvarez, Kuroda, Williams (bib8) 2010; 6
Burdo, Lentz, Autissier, Krishnan, Halpern, Letendre, Rosenberg, Ellis, Williams (bib9) 2011; 204
Mancino, Placido, Bach, Mariani, Montesano, Ercoli, Zembala, Colizzi (bib56) 1997; 175
Joseph, Swanstrom (bib41) 2018; 103
McCoy-Simandle, Hanna, Cox (bib58) 2016; 71
Murray, Allen, Biswas, Fisher, Gilroy, Goerdt, Gordon, Hamilton, Ivashkiv, Lawrence (bib60) 2014; 41
Vérollet, Souriant, Bonnaud, Jolicoeur, Raynaud-Messina, Kinnaer, Fourquaux, Imle, Benichou, Fackler (bib84) 2015; 125
Naphade, Sharma, Gaide Chevronnay, Shook, Yeagy, Rocca, Ur, Lau, Courtoy, Cherqui (bib62) 2015; 33
Tomlinson, Bell, Walker, Tsang, Brown, Breen, Lipman, Katz, Miller, Chain (bib80) 2013; 209
Singh, Besson, Mobasher, Collman (bib77) 1999; 73
Honeycutt, Wahl, Baker, Spagnuolo, Foster, Zakharova, Wietgrefe, Caro-Vegas, Madden, Sharpe (bib36) 2016; 126
Le Cabec, Maridonneau-Parini (bib50) 1994; 303
Zhang (bib89) 2011; 4
Cai (10.1016/j.celrep.2019.02.091_bib10) 2015; 97
Maridonneau-Parini (10.1016/j.celrep.2019.02.091_bib57) 2014; 262
Sather (10.1016/j.celrep.2019.02.091_bib73) 2007; 109
Singh (10.1016/j.celrep.2019.02.091_bib77) 1999; 73
Hase (10.1016/j.celrep.2019.02.091_bib34) 2009; 11
Esmail (10.1016/j.celrep.2019.02.091_bib21) 2018; 36
Fabriek (10.1016/j.celrep.2019.02.091_bib24) 2005; 210
Murray (10.1016/j.celrep.2019.02.091_bib60) 2014; 41
Joseph (10.1016/j.celrep.2019.02.091_bib41) 2018; 103
Kuroda (10.1016/j.celrep.2019.02.091_bib46) 2018; 217
Zhang (10.1016/j.celrep.2019.02.091_bib90) 1995; 95
Goletti (10.1016/j.celrep.2019.02.091_bib31) 2004; 189
Vorster (10.1016/j.celrep.2019.02.091_bib86) 2015; 7
Ip (10.1016/j.celrep.2019.02.091_bib39) 2017; 356
Orenstein (10.1016/j.celrep.2019.02.091_bib66) 2000; 182
Foreman (10.1016/j.celrep.2019.02.091_bib25) 2016; 113
Diedrich (10.1016/j.celrep.2019.02.091_bib18) 2016; 98
Naphade (10.1016/j.celrep.2019.02.091_bib62) 2015; 33
Burdo (10.1016/j.celrep.2019.02.091_bib9) 2011; 204
Light (10.1016/j.celrep.2019.02.091_bib53) 2010; 15
Malik (10.1016/j.celrep.2019.02.091_bib55) 2016; 14
Balboa (10.1016/j.celrep.2019.02.091_bib4) 2011; 90
Karaji (10.1016/j.celrep.2019.02.091_bib42) 2017; 8
Le Cabec (10.1016/j.celrep.2019.02.091_bib50) 1994; 303
Onfelt (10.1016/j.celrep.2019.02.091_bib65) 2006; 177
Mehra (10.1016/j.celrep.2019.02.091_bib59) 2011; 40
Cavrois (10.1016/j.celrep.2019.02.091_bib12) 2002; 20
Jolly (10.1016/j.celrep.2019.02.091_bib40) 2004; 5
Toossi (10.1016/j.celrep.2019.02.091_bib81) 2003; 188
Xu (10.1016/j.celrep.2019.02.091_bib88) 2009; 10
Honeycutt (10.1016/j.celrep.2019.02.091_bib36) 2016; 126
Getahun (10.1016/j.celrep.2019.02.091_bib29) 2007; 369
Cassol (10.1016/j.celrep.2019.02.091_bib11) 2009; 182
Orenstein (10.1016/j.celrep.2019.02.091_bib67) 2001; 204
Kaushal (10.1016/j.celrep.2019.02.091_bib43) 2012; 41
Goletti (10.1016/j.celrep.2019.02.091_bib30) 1998; 177
O’Garra (10.1016/j.celrep.2019.02.091_bib63) 2013; 31
Hashimoto (10.1016/j.celrep.2019.02.091_bib35) 2016; 196
Khan (10.1016/j.celrep.2019.02.091_bib44) 2018; 217
Bracq (10.1016/j.celrep.2019.02.091_bib7) 2017
Honeycutt (10.1016/j.celrep.2019.02.091_bib37) 2017; 23
Burdo (10.1016/j.celrep.2019.02.091_bib8) 2010; 6
Laguette (10.1016/j.celrep.2019.02.091_bib47) 2011; 474
Lugo-Villarino (10.1016/j.celrep.2019.02.091_bib54) 2011; 2
Groot (10.1016/j.celrep.2019.02.091_bib33) 2008; 111
Dupont (10.1016/j.celrep.2019.02.091_bib19) 2018; 9
Espert (10.1016/j.celrep.2019.02.091_bib22) 2015; 5
Raynaud-Messina (10.1016/j.celrep.2019.02.091_bib70) 2018; 115
Vérollet (10.1016/j.celrep.2019.02.091_bib83) 2010; 184
Orenstein (10.1016/j.celrep.2019.02.091_bib68) 1997; 276
Xu (10.1016/j.celrep.2019.02.091_bib87) 2004; 101
Vérollet (10.1016/j.celrep.2019.02.091_bib84) 2015; 125
Avalos (10.1016/j.celrep.2019.02.091_bib3) 2016; 90
Eugenin (10.1016/j.celrep.2019.02.091_bib23) 2009; 254
Sherer (10.1016/j.celrep.2019.02.091_bib76) 2008; 18
Sowinski (10.1016/j.celrep.2019.02.091_bib78) 2008; 10
Diedrich (10.1016/j.celrep.2019.02.091_bib17) 2011; 79
Mancino (10.1016/j.celrep.2019.02.091_bib56) 1997; 175
Baxter (10.1016/j.celrep.2019.02.091_bib5) 2014; 16
Knudsen (10.1016/j.celrep.2019.02.091_bib45) 2005; 11
Sattentau (10.1016/j.celrep.2019.02.091_bib74) 2016; 19
Ellery (10.1016/j.celrep.2019.02.091_bib20) 2007; 178
Nakata (10.1016/j.celrep.2019.02.091_bib61) 1997; 155
Cribbs (10.1016/j.celrep.2019.02.091_bib15) 2015; 31
Lawn (10.1016/j.celrep.2019.02.091_bib49) 2001; 184
Zhang (10.1016/j.celrep.2019.02.091_bib89) 2011; 4
Okafo (10.1016/j.celrep.2019.02.091_bib64) 2017; 7
Tanaka (10.1016/j.celrep.2019.02.091_bib79) 2005; 33
Genoula (10.1016/j.celrep.2019.02.091_bib28) 2018; 9
Vérollet (10.1016/j.celrep.2019.02.091_bib85) 2015; 31
Collins (10.1016/j.celrep.2019.02.091_bib14) 2002; 76
McCoy-Simandle (10.1016/j.celrep.2019.02.091_bib58) 2016; 71
Russell (10.1016/j.celrep.2019.02.091_bib72) 2010; 328
Rocca (10.1016/j.celrep.2019.02.091_bib71) 2017; 9
Ancuta (10.1016/j.celrep.2019.02.091_bib1) 2006; 80
Queval (10.1016/j.celrep.2019.02.091_bib69) 2016; 6
Schierloh (10.1016/j.celrep.2019.02.091_bib75) 2007; 75
Garcia-Perez (10.1016/j.celrep.2019.02.091_bib26) 2015; 12
Lastrucci (10.1016/j.celrep.2019.02.091_bib48) 2015; 25
Lederman (10.1016/j.celrep.2019.02.091_bib52) 1994; 7
Ariazi (10.1016/j.celrep.2019.02.091_bib2) 2017; 10
Le Cabec (10.1016/j.celrep.2019.02.091_bib51) 2000; 68
Charles (10.1016/j.celrep.2019.02.091_bib13) 2016; 37
Davis (10.1016/j.celrep.2019.02.091_bib16) 2008; 9
Gordon (10.1016/j.celrep.2019.02.091_bib32) 2014; 262
Hoshino (10.1016/j.celrep.2019.02.091_bib38) 2002; 195
Toossi (10.1016/j.celrep.2019.02.091_bib82) 1997; 15
Gaudin (10.1016/j.celrep.2019.02.091_bib27) 2013; 8
Bell (10.1016/j.celrep.2019.02.091_bib6) 2018; 16
Tomlinson (10.1016/j.celrep.2019.02.091_bib80) 2013; 209
Ziegler-Heitbrock (10.1016/j.celrep.2019.02.091_bib91) 2007; 81
References_xml – volume: 9
  start-page: eaaj2347
  year: 2017
  ident: bib71
  article-title: Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich’s ataxia
  publication-title: Sci. Transl. Med.
– volume: 31
  start-page: 64
  year: 2015
  end-page: 70
  ident: bib15
  article-title: Healthy HIV-1-infected individuals on highly active antiretroviral therapy harbor HIV-1 in their alveolar macrophages
  publication-title: AIDS Res. Hum. Retroviruses
– volume: 182
  start-page: 338
  year: 2000
  end-page: 342
  ident: bib66
  article-title: In vivo cytolysis and fusion of human immunodeficiency virus type 1-infected lymphocytes in lymphoid tissue
  publication-title: J. Infect. Dis.
– volume: 81
  start-page: 584
  year: 2007
  end-page: 592
  ident: bib91
  article-title: The CD14
  publication-title: J. Leukoc. Biol.
– volume: 7
  start-page: 727
  year: 1994
  end-page: 733
  ident: bib52
  article-title: and its purified protein derivative activate expression of the human immunodeficiency virus
  publication-title: J. Acquir. Immune Defic. Syndr.
– volume: 262
  start-page: 216
  year: 2014
  end-page: 231
  ident: bib57
  article-title: Control of macrophage 3D migration: a therapeutic challenge to limit tissue infiltration
  publication-title: Immunol. Rev.
– volume: 31
  start-page: 475
  year: 2013
  end-page: 527
  ident: bib63
  article-title: The immune response in tuberculosis
  publication-title: Annu. Rev. Immunol.
– volume: 10
  start-page: 211
  year: 2008
  end-page: 219
  ident: bib78
  article-title: Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission
  publication-title: Nat. Cell Biol.
– volume: 19
  start-page: 304
  year: 2016
  end-page: 310
  ident: bib74
  article-title: Macrophages and HIV-1: an unhealthy constellation
  publication-title: Cell Host Microbe
– volume: 20
  start-page: 1151
  year: 2002
  end-page: 1154
  ident: bib12
  article-title: A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes
  publication-title: Nat. Biotechnol.
– volume: 25
  start-page: 1333
  year: 2015
  end-page: 1351
  ident: bib48
  article-title: Tuberculosis is associated with expansion of a motile, permissive and immunomodulatory CD16
  publication-title: Cell Res.
– volume: 113
  start-page: E5636
  year: 2016
  end-page: E5644
  ident: bib25
  article-title: CD4
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4
  start-page: 324
  year: 2011
  end-page: 325
  ident: bib89
  article-title: Tunneling-nanotube: a new way of cell-cell communication
  publication-title: Commun. Integr. Biol.
– volume: 115
  start-page: E2556
  year: 2018
  end-page: E2565
  ident: bib70
  article-title: Bone degradation machinery of osteoclasts: an HIV-1 target that contributes to bone loss
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2017
  ident: bib7
  article-title: T cell-macrophage fusion triggers multinucleated giant cell formation for HIV-1 spreading
  publication-title: J. Virol.
– volume: 204
  start-page: 154
  year: 2011
  end-page: 163
  ident: bib9
  article-title: Soluble CD163 made by monocyte/macrophages is a novel marker of HIV activity in early and chronic infection prior to and after anti-retroviral therapy
  publication-title: J. Infect. Dis.
– volume: 80
  start-page: 1156
  year: 2006
  end-page: 1164
  ident: bib1
  article-title: CD16
  publication-title: J. Leukoc. Biol.
– volume: 40
  start-page: 233
  year: 2011
  end-page: 243
  ident: bib59
  article-title: Reactivation of latent tuberculosis in rhesus macaques by coinfection with simian immunodeficiency virus
  publication-title: J. Med. Primatol.
– volume: 101
  start-page: 7070
  year: 2004
  end-page: 7075
  ident: bib87
  article-title: HIV-1-mediated apoptosis of neuronal cells: proximal molecular mechanisms of HIV-1-induced encephalopathy
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 1863
  year: 2017
  ident: bib42
  article-title: Efferocytosis of pathogen-infected cells
  publication-title: Front. Immunol.
– volume: 68
  start-page: 4736
  year: 2000
  end-page: 4745
  ident: bib51
  article-title: Nonopsonic phagocytosis of zymosan and
  publication-title: Infect. Immun.
– volume: 184
  start-page: 1127
  year: 2001
  end-page: 1133
  ident: bib49
  article-title: Anatomically compartmentalized human immunodeficiency virus replication in HLA-DR
  publication-title: J. Infect. Dis.
– volume: 9
  start-page: 431
  year: 2008
  end-page: 436
  ident: bib16
  article-title: Membrane nanotubes: dynamic long-distance connections between animal cells
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 195
  start-page: 495
  year: 2002
  end-page: 505
  ident: bib38
  article-title: Maximal HIV-1 replication in alveolar macrophages during tuberculosis requires both lymphocyte contact and cytokines
  publication-title: J. Exp. Med.
– volume: 189
  start-page: 624
  year: 2004
  end-page: 633
  ident: bib31
  article-title: Inhibition of HIV-1 replication in monocyte-derived macrophages by
  publication-title: J. Infect. Dis.
– volume: 9
  start-page: 459
  year: 2018
  ident: bib28
  article-title: Formation of foamy macrophages by tuberculous pleural effusions is triggered by the interleukin-10/signal transducer and activator of transcription 3 axis through ACAT upregulation
  publication-title: Front. Immunol.
– volume: 178
  start-page: 6581
  year: 2007
  end-page: 6589
  ident: bib20
  article-title: The CD16
  publication-title: J. Immunol.
– volume: 328
  start-page: 852
  year: 2010
  end-page: 856
  ident: bib72
  article-title: Tuberculosis: what we don’t know can, and does, hurt us
  publication-title: Science
– volume: 356
  start-page: 513
  year: 2017
  end-page: 519
  ident: bib39
  article-title: Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages
  publication-title: Science
– volume: 6
  start-page: 29297
  year: 2016
  ident: bib69
  article-title: STAT3 represses nitric oxide synthesis in human macrophages upon
  publication-title: Sci. Rep.
– volume: 11
  start-page: 730
  year: 2005
  end-page: 735
  ident: bib45
  article-title: Predictive value of soluble haemoglobin scavenger receptor CD163 serum levels for survival in verified tuberculosis patients
  publication-title: Clin. Microbiol. Infect.
– volume: 5
  start-page: 643
  year: 2004
  end-page: 650
  ident: bib40
  article-title: Retroviral spread by induction of virological synapses
  publication-title: Traffic
– volume: 7
  start-page: 16660
  year: 2017
  ident: bib64
  article-title: Tunneling nanotubes (TNT) mediate long-range gap junctional communication: implications for HIV cell to cell spread
  publication-title: Sci. Rep.
– volume: 90
  start-page: 69
  year: 2011
  end-page: 75
  ident: bib4
  article-title: Paradoxical role of CD16
  publication-title: J. Leukoc. Biol.
– volume: 76
  start-page: 1697
  year: 2002
  end-page: 1706
  ident: bib14
  article-title: Human immunodeficiency virus type 1 (HIV-1) quasispecies at the sites of
  publication-title: J. Virol.
– volume: 41
  start-page: 191
  year: 2012
  end-page: 201
  ident: bib43
  article-title: The non-human primate model of tuberculosis
  publication-title: J. Med. Primatol.
– volume: 125
  start-page: 1611
  year: 2015
  end-page: 1622
  ident: bib84
  article-title: HIV-1 reprograms the migration of macrophages
  publication-title: Blood
– volume: 15
  start-page: 325
  year: 1997
  end-page: 331
  ident: bib82
  article-title: Activation of latent HIV-1 by
  publication-title: J. Acquir. Immune Defic. Syndr. Hum. Retrovirol.
– volume: 33
  start-page: 406
  year: 2005
  end-page: 411
  ident: bib79
  article-title: Interleukin-10 induces inhibitory C/EBPbeta through STAT-3 and represses HIV-1 transcription in macrophages
  publication-title: Am. J. Respir. Cell Mol. Biol.
– volume: 37
  start-page: 147
  year: 2016
  end-page: 156
  ident: bib13
  article-title: Human immunodeficiency virus infection and host defense in the lungs
  publication-title: Semin. Respir. Crit. Care Med.
– volume: 217
  start-page: 1851
  year: 2018
  end-page: 1853
  ident: bib44
  article-title: and HIV coinfection brings fire and fury to macrophages
  publication-title: J. Infect. Dis.
– volume: 71
  start-page: 44
  year: 2016
  end-page: 54
  ident: bib58
  article-title: Exosomes and nanotubes: control of immune cell communication
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 41
  start-page: 14
  year: 2014
  end-page: 20
  ident: bib60
  article-title: Macrophage activation and polarization: nomenclature and experimental guidelines
  publication-title: Immunity
– volume: 33
  start-page: 301
  year: 2015
  end-page: 309
  ident: bib62
  article-title: Brief reports: lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes
  publication-title: Stem Cells
– volume: 210
  start-page: 153
  year: 2005
  end-page: 160
  ident: bib24
  article-title: The macrophage scavenger receptor CD163
  publication-title: Immunobiology
– volume: 15
  start-page: 451
  year: 2010
  end-page: 458
  ident: bib53
  article-title: Update on tuberculous pleural effusion
  publication-title: Respirology
– volume: 11
  start-page: 1427
  year: 2009
  end-page: 1432
  ident: bib34
  article-title: M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex
  publication-title: Nat. Cell Biol.
– volume: 14
  start-page: 400
  year: 2016
  end-page: 411
  ident: bib55
  article-title: Mechanisms of HIV neuropathogenesis: role of cellular communication systems
  publication-title: Curr. HIV Res.
– volume: 18
  start-page: 414
  year: 2008
  end-page: 420
  ident: bib76
  article-title: Cytonemes and tunneling nanotubules in cell-cell communication and viral pathogenesis
  publication-title: Trends Cell Biol.
– volume: 184
  start-page: 7030
  year: 2010
  end-page: 7039
  ident: bib83
  article-title: HIV-1 Nef triggers macrophage fusion in a p61Hck- and protease-dependent manner
  publication-title: J. Immunol.
– volume: 97
  start-page: 1147
  year: 2015
  end-page: 1153
  ident: bib10
  article-title: Increased monocyte turnover is associated with interstitial macrophage accumulation and pulmonary tissue damage in SIV-infected rhesus macaques
  publication-title: J. Leukoc. Biol.
– volume: 126
  start-page: 1353
  year: 2016
  end-page: 1366
  ident: bib36
  article-title: Macrophages sustain HIV replication in vivo independently of T cells
  publication-title: J. Clin. Invest.
– volume: 217
  start-page: 1865
  year: 2018
  end-page: 1874
  ident: bib46
  article-title: High turnover of tissue macrophages contributes to tuberculosis reactivation in simian immunodeficiency virus-infected rhesus macaques
  publication-title: J. Infect. Dis.
– volume: 276
  start-page: 1857
  year: 1997
  end-page: 1861
  ident: bib68
  article-title: Macrophages as a source of HIV during opportunistic infections
  publication-title: Science
– volume: 303
  start-page: 481
  year: 1994
  end-page: 487
  ident: bib50
  article-title: Annexin 3 is associated with cytoplasmic granules in neutrophils and monocytes and translocates to the plasma membrane in activated cells
  publication-title: Biochem. J.
– volume: 75
  start-page: 5325
  year: 2007
  end-page: 5337
  ident: bib75
  article-title: -induced gamma interferon production by natural killer cells requires cross talk with antigen-presenting cells involving Toll-like receptors 2 and 4 and the mannose receptor in tuberculous pleurisy
  publication-title: Infect. Immun.
– volume: 79
  start-page: 1407
  year: 2011
  end-page: 1417
  ident: bib17
  article-title: HIV-1/
  publication-title: Infect. Immun.
– volume: 109
  start-page: 1026
  year: 2007
  end-page: 1033
  ident: bib73
  article-title: A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation
  publication-title: Blood
– volume: 95
  start-page: 2324
  year: 1995
  end-page: 2331
  ident: bib90
  article-title: enhances human immunodeficiency virus-1 replication by transcriptional activation at the long terminal repeat
  publication-title: J. Clin. Invest.
– volume: 5
  start-page: 49
  year: 2015
  ident: bib22
  article-title: Autophagy in
  publication-title: Front. Cell. Infect. Microbiol.
– volume: 177
  start-page: 1332
  year: 1998
  end-page: 1338
  ident: bib30
  article-title: The in vitro induction of human immunodeficiency virus (HIV) replication in purified protein derivative-positive HIV-infected persons by recall antigen response to
  publication-title: J. Infect. Dis.
– volume: 111
  start-page: 4660
  year: 2008
  end-page: 4663
  ident: bib33
  article-title: Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses
  publication-title: Blood
– volume: 23
  start-page: 638
  year: 2017
  end-page: 643
  ident: bib37
  article-title: HIV persistence in tissue macrophages of humanized myeloid-only mice during antiretroviral therapy
  publication-title: Nat. Med.
– volume: 182
  start-page: 6237
  year: 2009
  end-page: 6246
  ident: bib11
  article-title: M1 and M2a polarization of human monocyte-derived macrophages inhibits HIV-1 replication by distinct mechanisms
  publication-title: J. Immunol.
– volume: 9
  start-page: 43
  year: 2018
  ident: bib19
  article-title: Tunneling nanotubes: intimate communication between myeloid cells
  publication-title: Front. Immunol.
– volume: 12
  start-page: 50
  year: 2015
  ident: bib26
  article-title: A single-residue change in the HIV-1 V3 loop associated with maraviroc resistance impairs CCR5 binding affinity while increasing replicative capacity
  publication-title: Retrovirology
– volume: 262
  start-page: 36
  year: 2014
  end-page: 55
  ident: bib32
  article-title: Macrophage heterogeneity in tissues: phenotypic diversity and functions
  publication-title: Immunol. Rev.
– volume: 6
  start-page: e1000842
  year: 2010
  ident: bib8
  article-title: Increased monocyte turnover from bone marrow correlates with severity of SIV encephalitis and CD163 levels in plasma
  publication-title: PLoS Pathog.
– volume: 36
  start-page: 603
  year: 2018
  end-page: 638
  ident: bib21
  article-title: The immune response to
  publication-title: Annu. Rev. Immunol.
– volume: 16
  start-page: 80
  year: 2018
  end-page: 90
  ident: bib6
  article-title: Pathogenesis of HIV-1 and
  publication-title: Nat. Rev. Microbiol.
– volume: 254
  start-page: 142
  year: 2009
  end-page: 148
  ident: bib23
  article-title: Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking
  publication-title: Cell. Immunol.
– volume: 474
  start-page: 654
  year: 2011
  end-page: 657
  ident: bib47
  article-title: SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx
  publication-title: Nature
– volume: 196
  start-page: 1832
  year: 2016
  end-page: 1841
  ident: bib35
  article-title: Potential role of the formation of tunneling nanotubes in HIV-1 spread in macrophages
  publication-title: J. Immunol.
– volume: 177
  start-page: 8476
  year: 2006
  end-page: 8483
  ident: bib65
  article-title: Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria
  publication-title: J. Immunol.
– volume: 103
  start-page: 421
  year: 2018
  end-page: 431
  ident: bib41
  article-title: The evolution of HIV-1 entry phenotypes as a guide to changing target cells
  publication-title: J. Leukoc. Biol.
– volume: 2
  start-page: 43
  year: 2011
  ident: bib54
  article-title: Macrophage polarization: convergence point targeted by
  publication-title: Front. Immunol.
– volume: 175
  start-page: 1531
  year: 1997
  end-page: 1535
  ident: bib56
  article-title: Infection of human monocytes with
  publication-title: J. Infect. Dis.
– volume: 8
  start-page: e69450
  year: 2013
  ident: bib27
  article-title: Dynamics of HIV-containing compartments in macrophages reveal sequestration of virions and transient surface connections
  publication-title: PLoS ONE
– volume: 155
  start-page: 996
  year: 1997
  end-page: 1003
  ident: bib61
  article-title: enhances human immunodeficiency virus-1 replication in the lung
  publication-title: Am. J. Respir. Crit. Care Med.
– volume: 98
  start-page: 62
  year: 2016
  end-page: 76
  ident: bib18
  article-title: HIV-1 and the
  publication-title: Tuberculosis (Edinb.)
– volume: 31
  start-page: 730
  year: 2015
  end-page: 733
  ident: bib85
  article-title: [HIV-1 drives the migration of macrophages]
  publication-title: Med. Sci. (Paris)
– volume: 90
  start-page: 5643
  year: 2016
  end-page: 5656
  ident: bib3
  article-title: Quantitation of productively infected monocytes and macrophages of simian immunodeficiency virus-infected macaques
  publication-title: J. Virol.
– volume: 209
  start-page: 1055
  year: 2013
  end-page: 1065
  ident: bib80
  article-title: HIV-1 infection of macrophages dysregulates innate immune responses to
  publication-title: J. Infect. Dis.
– volume: 10
  start-page: 333
  year: 2017
  ident: bib2
  article-title: Tunneling nanotubes and gap junctions-their role in long-range intercellular communication during development, health, and disease conditions
  publication-title: Front. Mol. Neurosci.
– volume: 7
  start-page: 981
  year: 2015
  end-page: 991
  ident: bib86
  article-title: Tuberculous pleural effusions: advances and controversies
  publication-title: J. Thorac. Dis.
– volume: 204
  start-page: 598
  year: 2001
  end-page: 602
  ident: bib67
  article-title: The macrophage in HIV infection
  publication-title: Immunobiology
– volume: 10
  start-page: 1008
  year: 2009
  end-page: 1017
  ident: bib88
  article-title: HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits
  publication-title: Nat. Immunol.
– volume: 188
  start-page: 1146
  year: 2003
  end-page: 1155
  ident: bib81
  article-title: Virological and immunological impact of tuberculosis on human immunodeficiency virus type 1 disease
  publication-title: J. Infect. Dis.
– volume: 369
  start-page: 2042
  year: 2007
  end-page: 2049
  ident: bib29
  article-title: Diagnosis of smear-negative pulmonary tuberculosis in people with HIV infection or AIDS in resource-constrained settings: informing urgent policy changes
  publication-title: Lancet
– volume: 16
  start-page: 711
  year: 2014
  end-page: 721
  ident: bib5
  article-title: Macrophage infection via selective capture of HIV-1-infected CD4+ T cells
  publication-title: Cell Host Microbe
– volume: 73
  start-page: 6680
  year: 1999
  end-page: 6690
  ident: bib77
  article-title: Patterns of chemokine receptor fusion cofactor utilization by human immunodeficiency virus type 1 variants from the lungs and blood
  publication-title: J. Virol.
– volume: 14
  start-page: 400
  year: 2016
  ident: 10.1016/j.celrep.2019.02.091_bib55
  article-title: Mechanisms of HIV neuropathogenesis: role of cellular communication systems
  publication-title: Curr. HIV Res.
  doi: 10.2174/1570162X14666160324124558
– volume: 115
  start-page: E2556
  year: 2018
  ident: 10.1016/j.celrep.2019.02.091_bib70
  article-title: Bone degradation machinery of osteoclasts: an HIV-1 target that contributes to bone loss
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1713370115
– volume: 80
  start-page: 1156
  year: 2006
  ident: 10.1016/j.celrep.2019.02.091_bib1
  article-title: CD16+ monocytes produce IL-6, CCL2, and matrix metalloproteinase-9 upon interaction with CX3CL1-expressing endothelial cells
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0206125
– volume: 111
  start-page: 4660
  year: 2008
  ident: 10.1016/j.celrep.2019.02.091_bib33
  article-title: Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses
  publication-title: Blood
  doi: 10.1182/blood-2007-12-130070
– volume: 177
  start-page: 8476
  year: 2006
  ident: 10.1016/j.celrep.2019.02.091_bib65
  article-title: Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.177.12.8476
– volume: 6
  start-page: e1000842
  year: 2010
  ident: 10.1016/j.celrep.2019.02.091_bib8
  article-title: Increased monocyte turnover from bone marrow correlates with severity of SIV encephalitis and CD163 levels in plasma
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000842
– volume: 81
  start-page: 584
  year: 2007
  ident: 10.1016/j.celrep.2019.02.091_bib91
  article-title: The CD14+ CD16+ blood monocytes: their role in infection and inflammation
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0806510
– volume: 8
  start-page: 1863
  year: 2017
  ident: 10.1016/j.celrep.2019.02.091_bib42
  article-title: Efferocytosis of pathogen-infected cells
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.01863
– volume: 184
  start-page: 1127
  year: 2001
  ident: 10.1016/j.celrep.2019.02.091_bib49
  article-title: Anatomically compartmentalized human immunodeficiency virus replication in HLA-DR+ cells and CD14+ macrophages at the site of pleural tuberculosis coinfection
  publication-title: J. Infect. Dis.
  doi: 10.1086/323649
– volume: 109
  start-page: 1026
  year: 2007
  ident: 10.1016/j.celrep.2019.02.091_bib73
  article-title: A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation
  publication-title: Blood
  doi: 10.1182/blood-2006-05-021634
– volume: 178
  start-page: 6581
  year: 2007
  ident: 10.1016/j.celrep.2019.02.091_bib20
  article-title: The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.178.10.6581
– volume: 204
  start-page: 598
  year: 2001
  ident: 10.1016/j.celrep.2019.02.091_bib67
  article-title: The macrophage in HIV infection
  publication-title: Immunobiology
  doi: 10.1078/0171-2985-00098
– volume: 76
  start-page: 1697
  year: 2002
  ident: 10.1016/j.celrep.2019.02.091_bib14
  article-title: Human immunodeficiency virus type 1 (HIV-1) quasispecies at the sites of Mycobacterium tuberculosis infection contribute to systemic HIV-1 heterogeneity
  publication-title: J. Virol.
  doi: 10.1128/JVI.76.4.1697-1706.2002
– volume: 126
  start-page: 1353
  year: 2016
  ident: 10.1016/j.celrep.2019.02.091_bib36
  article-title: Macrophages sustain HIV replication in vivo independently of T cells
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI84456
– volume: 328
  start-page: 852
  year: 2010
  ident: 10.1016/j.celrep.2019.02.091_bib72
  article-title: Tuberculosis: what we don’t know can, and does, hurt us
  publication-title: Science
  doi: 10.1126/science.1184784
– year: 2017
  ident: 10.1016/j.celrep.2019.02.091_bib7
  article-title: T cell-macrophage fusion triggers multinucleated giant cell formation for HIV-1 spreading
  publication-title: J. Virol.
  doi: 10.1128/JVI.01237-17
– volume: 356
  start-page: 513
  year: 2017
  ident: 10.1016/j.celrep.2019.02.091_bib39
  article-title: Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages
  publication-title: Science
  doi: 10.1126/science.aal3535
– volume: 188
  start-page: 1146
  year: 2003
  ident: 10.1016/j.celrep.2019.02.091_bib81
  article-title: Virological and immunological impact of tuberculosis on human immunodeficiency virus type 1 disease
  publication-title: J. Infect. Dis.
  doi: 10.1086/378676
– volume: 101
  start-page: 7070
  year: 2004
  ident: 10.1016/j.celrep.2019.02.091_bib87
  article-title: HIV-1-mediated apoptosis of neuronal cells: proximal molecular mechanisms of HIV-1-induced encephalopathy
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0304859101
– volume: 474
  start-page: 654
  year: 2011
  ident: 10.1016/j.celrep.2019.02.091_bib47
  article-title: SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx
  publication-title: Nature
  doi: 10.1038/nature10117
– volume: 217
  start-page: 1851
  year: 2018
  ident: 10.1016/j.celrep.2019.02.091_bib44
  article-title: Mycobacterium tuberculosis and HIV coinfection brings fire and fury to macrophages
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jix626
– volume: 210
  start-page: 153
  year: 2005
  ident: 10.1016/j.celrep.2019.02.091_bib24
  article-title: The macrophage scavenger receptor CD163
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2005.05.010
– volume: 31
  start-page: 64
  year: 2015
  ident: 10.1016/j.celrep.2019.02.091_bib15
  article-title: Healthy HIV-1-infected individuals on highly active antiretroviral therapy harbor HIV-1 in their alveolar macrophages
  publication-title: AIDS Res. Hum. Retroviruses
  doi: 10.1089/aid.2014.0133
– volume: 8
  start-page: e69450
  year: 2013
  ident: 10.1016/j.celrep.2019.02.091_bib27
  article-title: Dynamics of HIV-containing compartments in macrophages reveal sequestration of virions and transient surface connections
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0069450
– volume: 15
  start-page: 325
  year: 1997
  ident: 10.1016/j.celrep.2019.02.091_bib82
  article-title: Activation of latent HIV-1 by Mycobacterium tuberculosis and its purified protein derivative in alveolar macrophages from HIV-infected individuals in vitro
  publication-title: J. Acquir. Immune Defic. Syndr. Hum. Retrovirol.
  doi: 10.1097/00042560-199708150-00001
– volume: 196
  start-page: 1832
  year: 2016
  ident: 10.1016/j.celrep.2019.02.091_bib35
  article-title: Potential role of the formation of tunneling nanotubes in HIV-1 spread in macrophages
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1500845
– volume: 9
  start-page: 459
  year: 2018
  ident: 10.1016/j.celrep.2019.02.091_bib28
  article-title: Formation of foamy macrophages by tuberculous pleural effusions is triggered by the interleukin-10/signal transducer and activator of transcription 3 axis through ACAT upregulation
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.00459
– volume: 75
  start-page: 5325
  year: 2007
  ident: 10.1016/j.celrep.2019.02.091_bib75
  article-title: Mycobacterium tuberculosis-induced gamma interferon production by natural killer cells requires cross talk with antigen-presenting cells involving Toll-like receptors 2 and 4 and the mannose receptor in tuberculous pleurisy
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00381-07
– volume: 6
  start-page: 29297
  year: 2016
  ident: 10.1016/j.celrep.2019.02.091_bib69
  article-title: STAT3 represses nitric oxide synthesis in human macrophages upon Mycobacterium tuberculosis infection
  publication-title: Sci. Rep.
  doi: 10.1038/srep29297
– volume: 182
  start-page: 6237
  year: 2009
  ident: 10.1016/j.celrep.2019.02.091_bib11
  article-title: M1 and M2a polarization of human monocyte-derived macrophages inhibits HIV-1 replication by distinct mechanisms
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0803447
– volume: 40
  start-page: 233
  year: 2011
  ident: 10.1016/j.celrep.2019.02.091_bib59
  article-title: Reactivation of latent tuberculosis in rhesus macaques by coinfection with simian immunodeficiency virus
  publication-title: J. Med. Primatol.
  doi: 10.1111/j.1600-0684.2011.00485.x
– volume: 155
  start-page: 996
  year: 1997
  ident: 10.1016/j.celrep.2019.02.091_bib61
  article-title: Mycobacterium tuberculosis enhances human immunodeficiency virus-1 replication in the lung
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/ajrccm.155.3.9117038
– volume: 31
  start-page: 730
  year: 2015
  ident: 10.1016/j.celrep.2019.02.091_bib85
  article-title: [HIV-1 drives the migration of macrophages]
  publication-title: Med. Sci. (Paris)
  doi: 10.1051/medsci/20153108010
– volume: 10
  start-page: 1008
  year: 2009
  ident: 10.1016/j.celrep.2019.02.091_bib88
  article-title: HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1753
– volume: 97
  start-page: 1147
  year: 2015
  ident: 10.1016/j.celrep.2019.02.091_bib10
  article-title: Increased monocyte turnover is associated with interstitial macrophage accumulation and pulmonary tissue damage in SIV-infected rhesus macaques
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.4A0914-441R
– volume: 36
  start-page: 603
  year: 2018
  ident: 10.1016/j.celrep.2019.02.091_bib21
  article-title: The immune response to Mycobacterium tuberculosis in HIV-1-coinfected persons
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-042617-053420
– volume: 262
  start-page: 36
  year: 2014
  ident: 10.1016/j.celrep.2019.02.091_bib32
  article-title: Macrophage heterogeneity in tissues: phenotypic diversity and functions
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12223
– volume: 98
  start-page: 62
  year: 2016
  ident: 10.1016/j.celrep.2019.02.091_bib18
  article-title: HIV-1 and the Mycobacterium tuberculosis granuloma: a systematic review and meta-analysis
  publication-title: Tuberculosis (Edinb.)
  doi: 10.1016/j.tube.2016.02.010
– volume: 18
  start-page: 414
  year: 2008
  ident: 10.1016/j.celrep.2019.02.091_bib76
  article-title: Cytonemes and tunneling nanotubules in cell-cell communication and viral pathogenesis
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2008.07.003
– volume: 262
  start-page: 216
  year: 2014
  ident: 10.1016/j.celrep.2019.02.091_bib57
  article-title: Control of macrophage 3D migration: a therapeutic challenge to limit tissue infiltration
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12214
– volume: 2
  start-page: 43
  year: 2011
  ident: 10.1016/j.celrep.2019.02.091_bib54
  article-title: Macrophage polarization: convergence point targeted by Mycobacterium tuberculosis and HIV
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2011.00043
– volume: 7
  start-page: 16660
  year: 2017
  ident: 10.1016/j.celrep.2019.02.091_bib64
  article-title: Tunneling nanotubes (TNT) mediate long-range gap junctional communication: implications for HIV cell to cell spread
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-16600-1
– volume: 16
  start-page: 711
  year: 2014
  ident: 10.1016/j.celrep.2019.02.091_bib5
  article-title: Macrophage infection via selective capture of HIV-1-infected CD4+ T cells
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.10.010
– volume: 254
  start-page: 142
  year: 2009
  ident: 10.1016/j.celrep.2019.02.091_bib23
  article-title: Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking
  publication-title: Cell. Immunol.
  doi: 10.1016/j.cellimm.2008.08.005
– volume: 113
  start-page: E5636
  year: 2016
  ident: 10.1016/j.celrep.2019.02.091_bib25
  article-title: CD4+ T-cell-independent mechanisms suppress reactivation of latent tuberculosis in a macaque model of HIV coinfection
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1611987113
– volume: 9
  start-page: 43
  year: 2018
  ident: 10.1016/j.celrep.2019.02.091_bib19
  article-title: Tunneling nanotubes: intimate communication between myeloid cells
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.00043
– volume: 369
  start-page: 2042
  year: 2007
  ident: 10.1016/j.celrep.2019.02.091_bib29
  article-title: Diagnosis of smear-negative pulmonary tuberculosis in people with HIV infection or AIDS in resource-constrained settings: informing urgent policy changes
  publication-title: Lancet
  doi: 10.1016/S0140-6736(07)60284-0
– volume: 5
  start-page: 643
  year: 2004
  ident: 10.1016/j.celrep.2019.02.091_bib40
  article-title: Retroviral spread by induction of virological synapses
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2004.00209.x
– volume: 303
  start-page: 481
  year: 1994
  ident: 10.1016/j.celrep.2019.02.091_bib50
  article-title: Annexin 3 is associated with cytoplasmic granules in neutrophils and monocytes and translocates to the plasma membrane in activated cells
  publication-title: Biochem. J.
  doi: 10.1042/bj3030481
– volume: 5
  start-page: 49
  year: 2015
  ident: 10.1016/j.celrep.2019.02.091_bib22
  article-title: Autophagy in Mycobacterium tuberculosis and HIV infections
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2015.00049
– volume: 25
  start-page: 1333
  year: 2015
  ident: 10.1016/j.celrep.2019.02.091_bib48
  article-title: Tuberculosis is associated with expansion of a motile, permissive and immunomodulatory CD16+ monocyte population via the IL-10/STAT3 axis
  publication-title: Cell Res.
  doi: 10.1038/cr.2015.123
– volume: 177
  start-page: 1332
  year: 1998
  ident: 10.1016/j.celrep.2019.02.091_bib30
  publication-title: J. Infect. Dis.
  doi: 10.1086/515276
– volume: 11
  start-page: 730
  year: 2005
  ident: 10.1016/j.celrep.2019.02.091_bib45
  article-title: Predictive value of soluble haemoglobin scavenger receptor CD163 serum levels for survival in verified tuberculosis patients
  publication-title: Clin. Microbiol. Infect.
  doi: 10.1111/j.1469-0691.2005.01229.x
– volume: 4
  start-page: 324
  year: 2011
  ident: 10.1016/j.celrep.2019.02.091_bib89
  article-title: Tunneling-nanotube: a new way of cell-cell communication
  publication-title: Commun. Integr. Biol.
  doi: 10.4161/cib.4.3.14855
– volume: 189
  start-page: 624
  year: 2004
  ident: 10.1016/j.celrep.2019.02.091_bib31
  article-title: Inhibition of HIV-1 replication in monocyte-derived macrophages by Mycobacterium tuberculosis
  publication-title: J. Infect. Dis.
  doi: 10.1086/381554
– volume: 9
  start-page: 431
  year: 2008
  ident: 10.1016/j.celrep.2019.02.091_bib16
  article-title: Membrane nanotubes: dynamic long-distance connections between animal cells
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2399
– volume: 182
  start-page: 338
  year: 2000
  ident: 10.1016/j.celrep.2019.02.091_bib66
  article-title: In vivo cytolysis and fusion of human immunodeficiency virus type 1-infected lymphocytes in lymphoid tissue
  publication-title: J. Infect. Dis.
  doi: 10.1086/315640
– volume: 73
  start-page: 6680
  year: 1999
  ident: 10.1016/j.celrep.2019.02.091_bib77
  article-title: Patterns of chemokine receptor fusion cofactor utilization by human immunodeficiency virus type 1 variants from the lungs and blood
  publication-title: J. Virol.
  doi: 10.1128/JVI.73.8.6680-6690.1999
– volume: 33
  start-page: 301
  year: 2015
  ident: 10.1016/j.celrep.2019.02.091_bib62
  article-title: Brief reports: lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes
  publication-title: Stem Cells
  doi: 10.1002/stem.1835
– volume: 37
  start-page: 147
  year: 2016
  ident: 10.1016/j.celrep.2019.02.091_bib13
  article-title: Human immunodeficiency virus infection and host defense in the lungs
  publication-title: Semin. Respir. Crit. Care Med.
  doi: 10.1055/s-0036-1572553
– volume: 41
  start-page: 14
  year: 2014
  ident: 10.1016/j.celrep.2019.02.091_bib60
  article-title: Macrophage activation and polarization: nomenclature and experimental guidelines
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.06.008
– volume: 217
  start-page: 1865
  year: 2018
  ident: 10.1016/j.celrep.2019.02.091_bib46
  article-title: High turnover of tissue macrophages contributes to tuberculosis reactivation in simian immunodeficiency virus-infected rhesus macaques
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jix625
– volume: 90
  start-page: 5643
  year: 2016
  ident: 10.1016/j.celrep.2019.02.091_bib3
  article-title: Quantitation of productively infected monocytes and macrophages of simian immunodeficiency virus-infected macaques
  publication-title: J. Virol.
  doi: 10.1128/JVI.00290-16
– volume: 12
  start-page: 50
  year: 2015
  ident: 10.1016/j.celrep.2019.02.091_bib26
  article-title: A single-residue change in the HIV-1 V3 loop associated with maraviroc resistance impairs CCR5 binding affinity while increasing replicative capacity
  publication-title: Retrovirology
  doi: 10.1186/s12977-015-0177-1
– volume: 125
  start-page: 1611
  year: 2015
  ident: 10.1016/j.celrep.2019.02.091_bib84
  article-title: HIV-1 reprograms the migration of macrophages
  publication-title: Blood
  doi: 10.1182/blood-2014-08-596775
– volume: 41
  start-page: 191
  year: 2012
  ident: 10.1016/j.celrep.2019.02.091_bib43
  article-title: The non-human primate model of tuberculosis
  publication-title: J. Med. Primatol.
  doi: 10.1111/j.1600-0684.2012.00536.x
– volume: 23
  start-page: 638
  year: 2017
  ident: 10.1016/j.celrep.2019.02.091_bib37
  article-title: HIV persistence in tissue macrophages of humanized myeloid-only mice during antiretroviral therapy
  publication-title: Nat. Med.
  doi: 10.1038/nm.4319
– volume: 19
  start-page: 304
  year: 2016
  ident: 10.1016/j.celrep.2019.02.091_bib74
  article-title: Macrophages and HIV-1: an unhealthy constellation
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.02.013
– volume: 103
  start-page: 421
  year: 2018
  ident: 10.1016/j.celrep.2019.02.091_bib41
  article-title: The evolution of HIV-1 entry phenotypes as a guide to changing target cells
  publication-title: J. Leukoc. Biol.
  doi: 10.1002/JLB.2RI0517-200R
– volume: 195
  start-page: 495
  year: 2002
  ident: 10.1016/j.celrep.2019.02.091_bib38
  article-title: Maximal HIV-1 replication in alveolar macrophages during tuberculosis requires both lymphocyte contact and cytokines
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20011614
– volume: 7
  start-page: 727
  year: 1994
  ident: 10.1016/j.celrep.2019.02.091_bib52
  article-title: Mycobacterium tuberculosis and its purified protein derivative activate expression of the human immunodeficiency virus
  publication-title: J. Acquir. Immune Defic. Syndr.
– volume: 209
  start-page: 1055
  year: 2013
  ident: 10.1016/j.celrep.2019.02.091_bib80
  article-title: HIV-1 infection of macrophages dysregulates innate immune responses to Mycobacterium tuberculosis by inhibition of interleukin-10
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jit621
– volume: 20
  start-page: 1151
  year: 2002
  ident: 10.1016/j.celrep.2019.02.091_bib12
  article-title: A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt745
– volume: 68
  start-page: 4736
  year: 2000
  ident: 10.1016/j.celrep.2019.02.091_bib51
  article-title: Nonopsonic phagocytosis of zymosan and Mycobacterium kansasii by CR3 (CD11b/CD18) involves distinct molecular determinants and is or is not coupled with NADPH oxidase activation
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.68.8.4736-4745.2000
– volume: 175
  start-page: 1531
  year: 1997
  ident: 10.1016/j.celrep.2019.02.091_bib56
  article-title: Infection of human monocytes with Mycobacterium tuberculosis enhances human immunodeficiency virus type 1 replication and transmission to T cells
  publication-title: J. Infect. Dis.
  doi: 10.1086/516494
– volume: 79
  start-page: 1407
  year: 2011
  ident: 10.1016/j.celrep.2019.02.091_bib17
  article-title: HIV-1/Mycobacterium tuberculosis coinfection immunology: how does HIV-1 exacerbate tuberculosis?
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.01126-10
– volume: 184
  start-page: 7030
  year: 2010
  ident: 10.1016/j.celrep.2019.02.091_bib83
  article-title: HIV-1 Nef triggers macrophage fusion in a p61Hck- and protease-dependent manner
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0903345
– volume: 204
  start-page: 154
  year: 2011
  ident: 10.1016/j.celrep.2019.02.091_bib9
  article-title: Soluble CD163 made by monocyte/macrophages is a novel marker of HIV activity in early and chronic infection prior to and after anti-retroviral therapy
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jir214
– volume: 7
  start-page: 981
  year: 2015
  ident: 10.1016/j.celrep.2019.02.091_bib86
  article-title: Tuberculous pleural effusions: advances and controversies
  publication-title: J. Thorac. Dis.
– volume: 31
  start-page: 475
  year: 2013
  ident: 10.1016/j.celrep.2019.02.091_bib63
  article-title: The immune response in tuberculosis
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032712-095939
– volume: 71
  start-page: 44
  year: 2016
  ident: 10.1016/j.celrep.2019.02.091_bib58
  article-title: Exosomes and nanotubes: control of immune cell communication
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2015.12.006
– volume: 16
  start-page: 80
  year: 2018
  ident: 10.1016/j.celrep.2019.02.091_bib6
  article-title: Pathogenesis of HIV-1 and Mycobacterium tuberculosis co-infection
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2017.128
– volume: 95
  start-page: 2324
  year: 1995
  ident: 10.1016/j.celrep.2019.02.091_bib90
  article-title: Mycobacterium tuberculosis enhances human immunodeficiency virus-1 replication by transcriptional activation at the long terminal repeat
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI117924
– volume: 9
  start-page: eaaj2347
  year: 2017
  ident: 10.1016/j.celrep.2019.02.091_bib71
  article-title: Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich’s ataxia
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaj2347
– volume: 10
  start-page: 211
  year: 2008
  ident: 10.1016/j.celrep.2019.02.091_bib78
  article-title: Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1682
– volume: 15
  start-page: 451
  year: 2010
  ident: 10.1016/j.celrep.2019.02.091_bib53
  article-title: Update on tuberculous pleural effusion
  publication-title: Respirology
  doi: 10.1111/j.1440-1843.2010.01723.x
– volume: 90
  start-page: 69
  year: 2011
  ident: 10.1016/j.celrep.2019.02.091_bib4
  article-title: Paradoxical role of CD16+CCR2+CCR5+ monocytes in tuberculosis: efficient APC in pleural effusion but also mark disease severity in blood
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.1010577
– volume: 10
  start-page: 333
  year: 2017
  ident: 10.1016/j.celrep.2019.02.091_bib2
  article-title: Tunneling nanotubes and gap junctions-their role in long-range intercellular communication during development, health, and disease conditions
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2017.00333
– volume: 11
  start-page: 1427
  year: 2009
  ident: 10.1016/j.celrep.2019.02.091_bib34
  article-title: M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1990
– volume: 33
  start-page: 406
  year: 2005
  ident: 10.1016/j.celrep.2019.02.091_bib79
  article-title: Interleukin-10 induces inhibitory C/EBPbeta through STAT-3 and represses HIV-1 transcription in macrophages
  publication-title: Am. J. Respir. Cell Mol. Biol.
  doi: 10.1165/rcmb.2005-0140OC
– volume: 276
  start-page: 1857
  year: 1997
  ident: 10.1016/j.celrep.2019.02.091_bib68
  article-title: Macrophages as a source of HIV during opportunistic infections
  publication-title: Science
  doi: 10.1126/science.276.5320.1857
SSID ssj0000601194
Score 2.5065813
Snippet The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1...
The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3586
SubjectTerms Adult
Aged
AIDS
Animals
biomarker
Cells, Cultured
co-infection
Coinfection - pathology
Coinfection - virology
Female
HIV Infections - complications
HIV Infections - immunology
HIV Infections - pathology
HIV Infections - virology
HIV-1
Humans
IL-10
Immunology
Interleukin-10 - metabolism
Life Sciences
Macaca mulatta
macrophage
Macrophage Activation
Macrophages - pathology
Macrophages - virology
Male
Microbiology and Parasitology
Middle Aged
monocyte
Mycobacterium tuberculosis
Nanotubes
Signal Transduction
STAT3
STAT3 Transcription Factor - metabolism
tuberculosis
Tuberculosis, Pulmonary - complications
Tuberculosis, Pulmonary - immunology
Tuberculosis, Pulmonary - pathology
tunneling nanotubes
viral spread
Virology
Virus Replication
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgJSQuiDfhJYO4Rhu_8jgW2KpFu1wIaG-W7dhqUZWiNlkt_56ZPKoGDr1wzcNOPOOZz_Lnbwj5YKSDRYBxsfKKx1IFFedcCjAIoAOHObCrdXj1NV18l1-u1fVRqS_khPXywP3AnVfBVsEJYU0RZJV7471NKgEwtwrMZx6jL-S8o8VUH4NRywy3lDlHzhaX2XhuriN3Ob_ZeZSrZEUn2VmwSV7q5Psn6enuCnmS_4LQv7mUR8lp_pA8GFAlnfV_84jc8fVjcq-vM_n7CdmVrfU71262-_WeXtwaB4OJIJMulj9iRpcDI6umQ9keuryEyHn-rZyVIv481MltaNkiKwaSHYWgvG2gUTofDz_SdU2vDBYEW0GI2j8l5fyi_LSIh2ILsUt50cSpYY4FmUtWKZizFoAJg6WUN6nwwikVQmqTkMvgbFA8dbnzMrNcmswAyLTiGTmrt7V_QahSlUsyU5jEOCmlssaw3CZZKHAB6mxExDjS2g1C5FgPY6NHxtlP3dtHo310wjXYJyLx4a1fvRDHiec_ohEPz6KMdncBnEsPzqVPOVdEstEF9IBIeqQBTa1PdP8ePGbS-2J2qfEahFU8zctueETejQ6lYVbjVo2p_bbda46MtBzQrojI897BDm0JaD4TTMLHTVxv0tn0Tr1edcrhaSYArucv_8fYvCL38X-Rj8fT1-Ss2bX-DQC0xr7t5uIf7XM6YQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Open Access Journals (Elsevier)
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWlZC4IN6ElwziGjWO7TyO3WWrFu1y2YB6s2zHpllVyapNEfx7ZvKoCBxW4hjHsWPPeOabZB6EfNTCghGgbSidjEMhvQyzWHAgCKADizqwq3V49SVZfhWf13J9Qs7HWBh0qxxkfy_TO2k9tMyG3ZzdVtXsOgbbBbRTChAEf0Rixk8usi6Ib312_M6C-UZYVw8R-4f4wBhB17l5WbfdOUxcyfIueWfOJhqqS-Q_UVT3Nugx-S8c_dur8g81tXhEHg74ks77JTwmJ65-Qu73FSd_PSW74mDczh62zb7a04uf2sK2Ityky9W3kNHV4JtV06GAD11dggydXRfzgoefhoq5LS0O6B8Dao-CeG5aGJQuxjBIWtX0SmNpsA0Iq_0zUiwuivNlOJRdCG0S522YaGaZF5lgpYTTawCiMDCqnE6441ZK7xMT-Ux4a7yME5tZJ1ITC51qgJuGPyendVO7l4RKWdoo1bmOtBVCSKM1y0yU-hxNUWsCwsedVnZISY6VMbZq9D27UT19FNJHRbEC-gQkPD5126fkuKP_GRLx2BcTancNze67GjhKld6U3nJudO5FmTntnIlKDtZU6ZlLXUDSkQXUhD9hqOqO6T8Ax0xmX84vFbaBgMW4XvYjDsj7kaEUnG_8aaNr1xz2KkbftAxwLw_Ii57BjmNxGD7lTMDLTVhvMtn0Tl1tuhziScoBuGev_ntZr8kDvEJ3vDh5Q07b3cG9BXzWmnfdAfwNbKw4cA
  priority: 102
  providerName: Elsevier
Title Tuberculosis Exacerbates HIV-1 Infection through IL-10/STAT3-Dependent Tunneling Nanotube Formation in Macrophages
URI https://dx.doi.org/10.1016/j.celrep.2019.02.091
https://www.ncbi.nlm.nih.gov/pubmed/30917314
https://www.proquest.com/docview/2199182323
https://hal.science/hal-03034321
https://pubmed.ncbi.nlm.nih.gov/PMC6733268
https://doaj.org/article/dfbdfc33ba9f4d8eaeeb0d3758df1e7e
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLbGEGgviDsZMBnEayCJ7VweEOpgVYtWXshQ3yzbsdeiKmFpi7Z_zzm5FAJMe2mlNLEbn9t3kuPzEfJGcQNJgDK-sCLyuXDCTyPOQCCADgzGwIbrcPYlnpzxz3Mx3yM9Z2u3gOv_pnbIJ3VWr95eXlx9AIN__7tWy9hVbbH7ZJg1HThxO_ttiE0JmuqsA_ytb8YeZ7zfQ3fNxQfkLoOvhIV8EK6arv6DqHVrgeWT_2LTv0ss_4hZ4_vkXgc26ajVjgdkz5YPyZ2WfvLqEanzrba12a6q9XJNTy6VgTVG7Ekn029-SKddoVZJOzYfOj0Fh_ruaz7Kmf-po8_d0HyLxTIQAyn46moDg9JxvyeSLks6U8gTtgDPtX5M8vFJ_nHidxwMvomjbOPHKjSh4ykPCwGmrAGvhJBhWRUzy4wQzsU6cCl3RjsRxSY1lic64ipRgD01e0L2y6q0zwgVojBBojIVKMM5F1qpMNVB4jLMS432COtXWpquPznSZKxkX4j2XbaikigqGUQSZOQRf3fVj7Y_xw3nH6MQd-did-3mQFWfy85YZeF04QxjWmWOF6lV1uqgYJBaFS60ifVI0quA7IBKC0BgqOUN078GjRnMPhmdSjwG3hY3-YY_I4-86hVKgrHjGxxV2mq7lhEWqqUAgplHnrYKthur11j4cwPVG0w2_KVcLpqG4nHCAMWnh9eO-Zwc4E1g7V0UvyD7m3prXwIY2-ij5iEGfE7nx0eNrf0CbU4zbw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZ2FyG4IN6Up0Fco8axncexu2zVQruXDag3y3bsbVCVrvpYLf-emTwqAoeVuDqxnXjGM98k4_kI-ayFhSBA20A6GQVCehmkkeAgEEAHFn1gzXU4v4gn38XXhVwckbPuLAymVba2v7HptbVuW4btag6vy3J4GUHsAt4pAQiCPyL5MbkHaCBB_obp4vTwoQULjrCaEBE7BNijO0JX53lZt9o4rFzJsrp6Z8Z6Lqqu5N_zVMdLTJn8F4_-nVb5h58aPyaPWoBJR807PCFHrnpK7jeUk7-ekU2-N25j96v1ttzS81ttYV0Rb9LJ9EfA6LRNzqpoy-BDpzMwosPLfJTz4EtLmbuj-R4TZMDvUbDP6x0MSsfdOUhaVnSukRtsCdZq-5zk4_P8bBK0vAuBjaNsF8SaWeZFKlghYfsawCgMoiqnY-64ldL72IQ-Fd4aL6PYptaJxERCJxrwpuEvyEm1rtwrQqUsbJjoTIfaCiGk0ZqlJkx8hrGoNQPCu5VWtq1JjtQYK9Uln_1UjXwUykeFkQL5DEhw6HXd1OS44_5TFOLhXqyoXTesN1eqVSlVeFN4y7nRmRdF6rRzJiw4hFOFZy5xA5J0KqB6CgpDlXdM_wk0pjf7ZDRT2AYWFg_2sptoQD52CqVgg-NfG1259X6rIkxOSwH48gF52SjYYSwOwyecCXi4nur1JutfqcplXUQ8Tjgg9_T1f7_WB_Jgks9naja9-PaGPMQrmJsXxW_JyW6zd-8ArO3M-3oz_gYS_DuP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuberculosis+Exacerbates+HIV-1+Infection+through+IL-10%2FSTAT3-Dependent+Tunneling+Nanotube+Formation+in+Macrophages&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Souriant%2C+Shanti&rft.au=Balboa%2C+Luciana&rft.au=Dupont%2C+Maeva&rft.au=Pingris%2C+Karine&rft.date=2019-03-26&rft.eissn=2211-1247&rft.volume=26&rft.issue=13&rft.spage=3586&rft_id=info:doi/10.1016%2Fj.celrep.2019.02.091&rft_id=info%3Apmid%2F30917314&rft.externalDocID=30917314
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon