Sustainable production of glutathione from lignocellulose-derived sugars using engineered Saccharomyces cerevisiae
Glutathione has diverse physiological functions, and therefore, the demand for it has increased recently. Currently, industrial mass production of glutathione is performed from D-glucose via fermentation by the budding yeast Saccharomyces cerevisiae . However, use of D-glucose often competes with de...
Saved in:
Published in | Applied Microbiology and Biotechnology Vol. 103; no. 3; pp. 1243 - 1254 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Science and Business Media LLC
01.02.2019
Springer Berlin Heidelberg Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glutathione has diverse physiological functions, and therefore, the demand for it has increased recently. Currently, industrial mass production of glutathione is performed from D-glucose via fermentation by the budding yeast
Saccharomyces cerevisiae
. However, use of D-glucose often competes with demands for various other industries, leading to high production costs. To affordably produce glutathione, we aimed to produce high amounts of glutathione from D-glucose and D-xylose, which are the main constituents of lignocellulosic biomass pre-treated with acids. Genetically engineered
S. cerevisiae
strains that can produce high amounts of glutathione and assimilate D-xylose were constructed and cultured in media containing D-xylose. Among these recombinant strains, a
S. cerevisiae
GCI (
XR
/
XDH
/
XK
) strain over-expressing γ-glutamylcysteine synthetase, glutathione synthetase, D-xylose reductase, xylitol dehydrogenase, and xylulokinase genes successfully consumed D-xylose in the medium and produced the highest amount of glutathione. When strains were grown in media containing D-glucose and D-xylose, the GCI (
XR
/
XDH
/
XK
) strain showed 4.6-fold higher volumetric glutathione production (mg/L-broth), 2.2-fold higher glutathione content (%), and 2.1-fold higher cell growth (g-cell/L-broth) than the vector control strain of YPH499 (Vector). Furthermore, when recombinant
S. cerevisiae
strains were grown in medium containing fermentation inhibitory materials, the GCI (
XR
/
XDH
/
XK
) strain produced 5.8- and higher volumetric glutathione, 2.6-fold higher intracellular glutathione, and 2.9-fold higher cell growth than the vector control YPH499 (Vector) strain. The gradual sugar consumption by recombinant
S. cerevisiae
strains in medium containing D-glucose and D-xylose leads to high yields of glutathione. These results indicate the potential for glutathione production from lignocellulosic materials. |
---|---|
AbstractList | Glutathione has diverse physiological functions, and therefore, the demand for it has increased recently. Currently, industrial mass production of glutathione is performed from D-glucose via fermentation by the budding yeast Saccharomyces cerevisiae. However, use of D-glucose often competes with demands for various other industries, leading to high production costs. To affordably produce glutathione, we aimed to produce high amounts of glutathione from D-glucose and D-xylose, which are the main constituents of lignocellulosic biomass pre-treated with acids. Genetically engineered S. cerevisiae strains that can produce high amounts of glutathione and assimilate D-xylose were constructed and cultured in media containing D-xylose. Among these recombinant strains, a S. cerevisiae GCI (XR/XDH/XK) strain over-expressing γ-glutamylcysteine synthetase, glutathione synthetase, D-xylose reductase, xylitol dehydrogenase, and xylulokinase genes successfully consumed D-xylose in the medium and produced the highest amount of glutathione. When strains were grown in media containing D-glucose and D-xylose, the GCI (XR/XDH/XK) strain showed 4.6-fold higher volumetric glutathione production (mg/L-broth), 2.2-fold higher glutathione content (%), and 2.1-fold higher cell growth (g-cell/L-broth) than the vector control strain of YPH499 (Vector). Furthermore, when recombinant S. cerevisiae strains were grown in medium containing fermentation inhibitory materials, the GCI (XR/XDH/XK) strain produced 5.8- and higher volumetric glutathione, 2.6-fold higher intracellular glutathione, and 2.9-fold higher cell growth than the vector control YPH499 (Vector) strain. The gradual sugar consumption by recombinant S. cerevisiae strains in medium containing D-glucose and D-xylose leads to high yields of glutathione. These results indicate the potential for glutathione production from lignocellulosic materials. Glutathione has diverse physiological functions, and therefore, the demand for it has increased recently. Currently, industrial mass production of glutathione is performed from D-glucose via fermentation by the budding yeast Saccharomyces cerevisiae . However, use of D-glucose often competes with demands for various other industries, leading to high production costs. To affordably produce glutathione, we aimed to produce high amounts of glutathione from D-glucose and D-xylose, which are the main constituents of lignocellulosic biomass pre-treated with acids. Genetically engineered S. cerevisiae strains that can produce high amounts of glutathione and assimilate D-xylose were constructed and cultured in media containing D-xylose. Among these recombinant strains, a S. cerevisiae GCI ( XR / XDH / XK ) strain over-expressing γ-glutamylcysteine synthetase, glutathione synthetase, D-xylose reductase, xylitol dehydrogenase, and xylulokinase genes successfully consumed D-xylose in the medium and produced the highest amount of glutathione. When strains were grown in media containing D-glucose and D-xylose, the GCI ( XR / XDH / XK ) strain showed 4.6-fold higher volumetric glutathione production (mg/L-broth), 2.2-fold higher glutathione content (%), and 2.1-fold higher cell growth (g-cell/L-broth) than the vector control strain of YPH499 (Vector). Furthermore, when recombinant S. cerevisiae strains were grown in medium containing fermentation inhibitory materials, the GCI ( XR / XDH / XK ) strain produced 5.8- and higher volumetric glutathione, 2.6-fold higher intracellular glutathione, and 2.9-fold higher cell growth than the vector control YPH499 (Vector) strain. The gradual sugar consumption by recombinant S. cerevisiae strains in medium containing D-glucose and D-xylose leads to high yields of glutathione. These results indicate the potential for glutathione production from lignocellulosic materials. Glutathione has diverse physiological functions, and therefore, the demand for it has increased recently. Currently, industrial mass production of glutathione is performed from D-glucose via fermentation by the budding yeast Saccharomyces cerevisiae. However, use of D-glucose often competes with demands for various other industries, leading to high production costs. To affordably produce glutathione, we aimed to produce high amounts of glutathione from D-glucose and D-xylose, which are the main constituents of lignocellulosic biomass pre-treated with acids. Genetically engineered S. cerevisiae strains that can produce high amounts of glutathione and assimilate D-xylose were constructed and cultured in media containing D-xylose. Among these recombinant strains, a S. cerevisiae GCI (XR/XDH/XK) strain over-expressing [gamma]-glutamylcysteine synthetase, glutathione synthetase, D-xylose reductase, xylitol dehydrogenase, and xylulokinase genes successfully consumed D-xylose in the medium and produced the highest amount of glutathione. When strains were grown in media containing D-glucose and D-xylose, the GCI (XR/XDH/XK) strain showed 4.6-fold higher volumetric glutathione production (mg/L-broth), 2.2-fold higher glutathione content (%), and 2.1-fold higher cell growth (g-cell/L-broth) than the vector control strain of YPH499 (Vector). Furthermore, when recombinant S. cerevisiae strains were grown in medium containing fermentation inhibitory materials, the GCI (XR/XDH/XK) strain produced 5.8- and higher volumetric glutathione, 2.6-fold higher intracellular glutathione, and 2.9-fold higher cell growth than the vector control YPH499 (Vector) strain. The gradual sugar consumption by recombinant S. cerevisiae strains in medium containing D-glucose and D-xylose leads to high yields of glutathione. These results indicate the potential for glutathione production from lignocellulosic materials. Glutathione has diverse physiological functions, and therefore, the demand for it has increased recently. Currently, industrial mass production of glutathione is performed from D-glucose via fermentation by the budding yeast Saccharomyces cerevisiae. However, use of D-glucose often competes with demands for various other industries, leading to high production costs. To affordably produce glutathione, we aimed to produce high amounts of glutathione from D-glucose and D-xylose, which are the main constituents of lignocellulosic biomass pre-treated with acids. Genetically engineered S. cerevisiae strains that can produce high amounts of glutathione and assimilate D-xylose were constructed and cultured in media containing D-xylose. Among these recombinant strains, a S. cerevisiae GCI (XR/XDH/XK) strain over-expressing γ-glutamylcysteine synthetase, glutathione synthetase, D-xylose reductase, xylitol dehydrogenase, and xylulokinase genes successfully consumed D-xylose in the medium and produced the highest amount of glutathione. When strains were grown in media containing D-glucose and D-xylose, the GCI (XR/XDH/XK) strain showed 4.6-fold higher volumetric glutathione production (mg/L-broth), 2.2-fold higher glutathione content (%), and 2.1-fold higher cell growth (g-cell/L-broth) than the vector control strain of YPH499 (Vector). Furthermore, when recombinant S. cerevisiae strains were grown in medium containing fermentation inhibitory materials, the GCI (XR/XDH/XK) strain produced 5.8- and higher volumetric glutathione, 2.6-fold higher intracellular glutathione, and 2.9-fold higher cell growth than the vector control YPH499 (Vector) strain. The gradual sugar consumption by recombinant S. cerevisiae strains in medium containing D-glucose and D-xylose leads to high yields of glutathione. These results indicate the potential for glutathione production from lignocellulosic materials.Glutathione has diverse physiological functions, and therefore, the demand for it has increased recently. Currently, industrial mass production of glutathione is performed from D-glucose via fermentation by the budding yeast Saccharomyces cerevisiae. However, use of D-glucose often competes with demands for various other industries, leading to high production costs. To affordably produce glutathione, we aimed to produce high amounts of glutathione from D-glucose and D-xylose, which are the main constituents of lignocellulosic biomass pre-treated with acids. Genetically engineered S. cerevisiae strains that can produce high amounts of glutathione and assimilate D-xylose were constructed and cultured in media containing D-xylose. Among these recombinant strains, a S. cerevisiae GCI (XR/XDH/XK) strain over-expressing γ-glutamylcysteine synthetase, glutathione synthetase, D-xylose reductase, xylitol dehydrogenase, and xylulokinase genes successfully consumed D-xylose in the medium and produced the highest amount of glutathione. When strains were grown in media containing D-glucose and D-xylose, the GCI (XR/XDH/XK) strain showed 4.6-fold higher volumetric glutathione production (mg/L-broth), 2.2-fold higher glutathione content (%), and 2.1-fold higher cell growth (g-cell/L-broth) than the vector control strain of YPH499 (Vector). Furthermore, when recombinant S. cerevisiae strains were grown in medium containing fermentation inhibitory materials, the GCI (XR/XDH/XK) strain produced 5.8- and higher volumetric glutathione, 2.6-fold higher intracellular glutathione, and 2.9-fold higher cell growth than the vector control YPH499 (Vector) strain. The gradual sugar consumption by recombinant S. cerevisiae strains in medium containing D-glucose and D-xylose leads to high yields of glutathione. These results indicate the potential for glutathione production from lignocellulosic materials. |
Audience | Academic |
Author | Takahiro Bamba Tomohisa Hasunuma Daisuke Sasaki Akihiko Kondo Jyumpei Kobayashi |
Author_xml | – sequence: 1 givenname: Jyumpei surname: Kobayashi fullname: Kobayashi, Jyumpei organization: Graduate School of Science, Technology and Innovation, Kobe University – sequence: 2 givenname: Daisuke surname: Sasaki fullname: Sasaki, Daisuke organization: Graduate School of Science, Technology and Innovation, Kobe University – sequence: 3 givenname: Takahiro surname: Bamba fullname: Bamba, Takahiro organization: Graduate School of Science, Technology and Innovation, Kobe University – sequence: 4 givenname: Tomohisa surname: Hasunuma fullname: Hasunuma, Tomohisa organization: Graduate School of Science, Technology and Innovation, Kobe University – sequence: 5 givenname: Akihiko orcidid: 0000-0002-2740-0384 surname: Kondo fullname: Kondo, Akihiko email: akondo@kobe-u.ac.jp organization: Graduate School of Science, Technology and Innovation, Kobe University, RIKEN Center for Sustainable Resource Science |
BackLink | https://cir.nii.ac.jp/crid/1873961342771589760$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/30448906$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1rFTEQhhep2GPtD_BGFvRCL7Zm8rm5LMWPQkHw6HXIyU62kT3ZmuwW--_NcurHKXIkkJDheWcmk_dpdRTHiFX1HMgZEKLeZkKoYA2BttFcs4Y_qlbAGW2IBH5UrQgo0Sih2-PqNOewIUIo4ETIJ9UxI5y3mshVldZznmyIdjNgfZPGbnZTGGM9-rof5slO1-WGtU_jth5CH0eHwzAPY8amwxRusavz3NuU6zmH2NcY-xARU4mvrXPXtgjvHObaldhtyMHis-qxt0PG0_vzpPr6_t2Xi4_N1acPlxfnV42TVE8NFc5br7QXnjivGWLHO91SoNJSEBv0ANxTkNR3XHIhrKACnOUWUEMr2En1epe3POv7jHky25CX9m3Ecc6GUkpaQUDT_6PAhGRCtKSgLx-g38Y5xfIQw0ALRqmQ6hBVcnFJGIW_cvV2QBOiH6dk3VLanAvFFZPlnwp19g-qrA63wZXf8aHE9wRv9gSFmfDH1Ns5Z3O5_rzPvrhvdN5ssTM3KWxtujO_HFIA2AEujTkn9L8RIGYxotkZ0RQjmsWIZkmqHmhcKFYqTiqdh-Ggku6UuVSJPaY_czskerUTxRBKpWWHVjEty6SpUiBarcrEfwJ_W_ig |
CitedBy_id | crossref_primary_10_1016_j_biortech_2020_123785 crossref_primary_10_1007_s00253_022_11826_0 crossref_primary_10_1016_j_jff_2020_104211 crossref_primary_10_3390_antiox13020203 crossref_primary_10_3390_microorganisms8040611 crossref_primary_10_1016_j_ijbiomac_2024_134778 crossref_primary_10_1007_s10529_020_03039_0 crossref_primary_10_1007_s10529_020_02989_9 crossref_primary_10_1186_s12934_022_01880_8 |
Cites_doi | 10.1007/s00253-004-1751-y 10.1016/j.biortech.2014.08.054 10.1038/nprot.2008.107 10.1016/j.jbiosc.2011.12.013 10.1007/s12033-018-0063-x 10.1007/s00253-011-3841-y 10.1038/nprot.2006.59 10.1073/pnas.1010456108 10.1186/s13568-018-0662-8 10.1016/S0300-483X(01)00537-6 10.1021/bi00174a006 10.1007/BF00318659 10.1007/s00253-009-2101-x 10.1074/jbc.M909235199 10.1002/bit.260220904 10.1111/mmi.13236 10.1146/annurev.bi.52.070183.003431 10.1016/j.biortech.2007.11.032 10.1111/j.1574-6968.2003.tb11503.x 10.1067/mlc.2002.129505 10.1128/AEM.67.12.5668-5674.2001 10.1007/s12010-011-9435-4 10.1007/BF00167144 10.1016/j.biortech.2017.05.190 10.1016/0922-338X(89)90080-9 10.1016/j.ymben.2012.07.011 10.1007/s00253-013-5074-8 10.1093/jb/mvp028 10.1016/j.biortech.2014.07.082 10.1371/journal.pone.0128417 10.1016/j.femsyr.2004.02.005 10.1007/s00253-010-2968-6 10.1111/j.1567-1364.2008.00440.x 10.1007/s10295-014-1573-6 10.1007/s00253-011-3665-9 10.1128/AEM.01547-16 10.1007/s00253-015-6847-z 10.1186/s13568-015-0175-7 10.1038/nchembio.1142 10.1016/j.jbiosc.2012.12.007 10.1046/j.0954-7894.2002.01294.x 10.21769/BioProtoc.2887 10.1016/j.jbiotec.2012.10.017 10.1128/AEM.70.11.6816-6825.2004 10.1042/bj2260669 10.1017/S0029665100000847 10.1016/S0141-0229(02)00285-5 10.1186/1475-2859-12-87 10.3109/09546631003801619 10.1186/s12934-017-0658-0 10.1016/0922-338X(93)90214-S 10.1128/JB.138.1.92-98.1979 10.1128/AEM.61.12.4184-4190.1995 10.1128/JB.153.1.163-168.1983 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2018 COPYRIGHT 2019 Springer Applied Microbiology and Biotechnology is a copyright of Springer, (2018). All Rights Reserved. Copyright Springer Nature B.V. Feb 2019 |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: COPYRIGHT 2019 Springer – notice: Applied Microbiology and Biotechnology is a copyright of Springer, (2018). All Rights Reserved. – notice: Copyright Springer Nature B.V. Feb 2019 |
DBID | RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7T7 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- LK8 M0C M0S M1P M2P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7S9 L.6 |
DOI | 10.1007/s00253-018-9493-4 |
DatabaseName | CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Biological Science Collection ABI/INFORM Global Health & Medical Collection (Alumni Edition) Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ABI/INFORM Complete (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA ProQuest Business Collection (Alumni Edition) MEDLINE ProQuest Business Collection (Alumni Edition) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1432-0614 |
EndPage | 1254 |
ExternalDocumentID | A574736044 30448906 10_1007_s00253_018_9493_4 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministry of Education, Culture, Sports, and Science and Technology (MEXT), Japan |
GroupedDBID | --- .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 203 23M 29~ 2J2 2JY 2KG 2KM 2LR 2~H 30V 36B 4.4 406 408 409 40D 40E 5GY 5VS 67N 67Z 6J9 6NX 78A 7WY 7X7 88E 88I 8AO 8CJ 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AAHBH AAHNG AAIAL AAJKR AAJSJ AANZL AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABBBX ABBXA ABDBE ABDBF ABDZT ABECU ABEEZ ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACREN ACSTC ACUHS ADBBV ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFGXO AFHIU AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AZFZN AZQEC B-. B0M BA0 BBNVY BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BVXVI C6C CCPQU CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBD EBLON EBO EBS EDH EDO EIOEI EJD EMB EMK EMOBN EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IHR IJ- IKXTQ INH INR ISR ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KPH LAS LK8 LLZTM M0C M1P M2P M4Y M7P MA- ML0 MM. NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P PF0 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PSQYO PT5 Q2X QOK QOR QOS R89 R9I RHV RNS ROL RPX RRX RSV RYH S16 S27 S3A S3B SAP SBY SCM SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 YLTOR Z45 Z8Z ZMTXR ZOVNA ~02 ~8M ~EX ~KM -4W -58 -5G -BR -EM -~C 2JN 88A ABAKF ACZOJ ADINQ FIGPU GQ6 GROUPED_ABI_INFORM_COMPLETE M0L Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z82 Z83 Z84 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8V Z8W Z8Y Z91 Z92 -Y2 28- 2P1 2VQ 3SX 53G 5QI AAKKN AANXM AARHV AAYTO AAYXX ABQSL ACACY ACBXY ACULB ADHKG ADYPR AEBTG AEFIE AFEXP AFFNX AFGCZ AGGDS AGQPQ AI. AJBLW BBWZM C24 CAG CITATION COF EN4 KOW N2Q NDZJH NHB O9- OVD P0- R4E RIG RNI RZK S1Z S26 S28 SCLPG T16 TEORI VH1 WK6 ZXP ZY4 ABMOR ABTAH CGR CUY CVF ECM EIF NPM AEIIB PMFND 3V. 7QL 7T7 7XB 8FD 8FK C1K FR3 K9. L.- M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c629t-25cfaf79f5f0cf93eed4d982126a215bef114f2162fd46455a5251ca4a1e91853 |
IEDL.DBID | U2A |
ISSN | 0175-7598 1432-0614 |
IngestDate | Thu Jul 10 21:55:49 EDT 2025 Fri Jul 11 08:25:16 EDT 2025 Wed Aug 13 03:28:53 EDT 2025 Wed Aug 13 04:48:28 EDT 2025 Tue Jun 17 21:08:42 EDT 2025 Tue Jun 10 20:41:08 EDT 2025 Fri Jun 27 03:53:34 EDT 2025 Thu Apr 03 07:03:02 EDT 2025 Tue Jul 01 03:48:30 EDT 2025 Thu Apr 24 22:56:02 EDT 2025 Fri Feb 21 02:37:31 EST 2025 Thu Jun 26 23:50:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | D-Xylose Aldose reductase D-Xylose reductase Glutathione Xylitol dehydrogenase Saccharomyces cerevisiae |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c629t-25cfaf79f5f0cf93eed4d982126a215bef114f2162fd46455a5251ca4a1e91853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8382-2362 0000-0003-1527-5288 0000-0002-2740-0384 |
PMID | 30448906 |
PQID | 2134603210 |
PQPubID | 54065 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2220850192 proquest_miscellaneous_2135635580 proquest_journals_3195322567 proquest_journals_2134603210 gale_infotracmisc_A574736044 gale_infotracacademiconefile_A574736044 gale_incontextgauss_ISR_A574736044 pubmed_primary_30448906 crossref_primary_10_1007_s00253_018_9493_4 crossref_citationtrail_10_1007_s00253_018_9493_4 springer_journals_10_1007_s00253_018_9493_4 nii_cinii_1873961342771589760 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Applied Microbiology and Biotechnology |
PublicationTitleAbbrev | Appl Microbiol Biotechnol |
PublicationTitleAlternate | Appl Microbiol Biotechnol |
PublicationYear | 2019 |
Publisher | Springer Science and Business Media LLC Springer Berlin Heidelberg Springer Springer Nature B.V |
Publisher_xml | – name: Springer Science and Business Media LLC – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
References | Ramana, Dixit, Srivastava, Bhatnagar, Balendiran, Watowich, Petrash, Srivastava (CR40) 2001; 30 Qiu, Deng, Tan, Zhou, Cao (CR39) 2015; 42 Singh (CR46) 2002; 140 Ismail, Sakamoto, Hatanaka, Hasunuma, Kondo (CR20) 2013; 163 Grant, Steel, Waugh, Ellis (CR12) 2003; 218 Teramura, Sasaki, Oshima, Aikawa, Matsuda, Okamoto, Shirai, Kawaguchi, Ogino, Yamasaki, Kikuchi, Kondo (CR48) 2015; 10 Rizzi, Harwart, Erlemann, Bui Thanh, Dellweg (CR42) 1989; 67 Dröge, Breitkreutz (CR9) 2000; 59 Lisec, Schauer, Kopka, Willmitzer, Fernie (CR30) 2006; 1 Walfridsson, Hallborn, Penttilä, Keränen, Hahn-Hägerdal (CR54) 1995; 61 Hara, Kim, Yoshida, Kiriyama, Kondo, Okai, Ogino, Fukuda, Kondo (CR15) 2011; 93 Sasaki, Sasaki, Tsuge, Morita, Kondo (CR44) 2014; 172 Fayyad-Kazan, Feller, Bodo, Boeckstaens, Marini, Dubois, Georis (CR10) 2016; 99 Gárdonyi, Hahn-Hägerdal (CR11) 2003; 32 Sasaki, Tsuge, Sasaki, Teramura, Wakai, Kawaguchi, Sazuka, Ogino, Kondo (CR45) 2014; 169 Halka, Nowacki, Kleinschmidt, Koenen, Wichmann (CR14) 2018; 8 Kobayashi, Sasaki, Hara, Hasunuma, Kondo (CR25) 2017; 16 Bamba, Hasunuma, Kondo (CR3) 2016; 6 Dixit, Balendiran, Watowich, Srivastava, Ramana, Petrash, Bhatnagar, Srivastava (CR8) 2000; 275 Zhou, Cheng, Wang, Fink, Stephanopoulos (CR57) 2012; 14 Träff, Otero Cordero, van Zyl, Hahn-Hägerdal (CR50) 2001; 67 Verduyn, Van Kleef, Frank, Schreuder, Van Dijken, Scheffers (CR53) 1985; 226 Morgan, Ezeriņa, Amoako, Riemer, Seedorf, Dick (CR35) 2013; 9 Wang, Sun, Xue, Shang, Wang, Tan (CR55) 2011; 168 Li, Wei, Chen (CR28) 2004; 66 Cueto-Rojas, Maleki Seifar, Ten Pierick, van Helmond, Pieterse, Heijnen, Wahl (CR7) 2016; 82 Linde, Galbe, Zacchi (CR29) 2008; 99 Rolseth, Djurhuus, Svardal (CR43) 2002; 170 Prima, Hara, Djohan, Kashiwagi, Kahar, Ishii, Nakayama, Okazaki, Prasetya, Kondo, Yopi (CR37) 2017; 245 Kato, Izumi, Hasunuma, Matsuda, Kondo (CR23) 2012; 113 Meister, Andersen (CR34) 1983; 52 Putri, Nakayama, Matsuda, Uchikata, Kobayashi, Matsubara, Fukusaki (CR38) 2013; 115 Penninckx (CR36) 2002; 2 Kobayashi, Sasaki, Kondo (CR26) 2018; 8 Yoshida, Arai, Hara, Yamada, Ogino, Fukuda, Kondo (CR56) 2011; 89 Matsushika, Inoue, Kodaki, Sawayama (CR32) 2009; 84 Chen, Yang, Kuo (CR6) 1992; 21 Harrison, Bohren, Ringe, Petsko, Gabbay (CR18) 1994; 33 Kötter, Ciriacy (CR27) 1993; 38 Hara, Aoki, Kobayashi, Kiriyama, Nishida, Araki, Kondo (CR17) 2015; 99 Berthels, Cordero Otero, Bauer, Thevelein, Pretorius (CR5) 2004; 4 Jin, Laplaza, Jeffries (CR22) 2004; 70 Masuda, Previato, Miranda, Assis, Penha, Mendonça-Previato, Montero-Lomelí (CR31) 2008; 8 Vartanyan, Gurevich, Kozachenko, Nagler, Lozovskaya, Burlakova (CR52) 2000; 65 Ishii, Izawa, Matsumura, Wakamura, Tanino, Tanaka, Ogino, Fukuda, Kondo (CR19) 2009; 145 Ray, Watkins, Misso, Thompson (CR41) 2002; 32 Ask, Mapelli, Höck, Olsson, Bettiga (CR2) 2013; 12 Kiriyama, Hara, Kondo (CR24) 2013; 97 Arjinpathana, Asawanonda (CR1) 2012; 23 Mbinda, Ombori, Dixelius, Oduor (CR33) 2018; 60 Bennett, Yuan, Kimball, Rabinowitz (CR4) 2008; 3 Ito, Fukuda, Murata, Kimura (CR21) 1983; 153 Hara, Kiriyama, Inagaki, Nakayama, Kondo (CR16) 2012; 94 Ha, Galazka, Kim, Choi, Yang, Seo, Glass, Cate, Jin (CR13) 2011; 108 Tantirungkij, Nakashima, Seki, Yoshida (CR47) 1993; 75 Toda, Yabe, Yamagata (CR49) 1980; 22 Tyson, Lord, Wheals (CR51) 1979; 138 CB Tyson (9493_CR51) 1979; 138 K Toda (9493_CR49) 1980; 22 M Gárdonyi (9493_CR11) 2003; 32 T Bamba (9493_CR3) 2016; 6 M Fayyad-Kazan (9493_CR10) 2016; 99 H Kato (9493_CR23) 2012; 113 M Walfridsson (9493_CR54) 1995; 61 J Lisec (9493_CR30) 2006; 1 J Ishii (9493_CR19) 2009; 145 H Ito (9493_CR21) 1983; 153 RJ Singh (9493_CR46) 2002; 140 M Linde (9493_CR29) 2008; 99 Z Qiu (9493_CR39) 2015; 42 KS Ismail (9493_CR20) 2013; 163 S Ray (9493_CR41) 2002; 32 D Sasaki (9493_CR44) 2014; 172 NJ Berthels (9493_CR5) 2004; 4 AW Grant (9493_CR12) 2003; 218 J Kobayashi (9493_CR26) 2018; 8 N Arjinpathana (9493_CR1) 2012; 23 V Rolseth (9493_CR43) 2002; 170 DH Harrison (9493_CR18) 1994; 33 K Sasaki (9493_CR45) 2014; 169 DC Chen (9493_CR6) 1992; 21 MJ Penninckx (9493_CR36) 2002; 2 A Matsushika (9493_CR32) 2009; 84 CA Masuda (9493_CR31) 2008; 8 M Ask (9493_CR2) 2013; 12 M Rizzi (9493_CR42) 1989; 67 K Kiriyama (9493_CR24) 2013; 97 BL Dixit (9493_CR8) 2000; 275 H Yoshida (9493_CR56) 2011; 89 KY Hara (9493_CR16) 2012; 94 J Kobayashi (9493_CR25) 2017; 16 P Kötter (9493_CR27) 1993; 38 BD Bennett (9493_CR4) 2008; 3 HF Cueto-Rojas (9493_CR7) 2016; 82 W Dröge (9493_CR9) 2000; 59 M Wang (9493_CR55) 2011; 168 LS Vartanyan (9493_CR52) 2000; 65 LM Halka (9493_CR14) 2018; 8 KY Hara (9493_CR15) 2011; 93 A Prima (9493_CR37) 2017; 245 SJ Ha (9493_CR13) 2011; 108 W Mbinda (9493_CR33) 2018; 60 KV Ramana (9493_CR40) 2001; 30 A Meister (9493_CR34) 1983; 52 YS Jin (9493_CR22) 2004; 70 KY Hara (9493_CR17) 2015; 99 C Verduyn (9493_CR53) 1985; 226 M Tantirungkij (9493_CR47) 1993; 75 H Teramura (9493_CR48) 2015; 10 KL Träff (9493_CR50) 2001; 67 H Zhou (9493_CR57) 2012; 14 Y Li (9493_CR28) 2004; 66 B Morgan (9493_CR35) 2013; 9 SP Putri (9493_CR38) 2013; 115 |
References_xml | – volume: 66 start-page: 233 year: 2004 end-page: 242 ident: CR28 article-title: Glutathione: a review on biotechnological production publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-004-1751-y – volume: 172 start-page: 83 year: 2014 end-page: 90 ident: CR44 article-title: Comparison of metabolomic profiles of microbial communities between stable and deteriorated methanogenic processes publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.08.054 – volume: 3 start-page: 1299 year: 2008 end-page: 1311 ident: CR4 article-title: Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach publication-title: Nat Protoc doi: 10.1038/nprot.2008.107 – volume: 113 start-page: 665 year: 2012 end-page: 673 ident: CR23 article-title: Widely targeted metabolic profiling analysis of yeast central metabolites publication-title: J Biosci Bioeng doi: 10.1016/j.jbiosc.2011.12.013 – volume: 60 start-page: 203 year: 2018 end-page: 214 ident: CR33 article-title: aldose reductase, XvAld1, enhances drought tolerance in transgenic sweetpotato publication-title: Mol Biotechnol doi: 10.1007/s12033-018-0063-x – volume: 94 start-page: 1313 year: 2012 end-page: 1319 ident: CR16 article-title: Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-011-3841-y – volume: 1 start-page: 387 year: 2006 end-page: 396 ident: CR30 article-title: Gas chromatography mass spectrometry-based metabolite profiling in plants publication-title: Nat Protoc doi: 10.1038/nprot.2006.59 – volume: 108 start-page: 504 year: 2011 end-page: 509 ident: CR13 article-title: Engineered capable of simultaneous cellobiose and xylose fermentation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1010456108 – volume: 8 start-page: 132 year: 2018 ident: CR14 article-title: Glucose limited feed strategy leads to increased production of fusicocca-2,10(14)-diene by publication-title: AMB Express doi: 10.1186/s13568-018-0662-8 – volume: 170 start-page: 75 year: 2002 end-page: 88 ident: CR43 article-title: Additive toxicity of limonene and 50% oxygen and the role of glutathione in detoxification in human lung cells publication-title: Toxicology doi: 10.1016/S0300-483X(01)00537-6 – volume: 33 start-page: 2011 year: 1994 end-page: 2020 ident: CR18 article-title: An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate, cacodylate, and glucose 6-phosphate publication-title: Biochemistry doi: 10.1021/bi00174a006 – volume: 21 start-page: 83 year: 1992 end-page: 84 ident: CR6 article-title: One-step transformation of yeast in stationary phase publication-title: Curr Genet doi: 10.1007/BF00318659 – volume: 84 start-page: 37 year: 2009 end-page: 53 ident: CR32 article-title: Ethanol production from xylose in engineered strains: current state and perspectives publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-009-2101-x – volume: 275 start-page: 21587 year: 2000 end-page: 21595 ident: CR8 article-title: Kinetic and structural characterization of the glutathione-binding site of aldose reductase publication-title: J Biol Chem doi: 10.1074/jbc.M909235199 – volume: 22 start-page: 1805 year: 1980 end-page: 1827 ident: CR49 article-title: Kinetics of biphasic growth of yeast in continuous and fed-batch cultures publication-title: Biotechnol Bioeng doi: 10.1002/bit.260220904 – volume: 99 start-page: 360 year: 2016 end-page: 379 ident: CR10 article-title: Yeast nitrogen catabolite repression is sustained by signals distinct from glutamine and glutamate reservoirs publication-title: Mol Microbiol doi: 10.1111/mmi.13236 – volume: 52 start-page: 711 year: 1983 end-page: 760 ident: CR34 article-title: Glutathione publication-title: Annu Rev Biochem doi: 10.1146/annurev.bi.52.070183.003431 – volume: 99 start-page: 6505 year: 2008 end-page: 6511 ident: CR29 article-title: Bioethanol production from non-starch carbohydrate residues in process streams from a dry-mill ethanol plant publication-title: Bioresour Technol doi: 10.1016/j.biortech.2007.11.032 – volume: 218 start-page: 93 year: 2003 end-page: 99 ident: CR12 article-title: A novel aldo-keto reductase from can increase resistance to methylglyoxal toxicity publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2003.tb11503.x – volume: 65 start-page: 442 year: 2000 end-page: 446 ident: CR52 article-title: Changes in superoxide production rate and in superoxide dismutase and glutathione peroxidase activities in subcellular organelles in mouse liver under exposure to low doses of low-intensity radiation publication-title: Biochem Mosc – volume: 140 start-page: 380 year: 2002 end-page: 381 ident: CR46 article-title: Glutathione: a marker and antioxidant for aging publication-title: J Lab Clin Med doi: 10.1067/mlc.2002.129505 – volume: 67 start-page: 5668 year: 2001 end-page: 5674 ident: CR50 article-title: Deletion of the aldose reductase gene and its influence on xylose metabolism in recombinant strains of expressing the and genes publication-title: Appl Environ Microbiol doi: 10.1128/AEM.67.12.5668-5674.2001 – volume: 168 start-page: 198 year: 2011 end-page: 205 ident: CR55 article-title: The effect of intracellular amino acids on GSH production by high-cell-density cultivation of publication-title: Appl Biochem Biotechnol doi: 10.1007/s12010-011-9435-4 – volume: 2 start-page: 295 year: 2002 end-page: 305 ident: CR36 article-title: An overview on glutathione in versus non-conventional yeasts publication-title: FEMS Yeast Res – volume: 38 start-page: 776 year: 1993 end-page: 783 ident: CR27 article-title: Xylose fermentation by publication-title: Appl Microbiol Biotechnol doi: 10.1007/BF00167144 – volume: 245 start-page: 1400 year: 2017 end-page: 1406 ident: CR37 article-title: Glutathione production from mannan-based bioresource by mannanase/mannosidase expressing publication-title: Bioresour Technol doi: 10.1016/j.biortech.2017.05.190 – volume: 67 start-page: 20 year: 1989 end-page: 24 ident: CR42 article-title: Purification and properties of the NAD -xylitol-dehydrogenase from the yeast publication-title: J Ferment Bioeng doi: 10.1016/0922-338X(89)90080-9 – volume: 14 start-page: 611 year: 2012 end-page: 622 ident: CR57 article-title: Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by publication-title: Metab Eng doi: 10.1016/j.ymben.2012.07.011 – volume: 97 start-page: 7399 year: 2013 end-page: 7404 ident: CR24 article-title: Oxidized glutathione fermentation using engineered for glutathione metabolism publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-013-5074-8 – volume: 145 start-page: 701 year: 2009 end-page: 708 ident: CR19 article-title: A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast publication-title: J Biochem doi: 10.1093/jb/mvp028 – volume: 169 start-page: 821 year: 2014 end-page: 825 ident: CR45 article-title: Increased ethanol production from sweet sorghum juice concentrated by a membrane separation process publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.07.082 – volume: 10 start-page: e0128417 year: 2015 ident: CR48 article-title: Changes in lignin and polysaccharide components in 13 cultivars of rice straw following dilute acid pretreatment as studied by solution-state 2D H- C NMR publication-title: PLoS One doi: 10.1371/journal.pone.0128417 – volume: 4 start-page: 683 year: 2004 end-page: 689 ident: CR5 article-title: Discrepancy in glucose and fructose utilisation during fermentation by wine yeast strains publication-title: FEMS Yeast Res doi: 10.1016/j.femsyr.2004.02.005 – volume: 138 start-page: 92 year: 1979 end-page: 98 ident: CR51 article-title: Dependency of size of cells on growth rate publication-title: J Bacteriol – volume: 89 start-page: 1417 year: 2011 end-page: 1422 ident: CR56 article-title: Efficient and direct glutathione production from raw starch using engineered publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-010-2968-6 – volume: 8 start-page: 1245 year: 2008 end-page: 1253 ident: CR31 article-title: Overexpression of the aldose reductase suppresses lithium-induced galactose toxicity in publication-title: FEMS Yeast Res doi: 10.1111/j.1567-1364.2008.00440.x – volume: 42 start-page: 537 year: 2015 end-page: 542 ident: CR39 article-title: Engineering the robustness of by introducing bifunctional glutathione synthase gene publication-title: J Ind Microbiol Biotechnol doi: 10.1007/s10295-014-1573-6 – volume: 93 start-page: 1495 year: 2011 end-page: 1502 ident: CR15 article-title: Development of a glutathione production process from proteinaceous biomass resources using protease-displaying publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-011-3665-9 – volume: 82 start-page: 6831 year: 2016 end-page: 6845 ident: CR7 article-title: analysis of NH4 transport and central N-metabolism of under aerobic N-limited conditions publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01547-16 – volume: 99 start-page: 9771 year: 2015 end-page: 9778 ident: CR17 article-title: Improvement of oxidized glutathione fermentation by thiol redox metabolism engineering in publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-015-6847-z – volume: 6 start-page: 4 year: 2016 ident: CR3 article-title: Disruption of improves ethanol production via the xylose isomerase pathway publication-title: AMB Express doi: 10.1186/s13568-015-0175-7 – volume: 9 start-page: 119 year: 2013 end-page: 125 ident: CR35 article-title: Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis publication-title: Nat Chem Biol doi: 10.1038/nchembio.1142 – volume: 115 start-page: 579 year: 2013 end-page: 589 ident: CR38 article-title: Current metabolomics: practical applications publication-title: J Biosci Bioeng doi: 10.1016/j.jbiosc.2012.12.007 – volume: 32 start-page: 571 year: 2002 end-page: 577 ident: CR41 article-title: Oxidant stress induces gamma-glutamylcysteine synthetase and glutathione synthesis in human bronchial epithelial NCI-H292 cells publication-title: Clin Exp Allergy doi: 10.1046/j.0954-7894.2002.01294.x – volume: 8 start-page: e2887 year: 2018 ident: CR26 article-title: A procedure for precise determination of glutathione produced by publication-title: Bio Protoc doi: 10.21769/BioProtoc.2887 – volume: 163 start-page: 50 year: 2013 end-page: 60 ident: CR20 article-title: Gene expression cross-profiling in genetically modified industrial strains during high-temperature ethanol production from xylose publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2012.10.017 – volume: 70 start-page: 6816 year: 2004 end-page: 6825 ident: CR22 article-title: engineered for xylose metabolism exhibits a respiratory response publication-title: Appl Environ Microbiol doi: 10.1128/AEM.70.11.6816-6825.2004 – volume: 30 start-page: 130 year: 2001 end-page: 132 ident: CR40 article-title: Characterization of the glutathione binding site of aldose reductase publication-title: Chem Biol Interact – volume: 226 start-page: 669 year: 1985 end-page: 677 ident: CR53 article-title: Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast publication-title: Biochem J doi: 10.1042/bj2260669 – volume: 153 start-page: 163 year: 1983 end-page: 168 ident: CR21 article-title: Transformation of intact yeast cells treated with alkali cations publication-title: J Bacteriol – volume: 59 start-page: 595 year: 2000 end-page: 600 ident: CR9 article-title: Glutathione and immune function publication-title: Proc Nutr Soc doi: 10.1017/S0029665100000847 – volume: 32 start-page: 252 year: 2003 end-page: 259 ident: CR11 article-title: The xylose isomerase is misfolded when expressed in publication-title: Enzym Microb Technol doi: 10.1016/S0141-0229(02)00285-5 – volume: 12 start-page: 87 year: 2013 ident: CR2 article-title: Engineering glutathione biosynthesis of increases robustness to inhibitors in pretreated lignocellulosic materials publication-title: Microb Cell Factories doi: 10.1186/1475-2859-12-87 – volume: 23 start-page: 97 year: 2012 end-page: 102 ident: CR1 article-title: Glutathione as an oral whitening agent: a randomized, double-blind, placebo-controlled study publication-title: J Dermatolog Treat doi: 10.3109/09546631003801619 – volume: 16 start-page: 44 year: 2017 ident: CR25 article-title: Enzymatic improvement of mitochondrial thiol oxidase Erv1 for oxidized glutathione fermentation by publication-title: Microb Cell Factories doi: 10.1186/s12934-017-0658-0 – volume: 75 start-page: 83 year: 1993 end-page: 88 ident: CR47 article-title: Construction of xylose-assimilating publication-title: J Ferment Bioeng doi: 10.1016/0922-338X(93)90214-S – volume: 61 start-page: 4184 year: 1995 end-page: 4190 ident: CR54 article-title: Xylose-metabolizing strains overexpressing the and genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase publication-title: Appl Environ Microbiol – volume: 12 start-page: 87 year: 2013 ident: 9493_CR2 publication-title: Microb Cell Factories doi: 10.1186/1475-2859-12-87 – volume: 93 start-page: 1495 year: 2011 ident: 9493_CR15 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-011-3665-9 – volume: 218 start-page: 93 year: 2003 ident: 9493_CR12 publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2003.tb11503.x – volume: 75 start-page: 83 year: 1993 ident: 9493_CR47 publication-title: J Ferment Bioeng doi: 10.1016/0922-338X(93)90214-S – volume: 113 start-page: 665 year: 2012 ident: 9493_CR23 publication-title: J Biosci Bioeng doi: 10.1016/j.jbiosc.2011.12.013 – volume: 52 start-page: 711 year: 1983 ident: 9493_CR34 publication-title: Annu Rev Biochem doi: 10.1146/annurev.bi.52.070183.003431 – volume: 22 start-page: 1805 year: 1980 ident: 9493_CR49 publication-title: Biotechnol Bioeng doi: 10.1002/bit.260220904 – volume: 169 start-page: 821 year: 2014 ident: 9493_CR45 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.07.082 – volume: 65 start-page: 442 year: 2000 ident: 9493_CR52 publication-title: Biochem Mosc – volume: 140 start-page: 380 year: 2002 ident: 9493_CR46 publication-title: J Lab Clin Med doi: 10.1067/mlc.2002.129505 – volume: 108 start-page: 504 year: 2011 ident: 9493_CR13 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1010456108 – volume: 21 start-page: 83 year: 1992 ident: 9493_CR6 publication-title: Curr Genet doi: 10.1007/BF00318659 – volume: 16 start-page: 44 year: 2017 ident: 9493_CR25 publication-title: Microb Cell Factories doi: 10.1186/s12934-017-0658-0 – volume: 2 start-page: 295 year: 2002 ident: 9493_CR36 publication-title: FEMS Yeast Res – volume: 89 start-page: 1417 year: 2011 ident: 9493_CR56 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-010-2968-6 – volume: 115 start-page: 579 year: 2013 ident: 9493_CR38 publication-title: J Biosci Bioeng doi: 10.1016/j.jbiosc.2012.12.007 – volume: 67 start-page: 5668 year: 2001 ident: 9493_CR50 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.67.12.5668-5674.2001 – volume: 8 start-page: 132 year: 2018 ident: 9493_CR14 publication-title: AMB Express doi: 10.1186/s13568-018-0662-8 – volume: 97 start-page: 7399 year: 2013 ident: 9493_CR24 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-013-5074-8 – volume: 245 start-page: 1400 year: 2017 ident: 9493_CR37 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2017.05.190 – volume: 172 start-page: 83 year: 2014 ident: 9493_CR44 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.08.054 – volume: 60 start-page: 203 year: 2018 ident: 9493_CR33 publication-title: Mol Biotechnol doi: 10.1007/s12033-018-0063-x – volume: 138 start-page: 92 year: 1979 ident: 9493_CR51 publication-title: J Bacteriol doi: 10.1128/JB.138.1.92-98.1979 – volume: 42 start-page: 537 year: 2015 ident: 9493_CR39 publication-title: J Ind Microbiol Biotechnol doi: 10.1007/s10295-014-1573-6 – volume: 10 start-page: e0128417 year: 2015 ident: 9493_CR48 publication-title: PLoS One doi: 10.1371/journal.pone.0128417 – volume: 32 start-page: 571 year: 2002 ident: 9493_CR41 publication-title: Clin Exp Allergy doi: 10.1046/j.0954-7894.2002.01294.x – volume: 8 start-page: e2887 year: 2018 ident: 9493_CR26 publication-title: Bio Protoc doi: 10.21769/BioProtoc.2887 – volume: 30 start-page: 130 year: 2001 ident: 9493_CR40 publication-title: Chem Biol Interact – volume: 94 start-page: 1313 year: 2012 ident: 9493_CR16 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-011-3841-y – volume: 8 start-page: 1245 year: 2008 ident: 9493_CR31 publication-title: FEMS Yeast Res doi: 10.1111/j.1567-1364.2008.00440.x – volume: 1 start-page: 387 year: 2006 ident: 9493_CR30 publication-title: Nat Protoc doi: 10.1038/nprot.2006.59 – volume: 4 start-page: 683 year: 2004 ident: 9493_CR5 publication-title: FEMS Yeast Res doi: 10.1016/j.femsyr.2004.02.005 – volume: 9 start-page: 119 year: 2013 ident: 9493_CR35 publication-title: Nat Chem Biol doi: 10.1038/nchembio.1142 – volume: 145 start-page: 701 year: 2009 ident: 9493_CR19 publication-title: J Biochem doi: 10.1093/jb/mvp028 – volume: 99 start-page: 6505 year: 2008 ident: 9493_CR29 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2007.11.032 – volume: 99 start-page: 360 year: 2016 ident: 9493_CR10 publication-title: Mol Microbiol doi: 10.1111/mmi.13236 – volume: 32 start-page: 252 year: 2003 ident: 9493_CR11 publication-title: Enzym Microb Technol doi: 10.1016/S0141-0229(02)00285-5 – volume: 6 start-page: 4 year: 2016 ident: 9493_CR3 publication-title: AMB Express doi: 10.1186/s13568-015-0175-7 – volume: 168 start-page: 198 year: 2011 ident: 9493_CR55 publication-title: Appl Biochem Biotechnol doi: 10.1007/s12010-011-9435-4 – volume: 38 start-page: 776 year: 1993 ident: 9493_CR27 publication-title: Appl Microbiol Biotechnol doi: 10.1007/BF00167144 – volume: 170 start-page: 75 year: 2002 ident: 9493_CR43 publication-title: Toxicology doi: 10.1016/S0300-483X(01)00537-6 – volume: 84 start-page: 37 year: 2009 ident: 9493_CR32 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-009-2101-x – volume: 23 start-page: 97 year: 2012 ident: 9493_CR1 publication-title: J Dermatolog Treat doi: 10.3109/09546631003801619 – volume: 66 start-page: 233 year: 2004 ident: 9493_CR28 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-004-1751-y – volume: 3 start-page: 1299 year: 2008 ident: 9493_CR4 publication-title: Nat Protoc doi: 10.1038/nprot.2008.107 – volume: 61 start-page: 4184 year: 1995 ident: 9493_CR54 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.61.12.4184-4190.1995 – volume: 82 start-page: 6831 year: 2016 ident: 9493_CR7 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01547-16 – volume: 99 start-page: 9771 year: 2015 ident: 9493_CR17 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-015-6847-z – volume: 67 start-page: 20 year: 1989 ident: 9493_CR42 publication-title: J Ferment Bioeng doi: 10.1016/0922-338X(89)90080-9 – volume: 153 start-page: 163 year: 1983 ident: 9493_CR21 publication-title: J Bacteriol doi: 10.1128/JB.153.1.163-168.1983 – volume: 275 start-page: 21587 year: 2000 ident: 9493_CR8 publication-title: J Biol Chem doi: 10.1074/jbc.M909235199 – volume: 59 start-page: 595 year: 2000 ident: 9493_CR9 publication-title: Proc Nutr Soc doi: 10.1017/S0029665100000847 – volume: 33 start-page: 2011 year: 1994 ident: 9493_CR18 publication-title: Biochemistry doi: 10.1021/bi00174a006 – volume: 70 start-page: 6816 year: 2004 ident: 9493_CR22 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.70.11.6816-6825.2004 – volume: 226 start-page: 669 year: 1985 ident: 9493_CR53 publication-title: Biochem J doi: 10.1042/bj2260669 – volume: 163 start-page: 50 year: 2013 ident: 9493_CR20 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2012.10.017 – volume: 14 start-page: 611 year: 2012 ident: 9493_CR57 publication-title: Metab Eng doi: 10.1016/j.ymben.2012.07.011 |
SSID | ssib055714056 ssib058492270 ssib001133509 ssib056856944 ssj0012866 |
Score | 2.3421302 |
Snippet | Glutathione has diverse physiological functions, and therefore, the demand for it has increased recently. Currently, industrial mass production of glutathione... |
SourceID | proquest gale pubmed crossref springer nii |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1243 |
SubjectTerms | acids Baking yeast biomass Biomedical and Life Sciences Bioreactors Bioreactors - microbiology Biotechnological Products and Process Engineering Biotechnology Cell growth Chemical properties D-Xylulose Reductase D-Xylulose Reductase - genetics Fermentation gene overexpression Genes Genetic Engineering Genetic Engineering - methods Genetically modified organisms Glucose Glucose - metabolism Glutamate-Cysteine Ligase Glutamate-Cysteine Ligase - genetics Glutathione Glutathione - biosynthesis Glutathione Synthase Glutathione Synthase - genetics Industrial engineering Life Sciences Ligases Lignin Lignin - metabolism Lignocellulose Manufacturing costs Manufacturing engineering Mass production Microbial Genetics and Genomics Microbiology Monosaccharides Phosphotransferases (Alcohol Group Acceptor) Phosphotransferases (Alcohol Group Acceptor) - genetics Production costs Reductases Saccharomyces cerevisiae Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Sugar Sustainable production Thiols vector control Xylitol Xylitol dehydrogenase Xylose Xylose - metabolism Xylose reductase Xylulokinase Yeast yeasts γ-Glutamylcysteine |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1di9QwMHgngj6Inl_VO4kiCEq4tE2a5kkO8TgFfXA92LeSpsmysLbrdSvcv3emTbsunvuyD5tpmmYm85H5IuRNmkteKhczUxrDhEgqprnPmZUm1xKFhMQE56_fsotL8WUu5-HCrQ1hlSNP7Bl11Vi8Iz9N0d8DxJepD-tfDLtGoXc1tNA4ILexdBmGdKn5ZHAB6x18lSAimZI6H72avC8imkiMJILjLnTKxI5cCtz5oF4ub9I8__Ga9sLo_AG5H7RIejag_SG55eojcmfoK3l9RO79VWXwEbmabZOk6Hqo8ArYoI2nC6A7DD9sakcx0YSulou6wcv8btW0jlUwxW9X0bZbgAFMMUh-QV2YHP6fGYtpW83Pa2A31PYxw-3SuMfk8vzTj48XLLRaYDZL9IYl0nrjlfbSc-t1CpJTVDoHuZYZUApK58Fu8kmcJb5CX6g0EhQja4SJnUaR_4Qc1rDWZ4SmlTYGzLi8LJVwiSljlRnjM6el41r5iPBxowsb6pBjO4xVMVVQ7nFTAG4KxE0hIvJuemQ9FOHYB_wasVdgcYsao2cWpmvb4vPse3EmwXhKMy4A6G0A8g283JqQjACfgPWwdiCPdyDh9Nmd4RMgEvgQ_I1zlWrQj0SiVCxz0PQ4PD6STxG4Q1tgFb2MY_bUjcNbUo_Iq2kYX4wBcbVrun4KibpizvfAJNiAFXX4iDwdKHfavhTWnmueReT9SMrbBfx3b5_vX-4Lchf0ST0EtR-Tw81V505AZ9uUL_uD-QdEITiA priority: 102 providerName: ProQuest |
Title | Sustainable production of glutathione from lignocellulose-derived sugars using engineered Saccharomyces cerevisiae |
URI | https://cir.nii.ac.jp/crid/1873961342771589760 https://link.springer.com/article/10.1007/s00253-018-9493-4 https://www.ncbi.nlm.nih.gov/pubmed/30448906 https://www.proquest.com/docview/2134603210 https://www.proquest.com/docview/3195322567 https://www.proquest.com/docview/2135635580 https://www.proquest.com/docview/2220850192 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3_i9MwFA_uDkF_ED31nN6NKIKgFNo0aZIfN908FQ-5OZg_lbRNymC2x3UT7r_3vX47h_PAX1ZYXtM07yXv8_q-hJDXoRJ-Im3gmcQYj3OWedp3ykuFUVqgkhCY4Pz1PDpb8M9LsWzzuKsu2r1zSdY7dZ_shuoZY39ggXIdenxADgWa7iDECzbuXQdMNQ5K0IueFFp1rsx9Xewoo3ZLHhSr1T64-ZertNZAs4fkQQsd6bjh9SNyxxZH5G5zmOT1Ebn_R2nBx-RqfpMZRS-bsq7AAlo6moOwYcxhWViK2SV0vcqLEr_gb9dlZb0MuvhlM1ptc7B6KUbG59S2ncP_c5Nirlb58xr2GJrWgcLVytgnZDGbfn9_5rXnK3hpxPTGYyJ1xknthPNTp0NQlzzTCpRZZAAJJNaBseRYEDGXoQNUGAFoKDXcBFajnn9KDgoY6zNCw0wbA7abShLJLTNJICNjXGS1sL6Wbkj8bqLjtC0-jmdgrOO-bHLNmxh4EyNvYj4kb_tbLpvKG7cRv0LuxVjRosCQmdxsqyr-NL-IxwIspjDyORC9aYlcCQ9PTZuBAK-ARbB2KE92KGHJpTvNpyAk8CL4GygZagBFnEkZCAXwzofbO_GJ2y2hirF0XuRjytTe5hD9mbC5RnJIXvbN-GCMgitsua27EAgQlX8LDcNTVxG4D8lxI7n99IUwdqX9aEjedaJ8M4B_zu3z_6J-Qe4BpqzD8Jg8IQebq609Bdy2SUZkIJdyRA7Hkw-TGV4__vgyhetkev7tYlSv4t8Oozqf |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0No6IeABwfgqbGAQCGnIInHsJH5AaMCmlm0VWjdpb8FJ7KhSScrSgvqn-I3c5aOlYvRtL3mIL47jO99H7ouQV14onTgwLtOx1kwInjLl2JAlUodKopCQmOB8MvB75-LLhbzYIL_bXBgMq2x5YsWo0yLBf-TvPPT3APH5wYfJD4Zdo9C72rbQqMniyMx_gclWvu9_Bvy-5vzw4OxTjzVdBVjiczVlXCZW20BZaZ3EKg-EhEhVCCzc1yD_YmPBRLDc9blN0e0ntQQdINFCu0ahdIN5N8mW8MCU6ZCtjweDr6cLvwUPa-8oCGUWSBW2flSnKlvKJcYuAYMRymNiRRI28mAzH42u0nX_8dNW4u_wLrnT6K10vya0e2TD5NvkRt3Jcr5Nbv9V1_A-uRwu07LopK4pC_inhaUZUDoGPBa5oZjaQsejLC_QfTAbF6VhKUzx06S0nGVgclMMy8-oaSaH-0OdYKJY8X0ODI4mVZRyOdLmATm_FjQ8JJ0c1vqYUC9VWoPhGMZxIAzXsRv4WlvfKGkcFdgucdqNjpKm8jk24BhHi5rNFW4iwE2EuIlEl-wtHpnUZT_WAb9E7EVYTiPHeJ1Mz8oy6g9Po30J5hpQigCgNw2QLeDliW7SH-ATsALXCuTOCiSc92RleBeIBD4Er24YeAo0MsGDwJUh6JYOPN6ST9TwozLCun2-g_laVw4vD1eXvFgM44sxBC83xayaQqJ2GjprYDi2fEWroUse1ZS72D4P1h4qx--Sty0pLxfw3719sn65z8nN3tnJcXTcHxw9JbdAm1V1SP0O6UwvZ2YXNMZp_Kw5ppR8u27O8Ae0fnaJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0NqGQPCAYHwVNjAIhASyljhxHD8gNDGqlcGEKJP6ZpzEriqVpCwNqH-NX8ddPloqRt_2kof44ji-833kvgh5HsTCS6T1mUmMYWHIM6Y8F7NUmFgJFBICE5w_nUbHZ-GHkRhtkd9dLgyGVXY8sWbUWZHiP_KDAP09QHyRPHBtWMTno_7b2Q-GHaTQ09q102hI5MQufoH5Vr4ZHAGuX3Def__13TFrOwywNOJqzrhInXFSOeG81KkABEaYqRjYeWRAFibWgbnguB9xl6ELUBgB-kBqQuNbhZIO5t0mV2QgfDxjcrQ09oDtN35SEM9MChV3HlWvLmDKBUYxAasJVcDCNZnYSobtfDK5SOv9x2NbC8L-LXKz1WDpYUNyt8mWzXfJ1aan5WKX3PirwuEdcj5cJWjRWVNdFiiBFo6OgeYx9LHILcUkFzqdjPMCHQnVtCgty2CKnzajZTUG45tigP6Y2nZyuD80KaaMFd8XwOpoWscrlxNj75KzS0HCPbKTw1ofEBpkyhgwIeMkkaHlJvFlZIyLrBLWU9L1iNdttE7bGujYimOql9Wba9xowI1G3OiwR14tH5k1BUA2AT9D7GksrJEjiY5NVZZ6MPyiDwUYbkHkhQD0sgVyBbw8NW0iBHwC1uJag9xbg4STn64N7wORwIfg1Y9loEA3C7mUvohBy_Tg8Y58dMuZSo0V_CIPM7cuHF4dsx55uhzGF2MwXm6Lqp5CoJ4aextgODZ_RfuhR-43lLvcvgDWHisv6pHXHSmvFvDfvX24eblPyDXgB_rj4PTkEbkOaq1qYuv3yM78vLL7oDrOk8f1GaXk22UzhT8-pHlZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustainable+production+of+glutathione+from+lignocellulose-derived+sugars+using+engineered+Saccharomyces+cerevisiae&rft.jtitle=Applied+Microbiology+and+Biotechnology&rft.au=Jyumpei+Kobayashi&rft.au=Daisuke+Sasaki&rft.au=Takahiro+Bamba&rft.au=Tomohisa+Hasunuma&rft.date=2019-02-01&rft.pub=Springer+Science+and+Business+Media+LLC&rft.issn=0175-7598&rft.eissn=1432-0614&rft.volume=103&rft.spage=1243&rft.epage=1254&rft_id=info:doi/10.1007%2Fs00253-018-9493-4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0175-7598&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0175-7598&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0175-7598&client=summon |