Tuberculosis Exacerbates HIV-1 Infection through IL-10/STAT3-Dependent Tunneling Nanotube Formation in Macrophages
The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present...
Saved in:
Published in | Cell reports (Cambridge) Vol. 26; no. 13; pp. 3586 - 3599.e7 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
26.03.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironment, produce high levels of HIV-1. In vivo, M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity. Furthermore, HIV-1/Mtb co-infected patients display an accumulation of M(IL-10) macrophage markers (soluble CD163 and MerTK). These M(IL-10) macrophages form direct cell-to-cell bridges, which we identified as tunneling nanotubes (TNTs) involved in viral transfer. TNT formation requires the IL-10/STAT3 signaling pathway, and targeted inhibition of TNTs substantially reduces the enhancement of HIV-1 cell-to-cell transfer and overproduction in M(IL-10) macrophages. Our study reveals that TNTs facilitate viral transfer and amplification, thereby promoting TNT formation as a mechanism to be explored in TB/AIDS potential therapeutics.
[Display omitted]
•TB-induced anti-inflammatory M(IL-10) macrophages are prone to HIV-1 overproduction•Tunneling nanotubes between TB-induced M(IL-10) macrophages promote HIV-1 spread•The IL-10/STAT3 axis triggers tunneling nanotube induction in the TB microenvironment•M(IL-10) macrophages accumulate in TB/HIV co-infected patients and non-human primates
Tuberculosis is a clear, yet confounding, risk factor for HIV-1-induced morbidity and mortality. In this issue, Souriant et al. reveal that a tuberculosis-associated microenvironment triggers IL-10/STAT3-dependent tunneling nanotube formation in M(IL-10) macrophages, which promotes HIV-1 exacerbation during co-infection. M(IL-10) macrophage accumulation is also observed in vivo in co-infected subjects. |
---|---|
AbstractList | The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironments, produce high levels of HIV-1. In vivo, M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity. Further, HIV-1/Mtb co-infected patients display an accumulation of M(IL-10) macrophage markers (soluble CD163 and MerTK). These M(IL-10) macrophages form direct cell-to-cell bridges, which we identified as tunneling nanotubes (TNTs) involved in viral transfer. TNT formation requires the IL-10/STAT3 signaling pathway, and targeted inhibition of TNTs substantially reduces the enhancement of HIV-1 cell-to-cell transfer and overproduction in M(IL-10) macrophages. Our study reveals that TNTs facilitate viral transfer and amplification, thereby promoting TNT formation as a mechanism to be explored in TB/AIDS potential therapeutics. The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironment, produce high levels of HIV-1. In vivo, M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity. Furthermore, HIV-1/Mtb co-infected patients display an accumulation of M(IL-10) macrophage markers (soluble CD163 and MerTK). These M(IL-10) macrophages form direct cell-to-cell bridges, which we identified as tunneling nanotubes (TNTs) involved in viral transfer. TNT formation requires the IL-10/STAT3 signaling pathway, and targeted inhibition of TNTs substantially reduces the enhancement of HIV-1 cell-to-cell transfer and overproduction in M(IL-10) macrophages. Our study reveals that TNTs facilitate viral transfer and amplification, thereby promoting TNT formation as a mechanism to be explored in TB/AIDS potential therapeutics. The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironment, produce high levels of HIV-1. In vivo, M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity. Furthermore, HIV-1/Mtb co-infected patients display an accumulation of M(IL-10) macrophage markers (soluble CD163 and MerTK). These M(IL-10) macrophages form direct cell-to-cell bridges, which we identified as tunneling nanotubes (TNTs) involved in viral transfer. TNT formation requires the IL-10/STAT3 signaling pathway, and targeted inhibition of TNTs substantially reduces the enhancement of HIV-1 cell-to-cell transfer and overproduction in M(IL-10) macrophages. Our study reveals that TNTs facilitate viral transfer and amplification, thereby promoting TNT formation as a mechanism to be explored in TB/AIDS potential therapeutics. : Tuberculosis is a clear, yet confounding, risk factor for HIV-1-induced morbidity and mortality. In this issue, Souriant et al. reveal that a tuberculosis-associated microenvironment triggers IL-10/STAT3-dependent tunneling nanotube formation in M(IL-10) macrophages, which promotes HIV-1 exacerbation during co-infection. M(IL-10) macrophage accumulation is also observed in vivo in co-infected subjects. Keywords: AIDS, HIV-1, tuberculosis, Mycobacterium tuberculosis, co-infection, macrophage, monocyte, IL-10, STAT3, viral spread, tunneling nanotubes, biomarker The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironment, produce high levels of HIV-1. In vivo, M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity. Furthermore, HIV-1/Mtb co-infected patients display an accumulation of M(IL-10) macrophage markers (soluble CD163 and MerTK). These M(IL-10) macrophages form direct cell-to-cell bridges, which we identified as tunneling nanotubes (TNTs) involved in viral transfer. TNT formation requires the IL-10/STAT3 signaling pathway, and targeted inhibition of TNTs substantially reduces the enhancement of HIV-1 cell-to-cell transfer and overproduction in M(IL-10) macrophages. Our study reveals that TNTs facilitate viral transfer and amplification, thereby promoting TNT formation as a mechanism to be explored in TB/AIDS potential therapeutics. [Display omitted] •TB-induced anti-inflammatory M(IL-10) macrophages are prone to HIV-1 overproduction•Tunneling nanotubes between TB-induced M(IL-10) macrophages promote HIV-1 spread•The IL-10/STAT3 axis triggers tunneling nanotube induction in the TB microenvironment•M(IL-10) macrophages accumulate in TB/HIV co-infected patients and non-human primates Tuberculosis is a clear, yet confounding, risk factor for HIV-1-induced morbidity and mortality. In this issue, Souriant et al. reveal that a tuberculosis-associated microenvironment triggers IL-10/STAT3-dependent tunneling nanotube formation in M(IL-10) macrophages, which promotes HIV-1 exacerbation during co-infection. M(IL-10) macrophage accumulation is also observed in vivo in co-infected subjects. The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironment, produce high levels of HIV-1. In vivo, M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity. Furthermore, HIV-1/Mtb co-infected patients display an accumulation of M(IL-10) macrophage markers (soluble CD163 and MerTK). These M(IL-10) macrophages form direct cell-to-cell bridges, which we identified as tunneling nanotubes (TNTs) involved in viral transfer. TNT formation requires the IL-10/STAT3 signaling pathway, and targeted inhibition of TNTs substantially reduces the enhancement of HIV-1 cell-to-cell transfer and overproduction in M(IL-10) macrophages. Our study reveals that TNTs facilitate viral transfer and amplification, thereby promoting TNT formation as a mechanism to be explored in TB/AIDS potential therapeutics.The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironment, produce high levels of HIV-1. In vivo, M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity. Furthermore, HIV-1/Mtb co-infected patients display an accumulation of M(IL-10) macrophage markers (soluble CD163 and MerTK). These M(IL-10) macrophages form direct cell-to-cell bridges, which we identified as tunneling nanotubes (TNTs) involved in viral transfer. TNT formation requires the IL-10/STAT3 signaling pathway, and targeted inhibition of TNTs substantially reduces the enhancement of HIV-1 cell-to-cell transfer and overproduction in M(IL-10) macrophages. Our study reveals that TNTs facilitate viral transfer and amplification, thereby promoting TNT formation as a mechanism to be explored in TB/AIDS potential therapeutics. The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironments, produce high levels of HIV-1. In vivo , M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity. Further, HIV-1/Mtb co-infected patients display an accumulation of M(IL-10) macrophage markers (soluble CD163 and MerTK). These M(IL-10) macrophages form direct cell-to-cell bridges, which we identified as tunneling nanotubes (TNTs) involved in viral transfer. TNT formation requires the IL-10/STAT3 signaling pathway, and targeted inhibition of TNTs substantially reduces the enhancement of HIV-1 cell-to-cell transfer and overproduction in M(IL-10) macrophages. Our study reveals that TNTs facilitate viral transfer and amplification, thereby promoting TNT formation as a mechanism to be explored in TB/AIDS potential therapeutics. |
Author | Allers, Carolina González-Montaner, Pablo Balboa, Luciana Kuroda, Marcelo J. Gasser, Romain Neyrolles, Olivier Raynaud-Messina, Brigitte Al Saati, Talal Lugo-Villarino, Geanncarlo Vérollet, Christel Maridonneau-Parini, Isabelle Dupont, Maeva Bah, Aicha Poggi, Susana Kviatcovsky, Denise Pingris, Karine Cougoule, Céline Sasiain, Maria del Carmen Moraña, Eduardo Jose Lastrucci, Claire Corti, Marcelo Lagane, Bernard Kaushal, Deepak Poincloux, Renaud Souriant, Shanti Vergne, Isabelle Inwentarz, Sandra |
AuthorAffiliation | 2 International associated laboratory (LIA) CNRS “IM-TB/HIV” , Toulouse, France and Buenos Aires, Argentina 7 Instituto de Tisioneumonologia « Raúl F. Vaccarezza », Universitad de Buenos Aires, Argentina 1 Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France 5 Centre de Physiopathologie de Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Toulouse III Paul Sabatier, Toulouse, France 9 Tulane National Primate Research Center, Covington, LA 70433; Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112 4 Centre for Genomic Regulation, Barcelona, Spain 6 INSERM/UPS/ENVT - US006/CREFRE, Service d’Histopathologie, CHU Purpan, 31024, Toulouse, France 8 Division de SIDA, Hospital de Infecciosas Dr. F.J. Muñiz, Buenos Aires, Argentina 3 Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina |
AuthorAffiliation_xml | – name: 4 Centre for Genomic Regulation, Barcelona, Spain – name: 2 International associated laboratory (LIA) CNRS “IM-TB/HIV” , Toulouse, France and Buenos Aires, Argentina – name: 8 Division de SIDA, Hospital de Infecciosas Dr. F.J. Muñiz, Buenos Aires, Argentina – name: 9 Tulane National Primate Research Center, Covington, LA 70433; Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112 – name: 1 Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France – name: 5 Centre de Physiopathologie de Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Toulouse III Paul Sabatier, Toulouse, France – name: 6 INSERM/UPS/ENVT - US006/CREFRE, Service d’Histopathologie, CHU Purpan, 31024, Toulouse, France – name: 3 Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina – name: 7 Instituto de Tisioneumonologia « Raúl F. Vaccarezza », Universitad de Buenos Aires, Argentina |
Author_xml | – sequence: 1 givenname: Shanti surname: Souriant fullname: Souriant, Shanti organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France – sequence: 2 givenname: Luciana surname: Balboa fullname: Balboa, Luciana organization: International Associated Laboratory (LIA) CNRS “IM-TB/HIV” , Toulouse, France, and Buenos Aires, Argentina – sequence: 3 givenname: Maeva surname: Dupont fullname: Dupont, Maeva organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France – sequence: 4 givenname: Karine surname: Pingris fullname: Pingris, Karine organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France – sequence: 5 givenname: Denise surname: Kviatcovsky fullname: Kviatcovsky, Denise organization: International Associated Laboratory (LIA) CNRS “IM-TB/HIV” , Toulouse, France, and Buenos Aires, Argentina – sequence: 6 givenname: Céline surname: Cougoule fullname: Cougoule, Céline organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France – sequence: 7 givenname: Claire surname: Lastrucci fullname: Lastrucci, Claire organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France – sequence: 8 givenname: Aicha surname: Bah fullname: Bah, Aicha organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France – sequence: 9 givenname: Romain surname: Gasser fullname: Gasser, Romain organization: Centre de Physiopathologie de Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Toulouse III Paul Sabatier, Toulouse, France – sequence: 10 givenname: Renaud surname: Poincloux fullname: Poincloux, Renaud organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France – sequence: 11 givenname: Brigitte surname: Raynaud-Messina fullname: Raynaud-Messina, Brigitte organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France – sequence: 12 givenname: Talal surname: Al Saati fullname: Al Saati, Talal organization: INSERM/UPS/ENVT–US006/CREFRE, Service d’Histopathologie, CHU Purpan, 31024 Toulouse, France – sequence: 13 givenname: Sandra surname: Inwentarz fullname: Inwentarz, Sandra organization: Instituto de Tisioneumonologia “Raúl F. Vaccarezza,” Universitad de Buenos Aires, Argentina – sequence: 14 givenname: Susana surname: Poggi fullname: Poggi, Susana organization: Instituto de Tisioneumonologia “Raúl F. Vaccarezza,” Universitad de Buenos Aires, Argentina – sequence: 15 givenname: Eduardo Jose surname: Moraña fullname: Moraña, Eduardo Jose organization: Instituto de Tisioneumonologia “Raúl F. Vaccarezza,” Universitad de Buenos Aires, Argentina – sequence: 16 givenname: Pablo surname: González-Montaner fullname: González-Montaner, Pablo organization: Instituto de Tisioneumonologia “Raúl F. Vaccarezza,” Universitad de Buenos Aires, Argentina – sequence: 17 givenname: Marcelo surname: Corti fullname: Corti, Marcelo organization: Division de SIDA, Hospital de Infecciosas Dr. F.J. Muñiz, Buenos Aires, Argentina – sequence: 18 givenname: Bernard surname: Lagane fullname: Lagane, Bernard organization: Centre de Physiopathologie de Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Toulouse III Paul Sabatier, Toulouse, France – sequence: 19 givenname: Isabelle surname: Vergne fullname: Vergne, Isabelle organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France – sequence: 20 givenname: Carolina surname: Allers fullname: Allers, Carolina organization: Tulane National Primate Research Center, Covington, LA 70433, USA – sequence: 21 givenname: Deepak surname: Kaushal fullname: Kaushal, Deepak organization: Tulane National Primate Research Center, Covington, LA 70433, USA – sequence: 22 givenname: Marcelo J. surname: Kuroda fullname: Kuroda, Marcelo J. organization: Tulane National Primate Research Center, Covington, LA 70433, USA – sequence: 23 givenname: Maria del Carmen surname: Sasiain fullname: Sasiain, Maria del Carmen organization: International Associated Laboratory (LIA) CNRS “IM-TB/HIV” , Toulouse, France, and Buenos Aires, Argentina – sequence: 24 givenname: Olivier surname: Neyrolles fullname: Neyrolles, Olivier organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France – sequence: 25 givenname: Isabelle surname: Maridonneau-Parini fullname: Maridonneau-Parini, Isabelle organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France – sequence: 26 givenname: Geanncarlo orcidid: 0000-0003-4620-8491 surname: Lugo-Villarino fullname: Lugo-Villarino, Geanncarlo email: lugo@ipbs.fr organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France – sequence: 27 givenname: Christel surname: Vérollet fullname: Vérollet, Christel email: verollet@ipbs.fr organization: Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30917314$$D View this record in MEDLINE/PubMed https://hal.science/hal-03034321$$DView record in HAL |
BookMark | eNqFkstuEzEUhkeoiJbSN0BolnQxqY_tubFAikpLIgVYMGJreTzHiaOJHeyZCN4e50LVdgHe2Dr-_88-l9fJmXUWk-QtkAkQKG7WE4W9x-2EEqgnhE5IDS-SC0oBMqC8PHt0Pk-uQliTuAoCUPNXyTmL8pIBv0h8M7bo1di7YEJ690sq9K0cMKSz-Y8M0rnVqAbjbDqsvBuXq3S-yIDcfG-mDcs-4RZth3ZIm9Fa7I1dpl-ldUOEpvfOb-TBamz6RSrvtiu5xPAmeallH_DqtF8mzf1dczvLFt8-z2-ni0wVtB6yQoICzSsOXV7WrM3jCQqOsmDIVJ5rXbREV1yrVue0UJVCXraUy1KSum7ZZTI_Yjsn12LrzUb638JJIw4B55dC-sGoHkWn204rxlpZa95VKBFb0rEyrzoNWGJkfTyytmO7wU7FjL3sn0Cf3lizEku3E0XJGC2qCLg-AlbPbLPpQuxjhBHGGYUdjdr3p8e8-zliGMTGhNjuXlp0YxAU6hoqyiiL0neP__VA_tvfKOBHQax-CB71gwSI2E-SWIvjJIn9JAlCRbRG24dnNmWGQy9jdqb_n_lULIzN3Rn0IiiDVmFnfJylWH7zb8AfgTXnOg |
CitedBy_id | crossref_primary_10_1128_mBio_02457_19 crossref_primary_10_3390_jcm9113575 crossref_primary_10_1016_j_ceb_2021_03_003 crossref_primary_10_1515_nipt_2022_0015 crossref_primary_10_1038_s41579_020_00449_9 crossref_primary_10_1016_j_isci_2020_101450 crossref_primary_10_1097_QAD_0000000000003716 crossref_primary_10_3390_cancers14030659 crossref_primary_10_1038_s41467_020_18800_2 crossref_primary_10_1152_ajpcell_00351_2020 crossref_primary_10_1371_journal_ppat_1012919 crossref_primary_10_3390_v12050492 crossref_primary_10_3390_vaccines11051013 crossref_primary_10_3390_ijms21093154 crossref_primary_10_3390_fib10090075 crossref_primary_10_1042_BCJ20200710 crossref_primary_10_3389_fimmu_2021_647728 crossref_primary_10_1016_j_phrs_2021_105541 crossref_primary_10_1093_jleuko_qiad024 crossref_primary_10_1080_22221751_2024_2366359 crossref_primary_10_1016_j_isci_2024_110324 crossref_primary_10_3390_v16020288 crossref_primary_10_1128_mBio_03293_19 crossref_primary_10_3389_fimmu_2023_1260859 crossref_primary_10_1371_journal_ppat_1010212 crossref_primary_10_1038_s41598_022_10134_x crossref_primary_10_1038_s41598_024_79397_w crossref_primary_10_1016_j_trecan_2020_04_012 crossref_primary_10_3390_cells12182295 crossref_primary_10_3390_microorganisms11040853 crossref_primary_10_1002_JLB_4MA0422_730R crossref_primary_10_1097_QAD_0000000000002753 crossref_primary_10_1073_pnas_2305195120 crossref_primary_10_1002_JLB_4MR0322_737R crossref_primary_10_3389_fmicb_2021_664386 crossref_primary_10_1371_journal_ppat_1010126 crossref_primary_10_2217_fvl_2019_0069 crossref_primary_10_1016_j_tim_2020_03_015 crossref_primary_10_1016_j_celrep_2020_108547 crossref_primary_10_1186_s12977_020_00540_2 crossref_primary_10_1002_rmv_2480 crossref_primary_10_1007_s11356_021_16008_5 crossref_primary_10_1016_j_jhazmat_2024_133831 crossref_primary_10_1016_j_abb_2023_109624 crossref_primary_10_1038_s41419_023_05835_8 crossref_primary_10_1039_D2NA00415A crossref_primary_10_1128_JVI_02120_19 crossref_primary_10_3390_ijms22157971 crossref_primary_10_3390_ijms25158141 crossref_primary_10_1083_jcb_202205103 crossref_primary_10_1186_s12977_020_00528_y crossref_primary_10_1126_sciadv_abo0171 crossref_primary_10_3389_fcimb_2021_761521 crossref_primary_10_3390_ijms22052306 crossref_primary_10_1007_s15010_024_02429_0 crossref_primary_10_3390_biom12020313 crossref_primary_10_1051_medsci_2019159 crossref_primary_10_1096_fj_202302551 crossref_primary_10_1038_s41467_024_45283_2 crossref_primary_10_3389_fimmu_2021_726984 crossref_primary_10_1080_08830185_2021_1931171 crossref_primary_10_1042_BST20200113 crossref_primary_10_3389_fimmu_2021_742822 crossref_primary_10_15252_embj_2020105789 crossref_primary_10_3389_fimmu_2021_680891 crossref_primary_10_3389_fmicb_2024_1356415 crossref_primary_10_1038_s41598_019_50971_x crossref_primary_10_3389_fcimb_2021_585919 crossref_primary_10_1021_acs_estlett_3c00625 crossref_primary_10_2174_1570180820666230822093545 crossref_primary_10_1021_acs_molpharmaceut_0c01248 crossref_primary_10_7554_eLife_52535 crossref_primary_10_1007_s00018_021_03875_x |
Cites_doi | 10.2174/1570162X14666160324124558 10.1073/pnas.1713370115 10.1189/jlb.0206125 10.1182/blood-2007-12-130070 10.4049/jimmunol.177.12.8476 10.1371/journal.ppat.1000842 10.1189/jlb.0806510 10.3389/fimmu.2017.01863 10.1086/323649 10.1182/blood-2006-05-021634 10.4049/jimmunol.178.10.6581 10.1078/0171-2985-00098 10.1128/JVI.76.4.1697-1706.2002 10.1172/JCI84456 10.1126/science.1184784 10.1128/JVI.01237-17 10.1126/science.aal3535 10.1086/378676 10.1073/pnas.0304859101 10.1038/nature10117 10.1093/infdis/jix626 10.1016/j.imbio.2005.05.010 10.1089/aid.2014.0133 10.1371/journal.pone.0069450 10.1097/00042560-199708150-00001 10.4049/jimmunol.1500845 10.3389/fimmu.2018.00459 10.1128/IAI.00381-07 10.1038/srep29297 10.4049/jimmunol.0803447 10.1111/j.1600-0684.2011.00485.x 10.1164/ajrccm.155.3.9117038 10.1051/medsci/20153108010 10.1038/ni.1753 10.1189/jlb.4A0914-441R 10.1146/annurev-immunol-042617-053420 10.1111/imr.12223 10.1016/j.tube.2016.02.010 10.1016/j.tcb.2008.07.003 10.1111/imr.12214 10.3389/fimmu.2011.00043 10.1038/s41598-017-16600-1 10.1016/j.chom.2014.10.010 10.1016/j.cellimm.2008.08.005 10.1073/pnas.1611987113 10.3389/fimmu.2018.00043 10.1016/S0140-6736(07)60284-0 10.1111/j.1600-0854.2004.00209.x 10.1042/bj3030481 10.3389/fcimb.2015.00049 10.1038/cr.2015.123 10.1086/515276 10.1111/j.1469-0691.2005.01229.x 10.4161/cib.4.3.14855 10.1086/381554 10.1038/nrm2399 10.1086/315640 10.1128/JVI.73.8.6680-6690.1999 10.1002/stem.1835 10.1055/s-0036-1572553 10.1016/j.immuni.2014.06.008 10.1093/infdis/jix625 10.1128/JVI.00290-16 10.1186/s12977-015-0177-1 10.1182/blood-2014-08-596775 10.1111/j.1600-0684.2012.00536.x 10.1038/nm.4319 10.1016/j.chom.2016.02.013 10.1002/JLB.2RI0517-200R 10.1084/jem.20011614 10.1093/infdis/jit621 10.1038/nbt745 10.1128/IAI.68.8.4736-4745.2000 10.1086/516494 10.1128/IAI.01126-10 10.4049/jimmunol.0903345 10.1093/infdis/jir214 10.1146/annurev-immunol-032712-095939 10.1016/j.biocel.2015.12.006 10.1038/nrmicro.2017.128 10.1172/JCI117924 10.1126/scitranslmed.aaj2347 10.1038/ncb1682 10.1111/j.1440-1843.2010.01723.x 10.1189/jlb.1010577 10.3389/fnmol.2017.00333 10.1038/ncb1990 10.1165/rcmb.2005-0140OC 10.1126/science.276.5320.1857 |
ContentType | Journal Article |
Copyright | 2019 The Author(s) Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 The Author(s) – notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM DOA |
DOI | 10.1016/j.celrep.2019.02.091 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 3599.e7 |
ExternalDocumentID | oai_doaj_org_article_dfbdfc33ba9f4d8eaeeb0d3758df1e7e PMC6733268 oai_HAL_hal_03034321v2 30917314 10_1016_j_celrep_2019_02_091 S2211124719302773 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH HHS grantid: P51 OD011107 – fundername: NIAID NIH HHS grantid: R01 AI097059 – fundername: NIAID NIH HHS grantid: R21 AI110163 – fundername: NIH HHS grantid: P51 OD011104 – fundername: NIAID NIH HHS grantid: R33 AI110163 – fundername: NIAID NIH HHS grantid: UC6 AI058609 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c629t-6a1c1f4841d5793b5841164ea63e3c55ff6b0f84fcbf526c8ce47b24a7a099b3 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:18:41 EDT 2025 Thu Aug 21 14:05:51 EDT 2025 Fri May 09 12:19:19 EDT 2025 Fri Jul 11 14:49:06 EDT 2025 Thu Jan 02 22:31:29 EST 2025 Thu Apr 24 23:13:30 EDT 2025 Tue Jul 01 02:59:01 EDT 2025 Wed May 17 00:10:08 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | HIV-1 Mycobacterium tuberculosis co-infection tuberculosis STAT3 AIDS macrophage monocyte tunneling nanotubes viral spread biomarker IL-10 Biomarker Co-infection Tuberculosis Monocyte Tunneling nanotubes Viral spread Macrophage |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c629t-6a1c1f4841d5793b5841164ea63e3c55ff6b0f84fcbf526c8ce47b24a7a099b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC6733268 These authors contributed equally to this work AUTHOR CONTRIBUTIONS Conceptualization & methodology: SS, LB, MdCS, ON, IMP, GLV, CV. Software: SS, RP. Investigation: SS, LB, MD, KP, CL, DK, CC, AB, RG, RP, BRM. Resources: SI, EJM, PGM, SP, MC. Writing: SS, ON, IMP, GLV, CV. Visualization: SS. Supervision: ON, IMP, GLV, CV. Corresponding authors: GLV is responsible for ownership and responsibility that are inherent to aspects on tuberculosis and CV on HIV1. Lead contact |
ORCID | 0000-0003-4620-8491 0000-0003-0047-5885 0000-0002-0514-4447 0000-0003-0189-0976 0000-0002-6795-5448 0000-0002-7637-1997 0000-0003-1924-9474 0000-0001-7045-3572 0000-0003-2884-1744 0000-0002-1079-9085 |
OpenAccessLink | https://doaj.org/article/dfbdfc33ba9f4d8eaeeb0d3758df1e7e |
PMID | 30917314 |
PQID | 2199182323 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dfbdfc33ba9f4d8eaeeb0d3758df1e7e pubmedcentral_primary_oai_pubmedcentral_nih_gov_6733268 hal_primary_oai_HAL_hal_03034321v2 proquest_miscellaneous_2199182323 pubmed_primary_30917314 crossref_primary_10_1016_j_celrep_2019_02_091 crossref_citationtrail_10_1016_j_celrep_2019_02_091 elsevier_sciencedirect_doi_10_1016_j_celrep_2019_02_091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-26 |
PublicationDateYYYYMMDD | 2019-03-26 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Ziegler-Heitbrock (bib91) 2007; 81 Knudsen, Gustafson, Kronborg, Kristiansen, Moestrup, Nielsen, Gomes, Aaby, Lisse, Moller (bib45) 2005; 11 Le Cabec, Cols, Maridonneau-Parini (bib51) 2000; 68 Ariazi, Benowitz, De Biasi, Den Boer, Cherqui, Cui, Douillet, Eugenin, Favre, Goodman (bib2) 2017; 10 Foreman, Mehra, LoBato, Malek, Alvarez, Golden, Bucşan, Didier, Doyle-Meyers, Russell-Lodrigue (bib25) 2016; 113 Garcia-Perez, Staropoli, Azoulay, Heinrich, Cascajero, Colin, Lortat-Jacob, Arenzana-Seisdedos, Alcami, Kellenberger, Lagane (bib26) 2015; 12 Kuroda, Sugimoto, Cai, Merino, Mehra, Araínga, Roy, Midkiff, Alvarez, Didier, Kaushal (bib46) 2018; 217 Fabriek, Dijkstra, van den Berg (bib24) 2005; 210 Ellery, Tippett, Chiu, Paukovics, Cameron, Solomon, Lewin, Gorry, Jaworowski, Greene (bib20) 2007; 178 Cribbs, Lennox, Caliendo, Brown, Guidot (bib15) 2015; 31 Kaushal, Mehra, Didier, Lackner (bib43) 2012; 41 Malik, Eugenin (bib55) 2016; 14 Getahun, Harrington, O’Brien, Nunn (bib29) 2007; 369 Cassol, Cassetta, Rizzi, Alfano, Poli (bib11) 2009; 182 Zhang, Nakata, Weiden, Rom (bib90) 1995; 95 Collins, Quiñones-Mateu, Wu, Luzze, Johnson, Hirsch, Toossi, Arts (bib14) 2002; 76 Balboa, Romero, Basile, Sabio y García, Schierloh, Yokobori, Geffner, Musella, Castagnino, Abbate (bib4) 2011; 90 Lastrucci, Bénard, Balboa, Pingris, Souriant, Poincloux, Al Saati, Rasolofo, González-Montaner, Inwentarz (bib48) 2015; 25 Okafo, Prevedel, Eugenin (bib64) 2017; 7 Gordon, Plüddemann, Martinez Estrada (bib32) 2014; 262 Espert, Beaumelle, Vergne (bib22) 2015; 5 Raynaud-Messina, Bracq, Dupont, Souriant, Usmani, Proag, Pingris, Soldan, Thibault, Capilla (bib70) 2018; 115 Vérollet, Souriant, Raynaud-Messina, Maridonneau-Parini (bib85) 2015; 31 Honeycutt, Thayer, Baker, Ribeiro, Lada, Cao, Cleary, Hudgens, Richman, Garcia (bib37) 2017; 23 Orenstein (bib66) 2000; 182 Avalos, Price, Forsyth, Pin, Shirk, Bullock, Queen, Li, Gellerup, O’Connor (bib3) 2016; 90 Lugo-Villarino, Vérollet, Maridonneau-Parini, Neyrolles (bib54) 2011; 2 Goletti, Carrara, Vincenti, Giacomini, Fattorini, Garbuglia, Capobianchi, Alonzi, Fimia, Federico (bib31) 2004; 189 Groot, Welsch, Sattentau (bib33) 2008; 111 Schierloh, Yokobori, Alemán, Landoni, Geffner, Musella, Castagnino, Baldini, Abbate, de la Barrera, Sasiain (bib75) 2007; 75 Esmail, Riou, du Bruyn, Lai, Harley, Meintjes, Wilkinson, Wilkinson (bib21) 2018; 36 Genoula, Marín Franco, Dupont, Kviatcovsky, Milillo, Schierloh, Moraña, Poggi, Palmero, Mata-Espinosa (bib28) 2018; 9 Bell, Noursadeghi (bib6) 2018; 16 Onfelt, Nedvetzki, Benninger, Purbhoo, Sowinski, Hume, Seabra, Neil, French, Davis (bib65) 2006; 177 Nakata, Rom, Honda, Condos, Kanegasaki, Cao, Weiden (bib61) 1997; 155 Queval, Song, Deboosère, Delorme, Debrie, Iantomasi, Veyron-Churlet, Jouny, Redhage, Deloison (bib69) 2016; 6 Baxter, Russell, Duncan, Moore, Willberg, Pablos, Finzi, Kaufmann, Ochsenbauer, Kappes (bib5) 2014; 16 Diedrich, O’Hern, Wilkinson (bib18) 2016; 98 Russell, Barry, Flynn (bib72) 2010; 328 Toossi (bib81) 2003; 188 Vorster, Allwood, Diacon, Koegelenberg (bib86) 2015; 7 Hase, Kimura, Takatsu, Ohmae, Kawano, Kitamura, Ito, Watarai, Hazelett, Yeaman, Ohno (bib34) 2009; 11 O’Garra, Redford, McNab, Bloom, Wilkinson, Berry (bib63) 2013; 31 Bracq, Xie, Lambelé, Vu, Matz, Schmitt, Delon, Zhou, Randriamampita, Bouchet, Benichou (bib7) 2017 Cai, Sugimoto, Liu, Midkiff, Alvarez, Lackner, Kim, Didier, Kuroda (bib10) 2015; 97 Orenstein (bib67) 2001; 204 Charles, Shellito (bib13) 2016; 37 Hashimoto, Bhuyan, Hiyoshi, Noyori, Nasser, Miyazaki, Saito, Kondoh, Osada, Kimura (bib35) 2016; 196 Hoshino, Nakata, Hoshino, Honda, Tse, Shioda, Rom, Weiden (bib38) 2002; 195 Gaudin, Berre, Cunha de Alencar, Decalf, Schindler, Gobert, Jouve, Benaroch (bib27) 2013; 8 Karaji, Sattentau (bib42) 2017; 8 Toossi, Nicolacakis, Xia, Ferrari, Rich (bib82) 1997; 15 Jolly, Sattentau (bib40) 2004; 5 Orenstein, Fox, Wahl (bib68) 1997; 276 Sather, Kenyon, Lefkowitz, Liang, Varnum, Henson, Graham (bib73) 2007; 109 Light (bib53) 2010; 15 Vérollet, Zhang, Le Cabec, Mazzolini, Charrière, Labrousse, Bouchet, Medina, Biessen, Niedergang (bib83) 2010; 184 Dupont, Souriant, Lugo-Villarino, Maridonneau-Parini, Vérollet (bib19) 2018; 9 Sherer, Mothes (bib76) 2008; 18 Cavrois, De Noronha, Greene (bib12) 2002; 20 Tanaka, Hoshino, Gold, Hoshino, Martiniuk, Kurata, Pine, Levy, Rom, Weiden (bib79) 2005; 33 Rocca, Goodman, Dulin, Haquang, Gertsman, Blondelle, Smith, Heyser, Cherqui (bib71) 2017; 9 Xu, Santini, Sullivan, He, Shan, Ball, Dyer, Ketas, Chadburn, Cohen-Gould (bib88) 2009; 10 Goletti, Weissman, Jackson, Collins, Kinter, Fauci (bib30) 1998; 177 Eugenin, Gaskill, Berman (bib23) 2009; 254 Mehra, Golden, Dutta, Midkiff, Alvarez, Doyle, Asher, Russell-Lodrigue, Monjure, Roy (bib59) 2011; 40 Ip, Hoshi, Shouval, Snapper, Medzhitov (bib39) 2017; 356 Sowinski, Jolly, Berninghausen, Purbhoo, Chauveau, Köhler, Oddos, Eissmann, Brodsky, Hopkins (bib78) 2008; 10 Lawn, Pisell, Hirsch, Wu, Butera, Toossi (bib49) 2001; 184 Laguette, Sobhian, Casartelli, Ringeard, Chable-Bessia, Ségéral, Yatim, Emiliani, Schwartz, Benkirane (bib47) 2011; 474 Lederman, Georges, Kusner, Mudido, Giam, Toossi (bib52) 1994; 7 Ancuta, Wang, Gabuzda (bib1) 2006; 80 Maridonneau-Parini (bib57) 2014; 262 Khan, Divangahi (bib44) 2018; 217 Diedrich, Flynn (bib17) 2011; 79 Davis, Sowinski (bib16) 2008; 9 Sattentau, Stevenson (bib74) 2016; 19 Xu, Kulkosky, Acheampong, Nunnari, Sullivan, Pomerantz (bib87) 2004; 101 Burdo, Soulas, Orzechowski, Button, Krishnan, Sugimoto, Alvarez, Kuroda, Williams (bib8) 2010; 6 Burdo, Lentz, Autissier, Krishnan, Halpern, Letendre, Rosenberg, Ellis, Williams (bib9) 2011; 204 Mancino, Placido, Bach, Mariani, Montesano, Ercoli, Zembala, Colizzi (bib56) 1997; 175 Joseph, Swanstrom (bib41) 2018; 103 McCoy-Simandle, Hanna, Cox (bib58) 2016; 71 Murray, Allen, Biswas, Fisher, Gilroy, Goerdt, Gordon, Hamilton, Ivashkiv, Lawrence (bib60) 2014; 41 Vérollet, Souriant, Bonnaud, Jolicoeur, Raynaud-Messina, Kinnaer, Fourquaux, Imle, Benichou, Fackler (bib84) 2015; 125 Naphade, Sharma, Gaide Chevronnay, Shook, Yeagy, Rocca, Ur, Lau, Courtoy, Cherqui (bib62) 2015; 33 Tomlinson, Bell, Walker, Tsang, Brown, Breen, Lipman, Katz, Miller, Chain (bib80) 2013; 209 Singh, Besson, Mobasher, Collman (bib77) 1999; 73 Honeycutt, Wahl, Baker, Spagnuolo, Foster, Zakharova, Wietgrefe, Caro-Vegas, Madden, Sharpe (bib36) 2016; 126 Le Cabec, Maridonneau-Parini (bib50) 1994; 303 Zhang (bib89) 2011; 4 Cai (10.1016/j.celrep.2019.02.091_bib10) 2015; 97 Maridonneau-Parini (10.1016/j.celrep.2019.02.091_bib57) 2014; 262 Sather (10.1016/j.celrep.2019.02.091_bib73) 2007; 109 Singh (10.1016/j.celrep.2019.02.091_bib77) 1999; 73 Hase (10.1016/j.celrep.2019.02.091_bib34) 2009; 11 Esmail (10.1016/j.celrep.2019.02.091_bib21) 2018; 36 Fabriek (10.1016/j.celrep.2019.02.091_bib24) 2005; 210 Murray (10.1016/j.celrep.2019.02.091_bib60) 2014; 41 Joseph (10.1016/j.celrep.2019.02.091_bib41) 2018; 103 Kuroda (10.1016/j.celrep.2019.02.091_bib46) 2018; 217 Zhang (10.1016/j.celrep.2019.02.091_bib90) 1995; 95 Goletti (10.1016/j.celrep.2019.02.091_bib31) 2004; 189 Vorster (10.1016/j.celrep.2019.02.091_bib86) 2015; 7 Ip (10.1016/j.celrep.2019.02.091_bib39) 2017; 356 Orenstein (10.1016/j.celrep.2019.02.091_bib66) 2000; 182 Foreman (10.1016/j.celrep.2019.02.091_bib25) 2016; 113 Diedrich (10.1016/j.celrep.2019.02.091_bib18) 2016; 98 Naphade (10.1016/j.celrep.2019.02.091_bib62) 2015; 33 Burdo (10.1016/j.celrep.2019.02.091_bib9) 2011; 204 Light (10.1016/j.celrep.2019.02.091_bib53) 2010; 15 Malik (10.1016/j.celrep.2019.02.091_bib55) 2016; 14 Balboa (10.1016/j.celrep.2019.02.091_bib4) 2011; 90 Karaji (10.1016/j.celrep.2019.02.091_bib42) 2017; 8 Le Cabec (10.1016/j.celrep.2019.02.091_bib50) 1994; 303 Onfelt (10.1016/j.celrep.2019.02.091_bib65) 2006; 177 Mehra (10.1016/j.celrep.2019.02.091_bib59) 2011; 40 Cavrois (10.1016/j.celrep.2019.02.091_bib12) 2002; 20 Jolly (10.1016/j.celrep.2019.02.091_bib40) 2004; 5 Toossi (10.1016/j.celrep.2019.02.091_bib81) 2003; 188 Xu (10.1016/j.celrep.2019.02.091_bib88) 2009; 10 Honeycutt (10.1016/j.celrep.2019.02.091_bib36) 2016; 126 Getahun (10.1016/j.celrep.2019.02.091_bib29) 2007; 369 Cassol (10.1016/j.celrep.2019.02.091_bib11) 2009; 182 Orenstein (10.1016/j.celrep.2019.02.091_bib67) 2001; 204 Kaushal (10.1016/j.celrep.2019.02.091_bib43) 2012; 41 Goletti (10.1016/j.celrep.2019.02.091_bib30) 1998; 177 O’Garra (10.1016/j.celrep.2019.02.091_bib63) 2013; 31 Hashimoto (10.1016/j.celrep.2019.02.091_bib35) 2016; 196 Khan (10.1016/j.celrep.2019.02.091_bib44) 2018; 217 Bracq (10.1016/j.celrep.2019.02.091_bib7) 2017 Honeycutt (10.1016/j.celrep.2019.02.091_bib37) 2017; 23 Burdo (10.1016/j.celrep.2019.02.091_bib8) 2010; 6 Laguette (10.1016/j.celrep.2019.02.091_bib47) 2011; 474 Lugo-Villarino (10.1016/j.celrep.2019.02.091_bib54) 2011; 2 Groot (10.1016/j.celrep.2019.02.091_bib33) 2008; 111 Dupont (10.1016/j.celrep.2019.02.091_bib19) 2018; 9 Espert (10.1016/j.celrep.2019.02.091_bib22) 2015; 5 Raynaud-Messina (10.1016/j.celrep.2019.02.091_bib70) 2018; 115 Vérollet (10.1016/j.celrep.2019.02.091_bib83) 2010; 184 Orenstein (10.1016/j.celrep.2019.02.091_bib68) 1997; 276 Xu (10.1016/j.celrep.2019.02.091_bib87) 2004; 101 Vérollet (10.1016/j.celrep.2019.02.091_bib84) 2015; 125 Avalos (10.1016/j.celrep.2019.02.091_bib3) 2016; 90 Eugenin (10.1016/j.celrep.2019.02.091_bib23) 2009; 254 Sherer (10.1016/j.celrep.2019.02.091_bib76) 2008; 18 Sowinski (10.1016/j.celrep.2019.02.091_bib78) 2008; 10 Diedrich (10.1016/j.celrep.2019.02.091_bib17) 2011; 79 Mancino (10.1016/j.celrep.2019.02.091_bib56) 1997; 175 Baxter (10.1016/j.celrep.2019.02.091_bib5) 2014; 16 Knudsen (10.1016/j.celrep.2019.02.091_bib45) 2005; 11 Sattentau (10.1016/j.celrep.2019.02.091_bib74) 2016; 19 Ellery (10.1016/j.celrep.2019.02.091_bib20) 2007; 178 Nakata (10.1016/j.celrep.2019.02.091_bib61) 1997; 155 Cribbs (10.1016/j.celrep.2019.02.091_bib15) 2015; 31 Lawn (10.1016/j.celrep.2019.02.091_bib49) 2001; 184 Zhang (10.1016/j.celrep.2019.02.091_bib89) 2011; 4 Okafo (10.1016/j.celrep.2019.02.091_bib64) 2017; 7 Tanaka (10.1016/j.celrep.2019.02.091_bib79) 2005; 33 Genoula (10.1016/j.celrep.2019.02.091_bib28) 2018; 9 Vérollet (10.1016/j.celrep.2019.02.091_bib85) 2015; 31 Collins (10.1016/j.celrep.2019.02.091_bib14) 2002; 76 McCoy-Simandle (10.1016/j.celrep.2019.02.091_bib58) 2016; 71 Russell (10.1016/j.celrep.2019.02.091_bib72) 2010; 328 Rocca (10.1016/j.celrep.2019.02.091_bib71) 2017; 9 Ancuta (10.1016/j.celrep.2019.02.091_bib1) 2006; 80 Queval (10.1016/j.celrep.2019.02.091_bib69) 2016; 6 Schierloh (10.1016/j.celrep.2019.02.091_bib75) 2007; 75 Garcia-Perez (10.1016/j.celrep.2019.02.091_bib26) 2015; 12 Lastrucci (10.1016/j.celrep.2019.02.091_bib48) 2015; 25 Lederman (10.1016/j.celrep.2019.02.091_bib52) 1994; 7 Ariazi (10.1016/j.celrep.2019.02.091_bib2) 2017; 10 Le Cabec (10.1016/j.celrep.2019.02.091_bib51) 2000; 68 Charles (10.1016/j.celrep.2019.02.091_bib13) 2016; 37 Davis (10.1016/j.celrep.2019.02.091_bib16) 2008; 9 Gordon (10.1016/j.celrep.2019.02.091_bib32) 2014; 262 Hoshino (10.1016/j.celrep.2019.02.091_bib38) 2002; 195 Toossi (10.1016/j.celrep.2019.02.091_bib82) 1997; 15 Gaudin (10.1016/j.celrep.2019.02.091_bib27) 2013; 8 Bell (10.1016/j.celrep.2019.02.091_bib6) 2018; 16 Tomlinson (10.1016/j.celrep.2019.02.091_bib80) 2013; 209 Ziegler-Heitbrock (10.1016/j.celrep.2019.02.091_bib91) 2007; 81 |
References_xml | – volume: 9 start-page: eaaj2347 year: 2017 ident: bib71 article-title: Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich’s ataxia publication-title: Sci. Transl. Med. – volume: 31 start-page: 64 year: 2015 end-page: 70 ident: bib15 article-title: Healthy HIV-1-infected individuals on highly active antiretroviral therapy harbor HIV-1 in their alveolar macrophages publication-title: AIDS Res. Hum. Retroviruses – volume: 182 start-page: 338 year: 2000 end-page: 342 ident: bib66 article-title: In vivo cytolysis and fusion of human immunodeficiency virus type 1-infected lymphocytes in lymphoid tissue publication-title: J. Infect. Dis. – volume: 81 start-page: 584 year: 2007 end-page: 592 ident: bib91 article-title: The CD14 publication-title: J. Leukoc. Biol. – volume: 7 start-page: 727 year: 1994 end-page: 733 ident: bib52 article-title: and its purified protein derivative activate expression of the human immunodeficiency virus publication-title: J. Acquir. Immune Defic. Syndr. – volume: 262 start-page: 216 year: 2014 end-page: 231 ident: bib57 article-title: Control of macrophage 3D migration: a therapeutic challenge to limit tissue infiltration publication-title: Immunol. Rev. – volume: 31 start-page: 475 year: 2013 end-page: 527 ident: bib63 article-title: The immune response in tuberculosis publication-title: Annu. Rev. Immunol. – volume: 10 start-page: 211 year: 2008 end-page: 219 ident: bib78 article-title: Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission publication-title: Nat. Cell Biol. – volume: 19 start-page: 304 year: 2016 end-page: 310 ident: bib74 article-title: Macrophages and HIV-1: an unhealthy constellation publication-title: Cell Host Microbe – volume: 20 start-page: 1151 year: 2002 end-page: 1154 ident: bib12 article-title: A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes publication-title: Nat. Biotechnol. – volume: 25 start-page: 1333 year: 2015 end-page: 1351 ident: bib48 article-title: Tuberculosis is associated with expansion of a motile, permissive and immunomodulatory CD16 publication-title: Cell Res. – volume: 113 start-page: E5636 year: 2016 end-page: E5644 ident: bib25 article-title: CD4 publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 start-page: 324 year: 2011 end-page: 325 ident: bib89 article-title: Tunneling-nanotube: a new way of cell-cell communication publication-title: Commun. Integr. Biol. – volume: 115 start-page: E2556 year: 2018 end-page: E2565 ident: bib70 article-title: Bone degradation machinery of osteoclasts: an HIV-1 target that contributes to bone loss publication-title: Proc. Natl. Acad. Sci. USA – year: 2017 ident: bib7 article-title: T cell-macrophage fusion triggers multinucleated giant cell formation for HIV-1 spreading publication-title: J. Virol. – volume: 204 start-page: 154 year: 2011 end-page: 163 ident: bib9 article-title: Soluble CD163 made by monocyte/macrophages is a novel marker of HIV activity in early and chronic infection prior to and after anti-retroviral therapy publication-title: J. Infect. Dis. – volume: 80 start-page: 1156 year: 2006 end-page: 1164 ident: bib1 article-title: CD16 publication-title: J. Leukoc. Biol. – volume: 40 start-page: 233 year: 2011 end-page: 243 ident: bib59 article-title: Reactivation of latent tuberculosis in rhesus macaques by coinfection with simian immunodeficiency virus publication-title: J. Med. Primatol. – volume: 101 start-page: 7070 year: 2004 end-page: 7075 ident: bib87 article-title: HIV-1-mediated apoptosis of neuronal cells: proximal molecular mechanisms of HIV-1-induced encephalopathy publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 1863 year: 2017 ident: bib42 article-title: Efferocytosis of pathogen-infected cells publication-title: Front. Immunol. – volume: 68 start-page: 4736 year: 2000 end-page: 4745 ident: bib51 article-title: Nonopsonic phagocytosis of zymosan and publication-title: Infect. Immun. – volume: 184 start-page: 1127 year: 2001 end-page: 1133 ident: bib49 article-title: Anatomically compartmentalized human immunodeficiency virus replication in HLA-DR publication-title: J. Infect. Dis. – volume: 9 start-page: 431 year: 2008 end-page: 436 ident: bib16 article-title: Membrane nanotubes: dynamic long-distance connections between animal cells publication-title: Nat. Rev. Mol. Cell Biol. – volume: 195 start-page: 495 year: 2002 end-page: 505 ident: bib38 article-title: Maximal HIV-1 replication in alveolar macrophages during tuberculosis requires both lymphocyte contact and cytokines publication-title: J. Exp. Med. – volume: 189 start-page: 624 year: 2004 end-page: 633 ident: bib31 article-title: Inhibition of HIV-1 replication in monocyte-derived macrophages by publication-title: J. Infect. Dis. – volume: 9 start-page: 459 year: 2018 ident: bib28 article-title: Formation of foamy macrophages by tuberculous pleural effusions is triggered by the interleukin-10/signal transducer and activator of transcription 3 axis through ACAT upregulation publication-title: Front. Immunol. – volume: 178 start-page: 6581 year: 2007 end-page: 6589 ident: bib20 article-title: The CD16 publication-title: J. Immunol. – volume: 328 start-page: 852 year: 2010 end-page: 856 ident: bib72 article-title: Tuberculosis: what we don’t know can, and does, hurt us publication-title: Science – volume: 356 start-page: 513 year: 2017 end-page: 519 ident: bib39 article-title: Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages publication-title: Science – volume: 6 start-page: 29297 year: 2016 ident: bib69 article-title: STAT3 represses nitric oxide synthesis in human macrophages upon publication-title: Sci. Rep. – volume: 11 start-page: 730 year: 2005 end-page: 735 ident: bib45 article-title: Predictive value of soluble haemoglobin scavenger receptor CD163 serum levels for survival in verified tuberculosis patients publication-title: Clin. Microbiol. Infect. – volume: 5 start-page: 643 year: 2004 end-page: 650 ident: bib40 article-title: Retroviral spread by induction of virological synapses publication-title: Traffic – volume: 7 start-page: 16660 year: 2017 ident: bib64 article-title: Tunneling nanotubes (TNT) mediate long-range gap junctional communication: implications for HIV cell to cell spread publication-title: Sci. Rep. – volume: 90 start-page: 69 year: 2011 end-page: 75 ident: bib4 article-title: Paradoxical role of CD16 publication-title: J. Leukoc. Biol. – volume: 76 start-page: 1697 year: 2002 end-page: 1706 ident: bib14 article-title: Human immunodeficiency virus type 1 (HIV-1) quasispecies at the sites of publication-title: J. Virol. – volume: 41 start-page: 191 year: 2012 end-page: 201 ident: bib43 article-title: The non-human primate model of tuberculosis publication-title: J. Med. Primatol. – volume: 125 start-page: 1611 year: 2015 end-page: 1622 ident: bib84 article-title: HIV-1 reprograms the migration of macrophages publication-title: Blood – volume: 15 start-page: 325 year: 1997 end-page: 331 ident: bib82 article-title: Activation of latent HIV-1 by publication-title: J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. – volume: 33 start-page: 406 year: 2005 end-page: 411 ident: bib79 article-title: Interleukin-10 induces inhibitory C/EBPbeta through STAT-3 and represses HIV-1 transcription in macrophages publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 37 start-page: 147 year: 2016 end-page: 156 ident: bib13 article-title: Human immunodeficiency virus infection and host defense in the lungs publication-title: Semin. Respir. Crit. Care Med. – volume: 217 start-page: 1851 year: 2018 end-page: 1853 ident: bib44 article-title: and HIV coinfection brings fire and fury to macrophages publication-title: J. Infect. Dis. – volume: 71 start-page: 44 year: 2016 end-page: 54 ident: bib58 article-title: Exosomes and nanotubes: control of immune cell communication publication-title: Int. J. Biochem. Cell Biol. – volume: 41 start-page: 14 year: 2014 end-page: 20 ident: bib60 article-title: Macrophage activation and polarization: nomenclature and experimental guidelines publication-title: Immunity – volume: 33 start-page: 301 year: 2015 end-page: 309 ident: bib62 article-title: Brief reports: lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes publication-title: Stem Cells – volume: 210 start-page: 153 year: 2005 end-page: 160 ident: bib24 article-title: The macrophage scavenger receptor CD163 publication-title: Immunobiology – volume: 15 start-page: 451 year: 2010 end-page: 458 ident: bib53 article-title: Update on tuberculous pleural effusion publication-title: Respirology – volume: 11 start-page: 1427 year: 2009 end-page: 1432 ident: bib34 article-title: M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex publication-title: Nat. Cell Biol. – volume: 14 start-page: 400 year: 2016 end-page: 411 ident: bib55 article-title: Mechanisms of HIV neuropathogenesis: role of cellular communication systems publication-title: Curr. HIV Res. – volume: 18 start-page: 414 year: 2008 end-page: 420 ident: bib76 article-title: Cytonemes and tunneling nanotubules in cell-cell communication and viral pathogenesis publication-title: Trends Cell Biol. – volume: 184 start-page: 7030 year: 2010 end-page: 7039 ident: bib83 article-title: HIV-1 Nef triggers macrophage fusion in a p61Hck- and protease-dependent manner publication-title: J. Immunol. – volume: 97 start-page: 1147 year: 2015 end-page: 1153 ident: bib10 article-title: Increased monocyte turnover is associated with interstitial macrophage accumulation and pulmonary tissue damage in SIV-infected rhesus macaques publication-title: J. Leukoc. Biol. – volume: 126 start-page: 1353 year: 2016 end-page: 1366 ident: bib36 article-title: Macrophages sustain HIV replication in vivo independently of T cells publication-title: J. Clin. Invest. – volume: 217 start-page: 1865 year: 2018 end-page: 1874 ident: bib46 article-title: High turnover of tissue macrophages contributes to tuberculosis reactivation in simian immunodeficiency virus-infected rhesus macaques publication-title: J. Infect. Dis. – volume: 276 start-page: 1857 year: 1997 end-page: 1861 ident: bib68 article-title: Macrophages as a source of HIV during opportunistic infections publication-title: Science – volume: 303 start-page: 481 year: 1994 end-page: 487 ident: bib50 article-title: Annexin 3 is associated with cytoplasmic granules in neutrophils and monocytes and translocates to the plasma membrane in activated cells publication-title: Biochem. J. – volume: 75 start-page: 5325 year: 2007 end-page: 5337 ident: bib75 article-title: -induced gamma interferon production by natural killer cells requires cross talk with antigen-presenting cells involving Toll-like receptors 2 and 4 and the mannose receptor in tuberculous pleurisy publication-title: Infect. Immun. – volume: 79 start-page: 1407 year: 2011 end-page: 1417 ident: bib17 article-title: HIV-1/ publication-title: Infect. Immun. – volume: 109 start-page: 1026 year: 2007 end-page: 1033 ident: bib73 article-title: A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation publication-title: Blood – volume: 95 start-page: 2324 year: 1995 end-page: 2331 ident: bib90 article-title: enhances human immunodeficiency virus-1 replication by transcriptional activation at the long terminal repeat publication-title: J. Clin. Invest. – volume: 5 start-page: 49 year: 2015 ident: bib22 article-title: Autophagy in publication-title: Front. Cell. Infect. Microbiol. – volume: 177 start-page: 1332 year: 1998 end-page: 1338 ident: bib30 article-title: The in vitro induction of human immunodeficiency virus (HIV) replication in purified protein derivative-positive HIV-infected persons by recall antigen response to publication-title: J. Infect. Dis. – volume: 111 start-page: 4660 year: 2008 end-page: 4663 ident: bib33 article-title: Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses publication-title: Blood – volume: 23 start-page: 638 year: 2017 end-page: 643 ident: bib37 article-title: HIV persistence in tissue macrophages of humanized myeloid-only mice during antiretroviral therapy publication-title: Nat. Med. – volume: 182 start-page: 6237 year: 2009 end-page: 6246 ident: bib11 article-title: M1 and M2a polarization of human monocyte-derived macrophages inhibits HIV-1 replication by distinct mechanisms publication-title: J. Immunol. – volume: 9 start-page: 43 year: 2018 ident: bib19 article-title: Tunneling nanotubes: intimate communication between myeloid cells publication-title: Front. Immunol. – volume: 12 start-page: 50 year: 2015 ident: bib26 article-title: A single-residue change in the HIV-1 V3 loop associated with maraviroc resistance impairs CCR5 binding affinity while increasing replicative capacity publication-title: Retrovirology – volume: 262 start-page: 36 year: 2014 end-page: 55 ident: bib32 article-title: Macrophage heterogeneity in tissues: phenotypic diversity and functions publication-title: Immunol. Rev. – volume: 6 start-page: e1000842 year: 2010 ident: bib8 article-title: Increased monocyte turnover from bone marrow correlates with severity of SIV encephalitis and CD163 levels in plasma publication-title: PLoS Pathog. – volume: 36 start-page: 603 year: 2018 end-page: 638 ident: bib21 article-title: The immune response to publication-title: Annu. Rev. Immunol. – volume: 16 start-page: 80 year: 2018 end-page: 90 ident: bib6 article-title: Pathogenesis of HIV-1 and publication-title: Nat. Rev. Microbiol. – volume: 254 start-page: 142 year: 2009 end-page: 148 ident: bib23 article-title: Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking publication-title: Cell. Immunol. – volume: 474 start-page: 654 year: 2011 end-page: 657 ident: bib47 article-title: SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx publication-title: Nature – volume: 196 start-page: 1832 year: 2016 end-page: 1841 ident: bib35 article-title: Potential role of the formation of tunneling nanotubes in HIV-1 spread in macrophages publication-title: J. Immunol. – volume: 177 start-page: 8476 year: 2006 end-page: 8483 ident: bib65 article-title: Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria publication-title: J. Immunol. – volume: 103 start-page: 421 year: 2018 end-page: 431 ident: bib41 article-title: The evolution of HIV-1 entry phenotypes as a guide to changing target cells publication-title: J. Leukoc. Biol. – volume: 2 start-page: 43 year: 2011 ident: bib54 article-title: Macrophage polarization: convergence point targeted by publication-title: Front. Immunol. – volume: 175 start-page: 1531 year: 1997 end-page: 1535 ident: bib56 article-title: Infection of human monocytes with publication-title: J. Infect. Dis. – volume: 8 start-page: e69450 year: 2013 ident: bib27 article-title: Dynamics of HIV-containing compartments in macrophages reveal sequestration of virions and transient surface connections publication-title: PLoS ONE – volume: 155 start-page: 996 year: 1997 end-page: 1003 ident: bib61 article-title: enhances human immunodeficiency virus-1 replication in the lung publication-title: Am. J. Respir. Crit. Care Med. – volume: 98 start-page: 62 year: 2016 end-page: 76 ident: bib18 article-title: HIV-1 and the publication-title: Tuberculosis (Edinb.) – volume: 31 start-page: 730 year: 2015 end-page: 733 ident: bib85 article-title: [HIV-1 drives the migration of macrophages] publication-title: Med. Sci. (Paris) – volume: 90 start-page: 5643 year: 2016 end-page: 5656 ident: bib3 article-title: Quantitation of productively infected monocytes and macrophages of simian immunodeficiency virus-infected macaques publication-title: J. Virol. – volume: 209 start-page: 1055 year: 2013 end-page: 1065 ident: bib80 article-title: HIV-1 infection of macrophages dysregulates innate immune responses to publication-title: J. Infect. Dis. – volume: 10 start-page: 333 year: 2017 ident: bib2 article-title: Tunneling nanotubes and gap junctions-their role in long-range intercellular communication during development, health, and disease conditions publication-title: Front. Mol. Neurosci. – volume: 7 start-page: 981 year: 2015 end-page: 991 ident: bib86 article-title: Tuberculous pleural effusions: advances and controversies publication-title: J. Thorac. Dis. – volume: 204 start-page: 598 year: 2001 end-page: 602 ident: bib67 article-title: The macrophage in HIV infection publication-title: Immunobiology – volume: 10 start-page: 1008 year: 2009 end-page: 1017 ident: bib88 article-title: HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits publication-title: Nat. Immunol. – volume: 188 start-page: 1146 year: 2003 end-page: 1155 ident: bib81 article-title: Virological and immunological impact of tuberculosis on human immunodeficiency virus type 1 disease publication-title: J. Infect. Dis. – volume: 369 start-page: 2042 year: 2007 end-page: 2049 ident: bib29 article-title: Diagnosis of smear-negative pulmonary tuberculosis in people with HIV infection or AIDS in resource-constrained settings: informing urgent policy changes publication-title: Lancet – volume: 16 start-page: 711 year: 2014 end-page: 721 ident: bib5 article-title: Macrophage infection via selective capture of HIV-1-infected CD4+ T cells publication-title: Cell Host Microbe – volume: 73 start-page: 6680 year: 1999 end-page: 6690 ident: bib77 article-title: Patterns of chemokine receptor fusion cofactor utilization by human immunodeficiency virus type 1 variants from the lungs and blood publication-title: J. Virol. – volume: 14 start-page: 400 year: 2016 ident: 10.1016/j.celrep.2019.02.091_bib55 article-title: Mechanisms of HIV neuropathogenesis: role of cellular communication systems publication-title: Curr. HIV Res. doi: 10.2174/1570162X14666160324124558 – volume: 115 start-page: E2556 year: 2018 ident: 10.1016/j.celrep.2019.02.091_bib70 article-title: Bone degradation machinery of osteoclasts: an HIV-1 target that contributes to bone loss publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1713370115 – volume: 80 start-page: 1156 year: 2006 ident: 10.1016/j.celrep.2019.02.091_bib1 article-title: CD16+ monocytes produce IL-6, CCL2, and matrix metalloproteinase-9 upon interaction with CX3CL1-expressing endothelial cells publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0206125 – volume: 111 start-page: 4660 year: 2008 ident: 10.1016/j.celrep.2019.02.091_bib33 article-title: Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses publication-title: Blood doi: 10.1182/blood-2007-12-130070 – volume: 177 start-page: 8476 year: 2006 ident: 10.1016/j.celrep.2019.02.091_bib65 article-title: Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria publication-title: J. Immunol. doi: 10.4049/jimmunol.177.12.8476 – volume: 6 start-page: e1000842 year: 2010 ident: 10.1016/j.celrep.2019.02.091_bib8 article-title: Increased monocyte turnover from bone marrow correlates with severity of SIV encephalitis and CD163 levels in plasma publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000842 – volume: 81 start-page: 584 year: 2007 ident: 10.1016/j.celrep.2019.02.091_bib91 article-title: The CD14+ CD16+ blood monocytes: their role in infection and inflammation publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0806510 – volume: 8 start-page: 1863 year: 2017 ident: 10.1016/j.celrep.2019.02.091_bib42 article-title: Efferocytosis of pathogen-infected cells publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.01863 – volume: 184 start-page: 1127 year: 2001 ident: 10.1016/j.celrep.2019.02.091_bib49 article-title: Anatomically compartmentalized human immunodeficiency virus replication in HLA-DR+ cells and CD14+ macrophages at the site of pleural tuberculosis coinfection publication-title: J. Infect. Dis. doi: 10.1086/323649 – volume: 109 start-page: 1026 year: 2007 ident: 10.1016/j.celrep.2019.02.091_bib73 article-title: A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation publication-title: Blood doi: 10.1182/blood-2006-05-021634 – volume: 178 start-page: 6581 year: 2007 ident: 10.1016/j.celrep.2019.02.091_bib20 article-title: The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo publication-title: J. Immunol. doi: 10.4049/jimmunol.178.10.6581 – volume: 204 start-page: 598 year: 2001 ident: 10.1016/j.celrep.2019.02.091_bib67 article-title: The macrophage in HIV infection publication-title: Immunobiology doi: 10.1078/0171-2985-00098 – volume: 76 start-page: 1697 year: 2002 ident: 10.1016/j.celrep.2019.02.091_bib14 article-title: Human immunodeficiency virus type 1 (HIV-1) quasispecies at the sites of Mycobacterium tuberculosis infection contribute to systemic HIV-1 heterogeneity publication-title: J. Virol. doi: 10.1128/JVI.76.4.1697-1706.2002 – volume: 126 start-page: 1353 year: 2016 ident: 10.1016/j.celrep.2019.02.091_bib36 article-title: Macrophages sustain HIV replication in vivo independently of T cells publication-title: J. Clin. Invest. doi: 10.1172/JCI84456 – volume: 328 start-page: 852 year: 2010 ident: 10.1016/j.celrep.2019.02.091_bib72 article-title: Tuberculosis: what we don’t know can, and does, hurt us publication-title: Science doi: 10.1126/science.1184784 – year: 2017 ident: 10.1016/j.celrep.2019.02.091_bib7 article-title: T cell-macrophage fusion triggers multinucleated giant cell formation for HIV-1 spreading publication-title: J. Virol. doi: 10.1128/JVI.01237-17 – volume: 356 start-page: 513 year: 2017 ident: 10.1016/j.celrep.2019.02.091_bib39 article-title: Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages publication-title: Science doi: 10.1126/science.aal3535 – volume: 188 start-page: 1146 year: 2003 ident: 10.1016/j.celrep.2019.02.091_bib81 article-title: Virological and immunological impact of tuberculosis on human immunodeficiency virus type 1 disease publication-title: J. Infect. Dis. doi: 10.1086/378676 – volume: 101 start-page: 7070 year: 2004 ident: 10.1016/j.celrep.2019.02.091_bib87 article-title: HIV-1-mediated apoptosis of neuronal cells: proximal molecular mechanisms of HIV-1-induced encephalopathy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0304859101 – volume: 474 start-page: 654 year: 2011 ident: 10.1016/j.celrep.2019.02.091_bib47 article-title: SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx publication-title: Nature doi: 10.1038/nature10117 – volume: 217 start-page: 1851 year: 2018 ident: 10.1016/j.celrep.2019.02.091_bib44 article-title: Mycobacterium tuberculosis and HIV coinfection brings fire and fury to macrophages publication-title: J. Infect. Dis. doi: 10.1093/infdis/jix626 – volume: 210 start-page: 153 year: 2005 ident: 10.1016/j.celrep.2019.02.091_bib24 article-title: The macrophage scavenger receptor CD163 publication-title: Immunobiology doi: 10.1016/j.imbio.2005.05.010 – volume: 31 start-page: 64 year: 2015 ident: 10.1016/j.celrep.2019.02.091_bib15 article-title: Healthy HIV-1-infected individuals on highly active antiretroviral therapy harbor HIV-1 in their alveolar macrophages publication-title: AIDS Res. Hum. Retroviruses doi: 10.1089/aid.2014.0133 – volume: 8 start-page: e69450 year: 2013 ident: 10.1016/j.celrep.2019.02.091_bib27 article-title: Dynamics of HIV-containing compartments in macrophages reveal sequestration of virions and transient surface connections publication-title: PLoS ONE doi: 10.1371/journal.pone.0069450 – volume: 15 start-page: 325 year: 1997 ident: 10.1016/j.celrep.2019.02.091_bib82 article-title: Activation of latent HIV-1 by Mycobacterium tuberculosis and its purified protein derivative in alveolar macrophages from HIV-infected individuals in vitro publication-title: J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. doi: 10.1097/00042560-199708150-00001 – volume: 196 start-page: 1832 year: 2016 ident: 10.1016/j.celrep.2019.02.091_bib35 article-title: Potential role of the formation of tunneling nanotubes in HIV-1 spread in macrophages publication-title: J. Immunol. doi: 10.4049/jimmunol.1500845 – volume: 9 start-page: 459 year: 2018 ident: 10.1016/j.celrep.2019.02.091_bib28 article-title: Formation of foamy macrophages by tuberculous pleural effusions is triggered by the interleukin-10/signal transducer and activator of transcription 3 axis through ACAT upregulation publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.00459 – volume: 75 start-page: 5325 year: 2007 ident: 10.1016/j.celrep.2019.02.091_bib75 article-title: Mycobacterium tuberculosis-induced gamma interferon production by natural killer cells requires cross talk with antigen-presenting cells involving Toll-like receptors 2 and 4 and the mannose receptor in tuberculous pleurisy publication-title: Infect. Immun. doi: 10.1128/IAI.00381-07 – volume: 6 start-page: 29297 year: 2016 ident: 10.1016/j.celrep.2019.02.091_bib69 article-title: STAT3 represses nitric oxide synthesis in human macrophages upon Mycobacterium tuberculosis infection publication-title: Sci. Rep. doi: 10.1038/srep29297 – volume: 182 start-page: 6237 year: 2009 ident: 10.1016/j.celrep.2019.02.091_bib11 article-title: M1 and M2a polarization of human monocyte-derived macrophages inhibits HIV-1 replication by distinct mechanisms publication-title: J. Immunol. doi: 10.4049/jimmunol.0803447 – volume: 40 start-page: 233 year: 2011 ident: 10.1016/j.celrep.2019.02.091_bib59 article-title: Reactivation of latent tuberculosis in rhesus macaques by coinfection with simian immunodeficiency virus publication-title: J. Med. Primatol. doi: 10.1111/j.1600-0684.2011.00485.x – volume: 155 start-page: 996 year: 1997 ident: 10.1016/j.celrep.2019.02.091_bib61 article-title: Mycobacterium tuberculosis enhances human immunodeficiency virus-1 replication in the lung publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/ajrccm.155.3.9117038 – volume: 31 start-page: 730 year: 2015 ident: 10.1016/j.celrep.2019.02.091_bib85 article-title: [HIV-1 drives the migration of macrophages] publication-title: Med. Sci. (Paris) doi: 10.1051/medsci/20153108010 – volume: 10 start-page: 1008 year: 2009 ident: 10.1016/j.celrep.2019.02.091_bib88 article-title: HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits publication-title: Nat. Immunol. doi: 10.1038/ni.1753 – volume: 97 start-page: 1147 year: 2015 ident: 10.1016/j.celrep.2019.02.091_bib10 article-title: Increased monocyte turnover is associated with interstitial macrophage accumulation and pulmonary tissue damage in SIV-infected rhesus macaques publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.4A0914-441R – volume: 36 start-page: 603 year: 2018 ident: 10.1016/j.celrep.2019.02.091_bib21 article-title: The immune response to Mycobacterium tuberculosis in HIV-1-coinfected persons publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-042617-053420 – volume: 262 start-page: 36 year: 2014 ident: 10.1016/j.celrep.2019.02.091_bib32 article-title: Macrophage heterogeneity in tissues: phenotypic diversity and functions publication-title: Immunol. Rev. doi: 10.1111/imr.12223 – volume: 98 start-page: 62 year: 2016 ident: 10.1016/j.celrep.2019.02.091_bib18 article-title: HIV-1 and the Mycobacterium tuberculosis granuloma: a systematic review and meta-analysis publication-title: Tuberculosis (Edinb.) doi: 10.1016/j.tube.2016.02.010 – volume: 18 start-page: 414 year: 2008 ident: 10.1016/j.celrep.2019.02.091_bib76 article-title: Cytonemes and tunneling nanotubules in cell-cell communication and viral pathogenesis publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2008.07.003 – volume: 262 start-page: 216 year: 2014 ident: 10.1016/j.celrep.2019.02.091_bib57 article-title: Control of macrophage 3D migration: a therapeutic challenge to limit tissue infiltration publication-title: Immunol. Rev. doi: 10.1111/imr.12214 – volume: 2 start-page: 43 year: 2011 ident: 10.1016/j.celrep.2019.02.091_bib54 article-title: Macrophage polarization: convergence point targeted by Mycobacterium tuberculosis and HIV publication-title: Front. Immunol. doi: 10.3389/fimmu.2011.00043 – volume: 7 start-page: 16660 year: 2017 ident: 10.1016/j.celrep.2019.02.091_bib64 article-title: Tunneling nanotubes (TNT) mediate long-range gap junctional communication: implications for HIV cell to cell spread publication-title: Sci. Rep. doi: 10.1038/s41598-017-16600-1 – volume: 16 start-page: 711 year: 2014 ident: 10.1016/j.celrep.2019.02.091_bib5 article-title: Macrophage infection via selective capture of HIV-1-infected CD4+ T cells publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.10.010 – volume: 254 start-page: 142 year: 2009 ident: 10.1016/j.celrep.2019.02.091_bib23 article-title: Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2008.08.005 – volume: 113 start-page: E5636 year: 2016 ident: 10.1016/j.celrep.2019.02.091_bib25 article-title: CD4+ T-cell-independent mechanisms suppress reactivation of latent tuberculosis in a macaque model of HIV coinfection publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1611987113 – volume: 9 start-page: 43 year: 2018 ident: 10.1016/j.celrep.2019.02.091_bib19 article-title: Tunneling nanotubes: intimate communication between myeloid cells publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.00043 – volume: 369 start-page: 2042 year: 2007 ident: 10.1016/j.celrep.2019.02.091_bib29 article-title: Diagnosis of smear-negative pulmonary tuberculosis in people with HIV infection or AIDS in resource-constrained settings: informing urgent policy changes publication-title: Lancet doi: 10.1016/S0140-6736(07)60284-0 – volume: 5 start-page: 643 year: 2004 ident: 10.1016/j.celrep.2019.02.091_bib40 article-title: Retroviral spread by induction of virological synapses publication-title: Traffic doi: 10.1111/j.1600-0854.2004.00209.x – volume: 303 start-page: 481 year: 1994 ident: 10.1016/j.celrep.2019.02.091_bib50 article-title: Annexin 3 is associated with cytoplasmic granules in neutrophils and monocytes and translocates to the plasma membrane in activated cells publication-title: Biochem. J. doi: 10.1042/bj3030481 – volume: 5 start-page: 49 year: 2015 ident: 10.1016/j.celrep.2019.02.091_bib22 article-title: Autophagy in Mycobacterium tuberculosis and HIV infections publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2015.00049 – volume: 25 start-page: 1333 year: 2015 ident: 10.1016/j.celrep.2019.02.091_bib48 article-title: Tuberculosis is associated with expansion of a motile, permissive and immunomodulatory CD16+ monocyte population via the IL-10/STAT3 axis publication-title: Cell Res. doi: 10.1038/cr.2015.123 – volume: 177 start-page: 1332 year: 1998 ident: 10.1016/j.celrep.2019.02.091_bib30 publication-title: J. Infect. Dis. doi: 10.1086/515276 – volume: 11 start-page: 730 year: 2005 ident: 10.1016/j.celrep.2019.02.091_bib45 article-title: Predictive value of soluble haemoglobin scavenger receptor CD163 serum levels for survival in verified tuberculosis patients publication-title: Clin. Microbiol. Infect. doi: 10.1111/j.1469-0691.2005.01229.x – volume: 4 start-page: 324 year: 2011 ident: 10.1016/j.celrep.2019.02.091_bib89 article-title: Tunneling-nanotube: a new way of cell-cell communication publication-title: Commun. Integr. Biol. doi: 10.4161/cib.4.3.14855 – volume: 189 start-page: 624 year: 2004 ident: 10.1016/j.celrep.2019.02.091_bib31 article-title: Inhibition of HIV-1 replication in monocyte-derived macrophages by Mycobacterium tuberculosis publication-title: J. Infect. Dis. doi: 10.1086/381554 – volume: 9 start-page: 431 year: 2008 ident: 10.1016/j.celrep.2019.02.091_bib16 article-title: Membrane nanotubes: dynamic long-distance connections between animal cells publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2399 – volume: 182 start-page: 338 year: 2000 ident: 10.1016/j.celrep.2019.02.091_bib66 article-title: In vivo cytolysis and fusion of human immunodeficiency virus type 1-infected lymphocytes in lymphoid tissue publication-title: J. Infect. Dis. doi: 10.1086/315640 – volume: 73 start-page: 6680 year: 1999 ident: 10.1016/j.celrep.2019.02.091_bib77 article-title: Patterns of chemokine receptor fusion cofactor utilization by human immunodeficiency virus type 1 variants from the lungs and blood publication-title: J. Virol. doi: 10.1128/JVI.73.8.6680-6690.1999 – volume: 33 start-page: 301 year: 2015 ident: 10.1016/j.celrep.2019.02.091_bib62 article-title: Brief reports: lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes publication-title: Stem Cells doi: 10.1002/stem.1835 – volume: 37 start-page: 147 year: 2016 ident: 10.1016/j.celrep.2019.02.091_bib13 article-title: Human immunodeficiency virus infection and host defense in the lungs publication-title: Semin. Respir. Crit. Care Med. doi: 10.1055/s-0036-1572553 – volume: 41 start-page: 14 year: 2014 ident: 10.1016/j.celrep.2019.02.091_bib60 article-title: Macrophage activation and polarization: nomenclature and experimental guidelines publication-title: Immunity doi: 10.1016/j.immuni.2014.06.008 – volume: 217 start-page: 1865 year: 2018 ident: 10.1016/j.celrep.2019.02.091_bib46 article-title: High turnover of tissue macrophages contributes to tuberculosis reactivation in simian immunodeficiency virus-infected rhesus macaques publication-title: J. Infect. Dis. doi: 10.1093/infdis/jix625 – volume: 90 start-page: 5643 year: 2016 ident: 10.1016/j.celrep.2019.02.091_bib3 article-title: Quantitation of productively infected monocytes and macrophages of simian immunodeficiency virus-infected macaques publication-title: J. Virol. doi: 10.1128/JVI.00290-16 – volume: 12 start-page: 50 year: 2015 ident: 10.1016/j.celrep.2019.02.091_bib26 article-title: A single-residue change in the HIV-1 V3 loop associated with maraviroc resistance impairs CCR5 binding affinity while increasing replicative capacity publication-title: Retrovirology doi: 10.1186/s12977-015-0177-1 – volume: 125 start-page: 1611 year: 2015 ident: 10.1016/j.celrep.2019.02.091_bib84 article-title: HIV-1 reprograms the migration of macrophages publication-title: Blood doi: 10.1182/blood-2014-08-596775 – volume: 41 start-page: 191 year: 2012 ident: 10.1016/j.celrep.2019.02.091_bib43 article-title: The non-human primate model of tuberculosis publication-title: J. Med. Primatol. doi: 10.1111/j.1600-0684.2012.00536.x – volume: 23 start-page: 638 year: 2017 ident: 10.1016/j.celrep.2019.02.091_bib37 article-title: HIV persistence in tissue macrophages of humanized myeloid-only mice during antiretroviral therapy publication-title: Nat. Med. doi: 10.1038/nm.4319 – volume: 19 start-page: 304 year: 2016 ident: 10.1016/j.celrep.2019.02.091_bib74 article-title: Macrophages and HIV-1: an unhealthy constellation publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.02.013 – volume: 103 start-page: 421 year: 2018 ident: 10.1016/j.celrep.2019.02.091_bib41 article-title: The evolution of HIV-1 entry phenotypes as a guide to changing target cells publication-title: J. Leukoc. Biol. doi: 10.1002/JLB.2RI0517-200R – volume: 195 start-page: 495 year: 2002 ident: 10.1016/j.celrep.2019.02.091_bib38 article-title: Maximal HIV-1 replication in alveolar macrophages during tuberculosis requires both lymphocyte contact and cytokines publication-title: J. Exp. Med. doi: 10.1084/jem.20011614 – volume: 7 start-page: 727 year: 1994 ident: 10.1016/j.celrep.2019.02.091_bib52 article-title: Mycobacterium tuberculosis and its purified protein derivative activate expression of the human immunodeficiency virus publication-title: J. Acquir. Immune Defic. Syndr. – volume: 209 start-page: 1055 year: 2013 ident: 10.1016/j.celrep.2019.02.091_bib80 article-title: HIV-1 infection of macrophages dysregulates innate immune responses to Mycobacterium tuberculosis by inhibition of interleukin-10 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jit621 – volume: 20 start-page: 1151 year: 2002 ident: 10.1016/j.celrep.2019.02.091_bib12 article-title: A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes publication-title: Nat. Biotechnol. doi: 10.1038/nbt745 – volume: 68 start-page: 4736 year: 2000 ident: 10.1016/j.celrep.2019.02.091_bib51 article-title: Nonopsonic phagocytosis of zymosan and Mycobacterium kansasii by CR3 (CD11b/CD18) involves distinct molecular determinants and is or is not coupled with NADPH oxidase activation publication-title: Infect. Immun. doi: 10.1128/IAI.68.8.4736-4745.2000 – volume: 175 start-page: 1531 year: 1997 ident: 10.1016/j.celrep.2019.02.091_bib56 article-title: Infection of human monocytes with Mycobacterium tuberculosis enhances human immunodeficiency virus type 1 replication and transmission to T cells publication-title: J. Infect. Dis. doi: 10.1086/516494 – volume: 79 start-page: 1407 year: 2011 ident: 10.1016/j.celrep.2019.02.091_bib17 article-title: HIV-1/Mycobacterium tuberculosis coinfection immunology: how does HIV-1 exacerbate tuberculosis? publication-title: Infect. Immun. doi: 10.1128/IAI.01126-10 – volume: 184 start-page: 7030 year: 2010 ident: 10.1016/j.celrep.2019.02.091_bib83 article-title: HIV-1 Nef triggers macrophage fusion in a p61Hck- and protease-dependent manner publication-title: J. Immunol. doi: 10.4049/jimmunol.0903345 – volume: 204 start-page: 154 year: 2011 ident: 10.1016/j.celrep.2019.02.091_bib9 article-title: Soluble CD163 made by monocyte/macrophages is a novel marker of HIV activity in early and chronic infection prior to and after anti-retroviral therapy publication-title: J. Infect. Dis. doi: 10.1093/infdis/jir214 – volume: 7 start-page: 981 year: 2015 ident: 10.1016/j.celrep.2019.02.091_bib86 article-title: Tuberculous pleural effusions: advances and controversies publication-title: J. Thorac. Dis. – volume: 31 start-page: 475 year: 2013 ident: 10.1016/j.celrep.2019.02.091_bib63 article-title: The immune response in tuberculosis publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032712-095939 – volume: 71 start-page: 44 year: 2016 ident: 10.1016/j.celrep.2019.02.091_bib58 article-title: Exosomes and nanotubes: control of immune cell communication publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2015.12.006 – volume: 16 start-page: 80 year: 2018 ident: 10.1016/j.celrep.2019.02.091_bib6 article-title: Pathogenesis of HIV-1 and Mycobacterium tuberculosis co-infection publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2017.128 – volume: 95 start-page: 2324 year: 1995 ident: 10.1016/j.celrep.2019.02.091_bib90 article-title: Mycobacterium tuberculosis enhances human immunodeficiency virus-1 replication by transcriptional activation at the long terminal repeat publication-title: J. Clin. Invest. doi: 10.1172/JCI117924 – volume: 9 start-page: eaaj2347 year: 2017 ident: 10.1016/j.celrep.2019.02.091_bib71 article-title: Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich’s ataxia publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaj2347 – volume: 10 start-page: 211 year: 2008 ident: 10.1016/j.celrep.2019.02.091_bib78 article-title: Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission publication-title: Nat. Cell Biol. doi: 10.1038/ncb1682 – volume: 15 start-page: 451 year: 2010 ident: 10.1016/j.celrep.2019.02.091_bib53 article-title: Update on tuberculous pleural effusion publication-title: Respirology doi: 10.1111/j.1440-1843.2010.01723.x – volume: 90 start-page: 69 year: 2011 ident: 10.1016/j.celrep.2019.02.091_bib4 article-title: Paradoxical role of CD16+CCR2+CCR5+ monocytes in tuberculosis: efficient APC in pleural effusion but also mark disease severity in blood publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.1010577 – volume: 10 start-page: 333 year: 2017 ident: 10.1016/j.celrep.2019.02.091_bib2 article-title: Tunneling nanotubes and gap junctions-their role in long-range intercellular communication during development, health, and disease conditions publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2017.00333 – volume: 11 start-page: 1427 year: 2009 ident: 10.1016/j.celrep.2019.02.091_bib34 article-title: M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex publication-title: Nat. Cell Biol. doi: 10.1038/ncb1990 – volume: 33 start-page: 406 year: 2005 ident: 10.1016/j.celrep.2019.02.091_bib79 article-title: Interleukin-10 induces inhibitory C/EBPbeta through STAT-3 and represses HIV-1 transcription in macrophages publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/rcmb.2005-0140OC – volume: 276 start-page: 1857 year: 1997 ident: 10.1016/j.celrep.2019.02.091_bib68 article-title: Macrophages as a source of HIV during opportunistic infections publication-title: Science doi: 10.1126/science.276.5320.1857 |
SSID | ssj0000601194 |
Score | 2.5065813 |
Snippet | The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1... The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3586 |
SubjectTerms | Adult Aged AIDS Animals biomarker Cells, Cultured co-infection Coinfection - pathology Coinfection - virology Female HIV Infections - complications HIV Infections - immunology HIV Infections - pathology HIV Infections - virology HIV-1 Humans IL-10 Immunology Interleukin-10 - metabolism Life Sciences Macaca mulatta macrophage Macrophage Activation Macrophages - pathology Macrophages - virology Male Microbiology and Parasitology Middle Aged monocyte Mycobacterium tuberculosis Nanotubes Signal Transduction STAT3 STAT3 Transcription Factor - metabolism tuberculosis Tuberculosis, Pulmonary - complications Tuberculosis, Pulmonary - immunology Tuberculosis, Pulmonary - pathology tunneling nanotubes viral spread Virology Virus Replication Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgJSQuiDfhJYO4Rhu_8jgW2KpFu1wIaG-W7dhqUZWiNlkt_56ZPKoGDr1wzcNOPOOZz_Lnbwj5YKSDRYBxsfKKx1IFFedcCjAIoAOHObCrdXj1NV18l1-u1fVRqS_khPXywP3AnVfBVsEJYU0RZJV7471NKgEwtwrMZx6jL-S8o8VUH4NRywy3lDlHzhaX2XhuriN3Ob_ZeZSrZEUn2VmwSV7q5Psn6enuCnmS_4LQv7mUR8lp_pA8GFAlnfV_84jc8fVjcq-vM_n7CdmVrfU71262-_WeXtwaB4OJIJMulj9iRpcDI6umQ9keuryEyHn-rZyVIv481MltaNkiKwaSHYWgvG2gUTofDz_SdU2vDBYEW0GI2j8l5fyi_LSIh2ILsUt50cSpYY4FmUtWKZizFoAJg6WUN6nwwikVQmqTkMvgbFA8dbnzMrNcmswAyLTiGTmrt7V_QahSlUsyU5jEOCmlssaw3CZZKHAB6mxExDjS2g1C5FgPY6NHxtlP3dtHo310wjXYJyLx4a1fvRDHiec_ohEPz6KMdncBnEsPzqVPOVdEstEF9IBIeqQBTa1PdP8ePGbS-2J2qfEahFU8zctueETejQ6lYVbjVo2p_bbda46MtBzQrojI897BDm0JaD4TTMLHTVxv0tn0Tr1edcrhaSYArucv_8fYvCL38X-Rj8fT1-Ss2bX-DQC0xr7t5uIf7XM6YQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Open Access Journals (Elsevier) dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWlZC4IN6ElwziGjWO7TyO3WWrFu1y2YB6s2zHpllVyapNEfx7ZvKoCBxW4hjHsWPPeOabZB6EfNTCghGgbSidjEMhvQyzWHAgCKADizqwq3V49SVZfhWf13J9Qs7HWBh0qxxkfy_TO2k9tMyG3ZzdVtXsOgbbBbRTChAEf0Rixk8usi6Ib312_M6C-UZYVw8R-4f4wBhB17l5WbfdOUxcyfIueWfOJhqqS-Q_UVT3Nugx-S8c_dur8g81tXhEHg74ks77JTwmJ65-Qu73FSd_PSW74mDczh62zb7a04uf2sK2Ityky9W3kNHV4JtV06GAD11dggydXRfzgoefhoq5LS0O6B8Dao-CeG5aGJQuxjBIWtX0SmNpsA0Iq_0zUiwuivNlOJRdCG0S522YaGaZF5lgpYTTawCiMDCqnE6441ZK7xMT-Ux4a7yME5tZJ1ITC51qgJuGPyendVO7l4RKWdoo1bmOtBVCSKM1y0yU-hxNUWsCwsedVnZISY6VMbZq9D27UT19FNJHRbEC-gQkPD5126fkuKP_GRLx2BcTancNze67GjhKld6U3nJudO5FmTntnIlKDtZU6ZlLXUDSkQXUhD9hqOqO6T8Ax0xmX84vFbaBgMW4XvYjDsj7kaEUnG_8aaNr1xz2KkbftAxwLw_Ii57BjmNxGD7lTMDLTVhvMtn0Tl1tuhziScoBuGev_ntZr8kDvEJ3vDh5Q07b3cG9BXzWmnfdAfwNbKw4cA priority: 102 providerName: Elsevier |
Title | Tuberculosis Exacerbates HIV-1 Infection through IL-10/STAT3-Dependent Tunneling Nanotube Formation in Macrophages |
URI | https://dx.doi.org/10.1016/j.celrep.2019.02.091 https://www.ncbi.nlm.nih.gov/pubmed/30917314 https://www.proquest.com/docview/2199182323 https://hal.science/hal-03034321 https://pubmed.ncbi.nlm.nih.gov/PMC6733268 https://doaj.org/article/dfbdfc33ba9f4d8eaeeb0d3758df1e7e |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLbGEGgviDsZMBnEayCJ7VweEOpgVYtWXshQ3yzbsdeiKmFpi7Z_zzm5FAJMe2mlNLEbn9t3kuPzEfJGcQNJgDK-sCLyuXDCTyPOQCCADgzGwIbrcPYlnpzxz3Mx3yM9Z2u3gOv_pnbIJ3VWr95eXlx9AIN__7tWy9hVbbH7ZJg1HThxO_ttiE0JmuqsA_ytb8YeZ7zfQ3fNxQfkLoOvhIV8EK6arv6DqHVrgeWT_2LTv0ss_4hZ4_vkXgc26ajVjgdkz5YPyZ2WfvLqEanzrba12a6q9XJNTy6VgTVG7Ekn029-SKddoVZJOzYfOj0Fh_ruaz7Kmf-po8_d0HyLxTIQAyn46moDg9JxvyeSLks6U8gTtgDPtX5M8vFJ_nHidxwMvomjbOPHKjSh4ykPCwGmrAGvhJBhWRUzy4wQzsU6cCl3RjsRxSY1lic64ipRgD01e0L2y6q0zwgVojBBojIVKMM5F1qpMNVB4jLMS432COtXWpquPznSZKxkX4j2XbaikigqGUQSZOQRf3fVj7Y_xw3nH6MQd-did-3mQFWfy85YZeF04QxjWmWOF6lV1uqgYJBaFS60ifVI0quA7IBKC0BgqOUN078GjRnMPhmdSjwG3hY3-YY_I4-86hVKgrHjGxxV2mq7lhEWqqUAgplHnrYKthur11j4cwPVG0w2_KVcLpqG4nHCAMWnh9eO-Zwc4E1g7V0UvyD7m3prXwIY2-ij5iEGfE7nx0eNrf0CbU4zbw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZ2FyG4IN6Up0Fco8axncexu2zVQruXDag3y3bsbVCVrvpYLf-emTwqAoeVuDqxnXjGM98k4_kI-ayFhSBA20A6GQVCehmkkeAgEEAHFn1gzXU4v4gn38XXhVwckbPuLAymVba2v7HptbVuW4btag6vy3J4GUHsAt4pAQiCPyL5MbkHaCBB_obp4vTwoQULjrCaEBE7BNijO0JX53lZt9o4rFzJsrp6Z8Z6Lqqu5N_zVMdLTJn8F4_-nVb5h58aPyaPWoBJR807PCFHrnpK7jeUk7-ekU2-N25j96v1ttzS81ttYV0Rb9LJ9EfA6LRNzqpoy-BDpzMwosPLfJTz4EtLmbuj-R4TZMDvUbDP6x0MSsfdOUhaVnSukRtsCdZq-5zk4_P8bBK0vAuBjaNsF8SaWeZFKlghYfsawCgMoiqnY-64ldL72IQ-Fd4aL6PYptaJxERCJxrwpuEvyEm1rtwrQqUsbJjoTIfaCiGk0ZqlJkx8hrGoNQPCu5VWtq1JjtQYK9Uln_1UjXwUykeFkQL5DEhw6HXd1OS44_5TFOLhXqyoXTesN1eqVSlVeFN4y7nRmRdF6rRzJiw4hFOFZy5xA5J0KqB6CgpDlXdM_wk0pjf7ZDRT2AYWFg_2sptoQD52CqVgg-NfG1259X6rIkxOSwH48gF52SjYYSwOwyecCXi4nur1JutfqcplXUQ8Tjgg9_T1f7_WB_Jgks9naja9-PaGPMQrmJsXxW_JyW6zd-8ArO3M-3oz_gYS_DuP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuberculosis+Exacerbates+HIV-1+Infection+through+IL-10%2FSTAT3-Dependent+Tunneling+Nanotube+Formation+in+Macrophages&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Souriant%2C+Shanti&rft.au=Balboa%2C+Luciana&rft.au=Dupont%2C+Maeva&rft.au=Pingris%2C+Karine&rft.date=2019-03-26&rft.eissn=2211-1247&rft.volume=26&rft.issue=13&rft.spage=3586&rft_id=info:doi/10.1016%2Fj.celrep.2019.02.091&rft_id=info%3Apmid%2F30917314&rft.externalDocID=30917314 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |