Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data

Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classifica...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 59; no. 3; pp. 2217 - 2230
Main Authors Cho, Youngsang, Seong, Joon-Kyung, Jeong, Yong, Shin, Sung Yong
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2012
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classification require a large number of structural data due to complex and variable patterns of brain atrophy. In this paper, we propose an incremental method for AD classification using cortical thickness data. We represent the cortical thickness data of a subject in terms of their spatial frequency components, employing the manifold harmonic transform. The basis functions for this transform are obtained from the eigenfunctions of the Laplace–Beltrami operator, which are dependent only on the geometry of a cortical surface but not on the cortical thickness defined on it. This facilitates individual subject classification based on incremental learning. In general, methods based on region-wise features poorly reflect the detailed spatial variation of cortical thickness, and those based on vertex-wise features are sensitive to noise. Adopting a vertex-wise cortical thickness representation, our method can still achieve robustness to noise by filtering out high frequency components of the cortical thickness data while reflecting their spatial variation. This compromise leads to high accuracy in AD classification. We utilized MR volumes provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) to validate the performance of the method. Our method discriminated AD patients from Healthy Control (HC) subjects with 82% sensitivity and 93% specificity. It also discriminated Mild Cognitive Impairment (MCI) patients, who converted to AD within 18months, from non-converted MCI subjects with 63% sensitivity and 76% specificity. Moreover, it showed that the entorhinal cortex was the most discriminative region for classification, which is consistent with previous pathological findings. In comparison with other classification methods, our method demonstrated high classification performance in both categories, which supports the discriminative power of our method in both AD diagnosis and AD prediction. ► Presents an incremental method for AD classification using cortical thickness data. ► Achieves robustness to noises by filtering out high frequency components. ► High classification accuracy in both AD diagnosis and AD prediction.
AbstractList Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer’s disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classification require a large number of structural data due to complex and variable patterns of brain atrophy. In this paper, we propose an incremental method for AD classification using cortical thickness data. We represent the cortical thickness data of a subject in terms of their spatial frequency components, employing the manifold harmonic transform. The basis functions for this transform are obtained from the eigenfunctions of the Laplace-Beltrami operator, which are dependent only on the geometry of a cortical surface but not on the cortical thickness defined on it. This facilitates individual subject classification based on incremental learning. In general, methods based on region-wise features poorly reflect the detailed spatial variation of cortical thickness, and those based on vertex-wise features are sensitive to noise. Adopting a vertex-wise cortical thickness representation, our method can still achieve robustness to noise by filtering out high frequency components of the cortical thickness data while reflecting their spatial variation. This compromise leads to high accuracy in AD classification. We utilized MR volumes provided by Alzheimer’s Disease Neuroimaging Initiative (ADNI) to validate the performance of the method. Our method discriminated AD patients from Healthy Control (HC) subjects with 82% sensitivity and 93% specificity. It also discriminated Mild Cognitive Impairment (MCI) patients, who converted to AD within 18 month, from non-converted MCI subjects with 63% sensitivity and 76% specificity. Moreover, it showed that the entorhinal cortex was the most discriminative region for classification, which is consistent with previous pathological findings. In comparison with other classification methods, our method demonstrated high classification performance in the both categories, which supports the discriminative power of our method in both AD diagnosis and AD prediction.
Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classification require a large number of structural data due to complex and variable patterns of brain atrophy. In this paper, we propose an incremental method for AD classification using cortical thickness data. We represent the cortical thickness data of a subject in terms of their spatial frequency components, employing the manifold harmonic transform. The basis functions for this transform are obtained from the eigenfunctions of the Laplace-Beltrami operator, which are dependent only on the geometry of a cortical surface but not on the cortical thickness defined on it. This facilitates individual subject classification based on incremental learning. In general, methods based on region-wise features poorly reflect the detailed spatial variation of cortical thickness, and those based on vertex-wise features are sensitive to noise. Adopting a vertex-wise cortical thickness representation, our method can still achieve robustness to noise by filtering out high frequency components of the cortical thickness data while reflecting their spatial variation. This compromise leads to high accuracy in AD classification. We utilized MR volumes provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) to validate the performance of the method. Our method discriminated AD patients from Healthy Control (HC) subjects with 82% sensitivity and 93% specificity. It also discriminated Mild Cognitive Impairment (MCI) patients, who converted to AD within 18months, from non-converted MCI subjects with 63% sensitivity and 76% specificity. Moreover, it showed that the entorhinal cortex was the most discriminative region for classification, which is consistent with previous pathological findings. In comparison with other classification methods, our method demonstrated high classification performance in both categories, which supports the discriminative power of our method in both AD diagnosis and AD prediction.
Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classification require a large number of structural data due to complex and variable patterns of brain atrophy. In this paper, we propose an incremental method for AD classification using cortical thickness data. We represent the cortical thickness data of a subject in terms of their spatial frequency components, employing the manifold harmonic transform. The basis functions for this transform are obtained from the eigenfunctions of the Laplace-Beltrami operator, which are dependent only on the geometry of a cortical surface but not on the cortical thickness defined on it. This facilitates individual subject classification based on incremental learning. In general, methods based on region-wise features poorly reflect the detailed spatial variation of cortical thickness, and those based on vertex-wise features are sensitive to noise. Adopting a vertex-wise cortical thickness representation, our method can still achieve robustness to noise by filtering out high frequency components of the cortical thickness data while reflecting their spatial variation. This compromise leads to high accuracy in AD classification. We utilized MR volumes provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) to validate the performance of the method. Our method discriminated AD patients from Healthy Control (HC) subjects with 82% sensitivity and 93% specificity. It also discriminated Mild Cognitive Impairment (MCI) patients, who converted to AD within 18 months, from non-converted MCI subjects with 63% sensitivity and 76% specificity. Moreover, it showed that the entorhinal cortex was the most discriminative region for classification, which is consistent with previous pathological findings. In comparison with other classification methods, our method demonstrated high classification performance in both categories, which supports the discriminative power of our method in both AD diagnosis and AD prediction.
Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classification require a large number of structural data due to complex and variable patterns of brain atrophy. In this paper, we propose an incremental method for AD classification using cortical thickness data. We represent the cortical thickness data of a subject in terms of their spatial frequency components, employing the manifold harmonic transform. The basis functions for this transform are obtained from the eigenfunctions of the Laplace–Beltrami operator, which are dependent only on the geometry of a cortical surface but not on the cortical thickness defined on it. This facilitates individual subject classification based on incremental learning. In general, methods based on region-wise features poorly reflect the detailed spatial variation of cortical thickness, and those based on vertex-wise features are sensitive to noise. Adopting a vertex-wise cortical thickness representation, our method can still achieve robustness to noise by filtering out high frequency components of the cortical thickness data while reflecting their spatial variation. This compromise leads to high accuracy in AD classification. We utilized MR volumes provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) to validate the performance of the method. Our method discriminated AD patients from Healthy Control (HC) subjects with 82% sensitivity and 93% specificity. It also discriminated Mild Cognitive Impairment (MCI) patients, who converted to AD within 18months, from non-converted MCI subjects with 63% sensitivity and 76% specificity. Moreover, it showed that the entorhinal cortex was the most discriminative region for classification, which is consistent with previous pathological findings. In comparison with other classification methods, our method demonstrated high classification performance in both categories, which supports the discriminative power of our method in both AD diagnosis and AD prediction. ► Presents an incremental method for AD classification using cortical thickness data. ► Achieves robustness to noises by filtering out high frequency components. ► High classification accuracy in both AD diagnosis and AD prediction.
Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classification require a large number of structural data due to complex and variable patterns of brain atrophy. In this paper, we propose an incremental method for AD classification using cortical thickness data. We represent the cortical thickness data of a subject in terms of their spatial frequency components, employing the manifold harmonic transform. The basis functions for this transform are obtained from the eigenfunctions of the Laplace-Beltrami operator, which are dependent only on the geometry of a cortical surface but not on the cortical thickness defined on it. This facilitates individual subject classification based on incremental learning. In general, methods based on region-wise features poorly reflect the detailed spatial variation of cortical thickness, and those based on vertex-wise features are sensitive to noise. Adopting a vertex-wise cortical thickness representation, our method can still achieve robustness to noise by filtering out high frequency components of the cortical thickness data while reflecting their spatial variation. This compromise leads to high accuracy in AD classification. We utilized MR volumes provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) to validate the performance of the method. Our method discriminated AD patients from Healthy Control (HC) subjects with 82% sensitivity and 93% specificity. It also discriminated Mild Cognitive Impairment (MCI) patients, who converted to AD within 18 months, from non-converted MCI subjects with 63% sensitivity and 76% specificity. Moreover, it showed that the entorhinal cortex was the most discriminative region for classification, which is consistent with previous pathological findings. In comparison with other classification methods, our method demonstrated high classification performance in both categories, which supports the discriminative power of our method in both AD diagnosis and AD prediction.Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classification require a large number of structural data due to complex and variable patterns of brain atrophy. In this paper, we propose an incremental method for AD classification using cortical thickness data. We represent the cortical thickness data of a subject in terms of their spatial frequency components, employing the manifold harmonic transform. The basis functions for this transform are obtained from the eigenfunctions of the Laplace-Beltrami operator, which are dependent only on the geometry of a cortical surface but not on the cortical thickness defined on it. This facilitates individual subject classification based on incremental learning. In general, methods based on region-wise features poorly reflect the detailed spatial variation of cortical thickness, and those based on vertex-wise features are sensitive to noise. Adopting a vertex-wise cortical thickness representation, our method can still achieve robustness to noise by filtering out high frequency components of the cortical thickness data while reflecting their spatial variation. This compromise leads to high accuracy in AD classification. We utilized MR volumes provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) to validate the performance of the method. Our method discriminated AD patients from Healthy Control (HC) subjects with 82% sensitivity and 93% specificity. It also discriminated Mild Cognitive Impairment (MCI) patients, who converted to AD within 18 months, from non-converted MCI subjects with 63% sensitivity and 76% specificity. Moreover, it showed that the entorhinal cortex was the most discriminative region for classification, which is consistent with previous pathological findings. In comparison with other classification methods, our method demonstrated high classification performance in both categories, which supports the discriminative power of our method in both AD diagnosis and AD prediction.
Author Seong, Joon-Kyung
Shin, Sung Yong
Jeong, Yong
Cho, Youngsang
AuthorAffiliation a Computer Science Department, KAIST, Korea
c Department of Neurology, Samsung Medical Center, Korea
b School of Computer Science and Engineering, Soongsil University, Korea
d Department of Bio and Brain Engineering, KAIST, Korea
AuthorAffiliation_xml – name: a Computer Science Department, KAIST, Korea
– name: d Department of Bio and Brain Engineering, KAIST, Korea
– name: b School of Computer Science and Engineering, Soongsil University, Korea
– name: c Department of Neurology, Samsung Medical Center, Korea
Author_xml – sequence: 1
  givenname: Youngsang
  surname: Cho
  fullname: Cho, Youngsang
  organization: Computer Science Department, KAIST, Republic of Korea
– sequence: 2
  givenname: Joon-Kyung
  surname: Seong
  fullname: Seong, Joon-Kyung
  email: joon.swallow@gmail.com
  organization: School of Computer Science and Engineering, Soongsil University, Republic of Korea
– sequence: 3
  givenname: Yong
  surname: Jeong
  fullname: Jeong, Yong
  organization: Department of Bio and Brain Engineering, KAIST, Republic of Korea
– sequence: 4
  givenname: Sung Yong
  surname: Shin
  fullname: Shin, Sung Yong
  organization: Computer Science Department, KAIST, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22008371$$D View this record in MEDLINE/PubMed
BookMark eNqNks9u1DAQhyNURP_AKyBLHHrKYjtxEl8QpWqhUiUucLYcZ7I7W8de7GSl5VV4WRy2bKGnvTiR_eXzTOZ3np047yDLCKMLRln1fr1wMAWPg17CglPGFlQuaCNeZGeMSpFLUfOT-V0UecOYPM3OY1xTSiUrm1fZKeeUNkXNzrJfd67DLXaTtiRO7RrMSIzVMWKPRo_oHel9IFf25wpwgHAZSYcRdATSpqUjCUBnAgzgxuSwoINDtyRTnFdN4iZZ0kEf4McEzuxIgE2AOON_9L4nxocx3WbJuELz4CCmS_SoX2cve20jvHl8XmTfb2--XX_J779-vru-us9NxeWYi16IlrddWZW0Mn1RtqwE3TaNrBoohaCM16yTUCSgKHqjuTQ1tFr2hqWtsrjIPuy9m6kdoDOptKCt2oT0f8NOeY3q_xOHK7X0WyWaUvJqFlw-CoJPTcZRDRgNWKsd-CkqyZmoaip4It89I9d-Ci51p5go64JVUtJEvf23oEMlf8eWgGYPmOBjDNAfEEbVnBC1Vk8JUXNCFJUqJeSp2cOnBveTSK2hPUbwaS-ANJItQlDRYBosdBhSelTn8RjJx2cSY9HNGXiA3XGK30m9-Uw
CitedBy_id crossref_primary_10_1016_j_neuroimage_2013_06_033
crossref_primary_10_1038_s41598_018_21118_1
crossref_primary_10_3390_app13063612
crossref_primary_10_1016_j_nicl_2022_102948
crossref_primary_10_3389_fnagi_2022_869387
crossref_primary_10_1038_srep43270
crossref_primary_10_1111_ene_15775
crossref_primary_10_1145_3398728
crossref_primary_10_1016_j_neuroimage_2014_05_078
crossref_primary_10_1016_j_neurobiolaging_2018_10_010
crossref_primary_10_1002_mds_27106
crossref_primary_10_1016_j_neurobiolaging_2019_10_011
crossref_primary_10_1007_s10072_021_05568_6
crossref_primary_10_1148_radiol_212400
crossref_primary_10_1155_2021_5531940
crossref_primary_10_3390_app9153063
crossref_primary_10_3390_life11050388
crossref_primary_10_1109_TBME_2016_2553663
crossref_primary_10_1049_ipr2_12605
crossref_primary_10_1371_journal_pone_0075602
crossref_primary_10_1155_2020_3743171
crossref_primary_10_1109_TCBB_2021_3053061
crossref_primary_10_1002_hbm_23922
crossref_primary_10_1371_journal_pone_0168011
crossref_primary_10_1002_hbm_23483
crossref_primary_10_1016_j_neurobiolaging_2017_06_027
crossref_primary_10_1007_s11042_018_6287_8
crossref_primary_10_1016_j_bbe_2021_02_006
crossref_primary_10_1002_hbm_22431
crossref_primary_10_1016_j_neurobiolaging_2024_01_005
crossref_primary_10_1016_j_neuroimage_2014_02_028
crossref_primary_10_1016_j_bspc_2023_104787
crossref_primary_10_3988_jcn_2021_17_2_307
crossref_primary_10_3389_fnins_2016_00394
crossref_primary_10_1007_s42979_024_03441_9
crossref_primary_10_1016_j_nicl_2023_103533
crossref_primary_10_1002_hcs2_84
crossref_primary_10_1049_ipr2_12618
crossref_primary_10_1016_j_artmed_2020_101940
crossref_primary_10_1111_jon_12163
crossref_primary_10_3389_fnagi_2018_00252
crossref_primary_10_1016_j_neuroimage_2014_10_002
crossref_primary_10_1038_s41531_022_00429_1
crossref_primary_10_1016_j_jneumeth_2013_10_003
crossref_primary_10_1109_TPAMI_2018_2889096
crossref_primary_10_1016_j_eswa_2023_122253
crossref_primary_10_3233_JAD_161080
crossref_primary_10_1289_EHP7133
crossref_primary_10_1038_srep26712
crossref_primary_10_1016_j_imu_2020_100305
crossref_primary_10_3390_life12020275
crossref_primary_10_1016_j_neuroimage_2013_05_054
crossref_primary_10_1016_j_jalz_2014_11_001
crossref_primary_10_26599_BSA_2021_9050005
crossref_primary_10_1186_s13195_021_00900_w
crossref_primary_10_1038_s41598_022_16747_6
crossref_primary_10_3389_fnins_2020_598868
crossref_primary_10_1016_j_media_2021_102076
crossref_primary_10_1016_j_jneumeth_2022_109745
crossref_primary_10_1016_j_ejmp_2017_04_027
crossref_primary_10_1016_j_cmpb_2013_12_023
crossref_primary_10_1016_j_neuroimage_2017_03_057
crossref_primary_10_1016_j_neuroimage_2012_12_052
crossref_primary_10_1145_3344998
crossref_primary_10_1016_j_mri_2014_05_008
crossref_primary_10_1002_hbm_25168
crossref_primary_10_1007_s00521_022_07263_9
crossref_primary_10_3233_JAD_221061
crossref_primary_10_1007_s11682_015_9430_4
crossref_primary_10_1016_j_knosys_2020_106688
crossref_primary_10_1109_TBME_2015_2466616
crossref_primary_10_1038_srep39880
crossref_primary_10_1016_j_nicl_2012_10_002
crossref_primary_10_1007_s00259_018_4081_5
crossref_primary_10_1016_j_neurobiolaging_2014_05_038
crossref_primary_10_1109_ACCESS_2019_2936415
crossref_primary_10_4258_hir_2014_20_1_61
crossref_primary_10_1016_j_bspc_2020_102362
crossref_primary_10_1016_j_jneumeth_2017_12_011
crossref_primary_10_2217_bmm_14_42
crossref_primary_10_3346_jkms_2020_35_e292
crossref_primary_10_1093_braincomms_fcaf027
crossref_primary_10_1007_s11682_015_9356_x
crossref_primary_10_1016_j_pscychresns_2019_09_002
crossref_primary_10_1007_s00259_019_04663_3
crossref_primary_10_1109_TBME_2016_2549363
crossref_primary_10_1016_S1474_4422_15_00093_9
crossref_primary_10_1016_j_compbiomed_2017_02_011
crossref_primary_10_1007_s12021_014_9238_1
crossref_primary_10_1038_s41598_019_43882_4
crossref_primary_10_3233_JAD_200830
crossref_primary_10_1016_j_cogsys_2018_12_015
crossref_primary_10_3348_jksr_2023_0006
crossref_primary_10_1016_j_compbiomed_2020_104010
crossref_primary_10_1371_journal_pone_0033182
crossref_primary_10_3390_brainsci12070905
crossref_primary_10_1007_s00330_019_06602_0
crossref_primary_10_1109_TMI_2016_2515021
crossref_primary_10_1007_s11011_018_0296_1
crossref_primary_10_3389_fnins_2022_851871
crossref_primary_10_1038_s41598_022_05531_1
crossref_primary_10_1155_2019_2492719
crossref_primary_10_3389_fnins_2018_00916
crossref_primary_10_1109_TMI_2021_3077079
crossref_primary_10_1016_j_nicl_2019_101811
crossref_primary_10_1016_j_media_2014_04_006
crossref_primary_10_1002_14651858_CD009628_pub2
crossref_primary_10_1016_j_nicl_2019_101929
crossref_primary_10_1038_s41598_018_37769_z
crossref_primary_10_3390_s18061752
crossref_primary_10_1016_j_bspc_2018_08_009
crossref_primary_10_3349_ymj_2023_0308
crossref_primary_10_1007_s12021_016_9318_5
crossref_primary_10_1016_j_media_2017_01_008
crossref_primary_10_1109_TCBB_2021_3051177
crossref_primary_10_1016_j_mri_2021_02_001
crossref_primary_10_1016_j_media_2015_10_008
crossref_primary_10_1038_s41598_018_22871_z
crossref_primary_10_1111_jon_12297
crossref_primary_10_4103_1673_5374_306071
crossref_primary_10_1016_j_neuroimage_2012_07_053
crossref_primary_10_1109_TBME_2015_2404809
crossref_primary_10_3233_JAD_160102
crossref_primary_10_1002_jmri_29631
crossref_primary_10_1093_brain_awaa075
crossref_primary_10_1016_j_neurobiolaging_2014_04_034
crossref_primary_10_1016_j_jalz_2013_05_1769
crossref_primary_10_3389_fninf_2017_00016
crossref_primary_10_1016_j_neuroimage_2014_03_036
crossref_primary_10_1007_s12021_012_9175_9
crossref_primary_10_1016_j_neunet_2023_04_018
crossref_primary_10_1007_s10916_018_1071_x
crossref_primary_10_1016_j_neuroimage_2012_09_058
crossref_primary_10_1007_s11682_018_9846_8
crossref_primary_10_3348_kjr_2020_0518
crossref_primary_10_1142_S0219467824500311
crossref_primary_10_1016_j_eswa_2015_03_011
crossref_primary_10_3390_brainsci7080109
crossref_primary_10_1038_s41598_018_22277_x
crossref_primary_10_1371_journal_pone_0129250
Cites_doi 10.1016/0022-3956(75)90026-6
10.1002/cem.1006
10.1016/j.neuroimage.2008.02.052
10.1016/j.neuroimage.2005.09.017
10.1109/TMI.2007.892519
10.1109/TMI.2006.882143
10.1016/j.neuroimage.2008.03.024
10.1093/cercor/bhh200
10.1016/j.neuroimage.2008.04.257
10.1109/34.598228
10.1111/j.1469-1809.1936.tb02137.x
10.1007/s11263-007-0075-7
10.1093/brain/awp123
10.1093/brain/awp105
10.1007/s00234-008-0463-x
10.1016/S0031-3203(00)00162-X
10.1523/JNEUROSCI.23-03-00994.2003
10.1016/j.neuroimage.2010.06.013
10.1093/cercor/bhn113
10.1016/j.neuroimage.2005.05.015
10.1109/TMI.2006.886812
10.1109/83.817604
10.1007/s00180-007-0039-y
10.1109/83.855432
10.1016/S1474-4422(04)00710-0
10.1001/archneur.56.3.303
10.1016/S0262-8856(02)00114-2
10.1016/j.neuroimage.2007.11.041
10.1109/TSMCB.2005.847744
10.1016/j.jalz.2008.08.006
10.1016/j.neuroimage.2009.05.036
10.1006/nimg.2002.1202
10.1016/j.neuroimage.2005.03.024
10.1016/S1053-8119(03)00041-7
10.1016/j.neuroimage.2008.10.031
10.1016/S1474-4422(09)70299-6
10.1093/brain/awm319
10.1016/j.neuroimage.2006.10.035
10.1145/954339.954342
10.1148/radiol.2481070876
ContentType Journal Article
Contributor Bresell, Anders
Bohorquez, Adriana
Arrighi, Michael
Boppana, Madhu
Awasthi, Sukrati
Bayley, Peter
Baird, Geoffrey
Bouttout, Haroune
Ayache, Nicholas
Bagepally, Bhavani
Avants, Brian
Borrie, Michael
Alcauter, Sarael
Aoyama, Eiji
Brickhouse, Michael
Barbash, Shahar
Battaglini, Iacopo
Bourgeat, Pierrick
Bocti, Christian
Black, Sandra
Bowman, DuBois
Baek, Young
Aghajanian, Jania
Ang, Amma
Abdi, Hervé
Bender, J Dennis
Bilgic, Basar
Baruchin, Andrea
Aksu, Yaman
Aisen, Paul
Babic, Tomislav
Biffi, Alessandro
Alin, Aylin
Amlien, Inge
Bhaskar, Uday
Agyemang, Alex
Breitner, Joihn
Bokde, Arun
Bienkowska, Katarzyna
Braskie, Meredith
Achuthan, Anusha
Beg, Mirza Faisal
Bittner, Daniel
Angersbach, Steve
Bednar, Martin
Bowman, Gene
Baker, Suzanne
Arumughababu, S Vethanayaki
Agrusti, Antonella
Anderson, Dallas
Ansarian, Reza
Alexander, Daniel
Beckett, Laurel
Beck, Irene
Almeida, Fabio
Becker, J Alex
Alvarez-Linera, Juan
Belloch, Vicente
Braunewell, Karl
Becker, James
Bartlett, Jonathan
Bloss, Cinnamon
Bedner, Arkadiusz
Bekris, Lynn
Aviv, Richard
Armor, Tom
Ahmad, Duaa
Contributor_xml – sequence: 1
  givenname: A
  surname: Saradha
  fullname: Saradha, A
– sequence: 2
  givenname: Hervé
  surname: Abdi
  fullname: Abdi, Hervé
– sequence: 3
  givenname: Ahmed
  surname: Abdulkadir
  fullname: Abdulkadir, Ahmed
– sequence: 4
  givenname: Deepa
  surname: Acharya
  fullname: Acharya, Deepa
– sequence: 5
  givenname: Anusha
  surname: Achuthan
  fullname: Achuthan, Anusha
– sequence: 6
  givenname: Nagesh
  surname: Adluru
  fullname: Adluru, Nagesh
– sequence: 7
  givenname: Jania
  surname: Aghajanian
  fullname: Aghajanian, Jania
– sequence: 8
  givenname: Antonella
  surname: Agrusti
  fullname: Agrusti, Antonella
– sequence: 9
  givenname: Alex
  surname: Agyemang
  fullname: Agyemang, Alex
– sequence: 10
  givenname: Jamila
  surname: Ahdidan
  fullname: Ahdidan, Jamila
– sequence: 11
  givenname: Duaa
  surname: Ahmad
  fullname: Ahmad, Duaa
– sequence: 12
  givenname: Shiek
  surname: Ahmed
  fullname: Ahmed, Shiek
– sequence: 13
  givenname: Paul
  surname: Aisen
  fullname: Aisen, Paul
– sequence: 14
  givenname: Alireza
  surname: Akhondi-Asl
  fullname: Akhondi-Asl, Alireza
– sequence: 15
  givenname: Yaman
  surname: Aksu
  fullname: Aksu, Yaman
– sequence: 16
  givenname: Roman
  surname: Alberca
  fullname: Alberca, Roman
– sequence: 17
  givenname: Sarael
  surname: Alcauter
  fullname: Alcauter, Sarael
– sequence: 18
  givenname: Daniel
  surname: Alexander
  fullname: Alexander, Daniel
– sequence: 19
  givenname: Aylin
  surname: Alin
  fullname: Alin, Aylin
– sequence: 20
  givenname: Fabio
  surname: Almeida
  fullname: Almeida, Fabio
– sequence: 21
  givenname: Juan
  surname: Alvarez-Linera
  fullname: Alvarez-Linera, Juan
– sequence: 22
  givenname: Inge
  surname: Amlien
  fullname: Amlien, Inge
– sequence: 23
  givenname: Shyam
  surname: Anand
  fullname: Anand, Shyam
– sequence: 24
  givenname: Dallas
  surname: Anderson
  fullname: Anderson, Dallas
– sequence: 25
  givenname: Amma
  surname: Ang
  fullname: Ang, Amma
– sequence: 26
  givenname: Steve
  surname: Angersbach
  fullname: Angersbach, Steve
– sequence: 27
  givenname: Reza
  surname: Ansarian
  fullname: Ansarian, Reza
– sequence: 28
  givenname: Eiji
  surname: Aoyama
  fullname: Aoyama, Eiji
– sequence: 29
  givenname: Arti
  surname: Appannah
  fullname: Appannah, Arti
– sequence: 30
  givenname: Konstantinos
  surname: Arfanakis
  fullname: Arfanakis, Konstantinos
– sequence: 31
  givenname: Tom
  surname: Armor
  fullname: Armor, Tom
– sequence: 32
  givenname: Michael
  surname: Arrighi
  fullname: Arrighi, Michael
– sequence: 33
  givenname: S Vethanayaki
  surname: Arumughababu
  fullname: Arumughababu, S Vethanayaki
– sequence: 34
  givenname: Vidhya
  surname: Arunagiri
  fullname: Arunagiri, Vidhya
– sequence: 35
  givenname: Cody
  surname: Ashe-McNalley
  fullname: Ashe-McNalley, Cody
– sequence: 36
  givenname: Wes
  surname: Ashford
  fullname: Ashford, Wes
– sequence: 37
  givenname: Aurelie
  surname: Le Page
  fullname: Le Page, Aurelie
– sequence: 38
  givenname: Brian
  surname: Avants
  fullname: Avants, Brian
– sequence: 39
  givenname: Richard
  surname: Aviv
  fullname: Aviv, Richard
– sequence: 40
  givenname: Sukrati
  surname: Awasthi
  fullname: Awasthi, Sukrati
– sequence: 41
  givenname: Nicholas
  surname: Ayache
  fullname: Ayache, Nicholas
– sequence: 42
  givenname: Mosun
  surname: Ayan-Oshodi
  fullname: Ayan-Oshodi, Mosun
– sequence: 43
  givenname: Murat
  surname: Ayhan
  fullname: Ayhan, Murat
– sequence: 44
  givenname: B V
  surname: Sumana
  fullname: Sumana, B V
– sequence: 45
  givenname: Tomislav
  surname: Babic
  fullname: Babic, Tomislav
– sequence: 46
  givenname: Young
  surname: Baek
  fullname: Baek, Young
– sequence: 47
  givenname: Bhavani
  surname: Bagepally
  fullname: Bagepally, Bhavani
– sequence: 48
  givenname: Geoffrey
  surname: Baird
  fullname: Baird, Geoffrey
– sequence: 49
  givenname: John
  surname: Baker
  fullname: Baker, John
– sequence: 50
  givenname: Suzanne
  surname: Baker
  fullname: Baker, Suzanne
– sequence: 51
  givenname: Arnold
  surname: Bakker
  fullname: Bakker, Arnold
– sequence: 52
  givenname: Shahar
  surname: Barbash
  fullname: Barbash, Shahar
– sequence: 53
  givenname: Jonathan
  surname: Bard
  fullname: Bard, Jonathan
– sequence: 54
  givenname: Warren
  surname: Barker
  fullname: Barker, Warren
– sequence: 55
  givenname: Jonathan
  surname: Bartlett
  fullname: Bartlett, Jonathan
– sequence: 56
  givenname: Andrea
  surname: Baruchin
  fullname: Baruchin, Andrea
– sequence: 57
  givenname: Iacopo
  surname: Battaglini
  fullname: Battaglini, Iacopo
– sequence: 58
  givenname: Corinna
  surname: Bauer
  fullname: Bauer, Corinna
– sequence: 59
  givenname: Peter
  surname: Bayley
  fullname: Bayley, Peter
– sequence: 60
  givenname: Irene
  surname: Beck
  fullname: Beck, Irene
– sequence: 61
  givenname: James
  surname: Becker
  fullname: Becker, James
– sequence: 62
  givenname: J Alex
  surname: Becker
  fullname: Becker, J Alex
– sequence: 63
  givenname: Laurel
  surname: Beckett
  fullname: Beckett, Laurel
– sequence: 64
  givenname: Martin
  surname: Bednar
  fullname: Bednar, Martin
– sequence: 65
  givenname: Arkadiusz
  surname: Bedner
  fullname: Bedner, Arkadiusz
– sequence: 66
  givenname: Mirza Faisal
  surname: Beg
  fullname: Beg, Mirza Faisal
– sequence: 67
  givenname: Lynn
  surname: Bekris
  fullname: Bekris, Lynn
– sequence: 68
  givenname: Boubakeur
  surname: Belaroussi
  fullname: Belaroussi, Boubakeur
– sequence: 69
  givenname: Vicente
  surname: Belloch
  fullname: Belloch, Vicente
– sequence: 70
  givenname: Nabil
  surname: Belmokhtar
  fullname: Belmokhtar, Nabil
– sequence: 71
  givenname: Olfa
  surname: ben Ahmed
  fullname: ben Ahmed, Olfa
– sequence: 72
  givenname: J Dennis
  surname: Bender
  fullname: Bender, J Dennis
– sequence: 73
  givenname: Jenny
  surname: Benois-Pineau
  fullname: Benois-Pineau, Jenny
– sequence: 74
  givenname: Uday
  surname: Bhaskar
  fullname: Bhaskar, Uday
– sequence: 75
  givenname: Katarzyna
  surname: Bienkowska
  fullname: Bienkowska, Katarzyna
– sequence: 76
  givenname: Alessandro
  surname: Biffi
  fullname: Biffi, Alessandro
– sequence: 77
  givenname: Erin
  surname: Bigler
  fullname: Bigler, Erin
– sequence: 78
  givenname: Basar
  surname: Bilgic
  fullname: Bilgic, Basar
– sequence: 79
  givenname: Courtney
  surname: Bishop
  fullname: Bishop, Courtney
– sequence: 80
  givenname: Daniel
  surname: Bittner
  fullname: Bittner, Daniel
– sequence: 81
  givenname: Sandra
  surname: Black
  fullname: Black, Sandra
– sequence: 82
  givenname: Cinnamon
  surname: Bloss
  fullname: Bloss, Cinnamon
– sequence: 83
  givenname: Christian
  surname: Bocti
  fullname: Bocti, Christian
– sequence: 84
  givenname: Adriana
  surname: Bohorquez
  fullname: Bohorquez, Adriana
– sequence: 85
  givenname: Arun
  surname: Bokde
  fullname: Bokde, Arun
– sequence: 86
  givenname: John
  surname: Boone
  fullname: Boone, John
– sequence: 87
  givenname: Madhu
  surname: Boppana
  fullname: Boppana, Madhu
– sequence: 88
  givenname: Michael
  surname: Borrie
  fullname: Borrie, Michael
– sequence: 89
  givenname: Pierrick
  surname: Bourgeat
  fullname: Bourgeat, Pierrick
– sequence: 90
  givenname: Haroune
  surname: Bouttout
  fullname: Bouttout, Haroune
– sequence: 91
  givenname: Mike
  surname: Bowes
  fullname: Bowes, Mike
– sequence: 92
  givenname: DuBois
  surname: Bowman
  fullname: Bowman, DuBois
– sequence: 93
  givenname: Gene
  surname: Bowman
  fullname: Bowman, Gene
– sequence: 94
  givenname: Serge
  surname: Bracard
  fullname: Bracard, Serge
– sequence: 95
  givenname: Meredith
  surname: Braskie
  fullname: Braskie, Meredith
– sequence: 96
  givenname: Karl
  surname: Braunewell
  fullname: Braunewell, Karl
– sequence: 97
  givenname: Joihn
  surname: Breitner
  fullname: Breitner, Joihn
– sequence: 98
  givenname: Anders
  surname: Bresell
  fullname: Bresell, Anders
– sequence: 99
  givenname: James
  surname: Brewer
  fullname: Brewer, James
– sequence: 100
  givenname: Michael
  surname: Brickhouse
  fullname: Brickhouse, Michael
Copyright 2011 Elsevier Inc.
Copyright © 2011 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Feb 1, 2012
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: Copyright © 2011 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Feb 1, 2012
CorporateAuthor for the Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: for the Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1016/j.neuroimage.2011.09.085
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest One Psychology
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 2230
ExternalDocumentID PMC5849264
3380161341
22008371
10_1016_j_neuroimage_2011_09_085
S105381191101161X
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P30 AG010129
– fundername: NIA NIH HHS
  grantid: U01 AG024904
– fundername: NIA NIH HHS
  grantid: K01 AG030514
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c629t-5f55b2bd46406cf34b14eab88968e45501271d9e346433fca29c7eba9fc146443
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 13:30:36 EDT 2025
Fri Jul 11 12:01:48 EDT 2025
Wed Aug 13 03:26:25 EDT 2025
Mon Jul 21 06:03:14 EDT 2025
Tue Jul 01 02:14:44 EDT 2025
Thu Apr 24 23:16:11 EDT 2025
Fri Feb 23 02:20:32 EST 2024
Tue Aug 26 16:33:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Frequency representation
Individual subject classification
Incremental learning
Cortical thickness
Alzheimer's disease
Language English
License Copyright © 2011 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c629t-5f55b2bd46406cf34b14eab88968e45501271d9e346433fca29c7eba9fc146443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. ADNI investigators include (complete listing available at: http://adni.loni.ucla.edu/wp-content/uploads/howtoapply/ADNIAuthorshipList.pdf.)
OpenAccessLink http://doi.org/10.1016/j.neuroimage.2011.09.085
PMID 22008371
PQID 1547316990
PQPubID 2031077
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5849264
proquest_miscellaneous_921567052
proquest_journals_1547316990
pubmed_primary_22008371
crossref_primary_10_1016_j_neuroimage_2011_09_085
crossref_citationtrail_10_1016_j_neuroimage_2011_09_085
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2011_09_085
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2011_09_085
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-01
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2012
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Shen, Huang, Makedon, Saykin (bb0230) 2007
Kim, S.-G., Chung, M., Seo, S., Schaefer, S., Reekum, C., Davidson, R., accepted for publication. Heat kernel smoothing via Laplace–Beltrami eigenfunctions and its application to subcortical structure modeling, in: Pacific-Rim Symposium on Image and Video Technology (PSIVT). Lecture Notes in Computer Science (LNCS).
Singh, Mukherjee, Chung (bb0235) 2008
Colliot, Chételat, Chupin, Desgranges, Magnin, Benali, Dubois, Garnero, Eustache, Lehéricy (bb0045) 2008; 248
Fan, Shen, Gur, Gur, Davatzikos (bb0075) 2007; 26
Lerch, Pruessner, Zijdenbos, Hampel, Teipel, Evans (bb0140) 2005; 15
Dubois, Albert (bb0070) 2004; 3
Pang, Ozawa, Kasabov (bb0180) 2005; 35
Qiu, Younes, Miller, Csernansky (bb0200) 2008; 40
Fisher (bb0080) 1936; 7
Desai, Liebenthal, Possing, Waldron, Binder (bb0055) 2005; 26
Levy, Lindenbaum (bb0150) 2000; 9
Levy (bb0145) 2006
Petersen, Smith, Waring, Ivnik, Tangalos, Kokmen (bb0185) 1999; 56
Hall, Marshall, Martin (bb0105) 2002; 20
Seo, Chung (bb0215) 2011
Zhao, Chellappa, Phillips, Rosenfeld (bb0265) 2003; 35
Bylesjø, Rantalainen, Cloarec, Nicholson, Holmes, Tryg (bb0025) 2006; 20
Qiu, Miller (bb0190) 2008; 42
Zhu, M., 2006. A study of the generalized eigenvalue decomposition in discriminant analysis. Ph.D. thesis, The Ohio State University.
Magnin, Mesrob, Kinkingnehun, Issac, Colliot, Sarazin, Dubois, Lehericy, Benali (bb0170) 2009; 51
Balakrishnama, Ganapathiraju (bb0015) 1998
Khan, Wang, Beg (bb0125) 2008; 41
Folstein, Folstein, McHugh (bb0085) 1975; 12
Belhumeur, Hespanha, Kriegman (bb0020) 1997; 19
Desikan, Cabral, Hess, Dillon, Glastonbury, Weiner, Schmansky, Greve, Salat, Buckner, Fischl, Initiative (bb0060) 2009; 132
Misra, Fan, Davatzikos (bb0175) 2009; 44
Anticevic, Dierker, Gillespie, Repovs, Csernansky, Essen, Barch (bb0005) 2008; 41
Hall, Marshall, Martin (bb0100) 1998
Liu, Rayens (bb0160) 2007; 22
Dickerson, Bakkour, Salat, Feczko, Pacheco, Greve, Grodstein, Wright, Blacker, Rosas, Sperling, Atri, Growdon, Hyman, Morris, Fischl, Buckner (bb0065) 2009; 19
Thompson, Hayashi, de Zubicaray, Janke, Rose, Semple, Herman, Hong, Dittmer, Doddrell, Toga (bb0240) 2003; 23
Cuingnet, Gerardin, Tessieras, Auzias, Lehéricy, Habert, Chupin, Benali, Colliot (bb0050) 2011; 56
Jack, Knopman, Jagust, Shaw, Aisen, Weiner, Petersen, Trojanowski (bb0110) 2010; 9
Jolliffe (bb0115) 2002
Chételat, Landeau, Eustache, Mézenge, Viader, de la Sayette, Desgranges, Baron (bb0030) 2005; 27
Chupin, Mukuna-Bantumbakulu, Hasboun, Bardinet, Baillet, Kinkingnéhun, Lemieux, Dubois, Garnero (bb0040) 2007; 34
Ye, Chen, Wu, Li, Zhao, Patel, Bae, Janardan, Liu, Alexander, Reiman (bb0255) 2008
Good, Scahill, Fox, Ashburner, Friston, Chan, Crum, Rossor, Frackowiak (bb0095) 2002; 17
Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (bb0135) 2008; 131
Yu, Yang (bb0260) 2001; 34
Lim, Ross, sung Lin, hsuan Yang (bb0155) 2004
Karas, Burton, Rombouts, van Schijndel, O'Brien, Scheltens, McKeith, Williams, Ballard, Barkhof (bb0120) 2003; 18
Seo, Chung, Voperian (bb0225) 2011; 7962
Bain, Jedrziewski, Morrison-Bogorad, Albert, Cotman, Hendrie, Trojanowski (bb0010) 2008; 4
Qiu, Bitouk, Miller (bb0195) 2006; 25
Ross, Lim, Lin, Yang (bb0210) 2008; 77
Chung, Dalton, Li, Evans, Davidson (bb0035) 2007; 26
Liu, Wechsler (bb0165) 2000; 9
Wang, Miller, Gado, McKeel, Rothermich, Miller, Morris, Csernansky (bb0250) 2006; 30
Querbes, Aubry, Pariente, Lotterie, Demonet, Duret, Puel, Berry, Fort, Celsis, Initiative (bb0205) 2009; 132
Seo, Chung, Voperian (bb0220) 2010
Gerardin, Chátelat, Chupin, Cuingnet, Desgranges, Kim, Niethammer, Dubois, Lehéricy, Garnero, Eustache, Colliot (bb0090) 2009; 47
Vallet, Lévy (bb0245) 2008
Liu (10.1016/j.neuroimage.2011.09.085_bb0160) 2007; 22
Fan (10.1016/j.neuroimage.2011.09.085_bb0075) 2007; 26
Levy (10.1016/j.neuroimage.2011.09.085_bb0145) 2006
Chételat (10.1016/j.neuroimage.2011.09.085_bb0030) 2005; 27
Qiu (10.1016/j.neuroimage.2011.09.085_bb0195) 2006; 25
Misra (10.1016/j.neuroimage.2011.09.085_bb0175) 2009; 44
Seo (10.1016/j.neuroimage.2011.09.085_bb0215) 2011
Gerardin (10.1016/j.neuroimage.2011.09.085_bb0090) 2009; 47
10.1016/j.neuroimage.2011.09.085_bb0130
Yu (10.1016/j.neuroimage.2011.09.085_bb0260) 2001; 34
Anticevic (10.1016/j.neuroimage.2011.09.085_bb0005) 2008; 41
Lim (10.1016/j.neuroimage.2011.09.085_bb0155) 2004
Bylesjø (10.1016/j.neuroimage.2011.09.085_bb0025) 2006; 20
Desikan (10.1016/j.neuroimage.2011.09.085_bb0060) 2009; 132
Dubois (10.1016/j.neuroimage.2011.09.085_bb0070) 2004; 3
Ye (10.1016/j.neuroimage.2011.09.085_bb0255) 2008
Jolliffe (10.1016/j.neuroimage.2011.09.085_bb0115) 2002
Balakrishnama (10.1016/j.neuroimage.2011.09.085_bb0015)
Khan (10.1016/j.neuroimage.2011.09.085_bb0125) 2008; 41
Hall (10.1016/j.neuroimage.2011.09.085_bb0100) 1998
Desai (10.1016/j.neuroimage.2011.09.085_bb0055) 2005; 26
Vallet (10.1016/j.neuroimage.2011.09.085_bb0245) 2008
Good (10.1016/j.neuroimage.2011.09.085_bb0095) 2002; 17
Folstein (10.1016/j.neuroimage.2011.09.085_bb0085) 1975; 12
Qiu (10.1016/j.neuroimage.2011.09.085_bb0200) 2008; 40
Jack (10.1016/j.neuroimage.2011.09.085_bb0110) 2010; 9
Chupin (10.1016/j.neuroimage.2011.09.085_bb0040) 2007; 34
Hall (10.1016/j.neuroimage.2011.09.085_bb0105) 2002; 20
Ross (10.1016/j.neuroimage.2011.09.085_bb0210) 2008; 77
Karas (10.1016/j.neuroimage.2011.09.085_bb0120) 2003; 18
Seo (10.1016/j.neuroimage.2011.09.085_bb0225) 2011; 7962
Singh (10.1016/j.neuroimage.2011.09.085_bb0235) 2008
Qiu (10.1016/j.neuroimage.2011.09.085_bb0190) 2008; 42
Levy (10.1016/j.neuroimage.2011.09.085_bb0150) 2000; 9
Wang (10.1016/j.neuroimage.2011.09.085_bb0250) 2006; 30
10.1016/j.neuroimage.2011.09.085_bb0270
Klöppel (10.1016/j.neuroimage.2011.09.085_bb0135) 2008; 131
Colliot (10.1016/j.neuroimage.2011.09.085_bb0045) 2008; 248
Pang (10.1016/j.neuroimage.2011.09.085_bb0180) 2005; 35
Seo (10.1016/j.neuroimage.2011.09.085_bb0220) 2010
Petersen (10.1016/j.neuroimage.2011.09.085_bb0185) 1999; 56
Cuingnet (10.1016/j.neuroimage.2011.09.085_bb0050) 2011; 56
Thompson (10.1016/j.neuroimage.2011.09.085_bb0240) 2003; 23
Zhao (10.1016/j.neuroimage.2011.09.085_bb0265) 2003; 35
Liu (10.1016/j.neuroimage.2011.09.085_bb0165) 2000; 9
Querbes (10.1016/j.neuroimage.2011.09.085_bb0205) 2009; 132
Bain (10.1016/j.neuroimage.2011.09.085_bb0010) 2008; 4
Chung (10.1016/j.neuroimage.2011.09.085_bb0035) 2007; 26
Magnin (10.1016/j.neuroimage.2011.09.085_bb0170) 2009; 51
Fisher (10.1016/j.neuroimage.2011.09.085_bb0080) 1936; 7
Shen (10.1016/j.neuroimage.2011.09.085_bb0230) 2007
Belhumeur (10.1016/j.neuroimage.2011.09.085_bb0020) 1997; 19
Dickerson (10.1016/j.neuroimage.2011.09.085_bb0065) 2009; 19
Lerch (10.1016/j.neuroimage.2011.09.085_bb0140) 2005; 15
References_xml – year: 1998
  ident: bb0015
  article-title: Linear discriminant analysis — a brief tutorial [online]
– volume: 19
  start-page: 711
  year: 1997
  end-page: 720
  ident: bb0020
  article-title: Eigenfaces vs. fisherfaces: recognition using class specific linear projection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 3
  start-page: 246
  year: 2004
  end-page: 248
  ident: bb0070
  article-title: Amnestic MCI or prodromal Alzheimer's disease?
  publication-title: Lancet Neurol.
– volume: 22
  start-page: 189
  year: 2007
  end-page: 208
  ident: bb0160
  article-title: Pls and dimension reduction for classification
  publication-title: Comput. Stat.
– volume: 12
  start-page: 189
  year: 1975
  end-page: 198
  ident: bb0085
  article-title: Mini-mental state: a practical method for grading the cognitive state of patients for the clinician
  publication-title: J. Psychiatr. Res.
– volume: 44
  start-page: 1415
  year: 2009
  end-page: 1422
  ident: bb0175
  article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to ad: results from ADNI
  publication-title: Neuroimage
– volume: 26
  start-page: 1019
  year: 2005
  end-page: 1029
  ident: bb0055
  article-title: Volumetric vs. surface-based alignment for localization of auditory cortex activation
  publication-title: Neuroimage
– volume: 34
  start-page: 2067
  year: 2001
  end-page: 2070
  ident: bb0260
  article-title: A direct LDA algorithm for high-dimensional data with application to face recognition
  publication-title: Pattern Recognit.
– volume: 18
  start-page: 895
  year: 2003
  end-page: 907
  ident: bb0120
  article-title: A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry
  publication-title: Neuroimage
– start-page: 505
  year: 2010
  end-page: 512
  ident: bb0220
  article-title: Heat kernel smoothing using Laplace–Beltrami eigenfunctions
  publication-title: 13th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
– volume: 25
  start-page: 1296
  year: 2006
  end-page: 1306
  ident: bb0195
  article-title: Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace–Beltrami operator
  publication-title: IEEE Trans. Med. Imaging
– volume: 20
  start-page: 341
  year: 2006
  end-page: 351
  ident: bb0025
  article-title: OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification
  publication-title: J. Chemom.
– volume: 4
  start-page: 443
  year: 2008
  end-page: 446
  ident: bb0010
  article-title: Healthy brain aging: a meeting report from the Sylvan M. Cohen annual retreat of the University of Pennsylvania Institute on Aging
  publication-title: Alzheimers Dement.
– year: 2008
  ident: bb0245
  article-title: Spectral geometry processing with manifold harmonics
  publication-title: Computer Graphics Forum (Proceedings Eurographics)
– start-page: 13
  year: 2006
  ident: bb0145
  article-title: Laplace–Beltrami eigenfunctions towards an algorithm that “understands” geometry
  publication-title: SMI'06: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006
– volume: 30
  start-page: 52
  year: 2006
  end-page: 60
  ident: bb0250
  article-title: Abnormalities of hippocampal surface structure in very mild dementia of the Alzheimer type
  publication-title: Neuroimage
– volume: 47
  start-page: 1476
  year: 2009
  end-page: 1486
  ident: bb0090
  article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging
  publication-title: Neuroimage
– start-page: 793
  year: 2004
  end-page: 800
  ident: bb0155
  article-title: Incremental learning for visual tracking
  publication-title: Advances in Neural Information Processing Systems
– volume: 132
  start-page: 2036
  year: 2009
  end-page: 2047
  ident: bb0205
  article-title: Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve
  publication-title: Brain
– volume: 40
  start-page: 68
  year: 2008
  end-page: 76
  ident: bb0200
  article-title: Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the Alzheimer's type
  publication-title: Neuroimage
– volume: 27
  start-page: 934
  year: 2005
  end-page: 946
  ident: bb0030
  article-title: Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study
  publication-title: Neuroimage
– start-page: 81
  year: 2007
  end-page: 88
  ident: bb0230
  article-title: Efficient registration of 3D SPHARM Surfaces
  publication-title: CRV'07: Proceedings of the Fourth Canadian Conference on Computer and Robot Vision
– reference: Zhu, M., 2006. A study of the generalized eigenvalue decomposition in discriminant analysis. Ph.D. thesis, The Ohio State University.
– volume: 77
  start-page: 125
  year: 2008
  end-page: 141
  ident: bb0210
  article-title: Incremental learning for robust visual tracking
  publication-title: Int. J. Comput. Vis.
– volume: 7
  start-page: 179
  year: 1936
  end-page: 188
  ident: bb0080
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
– start-page: 1025
  year: 2008
  end-page: 1033
  ident: bb0255
  article-title: Heterogeneous data fusion for Alzheimer's disease study
  publication-title: KDD'08: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 131
  start-page: 681
  year: 2008
  end-page: 689
  ident: bb0135
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
– volume: 41
  start-page: 835
  year: 2008
  end-page: 848
  ident: bb0005
  article-title: Comparing surface-based and volume-based analyses of functional neuroimaging data in patients with schizophrenia
  publication-title: Neuroimage
– volume: 23
  start-page: 994
  year: 2003
  end-page: 1005
  ident: bb0240
  article-title: Dynamics of gray matter loss in Alzheimer's disease
  publication-title: J. Neurosci.
– volume: 132
  start-page: 2048
  year: 2009
  end-page: 2057
  ident: bb0060
  article-title: Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease
  publication-title: Brain
– volume: 17
  start-page: 29
  year: 2002
  end-page: 46
  ident: bb0095
  article-title: Automatic differentiation of anatomical patterns in the human brain: validation with studies of degenerative dementias
  publication-title: Neuroimage
– volume: 9
  start-page: 1371
  year: 2000
  end-page: 1374
  ident: bb0150
  article-title: Sequential Karhunen–Loeve basis extraction and its application to images
  publication-title: IEEE Trans. Image Process.
– volume: 15
  start-page: 995
  year: 2005
  end-page: 1001
  ident: bb0140
  article-title: Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy
  publication-title: Cereb. Cortex
– volume: 56
  start-page: 766
  year: 2011
  end-page: 781
  ident: bb0050
  article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: Neuroimage. Corrected Proof.
– reference: Kim, S.-G., Chung, M., Seo, S., Schaefer, S., Reekum, C., Davidson, R., accepted for publication. Heat kernel smoothing via Laplace–Beltrami eigenfunctions and its application to subcortical structure modeling, in: Pacific-Rim Symposium on Image and Video Technology (PSIVT). Lecture Notes in Computer Science (LNCS).
– year: 2002
  ident: bb0115
  article-title: Principal Component Analysis
– volume: 35
  start-page: 399
  year: 2003
  end-page: 458
  ident: bb0265
  article-title: Face recognition: a literature survey
  publication-title: ACM Comput. Surv.
– volume: 26
  start-page: 93
  year: 2007
  end-page: 105
  ident: bb0075
  article-title: Compare: classification of morphological patterns using adaptive regional elements
  publication-title: IEEE Trans. Med. Imaging
– start-page: 286
  year: 1998
  end-page: 295
  ident: bb0100
  article-title: Incremental eigenanalysis for classification
  publication-title: British Machine Vision Conference
– volume: 41
  start-page: 735
  year: 2008
  end-page: 746
  ident: bb0125
  article-title: Freesurfer-initiated fully-automated subcortical brain segmentation in mri using large deformation diffeomorphic metric mapping
  publication-title: Neuroimage
– volume: 248
  start-page: 194
  year: 2008
  end-page: 201
  ident: bb0045
  article-title: Discrimination between Alzheimer Disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus
  publication-title: Radiology
– year: 2011
  ident: bb0215
  article-title: Laplace–Beltrami eigenfunction expansion of cortical manifolds
  publication-title: IEEE International Symposium on Biomedical Imaging
– volume: 35
  start-page: 905
  year: 2005
  end-page: 914
  ident: bb0180
  article-title: Incremental linear discriminant analysis for classification of data streams
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
– volume: 42
  start-page: 1430
  year: 2008
  end-page: 1438
  ident: bb0190
  article-title: Multi-structure network shape analysis via normal surface momentum maps
  publication-title: Neuroimage
– volume: 7962
  year: 2011
  ident: bb0225
  article-title: Mandible shape modeling using the second eigenfunction of the Laplace–Beltrami operator
  publication-title: SPIE Med. Imaging
– volume: 19
  start-page: 497
  year: 2009
  end-page: 510
  ident: bb0065
  article-title: The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals
  publication-title: Cereb. Cortex
– volume: 56
  start-page: 303
  year: 1999
  end-page: 308
  ident: bb0185
  article-title: Mild cognitive impairment: clinical characterization and outcome
  publication-title: Arch. Neurol.
– volume: 20
  start-page: 1009
  year: 2002
  end-page: 1016
  ident: bb0105
  article-title: Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition
  publication-title: Image Vision Comput.
– volume: 26
  start-page: 566
  year: 2007
  end-page: 581
  ident: bb0035
  article-title: Weighted Fourier series representation and its application to quantifying the amount of gray matter
  publication-title: IEEE Trans. Med. Imaging
– volume: 9
  start-page: 119
  year: 2010
  end-page: 128
  ident: bb0110
  article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade
  publication-title: Lancet Neurol.
– volume: 9
  start-page: 132
  year: 2000
  end-page: 137
  ident: bb0165
  article-title: Robust coding schemes for indexing and retrieval from large face databases
  publication-title: IEEE Trans. Image Process.
– volume: 34
  start-page: 996
  year: 2007
  end-page: 1019
  ident: bb0040
  article-title: Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: method and validation on controls and patients with Alzheimer's disease
  publication-title: Neuroimage
– volume: 51
  start-page: 73
  year: 2009
  end-page: 83
  ident: bb0170
  article-title: Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI
  publication-title: Neuroradiology
– start-page: 999
  year: 2008
  end-page: 1007
  ident: bb0235
  article-title: Cortical surface thickness as a classifier: boosting for autism classification
  publication-title: Proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention — Part I
– volume: 12
  start-page: 189
  issue: 3
  year: 1975
  ident: 10.1016/j.neuroimage.2011.09.085_bb0085
  article-title: Mini-mental state: a practical method for grading the cognitive state of patients for the clinician
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/0022-3956(75)90026-6
– volume: 20
  start-page: 341
  issue: 8–10
  year: 2006
  ident: 10.1016/j.neuroimage.2011.09.085_bb0025
  article-title: OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification
  publication-title: J. Chemom.
  doi: 10.1002/cem.1006
– start-page: 81
  year: 2007
  ident: 10.1016/j.neuroimage.2011.09.085_bb0230
  article-title: Efficient registration of 3D SPHARM Surfaces
– volume: 41
  start-page: 835
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2011.09.085_bb0005
  article-title: Comparing surface-based and volume-based analyses of functional neuroimaging data in patients with schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.02.052
– volume: 30
  start-page: 52
  issue: 1
  year: 2006
  ident: 10.1016/j.neuroimage.2011.09.085_bb0250
  article-title: Abnormalities of hippocampal surface structure in very mild dementia of the Alzheimer type
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.09.017
– volume: 26
  start-page: 566
  issue: 4
  year: 2007
  ident: 10.1016/j.neuroimage.2011.09.085_bb0035
  article-title: Weighted Fourier series representation and its application to quantifying the amount of gray matter
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2007.892519
– ident: 10.1016/j.neuroimage.2011.09.085_bb0130
– volume: 25
  start-page: 1296
  issue: 10
  year: 2006
  ident: 10.1016/j.neuroimage.2011.09.085_bb0195
  article-title: Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace–Beltrami operator
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.882143
– volume: 41
  start-page: 735
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2011.09.085_bb0125
  article-title: Freesurfer-initiated fully-automated subcortical brain segmentation in mri using large deformation diffeomorphic metric mapping
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.03.024
– volume: 15
  start-page: 995
  issue: 7
  year: 2005
  ident: 10.1016/j.neuroimage.2011.09.085_bb0140
  article-title: Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhh200
– volume: 42
  start-page: 1430
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2011.09.085_bb0190
  article-title: Multi-structure network shape analysis via normal surface momentum maps
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.04.257
– volume: 19
  start-page: 711
  year: 1997
  ident: 10.1016/j.neuroimage.2011.09.085_bb0020
  article-title: Eigenfaces vs. fisherfaces: recognition using class specific linear projection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.598228
– ident: 10.1016/j.neuroimage.2011.09.085_bb0015
– year: 2002
  ident: 10.1016/j.neuroimage.2011.09.085_bb0115
– ident: 10.1016/j.neuroimage.2011.09.085_bb0270
– volume: 7
  start-page: 179
  issue: 7
  year: 1936
  ident: 10.1016/j.neuroimage.2011.09.085_bb0080
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 77
  start-page: 125
  year: 2008
  ident: 10.1016/j.neuroimage.2011.09.085_bb0210
  article-title: Incremental learning for robust visual tracking
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-007-0075-7
– volume: 132
  start-page: 2048
  issue: 8
  year: 2009
  ident: 10.1016/j.neuroimage.2011.09.085_bb0060
  article-title: Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awp123
– volume: 132
  start-page: 2036
  issue: 8
  year: 2009
  ident: 10.1016/j.neuroimage.2011.09.085_bb0205
  article-title: Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve
  publication-title: Brain
  doi: 10.1093/brain/awp105
– start-page: 286
  year: 1998
  ident: 10.1016/j.neuroimage.2011.09.085_bb0100
  article-title: Incremental eigenanalysis for classification
– volume: 51
  start-page: 73
  year: 2009
  ident: 10.1016/j.neuroimage.2011.09.085_bb0170
  article-title: Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI
  publication-title: Neuroradiology
  doi: 10.1007/s00234-008-0463-x
– volume: 34
  start-page: 2067
  year: 2001
  ident: 10.1016/j.neuroimage.2011.09.085_bb0260
  article-title: A direct LDA algorithm for high-dimensional data with application to face recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(00)00162-X
– volume: 23
  start-page: 994
  issue: 3
  year: 2003
  ident: 10.1016/j.neuroimage.2011.09.085_bb0240
  article-title: Dynamics of gray matter loss in Alzheimer's disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-03-00994.2003
– start-page: 999
  year: 2008
  ident: 10.1016/j.neuroimage.2011.09.085_bb0235
  article-title: Cortical surface thickness as a classifier: boosting for autism classification
– volume: 56
  start-page: 766
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2011.09.085_bb0050
  article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: Neuroimage. Corrected Proof.
  doi: 10.1016/j.neuroimage.2010.06.013
– volume: 19
  start-page: 497
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2011.09.085_bb0065
  article-title: The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn113
– volume: 27
  start-page: 934
  issue: 4
  year: 2005
  ident: 10.1016/j.neuroimage.2011.09.085_bb0030
  article-title: Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.05.015
– volume: 26
  start-page: 93
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2011.09.085_bb0075
  article-title: Compare: classification of morphological patterns using adaptive regional elements
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.886812
– volume: 9
  start-page: 132
  issue: 1
  year: 2000
  ident: 10.1016/j.neuroimage.2011.09.085_bb0165
  article-title: Robust coding schemes for indexing and retrieval from large face databases
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.817604
– year: 2011
  ident: 10.1016/j.neuroimage.2011.09.085_bb0215
  article-title: Laplace–Beltrami eigenfunction expansion of cortical manifolds
– volume: 7962
  year: 2011
  ident: 10.1016/j.neuroimage.2011.09.085_bb0225
  article-title: Mandible shape modeling using the second eigenfunction of the Laplace–Beltrami operator
  publication-title: SPIE Med. Imaging
– year: 2008
  ident: 10.1016/j.neuroimage.2011.09.085_bb0245
  article-title: Spectral geometry processing with manifold harmonics
– volume: 22
  start-page: 189
  issue: 2
  year: 2007
  ident: 10.1016/j.neuroimage.2011.09.085_bb0160
  article-title: Pls and dimension reduction for classification
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-007-0039-y
– volume: 9
  start-page: 1371
  year: 2000
  ident: 10.1016/j.neuroimage.2011.09.085_bb0150
  article-title: Sequential Karhunen–Loeve basis extraction and its application to images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.855432
– volume: 3
  start-page: 246
  issue: 4
  year: 2004
  ident: 10.1016/j.neuroimage.2011.09.085_bb0070
  article-title: Amnestic MCI or prodromal Alzheimer's disease?
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(04)00710-0
– volume: 56
  start-page: 303
  issue: 3
  year: 1999
  ident: 10.1016/j.neuroimage.2011.09.085_bb0185
  article-title: Mild cognitive impairment: clinical characterization and outcome
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.56.3.303
– volume: 20
  start-page: 1009
  issue: 13–14
  year: 2002
  ident: 10.1016/j.neuroimage.2011.09.085_bb0105
  article-title: Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition
  publication-title: Image Vision Comput.
  doi: 10.1016/S0262-8856(02)00114-2
– volume: 40
  start-page: 68
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2011.09.085_bb0200
  article-title: Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the Alzheimer's type
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.11.041
– start-page: 793
  year: 2004
  ident: 10.1016/j.neuroimage.2011.09.085_bb0155
  article-title: Incremental learning for visual tracking
– volume: 35
  start-page: 905
  issue: 5
  year: 2005
  ident: 10.1016/j.neuroimage.2011.09.085_bb0180
  article-title: Incremental linear discriminant analysis for classification of data streams
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
  doi: 10.1109/TSMCB.2005.847744
– volume: 4
  start-page: 443
  issue: 6
  year: 2008
  ident: 10.1016/j.neuroimage.2011.09.085_bb0010
  article-title: Healthy brain aging: a meeting report from the Sylvan M. Cohen annual retreat of the University of Pennsylvania Institute on Aging
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2008.08.006
– volume: 47
  start-page: 1476
  issue: 4
  year: 2009
  ident: 10.1016/j.neuroimage.2011.09.085_bb0090
  article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.036
– volume: 17
  start-page: 29
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2011.09.085_bb0095
  article-title: Automatic differentiation of anatomical patterns in the human brain: validation with studies of degenerative dementias
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1202
– volume: 26
  start-page: 1019
  issue: 4
  year: 2005
  ident: 10.1016/j.neuroimage.2011.09.085_bb0055
  article-title: Volumetric vs. surface-based alignment for localization of auditory cortex activation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.03.024
– start-page: 13
  year: 2006
  ident: 10.1016/j.neuroimage.2011.09.085_bb0145
  article-title: Laplace–Beltrami eigenfunctions towards an algorithm that “understands” geometry
– volume: 18
  start-page: 895
  issue: 4
  year: 2003
  ident: 10.1016/j.neuroimage.2011.09.085_bb0120
  article-title: A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00041-7
– volume: 44
  start-page: 1415
  issue: 4
  year: 2009
  ident: 10.1016/j.neuroimage.2011.09.085_bb0175
  article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to ad: results from ADNI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.031
– start-page: 1025
  year: 2008
  ident: 10.1016/j.neuroimage.2011.09.085_bb0255
  article-title: Heterogeneous data fusion for Alzheimer's disease study
– volume: 9
  start-page: 119
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2011.09.085_bb0110
  article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(09)70299-6
– start-page: 505
  year: 2010
  ident: 10.1016/j.neuroimage.2011.09.085_bb0220
  article-title: Heat kernel smoothing using Laplace–Beltrami eigenfunctions
– volume: 131
  start-page: 681
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2011.09.085_bb0135
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awm319
– volume: 34
  start-page: 996
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2011.09.085_bb0040
  article-title: Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: method and validation on controls and patients with Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.10.035
– volume: 35
  start-page: 399
  year: 2003
  ident: 10.1016/j.neuroimage.2011.09.085_bb0265
  article-title: Face recognition: a literature survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/954339.954342
– volume: 248
  start-page: 194
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2011.09.085_bb0045
  article-title: Discrimination between Alzheimer Disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus
  publication-title: Radiology
  doi: 10.1148/radiol.2481070876
SSID ssj0009148
Score 2.4641244
Snippet Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease...
Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer’s disease...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2217
SubjectTerms Aged
Aged, 80 and over
Algorithms
Alzheimer Disease - classification
Alzheimer Disease - pathology
Alzheimer's disease
Artificial Intelligence
Atrophy
Brain - pathology
Brain research
Cerebral Cortex - pathology
Classification
Cognitive Dysfunction - pathology
Colleges & universities
Cortical thickness
Data compression
Databases, Factual
Disease Progression
Entorhinal Cortex - pathology
False Negative Reactions
False Positive Reactions
Female
Frequency representation
Humans
Image Processing, Computer-Assisted - methods
Incremental learning
Individual subject classification
Longitudinal Studies
Magnetic Resonance Imaging
Male
Memory - physiology
Methods
Middle Aged
Neuropsychological Tests
Noise
Pharmaceutical industry
Positron-Emission Tomography
Principal components analysis
Reproducibility of Results
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqHhAXxJuFgnxA4pRuHDt2LE5VRVWQygUq7c2KX22gzVab3QMc-CP8WWYSJ2WBw0ocE3usJDOe-WJ_MybktQuy8ioHDdiizoTjKquj91nMc8si_CBUHhf0zz7K03PxYVEu9sjxmAuDtMrk-wef3nvrdGeevub8pmnmnwAZQLiB4RhuJrAFZrALhVZ--OOW5qGZGNLhSp5h78TmGThefc3I5hpmbirmqQ9zPFX53yHqbwj6J5Pyt9B0cp_cS5iSHg2P_YDshfYhuXOWds0fkZ_vp6wr2m0srrxQh6gZaUK9ZihAV3p09f0yNNdh9aajad-GYpDzFDo0rRtWEmGMdNLEBUXS_AWtaYe0bGiIq4GY_Y32tTLHvKaWLiOFv9x-2Zwiwf4rOliK7NTH5Pzk3efj0ywdypA5Weh1VsaytIX1QgIUcJELy0SobVVpWQVMkWaFYl4HDh04j64utFPB1jo6cMpC8Cdkv1224RmhMdjcC22VK7RQFpCSs762TsoychhxRtSoB-NSxXI8OOPKjNS0L-ZWgwY1aHJtQIMzwibJm6Fqxw4yelS1GbNSwY8aCC07yL6dZLesd0fpg9GyTPIgnWF4KDSTABZmhE7NMPdxQ6duw3LTGQ14Taq8LGbk6WCH09sWyGvhisE33LLQqQOWFd9uaZvLvrw4QFINMPn5f73TC3IXroqB335A9terTXgJ8G1tX_Xz8xdml0ts
  priority: 102
  providerName: Elsevier
Title Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381191101161X
https://dx.doi.org/10.1016/j.neuroimage.2011.09.085
https://www.ncbi.nlm.nih.gov/pubmed/22008371
https://www.proquest.com/docview/1547316990
https://www.proquest.com/docview/921567052
https://pubmed.ncbi.nlm.nih.gov/PMC5849264
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoKyEuiDcLZeUDEqeUOHHiWBzQUrXaAl1VFZX2ZsWvdqHNls3uAQ78Ef4sM4mTpYDQnnKwJ0oy4_GX8TczhLw0Li-siEEDOikjblIRld7ayMexZh5-EAqLAf3jST4-4--n2TQE3OpAq-x8YuOo7dxgjPw1wya5LAfn-fb6a4Rdo_B0NbTQ2CI7WLoMrVpMxbroLuNtKlyWRgVMCEyelt_V1IucXcGqDYU85V6MHZX_vT39DT__ZFH-ti0d3iN3A56ko9YA7pNbrnpAbh-HE_OH5OdRn3FF65XGqAs1iJiRItRohQJspaPL7xduduUWr2oazmwobnCWwoRZZdooItwjdJk4p0iYP6clrZGSDQN-0ZKyv9GmTmaX01TRuafwh9uEzCmS67-gc6XITH1Ezg4PPu2Po9CQITJ5IpdR5rNMJ9ryHGCA8SnXjLtSF4XMC4fp0SwRzEqXwoQ09aZMpBFOl9IbcMicp4_JdjWv3FNCvdOx5VILk0guNKAko22pTZ5nPoU7Dojo9KBMqFaOTTMuVUdL-6zWGlSoQRVLBRocENZLXrcVOzaQkZ2qVZeRCj5UwbaygeybXjaglhaNbCi921mWCt6jVmtbHxDaD8O6x8OcsnLzVa0kYLVcxFkyIE9aO-zfNkFOSyoYfMMbFtpPwJLiN0eq2UVTWhzgqASI_Oz_T_Wc3EkA2-GhWlLsku3lYuVeADZb6iHZ2vvBhs0yHJKd0f7pxxO8Hn0YT-D67mBycvoLsyRFvw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkYAL4rcsFPABxCkQO04cCyFUAdWWdntqpb2Z2LHbhTZbNrtC5VV4B56RmcTJUkBoLz3bY212xjOf7W9mCHlmXZaXMgYNGF5EwiYyKnxZRj6ODfNwQMhLvNAf7WfDQ_FxnI7XyM8uFwZplZ1PbBx1ObV4R_6KYZNcloHzfHv2NcKuUfi62rXQaM1i151_gyNb_WbnPej3OefbHw7eDaPQVSCyGVfzKPVpargpRQaxzPpEGCZcYfJcZbnDHF_GJSuVS2BCknhbcGWlM4XyFryKEAmse4VchcAb42FPjuWyyC8TbepdmkQ5Yyowh1o-WVOfcnIKXiIUDlUvY-zg_O9w-Dfc_ZO1-VsY3L5Fbgb8Srdag7tN1lx1h1wbhRf6u-THTp_hReuFwVseahGhIyWpsQIKMJlunXw_dpNTN3tR0_BGRDGglhQmTCrb3lrCGqGrxRFFgv4RLWiNFHAY8LOWBH5Om7qcXQ5VRaeewom6uaKnSOb_gs6cIhP2Hjm8FFXdJ-vVtHIPCPXOxKVQRlquhDSAyqwpC2OzLPUJrDggstODtqE6OjbpONEdDe6zXmpQowZ1rDRocEBYL3nWVghZQUZ1qtZdBiz4bA1hbAXZ171sQEkt-llRerOzLB28Va2Xe2tAaD8MfgYfj4rKTRe1VoANMxmnfEA2Wjvsv5YjhyaRDP7DCxbaT8AS5hdHqslxU8oc4K8CSP7w_7_qKbk-PBjt6b2d_d1H5AZ8Dm-J85tkfT5buMeAC-fmSbMZKfl02bv_F9MAe-0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKlVcEO8GCvgA4rR07X1aCKFCGzWURhWiUm9m_WoD7aZkE6HyV_gn_Dpmdr0bCgjl0rM9VjYznvlsfzNDyFNt09xkIWhA8SKIdZQFhTMmcGGomIMDQm7wQn9_lO4exu-OkqMV8rPNhUFaZesTa0dtJhrvyDcZNsllKTjPTedpEQfbg9fnXwPsIIUvrW07jcZE9uzFNzi-Va-G26DrZ5wPdj6-3Q18h4FAp1zMgsQlieLKxCnENe2iWLHYFirPRZpbzPdlPGNG2AgmRJHTBRc6s6oQToOHieMI1r1GVjM8FfXI6pud0cGHRclfFjeJeEkU5IwJzyNq2GV1tcrxGfgMX0ZUvAixn_O_g-Pf4PdPDudvQXFwk9zwaJZuNeZ3i6zY8jZZ2_fv9XfIj2GX70WrucI7H6oRryNBqbYJCqCZbp1-P7HjMzt9XlH_YkQxvBoKE8albu4wYQ3f4-KYIl3_mBa0QkI4DLhpQwm_oHWVzjajqqQTR-F8XV_YU6T2f0HXTpEXe5ccXomy7pFeOSntOqHOqtDEQmWaizhTgNG0MoXSaZq4CFbsk6zVg9S-Vjq27DiVLSnus1xoUKIGZSgkaLBPWCd53tQLWUJGtKqWbT4seHAJQW0J2ZedrMdMDRZaUnqjtSzpfVclFzutT2g3DF4Hn5KK0k7mlRSAFNMsTHif3G_ssPtajoyaKGPwH16y0G4CFjS_PFKOT-rC5gCGBQD0B___VU_IGux8-X442ntIrsPX8KbEwAbpzaZz-whA4kw99ruRkk9X7QB-AbLCgZE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Individual+Subject+Classification+for+Alzheimer%E2%80%99s+Disease+based+on+Incremental+Learning+Using+a+Spatial+Frequency+Representation+of+Cortical+Thickness+Data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Cho%2C+Youngsang&rft.au=Seong%2C+Joon-Kyung&rft.au=Jeong%2C+Yong&rft.au=Shin%2C+Sung+Yong&rft.date=2012-02-01&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=59&rft.issue=3&rft.spage=2217&rft.epage=2230&rft_id=info:doi/10.1016%2Fj.neuroimage.2011.09.085&rft_id=info%3Apmid%2F22008371&rft.externalDocID=PMC5849264
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon