Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties
Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucida...
Saved in:
Published in | Science and technology of advanced materials Vol. 19; no. 1; pp. 370 - 380 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
31.12.2018
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm
3
(98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV
0.05
and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing. |
---|---|
AbstractList | Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm
3
(98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV
0.05
and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing. Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing. Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing.Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing. Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing. Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing. |
Author | Zhou, Kesong Kuang, Tongchun Zhang, Panpan Tan, Chaolin Ma, Wenyou Attard, Bonnie |
Author_xml | – sequence: 1 givenname: Chaolin orcidid: 0000-0003-2029-4600 surname: Tan fullname: Tan, Chaolin email: tclscut@163.com organization: School of Metallurgy & Materials, University of Birmingham – sequence: 2 givenname: Kesong surname: Zhou fullname: Zhou, Kesong email: kszhou2004@163.com organization: National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials – sequence: 3 givenname: Wenyou surname: Ma fullname: Ma, Wenyou organization: National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials – sequence: 4 givenname: Bonnie surname: Attard fullname: Attard, Bonnie organization: School of Metallurgy & Materials, University of Birmingham – sequence: 5 givenname: Panpan surname: Zhang fullname: Zhang, Panpan organization: National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials – sequence: 6 givenname: Tongchun surname: Kuang fullname: Kuang, Tongchun organization: School of Materials Science and Engineering, South China University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29707073$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkklv1TAUhSNURAf4CaBIbFiQh504sUMlBKoYKlViAaytG-c6z5VjBzt5qAv-O35DK9oFyAtP53y-ts9pduS8wyx7TsmKEkHeUNaIpm2bVUmoWFFW17Rmj7ITKrgo0oQdpXHSFFvRcXYa4zUhpKEle5Idly0nqVUn2e9vaFHNZoO5hYghH9HOxg251_naDOtiwqB9GMEpzKclYD4vbogzurf5BAFGnJOpx2gG9zr1LhptFMzGu7zDNWyMDzm4PnHVGlzasvkUfKLOBuPT7LEGG_HZoT_Lfnz6-P3iS3H19fPlxYerQjWlmAtURNSakabpOVeIZVv2tagBgWPLkVIglWiYACxVJyho0I1oed2B4jS9RXWWXe65vYdrOQUzQriRHozcLfgwSEgFKYtSg-qYaESXzmB1OkZpLXoGnIiGdlwl1rs9a1q6EXuFbg5g70Hv7zizloPfyLqlnDGSAK8OgOB_LhhnOZqo0Fpw6JcoS1KVvKVlJZL05QPptV-CS08ly4qRsiZsd7sXf1d0V8rtLydBvReo4GMMqO8klMhtmuRtmuQ2TfKQpuQ7f-BTZt79bbqYsf91v9-7jdsl6JcPtpcz3FgfdEiBMlFW_0b8AXUP5ak |
CitedBy_id | crossref_primary_10_1016_j_addma_2021_102444 crossref_primary_10_1016_j_ijrmhm_2022_106094 crossref_primary_10_1016_j_jnucmat_2021_153041 crossref_primary_10_2320_matertrans_MT_MLA2022005 crossref_primary_10_3390_met13081431 crossref_primary_10_1007_s40964_024_00739_1 crossref_primary_10_1016_j_ijrmhm_2022_105959 crossref_primary_10_1016_j_jmapro_2022_09_056 crossref_primary_10_1016_j_optlastec_2019_03_018 crossref_primary_10_1016_j_addma_2021_102574 crossref_primary_10_1021_acsomega_4c06723 crossref_primary_10_1016_j_matchar_2024_114242 crossref_primary_10_1016_j_jallcom_2021_161841 crossref_primary_10_1016_j_matchemphys_2024_129962 crossref_primary_10_1016_j_ultsonch_2020_105232 crossref_primary_10_1016_j_addma_2022_103009 crossref_primary_10_1016_j_jmapro_2022_08_005 crossref_primary_10_3390_technologies7010005 crossref_primary_10_1016_j_matdes_2018_12_010 crossref_primary_10_1016_j_matdes_2020_108554 crossref_primary_10_1088_2053_1591_ab45b0 crossref_primary_10_1016_j_wear_2020_203437 crossref_primary_10_1557_jmr_2020_71 crossref_primary_10_1016_j_cjmeam_2022_100037 crossref_primary_10_1016_j_msea_2022_143096 crossref_primary_10_1016_j_addma_2024_104464 crossref_primary_10_1016_j_jnoncrysol_2020_120046 crossref_primary_10_1016_j_msea_2025_148004 crossref_primary_10_1063_5_0200464 crossref_primary_10_1016_j_mattod_2020_08_015 crossref_primary_10_1016_j_addma_2020_101613 crossref_primary_10_1016_j_surfcoat_2021_126884 crossref_primary_10_1007_s10853_022_07183_y crossref_primary_10_1002_adem_201901352 crossref_primary_10_1007_s11182_022_02755_6 crossref_primary_10_1016_j_jallcom_2021_159879 crossref_primary_10_1515_htmp_2020_0032 crossref_primary_10_1016_j_addlet_2022_100085 crossref_primary_10_1080_14686996_2024_2309888 crossref_primary_10_1016_j_ijrmhm_2019_105000 crossref_primary_10_1007_s40033_023_00497_4 crossref_primary_10_1109_TRPMS_2024_3376826 crossref_primary_10_1007_s11661_020_05803_3 crossref_primary_10_1016_j_actamat_2024_120379 crossref_primary_10_1016_j_ijrmhm_2019_105135 crossref_primary_10_3233_JCM_204672 crossref_primary_10_1016_j_ijrmhm_2023_106123 crossref_primary_10_1016_j_ijrmhm_2023_106365 crossref_primary_10_3390_qubs6010005 crossref_primary_10_1016_j_powtec_2022_117789 crossref_primary_10_1007_s11837_021_04966_7 crossref_primary_10_1016_j_ijrmhm_2023_106368 crossref_primary_10_1016_j_ijrmhm_2023_106400 crossref_primary_10_1007_s11665_024_09693_z crossref_primary_10_1016_j_pmatsci_2023_101131 crossref_primary_10_2139_ssrn_3982082 crossref_primary_10_1007_s40964_023_00445_4 crossref_primary_10_3390_mi15080966 crossref_primary_10_1021_acsbiomaterials_8b01094 crossref_primary_10_1016_j_nme_2019_02_034 crossref_primary_10_1089_3dp_2022_0229 crossref_primary_10_1002_adem_202201927 crossref_primary_10_3390_coatings13081365 crossref_primary_10_1016_j_apples_2025_100207 crossref_primary_10_1016_j_mattod_2021_03_019 crossref_primary_10_1016_j_scriptamat_2021_114111 crossref_primary_10_1016_j_ijrmhm_2023_106211 crossref_primary_10_1016_j_jnucmat_2022_153760 crossref_primary_10_3390_met12020274 crossref_primary_10_1016_j_ijrmhm_2020_105369 crossref_primary_10_1016_j_ijrmhm_2022_105917 crossref_primary_10_1111_jace_19532 crossref_primary_10_1016_j_nme_2023_101577 crossref_primary_10_1016_j_procir_2023_09_122 crossref_primary_10_3390_cryst14070665 crossref_primary_10_1016_j_jmapro_2024_04_042 crossref_primary_10_1016_j_matdes_2019_108110 crossref_primary_10_1007_s12666_022_02748_6 crossref_primary_10_1007_s11837_023_06045_5 crossref_primary_10_1016_j_msea_2021_142177 crossref_primary_10_1088_2631_7990_ac5f10 crossref_primary_10_1016_j_ijrmhm_2024_106683 crossref_primary_10_1089_3dp_2022_0376 crossref_primary_10_1016_j_msea_2019_138878 crossref_primary_10_1016_j_ijrmhm_2021_105490 crossref_primary_10_3390_ma14010165 crossref_primary_10_3390_ma15186230 crossref_primary_10_1016_j_msea_2024_146833 crossref_primary_10_1126_sciadv_adp0003 crossref_primary_10_1140_epjb_s10051_024_00687_3 crossref_primary_10_1115_1_4063270 crossref_primary_10_1016_j_ijrmhm_2021_105651 crossref_primary_10_1016_j_powtec_2019_01_084 crossref_primary_10_1063_5_0068926 crossref_primary_10_1016_j_ijrmhm_2024_106687 crossref_primary_10_1051_mattech_2023042 crossref_primary_10_1016_j_addlet_2021_100016 crossref_primary_10_1007_s12289_021_01646_4 crossref_primary_10_1016_j_catcom_2024_106873 crossref_primary_10_7791_jspmee_8_151 crossref_primary_10_1007_s12540_024_01861_z crossref_primary_10_1007_s42864_021_00127_0 crossref_primary_10_3390_met9080884 crossref_primary_10_3390_ma17081865 crossref_primary_10_1007_s10439_019_02411_0 crossref_primary_10_1016_j_promfg_2020_04_167 crossref_primary_10_1016_j_jmapro_2024_10_020 crossref_primary_10_1007_s42864_021_00089_3 crossref_primary_10_1016_j_scriptamat_2021_114252 crossref_primary_10_1021_acsbiomaterials_9b00909 crossref_primary_10_1016_j_matlet_2024_137335 crossref_primary_10_1016_j_optlastec_2022_108160 crossref_primary_10_1080_17452759_2024_2366508 crossref_primary_10_1016_j_ijrmhm_2019_104999 crossref_primary_10_1016_j_matdes_2020_108588 crossref_primary_10_1016_j_matlet_2018_11_127 crossref_primary_10_1007_s42864_022_00153_6 crossref_primary_10_1016_j_apmate_2023_100137 crossref_primary_10_1080_24725854_2022_2115593 crossref_primary_10_3390_ma17092104 crossref_primary_10_1016_j_addlet_2024_100246 crossref_primary_10_1016_j_jmrt_2023_06_137 crossref_primary_10_1016_j_jpowsour_2024_235928 crossref_primary_10_1016_j_matdes_2023_112363 crossref_primary_10_1016_j_ijrmhm_2019_105040 crossref_primary_10_1016_j_addma_2020_101365 crossref_primary_10_1016_j_optlastec_2022_107880 crossref_primary_10_1016_j_ijrmhm_2022_105970 crossref_primary_10_3390_ma15031172 crossref_primary_10_1016_j_matlet_2020_127377 crossref_primary_10_1016_j_matdes_2020_109147 crossref_primary_10_1016_j_compind_2023_103975 crossref_primary_10_1016_j_addma_2023_103493 crossref_primary_10_1016_j_nme_2021_101046 crossref_primary_10_4254_wjh_v14_i2_319 crossref_primary_10_1007_s11356_020_09452_2 crossref_primary_10_1016_j_ijrmhm_2020_105410 crossref_primary_10_2464_jilm_72_220 crossref_primary_10_1007_s11837_021_04776_x crossref_primary_10_1016_j_jmst_2021_11_066 crossref_primary_10_1186_s10033_022_00712_5 crossref_primary_10_1016_j_addma_2024_104487 crossref_primary_10_1016_j_ijrmhm_2018_11_013 crossref_primary_10_1016_j_cossms_2022_101024 |
Cites_doi | 10.1063/1.2209807 10.1080/17452759.2015.1008643 10.1016/j.msea.2006.07.087 10.1016/j.jallcom.2008.05.065 10.1016/j.ijrmhm.2013.09.008 10.1115/1.2005275 10.1016/j.jnucmat.2013.03.042 10.1016/j.matdes.2017.04.021 10.1063/1.4935926 10.1016/j.jallcom.2016.08.082 10.1016/j.jmatprotec.2015.02.032 10.1016/j.addma.2015.07.001 10.1016/S0921-5093(99)00517-1 10.1108/13552540610707013 10.1002/adem.201500419 10.1108/13552541111124770 10.1016/j.actamat.2016.07.015 10.1016/j.msea.2009.05.060 10.1016/j.actamat.2016.06.009 10.1016/j.matdes.2017.08.026 10.1016/S1875-5372(11)60045-3 10.1016/j.actamat.2016.09.034 10.1016/j.scriptamat.2016.09.018 10.1016/j.jnucmat.2017.04.010 10.1063/1.2710780 10.1002/(ISSN)1527-2648 10.1016/j.pmatsci.2015.03.002 10.3390/app7040430 10.1007/s00170-011-3566-1 10.1118/1.4769122 10.1016/j.actamat.2016.10.007 10.1016/j.ijrmhm.2015.07.009 10.1016/j.matdes.2014.05.064 10.1016/j.actamat.2012.04.006 10.1016/j.matdes.2016.05.035 10.1016/S1003-6326(15)63958-9 10.1016/j.msea.2010.08.075 10.1016/j.biomaterials.2014.04.054 10.1016/j.matdes.2016.02.127 10.1016/j.jmatprotec.2012.11.014 10.1179/1743280411Y.0000000014 10.1007/s00339-009-5266-3 10.1016/j.actamat.2014.01.018 10.1080/21663831.2017.1340911 |
ContentType | Journal Article |
Copyright | 2018 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis 2018 2018 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis 2018 The Author(s) |
Copyright_xml | – notice: 2018 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis 2018 – notice: 2018 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis 2018 The Author(s) |
DBID | 0YH AAYXX CITATION NPM 3V. 7U5 7XB 8BQ 8FD 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH JG9 L7M M2O MBDVC PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1080/14686996.2018.1455154 |
DatabaseName | Taylor & Francis Open Access CrossRef PubMed ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) METADEX Technology Research Database ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library Materials Research Database Advanced Technologies Database with Aerospace ProQuest Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Materials Research Database Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China METADEX ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library Solid State and Superconductivity Abstracts ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Science and Technology of Advanced Materials |
EISSN | 1878-5514 |
EndPage | 380 |
ExternalDocumentID | oai_doaj_org_article_facb4868b92d45d58cff8d4a70861b7c PMC5917440 29707073 10_1080_14686996_2018_1455154 1455154 |
Genre | Article Journal Article |
GrantInformation_xml | – fundername: Guangdong Academy of Sciences grantid: 2018GDASCX-0402 funderid: 10.13039/501100009075 – fundername: Guangzhou Science and Technology Program key projects grantid: 201704030111 funderid: 10.13039/501100004000 – fundername: Guangdong Academy of Sciences grantid: 2017GDASCX-0111 funderid: 10.13039/501100009075 – fundername: Guangdong Science and Technology Program grantid: 2016B090916003 – fundername: Guangdong Science and Technology Program grantid: 2017B030314122 – fundername: Guangdong Science and Technology Department grantid: 2016B090916003; 2017A070702016; 2017B030314122 funderid: 10.13039/501100007162 – fundername: Guangzhou Science and Technology Program key projects grantid: 201604016109; 201704030111 funderid: 10.13039/501100004000 – fundername: Guangdong Academy of Sciences grantid: 2017GDASCX-0202 funderid: 10.13039/501100009075 – fundername: Natural Science Foundation of Guangdong Province grantid: 2016A030312015 funderid: 10.13039/501100003453 – fundername: Guangdong Academy of Sciences grantid: 2016GDASPT-0206 funderid: 10.13039/501100009075 – fundername: ; ; grantid: 2016GDASPT-0206; 2017GDASCX-0111; 2017GDASCX-0202; 2018GDASCX-0402 – fundername: ; ; grantid: 2017GDASCX-0111 – fundername: ; ; grantid: 2016B090916003; 2017A070702016; 2017B030314122 – fundername: ; grantid: 2017B030314122 – fundername: ; grantid: 2016B090916003 – fundername: ; ; grantid: 2016GDASPT-0206 – fundername: ; ; grantid: 2017GDASCX-0202 – fundername: ; ; grantid: 2018GDASCX-0402 – fundername: ; grantid: 2017A070702016 – fundername: ; ; grantid: 201604016109; 201704030111 |
GroupedDBID | 0R~ 0YH 123 1JI 2WC 4.4 5VS 8G5 ABUWG ACBEA ACGFO ACGFS ACHIP ADBBV ADCVX AENEX AFKRA AFYNE AHSEE AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ATQHT AZQEC BCNDV BENPR BPHCQ CCPQU CS3 DU5 DWQXO E3Z EBS EDWGO EJD EQZZN FDB G-Q GNUQQ GROUPED_DOAJ GUQSH H13 HH5 HYE IOP KOT KQ8 M2O M45 M48 M4Z N5L O3W O9- OK1 P2P PQQKQ PROAC RDKPK RIN RNS RPM RPZ SDP SY9 T37 TDBHL TFMNY TFW TR2 UCJ W28 AAYXX CITATION OVT PHGZM PHGZT --K 02O 1B1 1WK 1~5 4G. 7-5 AAEDT AAGCD AALHV AALRI AAQFI AAQXK AATNI AAXUO ABWVN ACAFW ACRPL ADDVE ADMUD ADNMO AEFHF AEJGL AIYBF ARNYC ASPBG AVWKF AZFZN BBWZM C1A CJUJL EO8 FEDTE FGOYB HVGLF HZ~ IHE IJHAN IPNFZ JCGBZ KNG NPM NQ- NT- PJBAE Q02 R2- RIG ROL RPA S3P SEW UHS XPP 3V. 7U5 7XB 8BQ 8FD 8FK JG9 L7M MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c628t-ec085f4066d77cee292d585aea7e97e11a038648ae2cb81afaf68975bac715513 |
IEDL.DBID | M48 |
ISSN | 1468-6996 |
IngestDate | Wed Aug 27 01:26:41 EDT 2025 Thu Aug 21 18:31:11 EDT 2025 Fri Jul 11 03:11:37 EDT 2025 Mon Jun 30 08:22:56 EDT 2025 Wed Feb 19 02:44:40 EST 2025 Tue Jul 01 00:47:30 EDT 2025 Thu Apr 24 22:54:17 EDT 2025 Wed Dec 25 09:09:10 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | densification laser parameter 210 Thermoelectronics / Thermal transport / insulators molten pool Additive manufacturing parameter design 10 Engineering and Structural materials 106 Metallic materials tungsten 303 Mechanical / Physical processing linear energy property refractory metal selective laser melting 305 Plasma / Laser processing |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c628t-ec085f4066d77cee292d585aea7e97e11a038648ae2cb81afaf68975bac715513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2029-4600 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1080/14686996.2018.1455154 |
PMID | 29707073 |
PQID | 2340250451 |
PQPubID | 3934964 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1080_14686996_2018_1455154 crossref_citationtrail_10_1080_14686996_2018_1455154 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5917440 pubmed_primary_29707073 proquest_journals_2340250451 informaworld_taylorfrancis_310_1080_14686996_2018_1455154 proquest_miscellaneous_2032791238 doaj_primary_oai_doaj_org_article_facb4868b92d45d58cff8d4a70861b7c |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-31 |
PublicationDateYYYYMMDD | 2018-12-31 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Abingdon |
PublicationTitle | Science and technology of advanced materials |
PublicationTitleAlternate | Sci Technol Adv Mater |
PublicationYear | 2018 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 Wei Q (CIT0045) 2006; 54 CIT0014 CIT0036 CIT0013 CIT0035 CIT0016 CIT0038 CIT0015 CIT0037 CIT0018 CIT0017 CIT0039 CIT0019 CIT0041 CIT0040 CIT0021 CIT0043 CIT0020 CIT0042 CIT0001 CIT0023 CIT0022 CIT0044 Erik L (CIT0008) 2012 CIT0003 CIT0025 CIT0002 CIT0024 CIT0046 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 24811260 - Biomaterials. 2014 Aug;35(24):6172-81 23298112 - Med Phys. 2013 Jan;40(1):012501 |
References_xml | – ident: CIT0022 doi: 10.1063/1.2209807 – ident: CIT0036 doi: 10.1080/17452759.2015.1008643 – ident: CIT0026 doi: 10.1016/j.msea.2006.07.087 – ident: CIT0031 doi: 10.1016/j.jallcom.2008.05.065 – ident: CIT0043 doi: 10.1016/j.ijrmhm.2013.09.008 – ident: CIT0025 doi: 10.1115/1.2005275 – ident: CIT0007 doi: 10.1016/j.jnucmat.2013.03.042 – ident: CIT0001 doi: 10.1016/j.matdes.2017.04.021 – ident: CIT0018 doi: 10.1063/1.4935926 – ident: CIT0030 doi: 10.1016/j.jallcom.2016.08.082 – ident: CIT0005 doi: 10.1016/j.jmatprotec.2015.02.032 – ident: CIT0024 doi: 10.1016/j.addma.2015.07.001 – ident: CIT0044 doi: 10.1016/S0921-5093(99)00517-1 – ident: CIT0029 doi: 10.1108/13552540610707013 – ident: CIT0034 doi: 10.1002/adem.201500419 – ident: CIT0019 doi: 10.1108/13552541111124770 – ident: CIT0038 doi: 10.1016/j.actamat.2016.07.015 – ident: CIT0042 doi: 10.1016/j.msea.2009.05.060 – ident: CIT0011 doi: 10.1016/j.actamat.2016.06.009 – ident: CIT0015 doi: 10.1016/j.matdes.2017.08.026 – ident: CIT0041 doi: 10.1016/S1875-5372(11)60045-3 – ident: CIT0002 doi: 10.1016/j.actamat.2016.09.034 – ident: CIT0006 doi: 10.1016/j.scriptamat.2016.09.018 – ident: CIT0003 doi: 10.1016/j.jnucmat.2017.04.010 – ident: CIT0027 doi: 10.1063/1.2710780 – ident: CIT0028 doi: 10.1002/(ISSN)1527-2648 – ident: CIT0009 doi: 10.1016/j.pmatsci.2015.03.002 – ident: CIT0021 doi: 10.3390/app7040430 – ident: CIT0020 doi: 10.1007/s00170-011-3566-1 – ident: CIT0017 doi: 10.1118/1.4769122 – volume: 54 start-page: 77 year: 2006 ident: CIT0045 publication-title: Acta Mater – ident: CIT0004 doi: 10.1016/j.actamat.2016.10.007 – ident: CIT0046 doi: 10.1016/j.ijrmhm.2015.07.009 – ident: CIT0013 doi: 10.1016/j.matdes.2014.05.064 – ident: CIT0033 doi: 10.1016/j.actamat.2012.04.006 – ident: CIT0035 doi: 10.1016/j.matdes.2016.05.035 – ident: CIT0039 doi: 10.1016/S1003-6326(15)63958-9 – ident: CIT0040 doi: 10.1016/j.msea.2010.08.075 – ident: CIT0014 doi: 10.1016/j.biomaterials.2014.04.054 – ident: CIT0016 doi: 10.1016/j.matdes.2016.02.127 – ident: CIT0023 doi: 10.1016/j.jmatprotec.2012.11.014 – volume-title: Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds year: 2012 ident: CIT0008 – ident: CIT0010 doi: 10.1179/1743280411Y.0000000014 – ident: CIT0032 doi: 10.1007/s00339-009-5266-3 – ident: CIT0037 doi: 10.1016/j.actamat.2014.01.018 – ident: CIT0012 doi: 10.1080/21663831.2017.1340911 – reference: 23298112 - Med Phys. 2013 Jan;40(1):012501 – reference: 24811260 - Biomaterials. 2014 Aug;35(24):6172-81 |
SSID | ssj0006124 |
Score | 2.5826693 |
Snippet | Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic... |
SourceID | doaj pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 370 |
SubjectTerms | 10 Engineering and Structural materials 106 Metallic materials 210 Thermoelectronics / Thermal transport / insulators 303 Mechanical / Physical processing 305 Plasma / Laser processing Additive manufacturing Compressive strength Densification Design parameters Electron backscatter diffraction Engineering and Structural materials Laser beam melting laser parameter Lasers linear energy Mathematical analysis Mechanical properties molten pool parameter design Process parameters property Rapid prototyping refractory metal Refractory metals selective laser melting Temperature gradients Theoretical density Thickness Tungsten |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAktyJU4kjaJ39wAUVWV4AKVerMcZyyQ2uxqmz3y3zvjJMtuhbQXTtE6D8Uz45nP2ZlvGHtvwXYNQIVLPJlSdkKXDqItK1BQ6WhczO3bvn3X55fy4kpdbbX6opywkR54FNxpCrGVVtvWNZ1UnbIxJdvJYBCL162J5H0x5s2bqckHY9yWc12RRkg_1-7Y6pTGaIjSuuwJ8XTXSu5EpUzef4-69F8A9H4e5VZgOnvCHk-Ikn8aZ_KUPYD-GXu0xTP4nP35kbvdoGPjCJZhxW_gmtKd-SJx4isul3_LB_hyvQI-oA9A_fcfOXGD31DODO9ysscHPPa3lGCUdcrnOn8e-g6fS4XEpHe-pK_8K6JrfcEuz77-_HJeTn0XyqgbO5QQEYcljPS6MwaDaIOix11FgGDAGajrUAmrpQ3QxNbWIYWkrTOqDdHkhjEv2UG_6OE148J0lWl11AL3XYhMQxKa3AYI5Rr8UTA5y93HiZScemNc-3riLp3V5UldflJXwU42ty1HVo59N3wmpW4uJlLtPICm5idT8_tMrWBu2yT8kL-ppLEBihd7XuBoth8_eYlb3wiZKeRUXbDjzWlc3_SnTehhscZrKtEYh_jCFuzVaG6bWTTOEFsTStHsGOLONHfP9L9_ZQ5xhdt0Kas3_0Muh-whTXWkvzxiB8NqDW8Rqg3tu7wq7wDB0Ti3 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Nb9UwDI_g7QIHxDfdBgoSR7r1I01SLohNmyYkJgRM2i1K0wSQtrb09R33v89O0-69aWKnqmlaxbFjO6n9MyEfpJV1Zm0CS9yJmNU5j0trZJzYwibciNL48m3fTvnJGft6XpyHA7dlCKucdKJX1HVr8Ix8P8uZh9sq0s_dvxirRuHf1VBC4yHZAhUs5YJsHRydfv8x62Kw32zKL-Lg2k85PDLZxzZswvAuuYd43WnBNqyTB_G_BWF6lyN6O55yzUAdPyVPgmdJv4yi8Iw8sM1z8ngNb_AFufrpq96AgqPgNNueXtoLDHumraOIWxx3N2kEtFv1lg6gC0AOmk8UMcIvMXaG1j7o4yNcmyUGGnne0infn-qmhu9iQjHyn3Z42t8jbOtLcnZ89OvwJA71F2LDMznE1oA_5sDi81oIMKZZmdWwu9BWC1sKm6Y6ySVnUtvMVDLVTjsuS1FU2ghfOOYVWTRtY98Qmos6ERU3PIf9F3io2uUc1YfNizKDm4iwad6VCeDkWCPjQqUBw3Ril0J2qcCuiOzNr3UjOsd9LxwgU-fOCK7tG9r-twprVTltKia5rIBeVgDJxjlZMy1g-5dWwkSkXBcJNfizFTcWQlH5PQPYneRHBW2xVDeyHZH382NY5_jzRje2XUGfJM9ECX6GjMjrUdxmKrJSIGoTzKLYEMQNMjefNH__eCzxArbrjCXb_x_WDnmERIwAl7tkMfQr-xacsaF6F1bcNVCWMIM priority: 102 providerName: ProQuest – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagXOCAyju0VEbiSEoejh_cALVaVYILVIKT5ThjqNRmV9nskf_OjPNgtwL10FOUh6Mdzzs78w1jbzTopgDIUMWDSkVTytSA12kGFWTSK-Pj-LbPX-TiXJx9r6ZqwvVYVkk5dBiAIqKtJuV29XqqiHtH3UIS43QqzNLHhLSNccBddg89cUZDDLIfi9kYowMXU4MRrZmaeP73mh33FFH8r2GY_isSvV5QueWhTvfZwzG05B8GWXjE7kD7mD3YAhx8wn5_jWNv0MJxjJqh41dwSXXPfBk4ARenq799BHy16YD3aAxQENr3nEDCr6h4hjex6uMtHts1VRpF5vKp4Z_jvuJ7qaOYBICv6HN_R7itT9n56cm3T4t0HMCQelnoPgWPAVlAly8bpdCbFqZoML1w4BQYBXnuslJLoR0Uvta5Cy5IbVRVO6_i5JhnbK9dtvCC8VI1maqllyUmYBiiulBKsh9QVqbAk4SJad-tH9HJaUjGpc1HENOJXZbYZUd2Jex4XrYa4DluWvCRmDo_TOja8cKy-2lHZbXB-VpoqWukV1RIsg9BN8IpzP_yWvmEmW2RsH38uBKGSSi2vOEHHE7yY0dzsbZFKSKWXJUn7PV8GxWd_r1xLSw3-ExWFspgoKET9nwQt5mKwiiCbcJdVDuCuEPm7p324lcEE68wXxcie3kLkg7YfTod4C8P2V7fbeAVhmp9fRSV8Q8XMDSy priority: 102 providerName: Taylor & Francis |
Title | Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties |
URI | https://www.tandfonline.com/doi/abs/10.1080/14686996.2018.1455154 https://www.ncbi.nlm.nih.gov/pubmed/29707073 https://www.proquest.com/docview/2340250451 https://www.proquest.com/docview/2032791238 https://pubmed.ncbi.nlm.nih.gov/PMC5917440 https://doaj.org/article/facb4868b92d45d58cff8d4a70861b7c |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_t4wUeEN8ERmUkHknJh2M7SAgxtKkgbUxApfFkOY4DSF1aslSCB_537pyka6ehiZdEaeIo9p19v3PvfgfwXDlVJs5FOMUrGfIyFWHurAojl7lIWJlbX77t6FhMpvzDaXa6BQOhQj-A51e6dlRPatrMxr9-_n6DE_51HyH3krKHBOJ2CtRSY2LeRlywDbtonCQVNTjiFwTiaND5kHBEbYaknn-9ZsNceVb_S5ymVyHTywGWaxbr8Dbc6qEme9vpxh3YcvVduLlGQHgP_nz2ZXBwxWOIol3DztyM4qDZvGJEZBwuLvIK2GLZONbi4oCKUb9iRBp-RsE0rPRRIC_wXJ9T5JEXNhsIAJipS3wvZRiTQrAFbf83xON6H6aHB1_eTcK-IENoRaLa0FkEaBVCAFFKidY1yZMS3Q3jjHS5dHFsolQJroxLbKFiU5lKqFxmhbHSV5J5ADv1vHaPgKWyjGQhrEjRIUPIaqpU0Hri0ixP8CIAPoy7tj1bORXNmOm4JzUdxKVJXLoXVwDjVbNFR9dxXYN9EurqYWLb9j_Mm2-6n7y6MrbgSqgC-8sz7LKtKlVyI9EfjAtpA8jXVUK3frOl6iqj6PSaD9gb9EcP2q-TlHtuuSwO4NnqNk58-jfH1G6-xGeiNJE5Ag8VwMNO3Va9SHJJNE44inJDETe6uXmn_vHdk4tn6L9zHj3-34F8AjfosuPA3IOdtlm6p4jX2mIE29HXyQh29w-OTz6N_K4HHt9_PBn5ufkX3l07dQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IN4sFDAS3EibOI7tICFEoVVL2xWCVurNOI4DSG122YcQB_4Sv5EZJ9nuVoieeoriPOTJjMef45lvAJ5rr0vufYxDvFKRKFMZ5d7pKPaZj6VTuQvl2w4GcudIfDjOjlfgT5cLQ2GVnU8MjrocOvpHvsFTEei2suTN6EdEVaNod7UrodGYxZ7_9ROXbJPXu-9Rvy843946fLcTtVUFIie5nkbeIcqocB6TpVI4RfCcl4iZrbfK58oniY1TLYW2nrtCJ7ayldS5ygrrVCiHgu-9AqsilTHvwerm1uDjp7nvR7wgunwmiUuJLmdIxxvURk0UTqbXiR88ycTSbBiKBpyjTP0X8D0fv7kwIW7fhBstkmVvG9O7BSu-vg3XF_gN78Dvz6HKDjpUhiDdj9mpP6EwazasGPEkR6OztAU2mo09m6LvQburXzHiJD-lWB1WhiCTl3isJxTYFGyJdfwCzNYlvpcSmMne2Ih2F8ZEE3sXji5FM_egVw9r_wBYqspYFdLJFNd7iIhthepCd-XTLOd40gfRfXfjWjJ0qslxYpKWM7VTlyF1mVZdfVifPzZq2EAuemCTlDq_mci8Q8Nw_NW0vsFU1hVCS12gvCJDkV1V6VJYhcvNpFCuD_miSZhp-JdTNYVXTHpBB9Y6-zGtd5qYs7HUh2fzy-hXaLPI1n44w3vilKsccY3uw_3G3OZS8FwRSxR-RbVkiEtiLl-pv38L3OVZnhAl5cP_d-spXN05PNg3-7uDvUdwjQRqyDXXoDcdz_xjBILT4kk7-hh8uewB_xdoHW2u |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEG8CBYwEN1ISJ_EDiQNQVlsKFRJUKifjODYgtdlVNivEgR_FP2TGebBbgXpAPUUbJ5EnM575vJn5hpBH0smKOZfAEvcizquMx8pZGSeucAm3QtnQvu3dPp8e5G8Oi8MN8muohcG0StxD-44oIvhqXNzzyg8ZcU-xWogDTsfELLmNTNuAA_q8yj334zvs2hbPd3dAxY8Zm7z--Goa940FYsuZbGNnAWh4CGW8EgKiBFOsAthsnBFOCZemJskkz6VxzJYyNd54LpUoSmNF6IgCzz1HzhcQ67FbRPJpOjp_AAz5UNCEcxyKhv417bVwGLoGnOBM_RvyPZnAuRIRJ1fI5R7K0hed7V0lG66-Ri6tEBxeJz8_hDY74FEpoHTX0GN3hHnWdOYpEiXH8z91C3S-bBxtwfmA4dXPKJKSH2OyDq1ClskTONYLzGwKxkQHggEKeoTnYgUzGhyd4-eFBnlib5CDM9HLTbJZz2p3m9BMVIkoueUZbPgAEhufcfRXLisUgx8RyYf3rm3Pho5NOY502pOmDurSqC7dqysi2-Nt844O5LQbXqJSx4uRzTucmDVfdO8ctDe2zCWXJcibFyCy9V5WuRGw30xLYSOiVk1Ct-HPHN91XtHZKRPYGuxH9-5poVmWB-66Io3Iw3EYHAt-LTK1my3hmiRjQgGwkRG51ZnbKAVTAmmi4C2KNUNcE3N9pP72NZCXFypFTso7_yHSA3Lh_c5Ev93d37tLLuJIx7y5RTbbZunuAUpsy_thXVLy-awdwW8dP3Gv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+laser+melting+of+high-performance+pure+tungsten%3A+parameter+design%2C+densification+behavior+and+mechanical+properties&rft.jtitle=Science+and+technology+of+advanced+materials&rft.au=Tan%2C+Chaolin&rft.au=Zhou%2C+Kesong&rft.au=Ma%2C+Wenyou&rft.au=Attard%2C+Bonnie&rft.date=2018-12-31&rft.issn=1468-6996&rft.eissn=1878-5514&rft.volume=19&rft.issue=1&rft.spage=370&rft.epage=380&rft_id=info:doi/10.1080%2F14686996.2018.1455154&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_14686996_2018_1455154 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-6996&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-6996&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-6996&client=summon |