Global Patterns of Tissue-Specific Alternative Polyadenylation in Drosophila

We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad t...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 1; no. 3; pp. 277 - 289
Main Authors Smibert, Peter, Miura, Pedro, Westholm, Jakub O., Shenker, Sol, May, Gemma, Duff, Michael O., Zhang, Dayu, Eads, Brian D., Carlson, Joe, Brown, James B., Eisman, Robert C., Andrews, Justen, Kaufman, Thomas, Cherbas, Peter, Celniker, Susan E., Graveley, Brenton R., Lai, Eric C.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 29.03.2012
Elsevier
Subjects
Online AccessGet full text
ISSN2211-1247
2211-1247
DOI10.1016/j.celrep.2012.01.001

Cover

Loading…
Abstract We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3′ untranslated region (UTR) shortening in the testis and lengthening in the central nervous system (CNS); the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs) and transcription factors were preferentially subject to 3′ UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3′ UTR length in the nervous system. [Display omitted] ► >1 billion stranded RNA-seq reads generated across a panel of Drosophila tissues ► Broad trends of 3′ UTR shortening in testis and lengthening in CNS observed ► CNS 3′ UTR extensions subject 100 s of genes to tissue-specific posttranscriptional control ► CNS 3′ UTR extensions enriched for genes encoding nucleic-acid-binding proteins Alternative cleavage and polyadenylation is a widespread mechanism that generates 3′ UTR diversity. Using stranded mRNA-seq in Drosophila, Lai and colleagues uncover global trends for 3′ UTR shortening in the testis and lengthening in the CNS. Their extensive experimental validation demonstrates the extraordinary length of many previously unannotated 3′ UTR extensions and their CNS-specific expression. Enrichment of miRNA target sites and RNA binding protein sites in these extended 3′ UTRs suggests important regulatory roles for these extensions in the CNS.
AbstractList We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3' untranslated region (UTR) shortening in the testis and lengthening in the central nervous system (CNS); the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs) and transcription factors were preferentially subject to 3' UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3' UTR length in the nervous system.
We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3′ untranslated region (UTR) shortening in the testis and lengthening in the central nervous system (CNS); the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs) and transcription factors were preferentially subject to 3′ UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3′ UTR length in the nervous system.
We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3′ untranslated region (UTR) shortening in the testis and lengthening in the central nervous system (CNS); the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs) and transcription factors were preferentially subject to 3′ UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3′ UTR length in the nervous system.
We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3′ untranslated region (UTR) shortening in the testis and lengthening in the central nervous system (CNS); the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs) and transcription factors were preferentially subject to 3′ UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3′ UTR length in the nervous system. [Display omitted] ► >1 billion stranded RNA-seq reads generated across a panel of Drosophila tissues ► Broad trends of 3′ UTR shortening in testis and lengthening in CNS observed ► CNS 3′ UTR extensions subject 100 s of genes to tissue-specific posttranscriptional control ► CNS 3′ UTR extensions enriched for genes encoding nucleic-acid-binding proteins Alternative cleavage and polyadenylation is a widespread mechanism that generates 3′ UTR diversity. Using stranded mRNA-seq in Drosophila, Lai and colleagues uncover global trends for 3′ UTR shortening in the testis and lengthening in the CNS. Their extensive experimental validation demonstrates the extraordinary length of many previously unannotated 3′ UTR extensions and their CNS-specific expression. Enrichment of miRNA target sites and RNA binding protein sites in these extended 3′ UTRs suggests important regulatory roles for these extensions in the CNS.
We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3' untranslated region (UTR) shortening in the testis and lengthening in the central nervous system (CNS); the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs) and transcription factors were preferentially subject to 3' UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3' UTR length in the nervous system.We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3' untranslated region (UTR) shortening in the testis and lengthening in the central nervous system (CNS); the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs) and transcription factors were preferentially subject to 3' UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3' UTR length in the nervous system.
Author Eads, Brian D.
Lai, Eric C.
Miura, Pedro
Celniker, Susan E.
Eisman, Robert C.
May, Gemma
Westholm, Jakub O.
Carlson, Joe
Brown, James B.
Shenker, Sol
Duff, Michael O.
Kaufman, Thomas
Cherbas, Peter
Andrews, Justen
Graveley, Brenton R.
Smibert, Peter
Zhang, Dayu
AuthorAffiliation 2 Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-6403, USA
3 Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
1 Department of Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA
5 Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
4 Department of Biology, Indiana University, Bloomington, IN 47405, USA
AuthorAffiliation_xml – name: 2 Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-6403, USA
– name: 1 Department of Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA
– name: 4 Department of Biology, Indiana University, Bloomington, IN 47405, USA
– name: 5 Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
– name: 3 Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
Author_xml – sequence: 1
  givenname: Peter
  surname: Smibert
  fullname: Smibert, Peter
  organization: Department of Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA
– sequence: 2
  givenname: Pedro
  surname: Miura
  fullname: Miura, Pedro
  organization: Department of Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA
– sequence: 3
  givenname: Jakub O.
  surname: Westholm
  fullname: Westholm, Jakub O.
  organization: Department of Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA
– sequence: 4
  givenname: Sol
  surname: Shenker
  fullname: Shenker, Sol
  organization: Department of Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA
– sequence: 5
  givenname: Gemma
  surname: May
  fullname: May, Gemma
  organization: Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-6403, USA
– sequence: 6
  givenname: Michael O.
  surname: Duff
  fullname: Duff, Michael O.
  organization: Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-6403, USA
– sequence: 7
  givenname: Dayu
  surname: Zhang
  fullname: Zhang, Dayu
  organization: Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
– sequence: 8
  givenname: Brian D.
  surname: Eads
  fullname: Eads, Brian D.
  organization: Department of Biology, Indiana University, Bloomington, IN 47405, USA
– sequence: 9
  givenname: Joe
  surname: Carlson
  fullname: Carlson, Joe
  organization: Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
– sequence: 10
  givenname: James B.
  surname: Brown
  fullname: Brown, James B.
  organization: Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
– sequence: 11
  givenname: Robert C.
  surname: Eisman
  fullname: Eisman, Robert C.
  organization: Department of Biology, Indiana University, Bloomington, IN 47405, USA
– sequence: 12
  givenname: Justen
  surname: Andrews
  fullname: Andrews, Justen
  organization: Department of Biology, Indiana University, Bloomington, IN 47405, USA
– sequence: 13
  givenname: Thomas
  surname: Kaufman
  fullname: Kaufman, Thomas
  organization: Department of Biology, Indiana University, Bloomington, IN 47405, USA
– sequence: 14
  givenname: Peter
  surname: Cherbas
  fullname: Cherbas, Peter
  organization: Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
– sequence: 15
  givenname: Susan E.
  surname: Celniker
  fullname: Celniker, Susan E.
  email: celniker@fruitfly.org
  organization: Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
– sequence: 16
  givenname: Brenton R.
  surname: Graveley
  fullname: Graveley, Brenton R.
  email: graveley@neuron.uchc.edu
  organization: Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-6403, USA
– sequence: 17
  givenname: Eric C.
  surname: Lai
  fullname: Lai, Eric C.
  email: laie@mskcc.org
  organization: Department of Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22685694$$D View this record in MEDLINE/PubMed
BookMark eNqNksFu1DAQhiNUREvpGyCUI5cEj-M4DgekqoVSaSUqUc6WY09ar7x2sLMr7dvj7W5RywHwxWPPP59GM__r4sgHj0XxFkgNBPiHZa3RRZxqSoDWBGpC4EVxQilABZR1R0_i4-IspSXJhxOAnr0qjinlouU9OykWVy4MypU3ap4x-lSGsby1Ka2x-j6htqPV5bnbpdRsN1jeBLdVBv3W5XfwpfXlZQwpTPfWqTfFy1G5hGeH-7T48eXz7cXXavHt6vrifFFpTsVc9QMM0DcN74FqA6YxaqAGOHIyCGh7nvMUiGJUKOy63iBBITpsUCtQvW5Oi-s91wS1lFO0KxW3MigrHz5CvJMqzlY7lFQw0-oONKUdg9EMum1FDtWAQ9MwlVmf9qxpPazQaPRzVO4Z9HnG23t5FzYy9y9YwzLg_QEQw881plmubMrbccpjWCcJRBAhGGf9f0gbwaERXZel75629bufx81lwce9QOfxp4ij1HZ-2Enu0rrMkjunyKXcO0XunCIJyOyUXMz-KH7k_6PsMCvMy91YjDJpi16jsRH1nKdv_w74BfDE2bQ
CitedBy_id crossref_primary_10_1002_msb_135068
crossref_primary_10_1084_jem_20181384
crossref_primary_10_1016_j_ymeth_2013_06_037
crossref_primary_10_1371_journal_pgen_1006191
crossref_primary_10_1007_s00018_016_2429_1
crossref_primary_10_1371_journal_pone_0088889
crossref_primary_10_1002_bies_201300174
crossref_primary_10_2217_epi_2017_0161
crossref_primary_10_3390_cells12020318
crossref_primary_10_1016_j_tibs_2013_03_005
crossref_primary_10_1016_j_tig_2015_01_001
crossref_primary_10_1038_nature20802
crossref_primary_10_1101_gr_146886_112
crossref_primary_10_1186_2040_2392_5_44
crossref_primary_10_1101_gr_224451_117
crossref_primary_10_1038_s44319_025_00401_z
crossref_primary_10_3389_fnmol_2024_1426410
crossref_primary_10_1016_j_molcel_2020_09_007
crossref_primary_10_3389_fgene_2022_848626
crossref_primary_10_1016_j_mod_2015_08_006
crossref_primary_10_1080_15476286_2015_1048954
crossref_primary_10_1016_j_devcel_2014_04_023
crossref_primary_10_1016_j_ygeno_2016_01_001
crossref_primary_10_1261_rna_042317_113
crossref_primary_10_1016_j_cbd_2019_03_008
crossref_primary_10_1093_bib_bbu011
crossref_primary_10_1186_gb_2012_13_12_r121
crossref_primary_10_1007_s12031_013_0146_x
crossref_primary_10_1016_j_jgg_2016_12_007
crossref_primary_10_1261_rna_035899_112
crossref_primary_10_1261_rna_058859_116
crossref_primary_10_1016_j_tcb_2015_10_012
crossref_primary_10_1093_nar_gkaa778
crossref_primary_10_1038_s41598_017_17407_w
crossref_primary_10_2139_ssrn_4124633
crossref_primary_10_1002_wrna_1733
crossref_primary_10_1186_s12864_016_3451_2
crossref_primary_10_1371_journal_pone_0145417
crossref_primary_10_1093_cvr_cvad014
crossref_primary_10_1073_pnas_1307202110
crossref_primary_10_1016_j_cell_2023_04_012
crossref_primary_10_3390_insects15121006
crossref_primary_10_1093_nar_gkx560
crossref_primary_10_1186_1471_2164_14_855
crossref_primary_10_1186_1471_2164_14_615
crossref_primary_10_1126_sciadv_ade4814
crossref_primary_10_1101_gr_182675_114
crossref_primary_10_1016_j_molcel_2020_09_011
crossref_primary_10_1101_gr_161554_113
crossref_primary_10_1142_S0219720017500184
crossref_primary_10_3389_fpls_2016_00889
crossref_primary_10_15252_msb_20167375
crossref_primary_10_3390_genes11060709
crossref_primary_10_1101_gr_231506_117
crossref_primary_10_3390_insects13090803
crossref_primary_10_1016_j_bbr_2019_01_022
crossref_primary_10_1016_j_celrep_2017_09_009
crossref_primary_10_4161_nucl_36360
crossref_primary_10_1186_s13059_017_1369_x
crossref_primary_10_1016_j_genrep_2018_05_003
crossref_primary_10_1016_j_neuron_2018_03_030
crossref_primary_10_1534_g3_116_031120
crossref_primary_10_1093_nar_gkx133
crossref_primary_10_3390_ijms19020597
crossref_primary_10_1093_nar_gkad1151
crossref_primary_10_1080_15476286_2017_1306171
crossref_primary_10_1158_0008_5472_CAN_16_0844
crossref_primary_10_1016_j_celrep_2016_03_023
crossref_primary_10_1016_j_pneurobio_2023_102500
crossref_primary_10_1371_journal_pgen_1009439
crossref_primary_10_1038_nature12962
crossref_primary_10_1126_sciadv_aax8978
crossref_primary_10_1038_cr_2012_86
crossref_primary_10_1038_cr_2015_77
crossref_primary_10_1146_annurev_genom_090413_025448
crossref_primary_10_1093_nar_gkaa359
crossref_primary_10_1038_srep05406
crossref_primary_10_1126_science_1248286
crossref_primary_10_1002_mrd_22445
crossref_primary_10_1080_15476286_2023_2275109
crossref_primary_10_1093_bioinformatics_btt446
crossref_primary_10_3803_EnM_2017_32_4_413
crossref_primary_10_1016_j_bbagrm_2017_03_002
crossref_primary_10_3390_ijms251910833
crossref_primary_10_1261_rna_043984_113
crossref_primary_10_1261_rna_062661_117
crossref_primary_10_1002_bies_201300100
crossref_primary_10_1186_s12864_015_1662_6
crossref_primary_10_1101_gad_349689_122
crossref_primary_10_1002_wrna_1474
crossref_primary_10_1534_g3_118_200923
crossref_primary_10_1038_s41598_018_29699_7
crossref_primary_10_1038_s41467_023_36311_8
crossref_primary_10_1371_journal_pgen_1005863
crossref_primary_10_1186_s12864_016_2886_9
crossref_primary_10_1371_journal_pone_0188177
crossref_primary_10_3390_ijms21103413
crossref_primary_10_1016_j_celrep_2019_05_083
crossref_primary_10_1038_nrm_2016_116
crossref_primary_10_1016_j_gpb_2017_06_001
crossref_primary_10_1101_gad_229328_113
crossref_primary_10_1021_acs_chemrev_1c00009
crossref_primary_10_1038_s41467_022_32305_0
crossref_primary_10_1093_nar_gkac108
crossref_primary_10_1093_nar_gkac900
crossref_primary_10_1038_s41597_022_01285_7
crossref_primary_10_1002_1873_3468_12639
crossref_primary_10_1042_BST20221128
crossref_primary_10_1002_bies_201400138
crossref_primary_10_3390_biom10060915
crossref_primary_10_1134_S1062360425700031
crossref_primary_10_1038_ncomms14605
crossref_primary_10_1002_wrna_1485
crossref_primary_10_1016_j_celrep_2012_07_008
crossref_primary_10_1038_s41467_023_41207_8
crossref_primary_10_1002_wrna_1488
crossref_primary_10_1002_1873_3468_14251
crossref_primary_10_1242_dev_146001
crossref_primary_10_1371_journal_pgen_1006824
crossref_primary_10_1186_s13059_017_1243_x
crossref_primary_10_3390_ijms24065827
crossref_primary_10_1016_j_neuron_2017_08_024
crossref_primary_10_1101_gad_199653_112
crossref_primary_10_1016_j_stemcr_2013_09_007
crossref_primary_10_1016_j_gene_2013_06_052
crossref_primary_10_1534_g3_119_400196
crossref_primary_10_1261_rna_046037_114
crossref_primary_10_1016_j_ymeth_2017_06_003
crossref_primary_10_7554_eLife_46711
crossref_primary_10_1038_srep36388
crossref_primary_10_1534_g3_115_018929
crossref_primary_10_3390_ijms252313023
crossref_primary_10_1002_wrna_1653
crossref_primary_10_1038_ncomms5906
crossref_primary_10_1101_gr_144964_112
crossref_primary_10_1186_s12864_020_6760_4
crossref_primary_10_1038_nbt_2850
crossref_primary_10_1371_journal_pone_0170914
crossref_primary_10_1016_j_celrep_2022_111542
crossref_primary_10_1093_bioinformatics_bty029
crossref_primary_10_3389_fcell_2023_1206259
crossref_primary_10_1261_rna_078918_121
crossref_primary_10_1007_s00018_015_1934_y
crossref_primary_10_1093_bioinformatics_btu189
crossref_primary_10_1186_s13062_015_0081_6
crossref_primary_10_1016_j_jmb_2017_03_028
crossref_primary_10_1016_j_molcel_2014_02_013
crossref_primary_10_1016_j_celrep_2014_08_038
crossref_primary_10_1261_rna_076430_120
crossref_primary_10_1016_j_devcel_2012_05_013
crossref_primary_10_1038_nrg3482
crossref_primary_10_1093_nargab_lqad079
crossref_primary_10_15252_embr_202050799
crossref_primary_10_1002_bies_201700090
crossref_primary_10_1371_journal_pgen_1006247
crossref_primary_10_1016_j_ymeth_2015_04_011
crossref_primary_10_1242_dev_141978
crossref_primary_10_1631_jzus_B1400076
crossref_primary_10_26508_lsa_202302000
crossref_primary_10_1016_j_celrep_2014_10_062
crossref_primary_10_1016_j_molcel_2014_11_024
crossref_primary_10_1186_s13059_017_1358_0
crossref_primary_10_1038_s41467_019_09586_z
crossref_primary_10_1080_15476286_2015_1060393
crossref_primary_10_1002_wrna_1274
crossref_primary_10_1073_pnas_1309384110
crossref_primary_10_1371_journal_pbio_3002164
crossref_primary_10_1186_s13059_023_02865_5
crossref_primary_10_3389_fonc_2023_1052012
crossref_primary_10_1186_s13059_018_1504_3
crossref_primary_10_7554_eLife_34042
crossref_primary_10_1186_1471_2164_14_912
crossref_primary_10_3390_cells11040677
crossref_primary_10_1016_j_devcel_2020_06_004
Cites_doi 10.1093/nar/gkq1158
10.1073/pnas.1112672108
10.1126/science.1191244
10.1101/gr.112961.110
10.1093/nar/gkl919
10.1038/nrg2455
10.1186/gb-2005-6-12-r100
10.1038/nature09715
10.1038/emboj.2011.156
10.1371/journal.pgen.1000617
10.1186/1471-2164-7-176
10.1186/gb-2002-3-12-research0088
10.1016/j.neuron.2004.10.028
10.1016/j.cell.2008.05.045
10.1093/bioinformatics/17.suppl_1.S207
10.1093/nar/gkn788
10.1242/dev.124.23.4847
10.1038/nature09616
10.1038/nature03441
10.1038/nrg2673
10.1073/pnas.0900028106
10.1126/science.1198374
10.1038/nrm1643
10.1093/nar/gki158
10.1371/journal.pone.0008419
10.1016/j.cell.2009.06.016
10.1016/j.cell.2010.11.020
10.1261/rna.2581711
10.1038/nature07488
10.1101/gr.115295.110
10.1126/science.1155390
10.1101/gad.1291905
10.1111/j.2517-6161.1995.tb02031.x
10.1073/pnas.0508823102
10.1038/ng2049
10.1101/gr.112466.110
10.1038/75556
10.1261/rna.2107305
10.1016/j.cell.2010.03.009
10.1016/j.cell.2005.11.023
10.1101/gr.6597907
10.1101/gad.1106703
10.1016/j.molcel.2011.08.017
10.1038/nbt.1754
10.1093/nar/gkl198
ContentType Journal Article
Copyright 2012 The Authors
Copyright_xml – notice: 2012 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TM
7X8
5PM
DOA
DOI 10.1016/j.celrep.2012.01.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Entomology Abstracts (Full archive)
Nucleic Acids Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Entomology Abstracts



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 289
ExternalDocumentID oai_doaj_org_article_284d5c71c22741fdbc558274abeb334a
PMC3368434
22685694
10_1016_j_celrep_2012_01_001
S2211124712000216
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Canadian Institutes of Health Research
– fundername: NHLBI NIH HHS
  grantid: U01-HB004271
– fundername: NHGRI NIH HHS
  grantid: U01 HG004261
– fundername: NIGMS NIH HHS
  grantid: R01-GM083300
– fundername: NHGRI NIH HHS
  grantid: U01 HG004271
– fundername: NHGRI NIH HHS
  grantid: RC2 HG005639
– fundername: NHGRI NIH HHS
  grantid: RC2-HG005639
– fundername: NHGRI NIH HHS
  grantid: U01-HG004261
– fundername: NIGMS NIH HHS
  grantid: R01 GM083300
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXJY
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
HZ~
IPNFZ
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TM
7X8
5PM
ID FETCH-LOGICAL-c628t-9b1b19336912cd1d3dab2d16e60b81596b1b210a428ae779de0e887e3eca1a9c3
IEDL.DBID DOA
ISSN 2211-1247
IngestDate Wed Aug 27 01:31:15 EDT 2025
Thu Aug 21 13:53:43 EDT 2025
Fri Jul 11 12:39:38 EDT 2025
Fri Jul 11 03:48:01 EDT 2025
Mon Jul 21 06:00:59 EDT 2025
Tue Jul 01 03:07:14 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Wed May 17 00:07:18 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://creativecommons.org/licenses/by/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c628t-9b1b19336912cd1d3dab2d16e60b81596b1b210a428ae779de0e887e3eca1a9c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
These authors contributed equally to this work
OpenAccessLink https://doaj.org/article/284d5c71c22741fdbc558274abeb334a
PMID 22685694
PQID 1038613877
PQPubID 23462
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_284d5c71c22741fdbc558274abeb334a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3368434
proquest_miscellaneous_1080884649
proquest_miscellaneous_1038613877
pubmed_primary_22685694
crossref_citationtrail_10_1016_j_celrep_2012_01_001
crossref_primary_10_1016_j_celrep_2012_01_001
elsevier_sciencedirect_doi_10_1016_j_celrep_2012_01_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-29
PublicationDateYYYYMMDD 2012-03-29
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-29
  day: 29
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2012
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References MacDonald, Wilusz, Shenk (bib23) 1994; 14
Hu, Lutz, Wilusz, Tian (bib13) 2005; 11
Xie, Lu, Kulbokas, Golub, Mootha, Lindblad-Toh, Lander, Kellis (bib42) 2005; 434
Tomancak, Beaton, Weiszmann, Kwan, Shu, Lewis, Richards, Ashburner, Hartenstein, Celniker (bib41) 2002; 3
Ji, Tian (bib15) 2009; 4
Licatalosi, Mele, Fak, Ule, Kayikci, Chi, Clark, Schweitzer, Blume, Wang (bib21) 2008; 456
Licatalosi, Darnell (bib20) 2010; 11
Langmead (bib19) 2010; Chapter 11
Ponjavic, Oliver, Lunter, Ponting (bib32) 2009; 5
modENCODE (bib28) 2010; 330
Ozsolak, Kapranov, Foissac, Kim, Fishilevich, Monaghan, John, Milos (bib29) 2010; 143
Flynt, Lai (bib7) 2008; 9
Hilgers, Perry, Hendrix, Stark, Levine, Haley (bib11) 2011; 108
Cherbas, Willingham, Zhang, Yang, Zou, Eads, Carlson, Landolin, Kapranov, Dumais (bib4) 2011; 21
Pinto, Henriques, Freitas, Martins, Domingues, Wyrzykowska, Coelho, Carmo, Sunkel, Proudfoot, Moreira (bib31) 2011; 30
Retelska, Iseli, Bucher, Jongeneel, Naef (bib33) 2006; 7
Menon, Sanyal, Habara, Sanchez, Wharton, Ramaswami, Zinn (bib26) 2004; 44
Shepard, Choi, Lu, Flanagan, Hertel, Shi (bib36) 2011; 17
Pavesi, Mauri, Pesole (bib30) 2001; 17
Ruby, Stark, Johnston, Kellis, Bartel, Lai (bib34) 2007; 17
Mangone, Manoharan, Thierry-Mieg, Thierry-Mieg, Han, Mackowiak, Mis, Zegar, Gutwein, Khivansara (bib24) 2010; 329
Ji, Lee, Pan, Jiang, Tian (bib16) 2009; 106
Lai, Posakony (bib17) 1997; 124
Tian, Hu, Zhang, Lutz (bib40) 2005; 33
Liu, Brockman, Dass, Hutchins, Singh, McCarrey, MacDonald, Graber (bib22) 2007; 35
Mercer, Wilhelm, Dinger, Soldà, Korbie, Glazov, Truong, Schwenke, Simons, Matthaei (bib27) 2011; 39
Soller, White (bib37) 2003; 17
Fu, Sun, Li, Li, Rao, Chen, Xu (bib8) 2011; 21
Hafner, Landthaler, Burger, Khorshid, Hausser, Berninger, Rothballer, Ascano, Jungkamp, Munschauer (bib10) 2010; 141
Mayr, Bartel (bib25) 2009; 138
Lai, Tam, Rubin (bib18) 2005; 19
Aboobaker, Tomancak, Patel, Rubin, Lai (bib1) 2005; 102
Graveley, Brooks, Carlson, Duff, Landolin, Yang, Artieri, van Baren, Boley, Booth (bib9) 2011; 471
Jan, Friedman, Ruby, Bartel (bib14) 2011; 469
Zhang, Lee, Tian (bib43) 2005; 6
Di Giammartino, Nishida, Manley (bib6) 2011; 43
Sandberg, Neilson, Sarma, Sharp, Burge (bib35) 2008; 320
An, Gharami, Liao, Woo, Lau, Vanevski, Torre, Jones, Feng, Lu, Xu (bib2) 2008; 134
Stark, Brennecke, Bushati, Russell, Cohen (bib39) 2005; 123
Bailey, Williams, Misleh, Li (bib3) 2006; 34
Hoskins, Landolin, Brown, Sandler, Takahashi, Lassmann, Yu, Booth, Zhang, Wan (bib12) 2011; 21
Chintapalli, Wang, Dow (bib5) 2007; 39
St Johnston (bib38) 2005; 6
Menon (10.1016/j.celrep.2012.01.001_bib26) 2004; 44
Ozsolak (10.1016/j.celrep.2012.01.001_bib29) 2010; 143
Stark (10.1016/j.celrep.2012.01.001_bib39) 2005; 123
10.1016/j.celrep.2012.01.001_bib53
10.1016/j.celrep.2012.01.001_bib54
Hoskins (10.1016/j.celrep.2012.01.001_bib12) 2011; 21
10.1016/j.celrep.2012.01.001_bib51
10.1016/j.celrep.2012.01.001_bib52
Sandberg (10.1016/j.celrep.2012.01.001_bib35) 2008; 320
Pinto (10.1016/j.celrep.2012.01.001_bib31) 2011; 30
Chintapalli (10.1016/j.celrep.2012.01.001_bib5) 2007; 39
Tian (10.1016/j.celrep.2012.01.001_bib40) 2005; 33
Ponjavic (10.1016/j.celrep.2012.01.001_bib32) 2009; 5
Retelska (10.1016/j.celrep.2012.01.001_bib33) 2006; 7
Pavesi (10.1016/j.celrep.2012.01.001_bib30) 2001; 17
10.1016/j.celrep.2012.01.001_bib50
Bailey (10.1016/j.celrep.2012.01.001_bib3) 2006; 34
Zhang (10.1016/j.celrep.2012.01.001_bib43) 2005; 6
Licatalosi (10.1016/j.celrep.2012.01.001_bib21) 2008; 456
Flynt (10.1016/j.celrep.2012.01.001_bib7) 2008; 9
Langmead (10.1016/j.celrep.2012.01.001_bib19) 2010; Chapter 11
Graveley (10.1016/j.celrep.2012.01.001_bib9) 2011; 471
Fu (10.1016/j.celrep.2012.01.001_bib8) 2011; 21
Licatalosi (10.1016/j.celrep.2012.01.001_bib20) 2010; 11
Ji (10.1016/j.celrep.2012.01.001_bib15) 2009; 4
Ji (10.1016/j.celrep.2012.01.001_bib16) 2009; 106
Lai (10.1016/j.celrep.2012.01.001_bib17) 1997; 124
Hu (10.1016/j.celrep.2012.01.001_bib13) 2005; 11
St Johnston (10.1016/j.celrep.2012.01.001_bib38) 2005; 6
An (10.1016/j.celrep.2012.01.001_bib2) 2008; 134
Hilgers (10.1016/j.celrep.2012.01.001_bib11) 2011; 108
Lai (10.1016/j.celrep.2012.01.001_bib18) 2005; 19
Tomancak (10.1016/j.celrep.2012.01.001_bib41) 2002; 3
Ruby (10.1016/j.celrep.2012.01.001_bib34) 2007; 17
Mangone (10.1016/j.celrep.2012.01.001_bib24) 2010; 329
modENCODE (10.1016/j.celrep.2012.01.001_bib28) 2010; 330
Shepard (10.1016/j.celrep.2012.01.001_bib36) 2011; 17
Mayr (10.1016/j.celrep.2012.01.001_bib25) 2009; 138
Liu (10.1016/j.celrep.2012.01.001_bib22) 2007; 35
10.1016/j.celrep.2012.01.001_bib48
10.1016/j.celrep.2012.01.001_bib49
Jan (10.1016/j.celrep.2012.01.001_bib14) 2011; 469
Cherbas (10.1016/j.celrep.2012.01.001_bib4) 2011; 21
10.1016/j.celrep.2012.01.001_bib46
10.1016/j.celrep.2012.01.001_bib47
10.1016/j.celrep.2012.01.001_bib44
MacDonald (10.1016/j.celrep.2012.01.001_bib23) 1994; 14
Xie (10.1016/j.celrep.2012.01.001_bib42) 2005; 434
10.1016/j.celrep.2012.01.001_bib45
Mercer (10.1016/j.celrep.2012.01.001_bib27) 2011; 39
Soller (10.1016/j.celrep.2012.01.001_bib37) 2003; 17
Aboobaker (10.1016/j.celrep.2012.01.001_bib1) 2005; 102
Di Giammartino (10.1016/j.celrep.2012.01.001_bib6) 2011; 43
Hafner (10.1016/j.celrep.2012.01.001_bib10) 2010; 141
20522740 - Science. 2010 Jul 23;329(5990):432-5
21145465 - Cell. 2010 Dec 10;143(6):1018-29
12537577 - Genome Biol. 2002;3(12):RESEARCH0088
11473011 - Bioinformatics. 2001;17 Suppl 1:S207-14
21154709 - Curr Protoc Bioinformatics. 2010 Dec;Chapter 11:Unit 11.7
7935383 - Mol Cell Biol. 1994 Oct;14(10):6647-54
16845028 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W369-73
21602789 - EMBO J. 2011 Jun 15;30(12):2431-44
21925375 - Mol Cell. 2011 Sep 16;43(6):853-66
17534367 - Nat Genet. 2007 Jun;39(6):715-20
18978773 - Nature. 2008 Nov 27;456(7221):464-9
16356263 - Genome Biol. 2005;6(12):R100
21085120 - Nature. 2011 Jan 6;469(7328):97-101
16836751 - BMC Genomics. 2006;7:176
14522950 - Genes Dev. 2003 Oct 15;17(20):2526-38
9428421 - Development. 1997 Dec;124(23):4847-56
18614020 - Cell. 2008 Jul 11;134(1):175-87
18566288 - Science. 2008 Jun 20;320(5883):1643-7
19696892 - PLoS Genet. 2009 Aug;5(8):e1000617
20019688 - Nat Rev Genet. 2010 Jan;11(1):75-87
20037631 - PLoS One. 2009;4(12):e8419
21075793 - Nucleic Acids Res. 2011 Mar;39(6):2393-403
21179090 - Nature. 2011 Mar 24;471(7339):473-9
15541314 - Neuron. 2004 Nov 18;44(4):663-76
Cell Rep. 2013 Mar 28;3(3):969
17989254 - Genome Res. 2007 Dec;17(12):1850-64
16337999 - Cell. 2005 Dec 16;123(6):1133-46
18852696 - Nat Rev Genet. 2008 Nov;9(11):831-42
20371350 - Cell. 2010 Apr 2;141(1):129-41
21343387 - RNA. 2011 Apr;17(4):761-72
19372383 - Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7028-33
17158511 - Nucleic Acids Res. 2007;35(1):234-46
19703394 - Cell. 2009 Aug 21;138(4):673-84
15852043 - Nat Rev Mol Cell Biol. 2005 May;6(5):363-75
21474764 - Genome Res. 2011 May;21(5):741-7
21896737 - Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15864-9
21177974 - Science. 2010 Dec 24;330(6012):1787-97
15735639 - Nature. 2005 Mar 17;434(7031):338-45
21177961 - Genome Res. 2011 Feb;21(2):182-92
21177962 - Genome Res. 2011 Feb;21(2):301-14
16131587 - RNA. 2005 Oct;11(10):1485-93
16330759 - Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):18017-22
15647503 - Nucleic Acids Res. 2005;33(1):201-12
15833912 - Genes Dev. 2005 May 1;19(9):1067-80
References_xml – volume: 19
  start-page: 1067
  year: 2005
  end-page: 1080
  ident: bib18
  article-title: Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs
  publication-title: Genes Dev.
– volume: 4
  start-page: e8419
  year: 2009
  ident: bib15
  article-title: Reprogramming of 3′ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types
  publication-title: PLoS ONE
– volume: 471
  start-page: 473
  year: 2011
  end-page: 479
  ident: bib9
  article-title: The developmental transcriptome of Drosophila melanogaster
  publication-title: Nature
– volume: 330
  start-page: 1787
  year: 2010
  end-page: 1797
  ident: bib28
  article-title: Identification of functional elements and regulatory circuits by Drosophila modENCODE
  publication-title: Science
– volume: 108
  start-page: 15864
  year: 2011
  end-page: 15869
  ident: bib11
  article-title: Neural-specific elongation of 3′ UTRs during Drosophila development
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 30
  start-page: 2431
  year: 2011
  end-page: 2444
  ident: bib31
  article-title: RNA polymerase II kinetics in polo polyadenylation signal selection
  publication-title: EMBO J.
– volume: 35
  start-page: 234
  year: 2007
  end-page: 246
  ident: bib22
  article-title: Systematic variation in mRNA 3′-processing signals during mouse spermatogenesis
  publication-title: Nucleic Acids Res.
– volume: 21
  start-page: 301
  year: 2011
  end-page: 314
  ident: bib4
  article-title: The transcriptional diversity of 25 Drosophila cell lines
  publication-title: Genome Res.
– volume: 141
  start-page: 129
  year: 2010
  end-page: 141
  ident: bib10
  article-title: Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP
  publication-title: Cell
– volume: 11
  start-page: 1485
  year: 2005
  end-page: 1493
  ident: bib13
  article-title: Bioinformatic identification of candidate cis-regulatory elements involved in human mRNA polyadenylation
  publication-title: RNA
– volume: 34
  year: 2006
  ident: bib3
  article-title: MEME: discovering and analyzing DNA and protein sequence motifs
  publication-title: Nucleic Acids Res.
– volume: 39
  start-page: 715
  year: 2007
  end-page: 720
  ident: bib5
  article-title: Using FlyAtlas to identify better Drosophila melanogaster models of human disease
  publication-title: Nat. Genet.
– volume: 329
  start-page: 432
  year: 2010
  end-page: 435
  ident: bib24
  article-title: The landscape of C. elegans 3′UTRs
  publication-title: Science
– volume: 469
  start-page: 97
  year: 2011
  end-page: 101
  ident: bib14
  article-title: Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs
  publication-title: Nature
– volume: 124
  start-page: 4847
  year: 1997
  end-page: 4856
  ident: bib17
  article-title: The Bearded box, a novel 3′ UTR sequence motif, mediates negative post-transcriptional regulation of
  publication-title: Development
– volume: 434
  start-page: 338
  year: 2005
  end-page: 345
  ident: bib42
  article-title: Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals
  publication-title: Nature
– volume: 102
  start-page: 18017
  year: 2005
  end-page: 18022
  ident: bib1
  article-title: Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 17
  start-page: 1850
  year: 2007
  end-page: 1864
  ident: bib34
  article-title: Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs
  publication-title: Genome Res.
– volume: 6
  start-page: 363
  year: 2005
  end-page: 375
  ident: bib38
  article-title: Moving messages: the intracellular localization of mRNAs
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 320
  start-page: 1643
  year: 2008
  end-page: 1647
  ident: bib35
  article-title: Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites
  publication-title: Science
– volume: 3
  year: 2002
  ident: bib41
  article-title: Systematic determination of patterns of gene expression during Drosophila embryogenesis
  publication-title: Genome Biol.
– volume: 21
  start-page: 182
  year: 2011
  end-page: 192
  ident: bib12
  article-title: Genome-wide analysis of promoter architecture in Drosophila melanogaster
  publication-title: Genome Res.
– volume: 7
  start-page: 176
  year: 2006
  ident: bib33
  article-title: Similarities and differences of polyadenylation signals in human and fly
  publication-title: BMC Genomics
– volume: 43
  start-page: 853
  year: 2011
  end-page: 866
  ident: bib6
  article-title: Mechanisms and consequences of alternative polyadenylation
  publication-title: Mol. Cell
– volume: 138
  start-page: 673
  year: 2009
  end-page: 684
  ident: bib25
  article-title: Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells
  publication-title: Cell
– volume: 5
  start-page: e1000617
  year: 2009
  ident: bib32
  article-title: Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain
  publication-title: PLoS Genet.
– volume: 134
  start-page: 175
  year: 2008
  end-page: 187
  ident: bib2
  article-title: Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons
  publication-title: Cell
– volume: 17
  start-page: 761
  year: 2011
  end-page: 772
  ident: bib36
  article-title: Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq
  publication-title: RNA
– volume: 106
  start-page: 7028
  year: 2009
  end-page: 7033
  ident: bib16
  article-title: Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 123
  start-page: 1133
  year: 2005
  end-page: 1146
  ident: bib39
  article-title: Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution
  publication-title: Cell
– volume: Chapter 11
  start-page: Unit 11.17
  year: 2010
  ident: bib19
  article-title: Aligning short sequencing reads with Bowtie
  publication-title: Curr. Protoc. Bioinformatics
– volume: 17
  start-page: S207
  year: 2001
  end-page: S214
  ident: bib30
  article-title: An algorithm for finding signals of unknown length in DNA sequences
  publication-title: Bioinformatics
– volume: 44
  start-page: 663
  year: 2004
  end-page: 676
  ident: bib26
  article-title: The translational repressor Pumilio regulates presynaptic morphology and controls postsynaptic accumulation of translation factor eIF-4E
  publication-title: Neuron
– volume: 456
  start-page: 464
  year: 2008
  end-page: 469
  ident: bib21
  article-title: HITS-CLIP yields genome-wide insights into brain alternative RNA processing
  publication-title: Nature
– volume: 9
  start-page: 831
  year: 2008
  end-page: 842
  ident: bib7
  article-title: Biological principles of microRNA-mediated regulation: shared themes amid diversity
  publication-title: Nat. Rev. Genet.
– volume: 21
  start-page: 741
  year: 2011
  end-page: 747
  ident: bib8
  article-title: Differential genome-wide profiling of tandem 3′ UTRs among human breast cancer and normal cells by high-throughput sequencing
  publication-title: Genome Res.
– volume: 33
  start-page: 201
  year: 2005
  end-page: 212
  ident: bib40
  article-title: A large-scale analysis of mRNA polyadenylation of human and mouse genes
  publication-title: Nucleic Acids Res.
– volume: 143
  start-page: 1018
  year: 2010
  end-page: 1029
  ident: bib29
  article-title: Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation
  publication-title: Cell
– volume: 39
  start-page: 2393
  year: 2011
  end-page: 2403
  ident: bib27
  article-title: Expression of distinct RNAs from 3′ untranslated regions
  publication-title: Nucleic Acids Res.
– volume: 6
  start-page: R100
  year: 2005
  ident: bib43
  article-title: Biased alternative polyadenylation in human tissues
  publication-title: Genome Biol.
– volume: 11
  start-page: 75
  year: 2010
  end-page: 87
  ident: bib20
  article-title: RNA processing and its regulation: global insights into biological networks
  publication-title: Nat. Rev. Genet.
– volume: 14
  start-page: 6647
  year: 1994
  end-page: 6654
  ident: bib23
  article-title: The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location
  publication-title: Mol. Cell. Biol.
– volume: 17
  start-page: 2526
  year: 2003
  end-page: 2538
  ident: bib37
  article-title: ELAV inhibits 3′-end processing to promote neural splicing of ewg pre-mRNA
  publication-title: Genes Dev.
– volume: 34
  issue: Web Server issue
  year: 2006
  ident: 10.1016/j.celrep.2012.01.001_bib3
  article-title: MEME: discovering and analyzing DNA and protein sequence motifs
  publication-title: Nucleic Acids Res.
– volume: 39
  start-page: 2393
  year: 2011
  ident: 10.1016/j.celrep.2012.01.001_bib27
  article-title: Expression of distinct RNAs from 3′ untranslated regions
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1158
– volume: 108
  start-page: 15864
  year: 2011
  ident: 10.1016/j.celrep.2012.01.001_bib11
  article-title: Neural-specific elongation of 3′ UTRs during Drosophila development
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1112672108
– volume: 329
  start-page: 432
  year: 2010
  ident: 10.1016/j.celrep.2012.01.001_bib24
  article-title: The landscape of C. elegans 3′UTRs
  publication-title: Science
  doi: 10.1126/science.1191244
– volume: 21
  start-page: 301
  year: 2011
  ident: 10.1016/j.celrep.2012.01.001_bib4
  article-title: The transcriptional diversity of 25 Drosophila cell lines
  publication-title: Genome Res.
  doi: 10.1101/gr.112961.110
– volume: 35
  start-page: 234
  year: 2007
  ident: 10.1016/j.celrep.2012.01.001_bib22
  article-title: Systematic variation in mRNA 3′-processing signals during mouse spermatogenesis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl919
– volume: 9
  start-page: 831
  year: 2008
  ident: 10.1016/j.celrep.2012.01.001_bib7
  article-title: Biological principles of microRNA-mediated regulation: shared themes amid diversity
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2455
– volume: 6
  start-page: R100
  year: 2005
  ident: 10.1016/j.celrep.2012.01.001_bib43
  article-title: Biased alternative polyadenylation in human tissues
  publication-title: Genome Biol.
  doi: 10.1186/gb-2005-6-12-r100
– volume: 471
  start-page: 473
  year: 2011
  ident: 10.1016/j.celrep.2012.01.001_bib9
  article-title: The developmental transcriptome of Drosophila melanogaster
  publication-title: Nature
  doi: 10.1038/nature09715
– volume: 30
  start-page: 2431
  year: 2011
  ident: 10.1016/j.celrep.2012.01.001_bib31
  article-title: RNA polymerase II kinetics in polo polyadenylation signal selection
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.156
– volume: 5
  start-page: e1000617
  year: 2009
  ident: 10.1016/j.celrep.2012.01.001_bib32
  article-title: Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000617
– ident: 10.1016/j.celrep.2012.01.001_bib50
  doi: 10.1186/1471-2164-7-176
– ident: 10.1016/j.celrep.2012.01.001_bib52
  doi: 10.1186/gb-2002-3-12-research0088
– volume: 3
  year: 2002
  ident: 10.1016/j.celrep.2012.01.001_bib41
  article-title: Systematic determination of patterns of gene expression during Drosophila embryogenesis
  publication-title: Genome Biol.
  doi: 10.1186/gb-2002-3-12-research0088
– volume: 44
  start-page: 663
  year: 2004
  ident: 10.1016/j.celrep.2012.01.001_bib26
  article-title: The translational repressor Pumilio regulates presynaptic morphology and controls postsynaptic accumulation of translation factor eIF-4E
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.10.028
– volume: 7
  start-page: 176
  year: 2006
  ident: 10.1016/j.celrep.2012.01.001_bib33
  article-title: Similarities and differences of polyadenylation signals in human and fly
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-7-176
– volume: 134
  start-page: 175
  year: 2008
  ident: 10.1016/j.celrep.2012.01.001_bib2
  article-title: Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons
  publication-title: Cell
  doi: 10.1016/j.cell.2008.05.045
– volume: 17
  start-page: S207
  issue: Suppl 1
  year: 2001
  ident: 10.1016/j.celrep.2012.01.001_bib30
  article-title: An algorithm for finding signals of unknown length in DNA sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.suppl_1.S207
– ident: 10.1016/j.celrep.2012.01.001_bib53
  doi: 10.1093/nar/gkn788
– volume: 124
  start-page: 4847
  year: 1997
  ident: 10.1016/j.celrep.2012.01.001_bib17
  article-title: The Bearded box, a novel 3′ UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression
  publication-title: Development
  doi: 10.1242/dev.124.23.4847
– volume: 469
  start-page: 97
  year: 2011
  ident: 10.1016/j.celrep.2012.01.001_bib14
  article-title: Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs
  publication-title: Nature
  doi: 10.1038/nature09616
– volume: Chapter 11
  start-page: Unit 11.17
  year: 2010
  ident: 10.1016/j.celrep.2012.01.001_bib19
  article-title: Aligning short sequencing reads with Bowtie
  publication-title: Curr. Protoc. Bioinformatics
– ident: 10.1016/j.celrep.2012.01.001_bib54
  doi: 10.1038/nature03441
– volume: 11
  start-page: 75
  year: 2010
  ident: 10.1016/j.celrep.2012.01.001_bib20
  article-title: RNA processing and its regulation: global insights into biological networks
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2673
– volume: 106
  start-page: 7028
  year: 2009
  ident: 10.1016/j.celrep.2012.01.001_bib16
  article-title: Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0900028106
– volume: 14
  start-page: 6647
  year: 1994
  ident: 10.1016/j.celrep.2012.01.001_bib23
  article-title: The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location
  publication-title: Mol. Cell. Biol.
– volume: 330
  start-page: 1787
  year: 2010
  ident: 10.1016/j.celrep.2012.01.001_bib28
  article-title: Identification of functional elements and regulatory circuits by Drosophila modENCODE
  publication-title: Science
  doi: 10.1126/science.1198374
– volume: 6
  start-page: 363
  year: 2005
  ident: 10.1016/j.celrep.2012.01.001_bib38
  article-title: Moving messages: the intracellular localization of mRNAs
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1643
– volume: 33
  start-page: 201
  year: 2005
  ident: 10.1016/j.celrep.2012.01.001_bib40
  article-title: A large-scale analysis of mRNA polyadenylation of human and mouse genes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki158
– volume: 4
  start-page: e8419
  year: 2009
  ident: 10.1016/j.celrep.2012.01.001_bib15
  article-title: Reprogramming of 3′ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0008419
– volume: 138
  start-page: 673
  year: 2009
  ident: 10.1016/j.celrep.2012.01.001_bib25
  article-title: Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells
  publication-title: Cell
  doi: 10.1016/j.cell.2009.06.016
– volume: 143
  start-page: 1018
  year: 2010
  ident: 10.1016/j.celrep.2012.01.001_bib29
  article-title: Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation
  publication-title: Cell
  doi: 10.1016/j.cell.2010.11.020
– volume: 17
  start-page: 761
  year: 2011
  ident: 10.1016/j.celrep.2012.01.001_bib36
  article-title: Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq
  publication-title: RNA
  doi: 10.1261/rna.2581711
– volume: 456
  start-page: 464
  year: 2008
  ident: 10.1016/j.celrep.2012.01.001_bib21
  article-title: HITS-CLIP yields genome-wide insights into brain alternative RNA processing
  publication-title: Nature
  doi: 10.1038/nature07488
– volume: 21
  start-page: 741
  year: 2011
  ident: 10.1016/j.celrep.2012.01.001_bib8
  article-title: Differential genome-wide profiling of tandem 3′ UTRs among human breast cancer and normal cells by high-throughput sequencing
  publication-title: Genome Res.
  doi: 10.1101/gr.115295.110
– volume: 320
  start-page: 1643
  year: 2008
  ident: 10.1016/j.celrep.2012.01.001_bib35
  article-title: Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites
  publication-title: Science
  doi: 10.1126/science.1155390
– volume: 19
  start-page: 1067
  year: 2005
  ident: 10.1016/j.celrep.2012.01.001_bib18
  article-title: Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs
  publication-title: Genes Dev.
  doi: 10.1101/gad.1291905
– ident: 10.1016/j.celrep.2012.01.001_bib48
  doi: 10.1016/j.cell.2009.06.016
– ident: 10.1016/j.celrep.2012.01.001_bib46
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 102
  start-page: 18017
  year: 2005
  ident: 10.1016/j.celrep.2012.01.001_bib1
  article-title: Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0508823102
– ident: 10.1016/j.celrep.2012.01.001_bib47
  doi: 10.1038/ng2049
– volume: 21
  start-page: 182
  year: 2011
  ident: 10.1016/j.celrep.2012.01.001_bib12
  article-title: Genome-wide analysis of promoter architecture in Drosophila melanogaster
  publication-title: Genome Res.
  doi: 10.1101/gr.112466.110
– ident: 10.1016/j.celrep.2012.01.001_bib44
  doi: 10.1038/75556
– ident: 10.1016/j.celrep.2012.01.001_bib49
  doi: 10.1093/bioinformatics/17.suppl_1.S207
– volume: 11
  start-page: 1485
  year: 2005
  ident: 10.1016/j.celrep.2012.01.001_bib13
  article-title: Bioinformatic identification of candidate cis-regulatory elements involved in human mRNA polyadenylation
  publication-title: RNA
  doi: 10.1261/rna.2107305
– volume: 141
  start-page: 129
  year: 2010
  ident: 10.1016/j.celrep.2012.01.001_bib10
  article-title: Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.009
– volume: 123
  start-page: 1133
  year: 2005
  ident: 10.1016/j.celrep.2012.01.001_bib39
  article-title: Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution
  publication-title: Cell
  doi: 10.1016/j.cell.2005.11.023
– volume: 17
  start-page: 1850
  year: 2007
  ident: 10.1016/j.celrep.2012.01.001_bib34
  article-title: Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs
  publication-title: Genome Res.
  doi: 10.1101/gr.6597907
– volume: 17
  start-page: 2526
  year: 2003
  ident: 10.1016/j.celrep.2012.01.001_bib37
  article-title: ELAV inhibits 3′-end processing to promote neural splicing of ewg pre-mRNA
  publication-title: Genes Dev.
  doi: 10.1101/gad.1106703
– volume: 39
  start-page: 715
  year: 2007
  ident: 10.1016/j.celrep.2012.01.001_bib5
  article-title: Using FlyAtlas to identify better Drosophila melanogaster models of human disease
  publication-title: Nat. Genet.
  doi: 10.1038/ng2049
– volume: 43
  start-page: 853
  year: 2011
  ident: 10.1016/j.celrep.2012.01.001_bib6
  article-title: Mechanisms and consequences of alternative polyadenylation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.08.017
– ident: 10.1016/j.celrep.2012.01.001_bib51
  doi: 10.1038/nbt.1754
– ident: 10.1016/j.celrep.2012.01.001_bib45
  doi: 10.1093/nar/gkl198
– volume: 434
  start-page: 338
  year: 2005
  ident: 10.1016/j.celrep.2012.01.001_bib42
  article-title: Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals
  publication-title: Nature
  doi: 10.1038/nature03441
– reference: 18566288 - Science. 2008 Jun 20;320(5883):1643-7
– reference: - Cell Rep. 2013 Mar 28;3(3):969
– reference: 18852696 - Nat Rev Genet. 2008 Nov;9(11):831-42
– reference: 20019688 - Nat Rev Genet. 2010 Jan;11(1):75-87
– reference: 21145465 - Cell. 2010 Dec 10;143(6):1018-29
– reference: 21179090 - Nature. 2011 Mar 24;471(7339):473-9
– reference: 20522740 - Science. 2010 Jul 23;329(5990):432-5
– reference: 20037631 - PLoS One. 2009;4(12):e8419
– reference: 16845028 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W369-73
– reference: 9428421 - Development. 1997 Dec;124(23):4847-56
– reference: 15852043 - Nat Rev Mol Cell Biol. 2005 May;6(5):363-75
– reference: 17158511 - Nucleic Acids Res. 2007;35(1):234-46
– reference: 16330759 - Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):18017-22
– reference: 16131587 - RNA. 2005 Oct;11(10):1485-93
– reference: 18614020 - Cell. 2008 Jul 11;134(1):175-87
– reference: 11473011 - Bioinformatics. 2001;17 Suppl 1:S207-14
– reference: 21925375 - Mol Cell. 2011 Sep 16;43(6):853-66
– reference: 15541314 - Neuron. 2004 Nov 18;44(4):663-76
– reference: 18978773 - Nature. 2008 Nov 27;456(7221):464-9
– reference: 20371350 - Cell. 2010 Apr 2;141(1):129-41
– reference: 21343387 - RNA. 2011 Apr;17(4):761-72
– reference: 21075793 - Nucleic Acids Res. 2011 Mar;39(6):2393-403
– reference: 21177962 - Genome Res. 2011 Feb;21(2):301-14
– reference: 15735639 - Nature. 2005 Mar 17;434(7031):338-45
– reference: 16356263 - Genome Biol. 2005;6(12):R100
– reference: 16836751 - BMC Genomics. 2006;7:176
– reference: 17534367 - Nat Genet. 2007 Jun;39(6):715-20
– reference: 21602789 - EMBO J. 2011 Jun 15;30(12):2431-44
– reference: 21474764 - Genome Res. 2011 May;21(5):741-7
– reference: 19372383 - Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7028-33
– reference: 21177961 - Genome Res. 2011 Feb;21(2):182-92
– reference: 16337999 - Cell. 2005 Dec 16;123(6):1133-46
– reference: 21085120 - Nature. 2011 Jan 6;469(7328):97-101
– reference: 19703394 - Cell. 2009 Aug 21;138(4):673-84
– reference: 15833912 - Genes Dev. 2005 May 1;19(9):1067-80
– reference: 15647503 - Nucleic Acids Res. 2005;33(1):201-12
– reference: 21154709 - Curr Protoc Bioinformatics. 2010 Dec;Chapter 11:Unit 11.7
– reference: 19696892 - PLoS Genet. 2009 Aug;5(8):e1000617
– reference: 17989254 - Genome Res. 2007 Dec;17(12):1850-64
– reference: 21896737 - Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15864-9
– reference: 12537577 - Genome Biol. 2002;3(12):RESEARCH0088
– reference: 21177974 - Science. 2010 Dec 24;330(6012):1787-97
– reference: 14522950 - Genes Dev. 2003 Oct 15;17(20):2526-38
– reference: 7935383 - Mol Cell Biol. 1994 Oct;14(10):6647-54
SSID ssj0000601194
Score 2.4256501
Snippet We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded...
We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 277
SubjectTerms 3' Untranslated Regions - genetics
Animals
Base Sequence
Blotting, Northern
Conserved Sequence - genetics
DNA-Binding Proteins - metabolism
Drosophila melanogaster
Drosophila melanogaster - embryology
Drosophila melanogaster - genetics
Embryo, Nonmammalian - metabolism
Gene Expression Regulation, Developmental
Genes, Insect - genetics
In Situ Hybridization
Male
Molecular Sequence Data
Neurons - cytology
Neurons - metabolism
Nucleotide Motifs - genetics
Organ Specificity - genetics
Poly A - metabolism
Polyadenylation - genetics
Protein Isoforms - genetics
Protein Isoforms - metabolism
Reproducibility of Results
RNA, Messenger - genetics
RNA, Messenger - metabolism
Sequence Analysis, RNA
Testis - metabolism
Transcriptome - genetics
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9wwDDelMNjL2Peu-yCDvZqLY8d2HttupYxtFNbCvRnbUbaMIynX6-D--0lOciwbrLC3xJGTWJYl2ZZ_YuxdKE2oPVju0bfmypiKhwiB-7zWuhSxgLTg9vmLPr9SH1fl6oCdTmdhKKxy1P2DTk_aeixZjtxcXrft8muBcxe0TkbQaZNCEOy2VDYd4lud7NdZCG9EpHyIRM-pwnSCLoV5RVhvgIAraVFQ0MbEzEIlIP-ZofrbEf0znvI3A3X2kD0YPcvsePj5R-wAusfs3pBrcveEfRrQ_bOLBKjZ3WR9k10mrvOUg75pY3a8HpcHf0J20a93HpXSbgiWy9oue79JSQ_atX_Krs4-XJ6e8zGVAo-6sFteBRHQVZO6EkWsRS1rH4paaNB5sOjRaHyOkz-PkxEP2GE15IDqByREL3wV5TN22PUdvGAZEuK4zwGgapSJBqdANgasXcQGrJcLJif2uTjijFO6i7WbAsp-uIHpjpjuckFxdQvG97WuB5yNO-hPqGf2tISSnQr6zTc3iolD01uX0aDEEUhPU4dYlhYvfYAgpfILZqZ-dTOhw1e1d3z-7SQGDscjbbL4DvrbG0eA8-giWWP-RWNRuSutqgV7PojOviHoDttSVwr_bSZUs5bOn3Tt94QLjt1rlVRH_92ql-w-3VGIXVG9YofbzS28Rp9rG96kQfULZsoq6Q
  priority: 102
  providerName: Elsevier
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKERIXVN4LBQWJa1Aeju0cEGoLVYUo6qEr9WbZzgSCogSyW8T-e2bsZCG8euEWJc7DM-OZz_bkG8ae20LayoCKDWLrmEtZxtaBjU1SCVGkLgO_4Hb6Xpws-duL4mKHTTVbRwGu_ji1o3pSy6F98e3L5hUO-Jc_crUctAMQ-ySt7KW0u3CNXcfYJKmYw-kI-INvJo4z2mrOMsrlyric_qf7y4Nm8crT-s_C1u-w9Nfsyp_C1fEeuzXizOggGMZttgPdHXYjVJ7c3GXvAtd_dObpNbtV1NfRuddB7CvS142LDtpxsfArRGd9uzHoojYhdS5quuj14EsgNK25x5bHb86PTuKxsELsRKbWcWlTi8AtF2WauSqt8srYrEoFiMQqxDcCr-NU0ODUxACqr4IE0BlBDs6kpnT5fbbb9R08ZBE2RC-QAEBZc-kkToiUs3h35mpQJl-wfBKfdiPrOBW_aPWUXvZJB6FrErpOUsqyW7B4e9fnwLpxRftD0sy2LXFm-xP98EGPQ1BjIK4KJ9H-iLKnrqwrCoWHxoLNc24WTE561SP8CLACH9Vc8fpnkxloHJ205WI66C9XmujnETApKf_VRqGr54KXC_YgmM62IwiOVSFKjt82M6pZT-dXuuajZwlH9Sqe80f_QzSP2U3qLuXeZeU-210Pl_AEwdjaPvXj6zv1hjML
  priority: 102
  providerName: Scholars Portal
Title Global Patterns of Tissue-Specific Alternative Polyadenylation in Drosophila
URI https://dx.doi.org/10.1016/j.celrep.2012.01.001
https://www.ncbi.nlm.nih.gov/pubmed/22685694
https://www.proquest.com/docview/1038613877
https://www.proquest.com/docview/1080884649
https://pubmed.ncbi.nlm.nih.gov/PMC3368434
https://doaj.org/article/284d5c71c22741fdbc558274abeb334a
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilNH1uX6jQq6gty5J8TNqGtDQlhwT2JvQYUxfjLZtNYf99RpK9rFvoXnoxxpZsazQafSONvyHkvauVCxY0s4itmVCqYc6DY7YIUtal55AW3C6-y_Nr8XVZL_dSfcWYsEwPnAX3Ac1nqL3CWpFopQ3O17XGU-vQDaxEgkY45-05U9kGRy6zuKXMeYzZ4kJN_82l4C4P_RoiXWVcCizjdsRsXkr0_bPp6W_4-WcU5d60dPaIPBzxJD3J7Tgm92B4TO7nDJPbJ-Rb5vSnl4lGc7ihq5ZeJVmzlHm-7Tw96cdFwd9AL1f91qIp2uYQOdoN9NM6pTroevuUXJ99vvp4zsYECsxLrjescaVDgFbJpuQ-lKEK1vFQSpCF04hjJN5Hl8-iC2IBuylAAWh0oAJvS9v46hk5GlYDvCAUC-JoLwCgaYXyCh0f7R3W5r4FbasFqSbxGT-yi8ckF72Zwsh-mix0E4VuijJG0y0I29X6ldk1DpQ_jT2zKxu5sdMF1Bgzaow5pDELoqZ-NSPMyPABH9UdeP27SQ0MjsK4tWIHWN3emEgzj8BIK_WvMhpNupCiWZDnWXV2DUEQrGvZCPy2mVLNWjq_M3Q_Ehs4dq8WlXj5P0TzijyIzY0xdrx5TY4261t4g6Br496m8YXHL8tTPF4IfQc58Cu5
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4s3yDBJXa9d52M6xLVRb2FaV2Ep7s2xnUoKipNpukfbfM-MkKwISlbhFsZ3E4_HMZ2f8DWMfXaZcYUFzi9iap0rl3Hlw3M4KKTPhYwgbbqdncn6Rflllqz12NJyFobDK3vZ3Nj1Y6_7OtJfm9Kqqpt9iXLugd1KCTpvEQt5hdxENSFLtk9XhbqOFCEdESIhIDTi1GI7QhTgvD_UaiLmSdgUF_ZkYuajA5D_yVH8j0T8DKn_zUMeP2MMeWkYH3dc_ZnvQPGH3umST26ds0dH7R-eBUbO5jtoyWgax85CEvqx8dFD3-4M_ITpv661Fq7TtouWiqok-rUPWg6q2z9jF8efl0Zz3uRS4l7He8NwJh1gtkbmIfSGKpLAuLoQEOXMaIY3Eclz9WVyNWMARK2AGaH8gAW-FzX3ynO03bQMvWYQVceLPACAvU-UVroG0d9g69iVom0xYMojP-J5onPJd1GaIKPthOqEbErqZCQqsmzC-a3XVEW3cUv-QRmZXl2iyw412fWl6PTHoe4vMK1Q5YukpC-ezTOOldeCSJLUTpoZxNSOtw0dVt7z-w6AGBick_WWxDbQ314YY5xEjaaX-VUejdU9lmk_Yi051dh1BPKwzmaf4bSOlGvV0XNJU3wMxOA6vTpP01X_36j27P1-eLszi5Ozra_aASijeLs7fsP3N-gbeIgDbuHdhgv0CflkuEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Patterns+of+Tissue-Specific+Alternative+Polyadenylation+in+Drosophila&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Peter+Smibert&rft.au=Pedro+Miura&rft.au=Jakub%C2%A0O.+Westholm&rft.au=Sol+Shenker&rft.date=2012-03-29&rft.pub=Elsevier&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=1&rft.issue=3&rft.spage=277&rft.epage=289&rft_id=info:doi/10.1016%2Fj.celrep.2012.01.001&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_284d5c71c22741fdbc558274abeb334a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon