Efficacy of a solution-based approach for making sodalite waste forms for an oxide reduction salt utilized in the reprocessing of used uranium oxide fuel
This paper describes the various approaches evaluated for making solution-derived sodalite with a LiCl–Li2O oxide reduction salt selected to dissolve used uranium oxide fuel so the uranium can be recovered and recycled. The approaches include modified sol–gel and solution-based synthesis processes....
Saved in:
Published in | Journal of nuclear materials Vol. 459; no. C; pp. 313 - 322 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier B.V
01.04.2015
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper describes the various approaches evaluated for making solution-derived sodalite with a LiCl–Li2O oxide reduction salt selected to dissolve used uranium oxide fuel so the uranium can be recovered and recycled. The approaches include modified sol–gel and solution-based synthesis processes. As-made products were mixed with 5 and 10mass% of a Na2O–B2O3–SiO2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl− to form halite in solution and Li2O and SiO2 to form lithium silicates (e.g., Li2SiO3 or Li2Si2O5) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions in the crystalline product (∼92mass%) and low porosities using a solution-based approach and this LiCl–Li2O salt but that the incorporation of Li into the sodalite is low. |
---|---|
AbstractList | This paper describes the various approaches evaluated for making solution-derived sodalite with a LiCl–Li2O oxide reduction salt selected to dissolve used uranium oxide fuel so the uranium can be recovered and recycled. The approaches include modified sol–gel and solution-based synthesis processes. As-made products were mixed with 5 and 10mass% of a Na2O–B2O3–SiO2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl− to form halite in solution and Li2O and SiO2 to form lithium silicates (e.g., Li2SiO3 or Li2Si2O5) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions in the crystalline product (∼92mass%) and low porosities using a solution-based approach and this LiCl–Li2O salt but that the incorporation of Li into the sodalite is low. This paper describes the various approaches evaluated for making solution-derived sodalite with a LiClLi sub(2)O oxide reduction salt selected to dissolve used uranium oxide fuel so the uranium can be recovered and recycled. The approaches include modified sol-gel and solution-based synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na sub(2)O-B sub(2)O sub(3)-SiO sub(2) glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na super(+) and Cl super(-) to form halite in solution and Li sub(2)O and SiO sub(2) to form lithium silicates (e.g., Li sub(2)SiO sub(3) or Li sub(2)Si sub(2)O sub(5)) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions in the crystalline product (~92 mass%) and low porosities using a solution-based approach and this LiCl-Li sub(2)O salt but that the incorporation of Li into the sodalite is low. This paper describes the various approaches attempted to make solution-derived sodalite with a LiCl-Li2O oxide reduction salt used to dissolve used uranium oxide fuel so the uranium can be recovered and recycled. The approaches include modified sol-gel and solutionbased synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na2O-B2O3- SiO2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to form halite in solution and Li2O and SiO2 to form lithium silicates (e.g., Li2SiO3 or Li2Si2O5) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions in the crystalline product (~92 mass%) and low porosities using a solution-based approach and this LiCl-Li2O salt but that the incorporation of Li into the sodalite is low. |
Author | Pierce, David A. Matyáš, Josef Frank, Steven M. Riley, Brian J. Burns, Carolyne A. |
Author_xml | – sequence: 1 givenname: Brian J. surname: Riley fullname: Riley, Brian J. email: brian.riley@pnnl.gov organization: Pacific Northwest National Laboratory, Richland, WA 99352, United States – sequence: 2 givenname: David A. surname: Pierce fullname: Pierce, David A. organization: Pacific Northwest National Laboratory, Richland, WA 99352, United States – sequence: 3 givenname: Steven M. surname: Frank fullname: Frank, Steven M. organization: Idaho National Laboratory, Idaho Falls, ID 83402, United States – sequence: 4 givenname: Josef surname: Matyáš fullname: Matyáš, Josef organization: Pacific Northwest National Laboratory, Richland, WA 99352, United States – sequence: 5 givenname: Carolyne A. surname: Burns fullname: Burns, Carolyne A. organization: Pacific Northwest National Laboratory, Richland, WA 99352, United States |
BackLink | https://www.osti.gov/servlets/purl/1177662$$D View this record in Osti.gov |
BookMark | eNqNkU9vFCEYxompidvqRzAhnrzMFphhgHgwpqnWpIkXPRP6Ai7rDKzAWOs38dvKuHvyUi9weJ_n9_55ztFZTNEh9JKSLSV0vNxv93GB2dQtI3TYErUlA3uCNlSKvhskI2doQwhjXU8pf4bOS9kTQrgifIN-X3sfwMADTh4bXNK01JBid2eKs9gcDjkZ2GGfMp7NtxC_Nok1U6gO35vS3laZy9-6iTj9DNbh7OwCKwUXM1XcgFP41Wgh4rpbyw0KrpSV1roua6clmxiW-UTwi5ueo6feTMW9OP0X6Mv7689XN93tpw8fr97ddjAyWTvlPVgGlkvihBRcUgpceFCM-n4ciGV-oEq6cRSyHxQwcgfKcy_UYDkZbX-BXh25qdSgC7TVYAcpRgdVUyrEOLImen0UtdG_L65UPYcCbppMdGkpmoqeyV7wUf6HlErFVE_HJn1zlEJOpWTndetu1svVbMKkKdFrwHqvTwHrNWBNlG4BNzf_x33IYTb54VHf26PPtav-CC6vS7sIzoa87mxTeITwB9lHx20 |
CitedBy_id | crossref_primary_10_1016_j_jnucmat_2017_08_037 crossref_primary_10_1007_s10967_022_08376_0 crossref_primary_10_1007_s00269_020_01124_4 crossref_primary_10_1016_j_jnucmat_2018_02_005 crossref_primary_10_1111_jace_15372 crossref_primary_10_1016_j_jnoncrysol_2021_121319 crossref_primary_10_1016_j_jnucmat_2015_11_011 crossref_primary_10_1016_j_jnucmat_2017_03_041 crossref_primary_10_1016_j_jnucmat_2020_152222 crossref_primary_10_1557_opl_2015_394 |
Cites_doi | 10.1016/j.jcis.2006.10.002 10.1016/j.jnucmat.2011.02.055 10.1080/01496390600745602 10.1002/anie.199111691 10.1016/j.jnucmat.2013.08.033 10.1021/ja00039a032 10.1016/j.jnucmat.2012.04.035 10.1149/1.2160430 10.1007/BF00403511 10.1016/0144-2449(94)90125-2 10.1007/BF00540646 10.1016/j.jnucmat.2014.04.027 10.1016/0584-8539(77)80032-9 10.1016/j.jnucmat.2014.03.016 10.1007/s10967-006-0172-z 10.1016/0022-3093(82)90245-9 10.1039/c0jm02066d 10.1016/0022-3093(84)90385-5 10.1016/j.cej.2012.06.161 10.1021/ic9812510 10.1016/j.jnucmat.2011.08.001 10.1007/BF00660976 10.1021/j100289a044 10.1154/1.2013309 10.1111/j.1551-2916.2012.05363.x 10.1016/0167-2738(89)90251-8 10.1016/j.jnucmat.2011.09.020 10.1021/jp0224618 10.1107/S0567739476001551 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. |
Copyright_xml | – notice: 2014 Elsevier B.V. |
CorporateAuthor | Idaho National Lab. (INL), Idaho Falls, ID (United States) |
CorporateAuthor_xml | – name: Idaho National Lab. (INL), Idaho Falls, ID (United States) |
DBID | AAYXX CITATION 7SR 7TB 7U5 8BQ 8FD FR3 H8D JG9 L7M 7ST C1K SOI OIOZB OTOTI |
DOI | 10.1016/j.jnucmat.2014.09.042 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Aerospace Database Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Aerospace Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-4820 |
EndPage | 322 |
ExternalDocumentID | 1177662 10_1016_j_jnucmat_2014_09_042 S0022311514006321 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACIWK ACNCT ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HME HVGLF HZ~ IHE J1W JARJE KOM LY6 LY7 LZ3 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SET SEW SHN SMS SPC SPCBC SPD SSM SSQ SSR SSZ T5K UHS WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 7U5 8BQ 8FD FR3 H8D JG9 L7M 7ST C1K SOI AALMO ABPIF ABPTK OIOZB OTOTI |
ID | FETCH-LOGICAL-c628t-9ffcd2cd580e7875811c57fc921f3640d2f4198e6678349c20bc9f5f794d506d3 |
IEDL.DBID | .~1 |
ISSN | 0022-3115 |
IngestDate | Fri May 19 01:40:22 EDT 2023 Fri Jul 11 01:09:40 EDT 2025 Fri Jul 11 12:41:12 EDT 2025 Thu Apr 24 23:07:18 EDT 2025 Tue Jul 01 03:19:39 EDT 2025 Fri Feb 23 02:26:47 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c628t-9ffcd2cd580e7875811c57fc921f3640d2f4198e6678349c20bc9f5f794d506d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Nuclear Energy (NE) DE-AC07-05ID14517 INL/JOU-14-33815 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1177662 |
PQID | 1718929316 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1177662 proquest_miscellaneous_1732837568 proquest_miscellaneous_1718929316 crossref_citationtrail_10_1016_j_jnucmat_2014_09_042 crossref_primary_10_1016_j_jnucmat_2014_09_042 elsevier_sciencedirect_doi_10_1016_j_jnucmat_2014_09_042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-01 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of nuclear materials |
PublicationYear | 2015 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Choi, Lee, Park, Hur, Kim, Jung, Jeong (b0010) 2012; 207–208 Trill, Eckert, Srdanov (b0165) 2003; 107 M.F. Simpson, M.N. Patterson, J. Lee, Y. Wang, J. Versey, S. Phongikaroon, Proc. of Global, 2013, pp. INL/CON-13-28041-21044-21049. Shannon (b0190) 1976; 32 Riley, McCloy, Crum, Lepry, Rodriguez, Windisch, Matyáš, Westman, Rieck (b0230) 2014 Taylor (b0090) 1975; 51 Brinker, Mukherjee (b0215) 1981; 16 Ebert (b0145) 2005 Russell, Peterson, Smith, Rinehart, Aker, Buck (b0225) 2009 Riley, Crum, Matyáš, McCloy, Lepry (b0175) 2012; 95 Herrmann, Li, Simpson, Phongikaroon (b0015) 2006; 41 Frank, Barber, Lambregts (b0105) 2005; 20 Choi, Hur, Choi, Kwon, Kang, Hong, Shin, Yoo, Jeong (b0005) 2011; 418 Brinker, Keefer, Schaefer, Ashley (b0195) 1982; 48 Gier, Harrison, Stucky (b0060) 1991; 30 M.C. Morrison, K.J. Bateman, M.F. Simpson, Proc. of International Pyroprocessing Research Conference, 42, 2010, pp. INL/CON-10-19439. Riley, Schweiger, Kim, Lukens, Williams, Iovin, Rodriguez, Overman, Bowden, Dixon, Crum, McCloy, Kruger (b0115) 2014; 452 Williams, Simmonds, Armstrong, Weller (b0100) 2010; 20 Maddrell, Gandy, Stennett (b0120) 2014; 449 H. Babad, D.M. Strachan, Method for Immobilizing Radioactive Iodine, patent application 4229317, 1980. Vishnu, Sanil, Murugesan, Shakila, Ramesh, Mohandas, Nagarajan (b0035) 2012; 427 Weller, Wong (b0125) 1989; 26 Stein, Ozin, Macdonald, Stucky, Jelinek (b0170) 1992; 114 Vance, Davis, Olufson, Chironi, Karatchevtseva, Farnan (b0180) 2012; 420 Jeong, Park, Hong, Seo, Park (b0020) 2006; 268 Lepry, Riley, Crum, Rodriguez, Pierce (b0045) 2013; 442 Matyáš, Robinson, Fryxell (b0235) 2012; vol. 33 J.-M. Hur, C.-S. Seo, S.-S. Hong, D.-S. Kang, S.-W. Park, Proc. of Progress in Partitioning and Waste forms, 2002. pp. 355–361. Johnson, Weller (b0070) 1999; 38 Newsam (b0085) 1987; 91 T. Fazal, High temperature studies of sodalites, MRes, Materials Chemistry and Nanochemistry Thesis, University of Birmingham, 2011. Brenchley, Weller (b0055) 1994; 14 Kelemen, Lortz, Schon (b0075) 1989; 24 Frank (b0135) 2012 L. Levene, I.M. Thomas, Process of Converting Metalorganic Compounds and High Purity Products Obtained Therefrom, patent application number 3640993, 1972. Sakamura, Kurata, Inoue (b0030) 2006; 153 Nakazawa, Kato, Okada, Ueta, Mihara (b0130) 2001 Weller, Wong (b0095) 1989; 32–33 Bateman, Knight, Solbrig (b0140) 2007 H.-S. Park, Y.-Z. Cho, Personal Correspondence, 2014. Brinker, Keefer, Schaefer, Assink, Kay, Ashley (b0200) 1984; 63 Russell, Smith, Rinehart (b0220) 2009 Harrison, Gier, Stucky (b0065) 1994; 50 I.M. Thomas, Method for Producing Glass Precursor Compositions and Glass Compositions Therefrom, patent application number 3799754, 1974. Navarrete-Casas, Navarrete-Guijosa, Valenzuela-Calahorro, López-González, García-Rodríguez (b0080) 2007; 306 Henderson, Taylor (b0050) 1977; 33A Sakamura (b0025) 2011; 412 Frank (10.1016/j.jnucmat.2014.09.042_b0105) 2005; 20 Weller (10.1016/j.jnucmat.2014.09.042_b0125) 1989; 26 10.1016/j.jnucmat.2014.09.042_b0160 10.1016/j.jnucmat.2014.09.042_b0040 Gier (10.1016/j.jnucmat.2014.09.042_b0060) 1991; 30 Lepry (10.1016/j.jnucmat.2014.09.042_b0045) 2013; 442 Russell (10.1016/j.jnucmat.2014.09.042_b0225) 2009 Weller (10.1016/j.jnucmat.2014.09.042_b0095) 1989; 32–33 10.1016/j.jnucmat.2014.09.042_b0185 Sakamura (10.1016/j.jnucmat.2014.09.042_b0025) 2011; 412 Riley (10.1016/j.jnucmat.2014.09.042_b0115) 2014; 452 Vishnu (10.1016/j.jnucmat.2014.09.042_b0035) 2012; 427 Navarrete-Casas (10.1016/j.jnucmat.2014.09.042_b0080) 2007; 306 Harrison (10.1016/j.jnucmat.2014.09.042_b0065) 1994; 50 Frank (10.1016/j.jnucmat.2014.09.042_b0135) 2012 Newsam (10.1016/j.jnucmat.2014.09.042_b0085) 1987; 91 Riley (10.1016/j.jnucmat.2014.09.042_b0230) 2014 Vance (10.1016/j.jnucmat.2014.09.042_b0180) 2012; 420 Brinker (10.1016/j.jnucmat.2014.09.042_b0215) 1981; 16 Riley (10.1016/j.jnucmat.2014.09.042_b0175) 2012; 95 Choi (10.1016/j.jnucmat.2014.09.042_b0010) 2012; 207–208 Johnson (10.1016/j.jnucmat.2014.09.042_b0070) 1999; 38 Matyáš (10.1016/j.jnucmat.2014.09.042_b0235) 2012; vol. 33 Sakamura (10.1016/j.jnucmat.2014.09.042_b0030) 2006; 153 Nakazawa (10.1016/j.jnucmat.2014.09.042_b0130) 2001 Brinker (10.1016/j.jnucmat.2014.09.042_b0200) 1984; 63 Herrmann (10.1016/j.jnucmat.2014.09.042_b0015) 2006; 41 Jeong (10.1016/j.jnucmat.2014.09.042_b0020) 2006; 268 Shannon (10.1016/j.jnucmat.2014.09.042_b0190) 1976; 32 Stein (10.1016/j.jnucmat.2014.09.042_b0170) 1992; 114 Russell (10.1016/j.jnucmat.2014.09.042_b0220) 2009 Brinker (10.1016/j.jnucmat.2014.09.042_b0195) 1982; 48 Choi (10.1016/j.jnucmat.2014.09.042_b0005) 2011; 418 10.1016/j.jnucmat.2014.09.042_b0150 Williams (10.1016/j.jnucmat.2014.09.042_b0100) 2010; 20 Henderson (10.1016/j.jnucmat.2014.09.042_b0050) 1977; 33A Kelemen (10.1016/j.jnucmat.2014.09.042_b0075) 1989; 24 10.1016/j.jnucmat.2014.09.042_b0110 Brenchley (10.1016/j.jnucmat.2014.09.042_b0055) 1994; 14 10.1016/j.jnucmat.2014.09.042_b0155 10.1016/j.jnucmat.2014.09.042_b0210 10.1016/j.jnucmat.2014.09.042_b0205 Ebert (10.1016/j.jnucmat.2014.09.042_b0145) 2005 Taylor (10.1016/j.jnucmat.2014.09.042_b0090) 1975; 51 Trill (10.1016/j.jnucmat.2014.09.042_b0165) 2003; 107 Maddrell (10.1016/j.jnucmat.2014.09.042_b0120) 2014; 449 Bateman (10.1016/j.jnucmat.2014.09.042_b0140) 2007 |
References_xml | – volume: 33A start-page: 283 year: 1977 end-page: 290 ident: b0050 publication-title: Spectrochim. Acta – volume: vol. 33 start-page: 121 year: 2012 end-page: 132 ident: b0235 article-title: The effect of temperature and uniaxial pressure on the densification behavior of silica aerogel granules publication-title: Ceramic Materials for Energy Applications II – reference: J.-M. Hur, C.-S. Seo, S.-S. Hong, D.-S. Kang, S.-W. Park, Proc. of Progress in Partitioning and Waste forms, 2002. pp. 355–361. – reference: L. Levene, I.M. Thomas, Process of Converting Metalorganic Compounds and High Purity Products Obtained Therefrom, patent application number 3640993, 1972. – year: 2005 ident: b0145 article-title: Testing to Evaluate the Suitability of Waste Forms Developed for Electrometallurgically-Treated Spend Sodium-Bonded Nuclear Fuel for Disposal in the Yucca Mountain Repository. ANL-05/43 – volume: 26 start-page: 619 year: 1989 end-page: 633 ident: b0125 publication-title: Eur. J. Solid State Inorg. Chem. – year: 2009 ident: b0225 article-title: Development and Characterization of Boehmite Component Simulant. PNNL-18176, Rev. 1; WTP-RPT-184, Rev. 1 – volume: 48 start-page: 47 year: 1982 end-page: 64 ident: b0195 publication-title: J. Non-Cryst. Solids – reference: I.M. Thomas, Method for Producing Glass Precursor Compositions and Glass Compositions Therefrom, patent application number 3799754, 1974. – volume: 114 start-page: 5171 year: 1992 end-page: 5186 ident: b0170 publication-title: J. Am. Chem. Soc. – volume: 442 start-page: 350 year: 2013 end-page: 359 ident: b0045 publication-title: J. Nucl. Mater. – volume: 14 start-page: 682 year: 1994 end-page: 686 ident: b0055 publication-title: Zeolites – volume: 20 start-page: 10883 year: 2010 end-page: 10887 ident: b0100 publication-title: J. Mater. Chem. – volume: 32 start-page: 751 year: 1976 end-page: 767 ident: b0190 publication-title: Acta Cryst. A – reference: H. Babad, D.M. Strachan, Method for Immobilizing Radioactive Iodine, patent application 4229317, 1980. – volume: 16 start-page: 1980 year: 1981 end-page: 1988 ident: b0215 publication-title: J. Mater. Sci. – reference: H.-S. Park, Y.-Z. Cho, Personal Correspondence, 2014. – volume: 107 start-page: 8779 year: 2003 end-page: 8788 ident: b0165 publication-title: J. Phys. Chem. B – volume: 412 start-page: 177 year: 2011 end-page: 183 ident: b0025 publication-title: J. Nucl. Mater. – volume: 50 start-page: 471 year: 1994 end-page: 473 ident: b0065 publication-title: Acta Cryst. – volume: 449 start-page: 168 year: 2014 end-page: 172 ident: b0120 publication-title: J. Nucl. Mater. – volume: 306 start-page: 345 year: 2007 end-page: 353 ident: b0080 publication-title: J. Colloid Interface Sci. – reference: M.C. Morrison, K.J. Bateman, M.F. Simpson, Proc. of International Pyroprocessing Research Conference, 42, 2010, pp. INL/CON-10-19439. – volume: 30 start-page: 1169 year: 1991 ident: b0060 publication-title: Angen. Chem. Inr. Ed. Engl. – volume: 452 start-page: 178 year: 2014 end-page: 188 ident: b0115 publication-title: J. Nucl. Mater. – volume: 24 start-page: 333 year: 1989 end-page: 338 ident: b0075 publication-title: J. Mater. Sci. – start-page: 51 year: 2001 end-page: 57 ident: b0130 publication-title: Proc. of Sci. Basis Nucl. Waste Manag. XXIV, 663 – volume: 91 start-page: 1259 year: 1987 end-page: 1262 ident: b0085 publication-title: J. Phys. Chem. – volume: 20 start-page: 212 year: 2005 end-page: 214 ident: b0105 publication-title: Powder Diff. – volume: 51 start-page: 39 year: 1975 end-page: 47 ident: b0090 publication-title: Contrib. Mineral. Petrol. – volume: 427 start-page: 200 year: 2012 end-page: 208 ident: b0035 publication-title: J. Nucl. Mater. – volume: 38 start-page: 2442 year: 1999 end-page: 2450 ident: b0070 publication-title: Inorg. Chem. – year: 2009 ident: b0220 article-title: Development and Characterization of Gibbsite Component Simulant. PNNL-18013, WTP-RPT-176 – volume: 268 start-page: 349 year: 2006 end-page: 356 ident: b0020 publication-title: J. Radioanal. Nucl. Chem. – year: 2007 ident: b0140 article-title: Current Status of Ceramic Waste Form Development. INL/INT-06-11736, Rev. 1 – volume: 32–33 start-page: 430 year: 1989 end-page: 435 ident: b0095 publication-title: Solid State Ionics – reference: M.F. Simpson, M.N. Patterson, J. Lee, Y. Wang, J. Versey, S. Phongikaroon, Proc. of Global, 2013, pp. INL/CON-13-28041-21044-21049. – year: 2012 ident: b0135 article-title: Characterization of Echem Off-Gas Partitioning. FCRD-PAC-2013-000052 – year: 2014 ident: b0230 article-title: Alternative Electrochemical Salt Waste Forms, Summary of FY11-FY12 Results. FCRD-SWF-2013-000025, Rev.1, PNNL-22034 – volume: 95 start-page: 3115 year: 2012 end-page: 3123 ident: b0175 publication-title: J. Am. Ceram. Soc. – volume: 420 start-page: 396 year: 2012 end-page: 404 ident: b0180 publication-title: J. Nucl. Mater. – volume: 41 start-page: 1965 year: 2006 end-page: 1983 ident: b0015 publication-title: Sep. Sci. Technol. – volume: 153 start-page: D31 year: 2006 end-page: D39 ident: b0030 publication-title: J. Electrochem. Soc. – volume: 63 start-page: 45 year: 1984 end-page: 59 ident: b0200 publication-title: J. Non-Cryst. Solids – volume: 418 start-page: 87 year: 2011 end-page: 92 ident: b0005 publication-title: J. Nucl. Mater. – reference: T. Fazal, High temperature studies of sodalites, MRes, Materials Chemistry and Nanochemistry Thesis, University of Birmingham, 2011. – volume: 207–208 start-page: 514 year: 2012 end-page: 520 ident: b0010 publication-title: Chem. Eng. J. – volume: 306 start-page: 345 issue: 2 year: 2007 ident: 10.1016/j.jnucmat.2014.09.042_b0080 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.10.002 – ident: 10.1016/j.jnucmat.2014.09.042_b0155 – volume: 412 start-page: 177 issue: 1 year: 2011 ident: 10.1016/j.jnucmat.2014.09.042_b0025 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2011.02.055 – volume: 41 start-page: 1965 issue: 10 year: 2006 ident: 10.1016/j.jnucmat.2014.09.042_b0015 publication-title: Sep. Sci. Technol. doi: 10.1080/01496390600745602 – volume: 30 start-page: 1169 issue: 9 year: 1991 ident: 10.1016/j.jnucmat.2014.09.042_b0060 publication-title: Angen. Chem. Inr. Ed. Engl. doi: 10.1002/anie.199111691 – volume: 442 start-page: 350 issue: 1–3 year: 2013 ident: 10.1016/j.jnucmat.2014.09.042_b0045 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2013.08.033 – start-page: 51 year: 2001 ident: 10.1016/j.jnucmat.2014.09.042_b0130 – volume: 114 start-page: 5171 issue: 13 year: 1992 ident: 10.1016/j.jnucmat.2014.09.042_b0170 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00039a032 – volume: 427 start-page: 200 issue: 1–3 year: 2012 ident: 10.1016/j.jnucmat.2014.09.042_b0035 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2012.04.035 – ident: 10.1016/j.jnucmat.2014.09.042_b0210 – volume: 153 start-page: D31 issue: 3 year: 2006 ident: 10.1016/j.jnucmat.2014.09.042_b0030 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2160430 – volume: 51 start-page: 39 year: 1975 ident: 10.1016/j.jnucmat.2014.09.042_b0090 publication-title: Contrib. Mineral. Petrol. doi: 10.1007/BF00403511 – volume: 14 start-page: 682 issue: 8 year: 1994 ident: 10.1016/j.jnucmat.2014.09.042_b0055 publication-title: Zeolites doi: 10.1016/0144-2449(94)90125-2 – volume: 16 start-page: 1980 issue: 7 year: 1981 ident: 10.1016/j.jnucmat.2014.09.042_b0215 publication-title: J. Mater. Sci. doi: 10.1007/BF00540646 – volume: 452 start-page: 178 issue: 1–3 year: 2014 ident: 10.1016/j.jnucmat.2014.09.042_b0115 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2014.04.027 – volume: 33A start-page: 283 year: 1977 ident: 10.1016/j.jnucmat.2014.09.042_b0050 publication-title: Spectrochim. Acta doi: 10.1016/0584-8539(77)80032-9 – volume: 449 start-page: 168 issue: 1–3 year: 2014 ident: 10.1016/j.jnucmat.2014.09.042_b0120 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2014.03.016 – volume: 268 start-page: 349 issue: 2 year: 2006 ident: 10.1016/j.jnucmat.2014.09.042_b0020 publication-title: J. Radioanal. Nucl. Chem. doi: 10.1007/s10967-006-0172-z – ident: 10.1016/j.jnucmat.2014.09.042_b0185 – volume: 48 start-page: 47 year: 1982 ident: 10.1016/j.jnucmat.2014.09.042_b0195 publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(82)90245-9 – ident: 10.1016/j.jnucmat.2014.09.042_b0150 – volume: 20 start-page: 10883 year: 2010 ident: 10.1016/j.jnucmat.2014.09.042_b0100 publication-title: J. Mater. Chem. doi: 10.1039/c0jm02066d – ident: 10.1016/j.jnucmat.2014.09.042_b0110 – volume: 63 start-page: 45 year: 1984 ident: 10.1016/j.jnucmat.2014.09.042_b0200 publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(84)90385-5 – volume: 207–208 start-page: 514 year: 2012 ident: 10.1016/j.jnucmat.2014.09.042_b0010 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.06.161 – volume: 38 start-page: 2442 year: 1999 ident: 10.1016/j.jnucmat.2014.09.042_b0070 publication-title: Inorg. Chem. doi: 10.1021/ic9812510 – volume: 50 start-page: 471 year: 1994 ident: 10.1016/j.jnucmat.2014.09.042_b0065 publication-title: Acta Cryst. – volume: 26 start-page: 619 issue: 6 year: 1989 ident: 10.1016/j.jnucmat.2014.09.042_b0125 publication-title: Eur. J. Solid State Inorg. Chem. – ident: 10.1016/j.jnucmat.2014.09.042_b0160 – volume: vol. 33 start-page: 121 year: 2012 ident: 10.1016/j.jnucmat.2014.09.042_b0235 article-title: The effect of temperature and uniaxial pressure on the densification behavior of silica aerogel granules – volume: 418 start-page: 87 issue: 1–3 year: 2011 ident: 10.1016/j.jnucmat.2014.09.042_b0005 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2011.08.001 – year: 2009 ident: 10.1016/j.jnucmat.2014.09.042_b0220 – volume: 24 start-page: 333 issue: 1 year: 1989 ident: 10.1016/j.jnucmat.2014.09.042_b0075 publication-title: J. Mater. Sci. doi: 10.1007/BF00660976 – volume: 91 start-page: 1259 issue: 5 year: 1987 ident: 10.1016/j.jnucmat.2014.09.042_b0085 publication-title: J. Phys. Chem. doi: 10.1021/j100289a044 – volume: 20 start-page: 212 issue: 3 year: 2005 ident: 10.1016/j.jnucmat.2014.09.042_b0105 publication-title: Powder Diff. doi: 10.1154/1.2013309 – volume: 95 start-page: 3115 issue: 10 year: 2012 ident: 10.1016/j.jnucmat.2014.09.042_b0175 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2012.05363.x – year: 2014 ident: 10.1016/j.jnucmat.2014.09.042_b0230 – volume: 32–33 start-page: 430 issue: 1 year: 1989 ident: 10.1016/j.jnucmat.2014.09.042_b0095 publication-title: Solid State Ionics doi: 10.1016/0167-2738(89)90251-8 – year: 2009 ident: 10.1016/j.jnucmat.2014.09.042_b0225 – ident: 10.1016/j.jnucmat.2014.09.042_b0040 – year: 2007 ident: 10.1016/j.jnucmat.2014.09.042_b0140 – volume: 420 start-page: 396 issue: 1–3 year: 2012 ident: 10.1016/j.jnucmat.2014.09.042_b0180 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2011.09.020 – year: 2005 ident: 10.1016/j.jnucmat.2014.09.042_b0145 – volume: 107 start-page: 8779 issue: 34 year: 2003 ident: 10.1016/j.jnucmat.2014.09.042_b0165 publication-title: J. Phys. Chem. B doi: 10.1021/jp0224618 – year: 2012 ident: 10.1016/j.jnucmat.2014.09.042_b0135 – volume: 32 start-page: 751 year: 1976 ident: 10.1016/j.jnucmat.2014.09.042_b0190 publication-title: Acta Cryst. A doi: 10.1107/S0567739476001551 – ident: 10.1016/j.jnucmat.2014.09.042_b0205 |
SSID | ssj0005905 |
Score | 2.1849387 |
Snippet | This paper describes the various approaches evaluated for making solution-derived sodalite with a LiCl–Li2O oxide reduction salt selected to dissolve used... This paper describes the various approaches evaluated for making solution-derived sodalite with a LiClLi sub(2)O oxide reduction salt selected to dissolve used... This paper describes the various approaches attempted to make solution-derived sodalite with a LiCl-Li2O oxide reduction salt used to dissolve used uranium... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 313 |
SubjectTerms | Binders electrochemical Lithium lithium chloride NUCLEAR FUEL CYCLE AND FUEL MATERIALS Nuclear fuels Oxides Pellets Reduction Sodalite Uranium oxides |
Title | Efficacy of a solution-based approach for making sodalite waste forms for an oxide reduction salt utilized in the reprocessing of used uranium oxide fuel |
URI | https://dx.doi.org/10.1016/j.jnucmat.2014.09.042 https://www.proquest.com/docview/1718929316 https://www.proquest.com/docview/1732837568 https://www.osti.gov/servlets/purl/1177662 |
Volume | 459 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBVhQ6A9lDZtaZo2KNCrd_0hyfIxhIRtS3NKIDdhjyTwsmuH7Jq0PfR_5N9mRrablNAGerSlGRvPjOYJzzwx9gly3Mhm1kUiz20kdCmjErSKBKQxEOFIDrRR_Ham5hfiy6W83GLHYy8MlVUOa3-_pofVergzG77m7KquqccXUxsCGtwiYJ4NzeRC5OTl018PyjyKvowxVK3j7Psuntliumg6QGBIFV493alI_5afJi2G3KMFO2Sh05fsxQAf-VH_hq_Ylmt22fMHpIK7bCcUdcL6Nbs9IX6IEn7w1vOSj14WUeayfGQT5whb-SocSoVTLOFyx29KtD6NrNZhvGx4-722jl8T1Stp4etyueGocFn_RG11wxFKcuLIDJ0HpA2f2tGTOsyHdbcaNPjOLd-wi9OT8-N5NBzFEIFK9SYqvAebgpU6dhjiUicJyNxDkSY-UyK2qRdJoZ1SdHBHgYauoPDSY7RbGSubvWWTpm3cO8ZBKR0XzkMVO1HZtEIMI9O8kpX1CMeSPSZGAxgYeMrpuIylGQvSFmawmyG7mbgwaLc9Nv0tdtUTdTwloEfrmj88zmAyeUp0n7yBxIhpF6gkCeXo_7dSOHo4OonBWKUfMGXj2m5tEgQCCEezRP1rTkaERFLp9___gvvsGV7JvsLoA5tsrjv3EcHTpjoI0XHAto8-f52f3QFdERvG |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIkR7QFBAtOVhJDhmN3FsJzlwQNBqSx-nVurNJH5IWe0mVbNRH4f-D34Hf5CZxIEiBJWQeo0zEysz9szIn78h5J1OoJCNjQ14kpiAp7kIcp3KgGsWaiQcSTQWigeHcnrMv5yIkxXyfbgLg7BKv_f3e3q3W_snE_83J6dliXd8IbRBQgMlAsRZFnlk5Z69PIe6rfmw-xmM_J6xne2jT9PAtxYItGTpMsic04ZpI9LQgsuKNIq0SJzOWORiyUPDHIdy3EqJjSgymHihMycceK8RoTQx6L1H7nPYLrBtwvj6Bq4k63GTHUwepvfr2tBkNp5VrYZMFCFlPb8qZ38LiKMa1vgfEaILezuPySOfr9KP_S95QlZstU7WbrAYrpMHHYpUN0_Jt20kpMj1Ja0dzeng1gGGSkMH-nIKeTJddF2w4BWDhYCl5zm4G44smm48r2h9URpLz5BbFrXQJp8vKSicl1egrawo5K4USTm7qw6oDb7a4pdaCMBlu_AaXGvnz8jxnRjoORlVdWVfEKqlTMPMOl2ElheGFZA0CZYUojAO8r9og_DBAEp7YnTszzFXAwJuprzdFNpNhZkCu22Q8U-x054Z5DaBdLCu-s3FFUSv20S30BtQDKl9NWKgQA4P3KWE0beDkyjYHPDEJ69s3TYqgswD8t84kv96J0YGJCHTzf-f4BvycHp0sK_2dw_3tsgqjIge3vSSjJZnrX0FmduyeN2tFEq-3vXS_AHknFZq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficacy+of+a+solution-based+approach+for+making+sodalite+waste+forms+for+an+oxide+reduction+salt+utilized+in+the+reprocessing+of+used+uranium+oxide+fuel&rft.jtitle=Journal+of+nuclear+materials&rft.au=Riley%2C+Brian+J.&rft.au=Pierce%2C+David+A.&rft.au=Frank%2C+Steven+M.&rft.au=Maty%C3%A1%C5%A1%2C+Josef&rft.date=2015-04-01&rft.issn=0022-3115&rft.volume=459&rft.spage=313&rft.epage=322&rft_id=info:doi/10.1016%2Fj.jnucmat.2014.09.042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jnucmat_2014_09_042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3115&client=summon |