On Estimating Diagnostic Accuracy From Studies With Multiple Raters and Partial Gold Standard Evaluation
We are often interested in estimating sensitivity and specificity of a group of raters or a set of new diagnostic tests in situations in which gold standard evaluation is expensive or invasive. Numerous authors have proposed latent modeling approaches for estimating diagnostic error without a gold s...
Saved in:
Published in | Journal of the American Statistical Association Vol. 103; no. 481; pp. 61 - 73 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
Taylor & Francis
01.03.2008
American Statistical Association Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We are often interested in estimating sensitivity and specificity of a group of raters or a set of new diagnostic tests in situations in which gold standard evaluation is expensive or invasive. Numerous authors have proposed latent modeling approaches for estimating diagnostic error without a gold standard. Albert and Dodd showed that, when modeling without a gold standard, estimates of diagnostic error can be biased when the dependence structure between tests is misspecified. In addition, they showed that choosing between different models for this dependence structure is difficult in most practical situations. While these results caution against using these latent class models, the difficulties of obtaining gold standard verification remain a practical reality. We extend two classes of models to provide a compromise that collects gold standard information on a subset of subjects but incorporates information from both the verified and nonverified subjects during estimation. We examine the robustness of diagnostic error estimation with this approach and show that choosing between competing models is easier in this context. In our analytic work and simulations, we consider situations in which verification is completely at random as well as settings in which the probability of verification depends on the actual test results. We apply our methodological work to a study designed to estimate the diagnostic error of digital radiography for gastric cancer. |
---|---|
AbstractList | We are often interested in estimating sensitivity and specificity of a group of raters or a set of new diagnostic tests in situations in which gold standard evaluation is expensive or invasive. Numerous authors have proposed latent modeling approaches for estimating diagnostic error without a gold standard. Albert and Dodd showed that, when modeling without a gold standard, estimates of diagnostic error can be biased when the dependence structure between tests is misspecified. In addition, they showed that choosing between different models for this dependence structure is difficult in most practical situations. While these results caution against using these latent class models, the difficulties of obtaining gold standard verification remain a practical reality. We extend two classes of models to provide a compromise that collects gold standard information on a subset of subjects but incorporates information from both the verified and nonverified subjects during estimation. We examine the robustness of diagnostic error estimation with this approach and show that choosing between competing models is easier in this context. In our analytic work and simulations, we consider situations in which verfication is completely at random as well as settings in which the probability of verification depends on the actual test results. We apply our methodological work to a study designed to estimate the diagnostic error of digital radiography for gastric cancer. We are often interested in estimating sensitivity and specificity of a group of raters or a set of new diagnostic tests in situations in which gold standard evaluation is expensive or invasive. Numerous authors have proposed latent modeling approaches for estimating diagnostic error without a gold standard. Albert and Dodd showed that, when modeling without a gold standard, estimates of diagnostic error can be biased when the dependence structure between tests is misspecified. In addition, they showed that choosing between different models for this dependence structure is difficult in most practical situations. While these results caution against using these latent class models, the difficulties of obtaining gold standard verification remain a practical reality. We extend two classes of models to provide a compromise that collects gold standard information on a subset of subjects but incorporates information from both the verified and nonverified subjects during estimation. We examine the robustness of diagnostic error estimation with this approach and show that choosing between competing models is easier in this context. In our analytic work and simulations, we consider situations in which verification is completely at random as well as settings in which the probability of verification depends on the actual test results. We apply our methodological work to a study designed to estimate the diagnostic error of digital radiography for gastric cancer. We are often interested in estimating sensitivity and specificity of a group of raters or a set of new diagnostic tests in situations in which gold standard evaluation is expensive or invasive. Numerous authors have proposed latent modeling approaches for estimating diagnostic error without a gold standard. Albert and Dodd showed that, when modeling without a gold standard, estimates of diagnostic error can he biased when the dependence structure between tests is misspecified. In addition, they showed that choosing between different models for this dependence structure is difficult in most practical situations. While these results caution against using these latent class models, the difficulties of obtaining gold standard verification remain a practical reality. We extend two classes of models to provide a compromise that collects gold standard information on a subset of subjects but incorporates information from both the verified and nonverified subjects during estimation. We examine the robustness of diagnostic error estimation with this approach and show that choosing between competing models is easier in this context. In our analytic work and simulations, we consider situations in which verification is completely at random as well as settings in which the probability of verification depends on the actual test results. We apply our methodological work to a study designed to estimate the diagnostic error of digital radiography for gastric cancer. [PUBLICATION ABSTRACT] We are often interested in estimating sensitivity and specificity of a group of raters or a set of new diagnostic tests in situations in which gold standard evaluation is expensive or invasive. Numerous authors have proposed latent modeling approaches for estimating diagnostic error without a gold standard. Albert and Dodd showed that, when modeling without a gold standard, estimates of diagnostic error can be biased when the dependence structure between tests is misspecified. In addition, they showed that choosing between different models for this dependence structure is difficult in most practical situations. While these results caution against using these latent class models, the difficulties of obtaining gold standard verification remain a practical reality. We extend two classes of models to provide a compromise that collects gold standard information on a subset of subjects but incorporates information from both the verified and nonverified subjects during estimation. We examine the robustness of diagnostic error estimation with this approach and show that choosing between competing models is easier in this context. In our analytic work and simulations, we consider situations in which verification is completely at random as well as settings in which the probability of verification depends on the actual test results. We apply our methodological work to a study designed to estimate the diagnostic error of digital radiography for gastric cancer.We are often interested in estimating sensitivity and specificity of a group of raters or a set of new diagnostic tests in situations in which gold standard evaluation is expensive or invasive. Numerous authors have proposed latent modeling approaches for estimating diagnostic error without a gold standard. Albert and Dodd showed that, when modeling without a gold standard, estimates of diagnostic error can be biased when the dependence structure between tests is misspecified. In addition, they showed that choosing between different models for this dependence structure is difficult in most practical situations. While these results caution against using these latent class models, the difficulties of obtaining gold standard verification remain a practical reality. We extend two classes of models to provide a compromise that collects gold standard information on a subset of subjects but incorporates information from both the verified and nonverified subjects during estimation. We examine the robustness of diagnostic error estimation with this approach and show that choosing between competing models is easier in this context. In our analytic work and simulations, we consider situations in which verification is completely at random as well as settings in which the probability of verification depends on the actual test results. We apply our methodological work to a study designed to estimate the diagnostic error of digital radiography for gastric cancer. |
Author | Albert, Paul S Dodd, Lori E |
Author_xml | – sequence: 1 givenname: Paul S surname: Albert fullname: Albert, Paul S – sequence: 2 givenname: Lori E surname: Dodd fullname: Dodd, Lori E |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20194403$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19802353$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kt1rUzEYxoNMXFf9BwQlCIo31Xyek3MxYcxuCpOJH-jdIU1y2pQ0qUnOpP-9OWu36YTmJiTv73nyvEmOwIEP3gDwFKM3GDfiLcIVwYyjGl0PSpoHYIQ5rSekZj8PwGgAJoVoDsFRSssBqoV4BA6LGhHK6QgsLj2cpmxXMls_h--tnPtQ1gqeKNVHqTbwLIYV_Jp7bU2CP2xewE-9y3btDPwis4kJSq_hZxmzlQ6eB6cLXbZk1HB6JV1frIN_DB520iXzZDePwfez6bfTD5OLy_OPpycXE1URkScd0pgZUVEuZprKutZYSSqIoJSpCvMSu-OikoYTNpsRw0zHuNZcV42c1R2lY_Bu67vuZyujlfE5SteuY2kxbtogbftvxdtFOw9XLak5p8V-DF7tDGL41ZuU25VNyjgnvQl9amklqqaqcAFf7wWxoJyzRtRDqBf30GXooy_3UI5lgouGD37P_05-G_nmsQrwcgfIpKTrovTKpluOINwwhgaObDkVQ0rRdHdWqB1-Tvv_zykicU-kbL5-uXJL1u2XPttKlymHeJenrhhCBJX68bZufRfiSv4O0ek2y40L8aYJusf_D9sT4m0 |
CODEN | JSTNAL |
CitedBy_id | crossref_primary_10_1080_08982112_2013_846065 crossref_primary_10_1016_j_csda_2014_11_006 crossref_primary_10_1080_10543406_2016_1226334 crossref_primary_10_1002_sim_3862 crossref_primary_10_1002_sim_8999 crossref_primary_10_1002_sim_6218 crossref_primary_10_1093_aje_kwt286 crossref_primary_10_1002_sim_9269 crossref_primary_10_1214_19_AOAS1256 crossref_primary_10_1080_24709360_2019_1673623 crossref_primary_10_1177_0962280212441965 crossref_primary_10_1016_j_measurement_2019_06_019 crossref_primary_10_1002_sim_9085 crossref_primary_10_1186_1472_6890_12_6 crossref_primary_10_1371_journal_pone_0223832 crossref_primary_10_1002_sim_3514 crossref_primary_10_1371_journal_pntd_0009042 crossref_primary_10_1016_j_prevetmed_2013_10_002 crossref_primary_10_1198_jasa_2009_0017 crossref_primary_10_1002_sim_6101 crossref_primary_10_1111_rssc_12122 crossref_primary_10_1002_sim_4440 crossref_primary_10_1002_sim_9157 crossref_primary_10_1080_08982112_2015_1086002 crossref_primary_10_1111_rssc_12101 crossref_primary_10_1002_sim_4422 crossref_primary_10_1016_j_jclinepi_2013_09_013 crossref_primary_10_1162_tacl_a_00185 crossref_primary_10_1177_0962280211421838 crossref_primary_10_1080_00224065_2016_11918155 crossref_primary_10_1002_sim_9033 |
Cites_doi | 10.1148/radiology.214.2.r00fe11497 10.2307/2530820 10.1111/j.0006-341X.2004.00187.x 10.2307/2289471 10.1128/JCM.42.7.2961-2965.2004 10.1093/biomet/88.4.973 10.2307/2533043 10.1097/00001648-199901000-00012 10.1111/j.0006-341X.2001.00610.x 10.1002/(SICI)1097-0258(19991130)18:22<2987::AID-SIM205>3.0.CO;2-B 10.1111/j.0006-341X.1999.00258.x 10.2307/2533339 10.1002/1521-4036(200207)44:5<603::AID-BIMJ603>3.0.CO;2-4 10.1289/ehp.94102s811 10.2307/2346482 10.1097/00001648-200207000-00010 10.1093/oxfordjournals.aje.a117323 10.1093/biomet/73.1.13 10.1111/1541-0420.00019 |
ContentType | Journal Article |
Copyright | American Statistical Association 2008 Copyright 2008 American Statistical Association 2008 INIST-CNRS Copyright American Statistical Association Mar 2008 |
Copyright_xml | – notice: American Statistical Association 2008 – notice: Copyright 2008 American Statistical Association – notice: 2008 INIST-CNRS – notice: Copyright American Statistical Association Mar 2008 |
DBID | AAYXX CITATION IQODW NPM 8BJ FQK JBE K9. 7X8 5PM |
DOI | 10.1198/016214507000000329 |
DatabaseName | CrossRef Pascal-Francis PubMed International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences (IBSS) MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Public Health |
EISSN | 1537-274X |
EndPage | 73 |
ExternalDocumentID | PMC2755302 1466220011 19802353 20194403 10_1198_016214507000000329 27640020 10710380 |
Genre | Article Journal Article Feature |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z99 HD999999 |
GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 2AX 30N 4.4 5GY 5RE 692 7WY 85S 8FL AABCJ AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABTAI ABXSQ ABXUL ABXYU ABYAD ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ACTWD ACUBG ADCVX ADGTB ADLSF ADMHG ADODI ADULT AEISY AELPN AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFSUE AFVYC AFXHP AGCQS AGDLA AGMYJ AHDZW AIJEM AKBVH AKOOK ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AQRUH AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P FEDTE FJW FVMVE GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HQ6 HZ~ H~9 H~P IAO IEA IGG IOF IPNFZ IPO IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K60 K6~ KYCEM LU7 M4Z MS~ MVM MW2 N95 NA5 NY~ O9- OFU OK1 P2P RIG RNANH RNS ROSJB RTWRZ RWL RXW S-T SA0 SJN SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM YYP ZGOLN ~S~ AAGDL AAHIA AAWIL ABAWQ ACHJO ADYSH AFRVT AGLNM AIHAF AIYEW AMPGV AAYXX CITATION .-4 .GJ 07G 1OL 3R3 7X7 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8G5 8R4 8R5 AAAVZ AAFWJ AAIKQ AAKBW ABEFU ABJCF ABRLO ABUWG ACAGQ ACGEE ADBBV ADXHL AEUMN AFKRA AFQQW AGLEN AGROQ AHMOU AI. ALCKM AMATQ AMEWO AMVHM AMXXU AQUVI AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BPHCQ BPLKW BVXVI C06 CCPQU CRFIH DMQIW DWIFK DWQXO E.L FRNLG FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HGD HMCUK HVGLF IQODW IVXBP K9- KQ8 L6V LJTGL M0C M0R M0T M1P M2O M2P M7S NHB NUSFT P-O PADUT PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQGLB PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL S0X TAQ TASJS TFMCV TOXWX UB9 UKHRP UQL VH1 VOH WHG YXB ZCG ZGI ZUP ZXP NPM 8BJ ACTCW FQK JBE K9. 7X8 5PM |
ID | FETCH-LOGICAL-c628t-f0d14e86358bd3a77d1ca3828334c615023f586ae524bb2e4ef45dd5d69ab7f33 |
ISSN | 0162-1459 |
IngestDate | Thu Aug 21 13:41:42 EDT 2025 Thu Aug 07 15:18:27 EDT 2025 Thu Jul 10 17:50:22 EDT 2025 Wed Aug 13 04:53:24 EDT 2025 Mon Jul 21 05:59:06 EDT 2025 Mon Jul 21 09:15:51 EDT 2025 Tue Jul 01 03:15:09 EDT 2025 Thu Apr 24 23:07:30 EDT 2025 Thu May 29 08:44:08 EDT 2025 Wed Dec 25 09:03:35 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 481 |
Keywords | Estimation error Error estimation Latent class models Estimator robustness Probability Non parametric estimation Statistical estimation Probability distribution Adaptive estimation Diagnostic error Statistical method Diagnostic test Simulation Experimental design Misclassification Application Latent class model Biased estimation Semilatent class models |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c628t-f0d14e86358bd3a77d1ca3828334c615023f586ae524bb2e4ef45dd5d69ab7f33 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
OpenAccessLink | http://doi.org/10.1198/016214507000000329 |
PMID | 19802353 |
PQID | 274858951 |
PQPubID | 41715 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_36869661 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2755302 pubmed_primary_19802353 proquest_miscellaneous_1835549873 crossref_primary_10_1198_016214507000000329 crossref_citationtrail_10_1198_016214507000000329 informaworld_taylorfrancis_310_1198_016214507000000329 proquest_journals_274858951 pascalfrancis_primary_20194403 jstor_primary_27640020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-03-01 |
PublicationDateYYYYMMDD | 2008-03-01 |
PublicationDate_xml | – month: 03 year: 2008 text: 2008-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA – name: United States – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationTitleAlternate | J Am Stat Assoc |
PublicationYear | 2008 |
Publisher | Taylor & Francis American Statistical Association Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: American Statistical Association – name: Taylor & Francis Ltd |
References | p_17 p_2 p_18 p_1 p_19 p_23 p_3 p_6 p_14 p_5 p_15 p_7 p_9 Irwig L. (p_13) 1994; 140 Tosteson T. D. (p_20) 1994; 102 p_10 p_21 p_22 Iinuma G. (p_11) 2000; 214 |
References_xml | – volume: 214 start-page: 497 year: 2000 ident: p_11 publication-title: Radiology doi: 10.1148/radiology.214.2.r00fe11497 – ident: p_6 doi: 10.2307/2530820 – ident: p_1 doi: 10.1111/j.0006-341X.2004.00187.x – ident: p_18 doi: 10.2307/2289471 – ident: p_22 doi: 10.1128/JCM.42.7.2961-2965.2004 – ident: p_9 doi: 10.1093/biomet/88.4.973 – ident: p_17 doi: 10.2307/2533043 – ident: p_23 doi: 10.1097/00001648-199901000-00012 – ident: p_2 doi: 10.1111/j.0006-341X.2001.00610.x – ident: p_3 doi: 10.1002/(SICI)1097-0258(19991130)18:22<2987::AID-SIM205>3.0.CO;2-B – ident: p_19 doi: 10.1111/j.0006-341X.1999.00258.x – ident: p_5 doi: 10.2307/2533339 – ident: p_10 doi: 10.1002/1521-4036(200207)44:5<603::AID-BIMJ603>3.0.CO;2-4 – volume: 102 start-page: 11 year: 1994 ident: p_20 publication-title: Environmental Health Perspectives doi: 10.1289/ehp.94102s811 – ident: p_7 doi: 10.2307/2346482 – ident: p_21 doi: 10.1097/00001648-200207000-00010 – volume: 140 start-page: 759 year: 1994 ident: p_13 publication-title: American Journal of Epidemiology doi: 10.1093/oxfordjournals.aje.a117323 – ident: p_15 doi: 10.1093/biomet/73.1.13 – ident: p_14 doi: 10.1111/1541-0420.00019 |
SSID | ssj0000788 |
Score | 2.0512035 |
Snippet | We are often interested in estimating sensitivity and specificity of a group of raters or a set of new diagnostic tests in situations in which gold standard... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref jstor informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 61 |
SubjectTerms | Accuracy Applications Applications and Case Studies Calculus of variations and optimal control Cancer Diagnosis Diagnostic error Diagnostic errors Digital technology Diseases Estimate reliability Estimation bias Exact sciences and technology Gastrointestinal diseases General topics Gold standard Illness Latent class models Mathematical analysis Mathematics Medical diagnosis Medical errors Medical imaging Misclassification Modeling Parametric inference Parametric models Probability and statistics Public health Radiology Sampling bias Sciences and techniques of general use Semilatent class models Simulations Standardized tests Statistical analysis Statistical data Statistical methods Statistical models Statistics |
Title | On Estimating Diagnostic Accuracy From Studies With Multiple Raters and Partial Gold Standard Evaluation |
URI | https://www.tandfonline.com/doi/abs/10.1198/016214507000000329 https://www.jstor.org/stable/27640020 https://www.ncbi.nlm.nih.gov/pubmed/19802353 https://www.proquest.com/docview/274858951 https://www.proquest.com/docview/1835549873 https://www.proquest.com/docview/36869661 https://pubmed.ncbi.nlm.nih.gov/PMC2755302 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcukF8SqYQlkkbpHB9u7a62MFKRVSWwmlUm6WvbaVSpVTJc6FX8_MPvwgaQXNwYrs3U2082V2ZjLzDSGf61CUAITUryW4KLxSgZ8Knvi5qMNaqAQUJ9YOX1zG59f850IsJpPtsLqkLb6o33vrSh4jVbgHcsUq2f-QbLco3ID3IF-4goTh-k8yvmqmM_iJotEJDv93kzWHDKynSm3X2Mj9DKtHbK4gaIB2Ob1wGYS_ciTWNNUCuDbI6sfqVpufJrgw64jA77FgB1Upug9wq0mf98gcAYVcWq3LRewDrtjgXccGVusbWxXhYhCyT8LSqJnvtAMZRizjyA-5pf2unJZNfHCHFyM1HLAB3rhp5GLVquFrtwe0aX2yq_pTU84QI_c6KDL9YjacMqbUDtGuYjJ4Qp5G4F1g4wsWXPYHeKLblXbf3NVapfLr7vIje2bEdusyXDHdNt_A7tdmb_b5Mn-n5A5snPlz8syKlp4apL0gk6p5SQ47yW5ekeVVQ3vI0R5y1EGOIuSohRxFyFEHOWogRwFf1EKOIuSogxztIfeaXJ_N5t_Ofdusw1dxJFu_DsqQVxLsV1mULE-SMlQ5A3-eMa6w60DEaiHjvBIRL4qo4lXNRVmKMk7zIqkZOyIHzaqp3hKqVJGDG1FWKYe9ZkzCGYyWKwNztKjzyCOh2_JMWSZ7bKhym2mPNpXZrpg8Mu3m3BkelwdHx0NJZq0GuJVfxh6aeKRl3n1GlMQcXTKPnIxA0A8AH4vzgHnk2KEisypmA7O5FBKcII986p6C_sc_9fKmWm03GRzJ4BGkMoEVPt4zhsUyTsEQ98gbg7J-C1IkgBQwNxnhrxuA7PPjJ83NUrPQR4nuOPbusVt1TA57VfKeHLTrbfUBDPy2ONE_xz_tSPTO |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nc9MwENVAOdAL3wVTaMUMN8YltiRLOnYgIUATGGiH3lxZlkiH4jCJc4Bfz8qSnbqUHiCnzEgrJ5un9Vtl_Rah5zZhJQBBxlZAikKNHsSSUR4rZhPLNIfA6Z4dnkyz8RF9d8yOQ5_TZSirdDm09UIRTax2m9sdRvsdLsVLoClOYBvQ2rxIKq-jG0xm3LUwIIPpOhTzpvGkmx-DgWyfmrl0jd6dqadb2tYqusJJtQTfWd_04jJWerG48tzdanQbnbTf0xepfNtb1cWe_nVBAvI_HHEH3QpMFu976N1F10x1D2068uq1n--j2YcKD-G9I8XVV_zaV_XBGN7XerVQ-iceLebfcahlxF9O6xmehApH_Ek54U8MHw5_dPiGa72Zn5X4czj8wMNOqPwBOhoND1-N49DZIdZZKurYDsqEGgFkRxQlUZyXiVYEkj9CqHYS9SmxTGTKsJQWRWqosZSVJSszqQpuCdlCG9W8Mo8Q1rpQwDlLIyl4AhJuCNiO5hDgLoVVaYSS9lfNdZA9d903zvIm_ZEi_9OJEXrR2fzwoh9Xzs7OgyWvm6OWAJGcXGW41cCqu0bKM-r4e4R2ejhbTwBCTumARGi7BV4eYs4SrKlgAhhzhJ51oxAs3D9AqjLz1TKH-A30UQoOK-z-ZQ7JRAY5MKzy0AN57QLp1AIZ2PIexLsJTqq8P1KdzhrJ8pQ37ake_6urdtHN8eHkID94O32_jTZ90Y4rBHyCNurFyjwFZlgXO83u_w38jlUi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgSGgv3DfCYDMSbyijie3YfpxYy7isTMDE3iLHFzox0qlNH-DXcxw76TrGHpanSD522tPPJ99xjz8j9MplzAAQZOoEpCjU6kEqGeWpYi5zTHMInH7v8OG4ODimH07YSVxwm8eySp9DuyAU0cZqP7nPjQsTXIo3wFK8vjaAtb1ILm-jO4VXDvdbOAbjZSTm7bmT3j6FDrLbNHPlGCsvphXZ0q5U0ddNqjm4zoUzL64ipZdrKy-8rEb3Udl9zVCj8nN30VS7-s8lBcib--EBuhd5LN4LwHuIbtn6EVr31DUoPz9Gk881HsK9p8T1D7wfavqgDe9pvZgp_RuPZtNfOFYy4u-nzQQfxvpG_EV52U8Mnw0feXTDs95Nzwz-Gpc-8LCXKX-CjkfDb28P0niuQ6qLXDSpG5iMWgFUR1SGKM5NphWB1I8Qqr1AfU4cE4WyLKdVlVtqHWXGMFNIVXFHyAZaq6e1fYqw1pUCxmmspOAJSLchXHuSQ4C5VE7lCcq6H7XUUfTcn71xVrbJjxTlv05M0Ou-z3mQ_LjWuriIlbJpF1oiQkpyXceNFlX9M3JeUM_eE7S9ArOlAdBxSgckQVsd7soYcebQmwomgC8n6GXfCqHC__-jajtdzEuI3kAepeAwws5_bEghCsiAYZTNgOOlC6TXCmTQl68gvDfwQuWrLfXppBUsz3l7ONWzm7pqB9092h-Vn96PP26h9VCx46sAn6O1ZrawL4AWNtV2O_f_An8MU8Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Estimating+Diagnostic+Accuracy+From+Studies+With+Multiple+Raters+and+Partial+Gold+Standard+Evaluation&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Albert%2C+Paul+S&rft.au=Dodd%2C+Lori+E&rft.date=2008-03-01&rft.pub=Taylor+%26+Francis&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=103&rft.issue=481&rft.spage=61&rft.epage=73&rft_id=info:doi/10.1198%2F016214507000000329&rft.externalDocID=10710380 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |