Metabolic clustering of risk factors: evaluation of Triglyceride-glucose index (TyG index) for evaluation of insulin resistance

Metabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests insulin résistance is hallmark of these metabolic clustering. While measuring insulin resistance directly or indirectly remains technically difficult in general practi...

Full description

Saved in:
Bibliographic Details
Published inDiabetology and metabolic syndrome Vol. 10; no. 1; pp. 74 - 8
Main Authors Khan, Sikandar Hayat, Sobia, Farah, Niazi, Najmusaqib Khan, Manzoor, Syed Mohsin, Fazal, Nadeem, Ahmad, Fowad
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 05.10.2018
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests insulin résistance is hallmark of these metabolic clustering. While measuring insulin resistance directly or indirectly remains technically difficult in general practice, along with multiple stability issues for insulin, various indirect measures have been suggested by authorities. Fasting triglycerides-glucose (TyG) index is one such marker, which is recently been suggested as a useful diagnostic marker to predict metabolic syndrome. However, limited data is available on the subject with almost no literature from our region on the subject. 1. To correlate TyG index with insulin resistance, anthropometric indices, small dense LDLc, HbA1c and nephropathy. 2. To evaluate TyG index as a marker to diagnose metabolic syndrome in comparison to other available markers. Place and duration of study-From Jun-2016 to July-2017 at PSS HAFEEZ hospital Islamabad. From a finally selected sample size of 227 male and female subjects we evaluated their anthropometric data, HbA1c, lipid profile including calculated sdLDLc, urine albumin creatinine raito(UACR) and insulin resistance (HOMAIR). TyG index was calculated using formula of Simental-Mendía LE et al. Aforementioned parameters were correlated with TyG index, differences between subjects with and without metabolic syndrome were calculated using Independent sample t-test. Finally ROC curve analysis was carried out to measure AUC for candidate parameters including TyG Index for comparison. TyG index in comparison to other markers like fasting triglycerides, HOMAIR, HDLc and non-HDLc demonstrated higher positive linear correlation with BMI, atherogenic dyslipidemia (sdLDLc), nephropathy (UACR), HbA1c and insulin resistance. TyG index showed significant differences between various markers among subjects with and without metabolic syndrome as per IDF criteria. AUC (Area Under Curve) demonstrated highest AUC for TyG as [(0.764, 95% CI 0.700-0.828, p-value ≤ 0.001)] followed by fasting triglycerides [(0.724, 95% CI 0.656-0.791, p-value ≤ 0.001)], sdLDLc [(0.695, 95% CI 0.626-0.763, p-value ≤ 0.001)], fasting plasma glucose [(0.686, 95% CI 0.616-0.756, p-value ≤ 0.001)], Non-HDLc [(0.640, 95% CI 0.626-0.763, p-value ≤ 0.001)] and HOMAIR [(0.619, 95% CI 0.545-0.694, p-value ≤ 0.001)]. TyG index, having the highest AUC in comparison to fasting glucose, triglycerides, sdLDLc, non-HDLc and HOMAIR can act as better marker for diagnosing metabolic syndrome.
AbstractList Metabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests insulin résistance is hallmark of these metabolic clustering. While measuring insulin resistance directly or indirectly remains technically difficult in general practice, along with multiple stability issues for insulin, various indirect measures have been suggested by authorities. Fasting triglycerides-glucose (TyG) index is one such marker, which is recently been suggested as a useful diagnostic marker to predict metabolic syndrome. However, limited data is available on the subject with almost no literature from our region on the subject. 1. To correlate TyG index with insulin resistance, anthropometric indices, small dense LDLc, HbA1c and nephropathy. 2. To evaluate TyG index as a marker to diagnose metabolic syndrome in comparison to other available markers. Place and duration of study-From Jun-2016 to July-2017 at PSS HAFEEZ hospital Islamabad. From a finally selected sample size of 227 male and female subjects we evaluated their anthropometric data, HbA1c, lipid profile including calculated sdLDLc, urine albumin creatinine raito(UACR) and insulin resistance (HOMAIR). TyG index was calculated using formula of Simental-Mendía LE et al. Aforementioned parameters were correlated with TyG index, differences between subjects with and without metabolic syndrome were calculated using Independent sample t-test. Finally ROC curve analysis was carried out to measure AUC for candidate parameters including TyG Index for comparison. TyG index in comparison to other markers like fasting triglycerides, HOMAIR, HDLc and non-HDLc demonstrated higher positive linear correlation with BMI, atherogenic dyslipidemia (sdLDLc), nephropathy (UACR), HbA1c and insulin resistance. TyG index showed significant differences between various markers among subjects with and without metabolic syndrome as per IDF criteria. AUC (Area Under Curve) demonstrated highest AUC for TyG as [(0.764, 95% CI 0.700-0.828, p-value [less than or equai to] 0.001)] followed by fasting triglycerides [(0.724, 95% CI 0.656-0.791, p-value [less than or equai to] 0.001)], sdLDLc [(0.695, 95% CI 0.626-0.763, p-value [less than or equai to] 0.001)], fasting plasma glucose [(0.686, 95% CI 0.616-0.756, p-value [less than or equai to] 0.001)], Non-HDLc [(0.640, 95% CI 0.626-0.763, p-value [less than or equai to] 0.001)] and HOMAIR [(0.619, 95% CI 0.545-0.694, p-value [less than or equai to] 0.001)]. TyG index, having the highest AUC in comparison to fasting glucose, triglycerides, sdLDLc, non-HDLc and HOMAIR can act as better marker for diagnosing metabolic syndrome.
Metabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests insulin résistance is hallmark of these metabolic clustering. While measuring insulin resistance directly or indirectly remains technically difficult in general practice, along with multiple stability issues for insulin, various indirect measures have been suggested by authorities. Fasting triglycerides-glucose (TyG) index is one such marker, which is recently been suggested as a useful diagnostic marker to predict metabolic syndrome. However, limited data is available on the subject with almost no literature from our region on the subject.BACKGROUNDMetabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests insulin résistance is hallmark of these metabolic clustering. While measuring insulin resistance directly or indirectly remains technically difficult in general practice, along with multiple stability issues for insulin, various indirect measures have been suggested by authorities. Fasting triglycerides-glucose (TyG) index is one such marker, which is recently been suggested as a useful diagnostic marker to predict metabolic syndrome. However, limited data is available on the subject with almost no literature from our region on the subject.1. To correlate TyG index with insulin resistance, anthropometric indices, small dense LDLc, HbA1c and nephropathy. 2. To evaluate TyG index as a marker to diagnose metabolic syndrome in comparison to other available markers.OBJECTIVE1. To correlate TyG index with insulin resistance, anthropometric indices, small dense LDLc, HbA1c and nephropathy. 2. To evaluate TyG index as a marker to diagnose metabolic syndrome in comparison to other available markers.Place and duration of study-From Jun-2016 to July-2017 at PSS HAFEEZ hospital Islamabad.DESIGN-CROSS-SECTIONAL ANALYSISPlace and duration of study-From Jun-2016 to July-2017 at PSS HAFEEZ hospital Islamabad.From a finally selected sample size of 227 male and female subjects we evaluated their anthropometric data, HbA1c, lipid profile including calculated sdLDLc, urine albumin creatinine raito(UACR) and insulin resistance (HOMAIR). TyG index was calculated using formula of Simental-Mendía LE et al. Aforementioned parameters were correlated with TyG index, differences between subjects with and without metabolic syndrome were calculated using Independent sample t-test. Finally ROC curve analysis was carried out to measure AUC for candidate parameters including TyG Index for comparison.SUBJECTS AND METHODSFrom a finally selected sample size of 227 male and female subjects we evaluated their anthropometric data, HbA1c, lipid profile including calculated sdLDLc, urine albumin creatinine raito(UACR) and insulin resistance (HOMAIR). TyG index was calculated using formula of Simental-Mendía LE et al. Aforementioned parameters were correlated with TyG index, differences between subjects with and without metabolic syndrome were calculated using Independent sample t-test. Finally ROC curve analysis was carried out to measure AUC for candidate parameters including TyG Index for comparison.TyG index in comparison to other markers like fasting triglycerides, HOMAIR, HDLc and non-HDLc demonstrated higher positive linear correlation with BMI, atherogenic dyslipidemia (sdLDLc), nephropathy (UACR), HbA1c and insulin resistance. TyG index showed significant differences between various markers among subjects with and without metabolic syndrome as per IDF criteria. AUC (Area Under Curve) demonstrated highest AUC for TyG as [(0.764, 95% CI 0.700-0.828, p-value ≤ 0.001)] followed by fasting triglycerides [(0.724, 95% CI 0.656-0.791, p-value ≤ 0.001)], sdLDLc [(0.695, 95% CI 0.626-0.763, p-value ≤ 0.001)], fasting plasma glucose [(0.686, 95% CI 0.616-0.756, p-value ≤ 0.001)], Non-HDLc [(0.640, 95% CI 0.626-0.763, p-value ≤ 0.001)] and HOMAIR [(0.619, 95% CI 0.545-0.694, p-value ≤ 0.001)].RESULTSTyG index in comparison to other markers like fasting triglycerides, HOMAIR, HDLc and non-HDLc demonstrated higher positive linear correlation with BMI, atherogenic dyslipidemia (sdLDLc), nephropathy (UACR), HbA1c and insulin resistance. TyG index showed significant differences between various markers among subjects with and without metabolic syndrome as per IDF criteria. AUC (Area Under Curve) demonstrated highest AUC for TyG as [(0.764, 95% CI 0.700-0.828, p-value ≤ 0.001)] followed by fasting triglycerides [(0.724, 95% CI 0.656-0.791, p-value ≤ 0.001)], sdLDLc [(0.695, 95% CI 0.626-0.763, p-value ≤ 0.001)], fasting plasma glucose [(0.686, 95% CI 0.616-0.756, p-value ≤ 0.001)], Non-HDLc [(0.640, 95% CI 0.626-0.763, p-value ≤ 0.001)] and HOMAIR [(0.619, 95% CI 0.545-0.694, p-value ≤ 0.001)].TyG index, having the highest AUC in comparison to fasting glucose, triglycerides, sdLDLc, non-HDLc and HOMAIR can act as better marker for diagnosing metabolic syndrome.CONCLUSIONTyG index, having the highest AUC in comparison to fasting glucose, triglycerides, sdLDLc, non-HDLc and HOMAIR can act as better marker for diagnosing metabolic syndrome.
Background Metabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests insulin résistance is hallmark of these metabolic clustering. While measuring insulin resistance directly or indirectly remains technically difficult in general practice, along with multiple stability issues for insulin, various indirect measures have been suggested by authorities. Fasting triglycerides-glucose (TyG) index is one such marker, which is recently been suggested as a useful diagnostic marker to predict metabolic syndrome. However, limited data is available on the subject with almost no literature from our region on the subject. Objective 1. To correlate TyG index with insulin resistance, anthropometric indices, small dense LDLc, HbA1c and nephropathy. 2. To evaluate TyG index as a marker to diagnose metabolic syndrome in comparison to other available markers. Design-cross-sectional analysis Place and duration of study-From Jun-2016 to July-2017 at PSS HAFEEZ hospital Islamabad. Subjects and methods From a finally selected sample size of 227 male and female subjects we evaluated their anthropometric data, HbA1c, lipid profile including calculated sdLDLc, urine albumin creatinine raito(UACR) and insulin resistance (HOMAIR). TyG index was calculated using formula of Simental-Mendía LE et al. Aforementioned parameters were correlated with TyG index, differences between subjects with and without metabolic syndrome were calculated using Independent sample t-test. Finally ROC curve analysis was carried out to measure AUC for candidate parameters including TyG Index for comparison. Results TyG index in comparison to other markers like fasting triglycerides, HOMAIR, HDLc and non-HDLc demonstrated higher positive linear correlation with BMI, atherogenic dyslipidemia (sdLDLc), nephropathy (UACR), HbA1c and insulin resistance. TyG index showed significant differences between various markers among subjects with and without metabolic syndrome as per IDF criteria. AUC (Area Under Curve) demonstrated highest AUC for TyG as [(0.764, 95% CI 0.700-0.828, p-value [less than or equai to] 0.001)] followed by fasting triglycerides [(0.724, 95% CI 0.656-0.791, p-value [less than or equai to] 0.001)], sdLDLc [(0.695, 95% CI 0.626-0.763, p-value [less than or equai to] 0.001)], fasting plasma glucose [(0.686, 95% CI 0.616-0.756, p-value [less than or equai to] 0.001)], Non-HDLc [(0.640, 95% CI 0.626-0.763, p-value [less than or equai to] 0.001)] and HOMAIR [(0.619, 95% CI 0.545-0.694, p-value [less than or equai to] 0.001)]. Conclusion TyG index, having the highest AUC in comparison to fasting glucose, triglycerides, sdLDLc, non-HDLc and HOMAIR can act as better marker for diagnosing metabolic syndrome.
Abstract Background Metabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests insulin résistance is hallmark of these metabolic clustering. While measuring insulin resistance directly or indirectly remains technically difficult in general practice, along with multiple stability issues for insulin, various indirect measures have been suggested by authorities. Fasting triglycerides-glucose (TyG) index is one such marker, which is recently been suggested as a useful diagnostic marker to predict metabolic syndrome. However, limited data is available on the subject with almost no literature from our region on the subject. Objective 1. To correlate TyG index with insulin resistance, anthropometric indices, small dense LDLc, HbA1c and nephropathy. 2. To evaluate TyG index as a marker to diagnose metabolic syndrome in comparison to other available markers. Design-cross-sectional analysis Place and duration of study-From Jun-2016 to July-2017 at PSS HAFEEZ hospital Islamabad. Subjects and methods From a finally selected sample size of 227 male and female subjects we evaluated their anthropometric data, HbA1c, lipid profile including calculated sdLDLc, urine albumin creatinine raito(UACR) and insulin resistance (HOMAIR). TyG index was calculated using formula of Simental-Mendía LE et al. Aforementioned parameters were correlated with TyG index, differences between subjects with and without metabolic syndrome were calculated using Independent sample t-test. Finally ROC curve analysis was carried out to measure AUC for candidate parameters including TyG Index for comparison. Results TyG index in comparison to other markers like fasting triglycerides, HOMAIR, HDLc and non-HDLc demonstrated higher positive linear correlation with BMI, atherogenic dyslipidemia (sdLDLc), nephropathy (UACR), HbA1c and insulin resistance. TyG index showed significant differences between various markers among subjects with and without metabolic syndrome as per IDF criteria. AUC (Area Under Curve) demonstrated highest AUC for TyG as [(0.764, 95% CI 0.700–0.828, p-value ≤ 0.001)] followed by fasting triglycerides [(0.724, 95% CI 0.656–0.791, p-value ≤ 0.001)], sdLDLc [(0.695, 95% CI 0.626–0.763, p-value ≤ 0.001)], fasting plasma glucose [(0.686, 95% CI 0.616–0.756, p-value ≤ 0.001)], Non-HDLc [(0.640, 95% CI 0.626–0.763, p-value ≤ 0.001)] and HOMAIR [(0.619, 95% CI 0.545–0.694, p-value ≤ 0.001)]. Conclusion TyG index, having the highest AUC in comparison to fasting glucose, triglycerides, sdLDLc, non-HDLc and HOMAIR can act as better marker for diagnosing metabolic syndrome.
Metabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests insulin résistance is hallmark of these metabolic clustering. While measuring insulin resistance directly or indirectly remains technically difficult in general practice, along with multiple stability issues for insulin, various indirect measures have been suggested by authorities. Fasting triglycerides-glucose (TyG) index is one such marker, which is recently been suggested as a useful diagnostic marker to predict metabolic syndrome. However, limited data is available on the subject with almost no literature from our region on the subject. 1. To correlate TyG index with insulin resistance, anthropometric indices, small dense LDLc, HbA1c and nephropathy. 2. To evaluate TyG index as a marker to diagnose metabolic syndrome in comparison to other available markers. Place and duration of study-From Jun-2016 to July-2017 at PSS HAFEEZ hospital Islamabad. From a finally selected sample size of 227 male and female subjects we evaluated their anthropometric data, HbA1c, lipid profile including calculated sdLDLc, urine albumin creatinine raito(UACR) and insulin resistance (HOMAIR). TyG index was calculated using formula of Simental-Mendía LE et al. Aforementioned parameters were correlated with TyG index, differences between subjects with and without metabolic syndrome were calculated using Independent sample t-test. Finally ROC curve analysis was carried out to measure AUC for candidate parameters including TyG Index for comparison. TyG index in comparison to other markers like fasting triglycerides, HOMAIR, HDLc and non-HDLc demonstrated higher positive linear correlation with BMI, atherogenic dyslipidemia (sdLDLc), nephropathy (UACR), HbA1c and insulin resistance. TyG index showed significant differences between various markers among subjects with and without metabolic syndrome as per IDF criteria. AUC (Area Under Curve) demonstrated highest AUC for TyG as [(0.764, 95% CI 0.700-0.828, p-value ≤ 0.001)] followed by fasting triglycerides [(0.724, 95% CI 0.656-0.791, p-value ≤ 0.001)], sdLDLc [(0.695, 95% CI 0.626-0.763, p-value ≤ 0.001)], fasting plasma glucose [(0.686, 95% CI 0.616-0.756, p-value ≤ 0.001)], Non-HDLc [(0.640, 95% CI 0.626-0.763, p-value ≤ 0.001)] and HOMAIR [(0.619, 95% CI 0.545-0.694, p-value ≤ 0.001)]. TyG index, having the highest AUC in comparison to fasting glucose, triglycerides, sdLDLc, non-HDLc and HOMAIR can act as better marker for diagnosing metabolic syndrome.
ArticleNumber 74
Audience Academic
Author Khan, Sikandar Hayat
Sobia, Farah
Fazal, Nadeem
Ahmad, Fowad
Manzoor, Syed Mohsin
Niazi, Najmusaqib Khan
Author_xml – sequence: 1
  givenname: Sikandar Hayat
  orcidid: 0000-0001-9533-086X
  surname: Khan
  fullname: Khan, Sikandar Hayat
– sequence: 2
  givenname: Farah
  surname: Sobia
  fullname: Sobia, Farah
– sequence: 3
  givenname: Najmusaqib Khan
  surname: Niazi
  fullname: Niazi, Najmusaqib Khan
– sequence: 4
  givenname: Syed Mohsin
  surname: Manzoor
  fullname: Manzoor, Syed Mohsin
– sequence: 5
  givenname: Nadeem
  surname: Fazal
  fullname: Fazal, Nadeem
– sequence: 6
  givenname: Fowad
  surname: Ahmad
  fullname: Ahmad, Fowad
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30323862$$D View this record in MEDLINE/PubMed
BookMark eNp1kl9rFDEUxYNUbLv6AXyRAUHqw9RJ5k-SPgilaC1UfFmfQ5K52U3NJjWZKe6TX91Mp5XdogxhQvI7h3tvzjE68MEDQq9xdYox6z4kXFeclRXOq6ZdyZ6hI0xbVracdwc7-0N0nNJNVXW0pc0LdFhXNalZR47Q768wSBWc1YV2YxogWr8qgimiTT8KI_UQYjor4E66UQ42-OluGe3KbXVmeyhXbtQhQWF9D7-Kk-X2ct6-L0yIT4TWp9FZX0RINg3Sa3iJnhvpErx6-C_Q98-flhdfyutvl1cX59el7ggfSkwlMYoYg2VuWVIFuGYcN33dQkWYqkxLJWVK5XkwqZhuZIszr1jPGbC2XqCr2bcP8kbcRruRcSuCtOL-IMSVkHGw2oHQRklSd1xhrpqeAzMNY0B6yjuDwbDs9XH2uh3VBnoNfojS7Znu33i7FqtwJzpMa5Ynv0AnDwYx_BwhDWJjkwbnpIcwJkEwqWhDeDvV_XZGVzKXZr0J2VFPuDhvW4pJi3GXqdN_UPnrYWN1Do2x-XxP8G5HsAbphnUKbpweKu2Db3Z7_dvkY4IyQGdAx5BSBCO0He4fPJdgncCVmLIq5qyKnFUxZVVMY8RPlI_m_9f8AYkF7Ig
CitedBy_id crossref_primary_10_1186_s12967_024_05524_w
crossref_primary_10_1186_s12933_022_01511_x
crossref_primary_10_23736_S2724_6507_20_03273_3
crossref_primary_10_1016_j_arcmed_2023_102926
crossref_primary_10_1097_MD_0000000000039576
crossref_primary_10_1097_MD_0000000000038241
crossref_primary_10_1186_s12933_023_02073_2
crossref_primary_10_1016_j_numecd_2024_10_005
crossref_primary_10_3390_jcdd11110354
crossref_primary_10_3389_fcvm_2021_778038
crossref_primary_10_1038_s41598_025_86612_9
crossref_primary_10_1016_j_chest_2021_03_056
crossref_primary_10_3389_fcvm_2022_1002030
crossref_primary_10_3389_fendo_2022_973655
crossref_primary_10_1038_s41598_024_67081_y
crossref_primary_10_1007_s10554_020_01915_4
crossref_primary_10_1016_j_amjms_2024_08_013
crossref_primary_10_1089_met_2020_0092
crossref_primary_10_1186_s12933_022_01490_z
crossref_primary_10_1186_s12933_024_02355_3
crossref_primary_10_3389_fendo_2024_1420999
crossref_primary_10_3390_biomedicines10092251
crossref_primary_10_1097_MCA_0000000000001466
crossref_primary_10_1177_00033197211028429
crossref_primary_10_1186_s12889_024_20926_7
crossref_primary_10_4274_haseki_galenos_2024_9694
crossref_primary_10_1186_s12933_022_01617_2
crossref_primary_10_12677_ACM_2023_13122751
crossref_primary_10_1089_aid_2020_0029
crossref_primary_10_7717_peerj_13149
crossref_primary_10_1039_D4FO00941J
crossref_primary_10_1080_0886022X_2025_2458757
crossref_primary_10_1186_s12902_024_01632_2
crossref_primary_10_1186_s12933_020_01108_2
crossref_primary_10_1186_s12933_024_02518_2
crossref_primary_10_3389_fnut_2024_1510926
crossref_primary_10_1186_s12902_025_01887_3
crossref_primary_10_2174_1573399819666221031140713
crossref_primary_10_3389_fpubh_2023_1257183
crossref_primary_10_1016_j_jdiacomp_2023_108516
crossref_primary_10_1186_s13098_024_01439_0
crossref_primary_10_3390_jcm10020346
crossref_primary_10_1186_s12933_023_02041_w
crossref_primary_10_3389_fendo_2022_854875
crossref_primary_10_25692_ACEN_2020_1_2
crossref_primary_10_1186_s12933_023_02018_9
crossref_primary_10_1177_00033197241231150
crossref_primary_10_1186_s13098_023_01117_7
crossref_primary_10_1111_jre_13108
crossref_primary_10_1007_s12020_024_03830_3
crossref_primary_10_1186_s12933_023_01918_0
crossref_primary_10_1186_s12933_022_01704_4
crossref_primary_10_1080_09513590_2021_1940932
crossref_primary_10_1186_s12933_021_01443_y
crossref_primary_10_3389_fcvm_2022_912197
crossref_primary_10_3390_diagnostics12061486
crossref_primary_10_1186_s12933_023_01919_z
crossref_primary_10_1186_s12933_022_01546_0
crossref_primary_10_1186_s12933_024_02345_5
crossref_primary_10_1186_s12933_023_01874_9
crossref_primary_10_1186_s12933_022_01523_7
crossref_primary_10_1186_s12933_024_02510_w
crossref_primary_10_3390_ijerph17134833
crossref_primary_10_1016_j_medcli_2022_07_003
crossref_primary_10_4236_jbm_2024_128019
crossref_primary_10_1186_s12889_025_21522_z
crossref_primary_10_3389_fcvm_2023_1224296
crossref_primary_10_1007_s42000_024_00622_2
crossref_primary_10_1055_a_2284_5667
crossref_primary_10_1038_s41598_024_59659_3
crossref_primary_10_1016_j_numecd_2021_11_017
crossref_primary_10_1186_s12902_019_0384_1
crossref_primary_10_3390_nu16213718
crossref_primary_10_1177_1747493020984069
crossref_primary_10_1186_s12916_020_01824_2
crossref_primary_10_1186_s12883_021_02443_x
crossref_primary_10_1007_s00125_019_4921_2
crossref_primary_10_1186_s12944_024_02390_9
crossref_primary_10_1161_JAHA_123_034136
crossref_primary_10_1007_s12020_023_03357_z
crossref_primary_10_1016_j_toxrep_2021_06_011
crossref_primary_10_1016_j_dsx_2024_103146
crossref_primary_10_3389_fcvm_2023_1242035
crossref_primary_10_1177_20406223221122671
crossref_primary_10_2147_IDR_S493140
crossref_primary_10_1016_j_medcle_2023_03_001
crossref_primary_10_1186_s13098_024_01422_9
crossref_primary_10_12677_ACM_2024_142513
crossref_primary_10_33262_anatomiadigital_v6i4_3_2838
crossref_primary_10_3389_fendo_2020_522883
crossref_primary_10_1515_jpem_2019_0310
crossref_primary_10_3389_fphys_2023_1147001
crossref_primary_10_1080_13813455_2024_2418494
crossref_primary_10_3389_fneur_2022_1033385
crossref_primary_10_1007_s12020_022_03238_x
crossref_primary_10_1016_j_numecd_2022_07_024
crossref_primary_10_1039_D3EM00491K
crossref_primary_10_3390_jcm11237153
crossref_primary_10_3389_fpubh_2024_1294588
crossref_primary_10_2174_0118715303264620231106105345
crossref_primary_10_1002_edm2_151
crossref_primary_10_1089_omi_2024_0177
crossref_primary_10_1186_s12986_022_00707_y
crossref_primary_10_1186_s13098_024_01433_6
crossref_primary_10_1186_s12933_022_01683_6
crossref_primary_10_2147_COPD_S473089
crossref_primary_10_1186_s12933_023_02080_3
crossref_primary_10_1111_eci_13674
crossref_primary_10_3390_biomedicines10081858
crossref_primary_10_1016_j_numecd_2024_01_030
crossref_primary_10_1186_s12933_024_02227_w
crossref_primary_10_1186_s12933_024_02120_6
crossref_primary_10_1016_j_numecd_2022_12_001
crossref_primary_10_1007_s12011_024_04287_1
crossref_primary_10_1186_s12944_025_02496_8
crossref_primary_10_1055_a_2279_7112
crossref_primary_10_1186_s12967_022_03678_z
crossref_primary_10_1177_10760296241234320
crossref_primary_10_1186_s13098_022_00855_4
crossref_primary_10_1186_s13098_024_01423_8
crossref_primary_10_3390_ijerph16183258
crossref_primary_10_1186_s13098_023_01153_3
crossref_primary_10_12677_acm_2024_143908
crossref_primary_10_1186_s41182_024_00611_6
crossref_primary_10_3389_fendo_2024_1458521
crossref_primary_10_1016_j_nut_2023_111978
crossref_primary_10_3389_fendo_2024_1452896
crossref_primary_10_1038_s41598_022_23478_1
crossref_primary_10_1186_s40001_024_01820_9
crossref_primary_10_3389_fcvm_2024_1429993
crossref_primary_10_3390_nu17071124
crossref_primary_10_2147_CIA_S501569
crossref_primary_10_1007_s11357_023_00842_1
crossref_primary_10_1186_s12933_024_02275_2
crossref_primary_10_1016_j_numecd_2023_02_005
crossref_primary_10_3389_fendo_2022_1038758
crossref_primary_10_1186_s12944_025_02518_5
crossref_primary_10_5005_jp_journals_10054_0227
crossref_primary_10_1186_s12933_024_02145_x
crossref_primary_10_1186_s12933_025_02585_z
crossref_primary_10_3389_fnut_2023_1136284
crossref_primary_10_1186_s13098_025_01669_w
crossref_primary_10_1186_s12933_021_01305_7
crossref_primary_10_1007_s11010_022_04494_1
crossref_primary_10_1186_s12933_022_01599_1
crossref_primary_10_1186_s13098_024_01349_1
crossref_primary_10_2147_DMSO_S418358
crossref_primary_10_1038_s41598_024_68841_6
crossref_primary_10_3389_fendo_2023_1100399
crossref_primary_10_1016_j_numecd_2022_08_007
crossref_primary_10_1111_cen_15171
crossref_primary_10_1007_s40618_020_01184_x
crossref_primary_10_1186_s12933_019_0898_x
crossref_primary_10_1186_s12902_022_01157_6
crossref_primary_10_1080_10641963_2022_2150204
crossref_primary_10_1038_s41387_024_00295_1
crossref_primary_10_2174_1871530323666230117112936
crossref_primary_10_3390_biom11060882
crossref_primary_10_1016_j_numecd_2023_03_026
crossref_primary_10_1136_bmjopen_2024_086641
crossref_primary_10_1161_JAHA_123_030022
crossref_primary_10_5812_ijem_115428
crossref_primary_10_1080_00015385_2024_2413737
crossref_primary_10_1186_s12933_023_02029_6
crossref_primary_10_1186_s12933_021_01268_9
crossref_primary_10_1186_s12933_024_02230_1
crossref_primary_10_1016_j_ijcrp_2024_200250
crossref_primary_10_1016_j_genrep_2023_101816
crossref_primary_10_1186_s13098_022_00967_x
crossref_primary_10_33631_duzcesbed_882401
crossref_primary_10_1007_s10620_022_07567_9
crossref_primary_10_1507_endocrj_EJ21_0560
crossref_primary_10_1186_s12933_023_01820_9
crossref_primary_10_1186_s12933_023_01866_9
crossref_primary_10_1186_s12902_022_01094_4
crossref_primary_10_1038_s41430_021_01045_7
crossref_primary_10_1155_2021_5570827
crossref_primary_10_3389_fendo_2019_00496
crossref_primary_10_1016_j_jpsychires_2022_09_004
crossref_primary_10_1007_s44411_024_00016_1
crossref_primary_10_1016_j_numecd_2022_11_004
crossref_primary_10_1371_journal_pone_0310526
crossref_primary_10_2147_DMSO_S318255
crossref_primary_10_3389_fnut_2022_898782
crossref_primary_10_1186_s12933_023_02115_9
crossref_primary_10_3389_fendo_2023_1241372
crossref_primary_10_1080_21623945_2024_2379867
crossref_primary_10_1007_s00431_021_03951_1
crossref_primary_10_3389_fcvm_2021_644035
crossref_primary_10_1097_MD_0000000000032629
crossref_primary_10_12677_acm_2025_151146
crossref_primary_10_1186_s41043_024_00662_9
crossref_primary_10_22141_2224_0586_17_1_2021_225722
crossref_primary_10_1186_s12888_025_06676_9
crossref_primary_10_1186_s12933_022_01472_1
crossref_primary_10_3389_fendo_2024_1390725
crossref_primary_10_1093_biolre_ioab195
crossref_primary_10_1111_jdi_13371
crossref_primary_10_1177_13872877241284216
crossref_primary_10_3389_fonc_2021_774937
crossref_primary_10_1080_10641963_2024_2341631
crossref_primary_10_1016_j_jocn_2022_08_019
crossref_primary_10_1186_s12902_024_01729_8
crossref_primary_10_12677_acm_2024_1451527
crossref_primary_10_21303_2504_5679_2020_001415
crossref_primary_10_1186_s13098_024_01487_6
crossref_primary_10_3390_ijerph19020624
crossref_primary_10_3389_fcvm_2024_1363049
crossref_primary_10_2174_1871530323666230324104737
crossref_primary_10_4103_jfmpc_jfmpc_996_23
crossref_primary_10_1038_s41598_022_05467_6
crossref_primary_10_1097_HPC_0000000000000348
crossref_primary_10_7189_jgh_14_04103
crossref_primary_10_1038_s41598_021_03138_6
crossref_primary_10_1111_jch_14758
crossref_primary_10_3390_ijms26062389
crossref_primary_10_1186_s12889_025_21379_2
crossref_primary_10_1186_s41043_023_00410_5
crossref_primary_10_3390_healthcare12242527
Cites_doi 10.1016/j.metabol.2011.04.006
10.1097/MD.0000000000010726
10.1530/EJE-16-1063
10.2337/diacare.22.2.307
10.1186/s12933-018-0692-1
10.1089/met.2008.0034
10.1161/01.ATV.0000122852.22604.78
10.1016/j.diabres.2011.05.030
10.1080/00365513.2018.1469787
10.1590/S0004-27302009000200020
10.3265/nefrologia.pre2012.nov.11430
10.2337/diacare.21.12.2191
10.1007/BF00280883
10.2337/diacare.27.6.1487
10.1309/AJCPLHJBGG9L3ILS
10.1186/1758-5996-5-71
10.3748/wjg.v20.i39.14172
10.1016/j.metabol.2004.08.014
10.1186/s12933-017-0589-4
10.1002/(SICI)1097-0258(19971230)16:24<2773::AID-SIM761>3.0.CO;2-Q
10.4093/dmj.2016.40.4.318
10.1016/j.semnephrol.2013.07.007
10.1210/jc.2014-1724
10.2337/dc12-1235
10.5604/16652681.1212431
10.1016/j.clinbiochem.2012.01.012
ContentType Journal Article
Copyright COPYRIGHT 2018 BioMed Central Ltd.
The Author(s) 2018
Copyright_xml – notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: The Author(s) 2018
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1186/s13098-018-0376-8
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic



PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1758-5996
EndPage 8
ExternalDocumentID oai_doaj_org_article_cfba2369b19b4d9e8f488e2d796f1ef8
PMC6173832
A557125116
30323862
10_1186_s13098_018_0376_8
Genre Journal Article
GroupedDBID ---
0R~
53G
5VS
7X7
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
E3Z
EBD
EBLON
EBS
EJD
ESX
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IEA
IHR
IHW
ITC
KQ8
M48
M~E
O5R
O5S
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
TUS
U2A
UKHRP
-5E
-5G
-A0
-BR
2VQ
3V.
ACRMQ
ADINQ
AHSBF
C24
IPNFZ
NPM
RIG
PMFND
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c629t-17a2fb2ff1a309a7be138914d35e028b0f57a78bb0988ab8c4a51b2fb8d98e853
IEDL.DBID M48
ISSN 1758-5996
IngestDate Wed Aug 27 01:21:42 EDT 2025
Thu Aug 21 18:19:08 EDT 2025
Tue Aug 19 13:08:10 EDT 2025
Tue Jun 17 21:12:23 EDT 2025
Tue Jun 10 20:44:00 EDT 2025
Thu May 22 21:14:25 EDT 2025
Wed Feb 19 02:42:28 EST 2025
Thu Apr 24 23:00:53 EDT 2025
Tue Jul 01 01:26:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c629t-17a2fb2ff1a309a7be138914d35e028b0f57a78bb0988ab8c4a51b2fb8d98e853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9533-086X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13098-018-0376-8
PMID 30323862
PQID 2120742955
PQPubID 23479
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_cfba2369b19b4d9e8f488e2d796f1ef8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6173832
proquest_miscellaneous_2120742955
gale_infotracmisc_A557125116
gale_infotracacademiconefile_A557125116
gale_healthsolutions_A557125116
pubmed_primary_30323862
crossref_citationtrail_10_1186_s13098_018_0376_8
crossref_primary_10_1186_s13098_018_0376_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-05
PublicationDateYYYYMMDD 2018-10-05
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-05
  day: 05
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Diabetology and metabolic syndrome
PublicationTitleAlternate Diabetol Metab Syndr
PublicationYear 2018
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References AC Vasques (376_CR8) 2011; 93
DR Matthews (376_CR11) 1985; 28
LE Simental-Mendía (376_CR6) 2008; 6
R Sánchez-Villanueva (376_CR25) 2013; 33
K Kodama (376_CR27) 2013; 36
CE Kelley (376_CR2) 2014; 20
C Oddoze (376_CR5) 2012; 45
AJ Bakker (376_CR10) 1999; 22
P Srisawasdi (376_CR12) 2011; 136
JB Møller (376_CR28) 2014; 99
MK Kim (376_CR15) 2017; 16
SB Lee (376_CR14) 2018; 17
B Geloneze (376_CR23) 2009; 53
YS Song (376_CR24) 2016; 40
376_CR4
KB Won (376_CR13) 2018; 97
JC Levy (376_CR22) 1998; 21
H Kramer (376_CR26) 2013; 33
S Płaczkowska (376_CR16) 2018; 9
HC Houwelingen van (376_CR19) 1997; 16
J Yin (376_CR17) 2013; 5
LE Simental-Mendía (376_CR9) 2016; 15
A Ceriello (376_CR1) 2004; 24
TM Wallace (376_CR20) 2004; 27
ES Kang (376_CR21) 2005; 54
F Abbasi (376_CR7) 2011; 60
M Pansuria (376_CR18) 2012; 1
D Macut (376_CR3) 2017; 177
9839117 - Diabetes Care. 1998 Dec;21(12):2191-2
29741109 - Scand J Clin Lab Invest. 2018 Jul;78(4):325-332
15690315 - Metabolism. 2005 Feb;54(2):206-11
21685028 - Am J Clin Pathol. 2011 Jul;136(1):20-9
28830471 - Cardiovasc Diabetol. 2017 Aug 23;16(1):108
24228769 - Diabetol Metab Syndr. 2013 Nov 15;5(1):71
24119851 - Semin Nephrol. 2013 Sep;33(5):457-67
22285385 - Clin Biochem. 2012 Apr;45(6):464-9
19466221 - Arq Bras Endocrinol Metabol. 2009 Mar;53(2):281-7
21665314 - Diabetes Res Clin Pract. 2011 Sep;93(3):e98-e100
25339805 - World J Gastroenterol. 2014 Oct 21;20(39):14172-84
9483713 - Stat Med. 1997 Dec 30;16(24):2773-84
27273908 - Diabetes Metab J. 2016 Aug;40(4):318-25
3899825 - Diabetologia. 1985 Jul;28(7):412-9
22202099 - Front Biosci (Schol Ed). 2012 Jan 01;4:916-31
29562908 - Cardiovasc Diabetol. 2018 Mar 21;17(1):41
21632070 - Metabolism. 2011 Dec;60(12):1673-6
23704681 - Diabetes Care. 2013 Jun;36(6):1789-96
27493110 - Ann Hepatol. 2016 Sep-Oct;15(5):715-20
25119313 - J Clin Endocrinol Metab. 2014 Nov;99(11):4273-80
10333950 - Diabetes Care. 1999 Feb;22(2):307-13
23364630 - Nefrologia. 2013 Jan 18;33(1):85-92
28694246 - Eur J Endocrinol. 2017 Sep;177(3):R145-R158
19067533 - Metab Syndr Relat Disord. 2008 Dec;6(4):299-304
14976002 - Arterioscler Thromb Vasc Biol. 2004 May;24(5):816-23
29794749 - Medicine (Baltimore). 2018 May;97(21):e10726
15161807 - Diabetes Care. 2004 Jun;27(6):1487-95
References_xml – volume: 60
  start-page: 1673
  issue: 12
  year: 2011
  ident: 376_CR7
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2011.04.006
– volume: 97
  start-page: e10726
  issue: 21
  year: 2018
  ident: 376_CR13
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000010726
– volume: 177
  start-page: R145
  issue: 3
  year: 2017
  ident: 376_CR3
  publication-title: Eur J Endocrinol
  doi: 10.1530/EJE-16-1063
– volume: 22
  start-page: 307
  issue: 2
  year: 1999
  ident: 376_CR10
  publication-title: Diabetes Care
  doi: 10.2337/diacare.22.2.307
– volume: 17
  start-page: 41
  issue: 1
  year: 2018
  ident: 376_CR14
  publication-title: Cardiovasc Diabetol
  doi: 10.1186/s12933-018-0692-1
– volume: 1
  start-page: 916
  issue: 4
  year: 2012
  ident: 376_CR18
  publication-title: Front Biosci (Schol Ed)
– volume: 6
  start-page: 299
  issue: 4
  year: 2008
  ident: 376_CR6
  publication-title: Metab Syndr Relat Disord
  doi: 10.1089/met.2008.0034
– volume: 24
  start-page: 816
  issue: 5
  year: 2004
  ident: 376_CR1
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.0000122852.22604.78
– volume: 93
  start-page: e98
  issue: 3
  year: 2011
  ident: 376_CR8
  publication-title: Diabetes Res Clin Pract
  doi: 10.1016/j.diabres.2011.05.030
– volume: 9
  start-page: 1
  year: 2018
  ident: 376_CR16
  publication-title: Scand J Clin Lab Invest
  doi: 10.1080/00365513.2018.1469787
– volume: 53
  start-page: 281
  issue: 2
  year: 2009
  ident: 376_CR23
  publication-title: Arq Bras Endocrinol Metabol
  doi: 10.1590/S0004-27302009000200020
– volume: 33
  start-page: 85
  issue: 1
  year: 2013
  ident: 376_CR25
  publication-title: Nefrologia
  doi: 10.3265/nefrologia.pre2012.nov.11430
– volume: 21
  start-page: 2191
  issue: 12
  year: 1998
  ident: 376_CR22
  publication-title: Diabetes Care
  doi: 10.2337/diacare.21.12.2191
– volume: 28
  start-page: 412
  issue: 7
  year: 1985
  ident: 376_CR11
  publication-title: Diabetologia
  doi: 10.1007/BF00280883
– volume: 27
  start-page: 1487
  issue: 6
  year: 2004
  ident: 376_CR20
  publication-title: Diabetes Care
  doi: 10.2337/diacare.27.6.1487
– volume: 136
  start-page: 20
  issue: 1
  year: 2011
  ident: 376_CR12
  publication-title: Am J Clin Pathol
  doi: 10.1309/AJCPLHJBGG9L3ILS
– volume: 5
  start-page: 71
  issue: 1
  year: 2013
  ident: 376_CR17
  publication-title: Diabetol Metab Syndr
  doi: 10.1186/1758-5996-5-71
– volume: 20
  start-page: 14172
  issue: 39
  year: 2014
  ident: 376_CR2
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v20.i39.14172
– ident: 376_CR4
– volume: 54
  start-page: 206
  issue: 2
  year: 2005
  ident: 376_CR21
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2004.08.014
– volume: 16
  start-page: 108
  issue: 1
  year: 2017
  ident: 376_CR15
  publication-title: Cardiovasc Diabetol
  doi: 10.1186/s12933-017-0589-4
– volume: 16
  start-page: 2773
  issue: 24
  year: 1997
  ident: 376_CR19
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19971230)16:24<2773::AID-SIM761>3.0.CO;2-Q
– volume: 40
  start-page: 318
  issue: 4
  year: 2016
  ident: 376_CR24
  publication-title: Diabetes Metab J
  doi: 10.4093/dmj.2016.40.4.318
– volume: 33
  start-page: 457
  issue: 5
  year: 2013
  ident: 376_CR26
  publication-title: Semin Nephrol
  doi: 10.1016/j.semnephrol.2013.07.007
– volume: 99
  start-page: 4273
  issue: 11
  year: 2014
  ident: 376_CR28
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2014-1724
– volume: 36
  start-page: 1789
  issue: 6
  year: 2013
  ident: 376_CR27
  publication-title: Diabetes Care
  doi: 10.2337/dc12-1235
– volume: 15
  start-page: 715
  issue: 5
  year: 2016
  ident: 376_CR9
  publication-title: Ann Hepatol
  doi: 10.5604/16652681.1212431
– volume: 45
  start-page: 464
  issue: 6
  year: 2012
  ident: 376_CR5
  publication-title: Clin Biochem
  doi: 10.1016/j.clinbiochem.2012.01.012
– reference: 23364630 - Nefrologia. 2013 Jan 18;33(1):85-92
– reference: 15690315 - Metabolism. 2005 Feb;54(2):206-11
– reference: 9839117 - Diabetes Care. 1998 Dec;21(12):2191-2
– reference: 19466221 - Arq Bras Endocrinol Metabol. 2009 Mar;53(2):281-7
– reference: 9483713 - Stat Med. 1997 Dec 30;16(24):2773-84
– reference: 29741109 - Scand J Clin Lab Invest. 2018 Jul;78(4):325-332
– reference: 28694246 - Eur J Endocrinol. 2017 Sep;177(3):R145-R158
– reference: 23704681 - Diabetes Care. 2013 Jun;36(6):1789-96
– reference: 27273908 - Diabetes Metab J. 2016 Aug;40(4):318-25
– reference: 21685028 - Am J Clin Pathol. 2011 Jul;136(1):20-9
– reference: 10333950 - Diabetes Care. 1999 Feb;22(2):307-13
– reference: 21632070 - Metabolism. 2011 Dec;60(12):1673-6
– reference: 22202099 - Front Biosci (Schol Ed). 2012 Jan 01;4:916-31
– reference: 19067533 - Metab Syndr Relat Disord. 2008 Dec;6(4):299-304
– reference: 27493110 - Ann Hepatol. 2016 Sep-Oct;15(5):715-20
– reference: 29794749 - Medicine (Baltimore). 2018 May;97(21):e10726
– reference: 24119851 - Semin Nephrol. 2013 Sep;33(5):457-67
– reference: 25119313 - J Clin Endocrinol Metab. 2014 Nov;99(11):4273-80
– reference: 3899825 - Diabetologia. 1985 Jul;28(7):412-9
– reference: 22285385 - Clin Biochem. 2012 Apr;45(6):464-9
– reference: 21665314 - Diabetes Res Clin Pract. 2011 Sep;93(3):e98-e100
– reference: 24228769 - Diabetol Metab Syndr. 2013 Nov 15;5(1):71
– reference: 25339805 - World J Gastroenterol. 2014 Oct 21;20(39):14172-84
– reference: 14976002 - Arterioscler Thromb Vasc Biol. 2004 May;24(5):816-23
– reference: 28830471 - Cardiovasc Diabetol. 2017 Aug 23;16(1):108
– reference: 15161807 - Diabetes Care. 2004 Jun;27(6):1487-95
– reference: 29562908 - Cardiovasc Diabetol. 2018 Mar 21;17(1):41
SSID ssj0067574
Score 2.5694273
Snippet Metabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests insulin résistance is...
Background Metabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests insulin...
Abstract Background Metabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 74
SubjectTerms Cardiovascular diseases
Complications and side effects
Diagnosis
Metabolic syndrome X
Risk factors
Triglycerides
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixNBEG5kD-JFfDu6aguCDxg209NPb6u4LkI8ZWFvTT9xIUwWNznsyb9uVfckZhT04i2kq2GmHl1fTdeDkFe-j0F03rV9TL7lLINJuRRbk6PJxnBXZxHMv8rTM_7lXJzvjfrCnLDaHrgy7ihk71gvje-M59EknUHlEovKyNylXMp8wedtg6l6BgMKVny8w-y0PLqCkxpLyTosJ1Oy1RMvVJr1_3kk7_mkab7kngM6uUNuj8iRHtcnvktupOEeuTkf78bvkx_ztAaJLi8CDcsN9j8Ar0RXmWL2OB3n6rynv9p749oCgvPldQDamLbp67R0UKRvFtef68-3FJDtbxvHHHYK0ToiUFCdB-Ts5NPi42k7jldog2Rm3XbKsexZzp0D7jjlU7m05LEXCVCHn2WhnNLeA-u08zpwB1KFLToancDNPyQHw2pIjwkVMSgITHhQTnIzY96HiNDSCM9in3lDZlt22zD2HscRGEtbYhAtbZWQBQlZlJDVDXm323JZG2_8jfgDynBHiD2zyx-gSXbUJPsvTWrIC9QAWwtQd5Zvj4VQCAM72ZDXhQJtHx4_uLGEAZiAXbQmlIcTSrDZMFl-udUyi0uY6Dak1ebKApLArxVGiIY8qlq3eytAGwCwJGuImujj5LWnK8PFt9IyHHBqD2f3k__Bp6fkFkNLKlkUh-Rg_X2TngEyW_vnxQh_AmOvOJQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Metabolic clustering of risk factors: evaluation of Triglyceride-glucose index (TyG index) for evaluation of insulin resistance
URI https://www.ncbi.nlm.nih.gov/pubmed/30323862
https://www.proquest.com/docview/2120742955
https://pubmed.ncbi.nlm.nih.gov/PMC6173832
https://doaj.org/article/cfba2369b19b4d9e8f488e2d796f1ef8
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9QwEA_3APGL-LZ6rhEEQahu06ZJBJE7ufMQ9hC5hf0W8tSD0tV9gPffO5N216se4pd-aKalycxkfmkmvyHkhS2944U1eemDzSsWwaVM8LmKXkWlKtPVIpic1afT6tOMz3bIprxVP4DLa5d2WE9qumhe__xx-R4c_l1yeFm_WcI8jAfFCjwsJupc7pJ9CEwC_XRSbTcVABonUmYImDJHVpJ-k_PaVwzCVGLz_3vOvhK0hgmVVyLUyW1yq4eW9LCzhTtkJ7R3yY1Jv3l-jywnYQUqby4cdc0aCRIgbNF5pJheTvvCO2_pb_5vbDuH1Xtz6UDWh01-O00UixTg7h_CfWI7hSU8wlKwp_tkenJ8_uE072su5K5mapUXwrBoWYyFgRExwoa0k1n5kgeAInYcuTBCWgvDJY2VrjKganhEeiUDxP4HZK-dt-ERodw7AauVyglTV2rMrHUe8abilvkyVhkZb4ZYu56QHOtiNDotTGStO61o0IpGrWiZkVfbR753bBz_Ej5CvW0FkUg73ZgvvureL7WL1rCyVrZQtvIqyAgzWmBeqDoWIcJLnqHWdXcqdTsd6EPOBWLDos7IyySBJgqf70x_rgEGAam1BpIHA0lwZDdofr6xLI1NmP3Whvl6qQFe4C8MxXlGHnaWtu0VQBBAXTXLiBjY4KDbw5b24lviEQfwWsKE_vi_O_CE3GToIil_4oDsrRbr8BQw2cqOyK6YiRHZPzo--_xllP5swPXjrBglH_wFkS44pg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+clustering+of+risk+factors%3A+evaluation+of+Triglyceride-glucose+index+for+evaluation+of+insulin+resistance&rft.jtitle=Diabetology+and+metabolic+syndrome&rft.au=Khan%2C+Sikandar+Hayat&rft.au=Sobia%2C+Farah&rft.au=Niazi%2C+Najmusaqib+Khan&rft.au=Manzoor%2C+Syed+Mohsin&rft.date=2018-10-05&rft.pub=BioMed+Central+Ltd&rft.issn=1758-5996&rft.eissn=1758-5996&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1186%2Fs13098-018-0376-8&rft.externalDocID=A557125116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-5996&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-5996&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-5996&client=summon