Global Patterns of Tissue-Specific Alternative Polyadenylation in Drosophila
We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad t...
Saved in:
Published in | Cell reports (Cambridge) Vol. 1; no. 3; pp. 277 - 289 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
29.03.2012
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2211-1247 2211-1247 |
DOI | 10.1016/j.celrep.2012.01.001 |
Cover
Loading…
Abstract | We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3′ untranslated region (UTR) shortening in the testis and lengthening in the central nervous system (CNS); the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs) and transcription factors were preferentially subject to 3′ UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3′ UTR length in the nervous system.
[Display omitted]
► >1 billion stranded RNA-seq reads generated across a panel of Drosophila tissues ► Broad trends of 3′ UTR shortening in testis and lengthening in CNS observed ► CNS 3′ UTR extensions subject 100 s of genes to tissue-specific posttranscriptional control ► CNS 3′ UTR extensions enriched for genes encoding nucleic-acid-binding proteins
Alternative cleavage and polyadenylation is a widespread mechanism that generates 3′ UTR diversity. Using stranded mRNA-seq in Drosophila, Lai and colleagues uncover global trends for 3′ UTR shortening in the testis and lengthening in the CNS. Their extensive experimental validation demonstrates the extraordinary length of many previously unannotated 3′ UTR extensions and their CNS-specific expression. Enrichment of miRNA target sites and RNA binding protein sites in these extended 3′ UTRs suggests important regulatory roles for these extensions in the CNS. |
---|---|
AbstractList | We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3' untranslated region (UTR) shortening in the testis and lengthening in the central nervous system (CNS); the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs) and transcription factors were preferentially subject to 3' UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3' UTR length in the nervous system. We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3′ untranslated region (UTR) shortening in the testis and lengthening in the central nervous system (CNS); the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs) and transcription factors were preferentially subject to 3′ UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3′ UTR length in the nervous system. We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3′ untranslated region (UTR) shortening in the testis and lengthening in the central nervous system (CNS); the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs) and transcription factors were preferentially subject to 3′ UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3′ UTR length in the nervous system. We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3′ untranslated region (UTR) shortening in the testis and lengthening in the central nervous system (CNS); the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs) and transcription factors were preferentially subject to 3′ UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3′ UTR length in the nervous system. [Display omitted] ► >1 billion stranded RNA-seq reads generated across a panel of Drosophila tissues ► Broad trends of 3′ UTR shortening in testis and lengthening in CNS observed ► CNS 3′ UTR extensions subject 100 s of genes to tissue-specific posttranscriptional control ► CNS 3′ UTR extensions enriched for genes encoding nucleic-acid-binding proteins Alternative cleavage and polyadenylation is a widespread mechanism that generates 3′ UTR diversity. Using stranded mRNA-seq in Drosophila, Lai and colleagues uncover global trends for 3′ UTR shortening in the testis and lengthening in the CNS. Their extensive experimental validation demonstrates the extraordinary length of many previously unannotated 3′ UTR extensions and their CNS-specific expression. Enrichment of miRNA target sites and RNA binding protein sites in these extended 3′ UTRs suggests important regulatory roles for these extensions in the CNS. We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3' untranslated region (UTR) shortening in the testis and lengthening in the central nervous system (CNS); the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs) and transcription factors were preferentially subject to 3' UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3' UTR length in the nervous system.We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3' untranslated region (UTR) shortening in the testis and lengthening in the central nervous system (CNS); the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs) and transcription factors were preferentially subject to 3' UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3' UTR length in the nervous system. |
Author | Eads, Brian D. Lai, Eric C. Miura, Pedro Celniker, Susan E. Eisman, Robert C. May, Gemma Westholm, Jakub O. Carlson, Joe Brown, James B. Shenker, Sol Duff, Michael O. Kaufman, Thomas Cherbas, Peter Andrews, Justen Graveley, Brenton R. Smibert, Peter Zhang, Dayu |
AuthorAffiliation | 2 Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-6403, USA 3 Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA 1 Department of Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA 5 Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 4 Department of Biology, Indiana University, Bloomington, IN 47405, USA |
AuthorAffiliation_xml | – name: 2 Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-6403, USA – name: 1 Department of Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA – name: 4 Department of Biology, Indiana University, Bloomington, IN 47405, USA – name: 5 Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA – name: 3 Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA |
Author_xml | – sequence: 1 givenname: Peter surname: Smibert fullname: Smibert, Peter organization: Department of Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA – sequence: 2 givenname: Pedro surname: Miura fullname: Miura, Pedro organization: Department of Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA – sequence: 3 givenname: Jakub O. surname: Westholm fullname: Westholm, Jakub O. organization: Department of Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA – sequence: 4 givenname: Sol surname: Shenker fullname: Shenker, Sol organization: Department of Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA – sequence: 5 givenname: Gemma surname: May fullname: May, Gemma organization: Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-6403, USA – sequence: 6 givenname: Michael O. surname: Duff fullname: Duff, Michael O. organization: Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-6403, USA – sequence: 7 givenname: Dayu surname: Zhang fullname: Zhang, Dayu organization: Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA – sequence: 8 givenname: Brian D. surname: Eads fullname: Eads, Brian D. organization: Department of Biology, Indiana University, Bloomington, IN 47405, USA – sequence: 9 givenname: Joe surname: Carlson fullname: Carlson, Joe organization: Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA – sequence: 10 givenname: James B. surname: Brown fullname: Brown, James B. organization: Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA – sequence: 11 givenname: Robert C. surname: Eisman fullname: Eisman, Robert C. organization: Department of Biology, Indiana University, Bloomington, IN 47405, USA – sequence: 12 givenname: Justen surname: Andrews fullname: Andrews, Justen organization: Department of Biology, Indiana University, Bloomington, IN 47405, USA – sequence: 13 givenname: Thomas surname: Kaufman fullname: Kaufman, Thomas organization: Department of Biology, Indiana University, Bloomington, IN 47405, USA – sequence: 14 givenname: Peter surname: Cherbas fullname: Cherbas, Peter organization: Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA – sequence: 15 givenname: Susan E. surname: Celniker fullname: Celniker, Susan E. email: celniker@fruitfly.org organization: Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA – sequence: 16 givenname: Brenton R. surname: Graveley fullname: Graveley, Brenton R. email: graveley@neuron.uchc.edu organization: Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-6403, USA – sequence: 17 givenname: Eric C. surname: Lai fullname: Lai, Eric C. email: laie@mskcc.org organization: Department of Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22685694$$D View this record in MEDLINE/PubMed |
BookMark | eNqNksFu1DAQhiNUREvpGyCUI5cEj-M4DgekqoVSaSUqUc6WY09ar7x2sLMr7dvj7W5RywHwxWPPP59GM__r4sgHj0XxFkgNBPiHZa3RRZxqSoDWBGpC4EVxQilABZR1R0_i4-IspSXJhxOAnr0qjinlouU9OykWVy4MypU3ap4x-lSGsby1Ka2x-j6htqPV5bnbpdRsN1jeBLdVBv3W5XfwpfXlZQwpTPfWqTfFy1G5hGeH-7T48eXz7cXXavHt6vrifFFpTsVc9QMM0DcN74FqA6YxaqAGOHIyCGh7nvMUiGJUKOy63iBBITpsUCtQvW5Oi-s91wS1lFO0KxW3MigrHz5CvJMqzlY7lFQw0-oONKUdg9EMum1FDtWAQ9MwlVmf9qxpPazQaPRzVO4Z9HnG23t5FzYy9y9YwzLg_QEQw881plmubMrbccpjWCcJRBAhGGf9f0gbwaERXZel75629bufx81lwce9QOfxp4ij1HZ-2Enu0rrMkjunyKXcO0XunCIJyOyUXMz-KH7k_6PsMCvMy91YjDJpi16jsRH1nKdv_w74BfDE2bQ |
CitedBy_id | crossref_primary_10_1002_msb_135068 crossref_primary_10_1084_jem_20181384 crossref_primary_10_1016_j_ymeth_2013_06_037 crossref_primary_10_1371_journal_pgen_1006191 crossref_primary_10_1007_s00018_016_2429_1 crossref_primary_10_1371_journal_pone_0088889 crossref_primary_10_1002_bies_201300174 crossref_primary_10_2217_epi_2017_0161 crossref_primary_10_3390_cells12020318 crossref_primary_10_1016_j_tibs_2013_03_005 crossref_primary_10_1016_j_tig_2015_01_001 crossref_primary_10_1038_nature20802 crossref_primary_10_1101_gr_146886_112 crossref_primary_10_1186_2040_2392_5_44 crossref_primary_10_1101_gr_224451_117 crossref_primary_10_1038_s44319_025_00401_z crossref_primary_10_3389_fnmol_2024_1426410 crossref_primary_10_1016_j_molcel_2020_09_007 crossref_primary_10_3389_fgene_2022_848626 crossref_primary_10_1016_j_mod_2015_08_006 crossref_primary_10_1080_15476286_2015_1048954 crossref_primary_10_1016_j_devcel_2014_04_023 crossref_primary_10_1016_j_ygeno_2016_01_001 crossref_primary_10_1261_rna_042317_113 crossref_primary_10_1016_j_cbd_2019_03_008 crossref_primary_10_1093_bib_bbu011 crossref_primary_10_1186_gb_2012_13_12_r121 crossref_primary_10_1007_s12031_013_0146_x crossref_primary_10_1016_j_jgg_2016_12_007 crossref_primary_10_1261_rna_035899_112 crossref_primary_10_1261_rna_058859_116 crossref_primary_10_1016_j_tcb_2015_10_012 crossref_primary_10_1093_nar_gkaa778 crossref_primary_10_1038_s41598_017_17407_w crossref_primary_10_2139_ssrn_4124633 crossref_primary_10_1002_wrna_1733 crossref_primary_10_1186_s12864_016_3451_2 crossref_primary_10_1371_journal_pone_0145417 crossref_primary_10_1093_cvr_cvad014 crossref_primary_10_1073_pnas_1307202110 crossref_primary_10_1016_j_cell_2023_04_012 crossref_primary_10_3390_insects15121006 crossref_primary_10_1093_nar_gkx560 crossref_primary_10_1186_1471_2164_14_855 crossref_primary_10_1186_1471_2164_14_615 crossref_primary_10_1126_sciadv_ade4814 crossref_primary_10_1101_gr_182675_114 crossref_primary_10_1016_j_molcel_2020_09_011 crossref_primary_10_1101_gr_161554_113 crossref_primary_10_1142_S0219720017500184 crossref_primary_10_3389_fpls_2016_00889 crossref_primary_10_15252_msb_20167375 crossref_primary_10_3390_genes11060709 crossref_primary_10_1101_gr_231506_117 crossref_primary_10_3390_insects13090803 crossref_primary_10_1016_j_bbr_2019_01_022 crossref_primary_10_1016_j_celrep_2017_09_009 crossref_primary_10_4161_nucl_36360 crossref_primary_10_1186_s13059_017_1369_x crossref_primary_10_1016_j_genrep_2018_05_003 crossref_primary_10_1016_j_neuron_2018_03_030 crossref_primary_10_1534_g3_116_031120 crossref_primary_10_1093_nar_gkx133 crossref_primary_10_3390_ijms19020597 crossref_primary_10_1093_nar_gkad1151 crossref_primary_10_1080_15476286_2017_1306171 crossref_primary_10_1158_0008_5472_CAN_16_0844 crossref_primary_10_1016_j_celrep_2016_03_023 crossref_primary_10_1016_j_pneurobio_2023_102500 crossref_primary_10_1371_journal_pgen_1009439 crossref_primary_10_1038_nature12962 crossref_primary_10_1126_sciadv_aax8978 crossref_primary_10_1038_cr_2012_86 crossref_primary_10_1038_cr_2015_77 crossref_primary_10_1146_annurev_genom_090413_025448 crossref_primary_10_1093_nar_gkaa359 crossref_primary_10_1038_srep05406 crossref_primary_10_1126_science_1248286 crossref_primary_10_1002_mrd_22445 crossref_primary_10_1080_15476286_2023_2275109 crossref_primary_10_1093_bioinformatics_btt446 crossref_primary_10_3803_EnM_2017_32_4_413 crossref_primary_10_1016_j_bbagrm_2017_03_002 crossref_primary_10_3390_ijms251910833 crossref_primary_10_1261_rna_043984_113 crossref_primary_10_1261_rna_062661_117 crossref_primary_10_1002_bies_201300100 crossref_primary_10_1186_s12864_015_1662_6 crossref_primary_10_1101_gad_349689_122 crossref_primary_10_1002_wrna_1474 crossref_primary_10_1534_g3_118_200923 crossref_primary_10_1038_s41598_018_29699_7 crossref_primary_10_1038_s41467_023_36311_8 crossref_primary_10_1371_journal_pgen_1005863 crossref_primary_10_1186_s12864_016_2886_9 crossref_primary_10_1371_journal_pone_0188177 crossref_primary_10_3390_ijms21103413 crossref_primary_10_1016_j_celrep_2019_05_083 crossref_primary_10_1038_nrm_2016_116 crossref_primary_10_1016_j_gpb_2017_06_001 crossref_primary_10_1101_gad_229328_113 crossref_primary_10_1021_acs_chemrev_1c00009 crossref_primary_10_1038_s41467_022_32305_0 crossref_primary_10_1093_nar_gkac108 crossref_primary_10_1093_nar_gkac900 crossref_primary_10_1038_s41597_022_01285_7 crossref_primary_10_1002_1873_3468_12639 crossref_primary_10_1042_BST20221128 crossref_primary_10_1002_bies_201400138 crossref_primary_10_3390_biom10060915 crossref_primary_10_1134_S1062360425700031 crossref_primary_10_1038_ncomms14605 crossref_primary_10_1002_wrna_1485 crossref_primary_10_1016_j_celrep_2012_07_008 crossref_primary_10_1038_s41467_023_41207_8 crossref_primary_10_1002_wrna_1488 crossref_primary_10_1002_1873_3468_14251 crossref_primary_10_1242_dev_146001 crossref_primary_10_1371_journal_pgen_1006824 crossref_primary_10_1186_s13059_017_1243_x crossref_primary_10_3390_ijms24065827 crossref_primary_10_1016_j_neuron_2017_08_024 crossref_primary_10_1101_gad_199653_112 crossref_primary_10_1016_j_stemcr_2013_09_007 crossref_primary_10_1016_j_gene_2013_06_052 crossref_primary_10_1534_g3_119_400196 crossref_primary_10_1261_rna_046037_114 crossref_primary_10_1016_j_ymeth_2017_06_003 crossref_primary_10_7554_eLife_46711 crossref_primary_10_1038_srep36388 crossref_primary_10_1534_g3_115_018929 crossref_primary_10_3390_ijms252313023 crossref_primary_10_1002_wrna_1653 crossref_primary_10_1038_ncomms5906 crossref_primary_10_1101_gr_144964_112 crossref_primary_10_1186_s12864_020_6760_4 crossref_primary_10_1038_nbt_2850 crossref_primary_10_1371_journal_pone_0170914 crossref_primary_10_1016_j_celrep_2022_111542 crossref_primary_10_1093_bioinformatics_bty029 crossref_primary_10_3389_fcell_2023_1206259 crossref_primary_10_1261_rna_078918_121 crossref_primary_10_1007_s00018_015_1934_y crossref_primary_10_1093_bioinformatics_btu189 crossref_primary_10_1186_s13062_015_0081_6 crossref_primary_10_1016_j_jmb_2017_03_028 crossref_primary_10_1016_j_molcel_2014_02_013 crossref_primary_10_1016_j_celrep_2014_08_038 crossref_primary_10_1261_rna_076430_120 crossref_primary_10_1016_j_devcel_2012_05_013 crossref_primary_10_1038_nrg3482 crossref_primary_10_1093_nargab_lqad079 crossref_primary_10_15252_embr_202050799 crossref_primary_10_1002_bies_201700090 crossref_primary_10_1371_journal_pgen_1006247 crossref_primary_10_1016_j_ymeth_2015_04_011 crossref_primary_10_1242_dev_141978 crossref_primary_10_1631_jzus_B1400076 crossref_primary_10_26508_lsa_202302000 crossref_primary_10_1016_j_celrep_2014_10_062 crossref_primary_10_1016_j_molcel_2014_11_024 crossref_primary_10_1186_s13059_017_1358_0 crossref_primary_10_1038_s41467_019_09586_z crossref_primary_10_1080_15476286_2015_1060393 crossref_primary_10_1002_wrna_1274 crossref_primary_10_1073_pnas_1309384110 crossref_primary_10_1371_journal_pbio_3002164 crossref_primary_10_1186_s13059_023_02865_5 crossref_primary_10_3389_fonc_2023_1052012 crossref_primary_10_1186_s13059_018_1504_3 crossref_primary_10_7554_eLife_34042 crossref_primary_10_1186_1471_2164_14_912 crossref_primary_10_3390_cells11040677 crossref_primary_10_1016_j_devcel_2020_06_004 |
Cites_doi | 10.1093/nar/gkq1158 10.1073/pnas.1112672108 10.1126/science.1191244 10.1101/gr.112961.110 10.1093/nar/gkl919 10.1038/nrg2455 10.1186/gb-2005-6-12-r100 10.1038/nature09715 10.1038/emboj.2011.156 10.1371/journal.pgen.1000617 10.1186/1471-2164-7-176 10.1186/gb-2002-3-12-research0088 10.1016/j.neuron.2004.10.028 10.1016/j.cell.2008.05.045 10.1093/bioinformatics/17.suppl_1.S207 10.1093/nar/gkn788 10.1242/dev.124.23.4847 10.1038/nature09616 10.1038/nature03441 10.1038/nrg2673 10.1073/pnas.0900028106 10.1126/science.1198374 10.1038/nrm1643 10.1093/nar/gki158 10.1371/journal.pone.0008419 10.1016/j.cell.2009.06.016 10.1016/j.cell.2010.11.020 10.1261/rna.2581711 10.1038/nature07488 10.1101/gr.115295.110 10.1126/science.1155390 10.1101/gad.1291905 10.1111/j.2517-6161.1995.tb02031.x 10.1073/pnas.0508823102 10.1038/ng2049 10.1101/gr.112466.110 10.1038/75556 10.1261/rna.2107305 10.1016/j.cell.2010.03.009 10.1016/j.cell.2005.11.023 10.1101/gr.6597907 10.1101/gad.1106703 10.1016/j.molcel.2011.08.017 10.1038/nbt.1754 10.1093/nar/gkl198 |
ContentType | Journal Article |
Copyright | 2012 The Authors |
Copyright_xml | – notice: 2012 The Authors |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SS 7TM 7X8 5PM DOA |
DOI | 10.1016/j.celrep.2012.01.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Entomology Abstracts (Full archive) Nucleic Acids Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Entomology Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 289 |
ExternalDocumentID | oai_doaj_org_article_284d5c71c22741fdbc558274abeb334a PMC3368434 22685694 10_1016_j_celrep_2012_01_001 S2211124712000216 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research – fundername: NHLBI NIH HHS grantid: U01-HB004271 – fundername: NHGRI NIH HHS grantid: U01 HG004261 – fundername: NIGMS NIH HHS grantid: R01-GM083300 – fundername: NHGRI NIH HHS grantid: U01 HG004271 – fundername: NHGRI NIH HHS grantid: RC2 HG005639 – fundername: NHGRI NIH HHS grantid: RC2-HG005639 – fundername: NHGRI NIH HHS grantid: U01-HG004261 – fundername: NIGMS NIH HHS grantid: R01 GM083300 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXJY AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 HZ~ IPNFZ IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7SS 7TM 7X8 5PM |
ID | FETCH-LOGICAL-c628t-9b1b19336912cd1d3dab2d16e60b81596b1b210a428ae779de0e887e3eca1a9c3 |
IEDL.DBID | DOA |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:31:15 EDT 2025 Thu Aug 21 13:53:43 EDT 2025 Fri Jul 11 12:39:38 EDT 2025 Fri Jul 11 03:48:01 EDT 2025 Mon Jul 21 06:00:59 EDT 2025 Tue Jul 01 03:07:14 EDT 2025 Thu Apr 24 23:03:57 EDT 2025 Wed May 17 00:07:18 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://creativecommons.org/licenses/by/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c628t-9b1b19336912cd1d3dab2d16e60b81596b1b210a428ae779de0e887e3eca1a9c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 These authors contributed equally to this work |
OpenAccessLink | https://doaj.org/article/284d5c71c22741fdbc558274abeb334a |
PMID | 22685694 |
PQID | 1038613877 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_284d5c71c22741fdbc558274abeb334a pubmedcentral_primary_oai_pubmedcentral_nih_gov_3368434 proquest_miscellaneous_1080884649 proquest_miscellaneous_1038613877 pubmed_primary_22685694 crossref_citationtrail_10_1016_j_celrep_2012_01_001 crossref_primary_10_1016_j_celrep_2012_01_001 elsevier_sciencedirect_doi_10_1016_j_celrep_2012_01_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-03-29 |
PublicationDateYYYYMMDD | 2012-03-29 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2012 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | MacDonald, Wilusz, Shenk (bib23) 1994; 14 Hu, Lutz, Wilusz, Tian (bib13) 2005; 11 Xie, Lu, Kulbokas, Golub, Mootha, Lindblad-Toh, Lander, Kellis (bib42) 2005; 434 Tomancak, Beaton, Weiszmann, Kwan, Shu, Lewis, Richards, Ashburner, Hartenstein, Celniker (bib41) 2002; 3 Ji, Tian (bib15) 2009; 4 Licatalosi, Mele, Fak, Ule, Kayikci, Chi, Clark, Schweitzer, Blume, Wang (bib21) 2008; 456 Licatalosi, Darnell (bib20) 2010; 11 Langmead (bib19) 2010; Chapter 11 Ponjavic, Oliver, Lunter, Ponting (bib32) 2009; 5 modENCODE (bib28) 2010; 330 Ozsolak, Kapranov, Foissac, Kim, Fishilevich, Monaghan, John, Milos (bib29) 2010; 143 Flynt, Lai (bib7) 2008; 9 Hilgers, Perry, Hendrix, Stark, Levine, Haley (bib11) 2011; 108 Cherbas, Willingham, Zhang, Yang, Zou, Eads, Carlson, Landolin, Kapranov, Dumais (bib4) 2011; 21 Pinto, Henriques, Freitas, Martins, Domingues, Wyrzykowska, Coelho, Carmo, Sunkel, Proudfoot, Moreira (bib31) 2011; 30 Retelska, Iseli, Bucher, Jongeneel, Naef (bib33) 2006; 7 Menon, Sanyal, Habara, Sanchez, Wharton, Ramaswami, Zinn (bib26) 2004; 44 Shepard, Choi, Lu, Flanagan, Hertel, Shi (bib36) 2011; 17 Pavesi, Mauri, Pesole (bib30) 2001; 17 Ruby, Stark, Johnston, Kellis, Bartel, Lai (bib34) 2007; 17 Mangone, Manoharan, Thierry-Mieg, Thierry-Mieg, Han, Mackowiak, Mis, Zegar, Gutwein, Khivansara (bib24) 2010; 329 Ji, Lee, Pan, Jiang, Tian (bib16) 2009; 106 Lai, Posakony (bib17) 1997; 124 Tian, Hu, Zhang, Lutz (bib40) 2005; 33 Liu, Brockman, Dass, Hutchins, Singh, McCarrey, MacDonald, Graber (bib22) 2007; 35 Mercer, Wilhelm, Dinger, Soldà, Korbie, Glazov, Truong, Schwenke, Simons, Matthaei (bib27) 2011; 39 Soller, White (bib37) 2003; 17 Fu, Sun, Li, Li, Rao, Chen, Xu (bib8) 2011; 21 Hafner, Landthaler, Burger, Khorshid, Hausser, Berninger, Rothballer, Ascano, Jungkamp, Munschauer (bib10) 2010; 141 Mayr, Bartel (bib25) 2009; 138 Lai, Tam, Rubin (bib18) 2005; 19 Aboobaker, Tomancak, Patel, Rubin, Lai (bib1) 2005; 102 Graveley, Brooks, Carlson, Duff, Landolin, Yang, Artieri, van Baren, Boley, Booth (bib9) 2011; 471 Jan, Friedman, Ruby, Bartel (bib14) 2011; 469 Zhang, Lee, Tian (bib43) 2005; 6 Di Giammartino, Nishida, Manley (bib6) 2011; 43 Sandberg, Neilson, Sarma, Sharp, Burge (bib35) 2008; 320 An, Gharami, Liao, Woo, Lau, Vanevski, Torre, Jones, Feng, Lu, Xu (bib2) 2008; 134 Stark, Brennecke, Bushati, Russell, Cohen (bib39) 2005; 123 Bailey, Williams, Misleh, Li (bib3) 2006; 34 Hoskins, Landolin, Brown, Sandler, Takahashi, Lassmann, Yu, Booth, Zhang, Wan (bib12) 2011; 21 Chintapalli, Wang, Dow (bib5) 2007; 39 St Johnston (bib38) 2005; 6 Menon (10.1016/j.celrep.2012.01.001_bib26) 2004; 44 Ozsolak (10.1016/j.celrep.2012.01.001_bib29) 2010; 143 Stark (10.1016/j.celrep.2012.01.001_bib39) 2005; 123 10.1016/j.celrep.2012.01.001_bib53 10.1016/j.celrep.2012.01.001_bib54 Hoskins (10.1016/j.celrep.2012.01.001_bib12) 2011; 21 10.1016/j.celrep.2012.01.001_bib51 10.1016/j.celrep.2012.01.001_bib52 Sandberg (10.1016/j.celrep.2012.01.001_bib35) 2008; 320 Pinto (10.1016/j.celrep.2012.01.001_bib31) 2011; 30 Chintapalli (10.1016/j.celrep.2012.01.001_bib5) 2007; 39 Tian (10.1016/j.celrep.2012.01.001_bib40) 2005; 33 Ponjavic (10.1016/j.celrep.2012.01.001_bib32) 2009; 5 Retelska (10.1016/j.celrep.2012.01.001_bib33) 2006; 7 Pavesi (10.1016/j.celrep.2012.01.001_bib30) 2001; 17 10.1016/j.celrep.2012.01.001_bib50 Bailey (10.1016/j.celrep.2012.01.001_bib3) 2006; 34 Zhang (10.1016/j.celrep.2012.01.001_bib43) 2005; 6 Licatalosi (10.1016/j.celrep.2012.01.001_bib21) 2008; 456 Flynt (10.1016/j.celrep.2012.01.001_bib7) 2008; 9 Langmead (10.1016/j.celrep.2012.01.001_bib19) 2010; Chapter 11 Graveley (10.1016/j.celrep.2012.01.001_bib9) 2011; 471 Fu (10.1016/j.celrep.2012.01.001_bib8) 2011; 21 Licatalosi (10.1016/j.celrep.2012.01.001_bib20) 2010; 11 Ji (10.1016/j.celrep.2012.01.001_bib15) 2009; 4 Ji (10.1016/j.celrep.2012.01.001_bib16) 2009; 106 Lai (10.1016/j.celrep.2012.01.001_bib17) 1997; 124 Hu (10.1016/j.celrep.2012.01.001_bib13) 2005; 11 St Johnston (10.1016/j.celrep.2012.01.001_bib38) 2005; 6 An (10.1016/j.celrep.2012.01.001_bib2) 2008; 134 Hilgers (10.1016/j.celrep.2012.01.001_bib11) 2011; 108 Lai (10.1016/j.celrep.2012.01.001_bib18) 2005; 19 Tomancak (10.1016/j.celrep.2012.01.001_bib41) 2002; 3 Ruby (10.1016/j.celrep.2012.01.001_bib34) 2007; 17 Mangone (10.1016/j.celrep.2012.01.001_bib24) 2010; 329 modENCODE (10.1016/j.celrep.2012.01.001_bib28) 2010; 330 Shepard (10.1016/j.celrep.2012.01.001_bib36) 2011; 17 Mayr (10.1016/j.celrep.2012.01.001_bib25) 2009; 138 Liu (10.1016/j.celrep.2012.01.001_bib22) 2007; 35 10.1016/j.celrep.2012.01.001_bib48 10.1016/j.celrep.2012.01.001_bib49 Jan (10.1016/j.celrep.2012.01.001_bib14) 2011; 469 Cherbas (10.1016/j.celrep.2012.01.001_bib4) 2011; 21 10.1016/j.celrep.2012.01.001_bib46 10.1016/j.celrep.2012.01.001_bib47 10.1016/j.celrep.2012.01.001_bib44 MacDonald (10.1016/j.celrep.2012.01.001_bib23) 1994; 14 Xie (10.1016/j.celrep.2012.01.001_bib42) 2005; 434 10.1016/j.celrep.2012.01.001_bib45 Mercer (10.1016/j.celrep.2012.01.001_bib27) 2011; 39 Soller (10.1016/j.celrep.2012.01.001_bib37) 2003; 17 Aboobaker (10.1016/j.celrep.2012.01.001_bib1) 2005; 102 Di Giammartino (10.1016/j.celrep.2012.01.001_bib6) 2011; 43 Hafner (10.1016/j.celrep.2012.01.001_bib10) 2010; 141 20522740 - Science. 2010 Jul 23;329(5990):432-5 21145465 - Cell. 2010 Dec 10;143(6):1018-29 12537577 - Genome Biol. 2002;3(12):RESEARCH0088 11473011 - Bioinformatics. 2001;17 Suppl 1:S207-14 21154709 - Curr Protoc Bioinformatics. 2010 Dec;Chapter 11:Unit 11.7 7935383 - Mol Cell Biol. 1994 Oct;14(10):6647-54 16845028 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W369-73 21602789 - EMBO J. 2011 Jun 15;30(12):2431-44 21925375 - Mol Cell. 2011 Sep 16;43(6):853-66 17534367 - Nat Genet. 2007 Jun;39(6):715-20 18978773 - Nature. 2008 Nov 27;456(7221):464-9 16356263 - Genome Biol. 2005;6(12):R100 21085120 - Nature. 2011 Jan 6;469(7328):97-101 16836751 - BMC Genomics. 2006;7:176 14522950 - Genes Dev. 2003 Oct 15;17(20):2526-38 9428421 - Development. 1997 Dec;124(23):4847-56 18614020 - Cell. 2008 Jul 11;134(1):175-87 18566288 - Science. 2008 Jun 20;320(5883):1643-7 19696892 - PLoS Genet. 2009 Aug;5(8):e1000617 20019688 - Nat Rev Genet. 2010 Jan;11(1):75-87 20037631 - PLoS One. 2009;4(12):e8419 21075793 - Nucleic Acids Res. 2011 Mar;39(6):2393-403 21179090 - Nature. 2011 Mar 24;471(7339):473-9 15541314 - Neuron. 2004 Nov 18;44(4):663-76 Cell Rep. 2013 Mar 28;3(3):969 17989254 - Genome Res. 2007 Dec;17(12):1850-64 16337999 - Cell. 2005 Dec 16;123(6):1133-46 18852696 - Nat Rev Genet. 2008 Nov;9(11):831-42 20371350 - Cell. 2010 Apr 2;141(1):129-41 21343387 - RNA. 2011 Apr;17(4):761-72 19372383 - Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7028-33 17158511 - Nucleic Acids Res. 2007;35(1):234-46 19703394 - Cell. 2009 Aug 21;138(4):673-84 15852043 - Nat Rev Mol Cell Biol. 2005 May;6(5):363-75 21474764 - Genome Res. 2011 May;21(5):741-7 21896737 - Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15864-9 21177974 - Science. 2010 Dec 24;330(6012):1787-97 15735639 - Nature. 2005 Mar 17;434(7031):338-45 21177961 - Genome Res. 2011 Feb;21(2):182-92 21177962 - Genome Res. 2011 Feb;21(2):301-14 16131587 - RNA. 2005 Oct;11(10):1485-93 16330759 - Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):18017-22 15647503 - Nucleic Acids Res. 2005;33(1):201-12 15833912 - Genes Dev. 2005 May 1;19(9):1067-80 |
References_xml | – volume: 19 start-page: 1067 year: 2005 end-page: 1080 ident: bib18 article-title: Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs publication-title: Genes Dev. – volume: 4 start-page: e8419 year: 2009 ident: bib15 article-title: Reprogramming of 3′ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types publication-title: PLoS ONE – volume: 471 start-page: 473 year: 2011 end-page: 479 ident: bib9 article-title: The developmental transcriptome of Drosophila melanogaster publication-title: Nature – volume: 330 start-page: 1787 year: 2010 end-page: 1797 ident: bib28 article-title: Identification of functional elements and regulatory circuits by Drosophila modENCODE publication-title: Science – volume: 108 start-page: 15864 year: 2011 end-page: 15869 ident: bib11 article-title: Neural-specific elongation of 3′ UTRs during Drosophila development publication-title: Proc. Natl. Acad. Sci. USA – volume: 30 start-page: 2431 year: 2011 end-page: 2444 ident: bib31 article-title: RNA polymerase II kinetics in polo polyadenylation signal selection publication-title: EMBO J. – volume: 35 start-page: 234 year: 2007 end-page: 246 ident: bib22 article-title: Systematic variation in mRNA 3′-processing signals during mouse spermatogenesis publication-title: Nucleic Acids Res. – volume: 21 start-page: 301 year: 2011 end-page: 314 ident: bib4 article-title: The transcriptional diversity of 25 Drosophila cell lines publication-title: Genome Res. – volume: 141 start-page: 129 year: 2010 end-page: 141 ident: bib10 article-title: Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP publication-title: Cell – volume: 11 start-page: 1485 year: 2005 end-page: 1493 ident: bib13 article-title: Bioinformatic identification of candidate cis-regulatory elements involved in human mRNA polyadenylation publication-title: RNA – volume: 34 year: 2006 ident: bib3 article-title: MEME: discovering and analyzing DNA and protein sequence motifs publication-title: Nucleic Acids Res. – volume: 39 start-page: 715 year: 2007 end-page: 720 ident: bib5 article-title: Using FlyAtlas to identify better Drosophila melanogaster models of human disease publication-title: Nat. Genet. – volume: 329 start-page: 432 year: 2010 end-page: 435 ident: bib24 article-title: The landscape of C. elegans 3′UTRs publication-title: Science – volume: 469 start-page: 97 year: 2011 end-page: 101 ident: bib14 article-title: Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs publication-title: Nature – volume: 124 start-page: 4847 year: 1997 end-page: 4856 ident: bib17 article-title: The Bearded box, a novel 3′ UTR sequence motif, mediates negative post-transcriptional regulation of publication-title: Development – volume: 434 start-page: 338 year: 2005 end-page: 345 ident: bib42 article-title: Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals publication-title: Nature – volume: 102 start-page: 18017 year: 2005 end-page: 18022 ident: bib1 article-title: Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development publication-title: Proc. Natl. Acad. Sci. USA – volume: 17 start-page: 1850 year: 2007 end-page: 1864 ident: bib34 article-title: Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs publication-title: Genome Res. – volume: 6 start-page: 363 year: 2005 end-page: 375 ident: bib38 article-title: Moving messages: the intracellular localization of mRNAs publication-title: Nat. Rev. Mol. Cell Biol. – volume: 320 start-page: 1643 year: 2008 end-page: 1647 ident: bib35 article-title: Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites publication-title: Science – volume: 3 year: 2002 ident: bib41 article-title: Systematic determination of patterns of gene expression during Drosophila embryogenesis publication-title: Genome Biol. – volume: 21 start-page: 182 year: 2011 end-page: 192 ident: bib12 article-title: Genome-wide analysis of promoter architecture in Drosophila melanogaster publication-title: Genome Res. – volume: 7 start-page: 176 year: 2006 ident: bib33 article-title: Similarities and differences of polyadenylation signals in human and fly publication-title: BMC Genomics – volume: 43 start-page: 853 year: 2011 end-page: 866 ident: bib6 article-title: Mechanisms and consequences of alternative polyadenylation publication-title: Mol. Cell – volume: 138 start-page: 673 year: 2009 end-page: 684 ident: bib25 article-title: Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells publication-title: Cell – volume: 5 start-page: e1000617 year: 2009 ident: bib32 article-title: Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain publication-title: PLoS Genet. – volume: 134 start-page: 175 year: 2008 end-page: 187 ident: bib2 article-title: Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons publication-title: Cell – volume: 17 start-page: 761 year: 2011 end-page: 772 ident: bib36 article-title: Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq publication-title: RNA – volume: 106 start-page: 7028 year: 2009 end-page: 7033 ident: bib16 article-title: Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development publication-title: Proc. Natl. Acad. Sci. USA – volume: 123 start-page: 1133 year: 2005 end-page: 1146 ident: bib39 article-title: Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution publication-title: Cell – volume: Chapter 11 start-page: Unit 11.17 year: 2010 ident: bib19 article-title: Aligning short sequencing reads with Bowtie publication-title: Curr. Protoc. Bioinformatics – volume: 17 start-page: S207 year: 2001 end-page: S214 ident: bib30 article-title: An algorithm for finding signals of unknown length in DNA sequences publication-title: Bioinformatics – volume: 44 start-page: 663 year: 2004 end-page: 676 ident: bib26 article-title: The translational repressor Pumilio regulates presynaptic morphology and controls postsynaptic accumulation of translation factor eIF-4E publication-title: Neuron – volume: 456 start-page: 464 year: 2008 end-page: 469 ident: bib21 article-title: HITS-CLIP yields genome-wide insights into brain alternative RNA processing publication-title: Nature – volume: 9 start-page: 831 year: 2008 end-page: 842 ident: bib7 article-title: Biological principles of microRNA-mediated regulation: shared themes amid diversity publication-title: Nat. Rev. Genet. – volume: 21 start-page: 741 year: 2011 end-page: 747 ident: bib8 article-title: Differential genome-wide profiling of tandem 3′ UTRs among human breast cancer and normal cells by high-throughput sequencing publication-title: Genome Res. – volume: 33 start-page: 201 year: 2005 end-page: 212 ident: bib40 article-title: A large-scale analysis of mRNA polyadenylation of human and mouse genes publication-title: Nucleic Acids Res. – volume: 143 start-page: 1018 year: 2010 end-page: 1029 ident: bib29 article-title: Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation publication-title: Cell – volume: 39 start-page: 2393 year: 2011 end-page: 2403 ident: bib27 article-title: Expression of distinct RNAs from 3′ untranslated regions publication-title: Nucleic Acids Res. – volume: 6 start-page: R100 year: 2005 ident: bib43 article-title: Biased alternative polyadenylation in human tissues publication-title: Genome Biol. – volume: 11 start-page: 75 year: 2010 end-page: 87 ident: bib20 article-title: RNA processing and its regulation: global insights into biological networks publication-title: Nat. Rev. Genet. – volume: 14 start-page: 6647 year: 1994 end-page: 6654 ident: bib23 article-title: The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location publication-title: Mol. Cell. Biol. – volume: 17 start-page: 2526 year: 2003 end-page: 2538 ident: bib37 article-title: ELAV inhibits 3′-end processing to promote neural splicing of ewg pre-mRNA publication-title: Genes Dev. – volume: 34 issue: Web Server issue year: 2006 ident: 10.1016/j.celrep.2012.01.001_bib3 article-title: MEME: discovering and analyzing DNA and protein sequence motifs publication-title: Nucleic Acids Res. – volume: 39 start-page: 2393 year: 2011 ident: 10.1016/j.celrep.2012.01.001_bib27 article-title: Expression of distinct RNAs from 3′ untranslated regions publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1158 – volume: 108 start-page: 15864 year: 2011 ident: 10.1016/j.celrep.2012.01.001_bib11 article-title: Neural-specific elongation of 3′ UTRs during Drosophila development publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1112672108 – volume: 329 start-page: 432 year: 2010 ident: 10.1016/j.celrep.2012.01.001_bib24 article-title: The landscape of C. elegans 3′UTRs publication-title: Science doi: 10.1126/science.1191244 – volume: 21 start-page: 301 year: 2011 ident: 10.1016/j.celrep.2012.01.001_bib4 article-title: The transcriptional diversity of 25 Drosophila cell lines publication-title: Genome Res. doi: 10.1101/gr.112961.110 – volume: 35 start-page: 234 year: 2007 ident: 10.1016/j.celrep.2012.01.001_bib22 article-title: Systematic variation in mRNA 3′-processing signals during mouse spermatogenesis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl919 – volume: 9 start-page: 831 year: 2008 ident: 10.1016/j.celrep.2012.01.001_bib7 article-title: Biological principles of microRNA-mediated regulation: shared themes amid diversity publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2455 – volume: 6 start-page: R100 year: 2005 ident: 10.1016/j.celrep.2012.01.001_bib43 article-title: Biased alternative polyadenylation in human tissues publication-title: Genome Biol. doi: 10.1186/gb-2005-6-12-r100 – volume: 471 start-page: 473 year: 2011 ident: 10.1016/j.celrep.2012.01.001_bib9 article-title: The developmental transcriptome of Drosophila melanogaster publication-title: Nature doi: 10.1038/nature09715 – volume: 30 start-page: 2431 year: 2011 ident: 10.1016/j.celrep.2012.01.001_bib31 article-title: RNA polymerase II kinetics in polo polyadenylation signal selection publication-title: EMBO J. doi: 10.1038/emboj.2011.156 – volume: 5 start-page: e1000617 year: 2009 ident: 10.1016/j.celrep.2012.01.001_bib32 article-title: Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000617 – ident: 10.1016/j.celrep.2012.01.001_bib50 doi: 10.1186/1471-2164-7-176 – ident: 10.1016/j.celrep.2012.01.001_bib52 doi: 10.1186/gb-2002-3-12-research0088 – volume: 3 year: 2002 ident: 10.1016/j.celrep.2012.01.001_bib41 article-title: Systematic determination of patterns of gene expression during Drosophila embryogenesis publication-title: Genome Biol. doi: 10.1186/gb-2002-3-12-research0088 – volume: 44 start-page: 663 year: 2004 ident: 10.1016/j.celrep.2012.01.001_bib26 article-title: The translational repressor Pumilio regulates presynaptic morphology and controls postsynaptic accumulation of translation factor eIF-4E publication-title: Neuron doi: 10.1016/j.neuron.2004.10.028 – volume: 7 start-page: 176 year: 2006 ident: 10.1016/j.celrep.2012.01.001_bib33 article-title: Similarities and differences of polyadenylation signals in human and fly publication-title: BMC Genomics doi: 10.1186/1471-2164-7-176 – volume: 134 start-page: 175 year: 2008 ident: 10.1016/j.celrep.2012.01.001_bib2 article-title: Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons publication-title: Cell doi: 10.1016/j.cell.2008.05.045 – volume: 17 start-page: S207 issue: Suppl 1 year: 2001 ident: 10.1016/j.celrep.2012.01.001_bib30 article-title: An algorithm for finding signals of unknown length in DNA sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.suppl_1.S207 – ident: 10.1016/j.celrep.2012.01.001_bib53 doi: 10.1093/nar/gkn788 – volume: 124 start-page: 4847 year: 1997 ident: 10.1016/j.celrep.2012.01.001_bib17 article-title: The Bearded box, a novel 3′ UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression publication-title: Development doi: 10.1242/dev.124.23.4847 – volume: 469 start-page: 97 year: 2011 ident: 10.1016/j.celrep.2012.01.001_bib14 article-title: Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs publication-title: Nature doi: 10.1038/nature09616 – volume: Chapter 11 start-page: Unit 11.17 year: 2010 ident: 10.1016/j.celrep.2012.01.001_bib19 article-title: Aligning short sequencing reads with Bowtie publication-title: Curr. Protoc. Bioinformatics – ident: 10.1016/j.celrep.2012.01.001_bib54 doi: 10.1038/nature03441 – volume: 11 start-page: 75 year: 2010 ident: 10.1016/j.celrep.2012.01.001_bib20 article-title: RNA processing and its regulation: global insights into biological networks publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2673 – volume: 106 start-page: 7028 year: 2009 ident: 10.1016/j.celrep.2012.01.001_bib16 article-title: Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0900028106 – volume: 14 start-page: 6647 year: 1994 ident: 10.1016/j.celrep.2012.01.001_bib23 article-title: The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location publication-title: Mol. Cell. Biol. – volume: 330 start-page: 1787 year: 2010 ident: 10.1016/j.celrep.2012.01.001_bib28 article-title: Identification of functional elements and regulatory circuits by Drosophila modENCODE publication-title: Science doi: 10.1126/science.1198374 – volume: 6 start-page: 363 year: 2005 ident: 10.1016/j.celrep.2012.01.001_bib38 article-title: Moving messages: the intracellular localization of mRNAs publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1643 – volume: 33 start-page: 201 year: 2005 ident: 10.1016/j.celrep.2012.01.001_bib40 article-title: A large-scale analysis of mRNA polyadenylation of human and mouse genes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki158 – volume: 4 start-page: e8419 year: 2009 ident: 10.1016/j.celrep.2012.01.001_bib15 article-title: Reprogramming of 3′ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types publication-title: PLoS ONE doi: 10.1371/journal.pone.0008419 – volume: 138 start-page: 673 year: 2009 ident: 10.1016/j.celrep.2012.01.001_bib25 article-title: Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells publication-title: Cell doi: 10.1016/j.cell.2009.06.016 – volume: 143 start-page: 1018 year: 2010 ident: 10.1016/j.celrep.2012.01.001_bib29 article-title: Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation publication-title: Cell doi: 10.1016/j.cell.2010.11.020 – volume: 17 start-page: 761 year: 2011 ident: 10.1016/j.celrep.2012.01.001_bib36 article-title: Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq publication-title: RNA doi: 10.1261/rna.2581711 – volume: 456 start-page: 464 year: 2008 ident: 10.1016/j.celrep.2012.01.001_bib21 article-title: HITS-CLIP yields genome-wide insights into brain alternative RNA processing publication-title: Nature doi: 10.1038/nature07488 – volume: 21 start-page: 741 year: 2011 ident: 10.1016/j.celrep.2012.01.001_bib8 article-title: Differential genome-wide profiling of tandem 3′ UTRs among human breast cancer and normal cells by high-throughput sequencing publication-title: Genome Res. doi: 10.1101/gr.115295.110 – volume: 320 start-page: 1643 year: 2008 ident: 10.1016/j.celrep.2012.01.001_bib35 article-title: Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites publication-title: Science doi: 10.1126/science.1155390 – volume: 19 start-page: 1067 year: 2005 ident: 10.1016/j.celrep.2012.01.001_bib18 article-title: Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs publication-title: Genes Dev. doi: 10.1101/gad.1291905 – ident: 10.1016/j.celrep.2012.01.001_bib48 doi: 10.1016/j.cell.2009.06.016 – ident: 10.1016/j.celrep.2012.01.001_bib46 doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 102 start-page: 18017 year: 2005 ident: 10.1016/j.celrep.2012.01.001_bib1 article-title: Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0508823102 – ident: 10.1016/j.celrep.2012.01.001_bib47 doi: 10.1038/ng2049 – volume: 21 start-page: 182 year: 2011 ident: 10.1016/j.celrep.2012.01.001_bib12 article-title: Genome-wide analysis of promoter architecture in Drosophila melanogaster publication-title: Genome Res. doi: 10.1101/gr.112466.110 – ident: 10.1016/j.celrep.2012.01.001_bib44 doi: 10.1038/75556 – ident: 10.1016/j.celrep.2012.01.001_bib49 doi: 10.1093/bioinformatics/17.suppl_1.S207 – volume: 11 start-page: 1485 year: 2005 ident: 10.1016/j.celrep.2012.01.001_bib13 article-title: Bioinformatic identification of candidate cis-regulatory elements involved in human mRNA polyadenylation publication-title: RNA doi: 10.1261/rna.2107305 – volume: 141 start-page: 129 year: 2010 ident: 10.1016/j.celrep.2012.01.001_bib10 article-title: Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP publication-title: Cell doi: 10.1016/j.cell.2010.03.009 – volume: 123 start-page: 1133 year: 2005 ident: 10.1016/j.celrep.2012.01.001_bib39 article-title: Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution publication-title: Cell doi: 10.1016/j.cell.2005.11.023 – volume: 17 start-page: 1850 year: 2007 ident: 10.1016/j.celrep.2012.01.001_bib34 article-title: Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs publication-title: Genome Res. doi: 10.1101/gr.6597907 – volume: 17 start-page: 2526 year: 2003 ident: 10.1016/j.celrep.2012.01.001_bib37 article-title: ELAV inhibits 3′-end processing to promote neural splicing of ewg pre-mRNA publication-title: Genes Dev. doi: 10.1101/gad.1106703 – volume: 39 start-page: 715 year: 2007 ident: 10.1016/j.celrep.2012.01.001_bib5 article-title: Using FlyAtlas to identify better Drosophila melanogaster models of human disease publication-title: Nat. Genet. doi: 10.1038/ng2049 – volume: 43 start-page: 853 year: 2011 ident: 10.1016/j.celrep.2012.01.001_bib6 article-title: Mechanisms and consequences of alternative polyadenylation publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.08.017 – ident: 10.1016/j.celrep.2012.01.001_bib51 doi: 10.1038/nbt.1754 – ident: 10.1016/j.celrep.2012.01.001_bib45 doi: 10.1093/nar/gkl198 – volume: 434 start-page: 338 year: 2005 ident: 10.1016/j.celrep.2012.01.001_bib42 article-title: Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals publication-title: Nature doi: 10.1038/nature03441 – reference: 18566288 - Science. 2008 Jun 20;320(5883):1643-7 – reference: - Cell Rep. 2013 Mar 28;3(3):969 – reference: 18852696 - Nat Rev Genet. 2008 Nov;9(11):831-42 – reference: 20019688 - Nat Rev Genet. 2010 Jan;11(1):75-87 – reference: 21145465 - Cell. 2010 Dec 10;143(6):1018-29 – reference: 21179090 - Nature. 2011 Mar 24;471(7339):473-9 – reference: 20522740 - Science. 2010 Jul 23;329(5990):432-5 – reference: 20037631 - PLoS One. 2009;4(12):e8419 – reference: 16845028 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W369-73 – reference: 9428421 - Development. 1997 Dec;124(23):4847-56 – reference: 15852043 - Nat Rev Mol Cell Biol. 2005 May;6(5):363-75 – reference: 17158511 - Nucleic Acids Res. 2007;35(1):234-46 – reference: 16330759 - Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):18017-22 – reference: 16131587 - RNA. 2005 Oct;11(10):1485-93 – reference: 18614020 - Cell. 2008 Jul 11;134(1):175-87 – reference: 11473011 - Bioinformatics. 2001;17 Suppl 1:S207-14 – reference: 21925375 - Mol Cell. 2011 Sep 16;43(6):853-66 – reference: 15541314 - Neuron. 2004 Nov 18;44(4):663-76 – reference: 18978773 - Nature. 2008 Nov 27;456(7221):464-9 – reference: 20371350 - Cell. 2010 Apr 2;141(1):129-41 – reference: 21343387 - RNA. 2011 Apr;17(4):761-72 – reference: 21075793 - Nucleic Acids Res. 2011 Mar;39(6):2393-403 – reference: 21177962 - Genome Res. 2011 Feb;21(2):301-14 – reference: 15735639 - Nature. 2005 Mar 17;434(7031):338-45 – reference: 16356263 - Genome Biol. 2005;6(12):R100 – reference: 16836751 - BMC Genomics. 2006;7:176 – reference: 17534367 - Nat Genet. 2007 Jun;39(6):715-20 – reference: 21602789 - EMBO J. 2011 Jun 15;30(12):2431-44 – reference: 21474764 - Genome Res. 2011 May;21(5):741-7 – reference: 19372383 - Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7028-33 – reference: 21177961 - Genome Res. 2011 Feb;21(2):182-92 – reference: 16337999 - Cell. 2005 Dec 16;123(6):1133-46 – reference: 21085120 - Nature. 2011 Jan 6;469(7328):97-101 – reference: 19703394 - Cell. 2009 Aug 21;138(4):673-84 – reference: 15833912 - Genes Dev. 2005 May 1;19(9):1067-80 – reference: 15647503 - Nucleic Acids Res. 2005;33(1):201-12 – reference: 21154709 - Curr Protoc Bioinformatics. 2010 Dec;Chapter 11:Unit 11.7 – reference: 19696892 - PLoS Genet. 2009 Aug;5(8):e1000617 – reference: 17989254 - Genome Res. 2007 Dec;17(12):1850-64 – reference: 21896737 - Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15864-9 – reference: 12537577 - Genome Biol. 2002;3(12):RESEARCH0088 – reference: 21177974 - Science. 2010 Dec 24;330(6012):1787-97 – reference: 14522950 - Genes Dev. 2003 Oct 15;17(20):2526-38 – reference: 7935383 - Mol Cell Biol. 1994 Oct;14(10):6647-54 |
SSID | ssj0000601194 |
Score | 2.4256501 |
Snippet | We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded... We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 277 |
SubjectTerms | 3' Untranslated Regions - genetics Animals Base Sequence Blotting, Northern Conserved Sequence - genetics DNA-Binding Proteins - metabolism Drosophila melanogaster Drosophila melanogaster - embryology Drosophila melanogaster - genetics Embryo, Nonmammalian - metabolism Gene Expression Regulation, Developmental Genes, Insect - genetics In Situ Hybridization Male Molecular Sequence Data Neurons - cytology Neurons - metabolism Nucleotide Motifs - genetics Organ Specificity - genetics Poly A - metabolism Polyadenylation - genetics Protein Isoforms - genetics Protein Isoforms - metabolism Reproducibility of Results RNA, Messenger - genetics RNA, Messenger - metabolism Sequence Analysis, RNA Testis - metabolism Transcriptome - genetics |
SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9wwDDelMNjL2Peu-yCDvZqLY8d2HttupYxtFNbCvRnbUbaMIynX6-D--0lOciwbrLC3xJGTWJYl2ZZ_YuxdKE2oPVju0bfmypiKhwiB-7zWuhSxgLTg9vmLPr9SH1fl6oCdTmdhKKxy1P2DTk_aeixZjtxcXrft8muBcxe0TkbQaZNCEOy2VDYd4lud7NdZCG9EpHyIRM-pwnSCLoV5RVhvgIAraVFQ0MbEzEIlIP-ZofrbEf0znvI3A3X2kD0YPcvsePj5R-wAusfs3pBrcveEfRrQ_bOLBKjZ3WR9k10mrvOUg75pY3a8HpcHf0J20a93HpXSbgiWy9oue79JSQ_atX_Krs4-XJ6e8zGVAo-6sFteBRHQVZO6EkWsRS1rH4paaNB5sOjRaHyOkz-PkxEP2GE15IDqByREL3wV5TN22PUdvGAZEuK4zwGgapSJBqdANgasXcQGrJcLJif2uTjijFO6i7WbAsp-uIHpjpjuckFxdQvG97WuB5yNO-hPqGf2tISSnQr6zTc3iolD01uX0aDEEUhPU4dYlhYvfYAgpfILZqZ-dTOhw1e1d3z-7SQGDscjbbL4DvrbG0eA8-giWWP-RWNRuSutqgV7PojOviHoDttSVwr_bSZUs5bOn3Tt94QLjt1rlVRH_92ql-w-3VGIXVG9YofbzS28Rp9rG96kQfULZsoq6Q priority: 102 providerName: Elsevier – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKERIXVN4LBQWJa1Aeju0cEGoLVYUo6qEr9WbZzgSCogSyW8T-e2bsZCG8euEWJc7DM-OZz_bkG8ae20LayoCKDWLrmEtZxtaBjU1SCVGkLgO_4Hb6Xpws-duL4mKHTTVbRwGu_ji1o3pSy6F98e3L5hUO-Jc_crUctAMQ-ySt7KW0u3CNXcfYJKmYw-kI-INvJo4z2mrOMsrlyric_qf7y4Nm8crT-s_C1u-w9Nfsyp_C1fEeuzXizOggGMZttgPdHXYjVJ7c3GXvAtd_dObpNbtV1NfRuddB7CvS142LDtpxsfArRGd9uzHoojYhdS5quuj14EsgNK25x5bHb86PTuKxsELsRKbWcWlTi8AtF2WauSqt8srYrEoFiMQqxDcCr-NU0ODUxACqr4IE0BlBDs6kpnT5fbbb9R08ZBE2RC-QAEBZc-kkToiUs3h35mpQJl-wfBKfdiPrOBW_aPWUXvZJB6FrErpOUsqyW7B4e9fnwLpxRftD0sy2LXFm-xP98EGPQ1BjIK4KJ9H-iLKnrqwrCoWHxoLNc24WTE561SP8CLACH9Vc8fpnkxloHJ205WI66C9XmujnETApKf_VRqGr54KXC_YgmM62IwiOVSFKjt82M6pZT-dXuuajZwlH9Sqe80f_QzSP2U3qLuXeZeU-210Pl_AEwdjaPvXj6zv1hjML priority: 102 providerName: Scholars Portal |
Title | Global Patterns of Tissue-Specific Alternative Polyadenylation in Drosophila |
URI | https://dx.doi.org/10.1016/j.celrep.2012.01.001 https://www.ncbi.nlm.nih.gov/pubmed/22685694 https://www.proquest.com/docview/1038613877 https://www.proquest.com/docview/1080884649 https://pubmed.ncbi.nlm.nih.gov/PMC3368434 https://doaj.org/article/284d5c71c22741fdbc558274abeb334a |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilNH1uX6jQq6gty5J8TNqGtDQlhwT2JvQYUxfjLZtNYf99RpK9rFvoXnoxxpZsazQafSONvyHkvauVCxY0s4itmVCqYc6DY7YIUtal55AW3C6-y_Nr8XVZL_dSfcWYsEwPnAX3Ac1nqL3CWpFopQ3O17XGU-vQDaxEgkY45-05U9kGRy6zuKXMeYzZ4kJN_82l4C4P_RoiXWVcCizjdsRsXkr0_bPp6W_4-WcU5d60dPaIPBzxJD3J7Tgm92B4TO7nDJPbJ-Rb5vSnl4lGc7ihq5ZeJVmzlHm-7Tw96cdFwd9AL1f91qIp2uYQOdoN9NM6pTroevuUXJ99vvp4zsYECsxLrjescaVDgFbJpuQ-lKEK1vFQSpCF04hjJN5Hl8-iC2IBuylAAWh0oAJvS9v46hk5GlYDvCAUC-JoLwCgaYXyCh0f7R3W5r4FbasFqSbxGT-yi8ckF72Zwsh-mix0E4VuijJG0y0I29X6ldk1DpQ_jT2zKxu5sdMF1Bgzaow5pDELoqZ-NSPMyPABH9UdeP27SQ0MjsK4tWIHWN3emEgzj8BIK_WvMhpNupCiWZDnWXV2DUEQrGvZCPy2mVLNWjq_M3Q_Ehs4dq8WlXj5P0TzijyIzY0xdrx5TY4261t4g6Br496m8YXHL8tTPF4IfQc58Cu5 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4s3yDBJXa9d52M6xLVRb2FaV2Ep7s2xnUoKipNpukfbfM-MkKwISlbhFsZ3E4_HMZ2f8DWMfXaZcYUFzi9iap0rl3Hlw3M4KKTPhYwgbbqdncn6Rflllqz12NJyFobDK3vZ3Nj1Y6_7OtJfm9Kqqpt9iXLugd1KCTpvEQt5hdxENSFLtk9XhbqOFCEdESIhIDTi1GI7QhTgvD_UaiLmSdgUF_ZkYuajA5D_yVH8j0T8DKn_zUMeP2MMeWkYH3dc_ZnvQPGH3umST26ds0dH7R-eBUbO5jtoyWgax85CEvqx8dFD3-4M_ITpv661Fq7TtouWiqok-rUPWg6q2z9jF8efl0Zz3uRS4l7He8NwJh1gtkbmIfSGKpLAuLoQEOXMaIY3Eclz9WVyNWMARK2AGaH8gAW-FzX3ynO03bQMvWYQVceLPACAvU-UVroG0d9g69iVom0xYMojP-J5onPJd1GaIKPthOqEbErqZCQqsmzC-a3XVEW3cUv-QRmZXl2iyw412fWl6PTHoe4vMK1Q5YukpC-ezTOOldeCSJLUTpoZxNSOtw0dVt7z-w6AGBick_WWxDbQ314YY5xEjaaX-VUejdU9lmk_Yi051dh1BPKwzmaf4bSOlGvV0XNJU3wMxOA6vTpP01X_36j27P1-eLszi5Ozra_aASijeLs7fsP3N-gbeIgDbuHdhgv0CflkuEA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Patterns+of+Tissue-Specific+Alternative+Polyadenylation+in+Drosophila&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Peter+Smibert&rft.au=Pedro+Miura&rft.au=Jakub%C2%A0O.+Westholm&rft.au=Sol+Shenker&rft.date=2012-03-29&rft.pub=Elsevier&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=1&rft.issue=3&rft.spage=277&rft.epage=289&rft_id=info:doi/10.1016%2Fj.celrep.2012.01.001&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_284d5c71c22741fdbc558274abeb334a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |