Template Independent Component Analysis: Targeted and Reliable Estimation of Subject-level Brain Networks Using Big Data Population Priors
Large brain imaging databases contain a wealth of information on brain organization in the populations they target, and on individual variability. While such databases have been used to study group-level features of populations directly, they are currently underutilized as a resource to inform singl...
Saved in:
Published in | Journal of the American Statistical Association Vol. 115; no. 531; pp. 1151 - 1177 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
02.07.2020
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Large brain imaging databases contain a wealth of information on brain organization in the populations they target, and on individual variability. While such databases have been used to study group-level features of populations directly, they are currently underutilized as a resource to inform single-subject analysis. Here, we propose leveraging the information contained in large functional magnetic resonance imaging (fMRI) databases by establishing population priors to employ in an empirical Bayesian framework. We focus on estimation of brain networks as source signals in independent component analysis (ICA). We formulate a hierarchical "template" ICA model where source signals-including known population brain networks and subject-specific signals-are represented as latent variables. For estimation, we derive an expectation-maximization (EM) algorithm having an explicit solution. However, as this solution is computationally intractable, we also consider an approximate subspace algorithm and a faster two-stage approach. Through extensive simulation studies, we assess performance of both methods and compare with dual regression, a popular but ad-hoc method. The two proposed algorithms have similar performance, and both dramatically outperform dual regression. We also conduct a reliability study utilizing the Human Connectome Project and find that template ICA achieves substantially better performance than dual regression, achieving 75-250% higher intra-subject reliability.
Supplementary materials
for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement. |
---|---|
AbstractList | Large brain imaging databases contain a wealth of information on brain organization in the populations they target, and on individual variability. While such databases have been used to study group-level features of populations directly, they are currently underutilized as a resource to inform single-subject analysis. Here, we propose leveraging the information contained in large functional magnetic resonance imaging (fMRI) databases by establishing population priors to employ in an empirical Bayesian framework. We focus on estimation of brain networks as source signals in independent component analysis (ICA). We formulate a hierarchical “template” ICA model where source signals—including known population brain networks and subject-specific signals—are represented as latent variables. For estimation, we derive an expectation maximization (EM) algorithm having an explicit solution. However, as this solution is computationally intractable, we also consider an approximate subspace algorithm and a faster two-stage approach. Through extensive simulation studies, we assess performance of both methods and compare with dual regression, a popular but ad-hoc method. The two proposed algorithms have similar performance, and both dramatically outperform dual regression. We also conduct a reliability study utilizing the Human Connectome Project and find that template ICA achieves substantially better performance than dual regression, achieving 75–250% higher intra-subject reliability. Large brain imaging databases contain a wealth of information on brain organization in the populations they target, and on individual variability. While such databases have been used to study group-level features of populations directly, they are currently underutilized as a resource to inform single-subject analysis. Here, we propose leveraging the information contained in large functional magnetic resonance imaging (fMRI) databases by establishing population priors to employ in an empirical Bayesian framework. We focus on estimation of brain networks as source signals in independent component analysis (ICA). We formulate a hierarchical “template” ICA model where source signals—including known population brain networks and subject-specific signals—are represented as latent variables. For estimation, we derive an expectation–maximization (EM) algorithm having an explicit solution. However, as this solution is computationally intractable, we also consider an approximate subspace algorithm and a faster two-stage approach. Through extensive simulation studies, we assess performance of both methods and compare with dual regression, a popular but ad-hoc method. The two proposed algorithms have similar performance, and both dramatically outperform dual regression. We also conduct a reliability study utilizing the Human Connectome Project and find that template ICA achieves substantially better performance than dual regression, achieving 75–250% higher intra-subject reliability. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement. Large brain imaging databases contain a wealth of information on brain organization in the populations they target, and on individual variability. While such databases have been used to study group-level features of populations directly, they are currently underutilized as a resource to inform single-subject analysis. Here, we propose leveraging the information contained in large functional magnetic resonance imaging (fMRI) databases by establishing population priors to employ in an empirical Bayesian framework. We focus on estimation of brain networks as source signals in independent component analysis (ICA). We formulate a hierarchical "template" ICA model where source signals-including known population brain networks and subject-specific signals-are represented as latent variables. For estimation, we derive an expectation-maximization (EM) algorithm having an explicit solution. However, as this solution is computationally intractable, we also consider an approximate subspace algorithm and a faster two-stage approach. Through extensive simulation studies, we assess performance of both methods and compare with dual regression, a popular but ad-hoc method. The two proposed algorithms have similar performance, and both dramatically outperform dual regression. We also conduct a reliability study utilizing the Human Connectome Project and find that template ICA achieves substantially better performance than dual regression, achieving 75-250% higher intra-subject reliability. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement. Large brain imaging databases contain a wealth of information on brain organization in the populations they target, and on individual variability. While such databases have been used to study group-level features of populations directly, they are currently underutilized as a resource to inform single-subject analysis. Here, we propose leveraging the information contained in large functional magnetic resonance imaging (fMRI) databases by establishing population priors to employ in an empirical Bayesian framework. We focus on estimation of brain networks as source signals in independent component analysis (ICA). We formulate a hierarchical "template" ICA model where source signals-including known population brain networks and subject-specific signals-are represented as latent variables. For estimation, we derive an expectation maximization (EM) algorithm having an explicit solution. However, as this solution is computationally intractable, we also consider an approximate subspace algorithm and a faster two-stage approach. Through extensive simulation studies, we assess performance of both methods and compare with dual regression, a popular but ad-hoc method. The two proposed algorithms have similar performance, and both dramatically outperform dual regression. We also conduct a reliability study utilizing the Human Connectome Project and find that template ICA achieves substantially better performance than dual regression, achieving 75-250% higher intra-subject reliability.Large brain imaging databases contain a wealth of information on brain organization in the populations they target, and on individual variability. While such databases have been used to study group-level features of populations directly, they are currently underutilized as a resource to inform single-subject analysis. Here, we propose leveraging the information contained in large functional magnetic resonance imaging (fMRI) databases by establishing population priors to employ in an empirical Bayesian framework. We focus on estimation of brain networks as source signals in independent component analysis (ICA). We formulate a hierarchical "template" ICA model where source signals-including known population brain networks and subject-specific signals-are represented as latent variables. For estimation, we derive an expectation maximization (EM) algorithm having an explicit solution. However, as this solution is computationally intractable, we also consider an approximate subspace algorithm and a faster two-stage approach. Through extensive simulation studies, we assess performance of both methods and compare with dual regression, a popular but ad-hoc method. The two proposed algorithms have similar performance, and both dramatically outperform dual regression. We also conduct a reliability study utilizing the Human Connectome Project and find that template ICA achieves substantially better performance than dual regression, achieving 75-250% higher intra-subject reliability. |
Author | Caffo, Brian S. Nebel, Mary Beth Mejia, Amanda F. Guo, Ying Wang, Yikai |
AuthorAffiliation | 3 Department of Neurology, Johns Hopkins University, Baltimore, MD 21205 5 Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205 1 Department of Statistics, Indiana University, Bloomington, IN 47408 4 Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322 2 Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205 |
AuthorAffiliation_xml | – name: 3 Department of Neurology, Johns Hopkins University, Baltimore, MD 21205 – name: 5 Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205 – name: 4 Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322 – name: 1 Department of Statistics, Indiana University, Bloomington, IN 47408 – name: 2 Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205 |
Author_xml | – sequence: 1 givenname: Amanda F. surname: Mejia fullname: Mejia, Amanda F. email: afmejia@iu.edu organization: Department of Statistics, Indiana University – sequence: 2 givenname: Mary Beth surname: Nebel fullname: Nebel, Mary Beth organization: Department of Neurology, Johns Hopkins University – sequence: 3 givenname: Yikai surname: Wang fullname: Wang, Yikai organization: Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University – sequence: 4 givenname: Brian S. surname: Caffo fullname: Caffo, Brian S. organization: Department of Biostatistics, Johns Hopkins University – sequence: 5 givenname: Ying surname: Guo fullname: Guo, Ying organization: Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33060872$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstu1DAUhiNURKeFRwBZYsMmg2PHcQJSRTstUKmCCqYSO8tJTgYPjh1sp2heoU-Nw0wr6IJ64Yv8_ed-kOwZayBJnmd4nuESv8ZZQbKcVXOCs2qeFbwqaPkomWWM8pTw_NteMpuYdIL2kwPv1zguXpZPkn1KcYFLTmbJzRL6QcsA6Ny0MEDcTEAL2w_RXbwdG6k3Xvk3aCndCgK0SJoWfQGtZK0BnfmgehmUNch26OtYr6EJqYZr0OjESWXQJwi_rPvh0ZVXZoVO1AqdyiDRpR1GvVVeOmWdf5o87qT28Gx3HiZX78-Wi4_pxecP54vji7QpSBlSaMuOAMZ1C1WOS0owaUkeH4Ab2lS8LHDLu5pRkgElJObc8aplTdPVLaeY0sPkaGt3GOse2iam6aQWg4uJuI2wUol_f4z6Llb2WnDGCk6raODVzoCzP0fwQfTKN6C1NGBHLwgjOc14xdjDaM6yMi94OaEv76FrO7pY_omiFSmqoph8v_g7-LuobzsaAbYFGme9d9DdIRkW0-SI28kR0-SI3eRE3dt7ukaFP-2JNVD6QfW7rVqZzrpexo7rVgS50dZ1TppGeUH_b-I3tbPdfg |
CitedBy_id | crossref_primary_10_1371_journal_pone_0270556 crossref_primary_10_1002_hbm_26472 crossref_primary_10_20900_agmr20230010 crossref_primary_10_1146_annurev_statistics_040522_100329 crossref_primary_10_1162_imag_a_00504 crossref_primary_10_1093_scan_nsac020 crossref_primary_10_1016_j_neuroimage_2022_119434 crossref_primary_10_1162_netn_a_00323 crossref_primary_10_1111_biom_13537 crossref_primary_10_1111_biom_13867 crossref_primary_10_1007_s11682_024_00940_4 crossref_primary_10_1016_j_neuroimage_2022_118877 crossref_primary_10_1016_j_neuroimage_2023_119933 crossref_primary_10_1016_j_bpsgos_2021_06_003 crossref_primary_10_1002_brb3_1942 crossref_primary_10_1016_j_neuroimage_2022_118908 crossref_primary_10_1080_01621459_2024_2370593 crossref_primary_10_1080_10618600_2022_2104289 crossref_primary_10_1073_pnas_2203020119 crossref_primary_10_1016_j_asoc_2021_107691 crossref_primary_10_1214_22_AOAS1640 crossref_primary_10_1214_22_AOAS1670 crossref_primary_10_1080_03610926_2020_1776327 |
Cites_doi | 10.1016/j.neuroimage.2013.04.127 10.1016/j.jalz.2016.10.006 10.1111/j.1467-9868.2008.00700.x 10.1016/j.neuroimage.2013.11.046 10.1016/j.neuron.2015.09.027 10.1162/neco.1995.7.6.1129 10.1016/j.dcn.2018.03.001 10.1111/biom.12068 10.1016/j.biopsych.2015.08.029 10.1073/pnas.0905267106 10.1002/hbm.1048 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 10.1038/sdata.2016.110 10.1080/01621459.2019.1611582 10.1073/pnas.0911855107 10.1098/rstb.2005.1634 10.1002/hbm.21170 10.3389/fninf.2015.00008 10.1016/j.neuroimage.2014.03.034 10.1016/j.neuroimage.2012.11.008 10.1016/j.jalz.2010.03.007 10.1016/j.jalz.2013.05.1769 10.1111/j.1541-0420.2011.01601.x 10.1016/j.neuroimage.2013.07.064 10.1016/j.neuroimage.2013.05.041 10.1038/sdata.2017.10 10.3389/fnhum.2014.00897 10.1016/j.neuroimage.2005.08.035 10.1016/j.neuroimage.2013.05.039 10.1038/nn.4478 10.1038/mp.2013.78 10.1111/j.1467-9868.2011.00777.x 10.1016/S1053-8119(09)71511-3 10.1016/j.neuroimage.2018.12.024 10.1016/j.neuroimage.2009.10.080 10.3758/s13415-013-0196-0 10.1073/pnas.0601417103 10.1162/neco.1997.9.7.1483 10.1093/cercor/bhs352 10.1214/16-AOAS946 |
ContentType | Journal Article |
Copyright | 2019 American Statistical Association 2019 2019 American Statistical Association |
Copyright_xml | – notice: 2019 American Statistical Association 2019 – notice: 2019 American Statistical Association |
DBID | AAYXX CITATION NPM 8BJ FQK JBE K9. 7X8 7S9 L.6 5PM |
DOI | 10.1080/01621459.2019.1679638 |
DatabaseName | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1537-274X |
EndPage | 1177 |
ExternalDocumentID | PMC7556739 33060872 10_1080_01621459_2019_1679638 1679638 |
Genre | Article Journal Article |
GrantInformation_xml | – fundername: National Center for Advancing Translational Sciences – fundername: National Institute of Mental Health – fundername: National Institute of Neurological Disorders and Stroke – fundername: National Institute of Biomedical Imaging and Bioengineering – fundername: NIMH NIH HHS grantid: K01 MH109766 – fundername: NIBIB NIH HHS grantid: R01 EB015032 – fundername: NIMH NIH HHS grantid: R01 MH105561 – fundername: NIBIB NIH HHS grantid: R01 EB027119 |
GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABRLO ABTAI ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ADCVX ADGTB ADLSF ADMHG AEISY AENEX AEOZL AEPSL AEYOC AFFNX AFSUE AFVYC AFXHP AGDLA AGMYJ AHDZW AIJEM AKBVH AKOOK ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P FJW GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HZ~ H~9 H~P IAO IEA IGG IOF IPNFZ IPO J.P JAS K60 K6~ KYCEM LU7 M4Z MS~ MW2 N95 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM ZGOLN ~S~ AAGDL AAHIA AAYXX ADXHL ADYSH AFRVT AIYEW AMPGV AMVHM CITATION .-4 .GJ 07G 1OL 2AX 3R3 7X7 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8G5 8R4 8R5 AAFWJ AAIKQ AAKBW AAWIL ABAWQ ABBHK ABEFU ABJCF ABPQH ABUWG ABXSQ ACAGQ ACGEE ACHJO ACUBG ADBBV ADODI ADULT AEUMN AEUPB AFKRA AFQQW AGCQS AGLEN AGLNM AGROQ AHMOU AI. AIHAF ALCKM ALRMG AMATQ AMEWO AMXXU AQUVI AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BPHCQ BPLKW BVXVI C06 CCPQU CRFIH DMQIW DQDLB DSRWC DWIFK DWQXO E.L ECEWR EJD FEDTE FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HGD HMCUK HQ6 HVGLF IPSME IVXBP JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K9- KQ8 L6V LJTGL M0C M0R M0T M1P M2O M2P M7S MVM NHB NPM NUSFT P-O PADUT PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQGLB PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RNS S0X SA0 SJN TAQ TASJS TFMCV TOXWX UB9 UKHRP UQL VH1 VOH WHG YXB YYP ZCG ZGI ZUP ZXP 8BJ FQK JBE K9. 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c628t-ed8f2e00bde94083202d24de9e0c3c97860d7fb5321e322000f79d5ccfbd73033 |
ISSN | 0162-1459 1537-274X |
IngestDate | Thu Aug 21 18:29:49 EDT 2025 Fri Jul 11 18:22:44 EDT 2025 Fri Jul 11 04:27:04 EDT 2025 Sun Jul 27 14:59:49 EDT 2025 Mon Jul 21 06:03:58 EDT 2025 Tue Jul 01 02:39:32 EDT 2025 Thu Apr 24 23:09:37 EDT 2025 Wed Dec 25 09:09:51 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 531 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c628t-ed8f2e00bde94083202d24de9e0c3c97860d7fb5321e322000f79d5ccfbd73033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7556739 |
PMID | 33060872 |
PQID | 2439269669 |
PQPubID | 41715 |
PageCount | 27 |
ParticipantIDs | pubmed_primary_33060872 crossref_primary_10_1080_01621459_2019_1679638 proquest_miscellaneous_2451846785 proquest_miscellaneous_2524317955 proquest_journals_2439269669 crossref_citationtrail_10_1080_01621459_2019_1679638 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7556739 informaworld_taylorfrancis_310_1080_01621459_2019_1679638 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-02 |
PublicationDateYYYYMMDD | 2020-07-02 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationTitleAlternate | J Am Stat Assoc |
PublicationYear | 2020 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 CIT0014 CIT0036 CIT0013 CIT0035 CIT0016 CIT0038 CIT0015 CIT0037 CIT0018 CIT0017 CIT0039 CIT0041 CIT0040 CIT0021 CIT0020 CIT0042 CIT0001 CIT0023 CIT0022 Minka T. P. (CIT0024) 2001 CIT0003 CIT0025 CIT0002 Hyvarinen A. (CIT0019) 2005 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
References_xml | – ident: CIT0014 doi: 10.1016/j.neuroimage.2013.04.127 – ident: CIT0040 doi: 10.1016/j.jalz.2016.10.006 – ident: CIT0029 doi: 10.1111/j.1467-9868.2008.00700.x – ident: CIT0030 doi: 10.1016/j.neuroimage.2013.11.046 – ident: CIT0026 doi: 10.1016/j.neuron.2015.09.027 – ident: CIT0004 doi: 10.1162/neco.1995.7.6.1129 – ident: CIT0007 doi: 10.1016/j.dcn.2018.03.001 – ident: CIT0018 doi: 10.1111/biom.12068 – ident: CIT0025 doi: 10.1016/j.biopsych.2015.08.029 – ident: CIT0035 doi: 10.1073/pnas.0905267106 – ident: CIT0006 doi: 10.1002/hbm.1048 – ident: CIT0022 doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 – ident: CIT0027 doi: 10.1038/sdata.2016.110 – ident: CIT0023 doi: 10.1080/01621459.2019.1611582 – volume-title: Independent Component Analysis year: 2005 ident: CIT0019 – ident: CIT0005 doi: 10.1073/pnas.0911855107 – ident: CIT0002 doi: 10.1098/rstb.2005.1634 – ident: CIT0013 doi: 10.1002/hbm.21170 – ident: CIT0015 doi: 10.3389/fninf.2015.00008 – ident: CIT0016 doi: 10.1016/j.neuroimage.2014.03.034 – ident: CIT0012 doi: 10.1016/j.neuroimage.2012.11.008 – ident: CIT0038 doi: 10.1016/j.jalz.2010.03.007 – ident: CIT0039 doi: 10.1016/j.jalz.2013.05.1769 – ident: CIT0017 doi: 10.1111/j.1541-0420.2011.01601.x – volume-title: Advances in Neural Information Processing Systems year: 2001 ident: CIT0024 – ident: CIT0031 doi: 10.1016/j.neuroimage.2013.07.064 – ident: CIT0036 doi: 10.1016/j.neuroimage.2013.05.041 – ident: CIT0010 doi: 10.1038/sdata.2017.10 – ident: CIT0028 doi: 10.3389/fnhum.2014.00897 – ident: CIT0009 doi: 10.1016/j.neuroimage.2005.08.035 – ident: CIT0034 doi: 10.1016/j.neuroimage.2013.05.039 – ident: CIT0041 doi: 10.1038/nn.4478 – ident: CIT0011 doi: 10.1038/mp.2013.78 – ident: CIT0021 doi: 10.1111/j.1467-9868.2011.00777.x – ident: CIT0003 doi: 10.1016/S1053-8119(09)71511-3 – ident: CIT0037 doi: 10.1016/j.neuroimage.2018.12.024 – ident: CIT0042 doi: 10.1016/j.neuroimage.2009.10.080 – ident: CIT0033 doi: 10.3758/s13415-013-0196-0 – ident: CIT0008 doi: 10.1073/pnas.0601417103 – ident: CIT0020 doi: 10.1162/neco.1997.9.7.1483 – ident: CIT0001 doi: 10.1093/cercor/bhs352 – ident: CIT0032 doi: 10.1214/16-AOAS946 |
SSID | ssj0000788 |
Score | 2.465422 |
Snippet | Large brain imaging databases contain a wealth of information on brain organization in the populations they target, and on individual variability. While such... |
SourceID | pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1151 |
SubjectTerms | Algorithms Applications and case studies Bayesian analysis Bayesian methods Bayesian theory Big Data Brain Brain size Computationally intensive methods Computer simulation Empirical analysis Expectation-maximization Functional magnetic resonance imaging humans Independent component analysis Magnetic resonance imaging magnetism Networks Neuroimaging Populations Regression analysis Reliability Reliability analysis Simulation Statistical methods Statistics Wealth |
Title | Template Independent Component Analysis: Targeted and Reliable Estimation of Subject-level Brain Networks Using Big Data Population Priors |
URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2019.1679638 https://www.ncbi.nlm.nih.gov/pubmed/33060872 https://www.proquest.com/docview/2439269669 https://www.proquest.com/docview/2451846785 https://www.proquest.com/docview/2524317955 https://pubmed.ncbi.nlm.nih.gov/PMC7556739 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeNkL4k5hICPxVqVKndiJedtQpwmNsodWKk9R4jiQ0abTmj7AT-AP8Hc5vuUCFRu8RGnipEm-z8c-x-eC0Bsf1J4i5L6XxSJUy4zCy2Tge4TDWE2yTDBtcPswY2eL8P2SLgeDnx2vpV2djcX3vXEl_4MqHANcVZTsPyDb3BQOwD7gC1tAGLa3w1iur1YwWYRe7orZ1rqHbyq15xKOaBO69viWuQ1IXJU6ZGoKHXzdTBpBiCirjLdSjkSAelpWKiBYuW5tRzttVDgpPwNR6nR00RT-Gl1clxu7JvTnLLcTuaJrBdc6MfQeXugkwJfGdfd4rewbrdPxDDiwspFF30YnxgnNrgMYWfWp_JqW7XpKUWwMcbX46lo2QI1VVtOesZMRbxLajOFOWpvoT0tLaocQI33h3GTvsGD9KOF-6nbKoY-P1foTM5ll-mm4Zx-T08X5eTKfLud30F0C-ocSoIE_a4f4SBc0bR7QhYappO37_qQ36emlxN2n2Pzun9uZ8Mzvo3sWQ3xsaPcADWT1EB02EG4foR-Of7jDP9zwDzv-vcWOfRhwxY59uGUf3hS4xz6s2Ycd-7BmHwb2YcU-3LIPG_Y9RovT6fzdmWdre3iCkbj2ZB4XRPp-lkseghoA-OckhB_SF4HgUcz8PCoyGpCJhDEHPnkR8ZwKUWQ5DEpB8AQdVPAyzxAu0ohOslBAewnKAag8IpZBKvMwzBmn4RCF7uMnwia-V_VXVsnE5ce1mCUKs8RiNkTj5rIrk_nlpgt4F9mk1ia3wtTHSYIbrj1yNEisgNkmBJQFwjhjfIheN6dB_Ks1vbSSm51qQydKhYjpX9pQotQETqHNU8Os5o2CwGd-HJEhinqcaxqo9PP9M1X5RaehjyhlUcCf3-LZXqDDtoMfoYP6eidfwmS-zl7pjvULcgvzuA |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5V5UAvlH8WChgJjlkcx05iJA6Uttql7aqHrdRbiB0HVmyz1W5WCB6Bx-FVeCFm8ke3AnpAPXBLFDvy34y_GY-_AXjO0ezJpeaeia2kY0brGRdwT2jcq4UxNqwcboejcHAs352okzX43t6FobBKsqHzmiii0tUk3OSMbkPiXiJMIYJtumfi6z4dJOAqagIr992Xz2i2LV4Pd3COXwixtzt-O_CazAKeDUVcei6Lc-E4N5nTEkGI4CITEl8ct4FFwyrkWZQbFQjf4YpHtZFHOlPW5iZDkSAnKKr9a0qHEclWwEe_tH9U5bqkJnrUxvbW0J-avbIfrrCl_g7zXgzdPLcX7m3Cj3YU6xCYT_1lafr26wWCyf9rmG_CjQaasze1LN2CNVfchg1C4zWZ9R34NnanZ1NE52zYZQ8uGanUWUFPLcPLKzauAuxdxrD3jMK-6YYa28X_1FdF2SxnqLPJCeZNKW6LbVOuDjaqo_IXrArlYNuTD2wnLVN21OVZY0fzyWy-uAvHVzIW92C9wM48AJankfKNtFjeIRpGjG9jF6QukzILtZI9kO2SSmzD9E4JR6aJ3xLCNjOb0Mwmzcz2oN9VO6upTi6roM-v16SsfEx5nRAmCS6pu9Uu7qTRmotEIDoWIRrgugfPus-o7-gQKy3cbElllE-YOVZ_KaME4WKtsMz9Wl66HgVoI_M4Ej2IViSpK0B866tfisnHinc9UgrlXT_8h24_heuD8eFBcjAc7T-CDUHOGzorEFuwXs6X7jEi3NI8qVQKg_dXLVw_AXaiqCU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VRUK9UN4ECiwSHB3W613bi8SBkkYNhSiHVOrNZF8QkTpR4gjBT-Df8Ff4Rcz4RVMBPaAeuNnyrrWvmf1md-YbQp4yMHu8UCzQqRF4zWgC7SIWcAV7NdfaxOWB27thfHgs3pzIky3yvYmFQbdKtKF9RRRR6moU7oX1jUfcc0ApyK-NYSah6uI9Aiyi2q_yyH35DFbb6uWgB1P8jPP-wfj1YVAnFghMzNMicDb13DGmrVMCMAhn3HIBL46ZyIBdFTObeC0jHjpY8KA1fKKsNMZrCxKBZ6Cg9a_EGNiJUSNs-Ev5J2WqS2xigG1sgob-1OyN7XCDLPV3kPe85-aZrbC_S340g1h5wHzqrgvdNV_P8Uv-V6N8nVyrgTl9VUnSDbLl8ptkB7F4RWV9i3wbu9PFDLA5HbS5gwuKCnWe41PD7_KCjkv3emcpdJ6i0zfGp9ED-E8VKErnnoLGxiOwYIZeW3QfM3XQYeWTv6KlIwfdn36gvUkxoaM2yxodLafz5eo2Ob6UsbhDtnPozD1C_SSRoRYGyjvAwoDwTeqiibNC2FhJ0SGiWVGZqXneMd3ILAsbOth6ZjOc2aye2Q7pttUWFdHJRRXU2eWaFeUJk6_SwWTRBXX3mrWd1TpzlXHAxjwG81t1yJP2M2g7vMKa5G6-xjIyRMScyr-UkRxRsZJQ5m4lLm2PIrCQWZrwDkk2BKktgGzrm1_y6ceSdT2RMk4idf8fuv2YXB31-tnbwfDoAdnheHKDFwV8j2wXy7V7CPC20I9KhULJ-8uWrZ-Jc6bJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Template+Independent+Component+Analysis%3A+Targeted+and+Reliable+Estimation+of+Subject-level+Brain+Networks+using+Big+Data+Population+Priors&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Mejia%2C+Amanda+F&rft.au=Nebel%2C+Mary+Beth&rft.au=Wang%2C+Yikai&rft.au=Caffo%2C+Brian+S&rft.date=2020-07-02&rft.issn=0162-1459&rft.volume=115&rft.issue=531&rft.spage=1151&rft_id=info:doi/10.1080%2F01621459.2019.1679638&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |