A New Multivariate Approach for Prognostics Based on Extreme Learning Machine and Fuzzy Clustering

Prognostics is a core process of prognostics and health management (PHM) discipline, that estimates the remaining useful life (RUL) of a degrading machinery to optimize its service delivery potential. However, machinery operates in a dynamic environment and the acquired condition monitoring data are...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 45; no. 12; pp. 2626 - 2639
Main Authors Javed, Kamran, Gouriveau, Rafael, Zerhouni, Noureddine
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2014.2378056

Cover

Loading…
Abstract Prognostics is a core process of prognostics and health management (PHM) discipline, that estimates the remaining useful life (RUL) of a degrading machinery to optimize its service delivery potential. However, machinery operates in a dynamic environment and the acquired condition monitoring data are usually noisy and subject to a high level of uncertainty/unpredictability, which complicates prognostics. The complexity further increases, when there is absence of prior knowledge about ground truth (or failure definition). For such issues, data-driven prognostics can be a valuable solution without deep understanding of system physics. This paper contributes a new data-driven prognostics approach namely, an "enhanced multivariate degradation modeling," which enables modeling degrading states of machinery without assuming a homogeneous pattern. In brief, a predictability scheme is introduced to reduce the dimensionality of the data. Following that, the proposed prognostics model is achieved by integrating two new algorithms namely, the summation wavelet-extreme learning machine and subtractive-maximum entropy fuzzy clustering to show evolution of machine degradation by simultaneous predictions and discrete state estimation. The prognostics model is equipped with a dynamic failure threshold assignment procedure to estimate RUL in a realistic manner. To validate the proposition, a case study is performed on turbofan engines data from PHM challenge 2008 (NASA), and results are compared with recent publications.
AbstractList Prognostics is a core process of prognostics and health management (PHM) discipline, that estimates the remaining useful life (RUL) of a degrading machinery to optimize its service delivery potential. However, machinery operates in a dynamic environment and the acquired condition monitoring data are usually noisy and subject to a high level of uncertainty/unpredictability, which complicates prognostics. The complexity further increases, when there is absence of prior knowledge about ground truth (or failure definition). For such issues, data-driven prognostics can be a valuable solution without deep understanding of system physics. This paper contributes a new data-driven prognostics approach namely, an "enhanced multivariate degradation modeling," which enables modeling degrading states of machinery without assuming a homogeneous pattern. In brief, a predictability scheme is introduced to reduce the dimensionality of the data. Following that, the proposed prognostics model is achieved by integrating two new algorithms namely, the summation wavelet-extreme learning machine and subtractive-maximum entropy fuzzy clustering to show evolution of machine degradation by simultaneous predictions and discrete state estimation. The prognostics model is equipped with a dynamic failure threshold assignment procedure to estimate RUL in a realistic manner. To validate the proposition, a case study is performed on turbofan engines data from PHM challenge 2008 (NASA), and results are compared with recent publications.
Prognostics is a core process of prognostics and health management (PHM) discipline, that estimates the remaining useful life (RUL) of a degrading machinery to optimize its service delivery potential. However, machinery operates in a dynamic environment and the acquired condition monitoring data are usually noisy and subject to a high level of uncertainty/unpredictability, which complicates prognostics. The complexity further increases, when there is absence of prior knowledge about ground truth (or failure definition). For such issues, data-driven prognostics can be a valuable solution without deep understanding of system physics. This paper contributes a new data-driven prognostics approach namely, an "enhanced multivariate degradation modeling," which enables modeling degrading states of machinery without assuming a homogeneous pattern. In brief, a predictability scheme is introduced to reduce the dimensionality of the data. Following that, the proposed prognostics model is achieved by integrating two new algorithms namely, the summation wavelet-extreme learning machine and subtractive-maximum entropy fuzzy clustering to show evolution of machine degradation by simultaneous predictions and discrete state estimation. The prognostics model is equipped with a dynamic failure threshold assignment procedure to estimate RUL in a realistic manner. To validate the proposition, a case study is performed on turbofan engines data from PHM challenge 2008 (NASA), and results are compared with recent publications.Prognostics is a core process of prognostics and health management (PHM) discipline, that estimates the remaining useful life (RUL) of a degrading machinery to optimize its service delivery potential. However, machinery operates in a dynamic environment and the acquired condition monitoring data are usually noisy and subject to a high level of uncertainty/unpredictability, which complicates prognostics. The complexity further increases, when there is absence of prior knowledge about ground truth (or failure definition). For such issues, data-driven prognostics can be a valuable solution without deep understanding of system physics. This paper contributes a new data-driven prognostics approach namely, an "enhanced multivariate degradation modeling," which enables modeling degrading states of machinery without assuming a homogeneous pattern. In brief, a predictability scheme is introduced to reduce the dimensionality of the data. Following that, the proposed prognostics model is achieved by integrating two new algorithms namely, the summation wavelet-extreme learning machine and subtractive-maximum entropy fuzzy clustering to show evolution of machine degradation by simultaneous predictions and discrete state estimation. The prognostics model is equipped with a dynamic failure threshold assignment procedure to estimate RUL in a realistic manner. To validate the proposition, a case study is performed on turbofan engines data from PHM challenge 2008 (NASA), and results are compared with recent publications.
Author Javed, Kamran
Zerhouni, Noureddine
Gouriveau, Rafael
Author_xml – sequence: 1
  givenname: Kamran
  surname: Javed
  fullname: Javed, Kamran
  email: kamran.javed@femto-st.fr
  organization: Autom. Control & Micro-Mechatron. Syst. Dept., FEMTO-ST Inst., Besancon, France
– sequence: 2
  givenname: Rafael
  surname: Gouriveau
  fullname: Gouriveau, Rafael
  organization: Autom. Control & Micro-Mechatron. Syst. Dept., FEMTO-ST Inst., Besancon, France
– sequence: 3
  givenname: Noureddine
  surname: Zerhouni
  fullname: Zerhouni, Noureddine
  organization: Autom. Control & Micro-Mechatron. Syst. Dept., FEMTO-ST Inst., Besancon, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25643420$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vGyEQhlHlKt8_oKpUIeXSix0-lmU52pbTRnI-DskhpxVeZlOsNbjAtk1-fbDs-JBDWy4zYp6XmeE9RgPnHSD0iZIRpURd3E8fJyNGaDFiXFZElB_QEaNlNWRMisE-L-UhOotxSfKp8pWqDtAhE2XBC0aO0GKMb-A3vu67ZH_pYHUCPF6vg9fND9z6gO-Cf3I-JttEPNERDPYOz_6kACvAc9DBWfeErzNuHWDtDL7sX16e8bTrY4KQi6foY6u7CGe7eIIeLmf30-_D-e23q-l4PmxKVqVhQw1pqGSslVIQRrVpZWWgzbkUCpTWBky7KIuWAVNMCZJ3poqDBgmaGX6Cvm7fzdP_7CGmemVjA12nHfg-1rTiknMiqPw3KvOPFnks9R8oF5yVvCAZPX-HLn0fXN45U0WlSkH5pveXHdUvVmDqdbArHZ7rN08yQLdAE3yMAdo9Qkm9sb7eWF9vrK931meNfKdpbNLJepeCtt1flZ-3SgsA-04yG6Co4K_QsLjZ
CODEN ITCEB8
CitedBy_id crossref_primary_10_1080_00207543_2024_2349257
crossref_primary_10_1007_s13198_024_02580_9
crossref_primary_10_1007_s00521_019_04478_1
crossref_primary_10_1109_JSEN_2023_3326487
crossref_primary_10_3390_a17080321
crossref_primary_10_1007_s10994_022_06209_5
crossref_primary_10_1109_TNNLS_2016_2582798
crossref_primary_10_1177_0954406219888544
crossref_primary_10_1109_ACCESS_2023_3277730
crossref_primary_10_1016_j_neucom_2015_12_041
crossref_primary_10_3390_ai2010005
crossref_primary_10_1007_s10033_017_0150_0
crossref_primary_10_1109_TR_2019_2957965
crossref_primary_10_3390_e24030402
crossref_primary_10_1016_j_measurement_2020_107929
crossref_primary_10_1016_j_ress_2024_110012
crossref_primary_10_1109_TCYB_2021_3124838
crossref_primary_10_1007_s44163_022_00022_8
crossref_primary_10_1007_s10845_022_02015_x
crossref_primary_10_3103_S0146411621010089
crossref_primary_10_1109_JSEN_2022_3213551
crossref_primary_10_1109_TR_2017_2727489
crossref_primary_10_1177_09544100211050432
crossref_primary_10_1109_ACCESS_2020_2970444
crossref_primary_10_1109_ACCESS_2019_2960406
crossref_primary_10_1007_s10489_024_05280_w
crossref_primary_10_1016_j_asoc_2018_05_015
crossref_primary_10_1109_MIE_2019_2938025
crossref_primary_10_1109_TII_2020_2983760
crossref_primary_10_1007_s40430_023_04461_x
crossref_primary_10_1016_j_ymssp_2017_11_024
crossref_primary_10_1109_ACCESS_2023_3263196
crossref_primary_10_1016_j_ifacol_2022_07_215
crossref_primary_10_1109_TAI_2021_3097311
crossref_primary_10_1016_j_jmsy_2020_11_016
crossref_primary_10_1109_TIM_2022_3160561
crossref_primary_10_1016_j_compind_2024_104131
crossref_primary_10_3233_JIFS_213586
crossref_primary_10_1109_JSEN_2021_3119553
crossref_primary_10_12677_AAM_2022_115333
crossref_primary_10_1002_qre_2229
crossref_primary_10_1016_j_ymssp_2017_01_050
crossref_primary_10_1016_j_ymssp_2022_109434
crossref_primary_10_1109_TII_2019_2896288
crossref_primary_10_1016_j_renene_2021_03_078
crossref_primary_10_1109_TCYB_2022_3228861
crossref_primary_10_1080_09537287_2022_2160388
crossref_primary_10_1111_cobi_13865
crossref_primary_10_1109_TCYB_2016_2540657
crossref_primary_10_1109_TCYB_2022_3185117
crossref_primary_10_1016_j_ymssp_2024_111551
crossref_primary_10_1016_j_isatra_2019_07_004
crossref_primary_10_1016_j_ymssp_2017_11_016
crossref_primary_10_1109_TIM_2023_3253887
crossref_primary_10_1109_TIE_2016_2623260
crossref_primary_10_1016_j_measurement_2021_109685
crossref_primary_10_1109_TIE_2016_2619322
crossref_primary_10_1016_j_aei_2020_101139
crossref_primary_10_3390_app12136766
crossref_primary_10_1016_j_ifacol_2020_12_853
crossref_primary_10_1109_TBDATA_2022_3218064
crossref_primary_10_1088_1361_6501_ad3bdd
crossref_primary_10_1007_s10836_019_05843_7
crossref_primary_10_1016_j_ast_2018_09_044
crossref_primary_10_1016_j_microrel_2021_114267
crossref_primary_10_1016_j_neucom_2021_07_080
crossref_primary_10_1016_j_dsp_2023_104360
crossref_primary_10_1109_TIM_2021_3126006
crossref_primary_10_1109_JSEN_2023_3342884
crossref_primary_10_1016_j_ymssp_2017_03_046
crossref_primary_10_1007_s11042_018_6601_5
crossref_primary_10_1088_1742_6596_1651_1_012059
crossref_primary_10_1109_TITS_2024_3510678
crossref_primary_10_1016_j_ress_2023_109723
crossref_primary_10_1109_OJIES_2020_3046044
crossref_primary_10_1016_j_neucom_2018_09_076
crossref_primary_10_1109_TFUZZ_2024_3497974
crossref_primary_10_1016_j_engappai_2021_104552
crossref_primary_10_1080_08982112_2023_2218923
crossref_primary_10_1109_TCYB_2016_2609999
crossref_primary_10_1016_j_patcog_2017_02_036
crossref_primary_10_1007_s00500_022_07625_4
crossref_primary_10_1007_s40799_019_00308_0
crossref_primary_10_1016_j_measurement_2020_108707
crossref_primary_10_1016_j_asoc_2018_01_036
crossref_primary_10_1016_j_renene_2021_10_062
crossref_primary_10_1016_j_measurement_2023_113478
crossref_primary_10_3390_aerospace12030259
crossref_primary_10_1109_TIM_2020_3031113
crossref_primary_10_1109_TIM_2021_3055788
crossref_primary_10_1109_TIM_2024_3398070
crossref_primary_10_1016_j_neucom_2023_126618
crossref_primary_10_1109_TFUZZ_2024_3393622
crossref_primary_10_52547_jsdp_19_2_27
crossref_primary_10_1155_2021_7332776
crossref_primary_10_1016_j_asoc_2018_10_001
crossref_primary_10_1007_s10462_022_10260_y
crossref_primary_10_1016_j_ress_2022_108330
crossref_primary_10_1016_j_ress_2025_111039
crossref_primary_10_1109_TCYB_2018_2845661
crossref_primary_10_1007_s00170_020_05303_z
crossref_primary_10_3390_s20082425
crossref_primary_10_1109_TCYB_2019_2903736
crossref_primary_10_1088_1755_1315_1189_1_012007
crossref_primary_10_1016_j_asoc_2018_03_043
crossref_primary_10_1016_j_jmsy_2022_05_010
crossref_primary_10_1109_TASE_2018_2865414
crossref_primary_10_1016_j_engappai_2019_06_001
crossref_primary_10_1109_TETCI_2024_3360338
crossref_primary_10_1177_1687814019839599
crossref_primary_10_1109_TIE_2020_2972443
crossref_primary_10_1016_j_neucom_2024_127447
crossref_primary_10_1016_j_renene_2021_08_045
crossref_primary_10_1088_1361_6501_ad2bcc
crossref_primary_10_1016_j_ymssp_2023_110472
crossref_primary_10_1109_TNNLS_2020_3025905
crossref_primary_10_3390_machines10020072
crossref_primary_10_1109_TCYB_2019_2938244
crossref_primary_10_1155_2020_8814658
crossref_primary_10_1021_acs_molpharmaceut_7b00578
crossref_primary_10_1177_00202940221109773
crossref_primary_10_1088_1742_6596_887_1_012064
crossref_primary_10_1007_s12204_021_2323_3
crossref_primary_10_1016_j_inffus_2024_102817
crossref_primary_10_1080_01430750_2022_2056917
Cites_doi 10.1109/IECON.2013.6699844
10.1109/TSMC.2013.2296276
10.1016/j.asoc.2007.10.020
10.1016/j.patcog.2005.01.025
10.1093/oso/9780198538493.001.0001
10.1109/TIE.2003.812470
10.1109/PHM.2008.4711414
10.1109/PHM.2008.4711437
10.1109/ICPHM.2011.6024330
10.1109/ICCRD.2010.69
10.1109/TNNLS.2013.2281839
10.1109/TR.2012.2220700
10.1016/S0925-2312(00)00295-2
10.1109/AERO.2010.5446828
10.1016/j.microrel.2010.09.014
10.1016/j.ress.2009.08.001
10.2166/hydro.2005.0020
10.1109/TSMCB.2012.2198882
10.1016/j.ymssp.2008.06.009
10.1109/TSMCB.2011.2168604
10.1109/TSMCA.2008.2001055
10.3233/IFS-1994-2306
10.1109/ICPHM.2012.6299516
10.1109/IJCNN.1990.137819
10.1109/COASE.2009.5234098
10.1016/j.neucom.2013.07.021
10.1109/TSMCA.2012.2207109
10.1109/PHM.2010.5413442
10.1016/j.ymssp.2005.09.012
10.1109/TR.2014.2315912
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
7QO
P64
DOI 10.1109/TCYB.2014.2378056
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Aerospace Database
MEDLINE
Engineering Research Database
MEDLINE - Academic
Aerospace Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
EISSN 2168-2275
EndPage 2639
ExternalDocumentID 3895111581
25643420
10_1109_TCYB_2014_2378056
7021915
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Laboratory of Excellence ACTION funded by the French Government through the program ″Investments for the future‴ managed by the National Agency for Research (ANR-11-LABX-01-01)
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
7QO
P64
ID FETCH-LOGICAL-c628t-c1d0c1722f775021adf78def502759e9aadedfb64f2e292950056193eae7ea2d3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Thu Jul 10 22:22:32 EDT 2025
Fri Jul 11 08:37:08 EDT 2025
Fri Jul 11 11:31:06 EDT 2025
Sun Jun 29 16:51:10 EDT 2025
Thu Apr 03 07:02:37 EDT 2025
Thu Apr 24 22:57:33 EDT 2025
Tue Jul 01 04:35:05 EDT 2025
Tue Aug 26 16:38:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Data-driven
remaining useful life (RUL)
extreme learning machine (ELM)
fuzzy clustering
prognostics
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c628t-c1d0c1722f775021adf78def502759e9aadedfb64f2e292950056193eae7ea2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://hal.science/hal-01142157v1/file/JAVED-ET-AL-IEEESMC2014-2.pdf
PMID 25643420
PQID 1748965137
PQPubID 85422
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TCYB_2014_2378056
proquest_miscellaneous_1778046289
ieee_primary_7021915
proquest_miscellaneous_1735326340
proquest_journals_1748965137
proquest_miscellaneous_1837330517
pubmed_primary_25643420
crossref_primary_10_1109_TCYB_2014_2378056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
singh (ref22) 2007; 2
ref34
ref12
ref15
ref14
ref31
ref30
ref33
ref10
mosallam (ref11) 2013; 33
ref2
ref1
nystad (ref40) 2012; 3
ref17
ref16
wang (ref44) 2010
bataineh (ref39) 2011; 5
chiu (ref36) 1994; 2
dragomir (ref13) 2007; 3
zemouri (ref19) 2010; 4
javed (ref18) 2012
ref23
ref26
ref25
ref41
ref43
luo (ref9) 2008; 38
jaeger (ref21) 2002
ref28
huang (ref24) 2004
balaban (ref4) 2012
ref29
ref8
ref7
luo (ref27) 2014; 25
ref3
ref6
doan (ref38) 2005; 7
ref5
rao (ref32) 1971
bishop (ref20) 1995
(ref42) 2013
li (ref37) 1995; 4
References_xml – ident: ref12
  doi: 10.1109/IECON.2013.6699844
– ident: ref6
  doi: 10.1109/TSMC.2013.2296276
– ident: ref29
  doi: 10.1016/j.asoc.2007.10.020
– ident: ref35
  doi: 10.1016/j.patcog.2005.01.025
– year: 1995
  ident: ref20
  publication-title: Neural Networks for Pattern Recognition
  doi: 10.1093/oso/9780198538493.001.0001
– ident: ref23
  doi: 10.1109/TIE.2003.812470
– year: 2013
  ident: ref42
  publication-title: Prognostic Data Repository
– ident: ref43
  doi: 10.1109/PHM.2008.4711414
– ident: ref1
  doi: 10.1109/PHM.2008.4711437
– ident: ref17
  doi: 10.1109/ICPHM.2011.6024330
– ident: ref3
  doi: 10.1109/ICCRD.2010.69
– volume: 25
  start-page: 836
  year: 2014
  ident: ref27
  article-title: Sparse Bayesian extreme learning machine for multi-classification
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2281839
– ident: ref33
  doi: 10.1109/TR.2012.2220700
– ident: ref30
  doi: 10.1016/S0925-2312(00)00295-2
– ident: ref2
  doi: 10.1109/AERO.2010.5446828
– year: 2002
  ident: ref21
  publication-title: Tutorial on Training Recurrent Neural Networks Covering BPPT RTRL EKF and the Echo State Network Approach
– ident: ref34
  doi: 10.1016/j.microrel.2010.09.014
– ident: ref10
  doi: 10.1016/j.ress.2009.08.001
– volume: 7
  start-page: 219
  year: 2005
  ident: ref38
  article-title: Derivation of effective and efficient data set with subtractive clustering method and genetic algorithm
  publication-title: Hydroinformatics
  doi: 10.2166/hydro.2005.0020
– volume: 3
  start-page: 431
  year: 2007
  ident: ref13
  article-title: Framework for a distributed and hybrid prognostic system
  publication-title: Proc 4th IFAC Conf Manage Control Prod Logist (MCPL)
– ident: ref16
  doi: 10.1109/TSMCB.2012.2198882
– ident: ref7
  doi: 10.1016/j.ymssp.2008.06.009
– ident: ref26
  doi: 10.1109/TSMCB.2011.2168604
– volume: 3
  start-page: 141
  year: 2012
  ident: ref40
  article-title: Lifetime models for remaining useful life estimation with randomly distributed failure thresholds
  publication-title: Proc 1st Eur Conf Prognostics Health Manage Soc
– volume: 38
  start-page: 1156
  year: 2008
  ident: ref9
  article-title: Model-based prognostic techniques applied to a suspension system
  publication-title: IEEE Trans Syst Man Cybern A Syst Humans
  doi: 10.1109/TSMCA.2008.2001055
– volume: 2
  start-page: 267
  year: 1994
  ident: ref36
  article-title: Fuzzy model identification based on cluster estimation
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/IFS-1994-2306
– volume: 4
  start-page: 19
  year: 2010
  ident: ref19
  article-title: Improving the prediction accuracy of recurrent neural network by a PID controller
  publication-title: Int J Syst Appl Eng Develop
– volume: 2
  start-page: 256
  year: 2007
  ident: ref22
  article-title: Application of extreme learning machine method for time series analysis
  publication-title: Int J Intell Technol
– volume: 4
  start-page: 2227
  year: 1995
  ident: ref37
  article-title: A maximum-entropy approach to fuzzy clustering
  publication-title: Proc Fuzzy Syst Int Joint Conf 4th IEEE Int Conf Fuzzy Syst 2nd Int Fuzzy Eng Symp IEEE Int Conf
– volume: 33
  start-page: 139
  year: 2013
  ident: ref11
  article-title: Bayesian approach for remaining useful life prediction
  publication-title: Chem Eng Trans
– start-page: 1
  year: 2012
  ident: ref4
  article-title: An approach to prognostic decision making in the aerospace domain
  publication-title: Proc Ann Conf Prognostics Health Manage Soc
– year: 1971
  ident: ref32
  publication-title: Generalized Inverse of Matrices and its Applications
– ident: ref25
  doi: 10.1109/ICPHM.2012.6299516
– ident: ref31
  doi: 10.1109/IJCNN.1990.137819
– ident: ref41
  doi: 10.1109/COASE.2009.5234098
– start-page: 25
  year: 2012
  ident: ref18
  article-title: Features selection procedure for prognostics: An approach based on predictability
  publication-title: Proc 8th IFAC Int Symp Fault Detection Supervis Safety Tech Process
– ident: ref28
  doi: 10.1016/j.neucom.2013.07.021
– ident: ref8
  doi: 10.1109/TSMCA.2012.2207109
– start-page: 985
  year: 2004
  ident: ref24
  article-title: Extreme learning machine: A new learning scheme of feedforward neural networks
  publication-title: Proc Int Joint Conf Neural Netw
– ident: ref14
  doi: 10.1109/PHM.2010.5413442
– volume: 5
  start-page: 335
  year: 2011
  ident: ref39
  article-title: A comparison study between various fuzzy clustering algorithms
  publication-title: Ed Board
– year: 2010
  ident: ref44
  article-title: Trajectory similarity based prediction for remaining useful life estimation
– ident: ref5
  doi: 10.1016/j.ymssp.2005.09.012
– ident: ref15
  doi: 10.1109/TR.2014.2315912
SSID ssj0000816898
Score 2.4736712
Snippet Prognostics is a core process of prognostics and health management (PHM) discipline, that estimates the remaining useful life (RUL) of a degrading machinery to...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2626
SubjectTerms Algorithms
Cluster Analysis
Clustering algorithms
Data models
Data-driven
Degradation
Dynamics
Engineering
Estimates
extreme learning machine (ELM)
Failure
Fuzzy
fuzzy clustering
Fuzzy Logic
Fuzzy set theory
Machine Learning
Machinery
Mathematical models
Models, Theoretical
Monitoring
Multivariate Analysis
Predictive models
prognostics
Prognostics and health management
remaining useful life (RUL)
Title A New Multivariate Approach for Prognostics Based on Extreme Learning Machine and Fuzzy Clustering
URI https://ieeexplore.ieee.org/document/7021915
https://www.ncbi.nlm.nih.gov/pubmed/25643420
https://www.proquest.com/docview/1748965137
https://www.proquest.com/docview/1735326340
https://www.proquest.com/docview/1778046289
https://www.proquest.com/docview/1837330517
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RTlxaHn0EKDISh7ZqlsTOy8dlxQohbdUDSPQUJX70UJRUkCDYX98ZxxtVVVlxi-SJZGdmMt_Y428ATopYxJTshEphrpqYqg4LoW2o6tpaWacY9ShRXHzLLq6Ty5v0ZgO-jndhjDGu-MxM6NGd5etW9bRVdppjQJJ0o_wVJm7DXa1xP8U1kHCtbzk-hIgqcn-IGUfy9Gr244zquJIJF8TiT52LMNgnIqFG339FJNdi5Xm06aLO_A0sVvMdik1-TfqunqjlP1SOL13QNrz28JNNB3vZgQ3T7MKOd_B79smzUH_eg3rK8AfI3AXdB0yoEZOyqScgZ4h02fe7lor0iOaZnWEs1Kxt2PljRxuOzNO2_mQLV6xpWNVoNu-Xyyc2u-2JnAEH38L1_PxqdhH6hgyhynjRhSrWkULEw22OQIPHlbZ5oY1N6exTGllV2mhbZ4nlhiPuSh3RqBSmMrmpuBbvYLNpG_MBmM5SjJ8Wk8tCJlzZQscIhWKuEQ_KjPMAopVSSuXZyqlpxm3pspZIlqTSklRaepUG8GV85fdA1bFOeI_UMQp6TQRwuNJ86Z35voyJoQdtVuQBHI_D6IZ0tlI1pu1JRqSIhEUSrZMhtif8knKNTCFyIYg4LYD3g-WNc1wZ7P7_534AW7jCdKi1OYTN7q43HxExdfWRc5U_7EUNLQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAXoBRoSgEjcQBEtomdl4_bVVcLdCsOW6mcosQPDlQJapMK9tcz43gjhGDFLZInkp2ZyXxjj78BeF3EIqZkJ1QKc9XEVHVYCG1DVdfWyjrFqEeJ4vI8W1wkHy_Tyx14P96FMca44jMzoUd3lq9b1dNW2XGOAUnSjfI7GPfTeLitNe6ouBYSrvktx4cQcUXujzHjSB6vZl9OqJIrmXBBPP7UuwjDfSISavX9W0xyTVb-jTdd3Jk_gOVmxkO5ybdJ39UTtf6DzPF_l_QQ7nsAyqaDxezBjmkewZ538Rv2xvNQv92HesrwF8jcFd1bTKkRlbKppyBniHXZ5-uWyvSI6JmdYDTUrG3Y6Y-OthyZJ279ypauXNOwqtFs3q_XP9nsqid6Bhx8DBfz09VsEfqWDKHKeNGFKtaRQszDbY5Qg8eVtnmhjU3p9FMaWVXaaFtnieWGI_JKHdWoFKYyuam4Fk9gt2kbcwBMZylGUIvpZSETrmyhYwRDMdeICGXGeQDRRiml8nzl1DbjqnR5SyRLUmlJKi29SgN4N77yfSDr2Ca8T-oYBb0mAjjaaL707nxTxsTRg1Yr8gBejcPoiHS6UjWm7UlGpIiFRRJtkyG-J_yScotMIXIhiDotgKeD5Y1z3Bjs4d_n_hLuLlbLs_Lsw_mnZ3APV5sOlTdHsNtd9-Y54qeufuHc5hcZNRB2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Multivariate+Approach+for+Prognostics+Based+on+Extreme+Learning+Machine+and+Fuzzy+Clustering&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Javed%2C+Kamran&rft.au=Gouriveau%2C+Rafael&rft.au=Zerhouni%2C+Noureddine&rft.date=2015-12-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=45&rft.issue=12&rft.spage=2626&rft.epage=2639&rft_id=info:doi/10.1109%2FTCYB.2014.2378056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2014_2378056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon