Template Independent Component Analysis: Targeted and Reliable Estimation of Subject-level Brain Networks Using Big Data Population Priors

Large brain imaging databases contain a wealth of information on brain organization in the populations they target, and on individual variability. While such databases have been used to study group-level features of populations directly, they are currently underutilized as a resource to inform singl...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 115; no. 531; pp. 1151 - 1177
Main Authors Mejia, Amanda F., Nebel, Mary Beth, Wang, Yikai, Caffo, Brian S., Guo, Ying
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 02.07.2020
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Large brain imaging databases contain a wealth of information on brain organization in the populations they target, and on individual variability. While such databases have been used to study group-level features of populations directly, they are currently underutilized as a resource to inform single-subject analysis. Here, we propose leveraging the information contained in large functional magnetic resonance imaging (fMRI) databases by establishing population priors to employ in an empirical Bayesian framework. We focus on estimation of brain networks as source signals in independent component analysis (ICA). We formulate a hierarchical "template" ICA model where source signals-including known population brain networks and subject-specific signals-are represented as latent variables. For estimation, we derive an expectation-maximization (EM) algorithm having an explicit solution. However, as this solution is computationally intractable, we also consider an approximate subspace algorithm and a faster two-stage approach. Through extensive simulation studies, we assess performance of both methods and compare with dual regression, a popular but ad-hoc method. The two proposed algorithms have similar performance, and both dramatically outperform dual regression. We also conduct a reliability study utilizing the Human Connectome Project and find that template ICA achieves substantially better performance than dual regression, achieving 75-250% higher intra-subject reliability. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
AbstractList Large brain imaging databases contain a wealth of information on brain organization in the populations they target, and on individual variability. While such databases have been used to study group-level features of populations directly, they are currently underutilized as a resource to inform single-subject analysis. Here, we propose leveraging the information contained in large functional magnetic resonance imaging (fMRI) databases by establishing population priors to employ in an empirical Bayesian framework. We focus on estimation of brain networks as source signals in independent component analysis (ICA). We formulate a hierarchical “template” ICA model where source signals—including known population brain networks and subject-specific signals—are represented as latent variables. For estimation, we derive an expectation maximization (EM) algorithm having an explicit solution. However, as this solution is computationally intractable, we also consider an approximate subspace algorithm and a faster two-stage approach. Through extensive simulation studies, we assess performance of both methods and compare with dual regression, a popular but ad-hoc method. The two proposed algorithms have similar performance, and both dramatically outperform dual regression. We also conduct a reliability study utilizing the Human Connectome Project and find that template ICA achieves substantially better performance than dual regression, achieving 75–250% higher intra-subject reliability.
Large brain imaging databases contain a wealth of information on brain organization in the populations they target, and on individual variability. While such databases have been used to study group-level features of populations directly, they are currently underutilized as a resource to inform single-subject analysis. Here, we propose leveraging the information contained in large functional magnetic resonance imaging (fMRI) databases by establishing population priors to employ in an empirical Bayesian framework. We focus on estimation of brain networks as source signals in independent component analysis (ICA). We formulate a hierarchical “template” ICA model where source signals—including known population brain networks and subject-specific signals—are represented as latent variables. For estimation, we derive an expectation–maximization (EM) algorithm having an explicit solution. However, as this solution is computationally intractable, we also consider an approximate subspace algorithm and a faster two-stage approach. Through extensive simulation studies, we assess performance of both methods and compare with dual regression, a popular but ad-hoc method. The two proposed algorithms have similar performance, and both dramatically outperform dual regression. We also conduct a reliability study utilizing the Human Connectome Project and find that template ICA achieves substantially better performance than dual regression, achieving 75–250% higher intra-subject reliability. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
Large brain imaging databases contain a wealth of information on brain organization in the populations they target, and on individual variability. While such databases have been used to study group-level features of populations directly, they are currently underutilized as a resource to inform single-subject analysis. Here, we propose leveraging the information contained in large functional magnetic resonance imaging (fMRI) databases by establishing population priors to employ in an empirical Bayesian framework. We focus on estimation of brain networks as source signals in independent component analysis (ICA). We formulate a hierarchical "template" ICA model where source signals-including known population brain networks and subject-specific signals-are represented as latent variables. For estimation, we derive an expectation-maximization (EM) algorithm having an explicit solution. However, as this solution is computationally intractable, we also consider an approximate subspace algorithm and a faster two-stage approach. Through extensive simulation studies, we assess performance of both methods and compare with dual regression, a popular but ad-hoc method. The two proposed algorithms have similar performance, and both dramatically outperform dual regression. We also conduct a reliability study utilizing the Human Connectome Project and find that template ICA achieves substantially better performance than dual regression, achieving 75-250% higher intra-subject reliability. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
Large brain imaging databases contain a wealth of information on brain organization in the populations they target, and on individual variability. While such databases have been used to study group-level features of populations directly, they are currently underutilized as a resource to inform single-subject analysis. Here, we propose leveraging the information contained in large functional magnetic resonance imaging (fMRI) databases by establishing population priors to employ in an empirical Bayesian framework. We focus on estimation of brain networks as source signals in independent component analysis (ICA). We formulate a hierarchical "template" ICA model where source signals-including known population brain networks and subject-specific signals-are represented as latent variables. For estimation, we derive an expectation maximization (EM) algorithm having an explicit solution. However, as this solution is computationally intractable, we also consider an approximate subspace algorithm and a faster two-stage approach. Through extensive simulation studies, we assess performance of both methods and compare with dual regression, a popular but ad-hoc method. The two proposed algorithms have similar performance, and both dramatically outperform dual regression. We also conduct a reliability study utilizing the Human Connectome Project and find that template ICA achieves substantially better performance than dual regression, achieving 75-250% higher intra-subject reliability.Large brain imaging databases contain a wealth of information on brain organization in the populations they target, and on individual variability. While such databases have been used to study group-level features of populations directly, they are currently underutilized as a resource to inform single-subject analysis. Here, we propose leveraging the information contained in large functional magnetic resonance imaging (fMRI) databases by establishing population priors to employ in an empirical Bayesian framework. We focus on estimation of brain networks as source signals in independent component analysis (ICA). We formulate a hierarchical "template" ICA model where source signals-including known population brain networks and subject-specific signals-are represented as latent variables. For estimation, we derive an expectation maximization (EM) algorithm having an explicit solution. However, as this solution is computationally intractable, we also consider an approximate subspace algorithm and a faster two-stage approach. Through extensive simulation studies, we assess performance of both methods and compare with dual regression, a popular but ad-hoc method. The two proposed algorithms have similar performance, and both dramatically outperform dual regression. We also conduct a reliability study utilizing the Human Connectome Project and find that template ICA achieves substantially better performance than dual regression, achieving 75-250% higher intra-subject reliability.
Author Caffo, Brian S.
Nebel, Mary Beth
Mejia, Amanda F.
Guo, Ying
Wang, Yikai
AuthorAffiliation 3 Department of Neurology, Johns Hopkins University, Baltimore, MD 21205
5 Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205
1 Department of Statistics, Indiana University, Bloomington, IN 47408
4 Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322
2 Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205
AuthorAffiliation_xml – name: 3 Department of Neurology, Johns Hopkins University, Baltimore, MD 21205
– name: 5 Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205
– name: 4 Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322
– name: 1 Department of Statistics, Indiana University, Bloomington, IN 47408
– name: 2 Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205
Author_xml – sequence: 1
  givenname: Amanda F.
  surname: Mejia
  fullname: Mejia, Amanda F.
  email: afmejia@iu.edu
  organization: Department of Statistics, Indiana University
– sequence: 2
  givenname: Mary Beth
  surname: Nebel
  fullname: Nebel, Mary Beth
  organization: Department of Neurology, Johns Hopkins University
– sequence: 3
  givenname: Yikai
  surname: Wang
  fullname: Wang, Yikai
  organization: Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University
– sequence: 4
  givenname: Brian S.
  surname: Caffo
  fullname: Caffo, Brian S.
  organization: Department of Biostatistics, Johns Hopkins University
– sequence: 5
  givenname: Ying
  surname: Guo
  fullname: Guo, Ying
  organization: Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33060872$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1DAUhiNURKeFRwBZYsMmg2PHcQJSRTstUKmCCqYSO8tJTgYPjh1sp2heoU-Nw0wr6IJ64Yv8_ed-kOwZayBJnmd4nuESv8ZZQbKcVXOCs2qeFbwqaPkomWWM8pTw_NteMpuYdIL2kwPv1zguXpZPkn1KcYFLTmbJzRL6QcsA6Ny0MEDcTEAL2w_RXbwdG6k3Xvk3aCndCgK0SJoWfQGtZK0BnfmgehmUNch26OtYr6EJqYZr0OjESWXQJwi_rPvh0ZVXZoVO1AqdyiDRpR1GvVVeOmWdf5o87qT28Gx3HiZX78-Wi4_pxecP54vji7QpSBlSaMuOAMZ1C1WOS0owaUkeH4Ab2lS8LHDLu5pRkgElJObc8aplTdPVLaeY0sPkaGt3GOse2iam6aQWg4uJuI2wUol_f4z6Llb2WnDGCk6raODVzoCzP0fwQfTKN6C1NGBHLwgjOc14xdjDaM6yMi94OaEv76FrO7pY_omiFSmqoph8v_g7-LuobzsaAbYFGme9d9DdIRkW0-SI28kR0-SI3eRE3dt7ukaFP-2JNVD6QfW7rVqZzrpexo7rVgS50dZ1TppGeUH_b-I3tbPdfg
CitedBy_id crossref_primary_10_1371_journal_pone_0270556
crossref_primary_10_1002_hbm_26472
crossref_primary_10_20900_agmr20230010
crossref_primary_10_1146_annurev_statistics_040522_100329
crossref_primary_10_1162_imag_a_00504
crossref_primary_10_1093_scan_nsac020
crossref_primary_10_1016_j_neuroimage_2022_119434
crossref_primary_10_1162_netn_a_00323
crossref_primary_10_1111_biom_13537
crossref_primary_10_1111_biom_13867
crossref_primary_10_1007_s11682_024_00940_4
crossref_primary_10_1016_j_neuroimage_2022_118877
crossref_primary_10_1016_j_neuroimage_2023_119933
crossref_primary_10_1016_j_bpsgos_2021_06_003
crossref_primary_10_1002_brb3_1942
crossref_primary_10_1016_j_neuroimage_2022_118908
crossref_primary_10_1080_01621459_2024_2370593
crossref_primary_10_1080_10618600_2022_2104289
crossref_primary_10_1073_pnas_2203020119
crossref_primary_10_1016_j_asoc_2021_107691
crossref_primary_10_1214_22_AOAS1640
crossref_primary_10_1214_22_AOAS1670
crossref_primary_10_1080_03610926_2020_1776327
Cites_doi 10.1016/j.neuroimage.2013.04.127
10.1016/j.jalz.2016.10.006
10.1111/j.1467-9868.2008.00700.x
10.1016/j.neuroimage.2013.11.046
10.1016/j.neuron.2015.09.027
10.1162/neco.1995.7.6.1129
10.1016/j.dcn.2018.03.001
10.1111/biom.12068
10.1016/j.biopsych.2015.08.029
10.1073/pnas.0905267106
10.1002/hbm.1048
10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
10.1038/sdata.2016.110
10.1080/01621459.2019.1611582
10.1073/pnas.0911855107
10.1098/rstb.2005.1634
10.1002/hbm.21170
10.3389/fninf.2015.00008
10.1016/j.neuroimage.2014.03.034
10.1016/j.neuroimage.2012.11.008
10.1016/j.jalz.2010.03.007
10.1016/j.jalz.2013.05.1769
10.1111/j.1541-0420.2011.01601.x
10.1016/j.neuroimage.2013.07.064
10.1016/j.neuroimage.2013.05.041
10.1038/sdata.2017.10
10.3389/fnhum.2014.00897
10.1016/j.neuroimage.2005.08.035
10.1016/j.neuroimage.2013.05.039
10.1038/nn.4478
10.1038/mp.2013.78
10.1111/j.1467-9868.2011.00777.x
10.1016/S1053-8119(09)71511-3
10.1016/j.neuroimage.2018.12.024
10.1016/j.neuroimage.2009.10.080
10.3758/s13415-013-0196-0
10.1073/pnas.0601417103
10.1162/neco.1997.9.7.1483
10.1093/cercor/bhs352
10.1214/16-AOAS946
ContentType Journal Article
Copyright 2019 American Statistical Association 2019
2019 American Statistical Association
Copyright_xml – notice: 2019 American Statistical Association 2019
– notice: 2019 American Statistical Association
DBID AAYXX
CITATION
NPM
8BJ
FQK
JBE
K9.
7X8
7S9
L.6
5PM
DOI 10.1080/01621459.2019.1679638
DatabaseName CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
International Bibliography of the Social Sciences (IBSS)

MEDLINE - Academic
PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 1177
ExternalDocumentID PMC7556739
33060872
10_1080_01621459_2019_1679638
1679638
Genre Article
Journal Article
GrantInformation_xml – fundername: National Center for Advancing Translational Sciences
– fundername: National Institute of Mental Health
– fundername: National Institute of Neurological Disorders and Stroke
– fundername: National Institute of Biomedical Imaging and Bioengineering
– fundername: NIMH NIH HHS
  grantid: K01 MH109766
– fundername: NIBIB NIH HHS
  grantid: R01 EB015032
– fundername: NIMH NIH HHS
  grantid: R01 MH105561
– fundername: NIBIB NIH HHS
  grantid: R01 EB027119
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABRLO
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
ADLSF
ADMHG
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFFNX
AFSUE
AFVYC
AFXHP
AGDLA
AGMYJ
AHDZW
AIJEM
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
FJW
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPNFZ
IPO
J.P
JAS
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
N95
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADXHL
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
.-4
.GJ
07G
1OL
2AX
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAFWJ
AAIKQ
AAKBW
AAWIL
ABAWQ
ABBHK
ABEFU
ABJCF
ABPQH
ABUWG
ABXSQ
ACAGQ
ACGEE
ACHJO
ACUBG
ADBBV
ADODI
ADULT
AEUMN
AEUPB
AFKRA
AFQQW
AGCQS
AGLEN
AGLNM
AGROQ
AHMOU
AI.
AIHAF
ALCKM
ALRMG
AMATQ
AMEWO
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CRFIH
DMQIW
DQDLB
DSRWC
DWIFK
DWQXO
E.L
ECEWR
EJD
FEDTE
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HQ6
HVGLF
IPSME
IVXBP
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
MVM
NHB
NPM
NUSFT
P-O
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNS
S0X
SA0
SJN
TAQ
TASJS
TFMCV
TOXWX
UB9
UKHRP
UQL
VH1
VOH
WHG
YXB
YYP
ZCG
ZGI
ZUP
ZXP
8BJ
FQK
JBE
K9.
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c628t-ed8f2e00bde94083202d24de9e0c3c97860d7fb5321e322000f79d5ccfbd73033
ISSN 0162-1459
1537-274X
IngestDate Thu Aug 21 18:29:49 EDT 2025
Fri Jul 11 18:22:44 EDT 2025
Fri Jul 11 04:27:04 EDT 2025
Sun Jul 27 14:59:49 EDT 2025
Mon Jul 21 06:03:58 EDT 2025
Tue Jul 01 02:39:32 EDT 2025
Thu Apr 24 23:09:37 EDT 2025
Wed Dec 25 09:09:51 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 531
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c628t-ed8f2e00bde94083202d24de9e0c3c97860d7fb5321e322000f79d5ccfbd73033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7556739
PMID 33060872
PQID 2439269669
PQPubID 41715
PageCount 27
ParticipantIDs pubmed_primary_33060872
crossref_primary_10_1080_01621459_2019_1679638
proquest_miscellaneous_2451846785
proquest_miscellaneous_2524317955
proquest_journals_2439269669
crossref_citationtrail_10_1080_01621459_2019_1679638
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7556739
informaworld_taylorfrancis_310_1080_01621459_2019_1679638
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-02
PublicationDateYYYYMMDD 2020-07-02
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
CIT0014
CIT0036
CIT0013
CIT0035
CIT0016
CIT0038
CIT0015
CIT0037
CIT0018
CIT0017
CIT0039
CIT0041
CIT0040
CIT0021
CIT0020
CIT0042
CIT0001
CIT0023
CIT0022
Minka T. P. (CIT0024) 2001
CIT0003
CIT0025
CIT0002
Hyvarinen A. (CIT0019) 2005
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0014
  doi: 10.1016/j.neuroimage.2013.04.127
– ident: CIT0040
  doi: 10.1016/j.jalz.2016.10.006
– ident: CIT0029
  doi: 10.1111/j.1467-9868.2008.00700.x
– ident: CIT0030
  doi: 10.1016/j.neuroimage.2013.11.046
– ident: CIT0026
  doi: 10.1016/j.neuron.2015.09.027
– ident: CIT0004
  doi: 10.1162/neco.1995.7.6.1129
– ident: CIT0007
  doi: 10.1016/j.dcn.2018.03.001
– ident: CIT0018
  doi: 10.1111/biom.12068
– ident: CIT0025
  doi: 10.1016/j.biopsych.2015.08.029
– ident: CIT0035
  doi: 10.1073/pnas.0905267106
– ident: CIT0006
  doi: 10.1002/hbm.1048
– ident: CIT0022
  doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
– ident: CIT0027
  doi: 10.1038/sdata.2016.110
– ident: CIT0023
  doi: 10.1080/01621459.2019.1611582
– volume-title: Independent Component Analysis
  year: 2005
  ident: CIT0019
– ident: CIT0005
  doi: 10.1073/pnas.0911855107
– ident: CIT0002
  doi: 10.1098/rstb.2005.1634
– ident: CIT0013
  doi: 10.1002/hbm.21170
– ident: CIT0015
  doi: 10.3389/fninf.2015.00008
– ident: CIT0016
  doi: 10.1016/j.neuroimage.2014.03.034
– ident: CIT0012
  doi: 10.1016/j.neuroimage.2012.11.008
– ident: CIT0038
  doi: 10.1016/j.jalz.2010.03.007
– ident: CIT0039
  doi: 10.1016/j.jalz.2013.05.1769
– ident: CIT0017
  doi: 10.1111/j.1541-0420.2011.01601.x
– volume-title: Advances in Neural Information Processing Systems
  year: 2001
  ident: CIT0024
– ident: CIT0031
  doi: 10.1016/j.neuroimage.2013.07.064
– ident: CIT0036
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: CIT0010
  doi: 10.1038/sdata.2017.10
– ident: CIT0028
  doi: 10.3389/fnhum.2014.00897
– ident: CIT0009
  doi: 10.1016/j.neuroimage.2005.08.035
– ident: CIT0034
  doi: 10.1016/j.neuroimage.2013.05.039
– ident: CIT0041
  doi: 10.1038/nn.4478
– ident: CIT0011
  doi: 10.1038/mp.2013.78
– ident: CIT0021
  doi: 10.1111/j.1467-9868.2011.00777.x
– ident: CIT0003
  doi: 10.1016/S1053-8119(09)71511-3
– ident: CIT0037
  doi: 10.1016/j.neuroimage.2018.12.024
– ident: CIT0042
  doi: 10.1016/j.neuroimage.2009.10.080
– ident: CIT0033
  doi: 10.3758/s13415-013-0196-0
– ident: CIT0008
  doi: 10.1073/pnas.0601417103
– ident: CIT0020
  doi: 10.1162/neco.1997.9.7.1483
– ident: CIT0001
  doi: 10.1093/cercor/bhs352
– ident: CIT0032
  doi: 10.1214/16-AOAS946
SSID ssj0000788
Score 2.465422
Snippet Large brain imaging databases contain a wealth of information on brain organization in the populations they target, and on individual variability. While such...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1151
SubjectTerms Algorithms
Applications and case studies
Bayesian analysis
Bayesian methods
Bayesian theory
Big Data
Brain
Brain size
Computationally intensive methods
Computer simulation
Empirical analysis
Expectation-maximization
Functional magnetic resonance imaging
humans
Independent component analysis
Magnetic resonance imaging
magnetism
Networks
Neuroimaging
Populations
Regression analysis
Reliability
Reliability analysis
Simulation
Statistical methods
Statistics
Wealth
Title Template Independent Component Analysis: Targeted and Reliable Estimation of Subject-level Brain Networks Using Big Data Population Priors
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2019.1679638
https://www.ncbi.nlm.nih.gov/pubmed/33060872
https://www.proquest.com/docview/2439269669
https://www.proquest.com/docview/2451846785
https://www.proquest.com/docview/2524317955
https://pubmed.ncbi.nlm.nih.gov/PMC7556739
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeNkL4k5hICPxVqVKndiJedtQpwmNsodWKk9R4jiQ0abTmj7AT-AP8Hc5vuUCFRu8RGnipEm-z8c-x-eC0Bsf1J4i5L6XxSJUy4zCy2Tge4TDWE2yTDBtcPswY2eL8P2SLgeDnx2vpV2djcX3vXEl_4MqHANcVZTsPyDb3BQOwD7gC1tAGLa3w1iur1YwWYRe7orZ1rqHbyq15xKOaBO69viWuQ1IXJU6ZGoKHXzdTBpBiCirjLdSjkSAelpWKiBYuW5tRzttVDgpPwNR6nR00RT-Gl1clxu7JvTnLLcTuaJrBdc6MfQeXugkwJfGdfd4rewbrdPxDDiwspFF30YnxgnNrgMYWfWp_JqW7XpKUWwMcbX46lo2QI1VVtOesZMRbxLajOFOWpvoT0tLaocQI33h3GTvsGD9KOF-6nbKoY-P1foTM5ll-mm4Zx-T08X5eTKfLud30F0C-ocSoIE_a4f4SBc0bR7QhYappO37_qQ36emlxN2n2Pzun9uZ8Mzvo3sWQ3xsaPcADWT1EB02EG4foR-Of7jDP9zwDzv-vcWOfRhwxY59uGUf3hS4xz6s2Ycd-7BmHwb2YcU-3LIPG_Y9RovT6fzdmWdre3iCkbj2ZB4XRPp-lkseghoA-OckhB_SF4HgUcz8PCoyGpCJhDEHPnkR8ZwKUWQ5DEpB8AQdVPAyzxAu0ohOslBAewnKAag8IpZBKvMwzBmn4RCF7uMnwia-V_VXVsnE5ce1mCUKs8RiNkTj5rIrk_nlpgt4F9mk1ia3wtTHSYIbrj1yNEisgNkmBJQFwjhjfIheN6dB_Ks1vbSSm51qQydKhYjpX9pQotQETqHNU8Os5o2CwGd-HJEhinqcaxqo9PP9M1X5RaehjyhlUcCf3-LZXqDDtoMfoYP6eidfwmS-zl7pjvULcgvzuA
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5V5UAvlH8WChgJjlkcx05iJA6Uttql7aqHrdRbiB0HVmyz1W5WCB6Bx-FVeCFm8ke3AnpAPXBLFDvy34y_GY-_AXjO0ezJpeaeia2kY0brGRdwT2jcq4UxNqwcboejcHAs352okzX43t6FobBKsqHzmiii0tUk3OSMbkPiXiJMIYJtumfi6z4dJOAqagIr992Xz2i2LV4Pd3COXwixtzt-O_CazAKeDUVcei6Lc-E4N5nTEkGI4CITEl8ct4FFwyrkWZQbFQjf4YpHtZFHOlPW5iZDkSAnKKr9a0qHEclWwEe_tH9U5bqkJnrUxvbW0J-avbIfrrCl_g7zXgzdPLcX7m3Cj3YU6xCYT_1lafr26wWCyf9rmG_CjQaasze1LN2CNVfchg1C4zWZ9R34NnanZ1NE52zYZQ8uGanUWUFPLcPLKzauAuxdxrD3jMK-6YYa28X_1FdF2SxnqLPJCeZNKW6LbVOuDjaqo_IXrArlYNuTD2wnLVN21OVZY0fzyWy-uAvHVzIW92C9wM48AJankfKNtFjeIRpGjG9jF6QukzILtZI9kO2SSmzD9E4JR6aJ3xLCNjOb0Mwmzcz2oN9VO6upTi6roM-v16SsfEx5nRAmCS6pu9Uu7qTRmotEIDoWIRrgugfPus-o7-gQKy3cbElllE-YOVZ_KaME4WKtsMz9Wl66HgVoI_M4Ej2IViSpK0B866tfisnHinc9UgrlXT_8h24_heuD8eFBcjAc7T-CDUHOGzorEFuwXs6X7jEi3NI8qVQKg_dXLVw_AXaiqCU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VRUK9UN4ECiwSHB3W613bi8SBkkYNhSiHVOrNZF8QkTpR4gjBT-Df8Ff4Rcz4RVMBPaAeuNnyrrWvmf1md-YbQp4yMHu8UCzQqRF4zWgC7SIWcAV7NdfaxOWB27thfHgs3pzIky3yvYmFQbdKtKF9RRRR6moU7oX1jUfcc0ApyK-NYSah6uI9Aiyi2q_yyH35DFbb6uWgB1P8jPP-wfj1YVAnFghMzNMicDb13DGmrVMCMAhn3HIBL46ZyIBdFTObeC0jHjpY8KA1fKKsNMZrCxKBZ6Cg9a_EGNiJUSNs-Ev5J2WqS2xigG1sgob-1OyN7XCDLPV3kPe85-aZrbC_S340g1h5wHzqrgvdNV_P8Uv-V6N8nVyrgTl9VUnSDbLl8ptkB7F4RWV9i3wbu9PFDLA5HbS5gwuKCnWe41PD7_KCjkv3emcpdJ6i0zfGp9ED-E8VKErnnoLGxiOwYIZeW3QfM3XQYeWTv6KlIwfdn36gvUkxoaM2yxodLafz5eo2Ob6UsbhDtnPozD1C_SSRoRYGyjvAwoDwTeqiibNC2FhJ0SGiWVGZqXneMd3ILAsbOth6ZjOc2aye2Q7pttUWFdHJRRXU2eWaFeUJk6_SwWTRBXX3mrWd1TpzlXHAxjwG81t1yJP2M2g7vMKa5G6-xjIyRMScyr-UkRxRsZJQ5m4lLm2PIrCQWZrwDkk2BKktgGzrm1_y6ceSdT2RMk4idf8fuv2YXB31-tnbwfDoAdnheHKDFwV8j2wXy7V7CPC20I9KhULJ-8uWrZ-Jc6bJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Template+Independent+Component+Analysis%3A+Targeted+and+Reliable+Estimation+of+Subject-level+Brain+Networks+using+Big+Data+Population+Priors&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Mejia%2C+Amanda+F&rft.au=Nebel%2C+Mary+Beth&rft.au=Wang%2C+Yikai&rft.au=Caffo%2C+Brian+S&rft.date=2020-07-02&rft.issn=0162-1459&rft.volume=115&rft.issue=531&rft.spage=1151&rft_id=info:doi/10.1080%2F01621459.2019.1679638&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon