A New Multivariate Approach for Prognostics Based on Extreme Learning Machine and Fuzzy Clustering
Prognostics is a core process of prognostics and health management (PHM) discipline, that estimates the remaining useful life (RUL) of a degrading machinery to optimize its service delivery potential. However, machinery operates in a dynamic environment and the acquired condition monitoring data are...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 45; no. 12; pp. 2626 - 2639 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2267 2168-2275 2168-2275 |
DOI | 10.1109/TCYB.2014.2378056 |
Cover
Loading…
Abstract | Prognostics is a core process of prognostics and health management (PHM) discipline, that estimates the remaining useful life (RUL) of a degrading machinery to optimize its service delivery potential. However, machinery operates in a dynamic environment and the acquired condition monitoring data are usually noisy and subject to a high level of uncertainty/unpredictability, which complicates prognostics. The complexity further increases, when there is absence of prior knowledge about ground truth (or failure definition). For such issues, data-driven prognostics can be a valuable solution without deep understanding of system physics. This paper contributes a new data-driven prognostics approach namely, an "enhanced multivariate degradation modeling," which enables modeling degrading states of machinery without assuming a homogeneous pattern. In brief, a predictability scheme is introduced to reduce the dimensionality of the data. Following that, the proposed prognostics model is achieved by integrating two new algorithms namely, the summation wavelet-extreme learning machine and subtractive-maximum entropy fuzzy clustering to show evolution of machine degradation by simultaneous predictions and discrete state estimation. The prognostics model is equipped with a dynamic failure threshold assignment procedure to estimate RUL in a realistic manner. To validate the proposition, a case study is performed on turbofan engines data from PHM challenge 2008 (NASA), and results are compared with recent publications. |
---|---|
AbstractList | Prognostics is a core process of prognostics and health management (PHM) discipline, that estimates the remaining useful life (RUL) of a degrading machinery to optimize its service delivery potential. However, machinery operates in a dynamic environment and the acquired condition monitoring data are usually noisy and subject to a high level of uncertainty/unpredictability, which complicates prognostics. The complexity further increases, when there is absence of prior knowledge about ground truth (or failure definition). For such issues, data-driven prognostics can be a valuable solution without deep understanding of system physics. This paper contributes a new data-driven prognostics approach namely, an "enhanced multivariate degradation modeling," which enables modeling degrading states of machinery without assuming a homogeneous pattern. In brief, a predictability scheme is introduced to reduce the dimensionality of the data. Following that, the proposed prognostics model is achieved by integrating two new algorithms namely, the summation wavelet-extreme learning machine and subtractive-maximum entropy fuzzy clustering to show evolution of machine degradation by simultaneous predictions and discrete state estimation. The prognostics model is equipped with a dynamic failure threshold assignment procedure to estimate RUL in a realistic manner. To validate the proposition, a case study is performed on turbofan engines data from PHM challenge 2008 (NASA), and results are compared with recent publications. Prognostics is a core process of prognostics and health management (PHM) discipline, that estimates the remaining useful life (RUL) of a degrading machinery to optimize its service delivery potential. However, machinery operates in a dynamic environment and the acquired condition monitoring data are usually noisy and subject to a high level of uncertainty/unpredictability, which complicates prognostics. The complexity further increases, when there is absence of prior knowledge about ground truth (or failure definition). For such issues, data-driven prognostics can be a valuable solution without deep understanding of system physics. This paper contributes a new data-driven prognostics approach namely, an "enhanced multivariate degradation modeling," which enables modeling degrading states of machinery without assuming a homogeneous pattern. In brief, a predictability scheme is introduced to reduce the dimensionality of the data. Following that, the proposed prognostics model is achieved by integrating two new algorithms namely, the summation wavelet-extreme learning machine and subtractive-maximum entropy fuzzy clustering to show evolution of machine degradation by simultaneous predictions and discrete state estimation. The prognostics model is equipped with a dynamic failure threshold assignment procedure to estimate RUL in a realistic manner. To validate the proposition, a case study is performed on turbofan engines data from PHM challenge 2008 (NASA), and results are compared with recent publications.Prognostics is a core process of prognostics and health management (PHM) discipline, that estimates the remaining useful life (RUL) of a degrading machinery to optimize its service delivery potential. However, machinery operates in a dynamic environment and the acquired condition monitoring data are usually noisy and subject to a high level of uncertainty/unpredictability, which complicates prognostics. The complexity further increases, when there is absence of prior knowledge about ground truth (or failure definition). For such issues, data-driven prognostics can be a valuable solution without deep understanding of system physics. This paper contributes a new data-driven prognostics approach namely, an "enhanced multivariate degradation modeling," which enables modeling degrading states of machinery without assuming a homogeneous pattern. In brief, a predictability scheme is introduced to reduce the dimensionality of the data. Following that, the proposed prognostics model is achieved by integrating two new algorithms namely, the summation wavelet-extreme learning machine and subtractive-maximum entropy fuzzy clustering to show evolution of machine degradation by simultaneous predictions and discrete state estimation. The prognostics model is equipped with a dynamic failure threshold assignment procedure to estimate RUL in a realistic manner. To validate the proposition, a case study is performed on turbofan engines data from PHM challenge 2008 (NASA), and results are compared with recent publications. |
Author | Javed, Kamran Zerhouni, Noureddine Gouriveau, Rafael |
Author_xml | – sequence: 1 givenname: Kamran surname: Javed fullname: Javed, Kamran email: kamran.javed@femto-st.fr organization: Autom. Control & Micro-Mechatron. Syst. Dept., FEMTO-ST Inst., Besancon, France – sequence: 2 givenname: Rafael surname: Gouriveau fullname: Gouriveau, Rafael organization: Autom. Control & Micro-Mechatron. Syst. Dept., FEMTO-ST Inst., Besancon, France – sequence: 3 givenname: Noureddine surname: Zerhouni fullname: Zerhouni, Noureddine organization: Autom. Control & Micro-Mechatron. Syst. Dept., FEMTO-ST Inst., Besancon, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25643420$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1vGyEQhlHlKt8_oKpUIeXSix0-lmU52pbTRnI-DskhpxVeZlOsNbjAtk1-fbDs-JBDWy4zYp6XmeE9RgPnHSD0iZIRpURd3E8fJyNGaDFiXFZElB_QEaNlNWRMisE-L-UhOotxSfKp8pWqDtAhE2XBC0aO0GKMb-A3vu67ZH_pYHUCPF6vg9fND9z6gO-Cf3I-JttEPNERDPYOz_6kACvAc9DBWfeErzNuHWDtDL7sX16e8bTrY4KQi6foY6u7CGe7eIIeLmf30-_D-e23q-l4PmxKVqVhQw1pqGSslVIQRrVpZWWgzbkUCpTWBky7KIuWAVNMCZJ3poqDBgmaGX6Cvm7fzdP_7CGmemVjA12nHfg-1rTiknMiqPw3KvOPFnks9R8oF5yVvCAZPX-HLn0fXN45U0WlSkH5pveXHdUvVmDqdbArHZ7rN08yQLdAE3yMAdo9Qkm9sb7eWF9vrK931meNfKdpbNLJepeCtt1flZ-3SgsA-04yG6Co4K_QsLjZ |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1080_00207543_2024_2349257 crossref_primary_10_1007_s13198_024_02580_9 crossref_primary_10_1007_s00521_019_04478_1 crossref_primary_10_1109_JSEN_2023_3326487 crossref_primary_10_3390_a17080321 crossref_primary_10_1007_s10994_022_06209_5 crossref_primary_10_1109_TNNLS_2016_2582798 crossref_primary_10_1177_0954406219888544 crossref_primary_10_1109_ACCESS_2023_3277730 crossref_primary_10_1016_j_neucom_2015_12_041 crossref_primary_10_3390_ai2010005 crossref_primary_10_1007_s10033_017_0150_0 crossref_primary_10_1109_TR_2019_2957965 crossref_primary_10_3390_e24030402 crossref_primary_10_1016_j_measurement_2020_107929 crossref_primary_10_1016_j_ress_2024_110012 crossref_primary_10_1109_TCYB_2021_3124838 crossref_primary_10_1007_s44163_022_00022_8 crossref_primary_10_1007_s10845_022_02015_x crossref_primary_10_3103_S0146411621010089 crossref_primary_10_1109_JSEN_2022_3213551 crossref_primary_10_1109_TR_2017_2727489 crossref_primary_10_1177_09544100211050432 crossref_primary_10_1109_ACCESS_2020_2970444 crossref_primary_10_1109_ACCESS_2019_2960406 crossref_primary_10_1007_s10489_024_05280_w crossref_primary_10_1016_j_asoc_2018_05_015 crossref_primary_10_1109_MIE_2019_2938025 crossref_primary_10_1109_TII_2020_2983760 crossref_primary_10_1007_s40430_023_04461_x crossref_primary_10_1016_j_ymssp_2017_11_024 crossref_primary_10_1109_ACCESS_2023_3263196 crossref_primary_10_1016_j_ifacol_2022_07_215 crossref_primary_10_1109_TAI_2021_3097311 crossref_primary_10_1016_j_jmsy_2020_11_016 crossref_primary_10_1109_TIM_2022_3160561 crossref_primary_10_1016_j_compind_2024_104131 crossref_primary_10_3233_JIFS_213586 crossref_primary_10_1109_JSEN_2021_3119553 crossref_primary_10_12677_AAM_2022_115333 crossref_primary_10_1002_qre_2229 crossref_primary_10_1016_j_ymssp_2017_01_050 crossref_primary_10_1016_j_ymssp_2022_109434 crossref_primary_10_1109_TII_2019_2896288 crossref_primary_10_1016_j_renene_2021_03_078 crossref_primary_10_1109_TCYB_2022_3228861 crossref_primary_10_1080_09537287_2022_2160388 crossref_primary_10_1111_cobi_13865 crossref_primary_10_1109_TCYB_2016_2540657 crossref_primary_10_1109_TCYB_2022_3185117 crossref_primary_10_1016_j_ymssp_2024_111551 crossref_primary_10_1016_j_isatra_2019_07_004 crossref_primary_10_1016_j_ymssp_2017_11_016 crossref_primary_10_1109_TIM_2023_3253887 crossref_primary_10_1109_TIE_2016_2623260 crossref_primary_10_1016_j_measurement_2021_109685 crossref_primary_10_1109_TIE_2016_2619322 crossref_primary_10_1016_j_aei_2020_101139 crossref_primary_10_3390_app12136766 crossref_primary_10_1016_j_ifacol_2020_12_853 crossref_primary_10_1109_TBDATA_2022_3218064 crossref_primary_10_1088_1361_6501_ad3bdd crossref_primary_10_1007_s10836_019_05843_7 crossref_primary_10_1016_j_ast_2018_09_044 crossref_primary_10_1016_j_microrel_2021_114267 crossref_primary_10_1016_j_neucom_2021_07_080 crossref_primary_10_1016_j_dsp_2023_104360 crossref_primary_10_1109_TIM_2021_3126006 crossref_primary_10_1109_JSEN_2023_3342884 crossref_primary_10_1016_j_ymssp_2017_03_046 crossref_primary_10_1007_s11042_018_6601_5 crossref_primary_10_1088_1742_6596_1651_1_012059 crossref_primary_10_1109_TITS_2024_3510678 crossref_primary_10_1016_j_ress_2023_109723 crossref_primary_10_1109_OJIES_2020_3046044 crossref_primary_10_1016_j_neucom_2018_09_076 crossref_primary_10_1109_TFUZZ_2024_3497974 crossref_primary_10_1016_j_engappai_2021_104552 crossref_primary_10_1080_08982112_2023_2218923 crossref_primary_10_1109_TCYB_2016_2609999 crossref_primary_10_1016_j_patcog_2017_02_036 crossref_primary_10_1007_s00500_022_07625_4 crossref_primary_10_1007_s40799_019_00308_0 crossref_primary_10_1016_j_measurement_2020_108707 crossref_primary_10_1016_j_asoc_2018_01_036 crossref_primary_10_1016_j_renene_2021_10_062 crossref_primary_10_1016_j_measurement_2023_113478 crossref_primary_10_3390_aerospace12030259 crossref_primary_10_1109_TIM_2020_3031113 crossref_primary_10_1109_TIM_2021_3055788 crossref_primary_10_1109_TIM_2024_3398070 crossref_primary_10_1016_j_neucom_2023_126618 crossref_primary_10_1109_TFUZZ_2024_3393622 crossref_primary_10_52547_jsdp_19_2_27 crossref_primary_10_1155_2021_7332776 crossref_primary_10_1016_j_asoc_2018_10_001 crossref_primary_10_1007_s10462_022_10260_y crossref_primary_10_1016_j_ress_2022_108330 crossref_primary_10_1016_j_ress_2025_111039 crossref_primary_10_1109_TCYB_2018_2845661 crossref_primary_10_1007_s00170_020_05303_z crossref_primary_10_3390_s20082425 crossref_primary_10_1109_TCYB_2019_2903736 crossref_primary_10_1088_1755_1315_1189_1_012007 crossref_primary_10_1016_j_asoc_2018_03_043 crossref_primary_10_1016_j_jmsy_2022_05_010 crossref_primary_10_1109_TASE_2018_2865414 crossref_primary_10_1016_j_engappai_2019_06_001 crossref_primary_10_1109_TETCI_2024_3360338 crossref_primary_10_1177_1687814019839599 crossref_primary_10_1109_TIE_2020_2972443 crossref_primary_10_1016_j_neucom_2024_127447 crossref_primary_10_1016_j_renene_2021_08_045 crossref_primary_10_1088_1361_6501_ad2bcc crossref_primary_10_1016_j_ymssp_2023_110472 crossref_primary_10_1109_TNNLS_2020_3025905 crossref_primary_10_3390_machines10020072 crossref_primary_10_1109_TCYB_2019_2938244 crossref_primary_10_1155_2020_8814658 crossref_primary_10_1021_acs_molpharmaceut_7b00578 crossref_primary_10_1177_00202940221109773 crossref_primary_10_1088_1742_6596_887_1_012064 crossref_primary_10_1007_s12204_021_2323_3 crossref_primary_10_1016_j_inffus_2024_102817 crossref_primary_10_1080_01430750_2022_2056917 |
Cites_doi | 10.1109/IECON.2013.6699844 10.1109/TSMC.2013.2296276 10.1016/j.asoc.2007.10.020 10.1016/j.patcog.2005.01.025 10.1093/oso/9780198538493.001.0001 10.1109/TIE.2003.812470 10.1109/PHM.2008.4711414 10.1109/PHM.2008.4711437 10.1109/ICPHM.2011.6024330 10.1109/ICCRD.2010.69 10.1109/TNNLS.2013.2281839 10.1109/TR.2012.2220700 10.1016/S0925-2312(00)00295-2 10.1109/AERO.2010.5446828 10.1016/j.microrel.2010.09.014 10.1016/j.ress.2009.08.001 10.2166/hydro.2005.0020 10.1109/TSMCB.2012.2198882 10.1016/j.ymssp.2008.06.009 10.1109/TSMCB.2011.2168604 10.1109/TSMCA.2008.2001055 10.3233/IFS-1994-2306 10.1109/ICPHM.2012.6299516 10.1109/IJCNN.1990.137819 10.1109/COASE.2009.5234098 10.1016/j.neucom.2013.07.021 10.1109/TSMCA.2012.2207109 10.1109/PHM.2010.5413442 10.1016/j.ymssp.2005.09.012 10.1109/TR.2014.2315912 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 7QO P64 |
DOI | 10.1109/TCYB.2014.2378056 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Aerospace Database MEDLINE Engineering Research Database MEDLINE - Academic Aerospace Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Engineering |
EISSN | 2168-2275 |
EndPage | 2639 |
ExternalDocumentID | 3895111581 25643420 10_1109_TCYB_2014_2378056 7021915 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Laboratory of Excellence ACTION funded by the French Government through the program ″Investments for the future‴ managed by the National Agency for Research (ANR-11-LABX-01-01) |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 7QO P64 |
ID | FETCH-LOGICAL-c628t-c1d0c1722f775021adf78def502759e9aadedfb64f2e292950056193eae7ea2d3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Thu Jul 10 22:22:32 EDT 2025 Fri Jul 11 08:37:08 EDT 2025 Fri Jul 11 11:31:06 EDT 2025 Sun Jun 29 16:51:10 EDT 2025 Thu Apr 03 07:02:37 EDT 2025 Thu Apr 24 22:57:33 EDT 2025 Tue Jul 01 04:35:05 EDT 2025 Tue Aug 26 16:38:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Data-driven remaining useful life (RUL) extreme learning machine (ELM) fuzzy clustering prognostics |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c628t-c1d0c1722f775021adf78def502759e9aadedfb64f2e292950056193eae7ea2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://hal.science/hal-01142157v1/file/JAVED-ET-AL-IEEESMC2014-2.pdf |
PMID | 25643420 |
PQID | 1748965137 |
PQPubID | 85422 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_TCYB_2014_2378056 proquest_miscellaneous_1778046289 ieee_primary_7021915 proquest_miscellaneous_1735326340 proquest_journals_1748965137 proquest_miscellaneous_1837330517 pubmed_primary_25643420 crossref_primary_10_1109_TCYB_2014_2378056 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-01 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 singh (ref22) 2007; 2 ref34 ref12 ref15 ref14 ref31 ref30 ref33 ref10 mosallam (ref11) 2013; 33 ref2 ref1 nystad (ref40) 2012; 3 ref17 ref16 wang (ref44) 2010 bataineh (ref39) 2011; 5 chiu (ref36) 1994; 2 dragomir (ref13) 2007; 3 zemouri (ref19) 2010; 4 javed (ref18) 2012 ref23 ref26 ref25 ref41 ref43 luo (ref9) 2008; 38 jaeger (ref21) 2002 ref28 huang (ref24) 2004 balaban (ref4) 2012 ref29 ref8 ref7 luo (ref27) 2014; 25 ref3 ref6 doan (ref38) 2005; 7 ref5 rao (ref32) 1971 bishop (ref20) 1995 (ref42) 2013 li (ref37) 1995; 4 |
References_xml | – ident: ref12 doi: 10.1109/IECON.2013.6699844 – ident: ref6 doi: 10.1109/TSMC.2013.2296276 – ident: ref29 doi: 10.1016/j.asoc.2007.10.020 – ident: ref35 doi: 10.1016/j.patcog.2005.01.025 – year: 1995 ident: ref20 publication-title: Neural Networks for Pattern Recognition doi: 10.1093/oso/9780198538493.001.0001 – ident: ref23 doi: 10.1109/TIE.2003.812470 – year: 2013 ident: ref42 publication-title: Prognostic Data Repository – ident: ref43 doi: 10.1109/PHM.2008.4711414 – ident: ref1 doi: 10.1109/PHM.2008.4711437 – ident: ref17 doi: 10.1109/ICPHM.2011.6024330 – ident: ref3 doi: 10.1109/ICCRD.2010.69 – volume: 25 start-page: 836 year: 2014 ident: ref27 article-title: Sparse Bayesian extreme learning machine for multi-classification publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2281839 – ident: ref33 doi: 10.1109/TR.2012.2220700 – ident: ref30 doi: 10.1016/S0925-2312(00)00295-2 – ident: ref2 doi: 10.1109/AERO.2010.5446828 – year: 2002 ident: ref21 publication-title: Tutorial on Training Recurrent Neural Networks Covering BPPT RTRL EKF and the Echo State Network Approach – ident: ref34 doi: 10.1016/j.microrel.2010.09.014 – ident: ref10 doi: 10.1016/j.ress.2009.08.001 – volume: 7 start-page: 219 year: 2005 ident: ref38 article-title: Derivation of effective and efficient data set with subtractive clustering method and genetic algorithm publication-title: Hydroinformatics doi: 10.2166/hydro.2005.0020 – volume: 3 start-page: 431 year: 2007 ident: ref13 article-title: Framework for a distributed and hybrid prognostic system publication-title: Proc 4th IFAC Conf Manage Control Prod Logist (MCPL) – ident: ref16 doi: 10.1109/TSMCB.2012.2198882 – ident: ref7 doi: 10.1016/j.ymssp.2008.06.009 – ident: ref26 doi: 10.1109/TSMCB.2011.2168604 – volume: 3 start-page: 141 year: 2012 ident: ref40 article-title: Lifetime models for remaining useful life estimation with randomly distributed failure thresholds publication-title: Proc 1st Eur Conf Prognostics Health Manage Soc – volume: 38 start-page: 1156 year: 2008 ident: ref9 article-title: Model-based prognostic techniques applied to a suspension system publication-title: IEEE Trans Syst Man Cybern A Syst Humans doi: 10.1109/TSMCA.2008.2001055 – volume: 2 start-page: 267 year: 1994 ident: ref36 article-title: Fuzzy model identification based on cluster estimation publication-title: J Intell Fuzzy Syst doi: 10.3233/IFS-1994-2306 – volume: 4 start-page: 19 year: 2010 ident: ref19 article-title: Improving the prediction accuracy of recurrent neural network by a PID controller publication-title: Int J Syst Appl Eng Develop – volume: 2 start-page: 256 year: 2007 ident: ref22 article-title: Application of extreme learning machine method for time series analysis publication-title: Int J Intell Technol – volume: 4 start-page: 2227 year: 1995 ident: ref37 article-title: A maximum-entropy approach to fuzzy clustering publication-title: Proc Fuzzy Syst Int Joint Conf 4th IEEE Int Conf Fuzzy Syst 2nd Int Fuzzy Eng Symp IEEE Int Conf – volume: 33 start-page: 139 year: 2013 ident: ref11 article-title: Bayesian approach for remaining useful life prediction publication-title: Chem Eng Trans – start-page: 1 year: 2012 ident: ref4 article-title: An approach to prognostic decision making in the aerospace domain publication-title: Proc Ann Conf Prognostics Health Manage Soc – year: 1971 ident: ref32 publication-title: Generalized Inverse of Matrices and its Applications – ident: ref25 doi: 10.1109/ICPHM.2012.6299516 – ident: ref31 doi: 10.1109/IJCNN.1990.137819 – ident: ref41 doi: 10.1109/COASE.2009.5234098 – start-page: 25 year: 2012 ident: ref18 article-title: Features selection procedure for prognostics: An approach based on predictability publication-title: Proc 8th IFAC Int Symp Fault Detection Supervis Safety Tech Process – ident: ref28 doi: 10.1016/j.neucom.2013.07.021 – ident: ref8 doi: 10.1109/TSMCA.2012.2207109 – start-page: 985 year: 2004 ident: ref24 article-title: Extreme learning machine: A new learning scheme of feedforward neural networks publication-title: Proc Int Joint Conf Neural Netw – ident: ref14 doi: 10.1109/PHM.2010.5413442 – volume: 5 start-page: 335 year: 2011 ident: ref39 article-title: A comparison study between various fuzzy clustering algorithms publication-title: Ed Board – year: 2010 ident: ref44 article-title: Trajectory similarity based prediction for remaining useful life estimation – ident: ref5 doi: 10.1016/j.ymssp.2005.09.012 – ident: ref15 doi: 10.1109/TR.2014.2315912 |
SSID | ssj0000816898 |
Score | 2.4736712 |
Snippet | Prognostics is a core process of prognostics and health management (PHM) discipline, that estimates the remaining useful life (RUL) of a degrading machinery to... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2626 |
SubjectTerms | Algorithms Cluster Analysis Clustering algorithms Data models Data-driven Degradation Dynamics Engineering Estimates extreme learning machine (ELM) Failure Fuzzy fuzzy clustering Fuzzy Logic Fuzzy set theory Machine Learning Machinery Mathematical models Models, Theoretical Monitoring Multivariate Analysis Predictive models prognostics Prognostics and health management remaining useful life (RUL) |
Title | A New Multivariate Approach for Prognostics Based on Extreme Learning Machine and Fuzzy Clustering |
URI | https://ieeexplore.ieee.org/document/7021915 https://www.ncbi.nlm.nih.gov/pubmed/25643420 https://www.proquest.com/docview/1748965137 https://www.proquest.com/docview/1735326340 https://www.proquest.com/docview/1778046289 https://www.proquest.com/docview/1837330517 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RTlxaHn0EKDISh7ZqlsTOy8dlxQohbdUDSPQUJX70UJRUkCDYX98ZxxtVVVlxi-SJZGdmMt_Y428ATopYxJTshEphrpqYqg4LoW2o6tpaWacY9ShRXHzLLq6Ty5v0ZgO-jndhjDGu-MxM6NGd5etW9bRVdppjQJJ0o_wVJm7DXa1xP8U1kHCtbzk-hIgqcn-IGUfy9Gr244zquJIJF8TiT52LMNgnIqFG339FJNdi5Xm06aLO_A0sVvMdik1-TfqunqjlP1SOL13QNrz28JNNB3vZgQ3T7MKOd_B79smzUH_eg3rK8AfI3AXdB0yoEZOyqScgZ4h02fe7lor0iOaZnWEs1Kxt2PljRxuOzNO2_mQLV6xpWNVoNu-Xyyc2u-2JnAEH38L1_PxqdhH6hgyhynjRhSrWkULEw22OQIPHlbZ5oY1N6exTGllV2mhbZ4nlhiPuSh3RqBSmMrmpuBbvYLNpG_MBmM5SjJ8Wk8tCJlzZQscIhWKuEQ_KjPMAopVSSuXZyqlpxm3pspZIlqTSklRaepUG8GV85fdA1bFOeI_UMQp6TQRwuNJ86Z35voyJoQdtVuQBHI_D6IZ0tlI1pu1JRqSIhEUSrZMhtif8knKNTCFyIYg4LYD3g-WNc1wZ7P7_534AW7jCdKi1OYTN7q43HxExdfWRc5U_7EUNLQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAXoBRoSgEjcQBEtomdl4_bVVcLdCsOW6mcosQPDlQJapMK9tcz43gjhGDFLZInkp2ZyXxjj78BeF3EIqZkJ1QKc9XEVHVYCG1DVdfWyjrFqEeJ4vI8W1wkHy_Tyx14P96FMca44jMzoUd3lq9b1dNW2XGOAUnSjfI7GPfTeLitNe6ouBYSrvktx4cQcUXujzHjSB6vZl9OqJIrmXBBPP7UuwjDfSISavX9W0xyTVb-jTdd3Jk_gOVmxkO5ybdJ39UTtf6DzPF_l_QQ7nsAyqaDxezBjmkewZ538Rv2xvNQv92HesrwF8jcFd1bTKkRlbKppyBniHXZ5-uWyvSI6JmdYDTUrG3Y6Y-OthyZJ279ypauXNOwqtFs3q_XP9nsqid6Bhx8DBfz09VsEfqWDKHKeNGFKtaRQszDbY5Qg8eVtnmhjU3p9FMaWVXaaFtnieWGI_JKHdWoFKYyuam4Fk9gt2kbcwBMZylGUIvpZSETrmyhYwRDMdeICGXGeQDRRiml8nzl1DbjqnR5SyRLUmlJKi29SgN4N77yfSDr2Ca8T-oYBb0mAjjaaL707nxTxsTRg1Yr8gBejcPoiHS6UjWm7UlGpIiFRRJtkyG-J_yScotMIXIhiDotgKeD5Y1z3Bjs4d_n_hLuLlbLs_Lsw_mnZ3APV5sOlTdHsNtd9-Y54qeufuHc5hcZNRB2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Multivariate+Approach+for+Prognostics+Based+on+Extreme+Learning+Machine+and+Fuzzy+Clustering&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Javed%2C+Kamran&rft.au=Gouriveau%2C+Rafael&rft.au=Zerhouni%2C+Noureddine&rft.date=2015-12-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=45&rft.issue=12&rft.spage=2626&rft.epage=2639&rft_id=info:doi/10.1109%2FTCYB.2014.2378056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2014_2378056 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |