Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1
The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for tr...
Saved in:
Published in | Neural regeneration research Vol. 16; no. 3; pp. 448 - 455 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Mumbai
Wolters Kluwer India Pvt. Ltd
01.03.2021
Medknow Publications and Media Pvt. Ltd Medknow Publications & Media Pvt. Ltd Cellular and Molecular Signaling New York, New York, NY, USA Wolters Kluwer - Medknow Wolters Kluwer Medknow Publications |
Subjects | |
Online Access | Get full text |
ISSN | 1673-5374 1876-7958 |
DOI | 10.4103/1673-5374.291382 |
Cover
Loading…
Abstract | The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression. Furthermore, it is believed by the year 2030, the services required to treat cognitive disorders in the United States alone will exceed $2 trillion annually. Mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), the mechanistic target of rapamycin, and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease. These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster, sometimes in conjunction with trophic factors, enhanced neuronal survival, reduction in toxic intracellular accumulations, and mitochondrial stability. Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system. However, mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1, mechanistic target of rapamycin, and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment, warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders. |
---|---|
AbstractList | The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression. Furthermore, it is believed by the year 2030, the services required to treat cognitive disorders in the United States alone will exceed $2 trillion annually. Mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), the mechanistic target of rapamycin, and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease. These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster, sometimes in conjunction with trophic factors, enhanced neuronal survival, reduction in toxic intracellular accumulations, and mitochondrial stability. Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system. However, mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1, mechanistic target of rapamycin, and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment, warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders.The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression. Furthermore, it is believed by the year 2030, the services required to treat cognitive disorders in the United States alone will exceed $2 trillion annually. Mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), the mechanistic target of rapamycin, and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease. These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster, sometimes in conjunction with trophic factors, enhanced neuronal survival, reduction in toxic intracellular accumulations, and mitochondrial stability. Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system. However, mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1, mechanistic target of rapamycin, and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment, warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders. The global increase in lifespan noted not only in developed nations, but also in largedeveloping countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression. Furthermore, it is believed by the year 2030, the services required to treat cognitive disorders in the United States alone will exceed $2 trillion annually. Mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), the mechanistic target of rapamycin, and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease. These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster, sometimes in conjunction with trophic factors, enhanced neuronal survival, reduction in toxic intracellular accumulations, and mitochondrial stability. Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system. However, mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1, mechanistic target of rapamycin, and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment, warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders. The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression. Furthermore, it is believed by the year 2030, the services required to treat cognitive disorders in the United States alone will exceed $2 trillion annually. Mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), the mechanistic target of rapamycin, and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease. These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster, sometimes in conjunction with trophic factors, enhanced neuronal survival, reduction in toxic intracellular accumulations, and mitochondrial stability. Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system. However, mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1, mechanistic target of rapamycin, and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment, warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders. The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression. Furthermore, it is believed by the year 2030, the services required to treat cognitive disorders in the United States alone will exceed $2 trillion annually. Mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1 ( Saccharomyces cerevisiae ), the mechanistic target of rapamycin, and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease. These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster, sometimes in conjunction with trophic factors, enhanced neuronal survival, reduction in toxic intracellular accumulations, and mitochondrial stability. Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system. However, mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1, mechanistic target of rapamycin, and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment, warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders. |
Audience | Academic |
Author | Maiese, Kenneth |
AuthorAffiliation | Cellular and Molecular Signaling New York, New York, NY, USA |
AuthorAffiliation_xml | – name: Cellular and Molecular Signaling New York, New York, NY, USA |
Author_xml | – sequence: 1 givenname: Kenneth surname: Maiese fullname: Maiese, Kenneth organization: Cellular and Molecular Signaling New York, New York, NY |
BookMark | eNp9kk1r3DAQhkVJaZJt7z0aeik03sqSrI8eAmlI2oXAQrp3Icuyo41XSiW72-TXR96P0g2l6CAxmveRZuY9BUfOOwPA-wJOSQHx54IynJeYkSkSBeboFTgpOKM5EyU_Suf99TE4jXEJYckFwm_AMUaCl4SSE3C-UKE1vXVt1t-ZTPtgMt9kzgzB16Y1zgTVW---ZNf-9_wsWy3mt2eZcnX2Y3a7KN6C143qonm32ydgcX21uPye38y_zS4vbnJNkXA5pek5zbHiDSMGYwFhUVGtBa4qjMaI4jXlmJiyoRhCwREipKKCaYKhxhMw22Jrr5byIdiVCo_SKys3AR9aqUJvdWck0boUDGFWwYRDVNW6KaoK1XWiMTKyzresh6FamVob1wfVHUAPb5y9k63_JZkQFCKcAJ-2gLVyjXKtXPohuFS9fGrj8ik-LqVBEKX5QMhS9sfdc8H_HEzs5cpGbbpOOeOHKFOdVHAhOE2pH16k_iGjMo0MFWQD3GW1KpVrXePTL_UIlRcUU8YxS7-cgOk_stKqzcrq5KLGpviBgG4FOvgYg2mktv1m9EloO1lAOVpOjp6So6fk1nJJCF8I9638j-TrroO-602I992wNkGmnt87vz7Q5X_pJCFc7v2KnwFFbOhN |
CitedBy_id | crossref_primary_10_5497_wjp_v11_i1_1 crossref_primary_10_1016_j_jchemneu_2021_102012 crossref_primary_10_3390_biomedicines12040855 crossref_primary_10_2174_156720261905221227114624 crossref_primary_10_2174_1567202620999230928124725 crossref_primary_10_1016_j_arr_2023_102174 crossref_primary_10_2174_1567202621999240621122700 crossref_primary_10_3390_cells12121607 crossref_primary_10_3390_antiox10091467 crossref_primary_10_52586_4971 crossref_primary_10_1016_j_lfs_2022_121280 crossref_primary_10_3390_ijms252312621 crossref_primary_10_2174_1567202619666220729093449 crossref_primary_10_2174_1567202620999231027155308 crossref_primary_10_1038_s41598_022_20563_3 crossref_primary_10_2174_1567202620666230706160056 crossref_primary_10_31083_JIN25665 crossref_primary_10_1016_j_chemosphere_2024_142723 crossref_primary_10_1016_j_jns_2023_120753 crossref_primary_10_3389_fnagi_2021_738686 crossref_primary_10_1016_j_biopha_2023_114573 crossref_primary_10_3233_JAD_220110 crossref_primary_10_1007_s11064_021_03364_4 crossref_primary_10_3389_fnmol_2022_984292 crossref_primary_10_3389_fmed_2022_973856 crossref_primary_10_3892_ol_2021_12956 crossref_primary_10_3390_cells10051236 crossref_primary_10_3389_fphys_2023_1290732 crossref_primary_10_4236_jbm_2023_112015 crossref_primary_10_1016_j_freeradbiomed_2021_04_025 crossref_primary_10_1007_s10787_023_01305_x crossref_primary_10_1590_0001_3765202220210938 crossref_primary_10_2174_1567202620666230721122957 crossref_primary_10_3389_fphys_2021_733696 crossref_primary_10_3390_medicina60111805 crossref_primary_10_1111_jnc_15475 crossref_primary_10_2174_1567202619666220602125806 crossref_primary_10_3389_fgene_2021_688526 crossref_primary_10_1152_physrev_00017_2021 crossref_primary_10_1016_j_phrs_2021_106014 crossref_primary_10_1007_s11064_024_04281_y crossref_primary_10_1055_s_0042_1758157 crossref_primary_10_1016_j_ecoenv_2023_115356 crossref_primary_10_3389_fimmu_2023_1273570 crossref_primary_10_2174_1567202620666230510150337 crossref_primary_10_3390_cells12222595 crossref_primary_10_15252_msb_202311801 crossref_primary_10_3390_bioengineering10070871 crossref_primary_10_1016_j_genrep_2024_102041 crossref_primary_10_2174_1567202621999240118155618 crossref_primary_10_1097_CM9_0000000000001893 crossref_primary_10_3390_biom11071002 crossref_primary_10_3390_biom13050816 |
Cites_doi | 10.1016/j.yexmp.2013.08.003 10.1016/j.mad.2018.11.002 10.1007/s10787-018-0476-y 10.3389/fnmol.2019.00299 10.1007/s12035-019-01818-z 10.1186/s13041-014-0056-z 10.1016/j.cellsig.2010.04.009 10.1007/s10863-016-9645-0 10.1016/j.cbi.2015.07.013 10.1371/journal.pone.0179388 10.1089/ars.2019.7959 10.1038/srep41082 10.1007/s00109-019-01851-4 10.1371/journal.pgen.1007369 10.1038/sj.bjp.0707161 10.1007/s10495-019-01559-3 10.1007/s12017-019-08524-y 10.1186/s13578-020-00416-0 10.1186/s40478-016-0324-5 10.1111/jnc.14969 10.1186/s12964-019-0498-0 10.1093/nar/gkm703 10.3390/antiox7100147 10.1155/2015/569392 10.1073/pnas.1807206115 10.1111/j.1365-2184.2009.00617.x 10.2174/156720210791184899 10.1523/JNEUROSCI.3882-16.2017 10.1530/JME-19-0080 10.1016/j.cellsig.2011.08.010 10.1111/bpa.12777 10.1016/j.bbrc.2012.01.122 10.1186/s12199-018-0757-5 10.1111/jnc.15002 10.1371/journal.pgen.1006965 10.1021/acs.molpharmaceut.9b01211 10.3390/cells8080928 10.2174/156720212803530618 10.3233/JAD-160149 10.2174/1567202614666170718092010 10.1016/j.intimp.2020.106330 10.1111/bcp.12804 10.1016/j.bbagen.2013.05.034 10.2174/1871527316666170124164306 10.1186/s40035-019-0145-0 10.1186/s12883-016-0765-2 10.1001/archinternmed.2011.2230 10.4103/1673-5374.253507 10.1007/978-981-15-0602-4_13 10.4103/1673-5374.249224 10.1021/acschemneuro.8b00531 10.1016/j.mce.2010.02.037 10.4142/jvs.2017.18.1.11 10.1007/s11010-018-3476-8 10.1530/ERC-19-0094 10.1016/j.cub.2006.08.001 10.1007/s12035-017-0524-4 10.1007/s13311-019-00805-5 10.1097/WNR.0000000000001202 10.1007/978-981-13-1426-1_23 10.1007/s10815-019-01555-1 10.2174/156720211795495402 10.1002/1873-3468.12902 10.3390/cells9010184 10.1016/j.phrs.2019.104538 10.3389/fnagi.2018.00376 10.1371/journal.pone.0045456 10.1038/s41598-019-39828-5 10.1042/BSR20160174 10.1007/s00232-019-00089-y 10.1152/ajpregu.00221.2018 10.1371/journal.pone.0208543 10.1111/acel.12801 10.1111/jphp.13157 10.1038/s41598-020-61883-6 10.1074/jbc.M114.567321 10.1080/17512433.2020.1698288 10.1371/journal.pone.0132768 10.1042/BSR20180119 10.18632/aging.101564 10.1016/j.neulet.2015.10.001 10.3390/cancers11010090 10.2174/156720211796558069 10.3390/ijms20051249 10.1016/j.neuron.2014.12.019 10.1080/15548627.2015.1100356 10.1038/s41598-020-60682-3 10.1038/364412a0 10.1038/sj.onc.1205230 10.1002/jnr.22725 10.1038/emm.2014.52 10.1073/pnas.0502738102 10.1155/2017/4782820 10.1007/s12539-019-00347-6 10.1080/10717544.2018.1556361 10.1016/j.pharmthera.2020.107514 10.1093/hmg/dds040 10.18632/aging.100440 10.1093/abbs/gmz156 10.1042/BST20170121 10.1007/s00018-019-03297-w 10.1523/JNEUROSCI.2444-14.2015 10.1007/s11011-019-00502-4 10.1007/s10571-020-00801-w 10.1074/jbc.M110.163667 10.3389/fnmol.2020.00028 10.1002/stem.1641 10.7150/ijms.41515 10.3390/nu11061195 10.1038/s41598-018-37215-0 10.1038/aps.2017.210 10.1074/jbc.M116.744730 10.1007/978-3-030-35582-1_2 10.1007/s10620-019-06019-1 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 Medknow Publications and Media Pvt. Ltd. 2021. This article is published under (http://creativecommons.org/licenses/by-nc-sa/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. Copyright: © 2021 Neural Regeneration Research 2021 |
Copyright_xml | – notice: COPYRIGHT 2021 Medknow Publications and Media Pvt. Ltd. – notice: 2021. This article is published under (http://creativecommons.org/licenses/by-nc-sa/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. – notice: Copyright: © 2021 Neural Regeneration Research 2021 |
DBID | AAYXX CITATION K9. 7X8 2B. 4A8 92I 93N PSX TCJ 5PM DOA |
DOI | 10.4103/1673-5374.291382 |
DatabaseName | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1876-7958 |
EndPage | 455 |
ExternalDocumentID | oai_doaj_org_article_4cc597237b034e26adcf1bb2dd69774c PMC7996023 zgsjzsyj_e202103007 A636783702 10_4103_1673_5374_291382 10.4103/1673-5374.291382_448_Targetin |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: This work was supported by American Diabetes Association, American Heart Association, National Institutes of Health - National Institute of Environmental Health Sciences, National Institutes of Health - National Institute on Aging, National Institutes of Health - National Institute of Neurological D |
GroupedDBID | --- -SE -S~ 0R~ 53G 5RS 5VR 5VS 7X7 8FI 92F 92I ACGFS ADBBV ADJBI AENEX AFKRA ALIPV ALMA_UNASSIGNED_HOLDINGS AZQEC BAWUL BENPR CAJEE CCEZO CHBEP CIEJG CS3 CW9 DIK DU5 FA0 FDB GROUPED_DOAJ GX1 H13 IAO IEA IHR ITC KQ8 M2M M48 M5~ NQ- O9- OK1 OVD PGMZT PIMPY Q-- RMW RPM TCJ TEORI TGQ U1G U5O W3E WFFXF --K 123 1B1 4.4 8FJ AAEDT AAKAS AALRI AAXUO AAYXX ABUWG ABWVN ACRPL ADMUD ADNMO ADRAZ ADZCM AFUIB CCPQU CITATION DWQXO EBS EJD EMOBN EO8 FYUFA GNUQQ HMCUK HYE HZ~ IHE IPNFZ M41 PHGZM PHGZT PSYQQ RIG ROL RPZ UKHRP K9. 7X8 2B. 4A8 93N PMFND PSX 5PM |
ID | FETCH-LOGICAL-c629n-66854c83a8f74e339001b6cc93bb324e33a8d6834e5f6300982244b697c430c3 |
IEDL.DBID | M48 |
ISSN | 1673-5374 |
IngestDate | Wed Aug 27 01:22:51 EDT 2025 Thu Aug 21 18:34:21 EDT 2025 Thu May 29 04:06:14 EDT 2025 Fri Jul 11 02:01:47 EDT 2025 Mon Jul 14 08:37:20 EDT 2025 Tue Jun 17 20:48:05 EDT 2025 Tue Jun 10 20:43:18 EDT 2025 Tue Jul 01 03:20:23 EDT 2025 Thu Apr 24 23:07:27 EDT 2025 Tue Jun 17 22:51:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | FoxO autophagy silent mating type information regulation 2 homolog 1 apoptosis forkhead mechanistic target of rapamycin Alzheimer's disease erythropoietin |
Language | English |
License | http://creativecommons.org/licenses/by-nc-sa/4.0 This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c629n-66854c83a8f74e339001b6cc93bb324e33a8d6834e5f6300982244b697c430c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Author contributions: KM conceptualized and produced this work, and approved the final manuscript. |
ORCID | 0000-0002-5049-9116 |
OpenAccessLink | https://doaj.org/article/4cc597237b034e26adcf1bb2dd69774c |
PMID | 32985464 |
PQID | 2532921407 |
PQPubID | 4671210 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4cc597237b034e26adcf1bb2dd69774c pubmedcentral_primary_oai_pubmedcentral_nih_gov_7996023 wanfang_journals_zgsjzsyj_e202103007 proquest_miscellaneous_2446989986 proquest_journals_2532921407 gale_infotracmisc_A636783702 gale_infotracacademiconefile_A636783702 crossref_citationtrail_10_4103_1673_5374_291382 crossref_primary_10_4103_1673_5374_291382 wolterskluwer_medknow_10_4103_1673-5374_291382_448_Targetin |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210301 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210301 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Mumbai |
PublicationPlace_xml | – name: Mumbai – name: India |
PublicationTitle | Neural regeneration research |
PublicationTitle_FL | Neural Regeneration Research |
PublicationYear | 2021 |
Publisher | Wolters Kluwer India Pvt. Ltd Medknow Publications and Media Pvt. Ltd Medknow Publications & Media Pvt. Ltd Cellular and Molecular Signaling New York, New York, NY, USA Wolters Kluwer - Medknow Wolters Kluwer Medknow Publications |
Publisher_xml | – name: Wolters Kluwer India Pvt. Ltd – name: Medknow Publications and Media Pvt. Ltd – name: Medknow Publications & Media Pvt. Ltd – name: Cellular and Molecular Signaling New York, New York, NY, USA – name: Wolters Kluwer - Medknow – name: Wolters Kluwer Medknow Publications |
References | key-10.4103/1673-5374.291382-71 key-10.4103/1673-5374.291382-70 key-10.4103/1673-5374.291382-77 key-10.4103/1673-5374.291382-76 key-10.4103/1673-5374.291382-79 key-10.4103/1673-5374.291382-78 key-10.4103/1673-5374.291382-73 key-10.4103/1673-5374.291382-72 key-10.4103/1673-5374.291382-75 key-10.4103/1673-5374.291382-74 key-10.4103/1673-5374.291382-80 key-10.4103/1673-5374.291382-82 key-10.4103/1673-5374.291382-81 key-10.4103/1673-5374.291382-119 key-10.4103/1673-5374.291382-116 key-10.4103/1673-5374.291382-115 key-10.4103/1673-5374.291382-118 key-10.4103/1673-5374.291382-117 key-10.4103/1673-5374.291382-122 key-10.4103/1673-5374.291382-121 key-10.4103/1673-5374.291382-120 key-10.4103/1673-5374.291382-88 key-10.4103/1673-5374.291382-87 key-10.4103/1673-5374.291382-89 key-10.4103/1673-5374.291382-84 key-10.4103/1673-5374.291382-83 key-10.4103/1673-5374.291382-86 key-10.4103/1673-5374.291382-85 key-10.4103/1673-5374.291382-91 key-10.4103/1673-5374.291382-90 key-10.4103/1673-5374.291382-93 key-10.4103/1673-5374.291382-92 key-10.4103/1673-5374.291382-19 key-10.4103/1673-5374.291382-18 key-10.4103/1673-5374.291382-15 key-10.4103/1673-5374.291382-14 key-10.4103/1673-5374.291382-17 key-10.4103/1673-5374.291382-16 key-10.4103/1673-5374.291382-11 key-10.4103/1673-5374.291382-99 key-10.4103/1673-5374.291382-10 key-10.4103/1673-5374.291382-98 key-10.4103/1673-5374.291382-13 key-10.4103/1673-5374.291382-12 key-10.4103/1673-5374.291382-95 key-10.4103/1673-5374.291382-94 key-10.4103/1673-5374.291382-97 key-10.4103/1673-5374.291382-96 key-10.4103/1673-5374.291382-29 key-10.4103/1673-5374.291382-26 key-10.4103/1673-5374.291382-25 key-10.4103/1673-5374.291382-28 key-10.4103/1673-5374.291382-27 key-10.4103/1673-5374.291382-22 key-10.4103/1673-5374.291382-21 key-10.4103/1673-5374.291382-24 key-10.4103/1673-5374.291382-23 key-10.4103/1673-5374.291382-20 key-10.4103/1673-5374.291382-37 key-10.4103/1673-5374.291382-36 key-10.4103/1673-5374.291382-39 key-10.4103/1673-5374.291382-38 key-10.4103/1673-5374.291382-5 key-10.4103/1673-5374.291382-33 key-10.4103/1673-5374.291382-6 key-10.4103/1673-5374.291382-32 key-10.4103/1673-5374.291382-7 key-10.4103/1673-5374.291382-35 key-10.4103/1673-5374.291382-8 key-10.4103/1673-5374.291382-34 key-10.4103/1673-5374.291382-9 key-10.4103/1673-5374.291382-31 key-10.4103/1673-5374.291382-30 key-10.4103/1673-5374.291382-1 key-10.4103/1673-5374.291382-2 key-10.4103/1673-5374.291382-3 key-10.4103/1673-5374.291382-4 key-10.4103/1673-5374.291382-48 key-10.4103/1673-5374.291382-47 key-10.4103/1673-5374.291382-49 key-10.4103/1673-5374.291382-44 key-10.4103/1673-5374.291382-43 key-10.4103/1673-5374.291382-46 key-10.4103/1673-5374.291382-45 key-10.4103/1673-5374.291382-40 key-10.4103/1673-5374.291382-42 key-10.4103/1673-5374.291382-41 key-10.4103/1673-5374.291382-109 key-10.4103/1673-5374.291382-108 key-10.4103/1673-5374.291382-105 key-10.4103/1673-5374.291382-104 key-10.4103/1673-5374.291382-107 key-10.4103/1673-5374.291382-106 key-10.4103/1673-5374.291382-112 key-10.4103/1673-5374.291382-111 key-10.4103/1673-5374.291382-114 key-10.4103/1673-5374.291382-113 key-10.4103/1673-5374.291382-59 key-10.4103/1673-5374.291382-58 key-10.4103/1673-5374.291382-110 key-10.4103/1673-5374.291382-55 key-10.4103/1673-5374.291382-54 key-10.4103/1673-5374.291382-57 key-10.4103/1673-5374.291382-56 key-10.4103/1673-5374.291382-51 key-10.4103/1673-5374.291382-50 key-10.4103/1673-5374.291382-53 key-10.4103/1673-5374.291382-52 key-10.4103/1673-5374.291382-60 key-10.4103/1673-5374.291382-101 key-10.4103/1673-5374.291382-100 key-10.4103/1673-5374.291382-103 key-10.4103/1673-5374.291382-102 key-10.4103/1673-5374.291382-69 key-10.4103/1673-5374.291382-66 key-10.4103/1673-5374.291382-65 key-10.4103/1673-5374.291382-68 key-10.4103/1673-5374.291382-67 key-10.4103/1673-5374.291382-62 key-10.4103/1673-5374.291382-61 key-10.4103/1673-5374.291382-64 key-10.4103/1673-5374.291382-63 |
References_xml | – ident: key-10.4103/1673-5374.291382-72 doi: 10.1016/j.yexmp.2013.08.003 – ident: key-10.4103/1673-5374.291382-9 doi: 10.1016/j.mad.2018.11.002 – ident: key-10.4103/1673-5374.291382-10 – ident: key-10.4103/1673-5374.291382-76 doi: 10.1007/s10787-018-0476-y – ident: key-10.4103/1673-5374.291382-28 doi: 10.3389/fnmol.2019.00299 – ident: key-10.4103/1673-5374.291382-26 doi: 10.1007/s12035-019-01818-z – ident: key-10.4103/1673-5374.291382-30 doi: 10.1186/s13041-014-0056-z – ident: key-10.4103/1673-5374.291382-84 doi: 10.1016/j.cellsig.2010.04.009 – ident: key-10.4103/1673-5374.291382-87 doi: 10.1007/s10863-016-9645-0 – ident: key-10.4103/1673-5374.291382-48 doi: 10.1016/j.cbi.2015.07.013 – ident: key-10.4103/1673-5374.291382-104 doi: 10.1371/journal.pone.0179388 – ident: key-10.4103/1673-5374.291382-60 doi: 10.1089/ars.2019.7959 – ident: key-10.4103/1673-5374.291382-91 – ident: key-10.4103/1673-5374.291382-115 doi: 10.1038/srep41082 – ident: key-10.4103/1673-5374.291382-6 doi: 10.1007/s00109-019-01851-4 – ident: key-10.4103/1673-5374.291382-74 doi: 10.1371/journal.pgen.1007369 – ident: key-10.4103/1673-5374.291382-14 doi: 10.1038/sj.bjp.0707161 – ident: key-10.4103/1673-5374.291382-61 doi: 10.1007/s10495-019-01559-3 – ident: key-10.4103/1673-5374.291382-92 doi: 10.1007/s12017-019-08524-y – ident: key-10.4103/1673-5374.291382-42 – ident: key-10.4103/1673-5374.291382-110 doi: 10.1186/s13578-020-00416-0 – ident: key-10.4103/1673-5374.291382-90 doi: 10.1186/s40478-016-0324-5 – ident: key-10.4103/1673-5374.291382-79 doi: 10.1111/jnc.14969 – ident: key-10.4103/1673-5374.291382-66 doi: 10.1186/s12964-019-0498-0 – ident: key-10.4103/1673-5374.291382-97 doi: 10.1093/nar/gkm703 – ident: key-10.4103/1673-5374.291382-59 doi: 10.3390/antiox7100147 – ident: key-10.4103/1673-5374.291382-52 doi: 10.1155/2015/569392 – ident: key-10.4103/1673-5374.291382-44 doi: 10.1073/pnas.1807206115 – ident: key-10.4103/1673-5374.291382-2 doi: 10.1111/j.1365-2184.2009.00617.x – ident: key-10.4103/1673-5374.291382-35 doi: 10.2174/156720210791184899 – ident: key-10.4103/1673-5374.291382-1 doi: 10.1523/JNEUROSCI.3882-16.2017 – ident: key-10.4103/1673-5374.291382-65 doi: 10.1530/JME-19-0080 – ident: key-10.4103/1673-5374.291382-102 doi: 10.1016/j.cellsig.2011.08.010 – ident: key-10.4103/1673-5374.291382-113 doi: 10.1111/bpa.12777 – ident: key-10.4103/1673-5374.291382-34 doi: 10.1016/j.bbrc.2012.01.122 – ident: key-10.4103/1673-5374.291382-120 doi: 10.1186/s12199-018-0757-5 – ident: key-10.4103/1673-5374.291382-18 doi: 10.1111/jnc.15002 – ident: key-10.4103/1673-5374.291382-78 doi: 10.1371/journal.pgen.1006965 – ident: key-10.4103/1673-5374.291382-11 doi: 10.1021/acs.molpharmaceut.9b01211 – ident: key-10.4103/1673-5374.291382-40 doi: 10.3390/cells8080928 – ident: key-10.4103/1673-5374.291382-85 doi: 10.2174/156720212803530618 – ident: key-10.4103/1673-5374.291382-27 doi: 10.3233/JAD-160149 – ident: key-10.4103/1673-5374.291382-19 – ident: key-10.4103/1673-5374.291382-54 doi: 10.2174/1567202614666170718092010 – ident: key-10.4103/1673-5374.291382-32 doi: 10.1016/j.intimp.2020.106330 – ident: key-10.4103/1673-5374.291382-53 doi: 10.1111/bcp.12804 – ident: key-10.4103/1673-5374.291382-82 doi: 10.1016/j.bbagen.2013.05.034 – ident: key-10.4103/1673-5374.291382-118 doi: 10.2174/1871527316666170124164306 – ident: key-10.4103/1673-5374.291382-122 doi: 10.1186/s40035-019-0145-0 – ident: key-10.4103/1673-5374.291382-83 doi: 10.1186/s12883-016-0765-2 – ident: key-10.4103/1673-5374.291382-17 doi: 10.1001/archinternmed.2011.2230 – ident: key-10.4103/1673-5374.291382-88 doi: 10.4103/1673-5374.253507 – ident: key-10.4103/1673-5374.291382-117 doi: 10.1007/978-981-15-0602-4_13 – ident: key-10.4103/1673-5374.291382-56 doi: 10.4103/1673-5374.249224 – ident: key-10.4103/1673-5374.291382-103 doi: 10.1021/acschemneuro.8b00531 – ident: key-10.4103/1673-5374.291382-36 doi: 10.1016/j.mce.2010.02.037 – ident: key-10.4103/1673-5374.291382-67 doi: 10.4142/jvs.2017.18.1.11 – ident: key-10.4103/1673-5374.291382-116 doi: 10.1007/s11010-018-3476-8 – ident: key-10.4103/1673-5374.291382-3 doi: 10.1530/ERC-19-0094 – ident: key-10.4103/1673-5374.291382-31 doi: 10.1016/j.cub.2006.08.001 – ident: key-10.4103/1673-5374.291382-106 – ident: key-10.4103/1673-5374.291382-4 doi: 10.1007/s12035-017-0524-4 – ident: key-10.4103/1673-5374.291382-80 doi: 10.1007/s13311-019-00805-5 – ident: key-10.4103/1673-5374.291382-121 doi: 10.1097/WNR.0000000000001202 – ident: key-10.4103/1673-5374.291382-21 doi: 10.1007/978-981-13-1426-1_23 – ident: key-10.4103/1673-5374.291382-43 doi: 10.1007/s10815-019-01555-1 – ident: key-10.4103/1673-5374.291382-13 doi: 10.2174/156720211795495402 – ident: key-10.4103/1673-5374.291382-89 doi: 10.1002/1873-3468.12902 – ident: key-10.4103/1673-5374.291382-68 doi: 10.3390/cells9010184 – ident: key-10.4103/1673-5374.291382-119 doi: 10.1016/j.phrs.2019.104538 – ident: key-10.4103/1673-5374.291382-100 doi: 10.3389/fnagi.2018.00376 – ident: key-10.4103/1673-5374.291382-15 doi: 10.1371/journal.pone.0045456 – ident: key-10.4103/1673-5374.291382-7 doi: 10.1038/s41598-019-39828-5 – ident: key-10.4103/1673-5374.291382-105 doi: 10.1042/BSR20160174 – ident: key-10.4103/1673-5374.291382-20 doi: 10.1007/s00232-019-00089-y – ident: key-10.4103/1673-5374.291382-70 doi: 10.1152/ajpregu.00221.2018 – ident: key-10.4103/1673-5374.291382-62 doi: 10.1371/journal.pone.0208543 – ident: key-10.4103/1673-5374.291382-12 doi: 10.1111/acel.12801 – ident: key-10.4103/1673-5374.291382-22 doi: 10.1111/jphp.13157 – ident: key-10.4103/1673-5374.291382-71 doi: 10.1038/s41598-020-61883-6 – ident: key-10.4103/1673-5374.291382-114 doi: 10.1074/jbc.M114.567321 – ident: key-10.4103/1673-5374.291382-57 doi: 10.1080/17512433.2020.1698288 – ident: key-10.4103/1673-5374.291382-75 doi: 10.1371/journal.pone.0132768 – ident: key-10.4103/1673-5374.291382-96 doi: 10.1042/BSR20180119 – ident: key-10.4103/1673-5374.291382-73 doi: 10.18632/aging.101564 – ident: key-10.4103/1673-5374.291382-63 – ident: key-10.4103/1673-5374.291382-29 doi: 10.1016/j.neulet.2015.10.001 – ident: key-10.4103/1673-5374.291382-5 doi: 10.3390/cancers11010090 – ident: key-10.4103/1673-5374.291382-37 doi: 10.2174/156720211796558069 – ident: key-10.4103/1673-5374.291382-8 doi: 10.3390/ijms20051249 – ident: key-10.4103/1673-5374.291382-45 doi: 10.1016/j.neuron.2014.12.019 – ident: key-10.4103/1673-5374.291382-41 doi: 10.1080/15548627.2015.1100356 – ident: key-10.4103/1673-5374.291382-111 – ident: key-10.4103/1673-5374.291382-39 doi: 10.1038/s41598-020-60682-3 – ident: key-10.4103/1673-5374.291382-16 doi: 10.1038/364412a0 – ident: key-10.4103/1673-5374.291382-51 doi: 10.1038/sj.onc.1205230 – ident: key-10.4103/1673-5374.291382-33 doi: 10.1002/jnr.22725 – ident: key-10.4103/1673-5374.291382-46 doi: 10.1038/emm.2014.52 – ident: key-10.4103/1673-5374.291382-58 doi: 10.1073/pnas.0502738102 – ident: key-10.4103/1673-5374.291382-112 doi: 10.1155/2017/4782820 – ident: key-10.4103/1673-5374.291382-23 doi: 10.1007/s12539-019-00347-6 – ident: key-10.4103/1673-5374.291382-94 doi: 10.1080/10717544.2018.1556361 – ident: key-10.4103/1673-5374.291382-81 doi: 10.1016/j.pharmthera.2020.107514 – ident: key-10.4103/1673-5374.291382-93 – ident: key-10.4103/1673-5374.291382-99 doi: 10.1093/hmg/dds040 – ident: key-10.4103/1673-5374.291382-86 doi: 10.18632/aging.100440 – ident: key-10.4103/1673-5374.291382-25 doi: 10.1093/abbs/gmz156 – ident: key-10.4103/1673-5374.291382-55 doi: 10.1042/BST20170121 – ident: key-10.4103/1673-5374.291382-49 doi: 10.1007/s00018-019-03297-w – ident: key-10.4103/1673-5374.291382-69 doi: 10.1523/JNEUROSCI.2444-14.2015 – ident: key-10.4103/1673-5374.291382-24 doi: 10.1007/s11011-019-00502-4 – ident: key-10.4103/1673-5374.291382-101 doi: 10.1007/s10571-020-00801-w – ident: key-10.4103/1673-5374.291382-109 doi: 10.1074/jbc.M110.163667 – ident: key-10.4103/1673-5374.291382-107 doi: 10.3389/fnmol.2020.00028 – ident: key-10.4103/1673-5374.291382-64 doi: 10.1002/stem.1641 – ident: key-10.4103/1673-5374.291382-95 doi: 10.7150/ijms.41515 – ident: key-10.4103/1673-5374.291382-98 doi: 10.3390/nu11061195 – ident: key-10.4103/1673-5374.291382-38 doi: 10.1038/s41598-018-37215-0 – ident: key-10.4103/1673-5374.291382-47 doi: 10.1038/aps.2017.210 – ident: key-10.4103/1673-5374.291382-77 doi: 10.1074/jbc.M116.744730 – ident: key-10.4103/1673-5374.291382-50 doi: 10.1007/978-3-030-35582-1_2 – ident: key-10.4103/1673-5374.291382-108 doi: 10.1007/s10620-019-06019-1 |
SSID | ssj0058923 |
Score | 2.4488096 |
SecondaryResourceType | review_article |
Snippet | The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant... The global increase in lifespan noted not only in developed nations, but also in largedeveloping countries parallels an observed increase in a significant... |
SourceID | doaj pubmedcentral wanfang proquest gale crossref wolterskluwer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 448 |
SubjectTerms | alzheimer’s disease; apoptosis; autophagy; erythropoietin; forkhead; foxo; mechanistic target of rapamycin; silent mating type information regulation 2 homolog 1 Autophagy Care and treatment Cellular signal transduction Development and progression Genetic aspects Health aspects Kinases Nervous system Neurodegeneration Neurodegenerative diseases Neurological research Review Transcription factors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwRtYqrVSIUReh6e0k22SgIp1iqoIV6Qt_C5mNPq5cTr6W0f70zyd55S0FffM3HbvLLJDOzO_kNIbsBrF6vOC9D53gpNHOlth4_4nBrFatsJ_Gi8MdP8uCL-HBcH2-k-sKYsEwPnIEbCedqzIylbMVFYLL1rhtby7yXaLo4PH1B562cqXwG141Oid3GUvGy5krkH5RiXPHRuuwF05mAb0MhJd7-q6fz1YjJ6-dt7No4g5rzBf7XXn5PYe0bymn_FrnZW5V0kmdzm1wL8Q7ZnkTwqOcX9ClNcZ7pA_o2eT1Nwd-gsigYfxRpLOmio4nY0odZoqHG1XpJQTMd7tH59PBoj7bR08_vj6bju2S6_2769qDssyiUTjIdSymbWriGt02nROBcg2Ky0jkNiwHWFJS0jZcNgFt3yL-FhH5CWEDXCV45fo9sxUUM9wmtrFNad9oLLgSA3rYdPK2poaPzYKkUZLRC0rieYRwTXfww4Gkg9gaxN4i9ydgX5Pm6x8_MrvGXtm9wcdbtkBc7FYC0mF5azL-kpSDPcGkN7l4Ymmv7SwgwQeTBMhPJQXtzVcHrdgYtYde5YfVKOEy_65eG1ZxpBi6rKsiTdTX2xEi2GBZn0EaknJ26kQVRA6EazGxYE799TczfCrl0GC_Ibi9-f959OVueXC4vTkxg6MbDQsIgXg1k08zzDcsBxOUGxAZ8dbMSwgf_A--H5AYOJwft7ZCt019n4RFYcaf2cdqwvwFsXD3J priority: 102 providerName: Directory of Open Access Journals – databaseName: Medknow Open Access Medical Journals dbid: W3E link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA-lIvgi1SquVolQFKFr95JssnFROKWlCrVQT-hb2GR3T1tvT-6Dcv3rnUl2z1sKvviaj00ymcnMZGd-IWS_Aqu3VJzHVe14LDRzsbYlXuJwaxVLbC0xUfj0qzz5Lr5cpBdbpPP6fcz-bBZQIgJMcCCgT-sKIioVj1OuRL4CXgCXmA3yTpJlHmbL8yCO4Hvk4VQXaZoXSzBIF-9PC8RfyD0oETj7d5gCtsVcFH7UneFppv3DcOuxwg9OMUj44brsLdMBwG9DoXnc_9un--2Iy7vXRVMXzRhqrqf4X3x-5cPiN5Tb8Q6531qldBio8IBsVc1DsjtswCOfrOgr6uNE_QX8Lvkw8sHjoPIoGI8UYTDptKYeGLOsxh7GGnf7HQXNdnZAJ6Oz8wNaNCX99vl8NHhERsdHo08ncfsKQ-wk000sZZYKl_Eiq5WoONeg2Kx0TsNmgjUGJUVWyoyLKq0RvwsBAYWwUisneOL4Y7LdTJvqCaGJdUrrWpeCC8ESXRQ1fC1LoaMrwdKJyGFHSeNahHJ8KOOXAU8FaW-Q9gZpbwLtI_Jm3eN3QOf4R9uPuDnrdoir7QuAy0zLZUY4l-I7bMomsCAmi9LVA2tZWUo0lF1EXuPWGpR-mJor2iQGWCDiaJmh5KD9uUpguL1eS5Ba16_umMO0p8bcsJQzzcDlVRF5ua7GnhgJ11TTJbQR_s1PncmIqB5T9VbWr2l-_vDI4QqxeBiPyH7Lfn_HvhnPL2_mq0tToUTB0Y-TyHu8aSYhQ7NH4niDxAbkzXRM-PS_ej8j93AeIdpvj2wvZsvqOZh_C_vCS-ofVL9RmA priority: 102 providerName: Wolters Kluwer Health |
Title | Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1 |
URI | http://www.nrronline.org/article.asp?issn=1673-5374;year=2021;volume=16;issue=3;spage=448;epage=455;aulast=Maiese;type=0 https://www.proquest.com/docview/2532921407 https://www.proquest.com/docview/2446989986 https://d.wanfangdata.com.cn/periodical/zgsjzsyj-e202103007 https://pubmed.ncbi.nlm.nih.gov/PMC7996023 https://doaj.org/article/4cc597237b034e26adcf1bb2dd69774c |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3hT9QwFG8UY-IXo6JxgqQmRGPCjl3btasmmtNA0ARJcES-NWu3HSK34R0Ej7_e97rdYIHw5T6sr-v63uu999rX3yNkvQCvN1ech0XpeCg0c6G2OW7icGsVi2wp8aLw7g-5cyC-H8aHV9ejWwbObg3tsJ7UwfRk8O_v_DMsePBfB2IY8c2hVDyMuRIDphFS7z55AHZJYSGHXdGdKcSJ9sXeOurm0PLWN_SMlMfyv_mPfTOL8uFFVpVZNYaWixrPumd_fKr7NYO1_YQ8bj1NOmpU4ym5V1TPyPKogih7Mqdvqc_99Jvqy-RT6hPCwYxRcAgpQlvSuqQe7DIvxh6aGiX4gYK12tugk3Rvf4NmVU5_fttPh89Jur2Vft0J28oKoZNMV6GUSSxcwrOkVKLgXIOxstI5DQICDwueZEkuEy6KuERMLgT5E8JKrZzgkeMvyFJVV8VLQiPrlNalzgUXgkU6y0p4WxJDR5eD9xKQzQUnjWtRx7H4xYmB6AN5b5D3BnlvGt4H5H3X47RB3LiD9gsKp6NDrGz_oJ6OTbv0jHAuxtpqykYwISaz3JVDa1meS3R-XUDeoWgN6hh8msvaiwkwQcTGMiPJwaJzFcFwqz1KWImu37xQDrNQZMNizjSDMFYF5E3XjD0xu60q6nOgEb6Op05kQFRPqXoz67dUv488GrhCfB3GA7Leqt_V2Jfj2fHlbH5sCoahPQgSPuJjTzfNpLl12WNxeI3FBuJ3s1DCV3czYIU8woGaFL1VsnQ2PS9eg892Ztf8XseaX5Dw-4tv_Qf1aDkB |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+the+core+of+neurodegeneration%3A+FoxO%2C+mTOR%2C+and+SIRT1&rft.jtitle=Neural+regeneration+research&rft.au=Maiese%2C+Kenneth&rft.date=2021-03-01&rft.pub=Medknow+Publications+and+Media+Pvt.+Ltd&rft.issn=1673-5374&rft.volume=16&rft.issue=3&rft.spage=448&rft_id=info:doi/10.4103%2F1673-5374.291382&rft.externalDocID=A636783702 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgsjzsyj-e%2Fzgsjzsyj-e.jpg |