Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1

The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for tr...

Full description

Saved in:
Bibliographic Details
Published inNeural regeneration research Vol. 16; no. 3; pp. 448 - 455
Main Author Maiese, Kenneth
Format Journal Article
LanguageEnglish
Published Mumbai Wolters Kluwer India Pvt. Ltd 01.03.2021
Medknow Publications and Media Pvt. Ltd
Medknow Publications & Media Pvt. Ltd
Cellular and Molecular Signaling New York, New York, NY, USA
Wolters Kluwer - Medknow
Wolters Kluwer Medknow Publications
Subjects
Online AccessGet full text
ISSN1673-5374
1876-7958
DOI10.4103/1673-5374.291382

Cover

Loading…
Abstract The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression. Furthermore, it is believed by the year 2030, the services required to treat cognitive disorders in the United States alone will exceed $2 trillion annually. Mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), the mechanistic target of rapamycin, and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease. These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster, sometimes in conjunction with trophic factors, enhanced neuronal survival, reduction in toxic intracellular accumulations, and mitochondrial stability. Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system. However, mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1, mechanistic target of rapamycin, and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment, warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders.
AbstractList The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression. Furthermore, it is believed by the year 2030, the services required to treat cognitive disorders in the United States alone will exceed $2 trillion annually. Mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), the mechanistic target of rapamycin, and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease. These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster, sometimes in conjunction with trophic factors, enhanced neuronal survival, reduction in toxic intracellular accumulations, and mitochondrial stability. Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system. However, mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1, mechanistic target of rapamycin, and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment, warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders.The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression. Furthermore, it is believed by the year 2030, the services required to treat cognitive disorders in the United States alone will exceed $2 trillion annually. Mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), the mechanistic target of rapamycin, and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease. These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster, sometimes in conjunction with trophic factors, enhanced neuronal survival, reduction in toxic intracellular accumulations, and mitochondrial stability. Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system. However, mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1, mechanistic target of rapamycin, and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment, warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders.
The global increase in lifespan noted not only in developed nations, but also in largedeveloping countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression. Furthermore, it is believed by the year 2030, the services required to treat cognitive disorders in the United States alone will exceed $2 trillion annually. Mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), the mechanistic target of rapamycin, and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease. These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster, sometimes in conjunction with trophic factors, enhanced neuronal survival, reduction in toxic intracellular accumulations, and mitochondrial stability. Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system. However, mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1, mechanistic target of rapamycin, and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment, warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders.
The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression. Furthermore, it is believed by the year 2030, the services required to treat cognitive disorders in the United States alone will exceed $2 trillion annually. Mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), the mechanistic target of rapamycin, and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease. These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster, sometimes in conjunction with trophic factors, enhanced neuronal survival, reduction in toxic intracellular accumulations, and mitochondrial stability. Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system. However, mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1, mechanistic target of rapamycin, and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment, warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders.
The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression. Furthermore, it is believed by the year 2030, the services required to treat cognitive disorders in the United States alone will exceed $2 trillion annually. Mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1 ( Saccharomyces cerevisiae ), the mechanistic target of rapamycin, and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease. These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster, sometimes in conjunction with trophic factors, enhanced neuronal survival, reduction in toxic intracellular accumulations, and mitochondrial stability. Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system. However, mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1, mechanistic target of rapamycin, and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment, warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders.
Audience Academic
Author Maiese, Kenneth
AuthorAffiliation Cellular and Molecular Signaling New York, New York, NY, USA
AuthorAffiliation_xml – name: Cellular and Molecular Signaling New York, New York, NY, USA
Author_xml – sequence: 1
  givenname: Kenneth
  surname: Maiese
  fullname: Maiese, Kenneth
  organization: Cellular and Molecular Signaling New York, New York, NY
BookMark eNp9kk1r3DAQhkVJaZJt7z0aeik03sqSrI8eAmlI2oXAQrp3Icuyo41XSiW72-TXR96P0g2l6CAxmveRZuY9BUfOOwPA-wJOSQHx54IynJeYkSkSBeboFTgpOKM5EyU_Suf99TE4jXEJYckFwm_AMUaCl4SSE3C-UKE1vXVt1t-ZTPtgMt9kzgzB16Y1zgTVW---ZNf-9_wsWy3mt2eZcnX2Y3a7KN6C143qonm32ydgcX21uPye38y_zS4vbnJNkXA5pek5zbHiDSMGYwFhUVGtBa4qjMaI4jXlmJiyoRhCwREipKKCaYKhxhMw22Jrr5byIdiVCo_SKys3AR9aqUJvdWck0boUDGFWwYRDVNW6KaoK1XWiMTKyzresh6FamVob1wfVHUAPb5y9k63_JZkQFCKcAJ-2gLVyjXKtXPohuFS9fGrj8ik-LqVBEKX5QMhS9sfdc8H_HEzs5cpGbbpOOeOHKFOdVHAhOE2pH16k_iGjMo0MFWQD3GW1KpVrXePTL_UIlRcUU8YxS7-cgOk_stKqzcrq5KLGpviBgG4FOvgYg2mktv1m9EloO1lAOVpOjp6So6fk1nJJCF8I9638j-TrroO-602I992wNkGmnt87vz7Q5X_pJCFc7v2KnwFFbOhN
CitedBy_id crossref_primary_10_5497_wjp_v11_i1_1
crossref_primary_10_1016_j_jchemneu_2021_102012
crossref_primary_10_3390_biomedicines12040855
crossref_primary_10_2174_156720261905221227114624
crossref_primary_10_2174_1567202620999230928124725
crossref_primary_10_1016_j_arr_2023_102174
crossref_primary_10_2174_1567202621999240621122700
crossref_primary_10_3390_cells12121607
crossref_primary_10_3390_antiox10091467
crossref_primary_10_52586_4971
crossref_primary_10_1016_j_lfs_2022_121280
crossref_primary_10_3390_ijms252312621
crossref_primary_10_2174_1567202619666220729093449
crossref_primary_10_2174_1567202620999231027155308
crossref_primary_10_1038_s41598_022_20563_3
crossref_primary_10_2174_1567202620666230706160056
crossref_primary_10_31083_JIN25665
crossref_primary_10_1016_j_chemosphere_2024_142723
crossref_primary_10_1016_j_jns_2023_120753
crossref_primary_10_3389_fnagi_2021_738686
crossref_primary_10_1016_j_biopha_2023_114573
crossref_primary_10_3233_JAD_220110
crossref_primary_10_1007_s11064_021_03364_4
crossref_primary_10_3389_fnmol_2022_984292
crossref_primary_10_3389_fmed_2022_973856
crossref_primary_10_3892_ol_2021_12956
crossref_primary_10_3390_cells10051236
crossref_primary_10_3389_fphys_2023_1290732
crossref_primary_10_4236_jbm_2023_112015
crossref_primary_10_1016_j_freeradbiomed_2021_04_025
crossref_primary_10_1007_s10787_023_01305_x
crossref_primary_10_1590_0001_3765202220210938
crossref_primary_10_2174_1567202620666230721122957
crossref_primary_10_3389_fphys_2021_733696
crossref_primary_10_3390_medicina60111805
crossref_primary_10_1111_jnc_15475
crossref_primary_10_2174_1567202619666220602125806
crossref_primary_10_3389_fgene_2021_688526
crossref_primary_10_1152_physrev_00017_2021
crossref_primary_10_1016_j_phrs_2021_106014
crossref_primary_10_1007_s11064_024_04281_y
crossref_primary_10_1055_s_0042_1758157
crossref_primary_10_1016_j_ecoenv_2023_115356
crossref_primary_10_3389_fimmu_2023_1273570
crossref_primary_10_2174_1567202620666230510150337
crossref_primary_10_3390_cells12222595
crossref_primary_10_15252_msb_202311801
crossref_primary_10_3390_bioengineering10070871
crossref_primary_10_1016_j_genrep_2024_102041
crossref_primary_10_2174_1567202621999240118155618
crossref_primary_10_1097_CM9_0000000000001893
crossref_primary_10_3390_biom11071002
crossref_primary_10_3390_biom13050816
Cites_doi 10.1016/j.yexmp.2013.08.003
10.1016/j.mad.2018.11.002
10.1007/s10787-018-0476-y
10.3389/fnmol.2019.00299
10.1007/s12035-019-01818-z
10.1186/s13041-014-0056-z
10.1016/j.cellsig.2010.04.009
10.1007/s10863-016-9645-0
10.1016/j.cbi.2015.07.013
10.1371/journal.pone.0179388
10.1089/ars.2019.7959
10.1038/srep41082
10.1007/s00109-019-01851-4
10.1371/journal.pgen.1007369
10.1038/sj.bjp.0707161
10.1007/s10495-019-01559-3
10.1007/s12017-019-08524-y
10.1186/s13578-020-00416-0
10.1186/s40478-016-0324-5
10.1111/jnc.14969
10.1186/s12964-019-0498-0
10.1093/nar/gkm703
10.3390/antiox7100147
10.1155/2015/569392
10.1073/pnas.1807206115
10.1111/j.1365-2184.2009.00617.x
10.2174/156720210791184899
10.1523/JNEUROSCI.3882-16.2017
10.1530/JME-19-0080
10.1016/j.cellsig.2011.08.010
10.1111/bpa.12777
10.1016/j.bbrc.2012.01.122
10.1186/s12199-018-0757-5
10.1111/jnc.15002
10.1371/journal.pgen.1006965
10.1021/acs.molpharmaceut.9b01211
10.3390/cells8080928
10.2174/156720212803530618
10.3233/JAD-160149
10.2174/1567202614666170718092010
10.1016/j.intimp.2020.106330
10.1111/bcp.12804
10.1016/j.bbagen.2013.05.034
10.2174/1871527316666170124164306
10.1186/s40035-019-0145-0
10.1186/s12883-016-0765-2
10.1001/archinternmed.2011.2230
10.4103/1673-5374.253507
10.1007/978-981-15-0602-4_13
10.4103/1673-5374.249224
10.1021/acschemneuro.8b00531
10.1016/j.mce.2010.02.037
10.4142/jvs.2017.18.1.11
10.1007/s11010-018-3476-8
10.1530/ERC-19-0094
10.1016/j.cub.2006.08.001
10.1007/s12035-017-0524-4
10.1007/s13311-019-00805-5
10.1097/WNR.0000000000001202
10.1007/978-981-13-1426-1_23
10.1007/s10815-019-01555-1
10.2174/156720211795495402
10.1002/1873-3468.12902
10.3390/cells9010184
10.1016/j.phrs.2019.104538
10.3389/fnagi.2018.00376
10.1371/journal.pone.0045456
10.1038/s41598-019-39828-5
10.1042/BSR20160174
10.1007/s00232-019-00089-y
10.1152/ajpregu.00221.2018
10.1371/journal.pone.0208543
10.1111/acel.12801
10.1111/jphp.13157
10.1038/s41598-020-61883-6
10.1074/jbc.M114.567321
10.1080/17512433.2020.1698288
10.1371/journal.pone.0132768
10.1042/BSR20180119
10.18632/aging.101564
10.1016/j.neulet.2015.10.001
10.3390/cancers11010090
10.2174/156720211796558069
10.3390/ijms20051249
10.1016/j.neuron.2014.12.019
10.1080/15548627.2015.1100356
10.1038/s41598-020-60682-3
10.1038/364412a0
10.1038/sj.onc.1205230
10.1002/jnr.22725
10.1038/emm.2014.52
10.1073/pnas.0502738102
10.1155/2017/4782820
10.1007/s12539-019-00347-6
10.1080/10717544.2018.1556361
10.1016/j.pharmthera.2020.107514
10.1093/hmg/dds040
10.18632/aging.100440
10.1093/abbs/gmz156
10.1042/BST20170121
10.1007/s00018-019-03297-w
10.1523/JNEUROSCI.2444-14.2015
10.1007/s11011-019-00502-4
10.1007/s10571-020-00801-w
10.1074/jbc.M110.163667
10.3389/fnmol.2020.00028
10.1002/stem.1641
10.7150/ijms.41515
10.3390/nu11061195
10.1038/s41598-018-37215-0
10.1038/aps.2017.210
10.1074/jbc.M116.744730
10.1007/978-3-030-35582-1_2
10.1007/s10620-019-06019-1
ContentType Journal Article
Copyright COPYRIGHT 2021 Medknow Publications and Media Pvt. Ltd.
2021. This article is published under (http://creativecommons.org/licenses/by-nc-sa/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright: © 2021 Neural Regeneration Research 2021
Copyright_xml – notice: COPYRIGHT 2021 Medknow Publications and Media Pvt. Ltd.
– notice: 2021. This article is published under (http://creativecommons.org/licenses/by-nc-sa/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
– notice: Copyright: © 2021 Neural Regeneration Research 2021
DBID AAYXX
CITATION
K9.
7X8
2B.
4A8
92I
93N
PSX
TCJ
5PM
DOA
DOI 10.4103/1673-5374.291382
DatabaseName CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1876-7958
EndPage 455
ExternalDocumentID oai_doaj_org_article_4cc597237b034e26adcf1bb2dd69774c
PMC7996023
zgsjzsyj_e202103007
A636783702
10_4103_1673_5374_291382
10.4103/1673-5374.291382_448_Targetin
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: This work was supported by American Diabetes Association, American Heart Association, National Institutes of Health - National Institute of Environmental Health Sciences, National Institutes of Health - National Institute on Aging, National Institutes of Health - National Institute of Neurological D
GroupedDBID ---
-SE
-S~
0R~
53G
5RS
5VR
5VS
7X7
8FI
92F
92I
ACGFS
ADBBV
ADJBI
AENEX
AFKRA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BAWUL
BENPR
CAJEE
CCEZO
CHBEP
CIEJG
CS3
CW9
DIK
DU5
FA0
FDB
GROUPED_DOAJ
GX1
H13
IAO
IEA
IHR
ITC
KQ8
M2M
M48
M5~
NQ-
O9-
OK1
OVD
PGMZT
PIMPY
Q--
RMW
RPM
TCJ
TEORI
TGQ
U1G
U5O
W3E
WFFXF
--K
123
1B1
4.4
8FJ
AAEDT
AAKAS
AALRI
AAXUO
AAYXX
ABUWG
ABWVN
ACRPL
ADMUD
ADNMO
ADRAZ
ADZCM
AFUIB
CCPQU
CITATION
DWQXO
EBS
EJD
EMOBN
EO8
FYUFA
GNUQQ
HMCUK
HYE
HZ~
IHE
IPNFZ
M41
PHGZM
PHGZT
PSYQQ
RIG
ROL
RPZ
UKHRP
K9.
7X8
2B.
4A8
93N
PMFND
PSX
5PM
ID FETCH-LOGICAL-c629n-66854c83a8f74e339001b6cc93bb324e33a8d6834e5f6300982244b697c430c3
IEDL.DBID M48
ISSN 1673-5374
IngestDate Wed Aug 27 01:22:51 EDT 2025
Thu Aug 21 18:34:21 EDT 2025
Thu May 29 04:06:14 EDT 2025
Fri Jul 11 02:01:47 EDT 2025
Mon Jul 14 08:37:20 EDT 2025
Tue Jun 17 20:48:05 EDT 2025
Tue Jun 10 20:43:18 EDT 2025
Tue Jul 01 03:20:23 EDT 2025
Thu Apr 24 23:07:27 EDT 2025
Tue Jun 17 22:51:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords FoxO
autophagy
silent mating type information regulation 2 homolog 1
apoptosis
forkhead
mechanistic target of rapamycin
Alzheimer's disease
erythropoietin
Language English
License http://creativecommons.org/licenses/by-nc-sa/4.0
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c629n-66854c83a8f74e339001b6cc93bb324e33a8d6834e5f6300982244b697c430c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Author contributions: KM conceptualized and produced this work, and approved the final manuscript.
ORCID 0000-0002-5049-9116
OpenAccessLink https://doaj.org/article/4cc597237b034e26adcf1bb2dd69774c
PMID 32985464
PQID 2532921407
PQPubID 4671210
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_4cc597237b034e26adcf1bb2dd69774c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7996023
wanfang_journals_zgsjzsyj_e202103007
proquest_miscellaneous_2446989986
proquest_journals_2532921407
gale_infotracmisc_A636783702
gale_infotracacademiconefile_A636783702
crossref_citationtrail_10_4103_1673_5374_291382
crossref_primary_10_4103_1673_5374_291382
wolterskluwer_medknow_10_4103_1673-5374_291382_448_Targetin
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 3
  year: 2021
  text: 20210301
  day: 01
PublicationDecade 2020
PublicationPlace Mumbai
PublicationPlace_xml – name: Mumbai
– name: India
PublicationTitle Neural regeneration research
PublicationTitle_FL Neural Regeneration Research
PublicationYear 2021
Publisher Wolters Kluwer India Pvt. Ltd
Medknow Publications and Media Pvt. Ltd
Medknow Publications & Media Pvt. Ltd
Cellular and Molecular Signaling New York, New York, NY, USA
Wolters Kluwer - Medknow
Wolters Kluwer Medknow Publications
Publisher_xml – name: Wolters Kluwer India Pvt. Ltd
– name: Medknow Publications and Media Pvt. Ltd
– name: Medknow Publications & Media Pvt. Ltd
– name: Cellular and Molecular Signaling New York, New York, NY, USA
– name: Wolters Kluwer - Medknow
– name: Wolters Kluwer Medknow Publications
References key-10.4103/1673-5374.291382-71
key-10.4103/1673-5374.291382-70
key-10.4103/1673-5374.291382-77
key-10.4103/1673-5374.291382-76
key-10.4103/1673-5374.291382-79
key-10.4103/1673-5374.291382-78
key-10.4103/1673-5374.291382-73
key-10.4103/1673-5374.291382-72
key-10.4103/1673-5374.291382-75
key-10.4103/1673-5374.291382-74
key-10.4103/1673-5374.291382-80
key-10.4103/1673-5374.291382-82
key-10.4103/1673-5374.291382-81
key-10.4103/1673-5374.291382-119
key-10.4103/1673-5374.291382-116
key-10.4103/1673-5374.291382-115
key-10.4103/1673-5374.291382-118
key-10.4103/1673-5374.291382-117
key-10.4103/1673-5374.291382-122
key-10.4103/1673-5374.291382-121
key-10.4103/1673-5374.291382-120
key-10.4103/1673-5374.291382-88
key-10.4103/1673-5374.291382-87
key-10.4103/1673-5374.291382-89
key-10.4103/1673-5374.291382-84
key-10.4103/1673-5374.291382-83
key-10.4103/1673-5374.291382-86
key-10.4103/1673-5374.291382-85
key-10.4103/1673-5374.291382-91
key-10.4103/1673-5374.291382-90
key-10.4103/1673-5374.291382-93
key-10.4103/1673-5374.291382-92
key-10.4103/1673-5374.291382-19
key-10.4103/1673-5374.291382-18
key-10.4103/1673-5374.291382-15
key-10.4103/1673-5374.291382-14
key-10.4103/1673-5374.291382-17
key-10.4103/1673-5374.291382-16
key-10.4103/1673-5374.291382-11
key-10.4103/1673-5374.291382-99
key-10.4103/1673-5374.291382-10
key-10.4103/1673-5374.291382-98
key-10.4103/1673-5374.291382-13
key-10.4103/1673-5374.291382-12
key-10.4103/1673-5374.291382-95
key-10.4103/1673-5374.291382-94
key-10.4103/1673-5374.291382-97
key-10.4103/1673-5374.291382-96
key-10.4103/1673-5374.291382-29
key-10.4103/1673-5374.291382-26
key-10.4103/1673-5374.291382-25
key-10.4103/1673-5374.291382-28
key-10.4103/1673-5374.291382-27
key-10.4103/1673-5374.291382-22
key-10.4103/1673-5374.291382-21
key-10.4103/1673-5374.291382-24
key-10.4103/1673-5374.291382-23
key-10.4103/1673-5374.291382-20
key-10.4103/1673-5374.291382-37
key-10.4103/1673-5374.291382-36
key-10.4103/1673-5374.291382-39
key-10.4103/1673-5374.291382-38
key-10.4103/1673-5374.291382-5
key-10.4103/1673-5374.291382-33
key-10.4103/1673-5374.291382-6
key-10.4103/1673-5374.291382-32
key-10.4103/1673-5374.291382-7
key-10.4103/1673-5374.291382-35
key-10.4103/1673-5374.291382-8
key-10.4103/1673-5374.291382-34
key-10.4103/1673-5374.291382-9
key-10.4103/1673-5374.291382-31
key-10.4103/1673-5374.291382-30
key-10.4103/1673-5374.291382-1
key-10.4103/1673-5374.291382-2
key-10.4103/1673-5374.291382-3
key-10.4103/1673-5374.291382-4
key-10.4103/1673-5374.291382-48
key-10.4103/1673-5374.291382-47
key-10.4103/1673-5374.291382-49
key-10.4103/1673-5374.291382-44
key-10.4103/1673-5374.291382-43
key-10.4103/1673-5374.291382-46
key-10.4103/1673-5374.291382-45
key-10.4103/1673-5374.291382-40
key-10.4103/1673-5374.291382-42
key-10.4103/1673-5374.291382-41
key-10.4103/1673-5374.291382-109
key-10.4103/1673-5374.291382-108
key-10.4103/1673-5374.291382-105
key-10.4103/1673-5374.291382-104
key-10.4103/1673-5374.291382-107
key-10.4103/1673-5374.291382-106
key-10.4103/1673-5374.291382-112
key-10.4103/1673-5374.291382-111
key-10.4103/1673-5374.291382-114
key-10.4103/1673-5374.291382-113
key-10.4103/1673-5374.291382-59
key-10.4103/1673-5374.291382-58
key-10.4103/1673-5374.291382-110
key-10.4103/1673-5374.291382-55
key-10.4103/1673-5374.291382-54
key-10.4103/1673-5374.291382-57
key-10.4103/1673-5374.291382-56
key-10.4103/1673-5374.291382-51
key-10.4103/1673-5374.291382-50
key-10.4103/1673-5374.291382-53
key-10.4103/1673-5374.291382-52
key-10.4103/1673-5374.291382-60
key-10.4103/1673-5374.291382-101
key-10.4103/1673-5374.291382-100
key-10.4103/1673-5374.291382-103
key-10.4103/1673-5374.291382-102
key-10.4103/1673-5374.291382-69
key-10.4103/1673-5374.291382-66
key-10.4103/1673-5374.291382-65
key-10.4103/1673-5374.291382-68
key-10.4103/1673-5374.291382-67
key-10.4103/1673-5374.291382-62
key-10.4103/1673-5374.291382-61
key-10.4103/1673-5374.291382-64
key-10.4103/1673-5374.291382-63
References_xml – ident: key-10.4103/1673-5374.291382-72
  doi: 10.1016/j.yexmp.2013.08.003
– ident: key-10.4103/1673-5374.291382-9
  doi: 10.1016/j.mad.2018.11.002
– ident: key-10.4103/1673-5374.291382-10
– ident: key-10.4103/1673-5374.291382-76
  doi: 10.1007/s10787-018-0476-y
– ident: key-10.4103/1673-5374.291382-28
  doi: 10.3389/fnmol.2019.00299
– ident: key-10.4103/1673-5374.291382-26
  doi: 10.1007/s12035-019-01818-z
– ident: key-10.4103/1673-5374.291382-30
  doi: 10.1186/s13041-014-0056-z
– ident: key-10.4103/1673-5374.291382-84
  doi: 10.1016/j.cellsig.2010.04.009
– ident: key-10.4103/1673-5374.291382-87
  doi: 10.1007/s10863-016-9645-0
– ident: key-10.4103/1673-5374.291382-48
  doi: 10.1016/j.cbi.2015.07.013
– ident: key-10.4103/1673-5374.291382-104
  doi: 10.1371/journal.pone.0179388
– ident: key-10.4103/1673-5374.291382-60
  doi: 10.1089/ars.2019.7959
– ident: key-10.4103/1673-5374.291382-91
– ident: key-10.4103/1673-5374.291382-115
  doi: 10.1038/srep41082
– ident: key-10.4103/1673-5374.291382-6
  doi: 10.1007/s00109-019-01851-4
– ident: key-10.4103/1673-5374.291382-74
  doi: 10.1371/journal.pgen.1007369
– ident: key-10.4103/1673-5374.291382-14
  doi: 10.1038/sj.bjp.0707161
– ident: key-10.4103/1673-5374.291382-61
  doi: 10.1007/s10495-019-01559-3
– ident: key-10.4103/1673-5374.291382-92
  doi: 10.1007/s12017-019-08524-y
– ident: key-10.4103/1673-5374.291382-42
– ident: key-10.4103/1673-5374.291382-110
  doi: 10.1186/s13578-020-00416-0
– ident: key-10.4103/1673-5374.291382-90
  doi: 10.1186/s40478-016-0324-5
– ident: key-10.4103/1673-5374.291382-79
  doi: 10.1111/jnc.14969
– ident: key-10.4103/1673-5374.291382-66
  doi: 10.1186/s12964-019-0498-0
– ident: key-10.4103/1673-5374.291382-97
  doi: 10.1093/nar/gkm703
– ident: key-10.4103/1673-5374.291382-59
  doi: 10.3390/antiox7100147
– ident: key-10.4103/1673-5374.291382-52
  doi: 10.1155/2015/569392
– ident: key-10.4103/1673-5374.291382-44
  doi: 10.1073/pnas.1807206115
– ident: key-10.4103/1673-5374.291382-2
  doi: 10.1111/j.1365-2184.2009.00617.x
– ident: key-10.4103/1673-5374.291382-35
  doi: 10.2174/156720210791184899
– ident: key-10.4103/1673-5374.291382-1
  doi: 10.1523/JNEUROSCI.3882-16.2017
– ident: key-10.4103/1673-5374.291382-65
  doi: 10.1530/JME-19-0080
– ident: key-10.4103/1673-5374.291382-102
  doi: 10.1016/j.cellsig.2011.08.010
– ident: key-10.4103/1673-5374.291382-113
  doi: 10.1111/bpa.12777
– ident: key-10.4103/1673-5374.291382-34
  doi: 10.1016/j.bbrc.2012.01.122
– ident: key-10.4103/1673-5374.291382-120
  doi: 10.1186/s12199-018-0757-5
– ident: key-10.4103/1673-5374.291382-18
  doi: 10.1111/jnc.15002
– ident: key-10.4103/1673-5374.291382-78
  doi: 10.1371/journal.pgen.1006965
– ident: key-10.4103/1673-5374.291382-11
  doi: 10.1021/acs.molpharmaceut.9b01211
– ident: key-10.4103/1673-5374.291382-40
  doi: 10.3390/cells8080928
– ident: key-10.4103/1673-5374.291382-85
  doi: 10.2174/156720212803530618
– ident: key-10.4103/1673-5374.291382-27
  doi: 10.3233/JAD-160149
– ident: key-10.4103/1673-5374.291382-19
– ident: key-10.4103/1673-5374.291382-54
  doi: 10.2174/1567202614666170718092010
– ident: key-10.4103/1673-5374.291382-32
  doi: 10.1016/j.intimp.2020.106330
– ident: key-10.4103/1673-5374.291382-53
  doi: 10.1111/bcp.12804
– ident: key-10.4103/1673-5374.291382-82
  doi: 10.1016/j.bbagen.2013.05.034
– ident: key-10.4103/1673-5374.291382-118
  doi: 10.2174/1871527316666170124164306
– ident: key-10.4103/1673-5374.291382-122
  doi: 10.1186/s40035-019-0145-0
– ident: key-10.4103/1673-5374.291382-83
  doi: 10.1186/s12883-016-0765-2
– ident: key-10.4103/1673-5374.291382-17
  doi: 10.1001/archinternmed.2011.2230
– ident: key-10.4103/1673-5374.291382-88
  doi: 10.4103/1673-5374.253507
– ident: key-10.4103/1673-5374.291382-117
  doi: 10.1007/978-981-15-0602-4_13
– ident: key-10.4103/1673-5374.291382-56
  doi: 10.4103/1673-5374.249224
– ident: key-10.4103/1673-5374.291382-103
  doi: 10.1021/acschemneuro.8b00531
– ident: key-10.4103/1673-5374.291382-36
  doi: 10.1016/j.mce.2010.02.037
– ident: key-10.4103/1673-5374.291382-67
  doi: 10.4142/jvs.2017.18.1.11
– ident: key-10.4103/1673-5374.291382-116
  doi: 10.1007/s11010-018-3476-8
– ident: key-10.4103/1673-5374.291382-3
  doi: 10.1530/ERC-19-0094
– ident: key-10.4103/1673-5374.291382-31
  doi: 10.1016/j.cub.2006.08.001
– ident: key-10.4103/1673-5374.291382-106
– ident: key-10.4103/1673-5374.291382-4
  doi: 10.1007/s12035-017-0524-4
– ident: key-10.4103/1673-5374.291382-80
  doi: 10.1007/s13311-019-00805-5
– ident: key-10.4103/1673-5374.291382-121
  doi: 10.1097/WNR.0000000000001202
– ident: key-10.4103/1673-5374.291382-21
  doi: 10.1007/978-981-13-1426-1_23
– ident: key-10.4103/1673-5374.291382-43
  doi: 10.1007/s10815-019-01555-1
– ident: key-10.4103/1673-5374.291382-13
  doi: 10.2174/156720211795495402
– ident: key-10.4103/1673-5374.291382-89
  doi: 10.1002/1873-3468.12902
– ident: key-10.4103/1673-5374.291382-68
  doi: 10.3390/cells9010184
– ident: key-10.4103/1673-5374.291382-119
  doi: 10.1016/j.phrs.2019.104538
– ident: key-10.4103/1673-5374.291382-100
  doi: 10.3389/fnagi.2018.00376
– ident: key-10.4103/1673-5374.291382-15
  doi: 10.1371/journal.pone.0045456
– ident: key-10.4103/1673-5374.291382-7
  doi: 10.1038/s41598-019-39828-5
– ident: key-10.4103/1673-5374.291382-105
  doi: 10.1042/BSR20160174
– ident: key-10.4103/1673-5374.291382-20
  doi: 10.1007/s00232-019-00089-y
– ident: key-10.4103/1673-5374.291382-70
  doi: 10.1152/ajpregu.00221.2018
– ident: key-10.4103/1673-5374.291382-62
  doi: 10.1371/journal.pone.0208543
– ident: key-10.4103/1673-5374.291382-12
  doi: 10.1111/acel.12801
– ident: key-10.4103/1673-5374.291382-22
  doi: 10.1111/jphp.13157
– ident: key-10.4103/1673-5374.291382-71
  doi: 10.1038/s41598-020-61883-6
– ident: key-10.4103/1673-5374.291382-114
  doi: 10.1074/jbc.M114.567321
– ident: key-10.4103/1673-5374.291382-57
  doi: 10.1080/17512433.2020.1698288
– ident: key-10.4103/1673-5374.291382-75
  doi: 10.1371/journal.pone.0132768
– ident: key-10.4103/1673-5374.291382-96
  doi: 10.1042/BSR20180119
– ident: key-10.4103/1673-5374.291382-73
  doi: 10.18632/aging.101564
– ident: key-10.4103/1673-5374.291382-63
– ident: key-10.4103/1673-5374.291382-29
  doi: 10.1016/j.neulet.2015.10.001
– ident: key-10.4103/1673-5374.291382-5
  doi: 10.3390/cancers11010090
– ident: key-10.4103/1673-5374.291382-37
  doi: 10.2174/156720211796558069
– ident: key-10.4103/1673-5374.291382-8
  doi: 10.3390/ijms20051249
– ident: key-10.4103/1673-5374.291382-45
  doi: 10.1016/j.neuron.2014.12.019
– ident: key-10.4103/1673-5374.291382-41
  doi: 10.1080/15548627.2015.1100356
– ident: key-10.4103/1673-5374.291382-111
– ident: key-10.4103/1673-5374.291382-39
  doi: 10.1038/s41598-020-60682-3
– ident: key-10.4103/1673-5374.291382-16
  doi: 10.1038/364412a0
– ident: key-10.4103/1673-5374.291382-51
  doi: 10.1038/sj.onc.1205230
– ident: key-10.4103/1673-5374.291382-33
  doi: 10.1002/jnr.22725
– ident: key-10.4103/1673-5374.291382-46
  doi: 10.1038/emm.2014.52
– ident: key-10.4103/1673-5374.291382-58
  doi: 10.1073/pnas.0502738102
– ident: key-10.4103/1673-5374.291382-112
  doi: 10.1155/2017/4782820
– ident: key-10.4103/1673-5374.291382-23
  doi: 10.1007/s12539-019-00347-6
– ident: key-10.4103/1673-5374.291382-94
  doi: 10.1080/10717544.2018.1556361
– ident: key-10.4103/1673-5374.291382-81
  doi: 10.1016/j.pharmthera.2020.107514
– ident: key-10.4103/1673-5374.291382-93
– ident: key-10.4103/1673-5374.291382-99
  doi: 10.1093/hmg/dds040
– ident: key-10.4103/1673-5374.291382-86
  doi: 10.18632/aging.100440
– ident: key-10.4103/1673-5374.291382-25
  doi: 10.1093/abbs/gmz156
– ident: key-10.4103/1673-5374.291382-55
  doi: 10.1042/BST20170121
– ident: key-10.4103/1673-5374.291382-49
  doi: 10.1007/s00018-019-03297-w
– ident: key-10.4103/1673-5374.291382-69
  doi: 10.1523/JNEUROSCI.2444-14.2015
– ident: key-10.4103/1673-5374.291382-24
  doi: 10.1007/s11011-019-00502-4
– ident: key-10.4103/1673-5374.291382-101
  doi: 10.1007/s10571-020-00801-w
– ident: key-10.4103/1673-5374.291382-109
  doi: 10.1074/jbc.M110.163667
– ident: key-10.4103/1673-5374.291382-107
  doi: 10.3389/fnmol.2020.00028
– ident: key-10.4103/1673-5374.291382-64
  doi: 10.1002/stem.1641
– ident: key-10.4103/1673-5374.291382-95
  doi: 10.7150/ijms.41515
– ident: key-10.4103/1673-5374.291382-98
  doi: 10.3390/nu11061195
– ident: key-10.4103/1673-5374.291382-38
  doi: 10.1038/s41598-018-37215-0
– ident: key-10.4103/1673-5374.291382-47
  doi: 10.1038/aps.2017.210
– ident: key-10.4103/1673-5374.291382-77
  doi: 10.1074/jbc.M116.744730
– ident: key-10.4103/1673-5374.291382-50
  doi: 10.1007/978-3-030-35582-1_2
– ident: key-10.4103/1673-5374.291382-108
  doi: 10.1007/s10620-019-06019-1
SSID ssj0058923
Score 2.4488096
SecondaryResourceType review_article
Snippet The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant...
The global increase in lifespan noted not only in developed nations, but also in largedeveloping countries parallels an observed increase in a significant...
SourceID doaj
pubmedcentral
wanfang
proquest
gale
crossref
wolterskluwer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 448
SubjectTerms alzheimer’s disease; apoptosis; autophagy; erythropoietin; forkhead; foxo; mechanistic target of rapamycin; silent mating type information regulation 2 homolog 1
Autophagy
Care and treatment
Cellular signal transduction
Development and progression
Genetic aspects
Health aspects
Kinases
Nervous system
Neurodegeneration
Neurodegenerative diseases
Neurological research
Review
Transcription factors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwRtYqrVSIUReh6e0k22SgIp1iqoIV6Qt_C5mNPq5cTr6W0f70zyd55S0FffM3HbvLLJDOzO_kNIbsBrF6vOC9D53gpNHOlth4_4nBrFatsJ_Gi8MdP8uCL-HBcH2-k-sKYsEwPnIEbCedqzIylbMVFYLL1rhtby7yXaLo4PH1B562cqXwG141Oid3GUvGy5krkH5RiXPHRuuwF05mAb0MhJd7-q6fz1YjJ6-dt7No4g5rzBf7XXn5PYe0bymn_FrnZW5V0kmdzm1wL8Q7ZnkTwqOcX9ClNcZ7pA_o2eT1Nwd-gsigYfxRpLOmio4nY0odZoqHG1XpJQTMd7tH59PBoj7bR08_vj6bju2S6_2769qDssyiUTjIdSymbWriGt02nROBcg2Ky0jkNiwHWFJS0jZcNgFt3yL-FhH5CWEDXCV45fo9sxUUM9wmtrFNad9oLLgSA3rYdPK2poaPzYKkUZLRC0rieYRwTXfww4Gkg9gaxN4i9ydgX5Pm6x8_MrvGXtm9wcdbtkBc7FYC0mF5azL-kpSDPcGkN7l4Ymmv7SwgwQeTBMhPJQXtzVcHrdgYtYde5YfVKOEy_65eG1ZxpBi6rKsiTdTX2xEi2GBZn0EaknJ26kQVRA6EazGxYE799TczfCrl0GC_Ibi9-f959OVueXC4vTkxg6MbDQsIgXg1k08zzDcsBxOUGxAZ8dbMSwgf_A--H5AYOJwft7ZCt019n4RFYcaf2cdqwvwFsXD3J
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Medknow Open Access Medical Journals
  dbid: W3E
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA-lIvgi1SquVolQFKFr95JssnFROKWlCrVQT-hb2GR3T1tvT-6Dcv3rnUl2z1sKvviaj00ymcnMZGd-IWS_Aqu3VJzHVe14LDRzsbYlXuJwaxVLbC0xUfj0qzz5Lr5cpBdbpPP6fcz-bBZQIgJMcCCgT-sKIioVj1OuRL4CXgCXmA3yTpJlHmbL8yCO4Hvk4VQXaZoXSzBIF-9PC8RfyD0oETj7d5gCtsVcFH7UneFppv3DcOuxwg9OMUj44brsLdMBwG9DoXnc_9un--2Iy7vXRVMXzRhqrqf4X3x-5cPiN5Tb8Q6531qldBio8IBsVc1DsjtswCOfrOgr6uNE_QX8Lvkw8sHjoPIoGI8UYTDptKYeGLOsxh7GGnf7HQXNdnZAJ6Oz8wNaNCX99vl8NHhERsdHo08ncfsKQ-wk000sZZYKl_Eiq5WoONeg2Kx0TsNmgjUGJUVWyoyLKq0RvwsBAYWwUisneOL4Y7LdTJvqCaGJdUrrWpeCC8ESXRQ1fC1LoaMrwdKJyGFHSeNahHJ8KOOXAU8FaW-Q9gZpbwLtI_Jm3eN3QOf4R9uPuDnrdoir7QuAy0zLZUY4l-I7bMomsCAmi9LVA2tZWUo0lF1EXuPWGpR-mJor2iQGWCDiaJmh5KD9uUpguL1eS5Ba16_umMO0p8bcsJQzzcDlVRF5ua7GnhgJ11TTJbQR_s1PncmIqB5T9VbWr2l-_vDI4QqxeBiPyH7Lfn_HvhnPL2_mq0tToUTB0Y-TyHu8aSYhQ7NH4niDxAbkzXRM-PS_ej8j93AeIdpvj2wvZsvqOZh_C_vCS-ofVL9RmA
  priority: 102
  providerName: Wolters Kluwer Health
Title Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1
URI http://www.nrronline.org/article.asp?issn=1673-5374;year=2021;volume=16;issue=3;spage=448;epage=455;aulast=Maiese;type=0
https://www.proquest.com/docview/2532921407
https://www.proquest.com/docview/2446989986
https://d.wanfangdata.com.cn/periodical/zgsjzsyj-e202103007
https://pubmed.ncbi.nlm.nih.gov/PMC7996023
https://doaj.org/article/4cc597237b034e26adcf1bb2dd69774c
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3hT9QwFG8UY-IXo6JxgqQmRGPCjl3btasmmtNA0ARJcES-NWu3HSK34R0Ej7_e97rdYIHw5T6sr-v63uu999rX3yNkvQCvN1ech0XpeCg0c6G2OW7icGsVi2wp8aLw7g-5cyC-H8aHV9ejWwbObg3tsJ7UwfRk8O_v_DMsePBfB2IY8c2hVDyMuRIDphFS7z55AHZJYSGHXdGdKcSJ9sXeOurm0PLWN_SMlMfyv_mPfTOL8uFFVpVZNYaWixrPumd_fKr7NYO1_YQ8bj1NOmpU4ym5V1TPyPKogih7Mqdvqc_99Jvqy-RT6hPCwYxRcAgpQlvSuqQe7DIvxh6aGiX4gYK12tugk3Rvf4NmVU5_fttPh89Jur2Vft0J28oKoZNMV6GUSSxcwrOkVKLgXIOxstI5DQICDwueZEkuEy6KuERMLgT5E8JKrZzgkeMvyFJVV8VLQiPrlNalzgUXgkU6y0p4WxJDR5eD9xKQzQUnjWtRx7H4xYmB6AN5b5D3BnlvGt4H5H3X47RB3LiD9gsKp6NDrGz_oJ6OTbv0jHAuxtpqykYwISaz3JVDa1meS3R-XUDeoWgN6hh8msvaiwkwQcTGMiPJwaJzFcFwqz1KWImu37xQDrNQZMNizjSDMFYF5E3XjD0xu60q6nOgEb6Op05kQFRPqXoz67dUv488GrhCfB3GA7Leqt_V2Jfj2fHlbH5sCoahPQgSPuJjTzfNpLl12WNxeI3FBuJ3s1DCV3czYIU8woGaFL1VsnQ2PS9eg892Ztf8XseaX5Dw-4tv_Qf1aDkB
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+the+core+of+neurodegeneration%3A+FoxO%2C+mTOR%2C+and+SIRT1&rft.jtitle=Neural+regeneration+research&rft.au=Maiese%2C+Kenneth&rft.date=2021-03-01&rft.pub=Medknow+Publications+and+Media+Pvt.+Ltd&rft.issn=1673-5374&rft.volume=16&rft.issue=3&rft.spage=448&rft_id=info:doi/10.4103%2F1673-5374.291382&rft.externalDocID=A636783702
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgsjzsyj-e%2Fzgsjzsyj-e.jpg