Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties

Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucida...

Full description

Saved in:
Bibliographic Details
Published inScience and technology of advanced materials Vol. 19; no. 1; pp. 370 - 380
Main Authors Tan, Chaolin, Zhou, Kesong, Ma, Wenyou, Attard, Bonnie, Zhang, Panpan, Kuang, Tongchun
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 31.12.2018
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm 3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV 0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing.
AbstractList Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm 3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV 0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing.
Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing.
Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing.Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing.
Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing.
Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing.
Author Zhou, Kesong
Kuang, Tongchun
Zhang, Panpan
Tan, Chaolin
Ma, Wenyou
Attard, Bonnie
Author_xml – sequence: 1
  givenname: Chaolin
  orcidid: 0000-0003-2029-4600
  surname: Tan
  fullname: Tan, Chaolin
  email: tclscut@163.com
  organization: School of Metallurgy & Materials, University of Birmingham
– sequence: 2
  givenname: Kesong
  surname: Zhou
  fullname: Zhou, Kesong
  email: kszhou2004@163.com
  organization: National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials
– sequence: 3
  givenname: Wenyou
  surname: Ma
  fullname: Ma, Wenyou
  organization: National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials
– sequence: 4
  givenname: Bonnie
  surname: Attard
  fullname: Attard, Bonnie
  organization: School of Metallurgy & Materials, University of Birmingham
– sequence: 5
  givenname: Panpan
  surname: Zhang
  fullname: Zhang, Panpan
  organization: National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials
– sequence: 6
  givenname: Tongchun
  surname: Kuang
  fullname: Kuang, Tongchun
  organization: School of Materials Science and Engineering, South China University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29707073$$D View this record in MEDLINE/PubMed
BookMark eNqFkklv1TAUhSNURAf4CaBIbFiQh504sUMlBKoYKlViAaytG-c6z5VjBzt5qAv-O35DK9oFyAtP53y-ts9pduS8wyx7TsmKEkHeUNaIpm2bVUmoWFFW17Rmj7ITKrgo0oQdpXHSFFvRcXYa4zUhpKEle5Idly0nqVUn2e9vaFHNZoO5hYghH9HOxg251_naDOtiwqB9GMEpzKclYD4vbogzurf5BAFGnJOpx2gG9zr1LhptFMzGu7zDNWyMDzm4PnHVGlzasvkUfKLOBuPT7LEGG_HZoT_Lfnz6-P3iS3H19fPlxYerQjWlmAtURNSakabpOVeIZVv2tagBgWPLkVIglWiYACxVJyho0I1oed2B4jS9RXWWXe65vYdrOQUzQriRHozcLfgwSEgFKYtSg-qYaESXzmB1OkZpLXoGnIiGdlwl1rs9a1q6EXuFbg5g70Hv7zizloPfyLqlnDGSAK8OgOB_LhhnOZqo0Fpw6JcoS1KVvKVlJZL05QPptV-CS08ly4qRsiZsd7sXf1d0V8rtLydBvReo4GMMqO8klMhtmuRtmuQ2TfKQpuQ7f-BTZt79bbqYsf91v9-7jdsl6JcPtpcz3FgfdEiBMlFW_0b8AXUP5ak
CitedBy_id crossref_primary_10_1016_j_addma_2021_102444
crossref_primary_10_1016_j_ijrmhm_2022_106094
crossref_primary_10_1016_j_jnucmat_2021_153041
crossref_primary_10_2320_matertrans_MT_MLA2022005
crossref_primary_10_3390_met13081431
crossref_primary_10_1007_s40964_024_00739_1
crossref_primary_10_1016_j_ijrmhm_2022_105959
crossref_primary_10_1016_j_jmapro_2022_09_056
crossref_primary_10_1016_j_optlastec_2019_03_018
crossref_primary_10_1016_j_addma_2021_102574
crossref_primary_10_1021_acsomega_4c06723
crossref_primary_10_1016_j_matchar_2024_114242
crossref_primary_10_1016_j_jallcom_2021_161841
crossref_primary_10_1016_j_matchemphys_2024_129962
crossref_primary_10_1016_j_ultsonch_2020_105232
crossref_primary_10_1016_j_addma_2022_103009
crossref_primary_10_1016_j_jmapro_2022_08_005
crossref_primary_10_3390_technologies7010005
crossref_primary_10_1016_j_matdes_2018_12_010
crossref_primary_10_1016_j_matdes_2020_108554
crossref_primary_10_1088_2053_1591_ab45b0
crossref_primary_10_1016_j_wear_2020_203437
crossref_primary_10_1557_jmr_2020_71
crossref_primary_10_1016_j_cjmeam_2022_100037
crossref_primary_10_1016_j_msea_2022_143096
crossref_primary_10_1016_j_addma_2024_104464
crossref_primary_10_1016_j_jnoncrysol_2020_120046
crossref_primary_10_1016_j_msea_2025_148004
crossref_primary_10_1063_5_0200464
crossref_primary_10_1016_j_mattod_2020_08_015
crossref_primary_10_1016_j_addma_2020_101613
crossref_primary_10_1016_j_surfcoat_2021_126884
crossref_primary_10_1007_s10853_022_07183_y
crossref_primary_10_1002_adem_201901352
crossref_primary_10_1007_s11182_022_02755_6
crossref_primary_10_1016_j_jallcom_2021_159879
crossref_primary_10_1515_htmp_2020_0032
crossref_primary_10_1016_j_addlet_2022_100085
crossref_primary_10_1080_14686996_2024_2309888
crossref_primary_10_1016_j_ijrmhm_2019_105000
crossref_primary_10_1007_s40033_023_00497_4
crossref_primary_10_1109_TRPMS_2024_3376826
crossref_primary_10_1007_s11661_020_05803_3
crossref_primary_10_1016_j_actamat_2024_120379
crossref_primary_10_1016_j_ijrmhm_2019_105135
crossref_primary_10_3233_JCM_204672
crossref_primary_10_1016_j_ijrmhm_2023_106123
crossref_primary_10_1016_j_ijrmhm_2023_106365
crossref_primary_10_3390_qubs6010005
crossref_primary_10_1016_j_powtec_2022_117789
crossref_primary_10_1007_s11837_021_04966_7
crossref_primary_10_1016_j_ijrmhm_2023_106368
crossref_primary_10_1016_j_ijrmhm_2023_106400
crossref_primary_10_1007_s11665_024_09693_z
crossref_primary_10_1016_j_pmatsci_2023_101131
crossref_primary_10_2139_ssrn_3982082
crossref_primary_10_1007_s40964_023_00445_4
crossref_primary_10_3390_mi15080966
crossref_primary_10_1021_acsbiomaterials_8b01094
crossref_primary_10_1016_j_nme_2019_02_034
crossref_primary_10_1089_3dp_2022_0229
crossref_primary_10_1002_adem_202201927
crossref_primary_10_3390_coatings13081365
crossref_primary_10_1016_j_apples_2025_100207
crossref_primary_10_1016_j_mattod_2021_03_019
crossref_primary_10_1016_j_scriptamat_2021_114111
crossref_primary_10_1016_j_ijrmhm_2023_106211
crossref_primary_10_1016_j_jnucmat_2022_153760
crossref_primary_10_3390_met12020274
crossref_primary_10_1016_j_ijrmhm_2020_105369
crossref_primary_10_1016_j_ijrmhm_2022_105917
crossref_primary_10_1111_jace_19532
crossref_primary_10_1016_j_nme_2023_101577
crossref_primary_10_1016_j_procir_2023_09_122
crossref_primary_10_3390_cryst14070665
crossref_primary_10_1016_j_jmapro_2024_04_042
crossref_primary_10_1016_j_matdes_2019_108110
crossref_primary_10_1007_s12666_022_02748_6
crossref_primary_10_1007_s11837_023_06045_5
crossref_primary_10_1016_j_msea_2021_142177
crossref_primary_10_1088_2631_7990_ac5f10
crossref_primary_10_1016_j_ijrmhm_2024_106683
crossref_primary_10_1089_3dp_2022_0376
crossref_primary_10_1016_j_msea_2019_138878
crossref_primary_10_1016_j_ijrmhm_2021_105490
crossref_primary_10_3390_ma14010165
crossref_primary_10_3390_ma15186230
crossref_primary_10_1016_j_msea_2024_146833
crossref_primary_10_1126_sciadv_adp0003
crossref_primary_10_1140_epjb_s10051_024_00687_3
crossref_primary_10_1115_1_4063270
crossref_primary_10_1016_j_ijrmhm_2021_105651
crossref_primary_10_1016_j_powtec_2019_01_084
crossref_primary_10_1063_5_0068926
crossref_primary_10_1016_j_ijrmhm_2024_106687
crossref_primary_10_1051_mattech_2023042
crossref_primary_10_1016_j_addlet_2021_100016
crossref_primary_10_1007_s12289_021_01646_4
crossref_primary_10_1016_j_catcom_2024_106873
crossref_primary_10_7791_jspmee_8_151
crossref_primary_10_1007_s12540_024_01861_z
crossref_primary_10_1007_s42864_021_00127_0
crossref_primary_10_3390_met9080884
crossref_primary_10_3390_ma17081865
crossref_primary_10_1007_s10439_019_02411_0
crossref_primary_10_1016_j_promfg_2020_04_167
crossref_primary_10_1016_j_jmapro_2024_10_020
crossref_primary_10_1007_s42864_021_00089_3
crossref_primary_10_1016_j_scriptamat_2021_114252
crossref_primary_10_1021_acsbiomaterials_9b00909
crossref_primary_10_1016_j_matlet_2024_137335
crossref_primary_10_1016_j_optlastec_2022_108160
crossref_primary_10_1080_17452759_2024_2366508
crossref_primary_10_1016_j_ijrmhm_2019_104999
crossref_primary_10_1016_j_matdes_2020_108588
crossref_primary_10_1016_j_matlet_2018_11_127
crossref_primary_10_1007_s42864_022_00153_6
crossref_primary_10_1016_j_apmate_2023_100137
crossref_primary_10_1080_24725854_2022_2115593
crossref_primary_10_3390_ma17092104
crossref_primary_10_1016_j_addlet_2024_100246
crossref_primary_10_1016_j_jmrt_2023_06_137
crossref_primary_10_1016_j_jpowsour_2024_235928
crossref_primary_10_1016_j_matdes_2023_112363
crossref_primary_10_1016_j_ijrmhm_2019_105040
crossref_primary_10_1016_j_addma_2020_101365
crossref_primary_10_1016_j_optlastec_2022_107880
crossref_primary_10_1016_j_ijrmhm_2022_105970
crossref_primary_10_3390_ma15031172
crossref_primary_10_1016_j_matlet_2020_127377
crossref_primary_10_1016_j_matdes_2020_109147
crossref_primary_10_1016_j_compind_2023_103975
crossref_primary_10_1016_j_addma_2023_103493
crossref_primary_10_1016_j_nme_2021_101046
crossref_primary_10_4254_wjh_v14_i2_319
crossref_primary_10_1007_s11356_020_09452_2
crossref_primary_10_1016_j_ijrmhm_2020_105410
crossref_primary_10_2464_jilm_72_220
crossref_primary_10_1007_s11837_021_04776_x
crossref_primary_10_1016_j_jmst_2021_11_066
crossref_primary_10_1186_s10033_022_00712_5
crossref_primary_10_1016_j_addma_2024_104487
crossref_primary_10_1016_j_ijrmhm_2018_11_013
crossref_primary_10_1016_j_cossms_2022_101024
Cites_doi 10.1063/1.2209807
10.1080/17452759.2015.1008643
10.1016/j.msea.2006.07.087
10.1016/j.jallcom.2008.05.065
10.1016/j.ijrmhm.2013.09.008
10.1115/1.2005275
10.1016/j.jnucmat.2013.03.042
10.1016/j.matdes.2017.04.021
10.1063/1.4935926
10.1016/j.jallcom.2016.08.082
10.1016/j.jmatprotec.2015.02.032
10.1016/j.addma.2015.07.001
10.1016/S0921-5093(99)00517-1
10.1108/13552540610707013
10.1002/adem.201500419
10.1108/13552541111124770
10.1016/j.actamat.2016.07.015
10.1016/j.msea.2009.05.060
10.1016/j.actamat.2016.06.009
10.1016/j.matdes.2017.08.026
10.1016/S1875-5372(11)60045-3
10.1016/j.actamat.2016.09.034
10.1016/j.scriptamat.2016.09.018
10.1016/j.jnucmat.2017.04.010
10.1063/1.2710780
10.1002/(ISSN)1527-2648
10.1016/j.pmatsci.2015.03.002
10.3390/app7040430
10.1007/s00170-011-3566-1
10.1118/1.4769122
10.1016/j.actamat.2016.10.007
10.1016/j.ijrmhm.2015.07.009
10.1016/j.matdes.2014.05.064
10.1016/j.actamat.2012.04.006
10.1016/j.matdes.2016.05.035
10.1016/S1003-6326(15)63958-9
10.1016/j.msea.2010.08.075
10.1016/j.biomaterials.2014.04.054
10.1016/j.matdes.2016.02.127
10.1016/j.jmatprotec.2012.11.014
10.1179/1743280411Y.0000000014
10.1007/s00339-009-5266-3
10.1016/j.actamat.2014.01.018
10.1080/21663831.2017.1340911
ContentType Journal Article
Copyright 2018 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis 2018
2018 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis 2018 The Author(s)
Copyright_xml – notice: 2018 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis 2018
– notice: 2018 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis 2018 The Author(s)
DBID 0YH
AAYXX
CITATION
NPM
3V.
7U5
7XB
8BQ
8FD
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
JG9
L7M
M2O
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1080/14686996.2018.1455154
DatabaseName Taylor & Francis Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
METADEX
Technology Research Database
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
Materials Research Database
Advanced Technologies Database with Aerospace
ProQuest Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Materials Research Database
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
METADEX
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
Solid State and Superconductivity Abstracts
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Science and Technology of Advanced Materials
EISSN 1878-5514
EndPage 380
ExternalDocumentID oai_doaj_org_article_facb4868b92d45d58cff8d4a70861b7c
PMC5917440
29707073
10_1080_14686996_2018_1455154
1455154
Genre Article
Journal Article
GrantInformation_xml – fundername: Guangdong Academy of Sciences
  grantid: 2018GDASCX-0402
  funderid: 10.13039/501100009075
– fundername: Guangzhou Science and Technology Program key projects
  grantid: 201704030111
  funderid: 10.13039/501100004000
– fundername: Guangdong Academy of Sciences
  grantid: 2017GDASCX-0111
  funderid: 10.13039/501100009075
– fundername: Guangdong Science and Technology Program
  grantid: 2016B090916003
– fundername: Guangdong Science and Technology Program
  grantid: 2017B030314122
– fundername: Guangdong Science and Technology Department
  grantid: 2016B090916003; 2017A070702016; 2017B030314122
  funderid: 10.13039/501100007162
– fundername: Guangzhou Science and Technology Program key projects
  grantid: 201604016109; 201704030111
  funderid: 10.13039/501100004000
– fundername: Guangdong Academy of Sciences
  grantid: 2017GDASCX-0202
  funderid: 10.13039/501100009075
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2016A030312015
  funderid: 10.13039/501100003453
– fundername: Guangdong Academy of Sciences
  grantid: 2016GDASPT-0206
  funderid: 10.13039/501100009075
– fundername: ; ;
  grantid: 2016GDASPT-0206; 2017GDASCX-0111; 2017GDASCX-0202; 2018GDASCX-0402
– fundername: ; ;
  grantid: 2017GDASCX-0111
– fundername: ; ;
  grantid: 2016B090916003; 2017A070702016; 2017B030314122
– fundername: ;
  grantid: 2017B030314122
– fundername: ;
  grantid: 2016B090916003
– fundername: ; ;
  grantid: 2016GDASPT-0206
– fundername: ; ;
  grantid: 2017GDASCX-0202
– fundername: ; ;
  grantid: 2018GDASCX-0402
– fundername: ;
  grantid: 2017A070702016
– fundername: ; ;
  grantid: 201604016109; 201704030111
GroupedDBID 0R~
0YH
123
1JI
2WC
4.4
5VS
8G5
ABUWG
ACBEA
ACGFO
ACGFS
ACHIP
ADBBV
ADCVX
AENEX
AFKRA
AFYNE
AHSEE
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATQHT
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CS3
DU5
DWQXO
E3Z
EBS
EDWGO
EJD
EQZZN
FDB
G-Q
GNUQQ
GROUPED_DOAJ
GUQSH
H13
HH5
HYE
IOP
KOT
KQ8
M2O
M45
M48
M4Z
N5L
O3W
O9-
OK1
P2P
PQQKQ
PROAC
RDKPK
RIN
RNS
RPM
RPZ
SDP
SY9
T37
TDBHL
TFMNY
TFW
TR2
UCJ
W28
AAYXX
CITATION
OVT
PHGZM
PHGZT
--K
02O
1B1
1WK
1~5
4G.
7-5
AAEDT
AAGCD
AALHV
AALRI
AAQFI
AAQXK
AATNI
AAXUO
ABWVN
ACAFW
ACRPL
ADDVE
ADMUD
ADNMO
AEFHF
AEJGL
AIYBF
ARNYC
ASPBG
AVWKF
AZFZN
BBWZM
C1A
CJUJL
EO8
FEDTE
FGOYB
HVGLF
HZ~
IHE
IJHAN
IPNFZ
JCGBZ
KNG
NPM
NQ-
NT-
PJBAE
Q02
R2-
RIG
ROL
RPA
S3P
SEW
UHS
XPP
3V.
7U5
7XB
8BQ
8FD
8FK
JG9
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c628t-ec085f4066d77cee292d585aea7e97e11a038648ae2cb81afaf68975bac715513
IEDL.DBID M48
ISSN 1468-6996
IngestDate Wed Aug 27 01:26:41 EDT 2025
Thu Aug 21 18:31:11 EDT 2025
Fri Jul 11 03:11:37 EDT 2025
Mon Jun 30 08:22:56 EDT 2025
Wed Feb 19 02:44:40 EST 2025
Tue Jul 01 00:47:30 EDT 2025
Thu Apr 24 22:54:17 EDT 2025
Wed Dec 25 09:09:10 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords densification
laser parameter
210 Thermoelectronics / Thermal transport / insulators
molten pool
Additive manufacturing
parameter design
10 Engineering and Structural materials
106 Metallic materials
tungsten
303 Mechanical / Physical processing
linear energy
property
refractory metal
selective laser melting
305 Plasma / Laser processing
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c628t-ec085f4066d77cee292d585aea7e97e11a038648ae2cb81afaf68975bac715513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2029-4600
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1080/14686996.2018.1455154
PMID 29707073
PQID 2340250451
PQPubID 3934964
PageCount 11
ParticipantIDs crossref_primary_10_1080_14686996_2018_1455154
crossref_citationtrail_10_1080_14686996_2018_1455154
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5917440
pubmed_primary_29707073
proquest_journals_2340250451
informaworld_taylorfrancis_310_1080_14686996_2018_1455154
proquest_miscellaneous_2032791238
doaj_primary_oai_doaj_org_article_facb4868b92d45d58cff8d4a70861b7c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-31
PublicationDateYYYYMMDD 2018-12-31
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-31
  day: 31
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Abingdon
PublicationTitle Science and technology of advanced materials
PublicationTitleAlternate Sci Technol Adv Mater
PublicationYear 2018
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
Wei Q (CIT0045) 2006; 54
CIT0014
CIT0036
CIT0013
CIT0035
CIT0016
CIT0038
CIT0015
CIT0037
CIT0018
CIT0017
CIT0039
CIT0019
CIT0041
CIT0040
CIT0021
CIT0043
CIT0020
CIT0042
CIT0001
CIT0023
CIT0022
CIT0044
Erik L (CIT0008) 2012
CIT0003
CIT0025
CIT0002
CIT0024
CIT0046
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
24811260 - Biomaterials. 2014 Aug;35(24):6172-81
23298112 - Med Phys. 2013 Jan;40(1):012501
References_xml – ident: CIT0022
  doi: 10.1063/1.2209807
– ident: CIT0036
  doi: 10.1080/17452759.2015.1008643
– ident: CIT0026
  doi: 10.1016/j.msea.2006.07.087
– ident: CIT0031
  doi: 10.1016/j.jallcom.2008.05.065
– ident: CIT0043
  doi: 10.1016/j.ijrmhm.2013.09.008
– ident: CIT0025
  doi: 10.1115/1.2005275
– ident: CIT0007
  doi: 10.1016/j.jnucmat.2013.03.042
– ident: CIT0001
  doi: 10.1016/j.matdes.2017.04.021
– ident: CIT0018
  doi: 10.1063/1.4935926
– ident: CIT0030
  doi: 10.1016/j.jallcom.2016.08.082
– ident: CIT0005
  doi: 10.1016/j.jmatprotec.2015.02.032
– ident: CIT0024
  doi: 10.1016/j.addma.2015.07.001
– ident: CIT0044
  doi: 10.1016/S0921-5093(99)00517-1
– ident: CIT0029
  doi: 10.1108/13552540610707013
– ident: CIT0034
  doi: 10.1002/adem.201500419
– ident: CIT0019
  doi: 10.1108/13552541111124770
– ident: CIT0038
  doi: 10.1016/j.actamat.2016.07.015
– ident: CIT0042
  doi: 10.1016/j.msea.2009.05.060
– ident: CIT0011
  doi: 10.1016/j.actamat.2016.06.009
– ident: CIT0015
  doi: 10.1016/j.matdes.2017.08.026
– ident: CIT0041
  doi: 10.1016/S1875-5372(11)60045-3
– ident: CIT0002
  doi: 10.1016/j.actamat.2016.09.034
– ident: CIT0006
  doi: 10.1016/j.scriptamat.2016.09.018
– ident: CIT0003
  doi: 10.1016/j.jnucmat.2017.04.010
– ident: CIT0027
  doi: 10.1063/1.2710780
– ident: CIT0028
  doi: 10.1002/(ISSN)1527-2648
– ident: CIT0009
  doi: 10.1016/j.pmatsci.2015.03.002
– ident: CIT0021
  doi: 10.3390/app7040430
– ident: CIT0020
  doi: 10.1007/s00170-011-3566-1
– ident: CIT0017
  doi: 10.1118/1.4769122
– volume: 54
  start-page: 77
  year: 2006
  ident: CIT0045
  publication-title: Acta Mater
– ident: CIT0004
  doi: 10.1016/j.actamat.2016.10.007
– ident: CIT0046
  doi: 10.1016/j.ijrmhm.2015.07.009
– ident: CIT0013
  doi: 10.1016/j.matdes.2014.05.064
– ident: CIT0033
  doi: 10.1016/j.actamat.2012.04.006
– ident: CIT0035
  doi: 10.1016/j.matdes.2016.05.035
– ident: CIT0039
  doi: 10.1016/S1003-6326(15)63958-9
– ident: CIT0040
  doi: 10.1016/j.msea.2010.08.075
– ident: CIT0014
  doi: 10.1016/j.biomaterials.2014.04.054
– ident: CIT0016
  doi: 10.1016/j.matdes.2016.02.127
– ident: CIT0023
  doi: 10.1016/j.jmatprotec.2012.11.014
– volume-title: Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds
  year: 2012
  ident: CIT0008
– ident: CIT0010
  doi: 10.1179/1743280411Y.0000000014
– ident: CIT0032
  doi: 10.1007/s00339-009-5266-3
– ident: CIT0037
  doi: 10.1016/j.actamat.2014.01.018
– ident: CIT0012
  doi: 10.1080/21663831.2017.1340911
– reference: 23298112 - Med Phys. 2013 Jan;40(1):012501
– reference: 24811260 - Biomaterials. 2014 Aug;35(24):6172-81
SSID ssj0006124
Score 2.5826693
Snippet Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 370
SubjectTerms 10 Engineering and Structural materials
106 Metallic materials
210 Thermoelectronics / Thermal transport / insulators
303 Mechanical / Physical processing
305 Plasma / Laser processing
Additive manufacturing
Compressive strength
Densification
Design parameters
Electron backscatter diffraction
Engineering and Structural materials
Laser beam melting
laser parameter
Lasers
linear energy
Mathematical analysis
Mechanical properties
molten pool
parameter design
Process parameters
property
Rapid prototyping
refractory metal
Refractory metals
selective laser melting
Temperature gradients
Theoretical density
Thickness
Tungsten
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAktyJU4kjaJ39wAUVWV4AKVerMcZyyQ2uxqmz3y3zvjJMtuhbQXTtE6D8Uz45nP2ZlvGHtvwXYNQIVLPJlSdkKXDqItK1BQ6WhczO3bvn3X55fy4kpdbbX6opywkR54FNxpCrGVVtvWNZ1UnbIxJdvJYBCL162J5H0x5s2bqckHY9yWc12RRkg_1-7Y6pTGaIjSuuwJ8XTXSu5EpUzef4-69F8A9H4e5VZgOnvCHk-Ikn8aZ_KUPYD-GXu0xTP4nP35kbvdoGPjCJZhxW_gmtKd-SJx4isul3_LB_hyvQI-oA9A_fcfOXGD31DODO9ysscHPPa3lGCUdcrnOn8e-g6fS4XEpHe-pK_8K6JrfcEuz77-_HJeTn0XyqgbO5QQEYcljPS6MwaDaIOix11FgGDAGajrUAmrpQ3QxNbWIYWkrTOqDdHkhjEv2UG_6OE148J0lWl11AL3XYhMQxKa3AYI5Rr8UTA5y93HiZScemNc-3riLp3V5UldflJXwU42ty1HVo59N3wmpW4uJlLtPICm5idT8_tMrWBu2yT8kL-ppLEBihd7XuBoth8_eYlb3wiZKeRUXbDjzWlc3_SnTehhscZrKtEYh_jCFuzVaG6bWTTOEFsTStHsGOLONHfP9L9_ZQ5xhdt0Kas3_0Muh-whTXWkvzxiB8NqDW8Rqg3tu7wq7wDB0Ti3
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Nb9UwDI_g7QIHxDfdBgoSR7r1I01SLohNmyYkJgRM2i1K0wSQtrb09R33v89O0-69aWKnqmlaxbFjO6n9MyEfpJV1Zm0CS9yJmNU5j0trZJzYwibciNL48m3fTvnJGft6XpyHA7dlCKucdKJX1HVr8Ix8P8uZh9sq0s_dvxirRuHf1VBC4yHZAhUs5YJsHRydfv8x62Kw32zKL-Lg2k85PDLZxzZswvAuuYd43WnBNqyTB_G_BWF6lyN6O55yzUAdPyVPgmdJv4yi8Iw8sM1z8ngNb_AFufrpq96AgqPgNNueXtoLDHumraOIWxx3N2kEtFv1lg6gC0AOmk8UMcIvMXaG1j7o4yNcmyUGGnne0infn-qmhu9iQjHyn3Z42t8jbOtLcnZ89OvwJA71F2LDMznE1oA_5sDi81oIMKZZmdWwu9BWC1sKm6Y6ySVnUtvMVDLVTjsuS1FU2ghfOOYVWTRtY98Qmos6ERU3PIf9F3io2uUc1YfNizKDm4iwad6VCeDkWCPjQqUBw3Ril0J2qcCuiOzNr3UjOsd9LxwgU-fOCK7tG9r-twprVTltKia5rIBeVgDJxjlZMy1g-5dWwkSkXBcJNfizFTcWQlH5PQPYneRHBW2xVDeyHZH382NY5_jzRje2XUGfJM9ECX6GjMjrUdxmKrJSIGoTzKLYEMQNMjefNH__eCzxArbrjCXb_x_WDnmERIwAl7tkMfQr-xacsaF6F1bcNVCWMIM
  priority: 102
  providerName: ProQuest
– databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagXOCAyju0VEbiSEoejh_cALVaVYILVIKT5ThjqNRmV9nskf_OjPNgtwL10FOUh6Mdzzs78w1jbzTopgDIUMWDSkVTytSA12kGFWTSK-Pj-LbPX-TiXJx9r6ZqwvVYVkk5dBiAIqKtJuV29XqqiHtH3UIS43QqzNLHhLSNccBddg89cUZDDLIfi9kYowMXU4MRrZmaeP73mh33FFH8r2GY_isSvV5QueWhTvfZwzG05B8GWXjE7kD7mD3YAhx8wn5_jWNv0MJxjJqh41dwSXXPfBk4ARenq799BHy16YD3aAxQENr3nEDCr6h4hjex6uMtHts1VRpF5vKp4Z_jvuJ7qaOYBICv6HN_R7itT9n56cm3T4t0HMCQelnoPgWPAVlAly8bpdCbFqZoML1w4BQYBXnuslJLoR0Uvta5Cy5IbVRVO6_i5JhnbK9dtvCC8VI1maqllyUmYBiiulBKsh9QVqbAk4SJad-tH9HJaUjGpc1HENOJXZbYZUd2Jex4XrYa4DluWvCRmDo_TOja8cKy-2lHZbXB-VpoqWukV1RIsg9BN8IpzP_yWvmEmW2RsH38uBKGSSi2vOEHHE7yY0dzsbZFKSKWXJUn7PV8GxWd_r1xLSw3-ExWFspgoKET9nwQt5mKwiiCbcJdVDuCuEPm7p324lcEE68wXxcie3kLkg7YfTod4C8P2V7fbeAVhmp9fRSV8Q8XMDSy
  priority: 102
  providerName: Taylor & Francis
Title Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties
URI https://www.tandfonline.com/doi/abs/10.1080/14686996.2018.1455154
https://www.ncbi.nlm.nih.gov/pubmed/29707073
https://www.proquest.com/docview/2340250451
https://www.proquest.com/docview/2032791238
https://pubmed.ncbi.nlm.nih.gov/PMC5917440
https://doaj.org/article/facb4868b92d45d58cff8d4a70861b7c
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_t4wUeEN8ERmUkHknJh2M7SAgxtKkgbUxApfFkOY4DSF1aslSCB_537pyka6ehiZdEaeIo9p19v3PvfgfwXDlVJs5FOMUrGfIyFWHurAojl7lIWJlbX77t6FhMpvzDaXa6BQOhQj-A51e6dlRPatrMxr9-_n6DE_51HyH3krKHBOJ2CtRSY2LeRlywDbtonCQVNTjiFwTiaND5kHBEbYaknn-9ZsNceVb_S5ymVyHTywGWaxbr8Dbc6qEme9vpxh3YcvVduLlGQHgP_nz2ZXBwxWOIol3DztyM4qDZvGJEZBwuLvIK2GLZONbi4oCKUb9iRBp-RsE0rPRRIC_wXJ9T5JEXNhsIAJipS3wvZRiTQrAFbf83xON6H6aHB1_eTcK-IENoRaLa0FkEaBVCAFFKidY1yZMS3Q3jjHS5dHFsolQJroxLbKFiU5lKqFxmhbHSV5J5ADv1vHaPgKWyjGQhrEjRIUPIaqpU0Hri0ixP8CIAPoy7tj1bORXNmOm4JzUdxKVJXLoXVwDjVbNFR9dxXYN9EurqYWLb9j_Mm2-6n7y6MrbgSqgC-8sz7LKtKlVyI9EfjAtpA8jXVUK3frOl6iqj6PSaD9gb9EcP2q-TlHtuuSwO4NnqNk58-jfH1G6-xGeiNJE5Ag8VwMNO3Va9SHJJNE44inJDETe6uXmn_vHdk4tn6L9zHj3-34F8AjfosuPA3IOdtlm6p4jX2mIE29HXyQh29w-OTz6N_K4HHt9_PBn5ufkX3l07dQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IN4sFDAS3EibOI7tICFEoVVL2xWCVurNOI4DSG122YcQB_4Sv5EZJ9nuVoieeoriPOTJjMef45lvAJ5rr0vufYxDvFKRKFMZ5d7pKPaZj6VTuQvl2w4GcudIfDjOjlfgT5cLQ2GVnU8MjrocOvpHvsFTEei2suTN6EdEVaNod7UrodGYxZ7_9ROXbJPXu-9Rvy843946fLcTtVUFIie5nkbeIcqocB6TpVI4RfCcl4iZrbfK58oniY1TLYW2nrtCJ7ayldS5ygrrVCiHgu-9AqsilTHvwerm1uDjp7nvR7wgunwmiUuJLmdIxxvURk0UTqbXiR88ycTSbBiKBpyjTP0X8D0fv7kwIW7fhBstkmVvG9O7BSu-vg3XF_gN78Dvz6HKDjpUhiDdj9mpP6EwazasGPEkR6OztAU2mo09m6LvQburXzHiJD-lWB1WhiCTl3isJxTYFGyJdfwCzNYlvpcSmMne2Ih2F8ZEE3sXji5FM_egVw9r_wBYqspYFdLJFNd7iIhthepCd-XTLOd40gfRfXfjWjJ0qslxYpKWM7VTlyF1mVZdfVifPzZq2EAuemCTlDq_mci8Q8Nw_NW0vsFU1hVCS12gvCJDkV1V6VJYhcvNpFCuD_miSZhp-JdTNYVXTHpBB9Y6-zGtd5qYs7HUh2fzy-hXaLPI1n44w3vilKsccY3uw_3G3OZS8FwRSxR-RbVkiEtiLl-pv38L3OVZnhAl5cP_d-spXN05PNg3-7uDvUdwjQRqyDXXoDcdz_xjBILT4kk7-hh8uewB_xdoHW2u
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEG8CBYwEN1ISJ_EDiQNQVlsKFRJUKifjODYgtdlVNivEgR_FP2TGebBbgXpAPUUbJ5EnM575vJn5hpBH0smKOZfAEvcizquMx8pZGSeucAm3QtnQvu3dPp8e5G8Oi8MN8muohcG0StxD-44oIvhqXNzzyg8ZcU-xWogDTsfELLmNTNuAA_q8yj334zvs2hbPd3dAxY8Zm7z--Goa940FYsuZbGNnAWh4CGW8EgKiBFOsAthsnBFOCZemJskkz6VxzJYyNd54LpUoSmNF6IgCzz1HzhcQ67FbRPJpOjp_AAz5UNCEcxyKhv417bVwGLoGnOBM_RvyPZnAuRIRJ1fI5R7K0hed7V0lG66-Ri6tEBxeJz8_hDY74FEpoHTX0GN3hHnWdOYpEiXH8z91C3S-bBxtwfmA4dXPKJKSH2OyDq1ClskTONYLzGwKxkQHggEKeoTnYgUzGhyd4-eFBnlib5CDM9HLTbJZz2p3m9BMVIkoueUZbPgAEhufcfRXLisUgx8RyYf3rm3Pho5NOY502pOmDurSqC7dqysi2-Nt844O5LQbXqJSx4uRzTucmDVfdO8ctDe2zCWXJcibFyCy9V5WuRGw30xLYSOiVk1Ct-HPHN91XtHZKRPYGuxH9-5poVmWB-66Io3Iw3EYHAt-LTK1my3hmiRjQgGwkRG51ZnbKAVTAmmi4C2KNUNcE3N9pP72NZCXFypFTso7_yHSA3Lh_c5Ev93d37tLLuJIx7y5RTbbZunuAUpsy_thXVLy-awdwW8dP3Gv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+laser+melting+of+high-performance+pure+tungsten%3A+parameter+design%2C+densification+behavior+and+mechanical+properties&rft.jtitle=Science+and+technology+of+advanced+materials&rft.au=Tan%2C+Chaolin&rft.au=Zhou%2C+Kesong&rft.au=Ma%2C+Wenyou&rft.au=Attard%2C+Bonnie&rft.date=2018-12-31&rft.issn=1468-6996&rft.eissn=1878-5514&rft.volume=19&rft.issue=1&rft.spage=370&rft.epage=380&rft_id=info:doi/10.1080%2F14686996.2018.1455154&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_14686996_2018_1455154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-6996&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-6996&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-6996&client=summon