On Estimating Diagnostic Accuracy From Studies With Multiple Raters and Partial Gold Standard Evaluation

We are often interested in estimating sensitivity and specificity of a group of raters or a set of new diagnostic tests in situations in which gold standard evaluation is expensive or invasive. Numerous authors have proposed latent modeling approaches for estimating diagnostic error without a gold s...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 103; no. 481; pp. 61 - 73
Main Authors Albert, Paul S, Dodd, Lori E
Format Journal Article
LanguageEnglish
Published Alexandria, VA Taylor & Francis 01.03.2008
American Statistical Association
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We are often interested in estimating sensitivity and specificity of a group of raters or a set of new diagnostic tests in situations in which gold standard evaluation is expensive or invasive. Numerous authors have proposed latent modeling approaches for estimating diagnostic error without a gold standard. Albert and Dodd showed that, when modeling without a gold standard, estimates of diagnostic error can be biased when the dependence structure between tests is misspecified. In addition, they showed that choosing between different models for this dependence structure is difficult in most practical situations. While these results caution against using these latent class models, the difficulties of obtaining gold standard verification remain a practical reality. We extend two classes of models to provide a compromise that collects gold standard information on a subset of subjects but incorporates information from both the verified and nonverified subjects during estimation. We examine the robustness of diagnostic error estimation with this approach and show that choosing between competing models is easier in this context. In our analytic work and simulations, we consider situations in which verification is completely at random as well as settings in which the probability of verification depends on the actual test results. We apply our methodological work to a study designed to estimate the diagnostic error of digital radiography for gastric cancer.
AbstractList We are often interested in estimating sensitivity and specificity of a group of raters or a set of new diagnostic tests in situations in which gold standard evaluation is expensive or invasive. Numerous authors have proposed latent modeling approaches for estimating diagnostic error without a gold standard. Albert and Dodd showed that, when modeling without a gold standard, estimates of diagnostic error can be biased when the dependence structure between tests is misspecified. In addition, they showed that choosing between different models for this dependence structure is difficult in most practical situations. While these results caution against using these latent class models, the difficulties of obtaining gold standard verification remain a practical reality. We extend two classes of models to provide a compromise that collects gold standard information on a subset of subjects but incorporates information from both the verified and nonverified subjects during estimation. We examine the robustness of diagnostic error estimation with this approach and show that choosing between competing models is easier in this context. In our analytic work and simulations, we consider situations in which verfication is completely at random as well as settings in which the probability of verification depends on the actual test results. We apply our methodological work to a study designed to estimate the diagnostic error of digital radiography for gastric cancer.
We are often interested in estimating sensitivity and specificity of a group of raters or a set of new diagnostic tests in situations in which gold standard evaluation is expensive or invasive. Numerous authors have proposed latent modeling approaches for estimating diagnostic error without a gold standard. Albert and Dodd showed that, when modeling without a gold standard, estimates of diagnostic error can be biased when the dependence structure between tests is misspecified. In addition, they showed that choosing between different models for this dependence structure is difficult in most practical situations. While these results caution against using these latent class models, the difficulties of obtaining gold standard verification remain a practical reality. We extend two classes of models to provide a compromise that collects gold standard information on a subset of subjects but incorporates information from both the verified and nonverified subjects during estimation. We examine the robustness of diagnostic error estimation with this approach and show that choosing between competing models is easier in this context. In our analytic work and simulations, we consider situations in which verification is completely at random as well as settings in which the probability of verification depends on the actual test results. We apply our methodological work to a study designed to estimate the diagnostic error of digital radiography for gastric cancer.
We are often interested in estimating sensitivity and specificity of a group of raters or a set of new diagnostic tests in situations in which gold standard evaluation is expensive or invasive. Numerous authors have proposed latent modeling approaches for estimating diagnostic error without a gold standard. Albert and Dodd showed that, when modeling without a gold standard, estimates of diagnostic error can he biased when the dependence structure between tests is misspecified. In addition, they showed that choosing between different models for this dependence structure is difficult in most practical situations. While these results caution against using these latent class models, the difficulties of obtaining gold standard verification remain a practical reality. We extend two classes of models to provide a compromise that collects gold standard information on a subset of subjects but incorporates information from both the verified and nonverified subjects during estimation. We examine the robustness of diagnostic error estimation with this approach and show that choosing between competing models is easier in this context. In our analytic work and simulations, we consider situations in which verification is completely at random as well as settings in which the probability of verification depends on the actual test results. We apply our methodological work to a study designed to estimate the diagnostic error of digital radiography for gastric cancer. [PUBLICATION ABSTRACT]
We are often interested in estimating sensitivity and specificity of a group of raters or a set of new diagnostic tests in situations in which gold standard evaluation is expensive or invasive. Numerous authors have proposed latent modeling approaches for estimating diagnostic error without a gold standard. Albert and Dodd showed that, when modeling without a gold standard, estimates of diagnostic error can be biased when the dependence structure between tests is misspecified. In addition, they showed that choosing between different models for this dependence structure is difficult in most practical situations. While these results caution against using these latent class models, the difficulties of obtaining gold standard verification remain a practical reality. We extend two classes of models to provide a compromise that collects gold standard information on a subset of subjects but incorporates information from both the verified and nonverified subjects during estimation. We examine the robustness of diagnostic error estimation with this approach and show that choosing between competing models is easier in this context. In our analytic work and simulations, we consider situations in which verification is completely at random as well as settings in which the probability of verification depends on the actual test results. We apply our methodological work to a study designed to estimate the diagnostic error of digital radiography for gastric cancer.We are often interested in estimating sensitivity and specificity of a group of raters or a set of new diagnostic tests in situations in which gold standard evaluation is expensive or invasive. Numerous authors have proposed latent modeling approaches for estimating diagnostic error without a gold standard. Albert and Dodd showed that, when modeling without a gold standard, estimates of diagnostic error can be biased when the dependence structure between tests is misspecified. In addition, they showed that choosing between different models for this dependence structure is difficult in most practical situations. While these results caution against using these latent class models, the difficulties of obtaining gold standard verification remain a practical reality. We extend two classes of models to provide a compromise that collects gold standard information on a subset of subjects but incorporates information from both the verified and nonverified subjects during estimation. We examine the robustness of diagnostic error estimation with this approach and show that choosing between competing models is easier in this context. In our analytic work and simulations, we consider situations in which verification is completely at random as well as settings in which the probability of verification depends on the actual test results. We apply our methodological work to a study designed to estimate the diagnostic error of digital radiography for gastric cancer.
Author Albert, Paul S
Dodd, Lori E
Author_xml – sequence: 1
  givenname: Paul S
  surname: Albert
  fullname: Albert, Paul S
– sequence: 2
  givenname: Lori E
  surname: Dodd
  fullname: Dodd, Lori E
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20194403$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19802353$$D View this record in MEDLINE/PubMed
BookMark eNp9kt1rUzEYxoNMXFf9BwQlCIo31Xyek3MxYcxuCpOJH-jdIU1y2pQ0qUnOpP-9OWu36YTmJiTv73nyvEmOwIEP3gDwFKM3GDfiLcIVwYyjGl0PSpoHYIQ5rSekZj8PwGgAJoVoDsFRSssBqoV4BA6LGhHK6QgsLj2cpmxXMls_h--tnPtQ1gqeKNVHqTbwLIYV_Jp7bU2CP2xewE-9y3btDPwis4kJSq_hZxmzlQ6eB6cLXbZk1HB6JV1frIN_DB520iXzZDePwfez6bfTD5OLy_OPpycXE1URkScd0pgZUVEuZprKutZYSSqIoJSpCvMSu-OikoYTNpsRw0zHuNZcV42c1R2lY_Bu67vuZyujlfE5SteuY2kxbtogbftvxdtFOw9XLak5p8V-DF7tDGL41ZuU25VNyjgnvQl9amklqqaqcAFf7wWxoJyzRtRDqBf30GXooy_3UI5lgouGD37P_05-G_nmsQrwcgfIpKTrovTKpluOINwwhgaObDkVQ0rRdHdWqB1-Tvv_zykicU-kbL5-uXJL1u2XPttKlymHeJenrhhCBJX68bZufRfiSv4O0ek2y40L8aYJusf_D9sT4m0
CODEN JSTNAL
CitedBy_id crossref_primary_10_1080_08982112_2013_846065
crossref_primary_10_1016_j_csda_2014_11_006
crossref_primary_10_1080_10543406_2016_1226334
crossref_primary_10_1002_sim_3862
crossref_primary_10_1002_sim_8999
crossref_primary_10_1002_sim_6218
crossref_primary_10_1093_aje_kwt286
crossref_primary_10_1002_sim_9269
crossref_primary_10_1214_19_AOAS1256
crossref_primary_10_1080_24709360_2019_1673623
crossref_primary_10_1177_0962280212441965
crossref_primary_10_1016_j_measurement_2019_06_019
crossref_primary_10_1002_sim_9085
crossref_primary_10_1186_1472_6890_12_6
crossref_primary_10_1371_journal_pone_0223832
crossref_primary_10_1002_sim_3514
crossref_primary_10_1371_journal_pntd_0009042
crossref_primary_10_1016_j_prevetmed_2013_10_002
crossref_primary_10_1198_jasa_2009_0017
crossref_primary_10_1002_sim_6101
crossref_primary_10_1111_rssc_12122
crossref_primary_10_1002_sim_4440
crossref_primary_10_1002_sim_9157
crossref_primary_10_1080_08982112_2015_1086002
crossref_primary_10_1111_rssc_12101
crossref_primary_10_1002_sim_4422
crossref_primary_10_1016_j_jclinepi_2013_09_013
crossref_primary_10_1162_tacl_a_00185
crossref_primary_10_1177_0962280211421838
crossref_primary_10_1080_00224065_2016_11918155
crossref_primary_10_1002_sim_9033
Cites_doi 10.1148/radiology.214.2.r00fe11497
10.2307/2530820
10.1111/j.0006-341X.2004.00187.x
10.2307/2289471
10.1128/JCM.42.7.2961-2965.2004
10.1093/biomet/88.4.973
10.2307/2533043
10.1097/00001648-199901000-00012
10.1111/j.0006-341X.2001.00610.x
10.1002/(SICI)1097-0258(19991130)18:22<2987::AID-SIM205>3.0.CO;2-B
10.1111/j.0006-341X.1999.00258.x
10.2307/2533339
10.1002/1521-4036(200207)44:5<603::AID-BIMJ603>3.0.CO;2-4
10.1289/ehp.94102s811
10.2307/2346482
10.1097/00001648-200207000-00010
10.1093/oxfordjournals.aje.a117323
10.1093/biomet/73.1.13
10.1111/1541-0420.00019
ContentType Journal Article
Copyright American Statistical Association 2008
Copyright 2008 American Statistical Association
2008 INIST-CNRS
Copyright American Statistical Association Mar 2008
Copyright_xml – notice: American Statistical Association 2008
– notice: Copyright 2008 American Statistical Association
– notice: 2008 INIST-CNRS
– notice: Copyright American Statistical Association Mar 2008
DBID AAYXX
CITATION
IQODW
NPM
8BJ
FQK
JBE
K9.
7X8
5PM
DOI 10.1198/016214507000000329
DatabaseName CrossRef
Pascal-Francis
PubMed
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList

International Bibliography of the Social Sciences (IBSS)

International Bibliography of the Social Sciences (IBSS)
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Public Health
EISSN 1537-274X
EndPage 73
ExternalDocumentID PMC2755302
1466220011
19802353
20194403
10_1198_016214507000000329
27640020
10710380
Genre Article
Journal Article
Feature
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z99 HD999999
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AABCJ
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABTAI
ABXSQ
ABXUL
ABXYU
ABYAD
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACTWD
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
AEISY
AELPN
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFSUE
AFVYC
AFXHP
AGCQS
AGDLA
AGMYJ
AHDZW
AIJEM
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FEDTE
FJW
FVMVE
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPNFZ
IPO
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K60
K6~
KYCEM
LU7
M4Z
MS~
MVM
MW2
N95
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SJN
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
YYP
ZGOLN
~S~
AAGDL
AAHIA
AAWIL
ABAWQ
ACHJO
ADYSH
AFRVT
AGLNM
AIHAF
AIYEW
AMPGV
AAYXX
CITATION
.-4
.GJ
07G
1OL
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAAVZ
AAFWJ
AAIKQ
AAKBW
ABEFU
ABJCF
ABRLO
ABUWG
ACAGQ
ACGEE
ADBBV
ADXHL
AEUMN
AFKRA
AFQQW
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMATQ
AMEWO
AMVHM
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CRFIH
DMQIW
DWIFK
DWQXO
E.L
FRNLG
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HVGLF
IQODW
IVXBP
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
NHB
NUSFT
P-O
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
S0X
TAQ
TASJS
TFMCV
TOXWX
UB9
UKHRP
UQL
VH1
VOH
WHG
YXB
ZCG
ZGI
ZUP
ZXP
NPM
8BJ
ACTCW
FQK
JBE
K9.
7X8
5PM
ID FETCH-LOGICAL-c628t-f0d14e86358bd3a77d1ca3828334c615023f586ae524bb2e4ef45dd5d69ab7f33
ISSN 0162-1459
IngestDate Thu Aug 21 13:41:42 EDT 2025
Thu Aug 07 15:18:27 EDT 2025
Thu Jul 10 17:50:22 EDT 2025
Wed Aug 13 04:53:24 EDT 2025
Mon Jul 21 05:59:06 EDT 2025
Mon Jul 21 09:15:51 EDT 2025
Tue Jul 01 03:15:09 EDT 2025
Thu Apr 24 23:07:30 EDT 2025
Thu May 29 08:44:08 EDT 2025
Wed Dec 25 09:03:35 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 481
Keywords Estimation error
Error estimation
Latent class models
Estimator robustness
Probability
Non parametric estimation
Statistical estimation
Probability distribution
Adaptive estimation
Diagnostic error
Statistical method
Diagnostic test
Simulation
Experimental design
Misclassification
Application
Latent class model
Biased estimation
Semilatent class models
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c628t-f0d14e86358bd3a77d1ca3828334c615023f586ae524bb2e4ef45dd5d69ab7f33
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
OpenAccessLink http://doi.org/10.1198/016214507000000329
PMID 19802353
PQID 274858951
PQPubID 41715
PageCount 13
ParticipantIDs proquest_miscellaneous_36869661
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2755302
pubmed_primary_19802353
proquest_miscellaneous_1835549873
crossref_primary_10_1198_016214507000000329
crossref_citationtrail_10_1198_016214507000000329
informaworld_taylorfrancis_310_1198_016214507000000329
proquest_journals_274858951
pascalfrancis_primary_20194403
jstor_primary_27640020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-03-01
PublicationDateYYYYMMDD 2008-03-01
PublicationDate_xml – month: 03
  year: 2008
  text: 2008-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: United States
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2008
Publisher Taylor & Francis
American Statistical Association
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association
– name: Taylor & Francis Ltd
References p_17
p_2
p_18
p_1
p_19
p_23
p_3
p_6
p_14
p_5
p_15
p_7
p_9
Irwig L. (p_13) 1994; 140
Tosteson T. D. (p_20) 1994; 102
p_10
p_21
p_22
Iinuma G. (p_11) 2000; 214
References_xml – volume: 214
  start-page: 497
  year: 2000
  ident: p_11
  publication-title: Radiology
  doi: 10.1148/radiology.214.2.r00fe11497
– ident: p_6
  doi: 10.2307/2530820
– ident: p_1
  doi: 10.1111/j.0006-341X.2004.00187.x
– ident: p_18
  doi: 10.2307/2289471
– ident: p_22
  doi: 10.1128/JCM.42.7.2961-2965.2004
– ident: p_9
  doi: 10.1093/biomet/88.4.973
– ident: p_17
  doi: 10.2307/2533043
– ident: p_23
  doi: 10.1097/00001648-199901000-00012
– ident: p_2
  doi: 10.1111/j.0006-341X.2001.00610.x
– ident: p_3
  doi: 10.1002/(SICI)1097-0258(19991130)18:22<2987::AID-SIM205>3.0.CO;2-B
– ident: p_19
  doi: 10.1111/j.0006-341X.1999.00258.x
– ident: p_5
  doi: 10.2307/2533339
– ident: p_10
  doi: 10.1002/1521-4036(200207)44:5<603::AID-BIMJ603>3.0.CO;2-4
– volume: 102
  start-page: 11
  year: 1994
  ident: p_20
  publication-title: Environmental Health Perspectives
  doi: 10.1289/ehp.94102s811
– ident: p_7
  doi: 10.2307/2346482
– ident: p_21
  doi: 10.1097/00001648-200207000-00010
– volume: 140
  start-page: 759
  year: 1994
  ident: p_13
  publication-title: American Journal of Epidemiology
  doi: 10.1093/oxfordjournals.aje.a117323
– ident: p_15
  doi: 10.1093/biomet/73.1.13
– ident: p_14
  doi: 10.1111/1541-0420.00019
SSID ssj0000788
Score 2.0512035
Snippet We are often interested in estimating sensitivity and specificity of a group of raters or a set of new diagnostic tests in situations in which gold standard...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
jstor
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 61
SubjectTerms Accuracy
Applications
Applications and Case Studies
Calculus of variations and optimal control
Cancer
Diagnosis
Diagnostic error
Diagnostic errors
Digital technology
Diseases
Estimate reliability
Estimation bias
Exact sciences and technology
Gastrointestinal diseases
General topics
Gold standard
Illness
Latent class models
Mathematical analysis
Mathematics
Medical diagnosis
Medical errors
Medical imaging
Misclassification
Modeling
Parametric inference
Parametric models
Probability and statistics
Public health
Radiology
Sampling bias
Sciences and techniques of general use
Semilatent class models
Simulations
Standardized tests
Statistical analysis
Statistical data
Statistical methods
Statistical models
Statistics
Title On Estimating Diagnostic Accuracy From Studies With Multiple Raters and Partial Gold Standard Evaluation
URI https://www.tandfonline.com/doi/abs/10.1198/016214507000000329
https://www.jstor.org/stable/27640020
https://www.ncbi.nlm.nih.gov/pubmed/19802353
https://www.proquest.com/docview/274858951
https://www.proquest.com/docview/1835549873
https://www.proquest.com/docview/36869661
https://pubmed.ncbi.nlm.nih.gov/PMC2755302
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcukF8SqYQlkkbpHB9u7a62MFKRVSWwmlUm6WvbaVSpVTJc6FX8_MPvwgaQXNwYrs3U2082V2ZjLzDSGf61CUAITUryW4KLxSgZ8Knvi5qMNaqAQUJ9YOX1zG59f850IsJpPtsLqkLb6o33vrSh4jVbgHcsUq2f-QbLco3ID3IF-4goTh-k8yvmqmM_iJotEJDv93kzWHDKynSm3X2Mj9DKtHbK4gaIB2Ob1wGYS_ciTWNNUCuDbI6sfqVpufJrgw64jA77FgB1Upug9wq0mf98gcAYVcWq3LRewDrtjgXccGVusbWxXhYhCyT8LSqJnvtAMZRizjyA-5pf2unJZNfHCHFyM1HLAB3rhp5GLVquFrtwe0aX2yq_pTU84QI_c6KDL9YjacMqbUDtGuYjJ4Qp5G4F1g4wsWXPYHeKLblXbf3NVapfLr7vIje2bEdusyXDHdNt_A7tdmb_b5Mn-n5A5snPlz8syKlp4apL0gk6p5SQ47yW5ekeVVQ3vI0R5y1EGOIuSohRxFyFEHOWogRwFf1EKOIuSogxztIfeaXJ_N5t_Ofdusw1dxJFu_DsqQVxLsV1mULE-SMlQ5A3-eMa6w60DEaiHjvBIRL4qo4lXNRVmKMk7zIqkZOyIHzaqp3hKqVJGDG1FWKYe9ZkzCGYyWKwNztKjzyCOh2_JMWSZ7bKhym2mPNpXZrpg8Mu3m3BkelwdHx0NJZq0GuJVfxh6aeKRl3n1GlMQcXTKPnIxA0A8AH4vzgHnk2KEisypmA7O5FBKcII986p6C_sc_9fKmWm03GRzJ4BGkMoEVPt4zhsUyTsEQ98gbg7J-C1IkgBQwNxnhrxuA7PPjJ83NUrPQR4nuOPbusVt1TA57VfKeHLTrbfUBDPy2ONE_xz_tSPTO
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nc9MwENVAOdAL3wVTaMUMN8YltiRLOnYgIUATGGiH3lxZlkiH4jCJc4Bfz8qSnbqUHiCnzEgrJ5un9Vtl_Rah5zZhJQBBxlZAikKNHsSSUR4rZhPLNIfA6Z4dnkyz8RF9d8yOQ5_TZSirdDm09UIRTax2m9sdRvsdLsVLoClOYBvQ2rxIKq-jG0xm3LUwIIPpOhTzpvGkmx-DgWyfmrl0jd6dqadb2tYqusJJtQTfWd_04jJWerG48tzdanQbnbTf0xepfNtb1cWe_nVBAvI_HHEH3QpMFu976N1F10x1D2068uq1n--j2YcKD-G9I8XVV_zaV_XBGN7XerVQ-iceLebfcahlxF9O6xmehApH_Ek54U8MHw5_dPiGa72Zn5X4czj8wMNOqPwBOhoND1-N49DZIdZZKurYDsqEGgFkRxQlUZyXiVYEkj9CqHYS9SmxTGTKsJQWRWqosZSVJSszqQpuCdlCG9W8Mo8Q1rpQwDlLIyl4AhJuCNiO5hDgLoVVaYSS9lfNdZA9d903zvIm_ZEi_9OJEXrR2fzwoh9Xzs7OgyWvm6OWAJGcXGW41cCqu0bKM-r4e4R2ejhbTwBCTumARGi7BV4eYs4SrKlgAhhzhJ51oxAs3D9AqjLz1TKH-A30UQoOK-z-ZQ7JRAY5MKzy0AN57QLp1AIZ2PIexLsJTqq8P1KdzhrJ8pQ37ake_6urdtHN8eHkID94O32_jTZ90Y4rBHyCNurFyjwFZlgXO83u_w38jlUi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgSGgv3DfCYDMSbyijie3YfpxYy7isTMDE3iLHFzox0qlNH-DXcxw76TrGHpanSD522tPPJ99xjz8j9MplzAAQZOoEpCjU6kEqGeWpYi5zTHMInH7v8OG4ODimH07YSVxwm8eySp9DuyAU0cZqP7nPjQsTXIo3wFK8vjaAtb1ILm-jO4VXDvdbOAbjZSTm7bmT3j6FDrLbNHPlGCsvphXZ0q5U0ddNqjm4zoUzL64ipZdrKy-8rEb3Udl9zVCj8nN30VS7-s8lBcib--EBuhd5LN4LwHuIbtn6EVr31DUoPz9Gk881HsK9p8T1D7wfavqgDe9pvZgp_RuPZtNfOFYy4u-nzQQfxvpG_EV52U8Mnw0feXTDs95Nzwz-Gpc-8LCXKX-CjkfDb28P0niuQ6qLXDSpG5iMWgFUR1SGKM5NphWB1I8Qqr1AfU4cE4WyLKdVlVtqHWXGMFNIVXFHyAZaq6e1fYqw1pUCxmmspOAJSLchXHuSQ4C5VE7lCcq6H7XUUfTcn71xVrbJjxTlv05M0Ou-z3mQ_LjWuriIlbJpF1oiQkpyXceNFlX9M3JeUM_eE7S9ArOlAdBxSgckQVsd7soYcebQmwomgC8n6GXfCqHC__-jajtdzEuI3kAepeAwws5_bEghCsiAYZTNgOOlC6TXCmTQl68gvDfwQuWrLfXppBUsz3l7ONWzm7pqB9092h-Vn96PP26h9VCx46sAn6O1ZrawL4AWNtV2O_f_An8MU8Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Estimating+Diagnostic+Accuracy+From+Studies+With+Multiple+Raters+and+Partial+Gold+Standard+Evaluation&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Albert%2C+Paul+S&rft.au=Dodd%2C+Lori+E&rft.date=2008-03-01&rft.pub=Taylor+%26+Francis&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=103&rft.issue=481&rft.spage=61&rft.epage=73&rft_id=info:doi/10.1198%2F016214507000000329&rft.externalDocID=10710380
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon