A Safety-Enhanced Reinforcement Learning-Based Decision-Making Method by the Dimensionality Reduction Monte Carlo Tree Search
Left-turning at unsignalized intersections poses significant challenges for automated vehicles. On this regard, Deep Reinforcement Learning (DRL) methods can achieve better traffic efficiency and success rate than rule-based methods, but they occasionally lead to collisions. This paper proposes a sa...
Saved in:
Published in | IEEE transactions on vehicular technology pp. 1 - 14 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
15.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Left-turning at unsignalized intersections poses significant challenges for automated vehicles. On this regard, Deep Reinforcement Learning (DRL) methods can achieve better traffic efficiency and success rate than rule-based methods, but they occasionally lead to collisions. This paper proposes a safety-enhanced method that integrates the DRL and the Dimensionality Reduction Monte Carlo Tree Search (DRMCTS) algorithm to achieve safety-enhanced trajectory planning at unsignalized intersections. First, DRMCTS is employed to address the partially observable Markov decision process problem. Through dimensionality reduction, it effectually enhances computational efficiency and problem-solving performance. Then a unified framework is introduced by simultaneously implementing DRL and the Gaussian Mixture Model Hidden Markov Model (GMM-HMM) in real-time. DRL determines actions in the current state while GMM-HMM identifies the turning intentions of surrounding vehicles (SVs). Under safe driving conditions, DRL makes decisions and outputs longitudinal acceleration with optimized ride comfort and traffic efficiency. When unsafe driving conditions are detected, DRMCTS would be activated to generate a collision-free trajectory to enhance the ego vehicle's driving safety. Through comprehensive simulations, the proposed scheme demonstrates superior traffic efficiency and reduced collision rates at unsignalized intersections with multiple SVs present. |
---|---|
AbstractList | Left-turning at unsignalized intersections poses significant challenges for automated vehicles. On this regard, Deep Reinforcement Learning (DRL) methods can achieve better traffic efficiency and success rate than rule-based methods, but they occasionally lead to collisions. This paper proposes a safety-enhanced method that integrates the DRL and the Dimensionality Reduction Monte Carlo Tree Search (DRMCTS) algorithm to achieve safety-enhanced trajectory planning at unsignalized intersections. First, DRMCTS is employed to address the partially observable Markov decision process problem. Through dimensionality reduction, it effectually enhances computational efficiency and problem-solving performance. Then a unified framework is introduced by simultaneously implementing DRL and the Gaussian Mixture Model Hidden Markov Model (GMM-HMM) in real-time. DRL determines actions in the current state while GMM-HMM identifies the turning intentions of surrounding vehicles (SVs). Under safe driving conditions, DRL makes decisions and outputs longitudinal acceleration with optimized ride comfort and traffic efficiency. When unsafe driving conditions are detected, DRMCTS would be activated to generate a collision-free trajectory to enhance the ego vehicle's driving safety. Through comprehensive simulations, the proposed scheme demonstrates superior traffic efficiency and reduced collision rates at unsignalized intersections with multiple SVs present. |
Author | Liu, Jizheng Wang, Zhenpo Cheng, Shuhui Zhang, Lei Wang, Mingqiang |
Author_xml | – sequence: 1 givenname: Lei orcidid: 0000-0002-1763-0397 surname: Zhang fullname: Zhang, Lei organization: Advanced Technology Research Institute, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Shuhui surname: Cheng fullname: Cheng, Shuhui organization: National Engineering Research Center for Electric Vehicles, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Zhenpo orcidid: 0000-0002-1396-906X surname: Wang fullname: Wang, Zhenpo organization: National Engineering Research Center for Electric Vehicles, Beijing Institute of Technology, Beijing, China – sequence: 4 givenname: Jizheng orcidid: 0000-0002-4350-0879 surname: Liu fullname: Liu, Jizheng organization: National Engineering Research Center for Electric Vehicles, Beijing Institute of Technology, Beijing, China – sequence: 5 givenname: Mingqiang surname: Wang fullname: Wang, Mingqiang organization: National Engineering Research Center for Electric Vehicles, Beijing Institute of Technology, Beijing, China |
BookMark | eNpNkMtOAjEUhhuDiYDuXbjoCxR7HegSAS8JxEQmbielc-pUoWM6dTEL390SWLg6-c9_WXwjNAhtAIRuGZ0wRvV9-V5OOOVyIiSXiosLNGRaaKKF0gM0pJTNiFZSXaFR131mKaVmQ_Q7x1vjIPVkFRoTLNT4DXxwbbRwgJDwGkwMPnyQB9NlcwnWd74NZGO-8hdvIDVtjXc9Tg3gpc-do232PvV5qf6xKUu8aUMCvDBx3-IyAuBtnrXNNbp0Zt_BzfmOUfm4KhfPZP369LKYr4ktuCY7R1ldSKqt4cCV2ylmKCsKqxm1lgk15U4qJ_RMUMaMlYWeSnBTcGCd4rUYI3qatbHtugiu-o7-YGJfMVod6VWZXnWkV53p5crdqeIB4F9caT3LXP8AKzluvg |
CODEN | ITVTAB |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TVT.2024.3424523 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-9359 |
EndPage | 14 |
ExternalDocumentID | 10_1109_TVT_2024_3424523 10599819 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAIKC AAJGR AAMNW AASAJ ABQJQ ACGFO ACGFS ACIWK ACNCT AENEX AKJIK ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIG RNS RXW TAE TN5 3EH 5VS AAYOK AAYXX AETIX AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IFJZH M43 VH1 |
ID | FETCH-LOGICAL-c629-bf01d6409ca2e25fb51a0166c910cc13572f45f3983011ac46974ef7efecf52d3 |
IEDL.DBID | RIE |
ISSN | 0018-9545 |
IngestDate | Wed Jul 24 12:28:29 EDT 2024 Wed Jul 24 06:47:56 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c629-bf01d6409ca2e25fb51a0166c910cc13572f45f3983011ac46974ef7efecf52d3 |
ORCID | 0000-0002-1396-906X 0000-0002-4350-0879 0000-0002-1763-0397 |
PageCount | 14 |
ParticipantIDs | ieee_primary_10599819 crossref_primary_10_1109_TVT_2024_3424523 |
PublicationCentury | 2000 |
PublicationDate | 20240715 |
PublicationDateYYYYMMDD | 2024-07-15 |
PublicationDate_xml | – month: 7 year: 2024 text: 20240715 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on vehicular technology |
PublicationTitleAbbrev | TVT |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0014491 |
Score | 2.486467 |
Snippet | Left-turning at unsignalized intersections poses significant challenges for automated vehicles. On this regard, Deep Reinforcement Learning (DRL) methods can... |
SourceID | crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Automated vehicles Decision making deep reinforcement learning Hidden Markov models partially observable Markov decision process Planning Safety Switches Trajectory Turning turning intention recognition |
Title | A Safety-Enhanced Reinforcement Learning-Based Decision-Making Method by the Dimensionality Reduction Monte Carlo Tree Search |
URI | https://ieeexplore.ieee.org/document/10599819 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78nDi_yMGLh3Rr2rTNce6DIXQHrbJbadMXBaWT0R0m-L_7knYyBcFbCUkJeWnze3nv_X6EXGsFCCKgYCKT6KBwrlgkRMRUz88CLwyVZ4vE4mkwefTvZmLWFKvbWhgAsMln4JhHG8sv5mpprsq6BgvIyJB8bodS1sVa3yED32_k8Vz8ghEXrGOSPdlNnhL0BLnveCbOx70fZ9CGqIo9U8b7ZLqeTZ1K8uosq9xRH7-IGv893QOy16BL2q-3wyHZgvKI7G5wDh6Tzz59yDRUKzYqX2z4n96DpU9V9qaQNoyrz-wWD7iCDhsRHhZb3SoaW8lpmq8oQkc6NOIANbEHwnl8U1Gz0dLYsF7RQbZ4m9NkAUDrvOY2ScajZDBhjQYDUwGXLNc9twjQB1QZBy50LtwMQWKgEGUo5Xoi5NoX2pOR-VFkCp3t0AcdggalBS-8E9Iq5yWcEootMgq1ttJI2pWyCAPsYSKdHATkHXKzNkr6XjNtpNZD6ckUDZgaA6aNATukbZZ7o1-90md_tJ-THTPc3Mm64oK0qsUSLhFMVPmV3URf4YzGuQ |
link.rule.ids | 315,783,787,799,27938,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGYCBZxHl6YGFwW3jxEk8lj5UoOkAAXWLEucMEqhFVTsUif_O2UlRQUJiiyzLsnx2_J3v7vsIudQKEERAzkQq0UHhXLFQiJCpppf6bhAo1xaJRUO__-jdjsSoLFa3tTAAYJPPoG4-bSw_n6i5eSprGCwgQ0PyuS4MsCjKtb6DBp5XCuQ5eIYRGSyjkk3ZiJ9i9AW5V3dNpI-7P26hFVkVe6v0dshwOZ8imeS1Pp9ldfXxi6rx3xPeJdslvqStYkPskTUY75OtFdbBA_LZog-phtmCdccvNgGA3oMlUFX2rZCWnKvP7BqvuJx2ShkeFlnlKhpZ0WmaLSiCR9ox8gAFtQcCehwpL_hoaWR4r2g7nb5NaDwFoEVmc5XEvW7c7rNShYEpn0uW6aaT--gFqpQDFzoTToow0VeIM5RyXBFw7QntytD8KlKF7nbggQ5Ag9KC5-4hqYwnYzgiFFtkGGhtxZG0I2Ue-NjDxDo5CMhq5GpplOS94NpIrI_SlAkaMDEGTEoD1kjVLPdKv2Klj_9ovyAb_TgaJIOb4d0J2TRDmRdaR5ySymw6hzOEFrPs3G6oL3SXygY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Safety-Enhanced+Reinforcement+Learning-Based+Decision-Making+Method+by+the+Dimensionality+Reduction+Monte+Carlo+Tree+Search&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Zhang%2C+Lei&rft.au=Cheng%2C+Shuhui&rft.au=Wang%2C+Zhenpo&rft.au=Liu%2C+Jizheng&rft.date=2024-07-15&rft.issn=0018-9545&rft.eissn=1939-9359&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTVT.2024.3424523&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2024_3424523 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |