Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data
Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classifica...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 59; no. 3; pp. 2217 - 2230 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2012
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classification require a large number of structural data due to complex and variable patterns of brain atrophy. In this paper, we propose an incremental method for AD classification using cortical thickness data. We represent the cortical thickness data of a subject in terms of their spatial frequency components, employing the manifold harmonic transform. The basis functions for this transform are obtained from the eigenfunctions of the Laplace–Beltrami operator, which are dependent only on the geometry of a cortical surface but not on the cortical thickness defined on it. This facilitates individual subject classification based on incremental learning. In general, methods based on region-wise features poorly reflect the detailed spatial variation of cortical thickness, and those based on vertex-wise features are sensitive to noise. Adopting a vertex-wise cortical thickness representation, our method can still achieve robustness to noise by filtering out high frequency components of the cortical thickness data while reflecting their spatial variation. This compromise leads to high accuracy in AD classification. We utilized MR volumes provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) to validate the performance of the method. Our method discriminated AD patients from Healthy Control (HC) subjects with 82% sensitivity and 93% specificity. It also discriminated Mild Cognitive Impairment (MCI) patients, who converted to AD within 18months, from non-converted MCI subjects with 63% sensitivity and 76% specificity. Moreover, it showed that the entorhinal cortex was the most discriminative region for classification, which is consistent with previous pathological findings. In comparison with other classification methods, our method demonstrated high classification performance in both categories, which supports the discriminative power of our method in both AD diagnosis and AD prediction.
► Presents an incremental method for AD classification using cortical thickness data. ► Achieves robustness to noises by filtering out high frequency components. ► High classification accuracy in both AD diagnosis and AD prediction. |
---|---|
AbstractList | Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer’s disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classification require a large number of structural data due to complex and variable patterns of brain atrophy. In this paper, we propose an incremental method for AD classification using cortical thickness data. We represent the cortical thickness data of a subject in terms of their spatial frequency components, employing the manifold harmonic transform. The basis functions for this transform are obtained from the eigenfunctions of the Laplace-Beltrami operator, which are dependent only on the geometry of a cortical surface but not on the cortical thickness defined on it. This facilitates individual subject classification based on incremental learning. In general, methods based on region-wise features poorly reflect the detailed spatial variation of cortical thickness, and those based on vertex-wise features are sensitive to noise. Adopting a vertex-wise cortical thickness representation, our method can still achieve robustness to noise by filtering out high frequency components of the cortical thickness data while reflecting their spatial variation. This compromise leads to high accuracy in AD classification. We utilized MR volumes provided by Alzheimer’s Disease Neuroimaging Initiative (ADNI) to validate the performance of the method. Our method discriminated AD patients from Healthy Control (HC) subjects with 82% sensitivity and 93% specificity. It also discriminated Mild Cognitive Impairment (MCI) patients, who converted to AD within 18 month, from non-converted MCI subjects with 63% sensitivity and 76% specificity. Moreover, it showed that the entorhinal cortex was the most discriminative region for classification, which is consistent with previous pathological findings. In comparison with other classification methods, our method demonstrated high classification performance in the both categories, which supports the discriminative power of our method in both AD diagnosis and AD prediction. Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classification require a large number of structural data due to complex and variable patterns of brain atrophy. In this paper, we propose an incremental method for AD classification using cortical thickness data. We represent the cortical thickness data of a subject in terms of their spatial frequency components, employing the manifold harmonic transform. The basis functions for this transform are obtained from the eigenfunctions of the Laplace-Beltrami operator, which are dependent only on the geometry of a cortical surface but not on the cortical thickness defined on it. This facilitates individual subject classification based on incremental learning. In general, methods based on region-wise features poorly reflect the detailed spatial variation of cortical thickness, and those based on vertex-wise features are sensitive to noise. Adopting a vertex-wise cortical thickness representation, our method can still achieve robustness to noise by filtering out high frequency components of the cortical thickness data while reflecting their spatial variation. This compromise leads to high accuracy in AD classification. We utilized MR volumes provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) to validate the performance of the method. Our method discriminated AD patients from Healthy Control (HC) subjects with 82% sensitivity and 93% specificity. It also discriminated Mild Cognitive Impairment (MCI) patients, who converted to AD within 18months, from non-converted MCI subjects with 63% sensitivity and 76% specificity. Moreover, it showed that the entorhinal cortex was the most discriminative region for classification, which is consistent with previous pathological findings. In comparison with other classification methods, our method demonstrated high classification performance in both categories, which supports the discriminative power of our method in both AD diagnosis and AD prediction. Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classification require a large number of structural data due to complex and variable patterns of brain atrophy. In this paper, we propose an incremental method for AD classification using cortical thickness data. We represent the cortical thickness data of a subject in terms of their spatial frequency components, employing the manifold harmonic transform. The basis functions for this transform are obtained from the eigenfunctions of the Laplace-Beltrami operator, which are dependent only on the geometry of a cortical surface but not on the cortical thickness defined on it. This facilitates individual subject classification based on incremental learning. In general, methods based on region-wise features poorly reflect the detailed spatial variation of cortical thickness, and those based on vertex-wise features are sensitive to noise. Adopting a vertex-wise cortical thickness representation, our method can still achieve robustness to noise by filtering out high frequency components of the cortical thickness data while reflecting their spatial variation. This compromise leads to high accuracy in AD classification. We utilized MR volumes provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) to validate the performance of the method. Our method discriminated AD patients from Healthy Control (HC) subjects with 82% sensitivity and 93% specificity. It also discriminated Mild Cognitive Impairment (MCI) patients, who converted to AD within 18 months, from non-converted MCI subjects with 63% sensitivity and 76% specificity. Moreover, it showed that the entorhinal cortex was the most discriminative region for classification, which is consistent with previous pathological findings. In comparison with other classification methods, our method demonstrated high classification performance in both categories, which supports the discriminative power of our method in both AD diagnosis and AD prediction. Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classification require a large number of structural data due to complex and variable patterns of brain atrophy. In this paper, we propose an incremental method for AD classification using cortical thickness data. We represent the cortical thickness data of a subject in terms of their spatial frequency components, employing the manifold harmonic transform. The basis functions for this transform are obtained from the eigenfunctions of the Laplace–Beltrami operator, which are dependent only on the geometry of a cortical surface but not on the cortical thickness defined on it. This facilitates individual subject classification based on incremental learning. In general, methods based on region-wise features poorly reflect the detailed spatial variation of cortical thickness, and those based on vertex-wise features are sensitive to noise. Adopting a vertex-wise cortical thickness representation, our method can still achieve robustness to noise by filtering out high frequency components of the cortical thickness data while reflecting their spatial variation. This compromise leads to high accuracy in AD classification. We utilized MR volumes provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) to validate the performance of the method. Our method discriminated AD patients from Healthy Control (HC) subjects with 82% sensitivity and 93% specificity. It also discriminated Mild Cognitive Impairment (MCI) patients, who converted to AD within 18months, from non-converted MCI subjects with 63% sensitivity and 76% specificity. Moreover, it showed that the entorhinal cortex was the most discriminative region for classification, which is consistent with previous pathological findings. In comparison with other classification methods, our method demonstrated high classification performance in both categories, which supports the discriminative power of our method in both AD diagnosis and AD prediction. ► Presents an incremental method for AD classification using cortical thickness data. ► Achieves robustness to noises by filtering out high frequency components. ► High classification accuracy in both AD diagnosis and AD prediction. Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classification require a large number of structural data due to complex and variable patterns of brain atrophy. In this paper, we propose an incremental method for AD classification using cortical thickness data. We represent the cortical thickness data of a subject in terms of their spatial frequency components, employing the manifold harmonic transform. The basis functions for this transform are obtained from the eigenfunctions of the Laplace-Beltrami operator, which are dependent only on the geometry of a cortical surface but not on the cortical thickness defined on it. This facilitates individual subject classification based on incremental learning. In general, methods based on region-wise features poorly reflect the detailed spatial variation of cortical thickness, and those based on vertex-wise features are sensitive to noise. Adopting a vertex-wise cortical thickness representation, our method can still achieve robustness to noise by filtering out high frequency components of the cortical thickness data while reflecting their spatial variation. This compromise leads to high accuracy in AD classification. We utilized MR volumes provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) to validate the performance of the method. Our method discriminated AD patients from Healthy Control (HC) subjects with 82% sensitivity and 93% specificity. It also discriminated Mild Cognitive Impairment (MCI) patients, who converted to AD within 18 months, from non-converted MCI subjects with 63% sensitivity and 76% specificity. Moreover, it showed that the entorhinal cortex was the most discriminative region for classification, which is consistent with previous pathological findings. In comparison with other classification methods, our method demonstrated high classification performance in both categories, which supports the discriminative power of our method in both AD diagnosis and AD prediction.Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classification require a large number of structural data due to complex and variable patterns of brain atrophy. In this paper, we propose an incremental method for AD classification using cortical thickness data. We represent the cortical thickness data of a subject in terms of their spatial frequency components, employing the manifold harmonic transform. The basis functions for this transform are obtained from the eigenfunctions of the Laplace-Beltrami operator, which are dependent only on the geometry of a cortical surface but not on the cortical thickness defined on it. This facilitates individual subject classification based on incremental learning. In general, methods based on region-wise features poorly reflect the detailed spatial variation of cortical thickness, and those based on vertex-wise features are sensitive to noise. Adopting a vertex-wise cortical thickness representation, our method can still achieve robustness to noise by filtering out high frequency components of the cortical thickness data while reflecting their spatial variation. This compromise leads to high accuracy in AD classification. We utilized MR volumes provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) to validate the performance of the method. Our method discriminated AD patients from Healthy Control (HC) subjects with 82% sensitivity and 93% specificity. It also discriminated Mild Cognitive Impairment (MCI) patients, who converted to AD within 18 months, from non-converted MCI subjects with 63% sensitivity and 76% specificity. Moreover, it showed that the entorhinal cortex was the most discriminative region for classification, which is consistent with previous pathological findings. In comparison with other classification methods, our method demonstrated high classification performance in both categories, which supports the discriminative power of our method in both AD diagnosis and AD prediction. |
Author | Seong, Joon-Kyung Shin, Sung Yong Jeong, Yong Cho, Youngsang |
AuthorAffiliation | a Computer Science Department, KAIST, Korea c Department of Neurology, Samsung Medical Center, Korea b School of Computer Science and Engineering, Soongsil University, Korea d Department of Bio and Brain Engineering, KAIST, Korea |
AuthorAffiliation_xml | – name: a Computer Science Department, KAIST, Korea – name: d Department of Bio and Brain Engineering, KAIST, Korea – name: b School of Computer Science and Engineering, Soongsil University, Korea – name: c Department of Neurology, Samsung Medical Center, Korea |
Author_xml | – sequence: 1 givenname: Youngsang surname: Cho fullname: Cho, Youngsang organization: Computer Science Department, KAIST, Republic of Korea – sequence: 2 givenname: Joon-Kyung surname: Seong fullname: Seong, Joon-Kyung email: joon.swallow@gmail.com organization: School of Computer Science and Engineering, Soongsil University, Republic of Korea – sequence: 3 givenname: Yong surname: Jeong fullname: Jeong, Yong organization: Department of Bio and Brain Engineering, KAIST, Republic of Korea – sequence: 4 givenname: Sung Yong surname: Shin fullname: Shin, Sung Yong organization: Computer Science Department, KAIST, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22008371$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks9u1DAQhyNURP_AKyBLHHrKYjtxEl8QpWqhUiUucLYcZ7I7W8de7GSl5VV4WRy2bKGnvTiR_eXzTOZ3np047yDLCKMLRln1fr1wMAWPg17CglPGFlQuaCNeZGeMSpFLUfOT-V0UecOYPM3OY1xTSiUrm1fZKeeUNkXNzrJfd67DLXaTtiRO7RrMSIzVMWKPRo_oHel9IFf25wpwgHAZSYcRdATSpqUjCUBnAgzgxuSwoINDtyRTnFdN4iZZ0kEf4McEzuxIgE2AOON_9L4nxocx3WbJuELz4CCmS_SoX2cve20jvHl8XmTfb2--XX_J779-vru-us9NxeWYi16IlrddWZW0Mn1RtqwE3TaNrBoohaCM16yTUCSgKHqjuTQ1tFr2hqWtsrjIPuy9m6kdoDOptKCt2oT0f8NOeY3q_xOHK7X0WyWaUvJqFlw-CoJPTcZRDRgNWKsd-CkqyZmoaip4It89I9d-Ci51p5go64JVUtJEvf23oEMlf8eWgGYPmOBjDNAfEEbVnBC1Vk8JUXNCFJUqJeSp2cOnBveTSK2hPUbwaS-ANJItQlDRYBosdBhSelTn8RjJx2cSY9HNGXiA3XGK30m9-Uw |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2013_06_033 crossref_primary_10_1038_s41598_018_21118_1 crossref_primary_10_3390_app13063612 crossref_primary_10_1016_j_nicl_2022_102948 crossref_primary_10_3389_fnagi_2022_869387 crossref_primary_10_1038_srep43270 crossref_primary_10_1111_ene_15775 crossref_primary_10_1145_3398728 crossref_primary_10_1016_j_neuroimage_2014_05_078 crossref_primary_10_1016_j_neurobiolaging_2018_10_010 crossref_primary_10_1002_mds_27106 crossref_primary_10_1016_j_neurobiolaging_2019_10_011 crossref_primary_10_1007_s10072_021_05568_6 crossref_primary_10_1148_radiol_212400 crossref_primary_10_1155_2021_5531940 crossref_primary_10_3390_app9153063 crossref_primary_10_3390_life11050388 crossref_primary_10_1109_TBME_2016_2553663 crossref_primary_10_1049_ipr2_12605 crossref_primary_10_1371_journal_pone_0075602 crossref_primary_10_1155_2020_3743171 crossref_primary_10_1109_TCBB_2021_3053061 crossref_primary_10_1002_hbm_23922 crossref_primary_10_1371_journal_pone_0168011 crossref_primary_10_1002_hbm_23483 crossref_primary_10_1016_j_neurobiolaging_2017_06_027 crossref_primary_10_1007_s11042_018_6287_8 crossref_primary_10_1016_j_bbe_2021_02_006 crossref_primary_10_1002_hbm_22431 crossref_primary_10_1016_j_neurobiolaging_2024_01_005 crossref_primary_10_1016_j_neuroimage_2014_02_028 crossref_primary_10_1016_j_bspc_2023_104787 crossref_primary_10_3988_jcn_2021_17_2_307 crossref_primary_10_3389_fnins_2016_00394 crossref_primary_10_1007_s42979_024_03441_9 crossref_primary_10_1016_j_nicl_2023_103533 crossref_primary_10_1002_hcs2_84 crossref_primary_10_1049_ipr2_12618 crossref_primary_10_1016_j_artmed_2020_101940 crossref_primary_10_1111_jon_12163 crossref_primary_10_3389_fnagi_2018_00252 crossref_primary_10_1016_j_neuroimage_2014_10_002 crossref_primary_10_1038_s41531_022_00429_1 crossref_primary_10_1016_j_jneumeth_2013_10_003 crossref_primary_10_1109_TPAMI_2018_2889096 crossref_primary_10_1016_j_eswa_2023_122253 crossref_primary_10_3233_JAD_161080 crossref_primary_10_1289_EHP7133 crossref_primary_10_1038_srep26712 crossref_primary_10_1016_j_imu_2020_100305 crossref_primary_10_3390_life12020275 crossref_primary_10_1016_j_neuroimage_2013_05_054 crossref_primary_10_1016_j_jalz_2014_11_001 crossref_primary_10_26599_BSA_2021_9050005 crossref_primary_10_1186_s13195_021_00900_w crossref_primary_10_1038_s41598_022_16747_6 crossref_primary_10_3389_fnins_2020_598868 crossref_primary_10_1016_j_media_2021_102076 crossref_primary_10_1016_j_jneumeth_2022_109745 crossref_primary_10_1016_j_ejmp_2017_04_027 crossref_primary_10_1016_j_cmpb_2013_12_023 crossref_primary_10_1016_j_neuroimage_2017_03_057 crossref_primary_10_1016_j_neuroimage_2012_12_052 crossref_primary_10_1145_3344998 crossref_primary_10_1016_j_mri_2014_05_008 crossref_primary_10_1002_hbm_25168 crossref_primary_10_1007_s00521_022_07263_9 crossref_primary_10_3233_JAD_221061 crossref_primary_10_1007_s11682_015_9430_4 crossref_primary_10_1016_j_knosys_2020_106688 crossref_primary_10_1109_TBME_2015_2466616 crossref_primary_10_1038_srep39880 crossref_primary_10_1016_j_nicl_2012_10_002 crossref_primary_10_1007_s00259_018_4081_5 crossref_primary_10_1016_j_neurobiolaging_2014_05_038 crossref_primary_10_1109_ACCESS_2019_2936415 crossref_primary_10_4258_hir_2014_20_1_61 crossref_primary_10_1016_j_bspc_2020_102362 crossref_primary_10_1016_j_jneumeth_2017_12_011 crossref_primary_10_2217_bmm_14_42 crossref_primary_10_3346_jkms_2020_35_e292 crossref_primary_10_1093_braincomms_fcaf027 crossref_primary_10_1007_s11682_015_9356_x crossref_primary_10_1016_j_pscychresns_2019_09_002 crossref_primary_10_1007_s00259_019_04663_3 crossref_primary_10_1109_TBME_2016_2549363 crossref_primary_10_1016_S1474_4422_15_00093_9 crossref_primary_10_1016_j_compbiomed_2017_02_011 crossref_primary_10_1007_s12021_014_9238_1 crossref_primary_10_1038_s41598_019_43882_4 crossref_primary_10_3233_JAD_200830 crossref_primary_10_1016_j_cogsys_2018_12_015 crossref_primary_10_3348_jksr_2023_0006 crossref_primary_10_1016_j_compbiomed_2020_104010 crossref_primary_10_1371_journal_pone_0033182 crossref_primary_10_3390_brainsci12070905 crossref_primary_10_1007_s00330_019_06602_0 crossref_primary_10_1109_TMI_2016_2515021 crossref_primary_10_1007_s11011_018_0296_1 crossref_primary_10_3389_fnins_2022_851871 crossref_primary_10_1038_s41598_022_05531_1 crossref_primary_10_1155_2019_2492719 crossref_primary_10_3389_fnins_2018_00916 crossref_primary_10_1109_TMI_2021_3077079 crossref_primary_10_1016_j_nicl_2019_101811 crossref_primary_10_1016_j_media_2014_04_006 crossref_primary_10_1002_14651858_CD009628_pub2 crossref_primary_10_1016_j_nicl_2019_101929 crossref_primary_10_1038_s41598_018_37769_z crossref_primary_10_3390_s18061752 crossref_primary_10_1016_j_bspc_2018_08_009 crossref_primary_10_3349_ymj_2023_0308 crossref_primary_10_1007_s12021_016_9318_5 crossref_primary_10_1016_j_media_2017_01_008 crossref_primary_10_1109_TCBB_2021_3051177 crossref_primary_10_1016_j_mri_2021_02_001 crossref_primary_10_1016_j_media_2015_10_008 crossref_primary_10_1038_s41598_018_22871_z crossref_primary_10_1111_jon_12297 crossref_primary_10_4103_1673_5374_306071 crossref_primary_10_1016_j_neuroimage_2012_07_053 crossref_primary_10_1109_TBME_2015_2404809 crossref_primary_10_3233_JAD_160102 crossref_primary_10_1002_jmri_29631 crossref_primary_10_1093_brain_awaa075 crossref_primary_10_1016_j_neurobiolaging_2014_04_034 crossref_primary_10_1016_j_jalz_2013_05_1769 crossref_primary_10_3389_fninf_2017_00016 crossref_primary_10_1016_j_neuroimage_2014_03_036 crossref_primary_10_1007_s12021_012_9175_9 crossref_primary_10_1016_j_neunet_2023_04_018 crossref_primary_10_1007_s10916_018_1071_x crossref_primary_10_1016_j_neuroimage_2012_09_058 crossref_primary_10_1007_s11682_018_9846_8 crossref_primary_10_3348_kjr_2020_0518 crossref_primary_10_1142_S0219467824500311 crossref_primary_10_1016_j_eswa_2015_03_011 crossref_primary_10_3390_brainsci7080109 crossref_primary_10_1038_s41598_018_22277_x crossref_primary_10_1371_journal_pone_0129250 |
Cites_doi | 10.1016/0022-3956(75)90026-6 10.1002/cem.1006 10.1016/j.neuroimage.2008.02.052 10.1016/j.neuroimage.2005.09.017 10.1109/TMI.2007.892519 10.1109/TMI.2006.882143 10.1016/j.neuroimage.2008.03.024 10.1093/cercor/bhh200 10.1016/j.neuroimage.2008.04.257 10.1109/34.598228 10.1111/j.1469-1809.1936.tb02137.x 10.1007/s11263-007-0075-7 10.1093/brain/awp123 10.1093/brain/awp105 10.1007/s00234-008-0463-x 10.1016/S0031-3203(00)00162-X 10.1523/JNEUROSCI.23-03-00994.2003 10.1016/j.neuroimage.2010.06.013 10.1093/cercor/bhn113 10.1016/j.neuroimage.2005.05.015 10.1109/TMI.2006.886812 10.1109/83.817604 10.1007/s00180-007-0039-y 10.1109/83.855432 10.1016/S1474-4422(04)00710-0 10.1001/archneur.56.3.303 10.1016/S0262-8856(02)00114-2 10.1016/j.neuroimage.2007.11.041 10.1109/TSMCB.2005.847744 10.1016/j.jalz.2008.08.006 10.1016/j.neuroimage.2009.05.036 10.1006/nimg.2002.1202 10.1016/j.neuroimage.2005.03.024 10.1016/S1053-8119(03)00041-7 10.1016/j.neuroimage.2008.10.031 10.1016/S1474-4422(09)70299-6 10.1093/brain/awm319 10.1016/j.neuroimage.2006.10.035 10.1145/954339.954342 10.1148/radiol.2481070876 |
ContentType | Journal Article |
Contributor | Bresell, Anders Bohorquez, Adriana Arrighi, Michael Boppana, Madhu Awasthi, Sukrati Bayley, Peter Baird, Geoffrey Bouttout, Haroune Ayache, Nicholas Bagepally, Bhavani Avants, Brian Borrie, Michael Alcauter, Sarael Aoyama, Eiji Brickhouse, Michael Barbash, Shahar Battaglini, Iacopo Bourgeat, Pierrick Bocti, Christian Black, Sandra Bowman, DuBois Baek, Young Aghajanian, Jania Ang, Amma Abdi, Hervé Bender, J Dennis Bilgic, Basar Baruchin, Andrea Aksu, Yaman Aisen, Paul Babic, Tomislav Biffi, Alessandro Alin, Aylin Amlien, Inge Bhaskar, Uday Agyemang, Alex Breitner, Joihn Bokde, Arun Bienkowska, Katarzyna Braskie, Meredith Achuthan, Anusha Beg, Mirza Faisal Bittner, Daniel Angersbach, Steve Bednar, Martin Bowman, Gene Baker, Suzanne Arumughababu, S Vethanayaki Agrusti, Antonella Anderson, Dallas Ansarian, Reza Alexander, Daniel Beckett, Laurel Beck, Irene Almeida, Fabio Becker, J Alex Alvarez-Linera, Juan Belloch, Vicente Braunewell, Karl Becker, James Bartlett, Jonathan Bloss, Cinnamon Bedner, Arkadiusz Bekris, Lynn Aviv, Richard Armor, Tom Ahmad, Duaa |
Contributor_xml | – sequence: 1 givenname: A surname: Saradha fullname: Saradha, A – sequence: 2 givenname: Hervé surname: Abdi fullname: Abdi, Hervé – sequence: 3 givenname: Ahmed surname: Abdulkadir fullname: Abdulkadir, Ahmed – sequence: 4 givenname: Deepa surname: Acharya fullname: Acharya, Deepa – sequence: 5 givenname: Anusha surname: Achuthan fullname: Achuthan, Anusha – sequence: 6 givenname: Nagesh surname: Adluru fullname: Adluru, Nagesh – sequence: 7 givenname: Jania surname: Aghajanian fullname: Aghajanian, Jania – sequence: 8 givenname: Antonella surname: Agrusti fullname: Agrusti, Antonella – sequence: 9 givenname: Alex surname: Agyemang fullname: Agyemang, Alex – sequence: 10 givenname: Jamila surname: Ahdidan fullname: Ahdidan, Jamila – sequence: 11 givenname: Duaa surname: Ahmad fullname: Ahmad, Duaa – sequence: 12 givenname: Shiek surname: Ahmed fullname: Ahmed, Shiek – sequence: 13 givenname: Paul surname: Aisen fullname: Aisen, Paul – sequence: 14 givenname: Alireza surname: Akhondi-Asl fullname: Akhondi-Asl, Alireza – sequence: 15 givenname: Yaman surname: Aksu fullname: Aksu, Yaman – sequence: 16 givenname: Roman surname: Alberca fullname: Alberca, Roman – sequence: 17 givenname: Sarael surname: Alcauter fullname: Alcauter, Sarael – sequence: 18 givenname: Daniel surname: Alexander fullname: Alexander, Daniel – sequence: 19 givenname: Aylin surname: Alin fullname: Alin, Aylin – sequence: 20 givenname: Fabio surname: Almeida fullname: Almeida, Fabio – sequence: 21 givenname: Juan surname: Alvarez-Linera fullname: Alvarez-Linera, Juan – sequence: 22 givenname: Inge surname: Amlien fullname: Amlien, Inge – sequence: 23 givenname: Shyam surname: Anand fullname: Anand, Shyam – sequence: 24 givenname: Dallas surname: Anderson fullname: Anderson, Dallas – sequence: 25 givenname: Amma surname: Ang fullname: Ang, Amma – sequence: 26 givenname: Steve surname: Angersbach fullname: Angersbach, Steve – sequence: 27 givenname: Reza surname: Ansarian fullname: Ansarian, Reza – sequence: 28 givenname: Eiji surname: Aoyama fullname: Aoyama, Eiji – sequence: 29 givenname: Arti surname: Appannah fullname: Appannah, Arti – sequence: 30 givenname: Konstantinos surname: Arfanakis fullname: Arfanakis, Konstantinos – sequence: 31 givenname: Tom surname: Armor fullname: Armor, Tom – sequence: 32 givenname: Michael surname: Arrighi fullname: Arrighi, Michael – sequence: 33 givenname: S Vethanayaki surname: Arumughababu fullname: Arumughababu, S Vethanayaki – sequence: 34 givenname: Vidhya surname: Arunagiri fullname: Arunagiri, Vidhya – sequence: 35 givenname: Cody surname: Ashe-McNalley fullname: Ashe-McNalley, Cody – sequence: 36 givenname: Wes surname: Ashford fullname: Ashford, Wes – sequence: 37 givenname: Aurelie surname: Le Page fullname: Le Page, Aurelie – sequence: 38 givenname: Brian surname: Avants fullname: Avants, Brian – sequence: 39 givenname: Richard surname: Aviv fullname: Aviv, Richard – sequence: 40 givenname: Sukrati surname: Awasthi fullname: Awasthi, Sukrati – sequence: 41 givenname: Nicholas surname: Ayache fullname: Ayache, Nicholas – sequence: 42 givenname: Mosun surname: Ayan-Oshodi fullname: Ayan-Oshodi, Mosun – sequence: 43 givenname: Murat surname: Ayhan fullname: Ayhan, Murat – sequence: 44 givenname: B V surname: Sumana fullname: Sumana, B V – sequence: 45 givenname: Tomislav surname: Babic fullname: Babic, Tomislav – sequence: 46 givenname: Young surname: Baek fullname: Baek, Young – sequence: 47 givenname: Bhavani surname: Bagepally fullname: Bagepally, Bhavani – sequence: 48 givenname: Geoffrey surname: Baird fullname: Baird, Geoffrey – sequence: 49 givenname: John surname: Baker fullname: Baker, John – sequence: 50 givenname: Suzanne surname: Baker fullname: Baker, Suzanne – sequence: 51 givenname: Arnold surname: Bakker fullname: Bakker, Arnold – sequence: 52 givenname: Shahar surname: Barbash fullname: Barbash, Shahar – sequence: 53 givenname: Jonathan surname: Bard fullname: Bard, Jonathan – sequence: 54 givenname: Warren surname: Barker fullname: Barker, Warren – sequence: 55 givenname: Jonathan surname: Bartlett fullname: Bartlett, Jonathan – sequence: 56 givenname: Andrea surname: Baruchin fullname: Baruchin, Andrea – sequence: 57 givenname: Iacopo surname: Battaglini fullname: Battaglini, Iacopo – sequence: 58 givenname: Corinna surname: Bauer fullname: Bauer, Corinna – sequence: 59 givenname: Peter surname: Bayley fullname: Bayley, Peter – sequence: 60 givenname: Irene surname: Beck fullname: Beck, Irene – sequence: 61 givenname: James surname: Becker fullname: Becker, James – sequence: 62 givenname: J Alex surname: Becker fullname: Becker, J Alex – sequence: 63 givenname: Laurel surname: Beckett fullname: Beckett, Laurel – sequence: 64 givenname: Martin surname: Bednar fullname: Bednar, Martin – sequence: 65 givenname: Arkadiusz surname: Bedner fullname: Bedner, Arkadiusz – sequence: 66 givenname: Mirza Faisal surname: Beg fullname: Beg, Mirza Faisal – sequence: 67 givenname: Lynn surname: Bekris fullname: Bekris, Lynn – sequence: 68 givenname: Boubakeur surname: Belaroussi fullname: Belaroussi, Boubakeur – sequence: 69 givenname: Vicente surname: Belloch fullname: Belloch, Vicente – sequence: 70 givenname: Nabil surname: Belmokhtar fullname: Belmokhtar, Nabil – sequence: 71 givenname: Olfa surname: ben Ahmed fullname: ben Ahmed, Olfa – sequence: 72 givenname: J Dennis surname: Bender fullname: Bender, J Dennis – sequence: 73 givenname: Jenny surname: Benois-Pineau fullname: Benois-Pineau, Jenny – sequence: 74 givenname: Uday surname: Bhaskar fullname: Bhaskar, Uday – sequence: 75 givenname: Katarzyna surname: Bienkowska fullname: Bienkowska, Katarzyna – sequence: 76 givenname: Alessandro surname: Biffi fullname: Biffi, Alessandro – sequence: 77 givenname: Erin surname: Bigler fullname: Bigler, Erin – sequence: 78 givenname: Basar surname: Bilgic fullname: Bilgic, Basar – sequence: 79 givenname: Courtney surname: Bishop fullname: Bishop, Courtney – sequence: 80 givenname: Daniel surname: Bittner fullname: Bittner, Daniel – sequence: 81 givenname: Sandra surname: Black fullname: Black, Sandra – sequence: 82 givenname: Cinnamon surname: Bloss fullname: Bloss, Cinnamon – sequence: 83 givenname: Christian surname: Bocti fullname: Bocti, Christian – sequence: 84 givenname: Adriana surname: Bohorquez fullname: Bohorquez, Adriana – sequence: 85 givenname: Arun surname: Bokde fullname: Bokde, Arun – sequence: 86 givenname: John surname: Boone fullname: Boone, John – sequence: 87 givenname: Madhu surname: Boppana fullname: Boppana, Madhu – sequence: 88 givenname: Michael surname: Borrie fullname: Borrie, Michael – sequence: 89 givenname: Pierrick surname: Bourgeat fullname: Bourgeat, Pierrick – sequence: 90 givenname: Haroune surname: Bouttout fullname: Bouttout, Haroune – sequence: 91 givenname: Mike surname: Bowes fullname: Bowes, Mike – sequence: 92 givenname: DuBois surname: Bowman fullname: Bowman, DuBois – sequence: 93 givenname: Gene surname: Bowman fullname: Bowman, Gene – sequence: 94 givenname: Serge surname: Bracard fullname: Bracard, Serge – sequence: 95 givenname: Meredith surname: Braskie fullname: Braskie, Meredith – sequence: 96 givenname: Karl surname: Braunewell fullname: Braunewell, Karl – sequence: 97 givenname: Joihn surname: Breitner fullname: Breitner, Joihn – sequence: 98 givenname: Anders surname: Bresell fullname: Bresell, Anders – sequence: 99 givenname: James surname: Brewer fullname: Brewer, James – sequence: 100 givenname: Michael surname: Brickhouse fullname: Brickhouse, Michael |
Copyright | 2011 Elsevier Inc. Copyright © 2011 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Feb 1, 2012 |
Copyright_xml | – notice: 2011 Elsevier Inc. – notice: Copyright © 2011 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Feb 1, 2012 |
CorporateAuthor | for the Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: for the Alzheimer's Disease Neuroimaging Initiative – name: Alzheimer's Disease Neuroimaging Initiative |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1016/j.neuroimage.2011.09.085 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 2230 |
ExternalDocumentID | PMC5849264 3380161341 22008371 10_1016_j_neuroimage_2011_09_085 S105381191101161X |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: P30 AG010129 – fundername: NIA NIH HHS grantid: U01 AG024904 – fundername: NIA NIH HHS grantid: K01 AG030514 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c629t-5f55b2bd46406cf34b14eab88968e45501271d9e346433fca29c7eba9fc146443 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 13:30:36 EDT 2025 Fri Jul 11 12:01:48 EDT 2025 Wed Aug 13 03:26:25 EDT 2025 Mon Jul 21 06:03:14 EDT 2025 Tue Jul 01 02:14:44 EDT 2025 Thu Apr 24 23:16:11 EDT 2025 Fri Feb 23 02:20:32 EST 2024 Tue Aug 26 16:33:48 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Frequency representation Individual subject classification Incremental learning Cortical thickness Alzheimer's disease |
Language | English |
License | Copyright © 2011 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c629t-5f55b2bd46406cf34b14eab88968e45501271d9e346433fca29c7eba9fc146443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. ADNI investigators include (complete listing available at: http://adni.loni.ucla.edu/wp-content/uploads/howtoapply/ADNIAuthorshipList.pdf.) |
OpenAccessLink | http://doi.org/10.1016/j.neuroimage.2011.09.085 |
PMID | 22008371 |
PQID | 1547316990 |
PQPubID | 2031077 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5849264 proquest_miscellaneous_921567052 proquest_journals_1547316990 pubmed_primary_22008371 crossref_primary_10_1016_j_neuroimage_2011_09_085 crossref_citationtrail_10_1016_j_neuroimage_2011_09_085 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2011_09_085 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2011_09_085 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-02-01 |
PublicationDateYYYYMMDD | 2012-02-01 |
PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2012 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Shen, Huang, Makedon, Saykin (bb0230) 2007 Kim, S.-G., Chung, M., Seo, S., Schaefer, S., Reekum, C., Davidson, R., accepted for publication. Heat kernel smoothing via Laplace–Beltrami eigenfunctions and its application to subcortical structure modeling, in: Pacific-Rim Symposium on Image and Video Technology (PSIVT). Lecture Notes in Computer Science (LNCS). Singh, Mukherjee, Chung (bb0235) 2008 Colliot, Chételat, Chupin, Desgranges, Magnin, Benali, Dubois, Garnero, Eustache, Lehéricy (bb0045) 2008; 248 Fan, Shen, Gur, Gur, Davatzikos (bb0075) 2007; 26 Lerch, Pruessner, Zijdenbos, Hampel, Teipel, Evans (bb0140) 2005; 15 Dubois, Albert (bb0070) 2004; 3 Pang, Ozawa, Kasabov (bb0180) 2005; 35 Qiu, Younes, Miller, Csernansky (bb0200) 2008; 40 Fisher (bb0080) 1936; 7 Desai, Liebenthal, Possing, Waldron, Binder (bb0055) 2005; 26 Levy, Lindenbaum (bb0150) 2000; 9 Levy (bb0145) 2006 Petersen, Smith, Waring, Ivnik, Tangalos, Kokmen (bb0185) 1999; 56 Hall, Marshall, Martin (bb0105) 2002; 20 Seo, Chung (bb0215) 2011 Zhao, Chellappa, Phillips, Rosenfeld (bb0265) 2003; 35 Bylesjø, Rantalainen, Cloarec, Nicholson, Holmes, Tryg (bb0025) 2006; 20 Qiu, Miller (bb0190) 2008; 42 Zhu, M., 2006. A study of the generalized eigenvalue decomposition in discriminant analysis. Ph.D. thesis, The Ohio State University. Magnin, Mesrob, Kinkingnehun, Issac, Colliot, Sarazin, Dubois, Lehericy, Benali (bb0170) 2009; 51 Balakrishnama, Ganapathiraju (bb0015) 1998 Khan, Wang, Beg (bb0125) 2008; 41 Folstein, Folstein, McHugh (bb0085) 1975; 12 Belhumeur, Hespanha, Kriegman (bb0020) 1997; 19 Desikan, Cabral, Hess, Dillon, Glastonbury, Weiner, Schmansky, Greve, Salat, Buckner, Fischl, Initiative (bb0060) 2009; 132 Misra, Fan, Davatzikos (bb0175) 2009; 44 Anticevic, Dierker, Gillespie, Repovs, Csernansky, Essen, Barch (bb0005) 2008; 41 Hall, Marshall, Martin (bb0100) 1998 Liu, Rayens (bb0160) 2007; 22 Dickerson, Bakkour, Salat, Feczko, Pacheco, Greve, Grodstein, Wright, Blacker, Rosas, Sperling, Atri, Growdon, Hyman, Morris, Fischl, Buckner (bb0065) 2009; 19 Thompson, Hayashi, de Zubicaray, Janke, Rose, Semple, Herman, Hong, Dittmer, Doddrell, Toga (bb0240) 2003; 23 Cuingnet, Gerardin, Tessieras, Auzias, Lehéricy, Habert, Chupin, Benali, Colliot (bb0050) 2011; 56 Jack, Knopman, Jagust, Shaw, Aisen, Weiner, Petersen, Trojanowski (bb0110) 2010; 9 Jolliffe (bb0115) 2002 Chételat, Landeau, Eustache, Mézenge, Viader, de la Sayette, Desgranges, Baron (bb0030) 2005; 27 Chupin, Mukuna-Bantumbakulu, Hasboun, Bardinet, Baillet, Kinkingnéhun, Lemieux, Dubois, Garnero (bb0040) 2007; 34 Ye, Chen, Wu, Li, Zhao, Patel, Bae, Janardan, Liu, Alexander, Reiman (bb0255) 2008 Good, Scahill, Fox, Ashburner, Friston, Chan, Crum, Rossor, Frackowiak (bb0095) 2002; 17 Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (bb0135) 2008; 131 Yu, Yang (bb0260) 2001; 34 Lim, Ross, sung Lin, hsuan Yang (bb0155) 2004 Karas, Burton, Rombouts, van Schijndel, O'Brien, Scheltens, McKeith, Williams, Ballard, Barkhof (bb0120) 2003; 18 Seo, Chung, Voperian (bb0225) 2011; 7962 Bain, Jedrziewski, Morrison-Bogorad, Albert, Cotman, Hendrie, Trojanowski (bb0010) 2008; 4 Qiu, Bitouk, Miller (bb0195) 2006; 25 Ross, Lim, Lin, Yang (bb0210) 2008; 77 Chung, Dalton, Li, Evans, Davidson (bb0035) 2007; 26 Liu, Wechsler (bb0165) 2000; 9 Wang, Miller, Gado, McKeel, Rothermich, Miller, Morris, Csernansky (bb0250) 2006; 30 Querbes, Aubry, Pariente, Lotterie, Demonet, Duret, Puel, Berry, Fort, Celsis, Initiative (bb0205) 2009; 132 Seo, Chung, Voperian (bb0220) 2010 Gerardin, Chátelat, Chupin, Cuingnet, Desgranges, Kim, Niethammer, Dubois, Lehéricy, Garnero, Eustache, Colliot (bb0090) 2009; 47 Vallet, Lévy (bb0245) 2008 Liu (10.1016/j.neuroimage.2011.09.085_bb0160) 2007; 22 Fan (10.1016/j.neuroimage.2011.09.085_bb0075) 2007; 26 Levy (10.1016/j.neuroimage.2011.09.085_bb0145) 2006 Chételat (10.1016/j.neuroimage.2011.09.085_bb0030) 2005; 27 Qiu (10.1016/j.neuroimage.2011.09.085_bb0195) 2006; 25 Misra (10.1016/j.neuroimage.2011.09.085_bb0175) 2009; 44 Seo (10.1016/j.neuroimage.2011.09.085_bb0215) 2011 Gerardin (10.1016/j.neuroimage.2011.09.085_bb0090) 2009; 47 10.1016/j.neuroimage.2011.09.085_bb0130 Yu (10.1016/j.neuroimage.2011.09.085_bb0260) 2001; 34 Anticevic (10.1016/j.neuroimage.2011.09.085_bb0005) 2008; 41 Lim (10.1016/j.neuroimage.2011.09.085_bb0155) 2004 Bylesjø (10.1016/j.neuroimage.2011.09.085_bb0025) 2006; 20 Desikan (10.1016/j.neuroimage.2011.09.085_bb0060) 2009; 132 Dubois (10.1016/j.neuroimage.2011.09.085_bb0070) 2004; 3 Ye (10.1016/j.neuroimage.2011.09.085_bb0255) 2008 Jolliffe (10.1016/j.neuroimage.2011.09.085_bb0115) 2002 Balakrishnama (10.1016/j.neuroimage.2011.09.085_bb0015) Khan (10.1016/j.neuroimage.2011.09.085_bb0125) 2008; 41 Hall (10.1016/j.neuroimage.2011.09.085_bb0100) 1998 Desai (10.1016/j.neuroimage.2011.09.085_bb0055) 2005; 26 Vallet (10.1016/j.neuroimage.2011.09.085_bb0245) 2008 Good (10.1016/j.neuroimage.2011.09.085_bb0095) 2002; 17 Folstein (10.1016/j.neuroimage.2011.09.085_bb0085) 1975; 12 Qiu (10.1016/j.neuroimage.2011.09.085_bb0200) 2008; 40 Jack (10.1016/j.neuroimage.2011.09.085_bb0110) 2010; 9 Chupin (10.1016/j.neuroimage.2011.09.085_bb0040) 2007; 34 Hall (10.1016/j.neuroimage.2011.09.085_bb0105) 2002; 20 Ross (10.1016/j.neuroimage.2011.09.085_bb0210) 2008; 77 Karas (10.1016/j.neuroimage.2011.09.085_bb0120) 2003; 18 Seo (10.1016/j.neuroimage.2011.09.085_bb0225) 2011; 7962 Singh (10.1016/j.neuroimage.2011.09.085_bb0235) 2008 Qiu (10.1016/j.neuroimage.2011.09.085_bb0190) 2008; 42 Levy (10.1016/j.neuroimage.2011.09.085_bb0150) 2000; 9 Wang (10.1016/j.neuroimage.2011.09.085_bb0250) 2006; 30 10.1016/j.neuroimage.2011.09.085_bb0270 Klöppel (10.1016/j.neuroimage.2011.09.085_bb0135) 2008; 131 Colliot (10.1016/j.neuroimage.2011.09.085_bb0045) 2008; 248 Pang (10.1016/j.neuroimage.2011.09.085_bb0180) 2005; 35 Seo (10.1016/j.neuroimage.2011.09.085_bb0220) 2010 Petersen (10.1016/j.neuroimage.2011.09.085_bb0185) 1999; 56 Cuingnet (10.1016/j.neuroimage.2011.09.085_bb0050) 2011; 56 Thompson (10.1016/j.neuroimage.2011.09.085_bb0240) 2003; 23 Zhao (10.1016/j.neuroimage.2011.09.085_bb0265) 2003; 35 Liu (10.1016/j.neuroimage.2011.09.085_bb0165) 2000; 9 Querbes (10.1016/j.neuroimage.2011.09.085_bb0205) 2009; 132 Bain (10.1016/j.neuroimage.2011.09.085_bb0010) 2008; 4 Chung (10.1016/j.neuroimage.2011.09.085_bb0035) 2007; 26 Magnin (10.1016/j.neuroimage.2011.09.085_bb0170) 2009; 51 Fisher (10.1016/j.neuroimage.2011.09.085_bb0080) 1936; 7 Shen (10.1016/j.neuroimage.2011.09.085_bb0230) 2007 Belhumeur (10.1016/j.neuroimage.2011.09.085_bb0020) 1997; 19 Dickerson (10.1016/j.neuroimage.2011.09.085_bb0065) 2009; 19 Lerch (10.1016/j.neuroimage.2011.09.085_bb0140) 2005; 15 |
References_xml | – year: 1998 ident: bb0015 article-title: Linear discriminant analysis — a brief tutorial [online] – volume: 19 start-page: 711 year: 1997 end-page: 720 ident: bb0020 article-title: Eigenfaces vs. fisherfaces: recognition using class specific linear projection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 3 start-page: 246 year: 2004 end-page: 248 ident: bb0070 article-title: Amnestic MCI or prodromal Alzheimer's disease? publication-title: Lancet Neurol. – volume: 22 start-page: 189 year: 2007 end-page: 208 ident: bb0160 article-title: Pls and dimension reduction for classification publication-title: Comput. Stat. – volume: 12 start-page: 189 year: 1975 end-page: 198 ident: bb0085 article-title: Mini-mental state: a practical method for grading the cognitive state of patients for the clinician publication-title: J. Psychiatr. Res. – volume: 44 start-page: 1415 year: 2009 end-page: 1422 ident: bb0175 article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to ad: results from ADNI publication-title: Neuroimage – volume: 26 start-page: 1019 year: 2005 end-page: 1029 ident: bb0055 article-title: Volumetric vs. surface-based alignment for localization of auditory cortex activation publication-title: Neuroimage – volume: 34 start-page: 2067 year: 2001 end-page: 2070 ident: bb0260 article-title: A direct LDA algorithm for high-dimensional data with application to face recognition publication-title: Pattern Recognit. – volume: 18 start-page: 895 year: 2003 end-page: 907 ident: bb0120 article-title: A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry publication-title: Neuroimage – start-page: 505 year: 2010 end-page: 512 ident: bb0220 article-title: Heat kernel smoothing using Laplace–Beltrami eigenfunctions publication-title: 13th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) – volume: 25 start-page: 1296 year: 2006 end-page: 1306 ident: bb0195 article-title: Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace–Beltrami operator publication-title: IEEE Trans. Med. Imaging – volume: 20 start-page: 341 year: 2006 end-page: 351 ident: bb0025 article-title: OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification publication-title: J. Chemom. – volume: 4 start-page: 443 year: 2008 end-page: 446 ident: bb0010 article-title: Healthy brain aging: a meeting report from the Sylvan M. Cohen annual retreat of the University of Pennsylvania Institute on Aging publication-title: Alzheimers Dement. – year: 2008 ident: bb0245 article-title: Spectral geometry processing with manifold harmonics publication-title: Computer Graphics Forum (Proceedings Eurographics) – start-page: 13 year: 2006 ident: bb0145 article-title: Laplace–Beltrami eigenfunctions towards an algorithm that “understands” geometry publication-title: SMI'06: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006 – volume: 30 start-page: 52 year: 2006 end-page: 60 ident: bb0250 article-title: Abnormalities of hippocampal surface structure in very mild dementia of the Alzheimer type publication-title: Neuroimage – volume: 47 start-page: 1476 year: 2009 end-page: 1486 ident: bb0090 article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging publication-title: Neuroimage – start-page: 793 year: 2004 end-page: 800 ident: bb0155 article-title: Incremental learning for visual tracking publication-title: Advances in Neural Information Processing Systems – volume: 132 start-page: 2036 year: 2009 end-page: 2047 ident: bb0205 article-title: Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve publication-title: Brain – volume: 40 start-page: 68 year: 2008 end-page: 76 ident: bb0200 article-title: Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the Alzheimer's type publication-title: Neuroimage – volume: 27 start-page: 934 year: 2005 end-page: 946 ident: bb0030 article-title: Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study publication-title: Neuroimage – start-page: 81 year: 2007 end-page: 88 ident: bb0230 article-title: Efficient registration of 3D SPHARM Surfaces publication-title: CRV'07: Proceedings of the Fourth Canadian Conference on Computer and Robot Vision – reference: Zhu, M., 2006. A study of the generalized eigenvalue decomposition in discriminant analysis. Ph.D. thesis, The Ohio State University. – volume: 77 start-page: 125 year: 2008 end-page: 141 ident: bb0210 article-title: Incremental learning for robust visual tracking publication-title: Int. J. Comput. Vis. – volume: 7 start-page: 179 year: 1936 end-page: 188 ident: bb0080 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugen. – start-page: 1025 year: 2008 end-page: 1033 ident: bb0255 article-title: Heterogeneous data fusion for Alzheimer's disease study publication-title: KDD'08: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 131 start-page: 681 year: 2008 end-page: 689 ident: bb0135 article-title: Automatic classification of MR scans in Alzheimer's disease publication-title: Brain – volume: 41 start-page: 835 year: 2008 end-page: 848 ident: bb0005 article-title: Comparing surface-based and volume-based analyses of functional neuroimaging data in patients with schizophrenia publication-title: Neuroimage – volume: 23 start-page: 994 year: 2003 end-page: 1005 ident: bb0240 article-title: Dynamics of gray matter loss in Alzheimer's disease publication-title: J. Neurosci. – volume: 132 start-page: 2048 year: 2009 end-page: 2057 ident: bb0060 article-title: Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease publication-title: Brain – volume: 17 start-page: 29 year: 2002 end-page: 46 ident: bb0095 article-title: Automatic differentiation of anatomical patterns in the human brain: validation with studies of degenerative dementias publication-title: Neuroimage – volume: 9 start-page: 1371 year: 2000 end-page: 1374 ident: bb0150 article-title: Sequential Karhunen–Loeve basis extraction and its application to images publication-title: IEEE Trans. Image Process. – volume: 15 start-page: 995 year: 2005 end-page: 1001 ident: bb0140 article-title: Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy publication-title: Cereb. Cortex – volume: 56 start-page: 766 year: 2011 end-page: 781 ident: bb0050 article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: Neuroimage. Corrected Proof. – reference: Kim, S.-G., Chung, M., Seo, S., Schaefer, S., Reekum, C., Davidson, R., accepted for publication. Heat kernel smoothing via Laplace–Beltrami eigenfunctions and its application to subcortical structure modeling, in: Pacific-Rim Symposium on Image and Video Technology (PSIVT). Lecture Notes in Computer Science (LNCS). – year: 2002 ident: bb0115 article-title: Principal Component Analysis – volume: 35 start-page: 399 year: 2003 end-page: 458 ident: bb0265 article-title: Face recognition: a literature survey publication-title: ACM Comput. Surv. – volume: 26 start-page: 93 year: 2007 end-page: 105 ident: bb0075 article-title: Compare: classification of morphological patterns using adaptive regional elements publication-title: IEEE Trans. Med. Imaging – start-page: 286 year: 1998 end-page: 295 ident: bb0100 article-title: Incremental eigenanalysis for classification publication-title: British Machine Vision Conference – volume: 41 start-page: 735 year: 2008 end-page: 746 ident: bb0125 article-title: Freesurfer-initiated fully-automated subcortical brain segmentation in mri using large deformation diffeomorphic metric mapping publication-title: Neuroimage – volume: 248 start-page: 194 year: 2008 end-page: 201 ident: bb0045 article-title: Discrimination between Alzheimer Disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus publication-title: Radiology – year: 2011 ident: bb0215 article-title: Laplace–Beltrami eigenfunction expansion of cortical manifolds publication-title: IEEE International Symposium on Biomedical Imaging – volume: 35 start-page: 905 year: 2005 end-page: 914 ident: bb0180 article-title: Incremental linear discriminant analysis for classification of data streams publication-title: IEEE Trans. Syst. Man Cybern. B Cybern. – volume: 42 start-page: 1430 year: 2008 end-page: 1438 ident: bb0190 article-title: Multi-structure network shape analysis via normal surface momentum maps publication-title: Neuroimage – volume: 7962 year: 2011 ident: bb0225 article-title: Mandible shape modeling using the second eigenfunction of the Laplace–Beltrami operator publication-title: SPIE Med. Imaging – volume: 19 start-page: 497 year: 2009 end-page: 510 ident: bb0065 article-title: The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals publication-title: Cereb. Cortex – volume: 56 start-page: 303 year: 1999 end-page: 308 ident: bb0185 article-title: Mild cognitive impairment: clinical characterization and outcome publication-title: Arch. Neurol. – volume: 20 start-page: 1009 year: 2002 end-page: 1016 ident: bb0105 article-title: Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition publication-title: Image Vision Comput. – volume: 26 start-page: 566 year: 2007 end-page: 581 ident: bb0035 article-title: Weighted Fourier series representation and its application to quantifying the amount of gray matter publication-title: IEEE Trans. Med. Imaging – volume: 9 start-page: 119 year: 2010 end-page: 128 ident: bb0110 article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade publication-title: Lancet Neurol. – volume: 9 start-page: 132 year: 2000 end-page: 137 ident: bb0165 article-title: Robust coding schemes for indexing and retrieval from large face databases publication-title: IEEE Trans. Image Process. – volume: 34 start-page: 996 year: 2007 end-page: 1019 ident: bb0040 article-title: Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: method and validation on controls and patients with Alzheimer's disease publication-title: Neuroimage – volume: 51 start-page: 73 year: 2009 end-page: 83 ident: bb0170 article-title: Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI publication-title: Neuroradiology – start-page: 999 year: 2008 end-page: 1007 ident: bb0235 article-title: Cortical surface thickness as a classifier: boosting for autism classification publication-title: Proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention — Part I – volume: 12 start-page: 189 issue: 3 year: 1975 ident: 10.1016/j.neuroimage.2011.09.085_bb0085 article-title: Mini-mental state: a practical method for grading the cognitive state of patients for the clinician publication-title: J. Psychiatr. Res. doi: 10.1016/0022-3956(75)90026-6 – volume: 20 start-page: 341 issue: 8–10 year: 2006 ident: 10.1016/j.neuroimage.2011.09.085_bb0025 article-title: OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification publication-title: J. Chemom. doi: 10.1002/cem.1006 – start-page: 81 year: 2007 ident: 10.1016/j.neuroimage.2011.09.085_bb0230 article-title: Efficient registration of 3D SPHARM Surfaces – volume: 41 start-page: 835 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2011.09.085_bb0005 article-title: Comparing surface-based and volume-based analyses of functional neuroimaging data in patients with schizophrenia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.02.052 – volume: 30 start-page: 52 issue: 1 year: 2006 ident: 10.1016/j.neuroimage.2011.09.085_bb0250 article-title: Abnormalities of hippocampal surface structure in very mild dementia of the Alzheimer type publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.09.017 – volume: 26 start-page: 566 issue: 4 year: 2007 ident: 10.1016/j.neuroimage.2011.09.085_bb0035 article-title: Weighted Fourier series representation and its application to quantifying the amount of gray matter publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2007.892519 – ident: 10.1016/j.neuroimage.2011.09.085_bb0130 – volume: 25 start-page: 1296 issue: 10 year: 2006 ident: 10.1016/j.neuroimage.2011.09.085_bb0195 article-title: Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace–Beltrami operator publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.882143 – volume: 41 start-page: 735 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2011.09.085_bb0125 article-title: Freesurfer-initiated fully-automated subcortical brain segmentation in mri using large deformation diffeomorphic metric mapping publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.03.024 – volume: 15 start-page: 995 issue: 7 year: 2005 ident: 10.1016/j.neuroimage.2011.09.085_bb0140 article-title: Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy publication-title: Cereb. Cortex doi: 10.1093/cercor/bhh200 – volume: 42 start-page: 1430 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2011.09.085_bb0190 article-title: Multi-structure network shape analysis via normal surface momentum maps publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.04.257 – volume: 19 start-page: 711 year: 1997 ident: 10.1016/j.neuroimage.2011.09.085_bb0020 article-title: Eigenfaces vs. fisherfaces: recognition using class specific linear projection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.598228 – ident: 10.1016/j.neuroimage.2011.09.085_bb0015 – year: 2002 ident: 10.1016/j.neuroimage.2011.09.085_bb0115 – ident: 10.1016/j.neuroimage.2011.09.085_bb0270 – volume: 7 start-page: 179 issue: 7 year: 1936 ident: 10.1016/j.neuroimage.2011.09.085_bb0080 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugen. doi: 10.1111/j.1469-1809.1936.tb02137.x – volume: 77 start-page: 125 year: 2008 ident: 10.1016/j.neuroimage.2011.09.085_bb0210 article-title: Incremental learning for robust visual tracking publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-007-0075-7 – volume: 132 start-page: 2048 issue: 8 year: 2009 ident: 10.1016/j.neuroimage.2011.09.085_bb0060 article-title: Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awp123 – volume: 132 start-page: 2036 issue: 8 year: 2009 ident: 10.1016/j.neuroimage.2011.09.085_bb0205 article-title: Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve publication-title: Brain doi: 10.1093/brain/awp105 – start-page: 286 year: 1998 ident: 10.1016/j.neuroimage.2011.09.085_bb0100 article-title: Incremental eigenanalysis for classification – volume: 51 start-page: 73 year: 2009 ident: 10.1016/j.neuroimage.2011.09.085_bb0170 article-title: Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI publication-title: Neuroradiology doi: 10.1007/s00234-008-0463-x – volume: 34 start-page: 2067 year: 2001 ident: 10.1016/j.neuroimage.2011.09.085_bb0260 article-title: A direct LDA algorithm for high-dimensional data with application to face recognition publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(00)00162-X – volume: 23 start-page: 994 issue: 3 year: 2003 ident: 10.1016/j.neuroimage.2011.09.085_bb0240 article-title: Dynamics of gray matter loss in Alzheimer's disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-03-00994.2003 – start-page: 999 year: 2008 ident: 10.1016/j.neuroimage.2011.09.085_bb0235 article-title: Cortical surface thickness as a classifier: boosting for autism classification – volume: 56 start-page: 766 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2011.09.085_bb0050 article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: Neuroimage. Corrected Proof. doi: 10.1016/j.neuroimage.2010.06.013 – volume: 19 start-page: 497 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2011.09.085_bb0065 article-title: The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn113 – volume: 27 start-page: 934 issue: 4 year: 2005 ident: 10.1016/j.neuroimage.2011.09.085_bb0030 article-title: Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.05.015 – volume: 26 start-page: 93 issue: 1 year: 2007 ident: 10.1016/j.neuroimage.2011.09.085_bb0075 article-title: Compare: classification of morphological patterns using adaptive regional elements publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.886812 – volume: 9 start-page: 132 issue: 1 year: 2000 ident: 10.1016/j.neuroimage.2011.09.085_bb0165 article-title: Robust coding schemes for indexing and retrieval from large face databases publication-title: IEEE Trans. Image Process. doi: 10.1109/83.817604 – year: 2011 ident: 10.1016/j.neuroimage.2011.09.085_bb0215 article-title: Laplace–Beltrami eigenfunction expansion of cortical manifolds – volume: 7962 year: 2011 ident: 10.1016/j.neuroimage.2011.09.085_bb0225 article-title: Mandible shape modeling using the second eigenfunction of the Laplace–Beltrami operator publication-title: SPIE Med. Imaging – year: 2008 ident: 10.1016/j.neuroimage.2011.09.085_bb0245 article-title: Spectral geometry processing with manifold harmonics – volume: 22 start-page: 189 issue: 2 year: 2007 ident: 10.1016/j.neuroimage.2011.09.085_bb0160 article-title: Pls and dimension reduction for classification publication-title: Comput. Stat. doi: 10.1007/s00180-007-0039-y – volume: 9 start-page: 1371 year: 2000 ident: 10.1016/j.neuroimage.2011.09.085_bb0150 article-title: Sequential Karhunen–Loeve basis extraction and its application to images publication-title: IEEE Trans. Image Process. doi: 10.1109/83.855432 – volume: 3 start-page: 246 issue: 4 year: 2004 ident: 10.1016/j.neuroimage.2011.09.085_bb0070 article-title: Amnestic MCI or prodromal Alzheimer's disease? publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(04)00710-0 – volume: 56 start-page: 303 issue: 3 year: 1999 ident: 10.1016/j.neuroimage.2011.09.085_bb0185 article-title: Mild cognitive impairment: clinical characterization and outcome publication-title: Arch. Neurol. doi: 10.1001/archneur.56.3.303 – volume: 20 start-page: 1009 issue: 13–14 year: 2002 ident: 10.1016/j.neuroimage.2011.09.085_bb0105 article-title: Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition publication-title: Image Vision Comput. doi: 10.1016/S0262-8856(02)00114-2 – volume: 40 start-page: 68 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2011.09.085_bb0200 article-title: Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the Alzheimer's type publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.11.041 – start-page: 793 year: 2004 ident: 10.1016/j.neuroimage.2011.09.085_bb0155 article-title: Incremental learning for visual tracking – volume: 35 start-page: 905 issue: 5 year: 2005 ident: 10.1016/j.neuroimage.2011.09.085_bb0180 article-title: Incremental linear discriminant analysis for classification of data streams publication-title: IEEE Trans. Syst. Man Cybern. B Cybern. doi: 10.1109/TSMCB.2005.847744 – volume: 4 start-page: 443 issue: 6 year: 2008 ident: 10.1016/j.neuroimage.2011.09.085_bb0010 article-title: Healthy brain aging: a meeting report from the Sylvan M. Cohen annual retreat of the University of Pennsylvania Institute on Aging publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2008.08.006 – volume: 47 start-page: 1476 issue: 4 year: 2009 ident: 10.1016/j.neuroimage.2011.09.085_bb0090 article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.05.036 – volume: 17 start-page: 29 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2011.09.085_bb0095 article-title: Automatic differentiation of anatomical patterns in the human brain: validation with studies of degenerative dementias publication-title: Neuroimage doi: 10.1006/nimg.2002.1202 – volume: 26 start-page: 1019 issue: 4 year: 2005 ident: 10.1016/j.neuroimage.2011.09.085_bb0055 article-title: Volumetric vs. surface-based alignment for localization of auditory cortex activation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.03.024 – start-page: 13 year: 2006 ident: 10.1016/j.neuroimage.2011.09.085_bb0145 article-title: Laplace–Beltrami eigenfunctions towards an algorithm that “understands” geometry – volume: 18 start-page: 895 issue: 4 year: 2003 ident: 10.1016/j.neuroimage.2011.09.085_bb0120 article-title: A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00041-7 – volume: 44 start-page: 1415 issue: 4 year: 2009 ident: 10.1016/j.neuroimage.2011.09.085_bb0175 article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to ad: results from ADNI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.10.031 – start-page: 1025 year: 2008 ident: 10.1016/j.neuroimage.2011.09.085_bb0255 article-title: Heterogeneous data fusion for Alzheimer's disease study – volume: 9 start-page: 119 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2011.09.085_bb0110 article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(09)70299-6 – start-page: 505 year: 2010 ident: 10.1016/j.neuroimage.2011.09.085_bb0220 article-title: Heat kernel smoothing using Laplace–Beltrami eigenfunctions – volume: 131 start-page: 681 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2011.09.085_bb0135 article-title: Automatic classification of MR scans in Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awm319 – volume: 34 start-page: 996 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2011.09.085_bb0040 article-title: Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: method and validation on controls and patients with Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.10.035 – volume: 35 start-page: 399 year: 2003 ident: 10.1016/j.neuroimage.2011.09.085_bb0265 article-title: Face recognition: a literature survey publication-title: ACM Comput. Surv. doi: 10.1145/954339.954342 – volume: 248 start-page: 194 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2011.09.085_bb0045 article-title: Discrimination between Alzheimer Disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus publication-title: Radiology doi: 10.1148/radiol.2481070876 |
SSID | ssj0009148 |
Score | 2.4641244 |
Snippet | Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease... Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer’s disease... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2217 |
SubjectTerms | Aged Aged, 80 and over Algorithms Alzheimer Disease - classification Alzheimer Disease - pathology Alzheimer's disease Artificial Intelligence Atrophy Brain - pathology Brain research Cerebral Cortex - pathology Classification Cognitive Dysfunction - pathology Colleges & universities Cortical thickness Data compression Databases, Factual Disease Progression Entorhinal Cortex - pathology False Negative Reactions False Positive Reactions Female Frequency representation Humans Image Processing, Computer-Assisted - methods Incremental learning Individual subject classification Longitudinal Studies Magnetic Resonance Imaging Male Memory - physiology Methods Middle Aged Neuropsychological Tests Noise Pharmaceutical industry Positron-Emission Tomography Principal components analysis Reproducibility of Results |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqHhAXxJuFgnxA4pRuHDt2LE5VRVWQygUq7c2KX22gzVab3QMc-CP8WWYSJ2WBw0ocE3usJDOe-WJ_MybktQuy8ioHDdiizoTjKquj91nMc8si_CBUHhf0zz7K03PxYVEu9sjxmAuDtMrk-wef3nvrdGeevub8pmnmnwAZQLiB4RhuJrAFZrALhVZ--OOW5qGZGNLhSp5h78TmGThefc3I5hpmbirmqQ9zPFX53yHqbwj6J5Pyt9B0cp_cS5iSHg2P_YDshfYhuXOWds0fkZ_vp6wr2m0srrxQh6gZaUK9ZihAV3p09f0yNNdh9aajad-GYpDzFDo0rRtWEmGMdNLEBUXS_AWtaYe0bGiIq4GY_Y32tTLHvKaWLiOFv9x-2Zwiwf4rOliK7NTH5Pzk3efj0ywdypA5Weh1VsaytIX1QgIUcJELy0SobVVpWQVMkWaFYl4HDh04j64utFPB1jo6cMpC8Cdkv1224RmhMdjcC22VK7RQFpCSs762TsoychhxRtSoB-NSxXI8OOPKjNS0L-ZWgwY1aHJtQIMzwibJm6Fqxw4yelS1GbNSwY8aCC07yL6dZLesd0fpg9GyTPIgnWF4KDSTABZmhE7NMPdxQ6duw3LTGQ14Taq8LGbk6WCH09sWyGvhisE33LLQqQOWFd9uaZvLvrw4QFINMPn5f73TC3IXroqB335A9terTXgJ8G1tX_Xz8xdml0ts priority: 102 providerName: Elsevier |
Title | Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381191101161X https://dx.doi.org/10.1016/j.neuroimage.2011.09.085 https://www.ncbi.nlm.nih.gov/pubmed/22008371 https://www.proquest.com/docview/1547316990 https://www.proquest.com/docview/921567052 https://pubmed.ncbi.nlm.nih.gov/PMC5849264 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoKyEuiDcLZeUDEqeUOHHiWBzQUrXaAl1VFZX2ZsWvdqHNls3uAQ78Ef4sM4mTpYDQnnKwJ0oy4_GX8TczhLw0Li-siEEDOikjblIRld7ayMexZh5-EAqLAf3jST4-4--n2TQE3OpAq-x8YuOo7dxgjPw1wya5LAfn-fb6a4Rdo_B0NbTQ2CI7WLoMrVpMxbroLuNtKlyWRgVMCEyelt_V1IucXcGqDYU85V6MHZX_vT39DT__ZFH-ti0d3iN3A56ko9YA7pNbrnpAbh-HE_OH5OdRn3FF65XGqAs1iJiRItRohQJspaPL7xduduUWr2oazmwobnCWwoRZZdooItwjdJk4p0iYP6clrZGSDQN-0ZKyv9GmTmaX01TRuafwh9uEzCmS67-gc6XITH1Ezg4PPu2Po9CQITJ5IpdR5rNMJ9ryHGCA8SnXjLtSF4XMC4fp0SwRzEqXwoQ09aZMpBFOl9IbcMicp4_JdjWv3FNCvdOx5VILk0guNKAko22pTZ5nPoU7Dojo9KBMqFaOTTMuVUdL-6zWGlSoQRVLBRocENZLXrcVOzaQkZ2qVZeRCj5UwbaygeybXjaglhaNbCi921mWCt6jVmtbHxDaD8O6x8OcsnLzVa0kYLVcxFkyIE9aO-zfNkFOSyoYfMMbFtpPwJLiN0eq2UVTWhzgqASI_Oz_T_Wc3EkA2-GhWlLsku3lYuVeADZb6iHZ2vvBhs0yHJKd0f7pxxO8Hn0YT-D67mBycvoLsyRFvw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkYAL4rcsFPABxCkQO04cCyFUAdWWdntqpb2Z2LHbhTZbNrtC5VV4B56RmcTJUkBoLz3bY212xjOf7W9mCHlmXZaXMgYNGF5EwiYyKnxZRj6ODfNwQMhLvNAf7WfDQ_FxnI7XyM8uFwZplZ1PbBx1ObV4R_6KYZNcloHzfHv2NcKuUfi62rXQaM1i151_gyNb_WbnPej3OefbHw7eDaPQVSCyGVfzKPVpargpRQaxzPpEGCZcYfJcZbnDHF_GJSuVS2BCknhbcGWlM4XyFryKEAmse4VchcAb42FPjuWyyC8TbepdmkQ5Yyowh1o-WVOfcnIKXiIUDlUvY-zg_O9w-Dfc_ZO1-VsY3L5Fbgb8Srdag7tN1lx1h1wbhRf6u-THTp_hReuFwVseahGhIyWpsQIKMJlunXw_dpNTN3tR0_BGRDGglhQmTCrb3lrCGqGrxRFFgv4RLWiNFHAY8LOWBH5Om7qcXQ5VRaeewom6uaKnSOb_gs6cIhP2Hjm8FFXdJ-vVtHIPCPXOxKVQRlquhDSAyqwpC2OzLPUJrDggstODtqE6OjbpONEdDe6zXmpQowZ1rDRocEBYL3nWVghZQUZ1qtZdBiz4bA1hbAXZ171sQEkt-llRerOzLB28Va2Xe2tAaD8MfgYfj4rKTRe1VoANMxmnfEA2Wjvsv5YjhyaRDP7DCxbaT8AS5hdHqslxU8oc4K8CSP7w_7_qKbk-PBjt6b2d_d1H5AZ8Dm-J85tkfT5buMeAC-fmSbMZKfl02bv_F9MAe-0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKlVcEO8GCvgA4rR07X1aCKFCGzWURhWiUm9m_WoD7aZkE6HyV_gn_Dpmdr0bCgjl0rM9VjYznvlsfzNDyFNt09xkIWhA8SKIdZQFhTMmcGGomIMDQm7wQn9_lO4exu-OkqMV8rPNhUFaZesTa0dtJhrvyDcZNsllKTjPTedpEQfbg9fnXwPsIIUvrW07jcZE9uzFNzi-Va-G26DrZ5wPdj6-3Q18h4FAp1zMgsQlieLKxCnENe2iWLHYFirPRZpbzPdlPGNG2AgmRJHTBRc6s6oQToOHieMI1r1GVjM8FfXI6pud0cGHRclfFjeJeEkU5IwJzyNq2GV1tcrxGfgMX0ZUvAixn_O_g-Pf4PdPDudvQXFwk9zwaJZuNeZ3i6zY8jZZ2_fv9XfIj2GX70WrucI7H6oRryNBqbYJCqCZbp1-P7HjMzt9XlH_YkQxvBoKE8albu4wYQ3f4-KYIl3_mBa0QkI4DLhpQwm_oHWVzjajqqQTR-F8XV_YU6T2f0HXTpEXe5ccXomy7pFeOSntOqHOqtDEQmWaizhTgNG0MoXSaZq4CFbsk6zVg9S-Vjq27DiVLSnus1xoUKIGZSgkaLBPWCd53tQLWUJGtKqWbT4seHAJQW0J2ZedrMdMDRZaUnqjtSzpfVclFzutT2g3DF4Hn5KK0k7mlRSAFNMsTHif3G_ssPtajoyaKGPwH16y0G4CFjS_PFKOT-rC5gCGBQD0B___VU_IGux8-X442ntIrsPX8KbEwAbpzaZz-whA4kw99ruRkk9X7QB-AbLCgZE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Individual+Subject+Classification+for+Alzheimer%E2%80%99s+Disease+based+on+Incremental+Learning+Using+a+Spatial+Frequency+Representation+of+Cortical+Thickness+Data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Cho%2C+Youngsang&rft.au=Seong%2C+Joon-Kyung&rft.au=Jeong%2C+Yong&rft.au=Shin%2C+Sung+Yong&rft.date=2012-02-01&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=59&rft.issue=3&rft.spage=2217&rft.epage=2230&rft_id=info:doi/10.1016%2Fj.neuroimage.2011.09.085&rft_id=info%3Apmid%2F22008371&rft.externalDocID=PMC5849264 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |