Metabolic clustering of risk factors: evaluation of Triglyceride-glucose index (TyG index) for evaluation of insulin resistance
Metabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests insulin résistance is hallmark of these metabolic clustering. While measuring insulin resistance directly or indirectly remains technically difficult in general practi...
Saved in:
Published in | Diabetology and metabolic syndrome Vol. 10; no. 1; pp. 74 - 8 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
05.10.2018
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests insulin résistance is hallmark of these metabolic clustering. While measuring insulin resistance directly or indirectly remains technically difficult in general practice, along with multiple stability issues for insulin, various indirect measures have been suggested by authorities. Fasting triglycerides-glucose (TyG) index is one such marker, which is recently been suggested as a useful diagnostic marker to predict metabolic syndrome. However, limited data is available on the subject with almost no literature from our region on the subject.
1. To correlate TyG index with insulin resistance, anthropometric indices, small dense LDLc, HbA1c and nephropathy. 2. To evaluate TyG index as a marker to diagnose metabolic syndrome in comparison to other available markers.
Place and duration of study-From Jun-2016 to July-2017 at PSS HAFEEZ hospital Islamabad.
From a finally selected sample size of 227 male and female subjects we evaluated their anthropometric data, HbA1c, lipid profile including calculated sdLDLc, urine albumin creatinine raito(UACR) and insulin resistance (HOMAIR). TyG index was calculated using formula of Simental-Mendía LE et al. Aforementioned parameters were correlated with TyG index, differences between subjects with and without metabolic syndrome were calculated using Independent sample t-test. Finally ROC curve analysis was carried out to measure AUC for candidate parameters including TyG Index for comparison.
TyG index in comparison to other markers like fasting triglycerides, HOMAIR, HDLc and non-HDLc demonstrated higher positive linear correlation with BMI, atherogenic dyslipidemia (sdLDLc), nephropathy (UACR), HbA1c and insulin resistance. TyG index showed significant differences between various markers among subjects with and without metabolic syndrome as per IDF criteria. AUC (Area Under Curve) demonstrated highest AUC for TyG as [(0.764, 95% CI 0.700-0.828, p-value ≤ 0.001)] followed by fasting triglycerides [(0.724, 95% CI 0.656-0.791, p-value ≤ 0.001)], sdLDLc [(0.695, 95% CI 0.626-0.763, p-value ≤ 0.001)], fasting plasma glucose [(0.686, 95% CI 0.616-0.756, p-value ≤ 0.001)], Non-HDLc [(0.640, 95% CI 0.626-0.763, p-value ≤ 0.001)] and HOMAIR [(0.619, 95% CI 0.545-0.694, p-value ≤ 0.001)].
TyG index, having the highest AUC in comparison to fasting glucose, triglycerides, sdLDLc, non-HDLc and HOMAIR can act as better marker for diagnosing metabolic syndrome. |
---|---|
AbstractList | Metabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests insulin résistance is hallmark of these metabolic clustering. While measuring insulin resistance directly or indirectly remains technically difficult in general practice, along with multiple stability issues for insulin, various indirect measures have been suggested by authorities. Fasting triglycerides-glucose (TyG) index is one such marker, which is recently been suggested as a useful diagnostic marker to predict metabolic syndrome. However, limited data is available on the subject with almost no literature from our region on the subject. 1. To correlate TyG index with insulin resistance, anthropometric indices, small dense LDLc, HbA1c and nephropathy. 2. To evaluate TyG index as a marker to diagnose metabolic syndrome in comparison to other available markers. Place and duration of study-From Jun-2016 to July-2017 at PSS HAFEEZ hospital Islamabad. From a finally selected sample size of 227 male and female subjects we evaluated their anthropometric data, HbA1c, lipid profile including calculated sdLDLc, urine albumin creatinine raito(UACR) and insulin resistance (HOMAIR). TyG index was calculated using formula of Simental-Mendía LE et al. Aforementioned parameters were correlated with TyG index, differences between subjects with and without metabolic syndrome were calculated using Independent sample t-test. Finally ROC curve analysis was carried out to measure AUC for candidate parameters including TyG Index for comparison. TyG index in comparison to other markers like fasting triglycerides, HOMAIR, HDLc and non-HDLc demonstrated higher positive linear correlation with BMI, atherogenic dyslipidemia (sdLDLc), nephropathy (UACR), HbA1c and insulin resistance. TyG index showed significant differences between various markers among subjects with and without metabolic syndrome as per IDF criteria. AUC (Area Under Curve) demonstrated highest AUC for TyG as [(0.764, 95% CI 0.700-0.828, p-value [less than or equai to] 0.001)] followed by fasting triglycerides [(0.724, 95% CI 0.656-0.791, p-value [less than or equai to] 0.001)], sdLDLc [(0.695, 95% CI 0.626-0.763, p-value [less than or equai to] 0.001)], fasting plasma glucose [(0.686, 95% CI 0.616-0.756, p-value [less than or equai to] 0.001)], Non-HDLc [(0.640, 95% CI 0.626-0.763, p-value [less than or equai to] 0.001)] and HOMAIR [(0.619, 95% CI 0.545-0.694, p-value [less than or equai to] 0.001)]. TyG index, having the highest AUC in comparison to fasting glucose, triglycerides, sdLDLc, non-HDLc and HOMAIR can act as better marker for diagnosing metabolic syndrome. Metabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests insulin résistance is hallmark of these metabolic clustering. While measuring insulin resistance directly or indirectly remains technically difficult in general practice, along with multiple stability issues for insulin, various indirect measures have been suggested by authorities. Fasting triglycerides-glucose (TyG) index is one such marker, which is recently been suggested as a useful diagnostic marker to predict metabolic syndrome. However, limited data is available on the subject with almost no literature from our region on the subject.BACKGROUNDMetabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests insulin résistance is hallmark of these metabolic clustering. While measuring insulin resistance directly or indirectly remains technically difficult in general practice, along with multiple stability issues for insulin, various indirect measures have been suggested by authorities. Fasting triglycerides-glucose (TyG) index is one such marker, which is recently been suggested as a useful diagnostic marker to predict metabolic syndrome. However, limited data is available on the subject with almost no literature from our region on the subject.1. To correlate TyG index with insulin resistance, anthropometric indices, small dense LDLc, HbA1c and nephropathy. 2. To evaluate TyG index as a marker to diagnose metabolic syndrome in comparison to other available markers.OBJECTIVE1. To correlate TyG index with insulin resistance, anthropometric indices, small dense LDLc, HbA1c and nephropathy. 2. To evaluate TyG index as a marker to diagnose metabolic syndrome in comparison to other available markers.Place and duration of study-From Jun-2016 to July-2017 at PSS HAFEEZ hospital Islamabad.DESIGN-CROSS-SECTIONAL ANALYSISPlace and duration of study-From Jun-2016 to July-2017 at PSS HAFEEZ hospital Islamabad.From a finally selected sample size of 227 male and female subjects we evaluated their anthropometric data, HbA1c, lipid profile including calculated sdLDLc, urine albumin creatinine raito(UACR) and insulin resistance (HOMAIR). TyG index was calculated using formula of Simental-Mendía LE et al. Aforementioned parameters were correlated with TyG index, differences between subjects with and without metabolic syndrome were calculated using Independent sample t-test. Finally ROC curve analysis was carried out to measure AUC for candidate parameters including TyG Index for comparison.SUBJECTS AND METHODSFrom a finally selected sample size of 227 male and female subjects we evaluated their anthropometric data, HbA1c, lipid profile including calculated sdLDLc, urine albumin creatinine raito(UACR) and insulin resistance (HOMAIR). TyG index was calculated using formula of Simental-Mendía LE et al. Aforementioned parameters were correlated with TyG index, differences between subjects with and without metabolic syndrome were calculated using Independent sample t-test. Finally ROC curve analysis was carried out to measure AUC for candidate parameters including TyG Index for comparison.TyG index in comparison to other markers like fasting triglycerides, HOMAIR, HDLc and non-HDLc demonstrated higher positive linear correlation with BMI, atherogenic dyslipidemia (sdLDLc), nephropathy (UACR), HbA1c and insulin resistance. TyG index showed significant differences between various markers among subjects with and without metabolic syndrome as per IDF criteria. AUC (Area Under Curve) demonstrated highest AUC for TyG as [(0.764, 95% CI 0.700-0.828, p-value ≤ 0.001)] followed by fasting triglycerides [(0.724, 95% CI 0.656-0.791, p-value ≤ 0.001)], sdLDLc [(0.695, 95% CI 0.626-0.763, p-value ≤ 0.001)], fasting plasma glucose [(0.686, 95% CI 0.616-0.756, p-value ≤ 0.001)], Non-HDLc [(0.640, 95% CI 0.626-0.763, p-value ≤ 0.001)] and HOMAIR [(0.619, 95% CI 0.545-0.694, p-value ≤ 0.001)].RESULTSTyG index in comparison to other markers like fasting triglycerides, HOMAIR, HDLc and non-HDLc demonstrated higher positive linear correlation with BMI, atherogenic dyslipidemia (sdLDLc), nephropathy (UACR), HbA1c and insulin resistance. TyG index showed significant differences between various markers among subjects with and without metabolic syndrome as per IDF criteria. AUC (Area Under Curve) demonstrated highest AUC for TyG as [(0.764, 95% CI 0.700-0.828, p-value ≤ 0.001)] followed by fasting triglycerides [(0.724, 95% CI 0.656-0.791, p-value ≤ 0.001)], sdLDLc [(0.695, 95% CI 0.626-0.763, p-value ≤ 0.001)], fasting plasma glucose [(0.686, 95% CI 0.616-0.756, p-value ≤ 0.001)], Non-HDLc [(0.640, 95% CI 0.626-0.763, p-value ≤ 0.001)] and HOMAIR [(0.619, 95% CI 0.545-0.694, p-value ≤ 0.001)].TyG index, having the highest AUC in comparison to fasting glucose, triglycerides, sdLDLc, non-HDLc and HOMAIR can act as better marker for diagnosing metabolic syndrome.CONCLUSIONTyG index, having the highest AUC in comparison to fasting glucose, triglycerides, sdLDLc, non-HDLc and HOMAIR can act as better marker for diagnosing metabolic syndrome. Background Metabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests insulin résistance is hallmark of these metabolic clustering. While measuring insulin resistance directly or indirectly remains technically difficult in general practice, along with multiple stability issues for insulin, various indirect measures have been suggested by authorities. Fasting triglycerides-glucose (TyG) index is one such marker, which is recently been suggested as a useful diagnostic marker to predict metabolic syndrome. However, limited data is available on the subject with almost no literature from our region on the subject. Objective 1. To correlate TyG index with insulin resistance, anthropometric indices, small dense LDLc, HbA1c and nephropathy. 2. To evaluate TyG index as a marker to diagnose metabolic syndrome in comparison to other available markers. Design-cross-sectional analysis Place and duration of study-From Jun-2016 to July-2017 at PSS HAFEEZ hospital Islamabad. Subjects and methods From a finally selected sample size of 227 male and female subjects we evaluated their anthropometric data, HbA1c, lipid profile including calculated sdLDLc, urine albumin creatinine raito(UACR) and insulin resistance (HOMAIR). TyG index was calculated using formula of Simental-Mendía LE et al. Aforementioned parameters were correlated with TyG index, differences between subjects with and without metabolic syndrome were calculated using Independent sample t-test. Finally ROC curve analysis was carried out to measure AUC for candidate parameters including TyG Index for comparison. Results TyG index in comparison to other markers like fasting triglycerides, HOMAIR, HDLc and non-HDLc demonstrated higher positive linear correlation with BMI, atherogenic dyslipidemia (sdLDLc), nephropathy (UACR), HbA1c and insulin resistance. TyG index showed significant differences between various markers among subjects with and without metabolic syndrome as per IDF criteria. AUC (Area Under Curve) demonstrated highest AUC for TyG as [(0.764, 95% CI 0.700-0.828, p-value [less than or equai to] 0.001)] followed by fasting triglycerides [(0.724, 95% CI 0.656-0.791, p-value [less than or equai to] 0.001)], sdLDLc [(0.695, 95% CI 0.626-0.763, p-value [less than or equai to] 0.001)], fasting plasma glucose [(0.686, 95% CI 0.616-0.756, p-value [less than or equai to] 0.001)], Non-HDLc [(0.640, 95% CI 0.626-0.763, p-value [less than or equai to] 0.001)] and HOMAIR [(0.619, 95% CI 0.545-0.694, p-value [less than or equai to] 0.001)]. Conclusion TyG index, having the highest AUC in comparison to fasting glucose, triglycerides, sdLDLc, non-HDLc and HOMAIR can act as better marker for diagnosing metabolic syndrome. Abstract Background Metabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests insulin résistance is hallmark of these metabolic clustering. While measuring insulin resistance directly or indirectly remains technically difficult in general practice, along with multiple stability issues for insulin, various indirect measures have been suggested by authorities. Fasting triglycerides-glucose (TyG) index is one such marker, which is recently been suggested as a useful diagnostic marker to predict metabolic syndrome. However, limited data is available on the subject with almost no literature from our region on the subject. Objective 1. To correlate TyG index with insulin resistance, anthropometric indices, small dense LDLc, HbA1c and nephropathy. 2. To evaluate TyG index as a marker to diagnose metabolic syndrome in comparison to other available markers. Design-cross-sectional analysis Place and duration of study-From Jun-2016 to July-2017 at PSS HAFEEZ hospital Islamabad. Subjects and methods From a finally selected sample size of 227 male and female subjects we evaluated their anthropometric data, HbA1c, lipid profile including calculated sdLDLc, urine albumin creatinine raito(UACR) and insulin resistance (HOMAIR). TyG index was calculated using formula of Simental-Mendía LE et al. Aforementioned parameters were correlated with TyG index, differences between subjects with and without metabolic syndrome were calculated using Independent sample t-test. Finally ROC curve analysis was carried out to measure AUC for candidate parameters including TyG Index for comparison. Results TyG index in comparison to other markers like fasting triglycerides, HOMAIR, HDLc and non-HDLc demonstrated higher positive linear correlation with BMI, atherogenic dyslipidemia (sdLDLc), nephropathy (UACR), HbA1c and insulin resistance. TyG index showed significant differences between various markers among subjects with and without metabolic syndrome as per IDF criteria. AUC (Area Under Curve) demonstrated highest AUC for TyG as [(0.764, 95% CI 0.700–0.828, p-value ≤ 0.001)] followed by fasting triglycerides [(0.724, 95% CI 0.656–0.791, p-value ≤ 0.001)], sdLDLc [(0.695, 95% CI 0.626–0.763, p-value ≤ 0.001)], fasting plasma glucose [(0.686, 95% CI 0.616–0.756, p-value ≤ 0.001)], Non-HDLc [(0.640, 95% CI 0.626–0.763, p-value ≤ 0.001)] and HOMAIR [(0.619, 95% CI 0.545–0.694, p-value ≤ 0.001)]. Conclusion TyG index, having the highest AUC in comparison to fasting glucose, triglycerides, sdLDLc, non-HDLc and HOMAIR can act as better marker for diagnosing metabolic syndrome. Metabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests insulin résistance is hallmark of these metabolic clustering. While measuring insulin resistance directly or indirectly remains technically difficult in general practice, along with multiple stability issues for insulin, various indirect measures have been suggested by authorities. Fasting triglycerides-glucose (TyG) index is one such marker, which is recently been suggested as a useful diagnostic marker to predict metabolic syndrome. However, limited data is available on the subject with almost no literature from our region on the subject. 1. To correlate TyG index with insulin resistance, anthropometric indices, small dense LDLc, HbA1c and nephropathy. 2. To evaluate TyG index as a marker to diagnose metabolic syndrome in comparison to other available markers. Place and duration of study-From Jun-2016 to July-2017 at PSS HAFEEZ hospital Islamabad. From a finally selected sample size of 227 male and female subjects we evaluated their anthropometric data, HbA1c, lipid profile including calculated sdLDLc, urine albumin creatinine raito(UACR) and insulin resistance (HOMAIR). TyG index was calculated using formula of Simental-Mendía LE et al. Aforementioned parameters were correlated with TyG index, differences between subjects with and without metabolic syndrome were calculated using Independent sample t-test. Finally ROC curve analysis was carried out to measure AUC for candidate parameters including TyG Index for comparison. TyG index in comparison to other markers like fasting triglycerides, HOMAIR, HDLc and non-HDLc demonstrated higher positive linear correlation with BMI, atherogenic dyslipidemia (sdLDLc), nephropathy (UACR), HbA1c and insulin resistance. TyG index showed significant differences between various markers among subjects with and without metabolic syndrome as per IDF criteria. AUC (Area Under Curve) demonstrated highest AUC for TyG as [(0.764, 95% CI 0.700-0.828, p-value ≤ 0.001)] followed by fasting triglycerides [(0.724, 95% CI 0.656-0.791, p-value ≤ 0.001)], sdLDLc [(0.695, 95% CI 0.626-0.763, p-value ≤ 0.001)], fasting plasma glucose [(0.686, 95% CI 0.616-0.756, p-value ≤ 0.001)], Non-HDLc [(0.640, 95% CI 0.626-0.763, p-value ≤ 0.001)] and HOMAIR [(0.619, 95% CI 0.545-0.694, p-value ≤ 0.001)]. TyG index, having the highest AUC in comparison to fasting glucose, triglycerides, sdLDLc, non-HDLc and HOMAIR can act as better marker for diagnosing metabolic syndrome. |
ArticleNumber | 74 |
Audience | Academic |
Author | Khan, Sikandar Hayat Sobia, Farah Fazal, Nadeem Ahmad, Fowad Manzoor, Syed Mohsin Niazi, Najmusaqib Khan |
Author_xml | – sequence: 1 givenname: Sikandar Hayat orcidid: 0000-0001-9533-086X surname: Khan fullname: Khan, Sikandar Hayat – sequence: 2 givenname: Farah surname: Sobia fullname: Sobia, Farah – sequence: 3 givenname: Najmusaqib Khan surname: Niazi fullname: Niazi, Najmusaqib Khan – sequence: 4 givenname: Syed Mohsin surname: Manzoor fullname: Manzoor, Syed Mohsin – sequence: 5 givenname: Nadeem surname: Fazal fullname: Fazal, Nadeem – sequence: 6 givenname: Fowad surname: Ahmad fullname: Ahmad, Fowad |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30323862$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kl9rFDEUxYNUbLv6AXyRAUHqw9RJ5k-SPgilaC1UfFmfQ5K52U3NJjWZKe6TX91Mp5XdogxhQvI7h3tvzjE68MEDQq9xdYox6z4kXFeclRXOq6ZdyZ6hI0xbVracdwc7-0N0nNJNVXW0pc0LdFhXNalZR47Q768wSBWc1YV2YxogWr8qgimiTT8KI_UQYjor4E66UQ42-OluGe3KbXVmeyhXbtQhQWF9D7-Kk-X2ct6-L0yIT4TWp9FZX0RINg3Sa3iJnhvpErx6-C_Q98-flhdfyutvl1cX59el7ggfSkwlMYoYg2VuWVIFuGYcN33dQkWYqkxLJWVK5XkwqZhuZIszr1jPGbC2XqCr2bcP8kbcRruRcSuCtOL-IMSVkHGw2oHQRklSd1xhrpqeAzMNY0B6yjuDwbDs9XH2uh3VBnoNfojS7Znu33i7FqtwJzpMa5Ynv0AnDwYx_BwhDWJjkwbnpIcwJkEwqWhDeDvV_XZGVzKXZr0J2VFPuDhvW4pJi3GXqdN_UPnrYWN1Do2x-XxP8G5HsAbphnUKbpweKu2Db3Z7_dvkY4IyQGdAx5BSBCO0He4fPJdgncCVmLIq5qyKnFUxZVVMY8RPlI_m_9f8AYkF7Ig |
CitedBy_id | crossref_primary_10_1186_s12967_024_05524_w crossref_primary_10_1186_s12933_022_01511_x crossref_primary_10_23736_S2724_6507_20_03273_3 crossref_primary_10_1016_j_arcmed_2023_102926 crossref_primary_10_1097_MD_0000000000039576 crossref_primary_10_1097_MD_0000000000038241 crossref_primary_10_1186_s12933_023_02073_2 crossref_primary_10_1016_j_numecd_2024_10_005 crossref_primary_10_3390_jcdd11110354 crossref_primary_10_3389_fcvm_2021_778038 crossref_primary_10_1038_s41598_025_86612_9 crossref_primary_10_1016_j_chest_2021_03_056 crossref_primary_10_3389_fcvm_2022_1002030 crossref_primary_10_3389_fendo_2022_973655 crossref_primary_10_1038_s41598_024_67081_y crossref_primary_10_1007_s10554_020_01915_4 crossref_primary_10_1016_j_amjms_2024_08_013 crossref_primary_10_1089_met_2020_0092 crossref_primary_10_1186_s12933_022_01490_z crossref_primary_10_1186_s12933_024_02355_3 crossref_primary_10_3389_fendo_2024_1420999 crossref_primary_10_3390_biomedicines10092251 crossref_primary_10_1097_MCA_0000000000001466 crossref_primary_10_1177_00033197211028429 crossref_primary_10_1186_s12889_024_20926_7 crossref_primary_10_4274_haseki_galenos_2024_9694 crossref_primary_10_1186_s12933_022_01617_2 crossref_primary_10_12677_ACM_2023_13122751 crossref_primary_10_1089_aid_2020_0029 crossref_primary_10_7717_peerj_13149 crossref_primary_10_1039_D4FO00941J crossref_primary_10_1080_0886022X_2025_2458757 crossref_primary_10_1186_s12902_024_01632_2 crossref_primary_10_1186_s12933_020_01108_2 crossref_primary_10_1186_s12933_024_02518_2 crossref_primary_10_3389_fnut_2024_1510926 crossref_primary_10_1186_s12902_025_01887_3 crossref_primary_10_2174_1573399819666221031140713 crossref_primary_10_3389_fpubh_2023_1257183 crossref_primary_10_1016_j_jdiacomp_2023_108516 crossref_primary_10_1186_s13098_024_01439_0 crossref_primary_10_3390_jcm10020346 crossref_primary_10_1186_s12933_023_02041_w crossref_primary_10_3389_fendo_2022_854875 crossref_primary_10_25692_ACEN_2020_1_2 crossref_primary_10_1186_s12933_023_02018_9 crossref_primary_10_1177_00033197241231150 crossref_primary_10_1186_s13098_023_01117_7 crossref_primary_10_1111_jre_13108 crossref_primary_10_1007_s12020_024_03830_3 crossref_primary_10_1186_s12933_023_01918_0 crossref_primary_10_1186_s12933_022_01704_4 crossref_primary_10_1080_09513590_2021_1940932 crossref_primary_10_1186_s12933_021_01443_y crossref_primary_10_3389_fcvm_2022_912197 crossref_primary_10_3390_diagnostics12061486 crossref_primary_10_1186_s12933_023_01919_z crossref_primary_10_1186_s12933_022_01546_0 crossref_primary_10_1186_s12933_024_02345_5 crossref_primary_10_1186_s12933_023_01874_9 crossref_primary_10_1186_s12933_022_01523_7 crossref_primary_10_1186_s12933_024_02510_w crossref_primary_10_3390_ijerph17134833 crossref_primary_10_1016_j_medcli_2022_07_003 crossref_primary_10_4236_jbm_2024_128019 crossref_primary_10_1186_s12889_025_21522_z crossref_primary_10_3389_fcvm_2023_1224296 crossref_primary_10_1007_s42000_024_00622_2 crossref_primary_10_1055_a_2284_5667 crossref_primary_10_1038_s41598_024_59659_3 crossref_primary_10_1016_j_numecd_2021_11_017 crossref_primary_10_1186_s12902_019_0384_1 crossref_primary_10_3390_nu16213718 crossref_primary_10_1177_1747493020984069 crossref_primary_10_1186_s12916_020_01824_2 crossref_primary_10_1186_s12883_021_02443_x crossref_primary_10_1007_s00125_019_4921_2 crossref_primary_10_1186_s12944_024_02390_9 crossref_primary_10_1161_JAHA_123_034136 crossref_primary_10_1007_s12020_023_03357_z crossref_primary_10_1016_j_toxrep_2021_06_011 crossref_primary_10_1016_j_dsx_2024_103146 crossref_primary_10_3389_fcvm_2023_1242035 crossref_primary_10_1177_20406223221122671 crossref_primary_10_2147_IDR_S493140 crossref_primary_10_1016_j_medcle_2023_03_001 crossref_primary_10_1186_s13098_024_01422_9 crossref_primary_10_12677_ACM_2024_142513 crossref_primary_10_33262_anatomiadigital_v6i4_3_2838 crossref_primary_10_3389_fendo_2020_522883 crossref_primary_10_1515_jpem_2019_0310 crossref_primary_10_3389_fphys_2023_1147001 crossref_primary_10_1080_13813455_2024_2418494 crossref_primary_10_3389_fneur_2022_1033385 crossref_primary_10_1007_s12020_022_03238_x crossref_primary_10_1016_j_numecd_2022_07_024 crossref_primary_10_1039_D3EM00491K crossref_primary_10_3390_jcm11237153 crossref_primary_10_3389_fpubh_2024_1294588 crossref_primary_10_2174_0118715303264620231106105345 crossref_primary_10_1002_edm2_151 crossref_primary_10_1089_omi_2024_0177 crossref_primary_10_1186_s12986_022_00707_y crossref_primary_10_1186_s13098_024_01433_6 crossref_primary_10_1186_s12933_022_01683_6 crossref_primary_10_2147_COPD_S473089 crossref_primary_10_1186_s12933_023_02080_3 crossref_primary_10_1111_eci_13674 crossref_primary_10_3390_biomedicines10081858 crossref_primary_10_1016_j_numecd_2024_01_030 crossref_primary_10_1186_s12933_024_02227_w crossref_primary_10_1186_s12933_024_02120_6 crossref_primary_10_1016_j_numecd_2022_12_001 crossref_primary_10_1007_s12011_024_04287_1 crossref_primary_10_1186_s12944_025_02496_8 crossref_primary_10_1055_a_2279_7112 crossref_primary_10_1186_s12967_022_03678_z crossref_primary_10_1177_10760296241234320 crossref_primary_10_1186_s13098_022_00855_4 crossref_primary_10_1186_s13098_024_01423_8 crossref_primary_10_3390_ijerph16183258 crossref_primary_10_1186_s13098_023_01153_3 crossref_primary_10_12677_acm_2024_143908 crossref_primary_10_1186_s41182_024_00611_6 crossref_primary_10_3389_fendo_2024_1458521 crossref_primary_10_1016_j_nut_2023_111978 crossref_primary_10_3389_fendo_2024_1452896 crossref_primary_10_1038_s41598_022_23478_1 crossref_primary_10_1186_s40001_024_01820_9 crossref_primary_10_3389_fcvm_2024_1429993 crossref_primary_10_3390_nu17071124 crossref_primary_10_2147_CIA_S501569 crossref_primary_10_1007_s11357_023_00842_1 crossref_primary_10_1186_s12933_024_02275_2 crossref_primary_10_1016_j_numecd_2023_02_005 crossref_primary_10_3389_fendo_2022_1038758 crossref_primary_10_1186_s12944_025_02518_5 crossref_primary_10_5005_jp_journals_10054_0227 crossref_primary_10_1186_s12933_024_02145_x crossref_primary_10_1186_s12933_025_02585_z crossref_primary_10_3389_fnut_2023_1136284 crossref_primary_10_1186_s13098_025_01669_w crossref_primary_10_1186_s12933_021_01305_7 crossref_primary_10_1007_s11010_022_04494_1 crossref_primary_10_1186_s12933_022_01599_1 crossref_primary_10_1186_s13098_024_01349_1 crossref_primary_10_2147_DMSO_S418358 crossref_primary_10_1038_s41598_024_68841_6 crossref_primary_10_3389_fendo_2023_1100399 crossref_primary_10_1016_j_numecd_2022_08_007 crossref_primary_10_1111_cen_15171 crossref_primary_10_1007_s40618_020_01184_x crossref_primary_10_1186_s12933_019_0898_x crossref_primary_10_1186_s12902_022_01157_6 crossref_primary_10_1080_10641963_2022_2150204 crossref_primary_10_1038_s41387_024_00295_1 crossref_primary_10_2174_1871530323666230117112936 crossref_primary_10_3390_biom11060882 crossref_primary_10_1016_j_numecd_2023_03_026 crossref_primary_10_1136_bmjopen_2024_086641 crossref_primary_10_1161_JAHA_123_030022 crossref_primary_10_5812_ijem_115428 crossref_primary_10_1080_00015385_2024_2413737 crossref_primary_10_1186_s12933_023_02029_6 crossref_primary_10_1186_s12933_021_01268_9 crossref_primary_10_1186_s12933_024_02230_1 crossref_primary_10_1016_j_ijcrp_2024_200250 crossref_primary_10_1016_j_genrep_2023_101816 crossref_primary_10_1186_s13098_022_00967_x crossref_primary_10_33631_duzcesbed_882401 crossref_primary_10_1007_s10620_022_07567_9 crossref_primary_10_1507_endocrj_EJ21_0560 crossref_primary_10_1186_s12933_023_01820_9 crossref_primary_10_1186_s12933_023_01866_9 crossref_primary_10_1186_s12902_022_01094_4 crossref_primary_10_1038_s41430_021_01045_7 crossref_primary_10_1155_2021_5570827 crossref_primary_10_3389_fendo_2019_00496 crossref_primary_10_1016_j_jpsychires_2022_09_004 crossref_primary_10_1007_s44411_024_00016_1 crossref_primary_10_1016_j_numecd_2022_11_004 crossref_primary_10_1371_journal_pone_0310526 crossref_primary_10_2147_DMSO_S318255 crossref_primary_10_3389_fnut_2022_898782 crossref_primary_10_1186_s12933_023_02115_9 crossref_primary_10_3389_fendo_2023_1241372 crossref_primary_10_1080_21623945_2024_2379867 crossref_primary_10_1007_s00431_021_03951_1 crossref_primary_10_3389_fcvm_2021_644035 crossref_primary_10_1097_MD_0000000000032629 crossref_primary_10_12677_acm_2025_151146 crossref_primary_10_1186_s41043_024_00662_9 crossref_primary_10_22141_2224_0586_17_1_2021_225722 crossref_primary_10_1186_s12888_025_06676_9 crossref_primary_10_1186_s12933_022_01472_1 crossref_primary_10_3389_fendo_2024_1390725 crossref_primary_10_1093_biolre_ioab195 crossref_primary_10_1111_jdi_13371 crossref_primary_10_1177_13872877241284216 crossref_primary_10_3389_fonc_2021_774937 crossref_primary_10_1080_10641963_2024_2341631 crossref_primary_10_1016_j_jocn_2022_08_019 crossref_primary_10_1186_s12902_024_01729_8 crossref_primary_10_12677_acm_2024_1451527 crossref_primary_10_21303_2504_5679_2020_001415 crossref_primary_10_1186_s13098_024_01487_6 crossref_primary_10_3390_ijerph19020624 crossref_primary_10_3389_fcvm_2024_1363049 crossref_primary_10_2174_1871530323666230324104737 crossref_primary_10_4103_jfmpc_jfmpc_996_23 crossref_primary_10_1038_s41598_022_05467_6 crossref_primary_10_1097_HPC_0000000000000348 crossref_primary_10_7189_jgh_14_04103 crossref_primary_10_1038_s41598_021_03138_6 crossref_primary_10_1111_jch_14758 crossref_primary_10_3390_ijms26062389 crossref_primary_10_1186_s12889_025_21379_2 crossref_primary_10_1186_s41043_023_00410_5 crossref_primary_10_3390_healthcare12242527 |
Cites_doi | 10.1016/j.metabol.2011.04.006 10.1097/MD.0000000000010726 10.1530/EJE-16-1063 10.2337/diacare.22.2.307 10.1186/s12933-018-0692-1 10.1089/met.2008.0034 10.1161/01.ATV.0000122852.22604.78 10.1016/j.diabres.2011.05.030 10.1080/00365513.2018.1469787 10.1590/S0004-27302009000200020 10.3265/nefrologia.pre2012.nov.11430 10.2337/diacare.21.12.2191 10.1007/BF00280883 10.2337/diacare.27.6.1487 10.1309/AJCPLHJBGG9L3ILS 10.1186/1758-5996-5-71 10.3748/wjg.v20.i39.14172 10.1016/j.metabol.2004.08.014 10.1186/s12933-017-0589-4 10.1002/(SICI)1097-0258(19971230)16:24<2773::AID-SIM761>3.0.CO;2-Q 10.4093/dmj.2016.40.4.318 10.1016/j.semnephrol.2013.07.007 10.1210/jc.2014-1724 10.2337/dc12-1235 10.5604/16652681.1212431 10.1016/j.clinbiochem.2012.01.012 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 BioMed Central Ltd. The Author(s) 2018 |
Copyright_xml | – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: The Author(s) 2018 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1186/s13098-018-0376-8 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1758-5996 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_cfba2369b19b4d9e8f488e2d796f1ef8 PMC6173832 A557125116 30323862 10_1186_s13098_018_0376_8 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 53G 5VS 7X7 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACPRK ACUHS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION DIK E3Z EBD EBLON EBS EJD ESX FYUFA GROUPED_DOAJ GX1 H13 HMCUK HYE IAO IEA IHR IHW ITC KQ8 M48 M~E O5R O5S OK1 P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RBZ RNS ROL RPM RSV SMD SOJ TUS U2A UKHRP -5E -5G -A0 -BR 2VQ 3V. ACRMQ ADINQ AHSBF C24 IPNFZ NPM RIG PMFND 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c629t-17a2fb2ff1a309a7be138914d35e028b0f57a78bb0988ab8c4a51b2fb8d98e853 |
IEDL.DBID | M48 |
ISSN | 1758-5996 |
IngestDate | Wed Aug 27 01:21:42 EDT 2025 Thu Aug 21 18:19:08 EDT 2025 Tue Aug 19 13:08:10 EDT 2025 Tue Jun 17 21:12:23 EDT 2025 Tue Jun 10 20:44:00 EDT 2025 Thu May 22 21:14:25 EDT 2025 Wed Feb 19 02:42:28 EST 2025 Thu Apr 24 23:00:53 EDT 2025 Tue Jul 01 01:26:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c629t-17a2fb2ff1a309a7be138914d35e028b0f57a78bb0988ab8c4a51b2fb8d98e853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9533-086X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13098-018-0376-8 |
PMID | 30323862 |
PQID | 2120742955 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cfba2369b19b4d9e8f488e2d796f1ef8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6173832 proquest_miscellaneous_2120742955 gale_infotracmisc_A557125116 gale_infotracacademiconefile_A557125116 gale_healthsolutions_A557125116 pubmed_primary_30323862 crossref_citationtrail_10_1186_s13098_018_0376_8 crossref_primary_10_1186_s13098_018_0376_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-05 |
PublicationDateYYYYMMDD | 2018-10-05 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Diabetology and metabolic syndrome |
PublicationTitleAlternate | Diabetol Metab Syndr |
PublicationYear | 2018 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | AC Vasques (376_CR8) 2011; 93 DR Matthews (376_CR11) 1985; 28 LE Simental-Mendía (376_CR6) 2008; 6 R Sánchez-Villanueva (376_CR25) 2013; 33 K Kodama (376_CR27) 2013; 36 CE Kelley (376_CR2) 2014; 20 C Oddoze (376_CR5) 2012; 45 AJ Bakker (376_CR10) 1999; 22 P Srisawasdi (376_CR12) 2011; 136 JB Møller (376_CR28) 2014; 99 MK Kim (376_CR15) 2017; 16 SB Lee (376_CR14) 2018; 17 B Geloneze (376_CR23) 2009; 53 YS Song (376_CR24) 2016; 40 376_CR4 KB Won (376_CR13) 2018; 97 JC Levy (376_CR22) 1998; 21 H Kramer (376_CR26) 2013; 33 S Płaczkowska (376_CR16) 2018; 9 HC Houwelingen van (376_CR19) 1997; 16 J Yin (376_CR17) 2013; 5 LE Simental-Mendía (376_CR9) 2016; 15 A Ceriello (376_CR1) 2004; 24 TM Wallace (376_CR20) 2004; 27 ES Kang (376_CR21) 2005; 54 F Abbasi (376_CR7) 2011; 60 M Pansuria (376_CR18) 2012; 1 D Macut (376_CR3) 2017; 177 9839117 - Diabetes Care. 1998 Dec;21(12):2191-2 29741109 - Scand J Clin Lab Invest. 2018 Jul;78(4):325-332 15690315 - Metabolism. 2005 Feb;54(2):206-11 21685028 - Am J Clin Pathol. 2011 Jul;136(1):20-9 28830471 - Cardiovasc Diabetol. 2017 Aug 23;16(1):108 24228769 - Diabetol Metab Syndr. 2013 Nov 15;5(1):71 24119851 - Semin Nephrol. 2013 Sep;33(5):457-67 22285385 - Clin Biochem. 2012 Apr;45(6):464-9 19466221 - Arq Bras Endocrinol Metabol. 2009 Mar;53(2):281-7 21665314 - Diabetes Res Clin Pract. 2011 Sep;93(3):e98-e100 25339805 - World J Gastroenterol. 2014 Oct 21;20(39):14172-84 9483713 - Stat Med. 1997 Dec 30;16(24):2773-84 27273908 - Diabetes Metab J. 2016 Aug;40(4):318-25 3899825 - Diabetologia. 1985 Jul;28(7):412-9 22202099 - Front Biosci (Schol Ed). 2012 Jan 01;4:916-31 29562908 - Cardiovasc Diabetol. 2018 Mar 21;17(1):41 21632070 - Metabolism. 2011 Dec;60(12):1673-6 23704681 - Diabetes Care. 2013 Jun;36(6):1789-96 27493110 - Ann Hepatol. 2016 Sep-Oct;15(5):715-20 25119313 - J Clin Endocrinol Metab. 2014 Nov;99(11):4273-80 10333950 - Diabetes Care. 1999 Feb;22(2):307-13 23364630 - Nefrologia. 2013 Jan 18;33(1):85-92 28694246 - Eur J Endocrinol. 2017 Sep;177(3):R145-R158 19067533 - Metab Syndr Relat Disord. 2008 Dec;6(4):299-304 14976002 - Arterioscler Thromb Vasc Biol. 2004 May;24(5):816-23 29794749 - Medicine (Baltimore). 2018 May;97(21):e10726 15161807 - Diabetes Care. 2004 Jun;27(6):1487-95 |
References_xml | – volume: 60 start-page: 1673 issue: 12 year: 2011 ident: 376_CR7 publication-title: Metabolism doi: 10.1016/j.metabol.2011.04.006 – volume: 97 start-page: e10726 issue: 21 year: 2018 ident: 376_CR13 publication-title: Medicine (Baltimore) doi: 10.1097/MD.0000000000010726 – volume: 177 start-page: R145 issue: 3 year: 2017 ident: 376_CR3 publication-title: Eur J Endocrinol doi: 10.1530/EJE-16-1063 – volume: 22 start-page: 307 issue: 2 year: 1999 ident: 376_CR10 publication-title: Diabetes Care doi: 10.2337/diacare.22.2.307 – volume: 17 start-page: 41 issue: 1 year: 2018 ident: 376_CR14 publication-title: Cardiovasc Diabetol doi: 10.1186/s12933-018-0692-1 – volume: 1 start-page: 916 issue: 4 year: 2012 ident: 376_CR18 publication-title: Front Biosci (Schol Ed) – volume: 6 start-page: 299 issue: 4 year: 2008 ident: 376_CR6 publication-title: Metab Syndr Relat Disord doi: 10.1089/met.2008.0034 – volume: 24 start-page: 816 issue: 5 year: 2004 ident: 376_CR1 publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.0000122852.22604.78 – volume: 93 start-page: e98 issue: 3 year: 2011 ident: 376_CR8 publication-title: Diabetes Res Clin Pract doi: 10.1016/j.diabres.2011.05.030 – volume: 9 start-page: 1 year: 2018 ident: 376_CR16 publication-title: Scand J Clin Lab Invest doi: 10.1080/00365513.2018.1469787 – volume: 53 start-page: 281 issue: 2 year: 2009 ident: 376_CR23 publication-title: Arq Bras Endocrinol Metabol doi: 10.1590/S0004-27302009000200020 – volume: 33 start-page: 85 issue: 1 year: 2013 ident: 376_CR25 publication-title: Nefrologia doi: 10.3265/nefrologia.pre2012.nov.11430 – volume: 21 start-page: 2191 issue: 12 year: 1998 ident: 376_CR22 publication-title: Diabetes Care doi: 10.2337/diacare.21.12.2191 – volume: 28 start-page: 412 issue: 7 year: 1985 ident: 376_CR11 publication-title: Diabetologia doi: 10.1007/BF00280883 – volume: 27 start-page: 1487 issue: 6 year: 2004 ident: 376_CR20 publication-title: Diabetes Care doi: 10.2337/diacare.27.6.1487 – volume: 136 start-page: 20 issue: 1 year: 2011 ident: 376_CR12 publication-title: Am J Clin Pathol doi: 10.1309/AJCPLHJBGG9L3ILS – volume: 5 start-page: 71 issue: 1 year: 2013 ident: 376_CR17 publication-title: Diabetol Metab Syndr doi: 10.1186/1758-5996-5-71 – volume: 20 start-page: 14172 issue: 39 year: 2014 ident: 376_CR2 publication-title: World J Gastroenterol doi: 10.3748/wjg.v20.i39.14172 – ident: 376_CR4 – volume: 54 start-page: 206 issue: 2 year: 2005 ident: 376_CR21 publication-title: Metabolism doi: 10.1016/j.metabol.2004.08.014 – volume: 16 start-page: 108 issue: 1 year: 2017 ident: 376_CR15 publication-title: Cardiovasc Diabetol doi: 10.1186/s12933-017-0589-4 – volume: 16 start-page: 2773 issue: 24 year: 1997 ident: 376_CR19 publication-title: Stat Med doi: 10.1002/(SICI)1097-0258(19971230)16:24<2773::AID-SIM761>3.0.CO;2-Q – volume: 40 start-page: 318 issue: 4 year: 2016 ident: 376_CR24 publication-title: Diabetes Metab J doi: 10.4093/dmj.2016.40.4.318 – volume: 33 start-page: 457 issue: 5 year: 2013 ident: 376_CR26 publication-title: Semin Nephrol doi: 10.1016/j.semnephrol.2013.07.007 – volume: 99 start-page: 4273 issue: 11 year: 2014 ident: 376_CR28 publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2014-1724 – volume: 36 start-page: 1789 issue: 6 year: 2013 ident: 376_CR27 publication-title: Diabetes Care doi: 10.2337/dc12-1235 – volume: 15 start-page: 715 issue: 5 year: 2016 ident: 376_CR9 publication-title: Ann Hepatol doi: 10.5604/16652681.1212431 – volume: 45 start-page: 464 issue: 6 year: 2012 ident: 376_CR5 publication-title: Clin Biochem doi: 10.1016/j.clinbiochem.2012.01.012 – reference: 23364630 - Nefrologia. 2013 Jan 18;33(1):85-92 – reference: 15690315 - Metabolism. 2005 Feb;54(2):206-11 – reference: 9839117 - Diabetes Care. 1998 Dec;21(12):2191-2 – reference: 19466221 - Arq Bras Endocrinol Metabol. 2009 Mar;53(2):281-7 – reference: 9483713 - Stat Med. 1997 Dec 30;16(24):2773-84 – reference: 29741109 - Scand J Clin Lab Invest. 2018 Jul;78(4):325-332 – reference: 28694246 - Eur J Endocrinol. 2017 Sep;177(3):R145-R158 – reference: 23704681 - Diabetes Care. 2013 Jun;36(6):1789-96 – reference: 27273908 - Diabetes Metab J. 2016 Aug;40(4):318-25 – reference: 21685028 - Am J Clin Pathol. 2011 Jul;136(1):20-9 – reference: 10333950 - Diabetes Care. 1999 Feb;22(2):307-13 – reference: 21632070 - Metabolism. 2011 Dec;60(12):1673-6 – reference: 22202099 - Front Biosci (Schol Ed). 2012 Jan 01;4:916-31 – reference: 19067533 - Metab Syndr Relat Disord. 2008 Dec;6(4):299-304 – reference: 27493110 - Ann Hepatol. 2016 Sep-Oct;15(5):715-20 – reference: 29794749 - Medicine (Baltimore). 2018 May;97(21):e10726 – reference: 24119851 - Semin Nephrol. 2013 Sep;33(5):457-67 – reference: 25119313 - J Clin Endocrinol Metab. 2014 Nov;99(11):4273-80 – reference: 3899825 - Diabetologia. 1985 Jul;28(7):412-9 – reference: 22285385 - Clin Biochem. 2012 Apr;45(6):464-9 – reference: 21665314 - Diabetes Res Clin Pract. 2011 Sep;93(3):e98-e100 – reference: 24228769 - Diabetol Metab Syndr. 2013 Nov 15;5(1):71 – reference: 25339805 - World J Gastroenterol. 2014 Oct 21;20(39):14172-84 – reference: 14976002 - Arterioscler Thromb Vasc Biol. 2004 May;24(5):816-23 – reference: 28830471 - Cardiovasc Diabetol. 2017 Aug 23;16(1):108 – reference: 15161807 - Diabetes Care. 2004 Jun;27(6):1487-95 – reference: 29562908 - Cardiovasc Diabetol. 2018 Mar 21;17(1):41 |
SSID | ssj0067574 |
Score | 2.5694273 |
Snippet | Metabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests insulin résistance is... Background Metabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests insulin... Abstract Background Metabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 74 |
SubjectTerms | Cardiovascular diseases Complications and side effects Diagnosis Metabolic syndrome X Risk factors Triglycerides |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixNBEG5kD-JFfDu6aguCDxg209NPb6u4LkI8ZWFvTT9xIUwWNznsyb9uVfckZhT04i2kq2GmHl1fTdeDkFe-j0F03rV9TL7lLINJuRRbk6PJxnBXZxHMv8rTM_7lXJzvjfrCnLDaHrgy7ihk71gvje-M59EknUHlEovKyNylXMp8wedtg6l6BgMKVny8w-y0PLqCkxpLyTosJ1Oy1RMvVJr1_3kk7_mkab7kngM6uUNuj8iRHtcnvktupOEeuTkf78bvkx_ztAaJLi8CDcsN9j8Ar0RXmWL2OB3n6rynv9p749oCgvPldQDamLbp67R0UKRvFtef68-3FJDtbxvHHHYK0ToiUFCdB-Ts5NPi42k7jldog2Rm3XbKsexZzp0D7jjlU7m05LEXCVCHn2WhnNLeA-u08zpwB1KFLToancDNPyQHw2pIjwkVMSgITHhQTnIzY96HiNDSCM9in3lDZlt22zD2HscRGEtbYhAtbZWQBQlZlJDVDXm323JZG2_8jfgDynBHiD2zyx-gSXbUJPsvTWrIC9QAWwtQd5Zvj4VQCAM72ZDXhQJtHx4_uLGEAZiAXbQmlIcTSrDZMFl-udUyi0uY6Dak1ebKApLArxVGiIY8qlq3eytAGwCwJGuImujj5LWnK8PFt9IyHHBqD2f3k__Bp6fkFkNLKlkUh-Rg_X2TngEyW_vnxQh_AmOvOJQ priority: 102 providerName: Directory of Open Access Journals |
Title | Metabolic clustering of risk factors: evaluation of Triglyceride-glucose index (TyG index) for evaluation of insulin resistance |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30323862 https://www.proquest.com/docview/2120742955 https://pubmed.ncbi.nlm.nih.gov/PMC6173832 https://doaj.org/article/cfba2369b19b4d9e8f488e2d796f1ef8 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9QwEA_3APGL-LZ6rhEEQahu06ZJBJE7ufMQ9hC5hf0W8tSD0tV9gPffO5N216se4pd-aKalycxkfmkmvyHkhS2944U1eemDzSsWwaVM8LmKXkWlKtPVIpic1afT6tOMz3bIprxVP4DLa5d2WE9qumhe__xx-R4c_l1yeFm_WcI8jAfFCjwsJupc7pJ9CEwC_XRSbTcVABonUmYImDJHVpJ-k_PaVwzCVGLz_3vOvhK0hgmVVyLUyW1yq4eW9LCzhTtkJ7R3yY1Jv3l-jywnYQUqby4cdc0aCRIgbNF5pJheTvvCO2_pb_5vbDuH1Xtz6UDWh01-O00UixTg7h_CfWI7hSU8wlKwp_tkenJ8_uE072su5K5mapUXwrBoWYyFgRExwoa0k1n5kgeAInYcuTBCWgvDJY2VrjKganhEeiUDxP4HZK-dt-ERodw7AauVyglTV2rMrHUe8abilvkyVhkZb4ZYu56QHOtiNDotTGStO61o0IpGrWiZkVfbR753bBz_Ej5CvW0FkUg73ZgvvureL7WL1rCyVrZQtvIqyAgzWmBeqDoWIcJLnqHWdXcqdTsd6EPOBWLDos7IyySBJgqf70x_rgEGAam1BpIHA0lwZDdofr6xLI1NmP3Whvl6qQFe4C8MxXlGHnaWtu0VQBBAXTXLiBjY4KDbw5b24lviEQfwWsKE_vi_O_CE3GToIil_4oDsrRbr8BQw2cqOyK6YiRHZPzo--_xllP5swPXjrBglH_wFkS44pg |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+clustering+of+risk+factors%3A+evaluation+of+Triglyceride-glucose+index+for+evaluation+of+insulin+resistance&rft.jtitle=Diabetology+and+metabolic+syndrome&rft.au=Khan%2C+Sikandar+Hayat&rft.au=Sobia%2C+Farah&rft.au=Niazi%2C+Najmusaqib+Khan&rft.au=Manzoor%2C+Syed+Mohsin&rft.date=2018-10-05&rft.pub=BioMed+Central+Ltd&rft.issn=1758-5996&rft.eissn=1758-5996&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1186%2Fs13098-018-0376-8&rft.externalDocID=A557125116 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-5996&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-5996&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-5996&client=summon |