Test–retest reproducibility of cannabinoid-receptor type 1 availability quantified with the PET ligand [11C]MePPEP

Endocannabinoids are involved in normal cognition, and dysfunction in cannabinoid-receptor-mediated neurotransmission has been suggested in a variety of neurological and psychiatric pathologies. The type 1 cannabinoid receptor (CB1) is widely expressed in the human central nervous system. The object...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 97; pp. 151 - 162
Main Authors Riaño Barros, Daniela A., McGinnity, Colm J., Rosso, Lula, Heckemann, Rolf A., Howes, Oliver D., Brooks, David J., Duncan, John S., Turkheimer, Federico E., Koepp, Matthias J., Hammers, Alexander
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 15.08.2014
Elsevier
Elsevier Limited
Academic Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Endocannabinoids are involved in normal cognition, and dysfunction in cannabinoid-receptor-mediated neurotransmission has been suggested in a variety of neurological and psychiatric pathologies. The type 1 cannabinoid receptor (CB1) is widely expressed in the human central nervous system. The objective of this study was to quantify the test–retest reproducibility of measures of the PET ligand [11C]MePPEP in order to assess the stability of CB1-receptor quantification in humans in vivo. Fifteen healthy subjects (eight females; median age 32years, range 25 to 65years) had a 90-minute PET scan on two occasions after injection of a median dose of [11C]MePPEP of 364MBq. Metabolite-corrected arterial plasma input functions were obtained for all scans. Eight ROIs, reflecting different levels of receptor densities/concentrations, were defined automatically: hippocampus, anterior cingulate gyrus, inferior frontal gyrus, caudate nucleus, globus pallidus, nucleus accumbens, thalamus, and pons. We used seven quantification methods: reversible compartmental models with one and two tissue classes, two and four rate constants, and a variable blood volume term (2kbv; 4kbv); model-free (spectral) analyses with and without regularisation, including one with voxel-wise quantification; the simplified reference tissue model (SRTM) with pons as a pseudo-reference region; and modified standard uptake values (mSUVs) calculated for the period of ~30–60min after injection. Percentage test–retest change and between-subject variability were both assessed, and test–retest reliability was quantified by the intraclass correlation coefficient (ICC). The ratio of binding estimates pallidum:pons served as an indicator of a method's ability to reflect binding heterogeneity. Neither the SRTM nor the 4kbv model produced reliable measures, with ICCs around zero. Very good (>0.75) or excellent (>0.80) ICCs were obtained with the other methods. The most reliable were spectral analysis parametric maps (average across regions±standard deviation 0.83±0.03), rank shaping regularised spectral analysis (0.82±0.05), and the 2kbv model (0.82±0.09), but mSUVs were also reliable for most regions (0.79±0.13). Mean test–retest changes among the five well-performing methods ranged from 12±10% for mSUVs to 16% for 2kbv. Intersubject variability was high, with mean between-subject coefficients of variation ranging from 32±13% for mSUVs to 45% for 2kbv. The highest pallidum:pons ratios of binding estimates were achieved by mSUV (4.2), spectral analysis-derived parametric maps (3.6), and 2kbv (3.6). Quantification of CB1 receptor availability using [11C]MePPEP shows good to excellent reproducibility with several kinetic models and model-free analyses, whether applied on a region-of-interest or voxelwise basis. Simple mSUV measures were also reliable for most regions, but do not allow fully quantitative interpretation. [11C]MePPEP PET is well placed as a tool to investigate CB1-receptor mediated neurotransmission in health and disease. Cannabinoid receptor concentrations assessed with [11C]MePPEP-PET. Top, reliability (ICCs±SDs) of different quantification strategies: blue, compartmental models; red, spectral analysis variants; green, SRTM; yellow, modified SUVs. Bottom, parametric VT map. [Display omitted] •[11C]MePPEP is a PET tracer for cannabinoid receptors (CB1R).•Extensive evaluation of [11C]MePPEP data quantification strategies in large sample•We highlight successful methods to quantify CB1R in regions of interest.•Highly reliable parametric maps (ICC 0.83±0.03) allow whole-brain surveys.•Modified standard uptake values also reliable, without arterial input functions
AbstractList Endocannabinoids are involved in normal cognition, and dysfunction in cannabinoid-receptor-mediated neurotransmission has been suggested in a variety of neurological and psychiatric pathologies. The type 1 cannabinoid receptor (CB1) is widely expressed in the human central nervous system. The objective of this study was to quantify the test–retest reproducibility of measures of the PET ligand [11C]MePPEP in order to assess the stability of CB1-receptor quantification in humans in vivo. Fifteen healthy subjects (eight females; median age 32years, range 25 to 65years) had a 90-minute PET scan on two occasions after injection of a median dose of [11C]MePPEP of 364MBq. Metabolite-corrected arterial plasma input functions were obtained for all scans. Eight ROIs, reflecting different levels of receptor densities/concentrations, were defined automatically: hippocampus, anterior cingulate gyrus, inferior frontal gyrus, caudate nucleus, globus pallidus, nucleus accumbens, thalamus, and pons. We used seven quantification methods: reversible compartmental models with one and two tissue classes, two and four rate constants, and a variable blood volume term (2kbv; 4kbv); model-free (spectral) analyses with and without regularisation, including one with voxel-wise quantification; the simplified reference tissue model (SRTM) with pons as a pseudo-reference region; and modified standard uptake values (mSUVs) calculated for the period of ~30–60min after injection. Percentage test–retest change and between-subject variability were both assessed, and test–retest reliability was quantified by the intraclass correlation coefficient (ICC). The ratio of binding estimates pallidum:pons served as an indicator of a method's ability to reflect binding heterogeneity. Neither the SRTM nor the 4kbv model produced reliable measures, with ICCs around zero. Very good (>0.75) or excellent (>0.80) ICCs were obtained with the other methods. The most reliable were spectral analysis parametric maps (average across regions±standard deviation 0.83±0.03), rank shaping regularised spectral analysis (0.82±0.05), and the 2kbv model (0.82±0.09), but mSUVs were also reliable for most regions (0.79±0.13). Mean test–retest changes among the five well-performing methods ranged from 12±10% for mSUVs to 16% for 2kbv. Intersubject variability was high, with mean between-subject coefficients of variation ranging from 32±13% for mSUVs to 45% for 2kbv. The highest pallidum:pons ratios of binding estimates were achieved by mSUV (4.2), spectral analysis-derived parametric maps (3.6), and 2kbv (3.6). Quantification of CB1 receptor availability using [11C]MePPEP shows good to excellent reproducibility with several kinetic models and model-free analyses, whether applied on a region-of-interest or voxelwise basis. Simple mSUV measures were also reliable for most regions, but do not allow fully quantitative interpretation. [11C]MePPEP PET is well placed as a tool to investigate CB1-receptor mediated neurotransmission in health and disease. Cannabinoid receptor concentrations assessed with [11C]MePPEP-PET. Top, reliability (ICCs±SDs) of different quantification strategies: blue, compartmental models; red, spectral analysis variants; green, SRTM; yellow, modified SUVs. Bottom, parametric VT map. [Display omitted] •[11C]MePPEP is a PET tracer for cannabinoid receptors (CB1R).•Extensive evaluation of [11C]MePPEP data quantification strategies in large sample•We highlight successful methods to quantify CB1R in regions of interest.•Highly reliable parametric maps (ICC 0.83±0.03) allow whole-brain surveys.•Modified standard uptake values also reliable, without arterial input functions
Cannabinoid receptor concentrations assessed with [ 11 C]MePPEP-PET. Top, reliability (ICCs ± SDs) of different quantification strategies: blue, compartmental models; red, spectral analysis variants; green, SRTM; yellow, modified SUVs. Bottom, parametric V T map. • [11C]MePPEP is a PET tracer for cannabinoid receptors (CB1R). • Extensive evaluation of [11C]MePPEP data quantification strategies in large sample • We highlight successful methods to quantify CB1R in regions of interest. • Highly reliable parametric maps (ICC 0.83 ± 0.03) allow whole-brain surveys. • Modified standard uptake values also reliable, without arterial input functions
Endocannabinoids are involved in normal cognition, and dysfunction in cannabinoid-receptor-mediated neurotransmission has been suggested in a variety of neurological and psychiatric pathologies. The type 1 cannabinoid receptor (CB1) is widely expressed in the human central nervous system. The objective of this study was to quantify the test-retest reproducibility of measures of the PET ligand [(11)C]MePPEP in order to assess the stability of CB1-receptor quantification in humans in vivo. Fifteen healthy subjects (eight females; median age 32 years, range 25 to 65 years) had a 90-minute PET scan on two occasions after injection of a median dose of [(11)C]MePPEP of 364 MBq. Metabolite-corrected arterial plasma input functions were obtained for all scans. Eight ROIs, reflecting different levels of receptor densities/concentrations, were defined automatically: hippocampus, anterior cingulate gyrus, inferior frontal gyrus, caudate nucleus, globus pallidus, nucleus accumbens, thalamus, and pons. We used seven quantification methods: reversible compartmental models with one and two tissue classes, two and four rate constants, and a variable blood volume term (2kbv; 4kbv); model-free (spectral) analyses with and without regularisation, including one with voxel-wise quantification; the simplified reference tissue model (SRTM) with pons as a pseudo-reference region; and modified standard uptake values (mSUVs) calculated for the period of ~30-60 min after injection. Percentage test-retest change and between-subject variability were both assessed, and test-retest reliability was quantified by the intraclass correlation coefficient (ICC). The ratio of binding estimates pallidum:pons served as an indicator of a method's ability to reflect binding heterogeneity. Neither the SRTM nor the 4kbv model produced reliable measures, with ICCs around zero. Very good (>0.75) or excellent (>0.80) ICCs were obtained with the other methods. The most reliable were spectral analysis parametric maps (average across regions±standard deviation 0.83±0.03), rank shaping regularised spectral analysis (0.82±0.05), and the 2kbv model (0.82±0.09), but mSUVs were also reliable for most regions (0.79±0.13). Mean test-retest changes among the five well-performing methods ranged from 12±10% for mSUVs to 16% for 2kbv. Intersubject variability was high, with mean between-subject coefficients of variation ranging from 32±13% for mSUVs to 45% for 2kbv. The highest pallidum:pons ratios of binding estimates were achieved by mSUV (4.2), spectral analysis-derived parametric maps (3.6), and 2kbv (3.6). Quantification of CB1 receptor availability using [(11)C]MePPEP shows good to excellent reproducibility with several kinetic models and model-free analyses, whether applied on a region-of-interest or voxelwise basis. Simple mSUV measures were also reliable for most regions, but do not allow fully quantitative interpretation. [(11)C]MePPEP PET is well placed as a tool to investigate CB1-receptor mediated neurotransmission in health and disease.
BackgroundEndocannabinoids are involved in normal cognition, and dysfunction in cannabinoid-receptor-mediated neurotransmission has been suggested in a variety of neurological and psychiatric pathologies. The type 1 cannabinoid receptor (CB1) is widely expressed in the human central nervous system. The objective of this study was to quantify the test–retest reproducibility of measures of the PET ligand [11C]MePPEP in order to assess the stability of CB1-receptor quantification in humans in vivo.MethodsFifteen healthy subjects (eight females; median age 32 years, range 25 to 65 years) had a 90-minute PET scan on two occasions after injection of a median dose of [11C]MePPEP of 364 MBq. Metabolite-corrected arterial plasma input functions were obtained for all scans. Eight ROIs, reflecting different levels of receptor densities/concentrations, were defined automatically: hippocampus, anterior cingulate gyrus, inferior frontal gyrus, caudate nucleus, globus pallidus, nucleus accumbens, thalamus, and pons. We used seven quantification methods: reversible compartmental models with one and two tissue classes, two and four rate constants, and a variable blood volume term (2kbv; 4kbv); model-free (spectral) analyses with and without regularisation, including one with voxel-wise quantification; the simplified reference tissue model (SRTM) with pons as a pseudo-reference region; and modified standard uptake values (mSUVs) calculated for the period of ~ 30–60 min after injection. Percentage test–retest change and between-subject variability were both assessed, and test–retest reliability was quantified by the intraclass correlation coefficient (ICC). The ratio of binding estimates pallidum:pons served as an indicator of a method's ability to reflect binding heterogeneity.ResultsNeither the SRTM nor the 4kbv model produced reliable measures, with ICCs around zero. Very good (> 0.75) or excellent (> 0.80) ICCs were obtained with the other methods. The most reliable were spectral analysis parametric maps (average across regions ± standard deviation 0.83 ± 0.03), rank shaping regularised spectral analysis (0.82 ± 0.05), and the 2kbv model (0.82 ± 0.09), but mSUVs were also reliable for most regions (0.79 ± 0.13). Mean test–retest changes among the five well-performing methods ranged from 12 ± 10% for mSUVs to 16% for 2kbv. Intersubject variability was high, with mean between-subject coefficients of variation ranging from 32 ± 13% for mSUVs to 45% for 2kbv. The highest pallidum:pons ratios of binding estimates were achieved by mSUV (4.2), spectral analysis-derived parametric maps (3.6), and 2kbv (3.6).ConclusionQuantification of CB1 receptor availability using [11C]MePPEP shows good to excellent reproducibility with several kinetic models and model-free analyses, whether applied on a region-of-interest or voxelwise basis. Simple mSUV measures were also reliable for most regions, but do not allow fully quantitative interpretation. [11C]MePPEP PET is well placed as a tool to investigate CB1-receptor mediated neurotransmission in health and disease.
Background Endocannabinoids are involved in normal cognition, and dysfunction in cannabinoid-receptor-mediated neurotransmission has been suggested in a variety of neurological and psychiatric pathologies. The type 1 cannabinoid receptor (CB1) is widely expressed in the human central nervous system. The objective of this study was to quantify the test-retest reproducibility of measures of the PET ligand [11C]MePPEP in order to assess the stability of CB1-receptor quantification in humans in vivo. Methods Fifteen healthy subjects (eight females; median age 32years, range 25 to 65years) had a 90-minute PET scan on two occasions after injection of a median dose of [11C]MePPEP of 364MBq. Metabolite-corrected arterial plasma input functions were obtained for all scans. Eight ROIs, reflecting different levels of receptor densities/concentrations, were defined automatically: hippocampus, anterior cingulate gyrus, inferior frontal gyrus, caudate nucleus, globus pallidus, nucleus accumbens, thalamus, and pons. We used seven quantification methods: reversible compartmental models with one and two tissue classes, two and four rate constants, and a variable blood volume term (2kbv; 4kbv); model-free (spectral) analyses with and without regularisation, including one with voxel-wise quantification; the simplified reference tissue model (SRTM) with pons as a pseudo-reference region; and modified standard uptake values (mSUVs) calculated for the period of ~30-60min after injection. Percentage test-retest change and between-subject variability were both assessed, and test-retest reliability was quantified by the intraclass correlation coefficient (ICC). The ratio of binding estimates pallidum:pons served as an indicator of a method's ability to reflect binding heterogeneity. Results Neither the SRTM nor the 4kbv model produced reliable measures, with ICCs around zero. Very good (>0.75) or excellent (>0.80) ICCs were obtained with the other methods. The most reliable were spectral analysis parametric maps (average across regions±standard deviation 0.83±0.03), rank shaping regularised spectral analysis (0.82±0.05), and the 2kbv model (0.82±0.09), but mSUVs were also reliable for most regions (0.79±0.13). Mean test-retest changes among the five well-performing methods ranged from 12±10% for mSUVs to 16% for 2kbv. Intersubject variability was high, with mean between-subject coefficients of variation ranging from 32±13% for mSUVs to 45% for 2kbv. The highest pallidum:pons ratios of binding estimates were achieved by mSUV (4.2), spectral analysis-derived parametric maps (3.6), and 2kbv (3.6). Conclusion Quantification of CB1receptor availability using [11C]MePPEP shows good to excellent reproducibility with several kinetic models and model-free analyses, whether applied on a region-of-interest or voxelwise basis. Simple mSUV measures were also reliable for most regions, but do not allow fully quantitative interpretation. [11C]MePPEP PET is well placed as a tool to investigate CB1-receptor mediated neurotransmission in health and disease.
Background Endocannabinoids are involved in normal cognition, and dysfunction in cannabinoid-receptor-mediated neurotransmission has been suggested in a variety of neurological and psychiatric pathologies. The type 1 cannabinoid receptor (CB1) is widely expressed in the human central nervous system. The objective of this study was to quantify the test-retest reproducibility of measures of the PET ligand [11C]MePPEP in order to assess the stability of CB1-receptor quantification in humans in vivo. Methods Fifteen healthy subjects (eight females; median age 32years, range 25 to 65years) had a 90-minute PET scan on two occasions after injection of a median dose of [11C]MePPEP of 364MBq. Metabolite-corrected arterial plasma input functions were obtained for all scans. Eight ROIs, reflecting different levels of receptor densities/concentrations, were defined automatically: hippocampus, anterior cingulate gyrus, inferior frontal gyrus, caudate nucleus, globus pallidus, nucleus accumbens, thalamus, and pons. We used seven quantification methods: reversible compartmental models with one and two tissue classes, two and four rate constants, and a variable blood volume term (2kbv; 4kbv); model-free (spectral) analyses with and without regularisation, including one with voxel-wise quantification; the simplified reference tissue model (SRTM) with pons as a pseudo-reference region; and modified standard uptake values (mSUVs) calculated for the period of ~30-60min after injection. Percentage test-retest change and between-subject variability were both assessed, and test-retest reliability was quantified by the intraclass correlation coefficient (ICC). The ratio of binding estimates pallidum:pons served as an indicator of a method's ability to reflect binding heterogeneity. Results Neither the SRTM nor the 4kbv model produced reliable measures, with ICCs around zero. Very good (>0.75) or excellent (>0.80) ICCs were obtained with the other methods. The most reliable were spectral analysis parametric maps (average across regions plus or minus standard deviation 0.83 plus or minus 0.03), rank shaping regularised spectral analysis (0.82 plus or minus 0.05), and the 2kbv model (0.82 plus or minus 0.09), but mSUVs were also reliable for most regions (0.79 plus or minus 0.13). Mean test-retest changes among the five well-performing methods ranged from 12 plus or minus 10% for mSUVs to 16% for 2kbv. Intersubject variability was high, with mean between-subject coefficients of variation ranging from 32 plus or minus 13% for mSUVs to 45% for 2kbv. The highest pallidum:pons ratios of binding estimates were achieved by mSUV (4.2), spectral analysis-derived parametric maps (3.6), and 2kbv (3.6). Conclusion Quantification of CB1 receptor availability using [11C]MePPEP shows good to excellent reproducibility with several kinetic models and model-free analyses, whether applied on a region-of-interest or voxelwise basis. Simple mSUV measures were also reliable for most regions, but do not allow fully quantitative interpretation. [11C]MePPEP PET is well placed as a tool to investigate CB1-receptor mediated neurotransmission in health and disease.
Author Riaño Barros, Daniela A.
Hammers, Alexander
Koepp, Matthias J.
Heckemann, Rolf A.
McGinnity, Colm J.
Howes, Oliver D.
Rosso, Lula
Turkheimer, Federico E.
Brooks, David J.
Duncan, John S.
Author_xml – sequence: 1
  givenname: Daniela A.
  surname: Riaño Barros
  fullname: Riaño Barros, Daniela A.
  organization: Centre for Neuroscience, Department of Medicine, Imperial College London, London, UK
– sequence: 2
  givenname: Colm J.
  orcidid: 0000-0002-2692-918X
  surname: McGinnity
  fullname: McGinnity, Colm J.
  organization: Centre for Neuroscience, Department of Medicine, Imperial College London, London, UK
– sequence: 3
  givenname: Lula
  surname: Rosso
  fullname: Rosso, Lula
  organization: Centre for Neuroscience, Department of Medicine, Imperial College London, London, UK
– sequence: 4
  givenname: Rolf A.
  surname: Heckemann
  fullname: Heckemann, Rolf A.
  organization: Centre for Neuroscience, Department of Medicine, Imperial College London, London, UK
– sequence: 5
  givenname: Oliver D.
  surname: Howes
  fullname: Howes, Oliver D.
  organization: Centre for Neuroscience, Department of Medicine, Imperial College London, London, UK
– sequence: 6
  givenname: David J.
  surname: Brooks
  fullname: Brooks, David J.
  organization: Centre for Neuroscience, Department of Medicine, Imperial College London, London, UK
– sequence: 7
  givenname: John S.
  orcidid: 0000-0002-1373-0681
  surname: Duncan
  fullname: Duncan, John S.
  organization: Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, UK
– sequence: 8
  givenname: Federico E.
  orcidid: 0000-0002-3766-3815
  surname: Turkheimer
  fullname: Turkheimer, Federico E.
  organization: Centre for Neuroimaging, Institute of Psychiatry, King's College London, London, UK
– sequence: 9
  givenname: Matthias J.
  surname: Koepp
  fullname: Koepp, Matthias J.
  organization: Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, UK
– sequence: 10
  givenname: Alexander
  surname: Hammers
  fullname: Hammers, Alexander
  email: alexander.hammers@fondation-neurodis.org
  organization: Centre for Neuroscience, Department of Medicine, Imperial College London, London, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28580604$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24736184$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01135992$$DView record in HAL
BookMark eNqNks2O0zAQxyO0iP2AV0CREBIcWuw4ce0L2qVaWKQieignhCzHmbRTUrvrOEW98Q68IU-Co3Yp9FRpJI_s__zG83GZnFlnIUlSSoaUUP5mObTQeYcrPYdhRmg-JNEy8ii5oEQWA1mMsrPeL9hAUCrPk8u2XRJCJM3Fk-Q8y0eMU5FfJGEGbfj985eHEJ3Uw9q7qjNYYoNhm7o6NdpaXaJ1WA08GFgH59OwXUNKU73R2Oi99r7TNmCNUKU_MCzSsIB0ejtLG5xrW6VfKR1_-wTT6e30afK41k0Lz_bnVfLl_e1sfDeYfP7wcXwzGRieiTCQXFJKaiElk6ZgFWdlXgnNaq7zkc64zEBIwjgTrKRGk0pTqjPgjGhS8qJkV8nbHXfdlSuoDNjgdaPWPjbOb5XTqP5_sbhQc7dReSYYlXkEvN4BFkdhdzcT1d8RSlkhZbahUftqn8y7-y42U62wNdA02oLrWkWLoiC0yFmPfXEkXbrO29iKqIqD4ZznLKqe__v7v_kfhhcFL_cC3Rrd1F5bg-1BJwpBOMkPbTDeta2HWhkMOqDri8ZGUaL6rVJLddgq1W-VItEyEgHiCPCQ44TQd7tQiHPeIHjVGgRroMK4TEFVDk-BXB9BTIMWY83fYXsa4g-rKgO3
CitedBy_id crossref_primary_10_1007_s00406_020_01191_2
crossref_primary_10_1016_j_neuroimage_2022_119674
crossref_primary_10_1093_braincomms_fcaa190
crossref_primary_10_1038_s41386_018_0287_2
crossref_primary_10_1038_s41598_017_14203_4
crossref_primary_10_1038_jcbfm_2015_61
crossref_primary_10_1007_s11910_016_0660_7
crossref_primary_10_1002_mp_12732
crossref_primary_10_1038_s41380_019_0619_6
crossref_primary_10_3390_biology10111097
crossref_primary_10_1155_2016_7187541
crossref_primary_10_1177_0271678X211015101
crossref_primary_10_1111_jnc_15615
crossref_primary_10_1016_j_neuroimage_2016_12_038
Cites_doi 10.1073/pnas.0703472104
10.1097/00000441-192908000-00009
10.1016/j.neuroimage.2007.11.034
10.2967/jnumed.110.077156
10.1016/S0026-895X(25)09876-1
10.1097/00001756-199602290-00026
10.1016/j.neuroimage.2009.06.059
10.2967/jnumed.109.067074
10.1097/00004647-199911000-00003
10.1016/j.euroneuro.2013.10.002
10.1016/j.neuroimage.2010.01.072
10.1093/brain/awm012
10.1016/j.neuroimage.2011.03.014
10.1046/j.1471-4159.1998.70010417.x
10.1006/nimg.1998.0379
10.1016/j.neuroimage.2010.04.034
10.1007/s00259-010-1411-7
10.1038/sj.npp.1301402
10.1016/S0022-3565(24)37418-X
10.1016/S1053-8119(01)91408-9
10.1073/pnas.87.5.1932
10.1016/0165-0270(94)90002-7
10.1016/S1361-8415(96)80011-9
10.1038/jcbfm.2011.108
10.1002/syn.20578
10.1097/00000542-198307000-00008
10.1007/s11307-008-0194-8
10.1016/j.neuroimage.2006.05.061
10.1006/nimg.1997.0303
10.1038/346561a0
10.1016/S0003-4975(99)00095-8
10.1016/0014-2999(96)00279-8
10.1088/0031-9155/48/23/002
10.1038/sj.jcbfm.9600493
10.1109/42.563660
10.1002/hbm.10123
10.1093/brain/awq385
10.1016/j.neuroimage.2008.03.004
10.1016/j.neuroimage.2007.06.035
10.1038/jcbfm.1991.1
10.1097/FBP.0b013e3283473bfd
10.1097/00004647-200106000-00002
10.1080/00031305.1993.10476000
10.1097/00004647-199905000-00010
10.1038/jcbfm.1994.52
10.1038/jcbfm.1993.5
10.1038/sj.jcbfm.9600515
10.1038/npp.2008.138
10.1016/0091-3057(91)90354-5
10.1126/science.1470919
10.1100/tsw.2002.139
10.1007/BF02984655
10.1038/nm.f.1869
ContentType Journal Article
Copyright 2014
2015 INIST-CNRS
Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Aug 15, 2014
Distributed under a Creative Commons Attribution 4.0 International License
Crown Copyright © 2014 Published by Elsevier Inc. All rights reserved. 2014
Copyright_xml – notice: 2014
– notice: 2015 INIST-CNRS
– notice: Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Aug 15, 2014
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Crown Copyright © 2014 Published by Elsevier Inc. All rights reserved. 2014
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7QO
1XC
5PM
DOI 10.1016/j.neuroimage.2014.04.020
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
Biotechnology Research Abstracts
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Biotechnology Research Abstracts
DatabaseTitleList

MEDLINE


ProQuest One Psychology
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central Collection
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 162
ExternalDocumentID PMC4283194
oai_HAL_hal_01135992v1
3336046121
24736184
28580604
10_1016_j_neuroimage_2014_04_020
S1053811914002754
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: G108/585
– fundername: Department of Health
– fundername: Medical Research Council
  grantid: G1100809
– fundername: Medical Research Council
  grantid: MC_U120036861
– fundername: Medical Research Council
  grantid: G1100810
– fundername: Medical Research Council
  grantid: MC_U120097115
– fundername: Medical Research Council
  grantid: G0700995
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
AALMO
AAPBV
ABPIF
ABPTK
ABQIS
ADALY
BBAFP
EFJIC
IPNFZ
IQODW
NCXOZ
PQEST
PQUKI
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PRINS
Q9U
RC3
7QO
1XC
UMC
5PM
ID FETCH-LOGICAL-c628t-969110f89939c53d63b4d8a3f6a47a2692e89036383b1ca0da11a2e630a0b65b3
IEDL.DBID 7X7
ISSN 1053-8119
IngestDate Thu Aug 21 18:32:19 EDT 2025
Fri May 09 12:18:14 EDT 2025
Fri Jul 11 15:57:37 EDT 2025
Wed Aug 13 10:41:02 EDT 2025
Mon Jul 21 06:05:46 EDT 2025
Fri Nov 25 06:04:24 EST 2022
Tue Jul 01 05:06:46 EDT 2025
Thu Apr 24 23:00:59 EDT 2025
Fri Feb 23 02:36:04 EST 2024
Tue Aug 26 16:31:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords CB1
Intra-class correlation coefficient
Reliability
Positron Emission Tomography
Cannabinoid receptor
Emission tomography
CB
Language English
License http://creativecommons.org/licenses/by/3.0
CC BY 4.0
Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c628t-969110f89939c53d63b4d8a3f6a47a2692e89036383b1ca0da11a2e630a0b65b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC4283194
ORCID 0000-0002-3766-3815
0000-0002-2692-918X
0000-0002-1373-0681
0000-0001-9530-4848
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811914002754
PMID 24736184
PQID 1536166643
PQPubID 2031077
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4283194
hal_primary_oai_HAL_hal_01135992v1
proquest_miscellaneous_1555015434
proquest_journals_1536166643
pubmed_primary_24736184
pascalfrancis_primary_28580604
crossref_citationtrail_10_1016_j_neuroimage_2014_04_020
crossref_primary_10_1016_j_neuroimage_2014_04_020
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2014_04_020
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2014_04_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-15
PublicationDateYYYYMMDD 2014-08-15
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2014
Publisher Elsevier Inc
Elsevier
Elsevier Limited
Academic Press
Publisher_xml – name: Elsevier Inc
– name: Elsevier
– name: Elsevier Limited
– name: Academic Press
References Turkheimer, Moresco, Lucignani, Sokoloff, Fazio, Schmidt (bb0255) 1994; 14
Hammers, Asselin, Turkheimer, Hinz, Osman, Hotton, Brooks, Duncan, Koepp (bb0130) 2007; 38
Huang, Phelps, Hoffman, Sideris, Selin, Kuhl (bb0175) 1980; 238
Turkheimer, Brett, Visvikis, Cunningham (bb0260) 1999; 19
Horti, Fan, Kuwabara, Hilton, Ravert, Holt, Alexander, Kumar, Rahmim, Scheffel, Wong, Dannals (bb0170) 2006; 47
Gunn, Gunn, Cunningham (bb0105) 2001; 21
Petitet, Marin, Doble (bb0210) 1996; 7
Cunningham, Ashburner, Byrne, Jones (bb0040) 1993; 1030
Gousias, Rueckert, Heckemann, Dyet, Boardman, Edwards, Hammers (bb0095) 2008; 40
Hamill, Lin, Hagmann, Liu, Jewell, Sanabria, Eng, Ryan, Fong, Connolly, Vanko, Hargreaves, Goulet, Burns (bb0120) 2009; 11
Cunningham, Jones (bb0050) 1993; 13
Cunningham, Hume, Price, Ahier, Cremer, Jones (bb0045) 1991; 11
MacLennan (bb0200) 1993; 47
Aston, Worsley, Gunn (bb0015) 2001; 13
Yasuno, Brown, Zoghbi, Krushinski, Chernet, Tauscher, Schaus, Phebus, Chesterfield, Felder, Gladding, Hong, Halldin, Pike, Innis (bb0295) 2008; 33
Burns, Van Laere, Sanabria-Bohorquez, Hamill, Bormans, Eng, Gibson, Ryan, Connolly, Patel, Krause, Vanko, Van Hecken, Dupont, De Lepeleire, Rothenberg, Stoch, Cote, Hagmann, Jewell, Lin, Liu, Goulet, Gottesdiener, Wagner, de Hoon, Mortelmans, Fong, Hargreaves (bb0025) 2007; 104
Terry, Liow, Zoghbi, Hirvonen, Farris, Lerner, Tauscher, Schaus, Phebus, Felder, Morse, Hong, Pike, Halldin, Innis (bb0250) 2009; 48
Schmidt (bb0220) 1999; 19
Allen (bb0005) 1929; 178
Turkheimer, Selvaraj, Hinz, Murthy, Bhagwagar, Grasby, Howes, Rosso, Bose (bb0275) 2012; 32
Devane, Hanus, Breuer, Pertwee, Stevenson, Griffin, Gibson, Mandelbaum, Etinger, Mechoulam (bb0070) 1992; 258
Turkheimer, Hinz, Gunn, Aston, Gunn, Cunningham (bb0270) 2003; 48
Portney, Watkins (bb0215) 2009
Hampson, Sweatt, Goonawardena, Song, Chan, Marmarelis, Berger, Deadwyler (bb0145) 2011; 22
Charalambous, Marciniak, Shiue, Dewey, Schlyer, Wolf, Makriyannis (bb0035) 1991; 40
Heckemann, Keihaninejad, Aljabar, Gray, Nielsen, Rueckert, Hajnal, Hammers (bb0155) 2011; 56
Defrise, Kinahan, Townsend, Michel, Sibomana, Newport (bb0055) 1997; 16
Katona, Freund (bb0195) 2008; 14
Cable, Mullany, Schaff (bb0030) 1999; 67
Heckemann, Hajnal, Aljabar, Rueckert, Hammers (bb0150) 2006; 33
Finnema, Donohue, Zoghbi, Brown, Gulyas, Innis, Halldin, Pike (bb0075) 2009; 63
Terry, Hirvonen, Liow, Zoghbi, Gladding, Tauscher, Schaus, Phebus, Felder, Morse, Donohue, Pike, Halldin, Innis (bb0240) 2010; 51
Griffin, Atkinson, Showalter, Martin, Abood (bb0100) 1998; 285
Bossong, van Berckel, Boellaard, Zuurman, Schuit, Windhorst, van Gerven, Ramsey, Lammertsma, Kahn (bb0020) 2009; 34
Gatley, Gifford, Volkow, Lan, Makriyannis (bb0080) 1996; 307
Matsuda, Lolait, Brownstein, Young, Bonner (bb0205) 1990; 346
Goffin, Van Paesschen, Van Laere (bb0090) 2011; 134
Herkenham, Lynn, Little, Johnson, Melvin, Decosta, Rice (bb0165) 1990; 87
Terry, Liow, Chernet, Zoghbi, Phebus, Felder, Tauscher, Schaus, Pike, Halldin, Innis (bb0245) 2008; 41
Delforge, Syrota, Bendriem (bb0060) 1996; 37
Heckemann, Keihaninejad, Aljabar, Rueckert, Hajnal, Hammers, Alzheimer's Disease Neuroimaging Initiative (bb0160) 2010; 51
Hammers, Panagoda, Heckemann, Kelsch, Turkheimer, Brooks, Duncan, Koepp (bb0140) 2008; 28
Irving, Rae, Coutts (bb0185) 2002; 2
Slogoff, Keats, Arlund (bb0225) 1983; 59
Gunn, Sargent, Bench, Rabiner, Osman, Pike, Hume, Grasby, Lammertsma (bb0115) 1998; 8
Hammers, Allom, Koepp, Free, Myers, Lemieux, Mitchell, Brooks, Duncan (bb0125) 2003; 19
Hammers, Asselin, Hinz, Kitchen, Brooks, Duncan, Koepp (bb0135) 2007; 130
Devane, Dysarz, Johnson, Melvin, Howlett (bb0065) 1988; 34
Jones, Cunningham, Hakawa, Fujiwara, Qi, Luthra, Ashburner, Osman, Jones (bb0190) 1994; 51
Wong, Kuwabara, Horti, Raymont, Brasic, Guevara, Ye, Dannals, Ravert, Nandi, Rahmim, Ming, Grachev, Roy, Cascella (bb0290) 2010; 52
Studholme, Hill, Hawkes (bb0230) 1996; 1
Ahmad, Goffin, Van den Stock, De Winter, Cleeren, Bormans, Tournoy, Persoons, Van Laere, Vandenbulcke (bb0010) 2014; 24
Gatley, Lan, Volkow, Pappas, King, Wong, Gifford, Pyatt, Dewey, Makriyannis (bb0085) 1998; 70
Terry, Hirvonen, Liow, Seneca, Tauscher, Schaus, Phebus, Felder, Morse, Pike, Halldin, Innis (bb0235) 2010; 37
Van Laere, Casteels, Dhollander, Goffin, Grachev, Bormans, Vandenberghe (bb0280) 2010; 51
Watabe, Ikoma, Kimura, Naganawa, Shidahara (bb0285) 2006; 20
Gunn, Lammertsma, Hume, Cunningham (bb0110) 1997; 6
Innis, Cunningham, Delforge, Fujita, Giedde, Gunn, Holden, Houle, Huang, Ichise, Lida, Ito, Kimura, Koeppe, Knudsen, Knuuti, Lammertsma, Laruelle, Logan, Maguire, Mintun, Morris, Parsey, Price, Slifstein, Sossi, Suhara, Votaw, Wong, Carson (bb0180) 2007; 27
Cable (10.1016/j.neuroimage.2014.04.020_bb0030) 1999; 67
Heckemann (10.1016/j.neuroimage.2014.04.020_bb0160) 2010; 51
Hampson (10.1016/j.neuroimage.2014.04.020_bb0145) 2011; 22
Cunningham (10.1016/j.neuroimage.2014.04.020_bb0045) 1991; 11
Petitet (10.1016/j.neuroimage.2014.04.020_bb0210) 1996; 7
Watabe (10.1016/j.neuroimage.2014.04.020_bb0285) 2006; 20
Hammers (10.1016/j.neuroimage.2014.04.020_bb0130) 2007; 38
Yasuno (10.1016/j.neuroimage.2014.04.020_bb0295) 2008; 33
Herkenham (10.1016/j.neuroimage.2014.04.020_bb0165) 1990; 87
Hammers (10.1016/j.neuroimage.2014.04.020_bb0135) 2007; 130
Hammers (10.1016/j.neuroimage.2014.04.020_bb0140) 2008; 28
Hammers (10.1016/j.neuroimage.2014.04.020_bb0125) 2003; 19
Heckemann (10.1016/j.neuroimage.2014.04.020_bb0155) 2011; 56
Goffin (10.1016/j.neuroimage.2014.04.020_bb0090) 2011; 134
Griffin (10.1016/j.neuroimage.2014.04.020_bb0100) 1998; 285
Studholme (10.1016/j.neuroimage.2014.04.020_bb0230) 1996; 1
Gatley (10.1016/j.neuroimage.2014.04.020_bb0080) 1996; 307
Matsuda (10.1016/j.neuroimage.2014.04.020_bb0205) 1990; 346
Terry (10.1016/j.neuroimage.2014.04.020_bb0235) 2010; 37
Turkheimer (10.1016/j.neuroimage.2014.04.020_bb0275) 2012; 32
Irving (10.1016/j.neuroimage.2014.04.020_bb0185) 2002; 2
Jones (10.1016/j.neuroimage.2014.04.020_bb0190) 1994; 51
Horti (10.1016/j.neuroimage.2014.04.020_bb0170) 2006; 47
Turkheimer (10.1016/j.neuroimage.2014.04.020_bb0255) 1994; 14
Hamill (10.1016/j.neuroimage.2014.04.020_bb0120) 2009; 11
Portney (10.1016/j.neuroimage.2014.04.020_bb0215) 2009
Terry (10.1016/j.neuroimage.2014.04.020_bb0240) 2010; 51
Van Laere (10.1016/j.neuroimage.2014.04.020_bb0280) 2010; 51
Katona (10.1016/j.neuroimage.2014.04.020_bb0195) 2008; 14
Innis (10.1016/j.neuroimage.2014.04.020_bb0180) 2007; 27
Wong (10.1016/j.neuroimage.2014.04.020_bb0290) 2010; 52
Huang (10.1016/j.neuroimage.2014.04.020_bb0175) 1980; 238
Schmidt (10.1016/j.neuroimage.2014.04.020_bb0220) 1999; 19
Burns (10.1016/j.neuroimage.2014.04.020_bb0025) 2007; 104
Cunningham (10.1016/j.neuroimage.2014.04.020_bb0050) 1993; 13
Charalambous (10.1016/j.neuroimage.2014.04.020_bb0035) 1991; 40
Gousias (10.1016/j.neuroimage.2014.04.020_bb0095) 2008; 40
Turkheimer (10.1016/j.neuroimage.2014.04.020_bb0260) 1999; 19
Defrise (10.1016/j.neuroimage.2014.04.020_bb0055) 1997; 16
Devane (10.1016/j.neuroimage.2014.04.020_bb0070) 1992; 258
Turkheimer (10.1016/j.neuroimage.2014.04.020_bb0270) 2003; 48
MacLennan (10.1016/j.neuroimage.2014.04.020_bb0200) 1993; 47
Delforge (10.1016/j.neuroimage.2014.04.020_bb0060) 1996; 37
Heckemann (10.1016/j.neuroimage.2014.04.020_bb0150) 2006; 33
Devane (10.1016/j.neuroimage.2014.04.020_bb0065) 1988; 34
Slogoff (10.1016/j.neuroimage.2014.04.020_bb0225) 1983; 59
Ahmad (10.1016/j.neuroimage.2014.04.020_bb0010) 2014; 24
Gatley (10.1016/j.neuroimage.2014.04.020_bb0085) 1998; 70
Gunn (10.1016/j.neuroimage.2014.04.020_bb0115) 1998; 8
Terry (10.1016/j.neuroimage.2014.04.020_bb0250) 2009; 48
Aston (10.1016/j.neuroimage.2014.04.020_bb0015) 2001; 13
Allen (10.1016/j.neuroimage.2014.04.020_bb0005) 1929; 178
Bossong (10.1016/j.neuroimage.2014.04.020_bb0020) 2009; 34
Gunn (10.1016/j.neuroimage.2014.04.020_bb0105) 2001; 21
Terry (10.1016/j.neuroimage.2014.04.020_bb0245) 2008; 41
Cunningham (10.1016/j.neuroimage.2014.04.020_bb0040) 1993; 1030
Gunn (10.1016/j.neuroimage.2014.04.020_bb0110) 1997; 6
Finnema (10.1016/j.neuroimage.2014.04.020_bb0075) 2009; 63
References_xml – volume: 32
  start-page: 70
  year: 2012
  end-page: 80
  ident: bb0275
  article-title: Quantification of ligand PET studies using a reference region with a displaceable fraction: application to occupancy studies with [(11)C]-DASB as an example
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 40
  start-page: 672
  year: 2008
  end-page: 684
  ident: bb0095
  article-title: Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest
  publication-title: NeuroImage
– volume: 104
  start-page: 9800
  year: 2007
  end-page: 9805
  ident: bb0025
  article-title: F-18 MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 1
  start-page: 163
  year: 1996
  end-page: 175
  ident: bb0230
  article-title: Automated 3-D registration of MR and CT images of the head
  publication-title: Med. Image Anal.
– volume: 41
  start-page: 690
  year: 2008
  end-page: 698
  ident: bb0245
  article-title: Positron emission tomography imaging using an inverse agonist radioligand to assess cannabinoid CB1 receptors in rodents
  publication-title: NeuroImage
– volume: 285
  start-page: 553
  year: 1998
  end-page: 560
  ident: bb0100
  article-title: Evaluation of cannabinoid receptor agonists and antagonists using the guanosine-5 ′-O-(3- S-35 thio)-triphosphate binding assay in rat cerebellar membranes
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 70
  start-page: 417
  year: 1998
  end-page: 423
  ident: bb0085
  article-title: Imaging the brain marijuana receptor: development of a radioligand that binds to cannabinoid CB1 receptors in vivo
  publication-title: J. Neurochem.
– volume: 130
  start-page: 1009
  year: 2007
  end-page: 1016
  ident: bb0135
  article-title: Upregulation of opioid receptor binding following spontaneous epileptic seizures
  publication-title: Brain
– volume: 38
  start-page: 82
  year: 2007
  end-page: 94
  ident: bb0130
  article-title: Balancing bias, reliability, noise properties and the need for parametric maps in quantitative ligand PET: [C-11]diprenorphine test-retest data
  publication-title: NeuroImage
– volume: 51
  start-page: 112
  year: 2010
  end-page: 120
  ident: bb0240
  article-title: Imaging and quantitation of cannabinoid CB(1) receptors in human and monkey brains using (18)F-labeled inverse agonist radioligands
  publication-title: J. Nucl. Med.
– volume: 34
  start-page: 605
  year: 1988
  end-page: 613
  ident: bb0065
  article-title: Determination and characterization of a cannabinoid receptor in rat-brain
  publication-title: Mol. Pharmacol.
– volume: 7
  start-page: 789
  year: 1996
  end-page: 792
  ident: bb0210
  article-title: Biochemical and pharmacological characterization of cannabinoid binding sites using H-3 SR141716A
  publication-title: Neuroreport
– start-page: 560
  year: 2009
  end-page: 567
  ident: bb0215
  article-title: Foundations of Clinical Research: Applications to Practice
– volume: 2
  start-page: 632
  year: 2002
  end-page: 648
  ident: bb0185
  article-title: Cannabinoids on the brain
  publication-title: Sci. World J.
– volume: 33
  start-page: 259
  year: 2008
  end-page: 269
  ident: bb0295
  article-title: The PET radioligand [C-11]MePPEP binds reversibly and with high specific signal to cannabinoid CB1 receptors in nonhuman primate brain
  publication-title: Neuropsychopharmacology
– volume: 22
  start-page: 335
  year: 2011
  end-page: 346
  ident: bb0145
  article-title: Memory encoding in hippocampal ensembles is negatively influenced by cannabinoid CB1 receptors
  publication-title: Behav. Pharmacol.
– volume: 47
  start-page: 292
  year: 1993
  end-page: 296
  ident: bb0200
  article-title: Interrater reliability with SPSS for Windows 5.0
  publication-title: Am. Stat.
– volume: 346
  start-page: 561
  year: 1990
  end-page: 564
  ident: bb0205
  article-title: Structure of a cannabinoid receptor and functional expression of the cloned cDNA
  publication-title: Nature
– volume: 178
  start-page: 237
  year: 1929
  end-page: 244
  ident: bb0005
  article-title: Thromboangiitis obliterans: methods of diagnosis of chronic occlusive arterial lesions distal to the wrist with illustrative cases
  publication-title: Am. J. Med. Sci.
– volume: 28
  start-page: 207
  year: 2008
  end-page: 216
  ident: bb0140
  article-title: [C-11] Flumazenil PET in temporal lobe epilepsy: do we need an arterial input function or kinetic modeling?
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 19
  start-page: 1189
  year: 1999
  end-page: 1208
  ident: bb0260
  article-title: Multiresolution analysis of emission tomography images in the wavelet domain
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 51
  start-page: 1413
  year: 2010
  end-page: 1417
  ident: bb0280
  article-title: Widespread decrease of type 1 cannabinoid receptor availability in Huntington disease in vivo
  publication-title: J. Nucl. Med.
– volume: 27
  start-page: 1533
  year: 2007
  end-page: 1539
  ident: bb0180
  article-title: Consensus nomenclature for in vivo imaging of reversibly binding radioligands
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 19
  start-page: 224
  year: 2003
  end-page: 247
  ident: bb0125
  article-title: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe
  publication-title: Hum. Brain Mapp.
– volume: 48
  start-page: 362
  year: 2009
  end-page: 370
  ident: bb0250
  article-title: Quantitation of cannabinoid CB(1) receptors in healthy human brain using positron emission tomography and an inverse agonist radioligand
  publication-title: NeuroImage
– volume: 51
  start-page: 221
  year: 2010
  end-page: 227
  ident: bb0160
  article-title: Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation
  publication-title: NeuroImage
– volume: 1030
  start-page: 101
  year: 1993
  end-page: 111
  ident: bb0040
  article-title: Use of spectral-analysis to obtain parametric images from dynamic pet studies
  publication-title: Quantification of Brain Function
– volume: 20
  start-page: 583
  year: 2006
  end-page: 588
  ident: bb0285
  article-title: PET kinetic analysis — compartmental model
  publication-title: Ann. Nucl. Med.
– volume: 37
  start-page: 118
  year: 1996
  end-page: 125
  ident: bb0060
  article-title: Concept of reaction volume in the in vivo ligand-receptor model
  publication-title: J. Nucl. Med.
– volume: 63
  start-page: 22
  year: 2009
  end-page: 30
  ident: bb0075
  article-title: Evaluation of (11)C PipISB and (18)F PipISB in monkey as candidate radioligands for imaging brain cannabinoid type-1 receptors in vivo
  publication-title: Synapse
– volume: 134
  start-page: 1033
  year: 2011
  end-page: 1040
  ident: bb0090
  article-title: In vivo activation of endocannabinoid system in temporal lobe epilepsy with hippocampal sclerosis
  publication-title: Brain
– volume: 47
  start-page: 1689
  year: 2006
  end-page: 1696
  ident: bb0170
  article-title: C-11-JHU75528: A radiotracer for PET imaging of CB1 cannabinoid receptors
  publication-title: J. Nucl. Med.
– volume: 238
  start-page: E69
  year: 1980
  end-page: E82
  ident: bb0175
  article-title: Non-invasive determination of local cerebral metabolic-rate of glucose in man
  publication-title: Am. J. Physiol.
– volume: 51
  start-page: 123
  year: 1994
  end-page: 134
  ident: bb0190
  article-title: Quantification of [C-11] diprenorphine cerebral kinetics in man acquired by PET using presaturation, pulse-chase and tracer-only protocols
  publication-title: J. Neurosci. Methods
– volume: 11
  start-page: 1
  year: 1991
  end-page: 9
  ident: bb0045
  article-title: Compartmental analysis of diprenorphine binding to opiate receptors in the rat invivo and its comparison with equilibrium data in vitro
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 24
  start-page: 242
  year: 2014
  end-page: 250
  ident: bb0010
  article-title: In vivo type 1 cannabinoid receptor availability in Alzheimer's disease
  publication-title: Eur. Neuropsychopharmacol.
– volume: 258
  start-page: 1946
  year: 1992
  end-page: 1949
  ident: bb0070
  article-title: Isolation and structure of a brain constituent that binds to the cannabinoid receptor
  publication-title: Science
– volume: 52
  start-page: 1505
  year: 2010
  end-page: 1513
  ident: bb0290
  article-title: Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11C]OMAR
  publication-title: NeuroImage
– volume: 13
  start-page: 65-65
  year: 2001
  ident: bb0015
  article-title: RPM statistics — a statistical tool for receptor parametric mapping
  publication-title: Neuroimage
– volume: 19
  start-page: 560
  year: 1999
  end-page: 569
  ident: bb0220
  article-title: Which linear compartmental systems can be analyzed by spectral analysis of PET output data summed over all compartments?
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 13
  start-page: 15
  year: 1993
  end-page: 23
  ident: bb0050
  article-title: Spectral-analysis of dynamic pet studies
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 67
  start-page: 876
  year: 1999
  end-page: 877
  ident: bb0030
  article-title: The Allen test
  publication-title: Ann. Thorac. Surg.
– volume: 21
  start-page: 635
  year: 2001
  end-page: 652
  ident: bb0105
  article-title: Positron emission tomography compartmental models
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 59
  start-page: 42
  year: 1983
  end-page: 47
  ident: bb0225
  article-title: On the safety of radial artery cannulation
  publication-title: Anesthesiology
– volume: 11
  start-page: 246
  year: 2009
  end-page: 252
  ident: bb0120
  article-title: PET imaging studies in rhesus monkey with the cannabinoid-1 (CB1) receptor ligand (11)C CB-119
  publication-title: Mol. Imaging Biol.
– volume: 87
  start-page: 1932
  year: 1990
  end-page: 1936
  ident: bb0165
  article-title: Cannabinoid receptor localization in brain
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 33
  start-page: 115
  year: 2006
  end-page: 126
  ident: bb0150
  article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion
  publication-title: NeuroImage
– volume: 40
  start-page: 503
  year: 1991
  end-page: 507
  ident: bb0035
  article-title: PET studies in the primate brain and distribution in mice using (−)-5′-
  publication-title: Pharmacol. Biochem. Behav.
– volume: 8
  start-page: 426
  year: 1998
  end-page: 440
  ident: bb0115
  article-title: Tracer kinetic modeling of the 5-HT1A receptor ligand [carbonyl-11C]WAY-100635 for PET
  publication-title: NeuroImage
– volume: 14
  start-page: 923
  year: 2008
  end-page: 930
  ident: bb0195
  article-title: Endocannabinoid signaling as a synaptic circuit breaker in neurological disease
  publication-title: Nat. Med.
– volume: 56
  start-page: 2024
  year: 2011
  end-page: 2037
  ident: bb0155
  article-title: Automatic morphometry in Alzheimer's disease and mild cognitive impairment
  publication-title: NeuroImage
– volume: 34
  start-page: 759
  year: 2009
  end-page: 766
  ident: bb0020
  article-title: Delta 9-tetrahydrocannabinol induces dopamine release in the human striatum
  publication-title: Neuropsychopharmacology
– volume: 48
  start-page: 3819
  year: 2003
  end-page: 3841
  ident: bb0270
  article-title: Rank-shaping regularization of exponential spectral analysis for application to functional parametric mapping
  publication-title: Phys. Med. Biol.
– volume: 14
  start-page: 406
  year: 1994
  end-page: 422
  ident: bb0255
  article-title: The use of spectral analysis to determine regional cerebral glucose utilization with positron emission tomography and [
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 6
  start-page: 279
  year: 1997
  end-page: 287
  ident: bb0110
  article-title: Parametric imaging of ligand-receptor binding in PET using a simplified reference region model
  publication-title: NeuroImage
– volume: 37
  start-page: 1499
  year: 2010
  end-page: 1506
  ident: bb0235
  article-title: Biodistribution and dosimetry in humans of two inverse agonists to image cannabinoid CB1 receptors using positron emission tomography
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 16
  start-page: 145
  year: 1997
  end-page: 158
  ident: bb0055
  article-title: Exact and approximate rebinning algorithms for 3-D PET data
  publication-title: IEEE Trans. Med. Imaging
– volume: 307
  start-page: 331
  year: 1996
  end-page: 338
  ident: bb0080
  article-title: I-123-labeled AM251: a radioiodinated ligand which binds in vivo to mouse brain cannabinoid CB1 receptors
  publication-title: Eur. J. Pharmacol.
– volume: 104
  start-page: 9800
  year: 2007
  ident: 10.1016/j.neuroimage.2014.04.020_bb0025
  article-title: F-18 MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0703472104
– volume: 178
  start-page: 237
  year: 1929
  ident: 10.1016/j.neuroimage.2014.04.020_bb0005
  article-title: Thromboangiitis obliterans: methods of diagnosis of chronic occlusive arterial lesions distal to the wrist with illustrative cases
  publication-title: Am. J. Med. Sci.
  doi: 10.1097/00000441-192908000-00009
– volume: 40
  start-page: 672
  year: 2008
  ident: 10.1016/j.neuroimage.2014.04.020_bb0095
  article-title: Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.11.034
– volume: 51
  start-page: 1413
  year: 2010
  ident: 10.1016/j.neuroimage.2014.04.020_bb0280
  article-title: Widespread decrease of type 1 cannabinoid receptor availability in Huntington disease in vivo
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.110.077156
– volume: 37
  start-page: 118
  year: 1996
  ident: 10.1016/j.neuroimage.2014.04.020_bb0060
  article-title: Concept of reaction volume in the in vivo ligand-receptor model
  publication-title: J. Nucl. Med.
– volume: 34
  start-page: 605
  year: 1988
  ident: 10.1016/j.neuroimage.2014.04.020_bb0065
  article-title: Determination and characterization of a cannabinoid receptor in rat-brain
  publication-title: Mol. Pharmacol.
  doi: 10.1016/S0026-895X(25)09876-1
– volume: 7
  start-page: 789
  year: 1996
  ident: 10.1016/j.neuroimage.2014.04.020_bb0210
  article-title: Biochemical and pharmacological characterization of cannabinoid binding sites using H-3 SR141716A
  publication-title: Neuroreport
  doi: 10.1097/00001756-199602290-00026
– volume: 48
  start-page: 362
  year: 2009
  ident: 10.1016/j.neuroimage.2014.04.020_bb0250
  article-title: Quantitation of cannabinoid CB(1) receptors in healthy human brain using positron emission tomography and an inverse agonist radioligand
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.06.059
– volume: 51
  start-page: 112
  year: 2010
  ident: 10.1016/j.neuroimage.2014.04.020_bb0240
  article-title: Imaging and quantitation of cannabinoid CB(1) receptors in human and monkey brains using (18)F-labeled inverse agonist radioligands
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.109.067074
– volume: 19
  start-page: 1189
  year: 1999
  ident: 10.1016/j.neuroimage.2014.04.020_bb0260
  article-title: Multiresolution analysis of emission tomography images in the wavelet domain
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1097/00004647-199911000-00003
– volume: 238
  start-page: E69
  year: 1980
  ident: 10.1016/j.neuroimage.2014.04.020_bb0175
  article-title: Non-invasive determination of local cerebral metabolic-rate of glucose in man
  publication-title: Am. J. Physiol.
– volume: 24
  start-page: 242
  year: 2014
  ident: 10.1016/j.neuroimage.2014.04.020_bb0010
  article-title: In vivo type 1 cannabinoid receptor availability in Alzheimer's disease
  publication-title: Eur. Neuropsychopharmacol.
  doi: 10.1016/j.euroneuro.2013.10.002
– volume: 51
  start-page: 221
  year: 2010
  ident: 10.1016/j.neuroimage.2014.04.020_bb0160
  article-title: Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.01.072
– volume: 130
  start-page: 1009
  year: 2007
  ident: 10.1016/j.neuroimage.2014.04.020_bb0135
  article-title: Upregulation of opioid receptor binding following spontaneous epileptic seizures
  publication-title: Brain
  doi: 10.1093/brain/awm012
– volume: 56
  start-page: 2024
  year: 2011
  ident: 10.1016/j.neuroimage.2014.04.020_bb0155
  article-title: Automatic morphometry in Alzheimer's disease and mild cognitive impairment
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.03.014
– volume: 70
  start-page: 417
  year: 1998
  ident: 10.1016/j.neuroimage.2014.04.020_bb0085
  article-title: Imaging the brain marijuana receptor: development of a radioligand that binds to cannabinoid CB1 receptors in vivo
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.1998.70010417.x
– volume: 8
  start-page: 426
  year: 1998
  ident: 10.1016/j.neuroimage.2014.04.020_bb0115
  article-title: Tracer kinetic modeling of the 5-HT1A receptor ligand [carbonyl-11C]WAY-100635 for PET
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0379
– volume: 52
  start-page: 1505
  year: 2010
  ident: 10.1016/j.neuroimage.2014.04.020_bb0290
  article-title: Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11C]OMAR
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.04.034
– start-page: 560
  year: 2009
  ident: 10.1016/j.neuroimage.2014.04.020_bb0215
– volume: 37
  start-page: 1499
  year: 2010
  ident: 10.1016/j.neuroimage.2014.04.020_bb0235
  article-title: Biodistribution and dosimetry in humans of two inverse agonists to image cannabinoid CB1 receptors using positron emission tomography
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-010-1411-7
– volume: 33
  start-page: 259
  year: 2008
  ident: 10.1016/j.neuroimage.2014.04.020_bb0295
  article-title: The PET radioligand [C-11]MePPEP binds reversibly and with high specific signal to cannabinoid CB1 receptors in nonhuman primate brain
  publication-title: Neuropsychopharmacology
  doi: 10.1038/sj.npp.1301402
– volume: 285
  start-page: 553
  year: 1998
  ident: 10.1016/j.neuroimage.2014.04.020_bb0100
  article-title: Evaluation of cannabinoid receptor agonists and antagonists using the guanosine-5 ′-O-(3- S-35 thio)-triphosphate binding assay in rat cerebellar membranes
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1016/S0022-3565(24)37418-X
– volume: 13
  start-page: 65-65
  year: 2001
  ident: 10.1016/j.neuroimage.2014.04.020_bb0015
  article-title: RPM statistics — a statistical tool for receptor parametric mapping
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(01)91408-9
– volume: 1030
  start-page: 101
  year: 1993
  ident: 10.1016/j.neuroimage.2014.04.020_bb0040
  article-title: Use of spectral-analysis to obtain parametric images from dynamic pet studies
– volume: 87
  start-page: 1932
  year: 1990
  ident: 10.1016/j.neuroimage.2014.04.020_bb0165
  article-title: Cannabinoid receptor localization in brain
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.87.5.1932
– volume: 51
  start-page: 123
  year: 1994
  ident: 10.1016/j.neuroimage.2014.04.020_bb0190
  article-title: Quantification of [C-11] diprenorphine cerebral kinetics in man acquired by PET using presaturation, pulse-chase and tracer-only protocols
  publication-title: J. Neurosci. Methods
  doi: 10.1016/0165-0270(94)90002-7
– volume: 1
  start-page: 163
  year: 1996
  ident: 10.1016/j.neuroimage.2014.04.020_bb0230
  article-title: Automated 3-D registration of MR and CT images of the head
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(96)80011-9
– volume: 32
  start-page: 70
  year: 2012
  ident: 10.1016/j.neuroimage.2014.04.020_bb0275
  article-title: Quantification of ligand PET studies using a reference region with a displaceable fraction: application to occupancy studies with [(11)C]-DASB as an example
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2011.108
– volume: 63
  start-page: 22
  year: 2009
  ident: 10.1016/j.neuroimage.2014.04.020_bb0075
  article-title: Evaluation of (11)C PipISB and (18)F PipISB in monkey as candidate radioligands for imaging brain cannabinoid type-1 receptors in vivo
  publication-title: Synapse
  doi: 10.1002/syn.20578
– volume: 59
  start-page: 42
  year: 1983
  ident: 10.1016/j.neuroimage.2014.04.020_bb0225
  article-title: On the safety of radial artery cannulation
  publication-title: Anesthesiology
  doi: 10.1097/00000542-198307000-00008
– volume: 11
  start-page: 246
  year: 2009
  ident: 10.1016/j.neuroimage.2014.04.020_bb0120
  article-title: PET imaging studies in rhesus monkey with the cannabinoid-1 (CB1) receptor ligand (11)C CB-119
  publication-title: Mol. Imaging Biol.
  doi: 10.1007/s11307-008-0194-8
– volume: 33
  start-page: 115
  year: 2006
  ident: 10.1016/j.neuroimage.2014.04.020_bb0150
  article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.05.061
– volume: 6
  start-page: 279
  year: 1997
  ident: 10.1016/j.neuroimage.2014.04.020_bb0110
  article-title: Parametric imaging of ligand-receptor binding in PET using a simplified reference region model
  publication-title: NeuroImage
  doi: 10.1006/nimg.1997.0303
– volume: 346
  start-page: 561
  year: 1990
  ident: 10.1016/j.neuroimage.2014.04.020_bb0205
  article-title: Structure of a cannabinoid receptor and functional expression of the cloned cDNA
  publication-title: Nature
  doi: 10.1038/346561a0
– volume: 67
  start-page: 876
  year: 1999
  ident: 10.1016/j.neuroimage.2014.04.020_bb0030
  article-title: The Allen test
  publication-title: Ann. Thorac. Surg.
  doi: 10.1016/S0003-4975(99)00095-8
– volume: 307
  start-page: 331
  year: 1996
  ident: 10.1016/j.neuroimage.2014.04.020_bb0080
  article-title: I-123-labeled AM251: a radioiodinated ligand which binds in vivo to mouse brain cannabinoid CB1 receptors
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/0014-2999(96)00279-8
– volume: 48
  start-page: 3819
  year: 2003
  ident: 10.1016/j.neuroimage.2014.04.020_bb0270
  article-title: Rank-shaping regularization of exponential spectral analysis for application to functional parametric mapping
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/48/23/002
– volume: 27
  start-page: 1533
  year: 2007
  ident: 10.1016/j.neuroimage.2014.04.020_bb0180
  article-title: Consensus nomenclature for in vivo imaging of reversibly binding radioligands
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/sj.jcbfm.9600493
– volume: 47
  start-page: 1689
  year: 2006
  ident: 10.1016/j.neuroimage.2014.04.020_bb0170
  article-title: C-11-JHU75528: A radiotracer for PET imaging of CB1 cannabinoid receptors
  publication-title: J. Nucl. Med.
– volume: 16
  start-page: 145
  year: 1997
  ident: 10.1016/j.neuroimage.2014.04.020_bb0055
  article-title: Exact and approximate rebinning algorithms for 3-D PET data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.563660
– volume: 19
  start-page: 224
  year: 2003
  ident: 10.1016/j.neuroimage.2014.04.020_bb0125
  article-title: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10123
– volume: 134
  start-page: 1033
  year: 2011
  ident: 10.1016/j.neuroimage.2014.04.020_bb0090
  article-title: In vivo activation of endocannabinoid system in temporal lobe epilepsy with hippocampal sclerosis
  publication-title: Brain
  doi: 10.1093/brain/awq385
– volume: 41
  start-page: 690
  year: 2008
  ident: 10.1016/j.neuroimage.2014.04.020_bb0245
  article-title: Positron emission tomography imaging using an inverse agonist radioligand to assess cannabinoid CB1 receptors in rodents
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.03.004
– volume: 38
  start-page: 82
  year: 2007
  ident: 10.1016/j.neuroimage.2014.04.020_bb0130
  article-title: Balancing bias, reliability, noise properties and the need for parametric maps in quantitative ligand PET: [C-11]diprenorphine test-retest data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.06.035
– volume: 11
  start-page: 1
  year: 1991
  ident: 10.1016/j.neuroimage.2014.04.020_bb0045
  article-title: Compartmental analysis of diprenorphine binding to opiate receptors in the rat invivo and its comparison with equilibrium data in vitro
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.1991.1
– volume: 22
  start-page: 335
  year: 2011
  ident: 10.1016/j.neuroimage.2014.04.020_bb0145
  article-title: Memory encoding in hippocampal ensembles is negatively influenced by cannabinoid CB1 receptors
  publication-title: Behav. Pharmacol.
  doi: 10.1097/FBP.0b013e3283473bfd
– volume: 21
  start-page: 635
  year: 2001
  ident: 10.1016/j.neuroimage.2014.04.020_bb0105
  article-title: Positron emission tomography compartmental models
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1097/00004647-200106000-00002
– volume: 47
  start-page: 292
  year: 1993
  ident: 10.1016/j.neuroimage.2014.04.020_bb0200
  article-title: Interrater reliability with SPSS for Windows 5.0
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1993.10476000
– volume: 19
  start-page: 560
  year: 1999
  ident: 10.1016/j.neuroimage.2014.04.020_bb0220
  article-title: Which linear compartmental systems can be analyzed by spectral analysis of PET output data summed over all compartments?
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1097/00004647-199905000-00010
– volume: 14
  start-page: 406
  issue: 3
  year: 1994
  ident: 10.1016/j.neuroimage.2014.04.020_bb0255
  article-title: The use of spectral analysis to determine regional cerebral glucose utilization with positron emission tomography and [18F]fluorodeoxyglucose: theory, implementation, and optimization procedures
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.1994.52
– volume: 13
  start-page: 15
  year: 1993
  ident: 10.1016/j.neuroimage.2014.04.020_bb0050
  article-title: Spectral-analysis of dynamic pet studies
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.1993.5
– volume: 28
  start-page: 207
  year: 2008
  ident: 10.1016/j.neuroimage.2014.04.020_bb0140
  article-title: [C-11] Flumazenil PET in temporal lobe epilepsy: do we need an arterial input function or kinetic modeling?
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/sj.jcbfm.9600515
– volume: 34
  start-page: 759
  year: 2009
  ident: 10.1016/j.neuroimage.2014.04.020_bb0020
  article-title: Delta 9-tetrahydrocannabinol induces dopamine release in the human striatum
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2008.138
– volume: 40
  start-page: 503
  year: 1991
  ident: 10.1016/j.neuroimage.2014.04.020_bb0035
  article-title: PET studies in the primate brain and distribution in mice using (−)-5′-18F-DELTA-8-THC
  publication-title: Pharmacol. Biochem. Behav.
  doi: 10.1016/0091-3057(91)90354-5
– volume: 258
  start-page: 1946
  year: 1992
  ident: 10.1016/j.neuroimage.2014.04.020_bb0070
  article-title: Isolation and structure of a brain constituent that binds to the cannabinoid receptor
  publication-title: Science
  doi: 10.1126/science.1470919
– volume: 2
  start-page: 632
  year: 2002
  ident: 10.1016/j.neuroimage.2014.04.020_bb0185
  article-title: Cannabinoids on the brain
  publication-title: Sci. World J.
  doi: 10.1100/tsw.2002.139
– volume: 20
  start-page: 583
  year: 2006
  ident: 10.1016/j.neuroimage.2014.04.020_bb0285
  article-title: PET kinetic analysis — compartmental model
  publication-title: Ann. Nucl. Med.
  doi: 10.1007/BF02984655
– volume: 14
  start-page: 923
  year: 2008
  ident: 10.1016/j.neuroimage.2014.04.020_bb0195
  article-title: Endocannabinoid signaling as a synaptic circuit breaker in neurological disease
  publication-title: Nat. Med.
  doi: 10.1038/nm.f.1869
SSID ssj0009148
Score 2.2264848
Snippet Endocannabinoids are involved in normal cognition, and dysfunction in cannabinoid-receptor-mediated neurotransmission has been suggested in a variety of...
Background Endocannabinoids are involved in normal cognition, and dysfunction in cannabinoid-receptor-mediated neurotransmission has been suggested in a...
BackgroundEndocannabinoids are involved in normal cognition, and dysfunction in cannabinoid-receptor-mediated neurotransmission has been suggested in a variety...
Cannabinoid receptor concentrations assessed with [ 11 C]MePPEP-PET. Top, reliability (ICCs ± SDs) of different quantification strategies: blue, compartmental...
SourceID pubmedcentral
hal
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 151
SubjectTerms Adult
Aged
Algorithms
Bioengineering
Biological and medical sciences
Blood Volume
Brain
Brain - diagnostic imaging
CB1
Cognitive science
Consent
Female
Fundamental and applied biological sciences. Psychology
Humans
Imaging
Intra-class correlation coefficient
Life Sciences
Magnetic Resonance Imaging
Male
Medical sciences
Methods
Middle Aged
Neuropharmacology
Neuroscience
Pharmacology. Drug treatments
Positron Emission Tomography
Positron-Emission Tomography - methods
Psychodysleptics: hallucinogen
Psychology. Psychoanalysis. Psychiatry
Psychopharmacology
Pyrrolidinones
Radiopharmaceuticals
Receptor, Cannabinoid, CB1 - metabolism
Reliability
Reproducibility of Results
Standard deviation
Urine
Vertebrates: nervous system and sense organs
Web hosting
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA7rPoggi3er6xLF1zpNk7QJPi3DLIM4MuAsLIiUpE3dytiZ3e0s-CL-B_-hv8Rzehsr-zAgzMs0OaU9OT2X5MsXQl6H1uU8MMI3LJO-sFb4WjvpK5lBvhzz1NVo99mHaHoq3p3Jsz0y7vbCIKyy9f2NT6-9dXtl1GpztC6K0UfIDCDcID8Z1lYSOUGFiNHK3_zYwjygudkOJ7mPvVs0T4Pxqjkji2_w5SLIS9Skp3jy980h6tY5YiXvrs0VqC9vzr24KTH9F1_5V8A6uUcO2kyTHjcvc5_sufIBuT1r19IfkmoBd_v989clTr1WFNktkfy1Qct-p6ucgtZLA5Xzqsh8UJJbQ31Occ6WMmquTbE0bd-LjakxRy6jOK9LIamk88mCLosvpszoJ8bGn2duPp_MH5HTk8liPPXbMxj8NApV5esIvGGQQ1XGdSp5FnErMmV4HhkRmzDSoVMaF4MVtyw1QWYYM6GLYPwDG0nLH5P9clW6p4Raw621KtY5FKWGC2WgOs0yySHFipRWHok7tSdpS1CO52Qskw6J9jXZDliCA5YE8AsDj7Bect2QdOwgo7uRTbpNqOA2E4gkO8i-7WUHxrqj9CswpP5Bkd97evw-wWvgbLnUOrxmHjka2FnfPVRSIeGRRw47w0tat3OVQPiKcB1YcI-87JvBYeAqkCndaoN9oChluKPYI08aO93eXMQcTwCCoRhY8OBhhy1lcV6TkiNxH9Pi2X-p5jm5g_9wzp7JQ7JfXW7cC0j6KntUf9V_ALjfV4o
  priority: 102
  providerName: Elsevier
Title Test–retest reproducibility of cannabinoid-receptor type 1 availability quantified with the PET ligand [11C]MePPEP
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811914002754
https://dx.doi.org/10.1016/j.neuroimage.2014.04.020
https://www.ncbi.nlm.nih.gov/pubmed/24736184
https://www.proquest.com/docview/1536166643
https://www.proquest.com/docview/1555015434
https://hal.science/hal-01135992
https://pubmed.ncbi.nlm.nih.gov/PMC4283194
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3_i9MwFA_uDkQQ8bvVc0Tx12rTpG2CP8g8dswvG0N2MBApSdN6k9nu9uXAX_zbfa9NNyeHDAaF9aWEvJeXl5dPPo-QV6HJCx5o4WtmI18YI3yl8siXkYV4OeFZXqPdh6N4cC4-TqOpS7itHKyy9Ym1o7ZVhjnyNzAzYzziEvzd4tLHqlF4uupKaHTIMVKXIaQrmSY70l0mmqtwEfclCDgkT4PvqvkiZz9h1iLAS9SEp1j1-_rlqXOBOMnbC72CoSuamhfXBaX_Yiv_WqzO7pI7LsqkvcYs7pEbeXmf3By6c_QHZDmBr_lLTLquKfJaIu1rg5P9RauCwniXGvbM1cyCFCJfqiXFbC1lVF_p2Vw72cuNrtFGuaWY0aUQTtJxf0Lns--6tPQrY6ffhvl43B8_JOdn_cnpwHfVF_wsDuXaVzH4waCA_RhXWcRtzI2wUvMi1iLRYazCXCo8BpbcsEwHVjOmwzwGzQcmjgx_RI7KqsyfEGo0N8bIRBWwHdVcSA37UmsjDsFVLJX0SNIOepo5anKskDFPWwzaj3SnrhTVlQbwCwOPsG3LRUPPcUAb1eo1ba-fgsNMYQ05oO3bbVsXojShx4GtX4IZbTuKzN6D3ucU_wM3yyOlwivmke6elW3FQxlJpDryyElrdqlzOKt0Nz088mL7GlwFnv_oMq82KAPbUYZ3iT3yuLHS3cdFwrH2D6hiz373Orv_ppxd1HTkSNnHlHj6_249I7dwJDAdz6ITcrRebvLnEM-tTZd0Xv9m3Xrqdslx78OnwQie7_uj8Zc_ngNOkA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELa2TgIkhHhfYAyD4GNEHDupLYTQGJ061lYV6qRJEwp24mxFJen6MrQ_xW_kLi8tRRPql0n91NiWkzuf73yPnyPkjW9syj0tXM2SwBXGCFcpG7gySMBfbvLYFmj3bi9sH4svJ8HJBvld34VBWGVtEwtDneQxnpG_g5UZYopL8I_jCxerRmF2tS6hUarFkb36BSHb9MPhZ5DvW98_aA32225VVcCNQ1_OXBXC-vZSiDO4igOehNyIRGqehlo0tR8q30qF6U3JDYu1l2jGtG9DeCPPhIHhMO4m2RIcQpkG2frU6vW_Lml-mSgv3wXclYypCjtUIsoKhsrhT7ATCCkTBcUq1hm_fkPcPEdk5t2xnoKw0rLKxnVu8L9ozr-2x4P75F7l19K9UhEfkA2bPSS3ulXm_hGZDGA0d4LHvDOKTJpINFsic69onlKQcKYhSs-HCbRCrE0-oXg-TBnVl3o40lXbi7ku8E02oXiGTMGBpf3WgI6GZzpL6Clj-9-6tt9v9R-T4xuRzBPSyPLMbhNqNDfGyKZKIQDWXEgNkXCSBBzcuVAq6ZBm_dGjuCJDx5oco6hGvf2IluKKUFyRBz_fcwhb9ByXhCBr9FG1XKP6wiuY6Ah2rTX6vl_0rZyi0tlZs_drUKPFRJFLvL3XifA_MOw8UMq_ZA7ZXdGyRXNfBhLJlRyyU6tdVJm4abRckA55tXgMxgkzTjqz-RzbQADM8PayQ56WWrocXDQ5VhsCUazo78pkV59kw_OCAB1JApkSz_4_rZfkdnvQ7USdw97Rc3IHvwomA1iwQxqzydy-AG9yZnarJUzJ95u2Gn8ATCOG5Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ta9swEBZtB2Uwxt6Xreu0sX00tSzJlhhjlDYhXZuSDykUxvAkW14zMjvNS0f_2n7d7vySLKOMfCnkUywJ2Xc63ekePUfIu8C6jPtGeIal0hPWCk9rJz0lU_CXI564Eu3eOw27Z-LzuTzfIL-buzAIq2xsYmmo0yLBM_I9WJkhprgE38tqWET_sPNpfOlhBSnMtDblNCoVOXbXvyB8m348OgRZvw-CTntw0PXqCgNeEgZq5ukQ1rqfQczBdSJ5GnIrUmV4FhoRmSDUgVMaU52KW5YYPzWMmcCF8Ha-DaXlMO4muRNxyXCNRefRkvCXieoanuSeYkzXKKIKW1ZyVQ5_gsVAcJkoyVax4vjNW-PmBWI0743NFMSWVfU2bnKI_8V1_rVRdh6Q-7WHS_crlXxINlz-iGz36hz-YzIZwGjeBA98ZxQ5NZFytsLoXtMioyDr3EC8XgxTaIWom2JC8aSYMmquzHBk6raXc1MinVxK8TSZgitL--0BHQ2_mzylXxg7-Npz_X67_4Sc3YpcnpKtvMjdc0Kt4dZaFekMQmHDhTIQE6ep5ODYhUqrFomajx4nNS06VucYxQ3-7Ue8FFeM4op9-AV-i7BFz3FFDbJGH93INW6uvoKxjmH_WqPvh0Xf2j2q3J41e78FNVpMFFnFu_snMf4HJp5LrYMr1iK7K1q2aB4oqZBmqUV2GrWLa2M3jZdLs0XeLB6DmcLck8ldMcc2EAozvMfcIs8qLV0OLiKOdYdAFCv6uzLZ1Sf58KKkQke6QKbFi_9P6zXZBlsRnxydHr8kd_GjYFaAyR2yNZvM3StwK2d2t1y_lHy7bYPxBxL-ibU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Test%E2%80%93retest+reproducibility+of+cannabinoid-receptor+type+1+availability+quantified+with+the+PET+ligand+%5B11C%5DMePPEP&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Ria%C3%B1o+Barros%2C+Daniela+A.&rft.au=Mcginnity%2C+Colm+J.&rft.au=Rosso%2C+Lula&rft.au=Heckemann%2C+Rolf+A.&rft.date=2014-08-15&rft.pub=Elsevier&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=97&rft.spage=151&rft.epage=162&rft_id=info:doi/10.1016%2Fj.neuroimage.2014.04.020&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01135992v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon