High-sensitivity infrared attenuated total reflectance sensors for in situ multicomponent detection of volatile organic compounds in water

Volatile organic compounds (VOCs) are by-products of human activity that are particularly difficult to detect in water. This protocol describes an infrared chemical sensing device for enriching and detecting VOCs via attenuated total reflection spectroscopy. In situ detection of volatile organic com...

Full description

Saved in:
Bibliographic Details
Published inNature protocols Vol. 11; no. 2; pp. 377 - 386
Main Authors Lu, Rui, Li, Wen-Wei, Mizaikoff, Boris, Katzir, Abraham, Raichlin, Yosef, Sheng, Guo-Ping, Yu, Han-Qing
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.02.2016
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Volatile organic compounds (VOCs) are by-products of human activity that are particularly difficult to detect in water. This protocol describes an infrared chemical sensing device for enriching and detecting VOCs via attenuated total reflection spectroscopy. In situ detection of volatile organic compounds (VOCs) in aqueous environments is imperative for ensuring the quality and safety of water supplies, yet it remains a challenging analytical task. We present a high-sensitivity method for in situ analysis of multicomponent VOCs at low concentrations based on the use of infrared attenuated total reflection (IR-ATR) spectroscopy. This protocol uses a unique ATR waveguide, which comprises a planar silver halide (AgCl x Br 1− x ) fiber with cylindrical extensions at both ends to increase the number of internal reflections, and a polymer coating that traps VOCs and excludes water molecules. Depending on the type of VOC and measurement scenario, IR spectra with specific frequency windows, scan times and spectral resolutions are obtained, from which concentration information is derived. This protocol allows simultaneous detection of multiple VOCs at concentrations around 10 p.p.b., and it enables accurate quantification via a single measurement within 5 min without the need for sample collection or sample pretreatment. This IR-ATR sensor technology will be useful for other applications; we have included a procedure for the analysis of protein conformation changes in Supplementary Methods as an example.
AbstractList In situ detection of volatile organic compounds (VOCs) in aqueous environments is imperative for ensuring the quality and safety of water supplies, yet it remains a challenging analytical task. We present a high-sensitivity method for in situ analysis of multicomponent VOCs at low concentrations based on the use of infrared attenuated total reflection (IR-ATR) spectroscopy. This protocol uses a unique ATR waveguide, which comprises a planar silver halide (AgCl(x)Br(1-x)) fiber with cylindrical extensions at both ends to increase the number of internal reflections, and a polymer coating that traps VOCs and excludes water molecules. Depending on the type of VOC and measurement scenario, IR spectra with specific frequency windows, scan times and spectral resolutions are obtained, from which concentration information is derived. This protocol allows simultaneous detection of multiple VOCs at concentrations around 10 p.p.b., and it enables accurate quantification via a single measurement within 5 min without the need for sample collection or sample pretreatment. This IR-ATR sensor technology will be useful for other applications; we have included a procedure for the analysis of protein conformation changes in Supplementary Methods as an example.In situ detection of volatile organic compounds (VOCs) in aqueous environments is imperative for ensuring the quality and safety of water supplies, yet it remains a challenging analytical task. We present a high-sensitivity method for in situ analysis of multicomponent VOCs at low concentrations based on the use of infrared attenuated total reflection (IR-ATR) spectroscopy. This protocol uses a unique ATR waveguide, which comprises a planar silver halide (AgCl(x)Br(1-x)) fiber with cylindrical extensions at both ends to increase the number of internal reflections, and a polymer coating that traps VOCs and excludes water molecules. Depending on the type of VOC and measurement scenario, IR spectra with specific frequency windows, scan times and spectral resolutions are obtained, from which concentration information is derived. This protocol allows simultaneous detection of multiple VOCs at concentrations around 10 p.p.b., and it enables accurate quantification via a single measurement within 5 min without the need for sample collection or sample pretreatment. This IR-ATR sensor technology will be useful for other applications; we have included a procedure for the analysis of protein conformation changes in Supplementary Methods as an example.
In situ detection of volatile organic compounds (VOCs) in aqueous environments is imperative for ensuring the quality and safety of water supplies, yet it remains a challenging analytical task. We present a high-sensitivity method for in situ analysis of multicomponent Vocs at low concentrations based on the use of infrared attenuated total reflection (IR-ATR) spectroscopy. this protocol uses a unique ATR waveguide, which comprises a planar silver halide (Ag[Cl.sub.x][Br.sub.1-x]) fiber with cylindrical extensions at both ends to increase the number of internal reflections, and a polymer coating that traps Vocs and excludes water molecules. Depending on the type of Voc and measurement scenario, IR spectra with specific frequency windows, scan times and spectral resolutions are obtained, from which concentration information is derived. this protocol allows simultaneous detection of multiple Vocs at concentrations around 10 p.p.b., and it enables accurate quantification via a single measurement within 5 min without the need for sample collection or sample pretreatment. this IR-ATR sensor technology will be useful for other applications; we have included a procedure for the analysis of protein conformation changes in supplementary Methods as an example.
Volatile organic compounds (VOCs) are by-products of human activity that are particularly difficult to detect in water. This protocol describes an infrared chemical sensing device for enriching and detecting VOCs via attenuated total reflection spectroscopy.In situ detection of volatile organic compounds (VOCs) in aqueous environments is imperative for ensuring the quality and safety of water supplies, yet it remains a challenging analytical task. We present a high-sensitivity method for in situ analysis of multicomponent VOCs at low concentrations based on the use of infrared attenuated total reflection (IR-ATR) spectroscopy. This protocol uses a unique ATR waveguide, which comprises a planar silver halide (AgClxBr1−x) fiber with cylindrical extensions at both ends to increase the number of internal reflections, and a polymer coating that traps VOCs and excludes water molecules. Depending on the type of VOC and measurement scenario, IR spectra with specific frequency windows, scan times and spectral resolutions are obtained, from which concentration information is derived. This protocol allows simultaneous detection of multiple VOCs at concentrations around 10 p.p.b., and it enables accurate quantification via a single measurement within 5 min without the need for sample collection or sample pretreatment. This IR-ATR sensor technology will be useful for other applications; we have included a procedure for the analysis of protein conformation changes in Supplementary Methods as an example.
In situ detection of volatile organic compounds (VOCs) in aqueous environments is imperative for ensuring the quality and safety of water supplies, yet it remains a challenging analytical task. We present a high-sensitivity method for in situ analysis of multicomponent VOCs at low concentrations based on the use of infrared attenuated total reflection (IR-ATR) spectroscopy. This protocol uses a unique ATR waveguide, which comprises a planar silver halide (AgCl(x)Br(1-x)) fiber with cylindrical extensions at both ends to increase the number of internal reflections, and a polymer coating that traps VOCs and excludes water molecules. Depending on the type of VOC and measurement scenario, IR spectra with specific frequency windows, scan times and spectral resolutions are obtained, from which concentration information is derived. This protocol allows simultaneous detection of multiple VOCs at concentrations around 10 p.p.b., and it enables accurate quantification via a single measurement within 5 min without the need for sample collection or sample pretreatment. This IR-ATR sensor technology will be useful for other applications; we have included a procedure for the analysis of protein conformation changes in Supplementary Methods as an example.
Volatile organic compounds (VOCs) are by-products of human activity that are particularly difficult to detect in water. This protocol describes an infrared chemical sensing device for enriching and detecting VOCs via attenuated total reflection spectroscopy. In situ detection of volatile organic compounds (VOCs) in aqueous environments is imperative for ensuring the quality and safety of water supplies, yet it remains a challenging analytical task. We present a high-sensitivity method for in situ analysis of multicomponent VOCs at low concentrations based on the use of infrared attenuated total reflection (IR-ATR) spectroscopy. This protocol uses a unique ATR waveguide, which comprises a planar silver halide (AgCl x Br 1− x ) fiber with cylindrical extensions at both ends to increase the number of internal reflections, and a polymer coating that traps VOCs and excludes water molecules. Depending on the type of VOC and measurement scenario, IR spectra with specific frequency windows, scan times and spectral resolutions are obtained, from which concentration information is derived. This protocol allows simultaneous detection of multiple VOCs at concentrations around 10 p.p.b., and it enables accurate quantification via a single measurement within 5 min without the need for sample collection or sample pretreatment. This IR-ATR sensor technology will be useful for other applications; we have included a procedure for the analysis of protein conformation changes in Supplementary Methods as an example.
In situ detection of volatile organic compounds (VOCs) in aqueous environments is imperative for ensuring the quality and safety of water supplies, yet it remains a challenging analytical task. We present a high-sensitivity method for in situ analysis of multicomponent VOCs at low concentrations based on the use of infrared attenuated total reflection (IR-ATR) spectroscopy. This protocol uses a unique ATR waveguide, which comprises a planar silver halide (AgClx Br1-x ) fiber with cylindrical extensions at both ends to increase the number of internal reflections, and a polymer coating that traps VOCs and excludes water molecules. Depending on the type of VOC and measurement scenario, IR spectra with specific frequency windows, scan times and spectral resolutions are obtained, from which concentration information is derived. This protocol allows simultaneous detection of multiple VOCs at concentrations around 10 p.p.b., and it enables accurate quantification via a single measurement within 5 min without the need for sample collection or sample pretreatment. This IR-ATR sensor technology will be useful for other applications; we have included a procedure for the analysis of protein conformation changes in Supplementary Methods as an example.
Audience Academic
Author Mizaikoff, Boris
Sheng, Guo-Ping
Lu, Rui
Li, Wen-Wei
Yu, Han-Qing
Raichlin, Yosef
Katzir, Abraham
Author_xml – sequence: 1
  givenname: Rui
  surname: Lu
  fullname: Lu, Rui
  organization: Department of Chemistry, Chinese Academy of Sciences (CAS) Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology
– sequence: 2
  givenname: Wen-Wei
  surname: Li
  fullname: Li, Wen-Wei
  organization: Department of Chemistry, Chinese Academy of Sciences (CAS) Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China
– sequence: 3
  givenname: Boris
  orcidid: 0000-0002-5583-7962
  surname: Mizaikoff
  fullname: Mizaikoff, Boris
  email: boris.mizaikoff@uni-ulm.de
  organization: Institute of Analytical and Bioanalytical Chemistry, University of Ulm
– sequence: 4
  givenname: Abraham
  surname: Katzir
  fullname: Katzir, Abraham
  organization: School of Physics, Tel Aviv University
– sequence: 5
  givenname: Yosef
  surname: Raichlin
  fullname: Raichlin, Yosef
  organization: Department of Applied Physics, Ariel University Center of Samaria
– sequence: 6
  givenname: Guo-Ping
  surname: Sheng
  fullname: Sheng, Guo-Ping
  organization: Department of Chemistry, Chinese Academy of Sciences (CAS) Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China
– sequence: 7
  givenname: Han-Qing
  surname: Yu
  fullname: Yu, Han-Qing
  email: hqyu@ustc.edu.cn
  organization: Department of Chemistry, Chinese Academy of Sciences (CAS) Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26820794$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNURD_gyhFZ4gKHbG3HsZNjVQGtVAmJj7NlnPHiKrEX2yn0L_CrmWwLdKuCYik-PM_M6PUcVnshBqiq54yuGG2647BJsaw4ZXJFWfOoOmCqpTVXfb-3vYuas67frw5zvqRUqEaqJ9U-lx2nqhcH1c8zv_5aZwjZF3_lyzXxwSWTYCCmFAizKXgtsZiRJHAj2GKCBbIYMWXiYkKDoD2TaR6Lt3Ha4IihkAEK0j4GEh25iqMpfgQS09oEb8mWm8OQF_07dklPq8fOjBme3f6Pqs9v33w6Pasv3r87Pz25qK3kXak7bkC2sqHArOrBNb0Tbd9YKfF0hsmhpQ0bhDPKStYx5yg4yxXnA2BE0BxVr27qYnTfZshFTz5bGEcTIM5ZMyWZkJKrBtGX99DLOKeA02neSiF73nDxPwpr0b5l4i61NiNoTDmWZOzSWp8IwXmnuJBIrR6g8BtgwmwDOAxxV3i9IyBT4EdZmzlnff7xwy774nbQ-csEg94kP5l0rX-vw9_uNsWc8b3_IIzqZd_0dt_0sm8aw0RB3BOsL2Z5dBzbj__Wjm-0jPXDGtKdxB42fgG7JOnR
CitedBy_id crossref_primary_10_1021_acs_analchem_1c01800
crossref_primary_10_1007_s10853_021_05942_x
crossref_primary_10_1021_acs_chemmater_6b05431
crossref_primary_10_1016_j_rser_2024_114365
crossref_primary_10_1016_j_snb_2017_07_032
crossref_primary_10_1021_acsphotonics_1c01750
crossref_primary_10_1021_acssensors_6b00250
crossref_primary_10_3390_chemosensors8030075
crossref_primary_10_3390_molecules27010234
crossref_primary_10_1016_j_scitotenv_2020_139191
crossref_primary_10_1039_C7TC05390H
crossref_primary_10_1007_s40825_022_00220_x
crossref_primary_10_1021_acssensors_6b00530
crossref_primary_10_1016_j_snb_2018_05_106
crossref_primary_10_1007_s11220_024_00520_2
crossref_primary_10_1038_s41586_019_1850_7
crossref_primary_10_1016_j_scitotenv_2022_159563
crossref_primary_10_1038_s41598_017_07502_3
crossref_primary_10_1039_D1LC00438G
crossref_primary_10_1016_j_snb_2018_08_111
crossref_primary_10_1016_j_talanta_2019_120631
crossref_primary_10_3390_s19173644
crossref_primary_10_1016_j_sna_2022_113455
crossref_primary_10_1016_j_jnoncrysol_2022_121420
crossref_primary_10_1016_j_ceramint_2022_09_108
crossref_primary_10_1021_acs_analchem_0c01240
crossref_primary_10_3390_bios12111038
crossref_primary_10_1021_acsami_8b16876
crossref_primary_10_1021_acsnano_0c07464
crossref_primary_10_1063_5_0197236
crossref_primary_10_1016_j_infrared_2022_104529
crossref_primary_10_1016_j_snb_2018_07_092
crossref_primary_10_1039_C6AY01450J
crossref_primary_10_1016_j_rinp_2023_106348
crossref_primary_10_1039_C6AN01477A
crossref_primary_10_1039_D0MH00249F
crossref_primary_10_1364_OL_43_005997
crossref_primary_10_1039_D1TC01351C
crossref_primary_10_1021_acsphotonics_0c00071
crossref_primary_10_1016_j_aca_2020_06_062
crossref_primary_10_1016_j_isci_2023_107821
crossref_primary_10_1002_pssa_201600134
crossref_primary_10_1021_acs_chemrev_8b00573
crossref_primary_10_1021_acsomega_2c05502
crossref_primary_10_1021_acs_analchem_7b03623
crossref_primary_10_1039_C9RA04104D
crossref_primary_10_1364_OE_399646
crossref_primary_10_1021_acs_est_3c07193
crossref_primary_10_2166_ws_2024_224
crossref_primary_10_1016_j_trac_2020_115892
crossref_primary_10_1039_D2SD00177B
crossref_primary_10_1080_10408347_2022_2041390
crossref_primary_10_1039_C6TA08235A
crossref_primary_10_1364_AO_58_002091
crossref_primary_10_1364_OE_381955
crossref_primary_10_1039_D0AY01749C
crossref_primary_10_1016_j_scitotenv_2022_153065
crossref_primary_10_1021_acscentsci_6b00075
crossref_primary_10_1016_j_chemolab_2018_12_008
crossref_primary_10_1073_pnas_2319465121
crossref_primary_10_1016_j_snb_2019_01_042
crossref_primary_10_1039_D2MA00319H
crossref_primary_10_1002_adma_202110525
crossref_primary_10_1039_C8TC02049C
crossref_primary_10_1364_JOSAB_35_0000C8
crossref_primary_10_1038_s41467_023_38200_6
crossref_primary_10_1039_C8LC00317C
crossref_primary_10_1021_acs_analchem_3c00691
crossref_primary_10_1063_5_0064234
crossref_primary_10_3389_fpls_2022_991883
crossref_primary_10_1039_D2TC00265E
crossref_primary_10_1016_j_watres_2020_116759
crossref_primary_10_1021_acs_cgd_2c00701
Cites_doi 10.1021/ac0347009
10.1366/000370203322005274
10.1021/jf400301y
10.1021/ac070832g
10.1016/j.ijms.2013.07.001
10.1021/ac960761d
10.1364/OPEX.13.005953
10.1016/j.snb.2008.06.058
10.1007/s001289900209
10.1366/12-06898
10.1016/S0021-9673(02)00439-9
10.1039/c3cs60173k
10.1016/j.colsurfb.2009.02.003
10.3390/membranes2040804
10.1021/ac048189a
10.1080/03067310500291585
10.1080/08927019109378165
10.1016/S0043-1354(01)00371-2
10.3390/s90806232
10.1021/jf0612373
10.1366/000370203322005256
10.1088/0957-0233/10/12/310
10.1016/j.colsurfb.2012.08.027
10.1021/ac051828c
10.1039/C1AN15521K
10.1126/science.1235053
10.1038/srep02525
10.1021/ac00099a018
10.1002/anie.201209256
10.1039/c0an00504e
10.1016/S0167-7012(01)00268-8
10.1021/ac201664p
10.1021/jp037983h
10.1016/j.jcis.2011.03.066
10.1021/ac901192d
10.1063/1.1752094
10.1021/ac00158a021
10.1016/S0021-9673(99)01144-9
10.1038/nprot.2014.110
10.1039/C4AN01495B
10.1002/cphc.201500932
ContentType Journal Article
Copyright Springer Nature Limited 2016
COPYRIGHT 2016 Nature Publishing Group
Copyright Nature Publishing Group Feb 2016
Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016.
Copyright_xml – notice: Springer Nature Limited 2016
– notice: COPYRIGHT 2016 Nature Publishing Group
– notice: Copyright Nature Publishing Group Feb 2016
– notice: Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QG
7T5
7T7
7TM
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
RC3
7X8
DOI 10.1038/nprot.2016.013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Central Student
MEDLINE

ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1750-2799
EndPage 386
ExternalDocumentID 3935489481
A442287246
26820794
10_1038_nprot_2016_013
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
123
29M
39C
3TQ
3V.
4.4
53G
5BI
5M7
70F
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABJNI
ABLJU
ABUWG
ACGFO
ACGFS
ACMJI
ACPRK
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AHBCP
AHMBA
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CAG
CCPQU
COF
DB5
DU5
EBS
EE.
EJD
EMOBN
F5P
FEDTE
FSGXE
FYUFA
FZEXT
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
ISR
ITC
LGEZI
LK8
LOTEE
M1P
M7P
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
PATMY
PQQKQ
PROAC
PSQYO
PYCSY
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
UKHRP
AAYXX
ACMFV
AFANA
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
PMFND
7QG
7T5
7T7
7TM
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
PUEGO
RC3
7X8
ID FETCH-LOGICAL-c628t-82ae65630e1c79ef39f4593c66c668a16d5031d4fa7c6181ff0efc2722de013e3
IEDL.DBID 7X7
ISSN 1754-2189
1750-2799
IngestDate Thu Jul 10 19:36:20 EDT 2025
Fri Jul 25 09:05:32 EDT 2025
Sat Aug 23 15:00:09 EDT 2025
Tue Jun 17 21:07:32 EDT 2025
Tue Jun 10 20:32:36 EDT 2025
Fri Jun 27 03:53:22 EDT 2025
Mon Jul 21 05:48:18 EDT 2025
Tue Jul 01 00:19:31 EDT 2025
Thu Apr 24 22:57:18 EDT 2025
Fri Feb 21 02:37:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c628t-82ae65630e1c79ef39f4593c66c668a16d5031d4fa7c6181ff0efc2722de013e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5583-7962
PMID 26820794
PQID 1760951424
PQPubID 536306
PageCount 10
ParticipantIDs proquest_miscellaneous_1761466273
proquest_journals_2564692324
proquest_journals_1760951424
gale_infotracmisc_A442287246
gale_infotracacademiconefile_A442287246
gale_incontextgauss_ISR_A442287246
pubmed_primary_26820794
crossref_primary_10_1038_nprot_2016_013
crossref_citationtrail_10_1038_nprot_2016_013
springer_journals_10_1038_nprot_2016_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle Recipes for Researchers
PublicationTitle Nature protocols
PublicationTitleAbbrev Nat Protoc
PublicationTitleAlternate Nat Protoc
PublicationYear 2016
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Schädle (CR13) 2013; 67
Luzinova (CR11) 2011; 84
Kraft (CR37) 2003; 57
Pejcic, Myers, Ross (CR9) 2009; 9
Chen (CR14) 2005; 13
Park (CR1) 2013; 341
Karlowatz, Kraft, Mizaikoff (CR8) 2004; 76
CR36
Yu, Ganjoo, Jain, Pantano, Irudayaraj (CR42) 2006; 78
Bremer, Geesey (CR32) 1991; 3
Kraft (CR28) 2003; 57
Wittkamp, Hawthorne, Tilotta (CR24) 1997; 69
Carr, Harris (CR26) 1988; 60
Gao, Chorover (CR30) 2009; 71
Suci, Geesey, Tyler (CR31) 2001; 46
Baker (CR39) 2014; 9
Riccardi, Hess, Mizaikoff (CR41) 2011; 136
Luzinova (CR10) 2012; 137
Ayad, El-Hefnawey, Torad (CR22) 2008; 134
Lu (CR5) 2013; 52
Liska (CR19) 2000; 885
Stockbarger (CR38) 1936; 7
Steiner (CR18) 2003; 57
Nguyen, Roddick, Fan (CR35) 2012; 2
Lorite (CR34) 2013; 102
Flavin (CR17) 2006; 86
Charlton (CR12) 2005; 77
Mizaikoff (CR27) 1999; 10
Lu (CR7) 2015; 140
Martinez (CR21) 2002; 959
Kosower (CR15) 2004; 108
Lin, Li (CR3) 2010; 82
Louarn (CR4) 2013; 353
Lu (CR6) 2013; 3
Wilkins, Singh-Thandi, Langdon (CR20) 1996; 57
Roy, Mielczarski (CR2) 2002; 36
Sanvicens (CR23) 2006; 54
Wittkamp, Tilotta (CR25) 1995; 67
Mizaikoff (CR16) 2013; 42
Lorite (CR33) 2011; 359
Dobbs (CR40) 2007; 79
Theodoridou, Yu (CR29) 2013; 61
GS Lorite (BFnprot2016013_CR34) 2013; 102
N Sanvicens (BFnprot2016013_CR23) 2006; 54
W Lin (BFnprot2016013_CR3) 2010; 82
BFnprot2016013_CR36
BL Wittkamp (BFnprot2016013_CR25) 1995; 67
Y Luzinova (BFnprot2016013_CR10) 2012; 137
C Charlton (BFnprot2016013_CR12) 2005; 77
GT Dobbs (BFnprot2016013_CR40) 2007; 79
H Steiner (BFnprot2016013_CR18) 2003; 57
Y Luzinova (BFnprot2016013_CR11) 2011; 84
AL Wilkins (BFnprot2016013_CR20) 1996; 57
T Schädle (BFnprot2016013_CR13) 2013; 67
T Nguyen (BFnprot2016013_CR35) 2012; 2
JH Park (BFnprot2016013_CR1) 2013; 341
MM Ayad (BFnprot2016013_CR22) 2008; 134
M Karlowatz (BFnprot2016013_CR8) 2004; 76
I Liska (BFnprot2016013_CR19) 2000; 885
X Gao (BFnprot2016013_CR30) 2009; 71
G Roy (BFnprot2016013_CR2) 2002; 36
M Kraft (BFnprot2016013_CR28) 2003; 57
GS Lorite (BFnprot2016013_CR33) 2011; 359
MJ Baker (BFnprot2016013_CR39) 2014; 9
JW Carr (BFnprot2016013_CR26) 1988; 60
PA Suci (BFnprot2016013_CR31) 2001; 46
R Lu (BFnprot2016013_CR5) 2013; 52
K Flavin (BFnprot2016013_CR17) 2006; 86
E Martinez (BFnprot2016013_CR21) 2002; 959
CS Riccardi (BFnprot2016013_CR41) 2011; 136
B Mizaikoff (BFnprot2016013_CR27) 1999; 10
J Chen (BFnprot2016013_CR14) 2005; 13
M Kraft (BFnprot2016013_CR37) 2003; 57
R Lu (BFnprot2016013_CR7) 2015; 140
K Theodoridou (BFnprot2016013_CR29) 2013; 61
DC Stockbarger (BFnprot2016013_CR38) 1936; 7
E Louarn (BFnprot2016013_CR4) 2013; 353
B Mizaikoff (BFnprot2016013_CR16) 2013; 42
BL Wittkamp (BFnprot2016013_CR24) 1997; 69
EM Kosower (BFnprot2016013_CR15) 2004; 108
PJ Bremer (BFnprot2016013_CR32) 1991; 3
B Pejcic (BFnprot2016013_CR9) 2009; 9
R Lu (BFnprot2016013_CR6) 2013; 3
C Yu (BFnprot2016013_CR42) 2006; 78
15117210 - Anal Chem. 2004 May 1;76(9):2643-8
26639164 - Chemphyschem. 2016 Feb 3;17(3):358-63
22103793 - Anal Chem. 2012 Feb 7;84(3):1274-80
24958430 - Membranes (Basel). 2012 Nov 21;2(4):804-40
12044090 - Water Res. 2002 Apr;36(7):1902-8
25525641 - Analyst. 2015 Feb 7;140(3):765-70
23929979 - Science. 2013 Aug 9;341(6146):643-7
24067637 - Appl Spectrosc. 2013 Sep;67(9):1057-63
19269797 - Colloids Surf B Biointerfaces. 2009 Jul 1;71(2):169-76
11438184 - J Microbiol Methods. 2001 Sep;46(3):193-208
21486669 - J Colloid Interface Sci. 2011 Jul 1;359(1):289-95
14658689 - Appl Spectrosc. 2003 Jun;57(6):591-9
18020310 - Anal Chem. 2007 Dec 15;79(24):9566-71
12141544 - J Chromatogr A. 2002 Jun 14;959(1-2):181-90
19498602 - Opt Express. 2005 Aug 8;13(16):5953-60
10941664 - J Chromatogr A. 2000 Jul 14;885(1-2):3-16
16013852 - Anal Chem. 2005 Jul 15;77(14):4398-403
20038113 - Anal Chem. 2010 Jan 15;82(2):505-15
17117807 - J Agric Food Chem. 2006 Nov 29;54(24):9176-83
22132414 - Analyst. 2012 Jan 21;137(2):333-41
23164974 - Colloids Surf B Biointerfaces. 2013 Feb 1;102:519-25
23683050 - J Agric Food Chem. 2013 Jun 12;61(23):5449-58
24992094 - Nat Protoc. 2014 Aug;9(8):1771-91
23982222 - Sci Rep. 2013;3:2525
23995692 - Chem Soc Rev. 2013 Nov 21;42(22):8683-99
2837924 - Anal Chem. 1988 Apr 1;60(7):698-702
21994915 - Analyst. 2011 Dec 7;136(23 ):4906-11
23371487 - Angew Chem Int Ed Engl. 2013 Feb 18;52(8):2265-8
14658691 - Appl Spectrosc. 2003 Jun;57(6):607-13
8672070 - Bull Environ Contam Toxicol. 1996 Sep;57(3):434-41
22454582 - Sensors (Basel). 2009;9(8):6232-53
16615756 - Anal Chem. 2006 Apr 15;78(8):2500-6
References_xml – volume: 76
  start-page: 2643
  year: 2004
  end-page: 2648
  ident: CR8
  article-title: Simultaneous quantitative determination of benzene, toluene, and xylenes in water using mid-infrared evanescent field spectroscopy
  publication-title: Anal. Chem.
  doi: 10.1021/ac0347009
– volume: 57
  start-page: 607
  year: 2003
  end-page: 613
  ident: CR18
  article-title: sensing of volatile organic compounds in groundwater: first field tests of a mid-infrared fiber-optic sensing system
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370203322005274
– volume: 61
  start-page: 5449
  year: 2013
  end-page: 5458
  ident: CR29
  article-title: Application potential of ATR-FT/IR molecular spectroscopy in animal nutrition: revelation of protein molecular structures of canola meal and presscake, as affected by heat-processing methods, in relationship with their protein digestive behavior and utilization for dairy cattle
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf400301y
– volume: 79
  start-page: 9566
  year: 2007
  end-page: 9571
  ident: CR40
  article-title: Mid-infrared chemical sensors utilizing plasma-deposited fluorocarbon membranes
  publication-title: Anal. Chem.
  doi: 10.1021/ac070832g
– volume: 353
  start-page: 26
  year: 2013
  end-page: 35
  ident: CR4
  article-title: Characterization of a membrane inlet interfaced with a compact chemical ionization FT-ICR for real-time and quantitative VOC analysis in water
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/j.ijms.2013.07.001
– volume: 69
  start-page: 1197
  year: 1997
  end-page: 1203
  ident: CR24
  article-title: Determination of aromatic compounds in water by solid phase microextraction and ultraviolet absorption spectroscopy. 1. Methodology
  publication-title: Anal. Chem.
  doi: 10.1021/ac960761d
– volume: 13
  start-page: 5953
  year: 2005
  end-page: 5960
  ident: CR14
  article-title: Silver halide fiber-based evanescent-wave liquid droplet sensing with room temperature mid-infrared quantum cascade lasers
  publication-title: Opt. Express
  doi: 10.1364/OPEX.13.005953
– volume: 134
  start-page: 887
  year: 2008
  end-page: 894
  ident: CR22
  article-title: Quartz crystal microbalance sensor coated with polyaniline emeraldine base for determination of chlorinated aliphatic hydrocarbons
  publication-title: Sens. Actuator B-Chem.
  doi: 10.1016/j.snb.2008.06.058
– volume: 57
  start-page: 434
  year: 1996
  end-page: 441
  ident: CR20
  article-title: Pulp mill sourced organic compounds and sodium levels in water and sediments from the Tarawera River, New Zealand
  publication-title: Bull. Environ. Contam. Toxicol.
  doi: 10.1007/s001289900209
– volume: 67
  start-page: 1057
  year: 2013
  end-page: 1063
  ident: CR13
  article-title: Mid-infrared planar silver halide waveguides with integrated grating couplers
  publication-title: Appl. Spectrosc.
  doi: 10.1366/12-06898
– volume: 959
  start-page: 181
  year: 2002
  end-page: 190
  ident: CR21
  article-title: Multicomponent analysis of volatile organic compounds in water by automated purge and trap coupled to gas chromatography-mass spectrometry
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(02)00439-9
– volume: 42
  start-page: 8683
  year: 2013
  end-page: 8699
  ident: CR16
  article-title: Waveguide-enhanced mid-infrared chem/bio sensors
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60173k
– volume: 71
  start-page: 169
  year: 2009
  end-page: 176
  ident: CR30
  article-title: monitoring of oocyst surface adhesion using ATR-FTIR spectroscopy
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2009.02.003
– volume: 2
  start-page: 804
  year: 2012
  end-page: 840
  ident: CR35
  article-title: Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures
  publication-title: Membranes
  doi: 10.3390/membranes2040804
– volume: 77
  start-page: 4398
  year: 2005
  end-page: 4403
  ident: CR12
  article-title: Infrared evanescent field sensing with quantum cascade lasers and planar silver halide waveguides
  publication-title: Anal. Chem.
  doi: 10.1021/ac048189a
– volume: 86
  start-page: 401
  year: 2006
  end-page: 415
  ident: CR17
  article-title: A comparison of polymeric materials as pre-concentrating media for use with ATR/FTIR sensing
  publication-title: Int. J. Environ. Anal. Chem.
  doi: 10.1080/03067310500291585
– volume: 3
  start-page: 89
  year: 1991
  end-page: 100
  ident: CR32
  article-title: An evaluation of biofilm development utilizing non-destructive attenuated total reflectance Fourier transform infrared spectroscopy
  publication-title: Biofouling
  doi: 10.1080/08927019109378165
– volume: 36
  start-page: 1902
  year: 2002
  end-page: 1908
  ident: CR2
  article-title: Infrared detection of chlorinated hydrocarbons in water at ppb levels of concentrations
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(01)00371-2
– volume: 9
  start-page: 6232
  year: 2009
  end-page: 6253
  ident: CR9
  article-title: Mid-infrared sensing of organic pollutants in aqueous environments
  publication-title: Sensors
  doi: 10.3390/s90806232
– volume: 54
  start-page: 9176
  year: 2006
  end-page: 9183
  ident: CR23
  article-title: Determination of haloanisols in white wine by immunosorbent solid-phase extraction followed by enzyme-linked immunosorbent assay
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf0612373
– volume: 57
  start-page: 591
  year: 2003
  end-page: 599
  ident: CR37
  article-title: New frontiers for mid-infrared sensors: towards deep sea monitoring with a submarine FT-IR sensor system
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370203322005256
– volume: 10
  start-page: 1185
  year: 1999
  end-page: 1194
  ident: CR27
  article-title: Mid-infrared evanescent wave sensors: a novel approach for subsea monitoring
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/10/12/310
– volume: 102
  start-page: 519
  year: 2013
  end-page: 525
  ident: CR34
  article-title: On the role of extracellular polymeric substances during early stages of biofilm formation
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2012.08.027
– volume: 78
  start-page: 2500
  year: 2006
  end-page: 2506
  ident: CR42
  article-title: Mid-IR biosensor: detection and fingerprinting of pathogens on gold island functionalized chalcogenide films
  publication-title: Anal. Chem.
  doi: 10.1021/ac051828c
– volume: 137
  start-page: 333
  year: 2012
  end-page: 341
  ident: CR10
  article-title: Detecting trace amounts of water in hydrocarbon matrices with infrared fiberoptic evanescent field sensors
  publication-title: Analyst
  doi: 10.1039/C1AN15521K
– volume: 341
  start-page: 643
  year: 2013
  end-page: 647
  ident: CR1
  article-title: Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds
  publication-title: Science
  doi: 10.1126/science.1235053
– volume: 3
  start-page: 2525
  year: 2013
  end-page: 2531
  ident: CR6
  article-title: Determination of chlorinated hydrocarbons in water using highly sensitive mid-infrared sensor technology
  publication-title: Sci. Rep.
  doi: 10.1038/srep02525
– volume: 57
  start-page: 591
  year: 2003
  end-page: 599
  ident: CR28
  article-title: New frontiers for mid-infrared sensors: towards deep sea monitoring with a submarine FT-IR sensor system
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370203322005256
– volume: 67
  start-page: 600
  year: 1995
  end-page: 605
  ident: CR25
  article-title: Determination of BTEX compounds in water by solid-phase microextraction and Raman spectroscopy
  publication-title: Anal. Chem.
  doi: 10.1021/ac00099a018
– volume: 52
  start-page: 2265
  year: 2013
  end-page: 2268
  ident: CR5
  article-title: IR-ATR chemical sensors based on planar silver halide waveguides coated with an ethylene/propylene copolymer for detection of multiple organic contaminants in water
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201209256
– volume: 136
  start-page: 4906
  year: 2011
  end-page: 4911
  ident: CR41
  article-title: Surface-modified ZnSe waveguides for label-free infrared attenuated total reflection detection of DNA hybridization
  publication-title: Analyst
  doi: 10.1039/c0an00504e
– volume: 46
  start-page: 193
  year: 2001
  end-page: 208
  ident: CR31
  article-title: Integration of Raman microscopy, differential interference contrast microscopy, and attenuated total reflection Fourier transform infrared spectroscopy to investigate chlorhexidine spatial and temporal distribution in biofilms
  publication-title: J. Microbiol. Methods
  doi: 10.1016/S0167-7012(01)00268-8
– volume: 84
  start-page: 1274
  year: 2011
  end-page: 1280
  ident: CR11
  article-title: trace analysis of oil in water with mid-infrared fiberoptic chemical sensors
  publication-title: Anal. Chem.
  doi: 10.1021/ac201664p
– volume: 108
  start-page: 12633
  year: 2004
  end-page: 12636
  ident: CR15
  article-title: Surface-enhanced infrared absorption and amplified spectra on planar silver halide fiber
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp037983h
– volume: 359
  start-page: 289
  year: 2011
  end-page: 295
  ident: CR33
  article-title: The role of conditioning film formation and surface chemical changes on adhesion and biofilm evolution
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.03.066
– ident: CR36
– volume: 82
  start-page: 505
  year: 2010
  end-page: 515
  ident: CR3
  article-title: Detection and quantification of trace organic contaminants in water using the FT-IR-attenuated total reflectance technique
  publication-title: Anal. Chem.
  doi: 10.1021/ac901192d
– volume: 7
  start-page: 133
  year: 1936
  end-page: 136
  ident: CR38
  article-title: The production of large single crystals of lithium fluoride
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1752094
– volume: 60
  start-page: 698
  year: 1988
  end-page: 702
  ident: CR26
  article-title: fluorescence detection of polycyclic aromatic hydrocarbons following preconcentration on alkylated silica adsorbents
  publication-title: Anal. Chem.
  doi: 10.1021/ac00158a021
– volume: 885
  start-page: 3
  year: 2000
  end-page: 16
  ident: CR19
  article-title: Fifty years of solid-phase extraction in water analysis: historical development and overview
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(99)01144-9
– volume: 9
  start-page: 1771
  year: 2014
  end-page: 1791
  ident: CR39
  article-title: Using Fourier transform IR spectroscopy to analyze biological materials
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.110
– volume: 140
  start-page: 765
  year: 2015
  end-page: 770
  ident: CR7
  article-title: Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors
  publication-title: Analyst
  doi: 10.1039/C4AN01495B
– volume: 79
  start-page: 9566
  year: 2007
  ident: BFnprot2016013_CR40
  publication-title: Anal. Chem.
  doi: 10.1021/ac070832g
– volume: 140
  start-page: 765
  year: 2015
  ident: BFnprot2016013_CR7
  publication-title: Analyst
  doi: 10.1039/C4AN01495B
– volume: 77
  start-page: 4398
  year: 2005
  ident: BFnprot2016013_CR12
  publication-title: Anal. Chem.
  doi: 10.1021/ac048189a
– volume: 57
  start-page: 607
  year: 2003
  ident: BFnprot2016013_CR18
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370203322005274
– volume: 61
  start-page: 5449
  year: 2013
  ident: BFnprot2016013_CR29
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf400301y
– volume: 78
  start-page: 2500
  year: 2006
  ident: BFnprot2016013_CR42
  publication-title: Anal. Chem.
  doi: 10.1021/ac051828c
– volume: 108
  start-page: 12633
  year: 2004
  ident: BFnprot2016013_CR15
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp037983h
– volume: 2
  start-page: 804
  year: 2012
  ident: BFnprot2016013_CR35
  publication-title: Membranes
  doi: 10.3390/membranes2040804
– volume: 46
  start-page: 193
  year: 2001
  ident: BFnprot2016013_CR31
  publication-title: J. Microbiol. Methods
  doi: 10.1016/S0167-7012(01)00268-8
– volume: 13
  start-page: 5953
  year: 2005
  ident: BFnprot2016013_CR14
  publication-title: Opt. Express
  doi: 10.1364/OPEX.13.005953
– volume: 57
  start-page: 591
  year: 2003
  ident: BFnprot2016013_CR28
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370203322005256
– ident: BFnprot2016013_CR36
  doi: 10.1002/cphc.201500932
– volume: 10
  start-page: 1185
  year: 1999
  ident: BFnprot2016013_CR27
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/10/12/310
– volume: 82
  start-page: 505
  year: 2010
  ident: BFnprot2016013_CR3
  publication-title: Anal. Chem.
  doi: 10.1021/ac901192d
– volume: 353
  start-page: 26
  year: 2013
  ident: BFnprot2016013_CR4
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/j.ijms.2013.07.001
– volume: 57
  start-page: 591
  year: 2003
  ident: BFnprot2016013_CR37
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370203322005256
– volume: 36
  start-page: 1902
  year: 2002
  ident: BFnprot2016013_CR2
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(01)00371-2
– volume: 9
  start-page: 6232
  year: 2009
  ident: BFnprot2016013_CR9
  publication-title: Sensors
  doi: 10.3390/s90806232
– volume: 359
  start-page: 289
  year: 2011
  ident: BFnprot2016013_CR33
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.03.066
– volume: 3
  start-page: 2525
  year: 2013
  ident: BFnprot2016013_CR6
  publication-title: Sci. Rep.
  doi: 10.1038/srep02525
– volume: 86
  start-page: 401
  year: 2006
  ident: BFnprot2016013_CR17
  publication-title: Int. J. Environ. Anal. Chem.
  doi: 10.1080/03067310500291585
– volume: 52
  start-page: 2265
  year: 2013
  ident: BFnprot2016013_CR5
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201209256
– volume: 60
  start-page: 698
  year: 1988
  ident: BFnprot2016013_CR26
  publication-title: Anal. Chem.
  doi: 10.1021/ac00158a021
– volume: 341
  start-page: 643
  year: 2013
  ident: BFnprot2016013_CR1
  publication-title: Science
  doi: 10.1126/science.1235053
– volume: 9
  start-page: 1771
  year: 2014
  ident: BFnprot2016013_CR39
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.110
– volume: 67
  start-page: 1057
  year: 2013
  ident: BFnprot2016013_CR13
  publication-title: Appl. Spectrosc.
  doi: 10.1366/12-06898
– volume: 71
  start-page: 169
  year: 2009
  ident: BFnprot2016013_CR30
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2009.02.003
– volume: 102
  start-page: 519
  year: 2013
  ident: BFnprot2016013_CR34
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2012.08.027
– volume: 54
  start-page: 9176
  year: 2006
  ident: BFnprot2016013_CR23
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf0612373
– volume: 67
  start-page: 600
  year: 1995
  ident: BFnprot2016013_CR25
  publication-title: Anal. Chem.
  doi: 10.1021/ac00099a018
– volume: 885
  start-page: 3
  year: 2000
  ident: BFnprot2016013_CR19
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(99)01144-9
– volume: 3
  start-page: 89
  year: 1991
  ident: BFnprot2016013_CR32
  publication-title: Biofouling
  doi: 10.1080/08927019109378165
– volume: 136
  start-page: 4906
  year: 2011
  ident: BFnprot2016013_CR41
  publication-title: Analyst
  doi: 10.1039/c0an00504e
– volume: 76
  start-page: 2643
  year: 2004
  ident: BFnprot2016013_CR8
  publication-title: Anal. Chem.
  doi: 10.1021/ac0347009
– volume: 42
  start-page: 8683
  year: 2013
  ident: BFnprot2016013_CR16
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60173k
– volume: 959
  start-page: 181
  year: 2002
  ident: BFnprot2016013_CR21
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(02)00439-9
– volume: 57
  start-page: 434
  year: 1996
  ident: BFnprot2016013_CR20
  publication-title: Bull. Environ. Contam. Toxicol.
  doi: 10.1007/s001289900209
– volume: 84
  start-page: 1274
  year: 2011
  ident: BFnprot2016013_CR11
  publication-title: Anal. Chem.
  doi: 10.1021/ac201664p
– volume: 69
  start-page: 1197
  year: 1997
  ident: BFnprot2016013_CR24
  publication-title: Anal. Chem.
  doi: 10.1021/ac960761d
– volume: 7
  start-page: 133
  year: 1936
  ident: BFnprot2016013_CR38
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1752094
– volume: 137
  start-page: 333
  year: 2012
  ident: BFnprot2016013_CR10
  publication-title: Analyst
  doi: 10.1039/C1AN15521K
– volume: 134
  start-page: 887
  year: 2008
  ident: BFnprot2016013_CR22
  publication-title: Sens. Actuator B-Chem.
  doi: 10.1016/j.snb.2008.06.058
– reference: 23371487 - Angew Chem Int Ed Engl. 2013 Feb 18;52(8):2265-8
– reference: 22103793 - Anal Chem. 2012 Feb 7;84(3):1274-80
– reference: 16013852 - Anal Chem. 2005 Jul 15;77(14):4398-403
– reference: 23982222 - Sci Rep. 2013;3:2525
– reference: 17117807 - J Agric Food Chem. 2006 Nov 29;54(24):9176-83
– reference: 10941664 - J Chromatogr A. 2000 Jul 14;885(1-2):3-16
– reference: 24067637 - Appl Spectrosc. 2013 Sep;67(9):1057-63
– reference: 8672070 - Bull Environ Contam Toxicol. 1996 Sep;57(3):434-41
– reference: 23995692 - Chem Soc Rev. 2013 Nov 21;42(22):8683-99
– reference: 22454582 - Sensors (Basel). 2009;9(8):6232-53
– reference: 21486669 - J Colloid Interface Sci. 2011 Jul 1;359(1):289-95
– reference: 24958430 - Membranes (Basel). 2012 Nov 21;2(4):804-40
– reference: 14658691 - Appl Spectrosc. 2003 Jun;57(6):607-13
– reference: 24992094 - Nat Protoc. 2014 Aug;9(8):1771-91
– reference: 23929979 - Science. 2013 Aug 9;341(6146):643-7
– reference: 21994915 - Analyst. 2011 Dec 7;136(23 ):4906-11
– reference: 20038113 - Anal Chem. 2010 Jan 15;82(2):505-15
– reference: 22132414 - Analyst. 2012 Jan 21;137(2):333-41
– reference: 16615756 - Anal Chem. 2006 Apr 15;78(8):2500-6
– reference: 12044090 - Water Res. 2002 Apr;36(7):1902-8
– reference: 19269797 - Colloids Surf B Biointerfaces. 2009 Jul 1;71(2):169-76
– reference: 15117210 - Anal Chem. 2004 May 1;76(9):2643-8
– reference: 14658689 - Appl Spectrosc. 2003 Jun;57(6):591-9
– reference: 26639164 - Chemphyschem. 2016 Feb 3;17(3):358-63
– reference: 23683050 - J Agric Food Chem. 2013 Jun 12;61(23):5449-58
– reference: 11438184 - J Microbiol Methods. 2001 Sep;46(3):193-208
– reference: 23164974 - Colloids Surf B Biointerfaces. 2013 Feb 1;102:519-25
– reference: 12141544 - J Chromatogr A. 2002 Jun 14;959(1-2):181-90
– reference: 18020310 - Anal Chem. 2007 Dec 15;79(24):9566-71
– reference: 25525641 - Analyst. 2015 Feb 7;140(3):765-70
– reference: 19498602 - Opt Express. 2005 Aug 8;13(16):5953-60
– reference: 2837924 - Anal Chem. 1988 Apr 1;60(7):698-702
SSID ssj0047367
Score 2.4863043
SecondaryResourceType review_article
Snippet Volatile organic compounds (VOCs) are by-products of human activity that are particularly difficult to detect in water. This protocol describes an infrared...
In situ detection of volatile organic compounds (VOCs) in aqueous environments is imperative for ensuring the quality and safety of water supplies, yet it...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 377
SubjectTerms 631/1647/527/2257
631/92/612
639/638/11/872
639/638/169/895
Analysis
Analytical Chemistry
Aqueous environments
Attenuation
Biological Techniques
Chemical perception
Chemistry Techniques, Analytical
Chemoreception
Computational Biology/Bioinformatics
Identification and classification
Infrared detectors
Infrared reflection
Infrared spectroscopy
Innovations
Life Sciences
Low concentrations
Microarrays
Organic Chemistry
Organic compounds
Polymer coatings
Polymers
Properties
Protein structure
protocol
Spectrophotometry, Infrared - methods
Spectroscopy
Spectrum analysis
VOCs
Volatile organic compounds
Volatile Organic Compounds - analysis
Water
Water - chemistry
Water supply
Waveguides
Title High-sensitivity infrared attenuated total reflectance sensors for in situ multicomponent detection of volatile organic compounds in water
URI https://link.springer.com/article/10.1038/nprot.2016.013
https://www.ncbi.nlm.nih.gov/pubmed/26820794
https://www.proquest.com/docview/1760951424
https://www.proquest.com/docview/2564692324
https://www.proquest.com/docview/1761466273
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFRIXVN4pbWUQElxM83Ds5FQV1KogUaFCpb1ZjmNzqZyySVTxF_jVzDjOtlsVpL15_NjM2DO2P39DyNsa_LbTtmay0hXjWZWypmhy1gpdZ6VLoRwfJ389FSfn_MuiXMQDtz7CKuc1MSzUbWfwjHwfXDPs5ND_H1z-Ypg1Cm9XYwqN-2QTqcsQ0iUXqw0Xl0XIIAsekjNwZfVM2lhU-x5pEBDZJT6kWbHmlG4vzTd8063L0uCDjrfIoxg80sNJ24_JPeufkAdTOsnfT8kfBG2wHiHpU04ICuazRIQ5RRZNP0Jc2dKhg3ibwhjwwB51TrFGt-wpxK9Qg0LtkQagIeLNOw9uibZ2CJgtTztHYUUDfV5YOqWEMjTIjb7tsfoV9LJ8Rs6Pj358OmEx1wIzIq8GVuXaCuQKs5mRtXVF7XhZF0YI-FU6E20J07_lTksjICpwLrXO5DLPWxtOUp-TDQ8jekkobHqNSLVoDC9hcwMLhBSaNxDY5Y0EA0gImz-2MpGIHPNhXKhwIV5UKihHoXIUtJ2Qdyv5y4mC45-Sb1B3CnktPAJnfuqx79Xn72fqkCPXmcy5gOaikOugW6PjOwQYPFJhrUnurEnCxDPrxbOJqDjxe5VJZPDD54N3Fl9bcUJer4qxYcS6eduNoQlwXwLiyoS8mCxv9b9zAREbLKEJeT-b4o2-7_wo2_8fxyvyECUnIPoO2RiWo92FOGto9sJk2iObH49Ov539BVatKBs
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRC9IN4EChgEgotp4jhOckCoQKtd2q5QaaXeTOLYvVRJ2WxU9S_wY_iNzOSxdKvCrVJuHj8Sj-cbx59nAF6niNsusymPkyzhMkh8noe54IXK0iByPpbT5eS9qRofyq9H0dEK_B7uwhCtcrCJraEuKkP_yDcQmnEnR_j_8fQnp6xRdLo6pNDo1GLHnp_hlq3-MPmC8_tGiO2tg89j3mcV4EaJZM4TkVlFUbFsYOLUujB1MkpDoxQ-SRaoIkJFL6TLYqMQ_5zzrTMiFqKw7T9DbPcGrMoQtzIjWP20Nf22P9h-GYdtzlrEZMkRPNMhTGSYbJQUeIG4ZOq9H4RLMHgZDC6g4aXj2Rb1tu_A7d5dZZudft2FFVveg5tdAsvz-_CLaCK8JhJ8l4WCocLOiNPOKG5n2aAnW7B5hR4-wzHQEQFpGaMa1axm6DFjDYa1G9ZSG4nhXpUIhKyw85YlVrLKMbShqEEnlnVJqAxr5ZqyqKn6GfYyewCH1zIPD2FU4ogeA8NttlF-pnIjI9xOoUmKVSZzdCVFHqPKecCHj61NH_qcMnCc6PYIPkx0OzmaJkdj2x68XcifdkE__in5iuZOUySNkqg6x1lT13ryfV9vSoquFgupsLleyFXYrcn6mw84eAq-tSS5viSJS90sFw8qontTU-sgppiBdGHxyuK_68aDl4tiapjYdaWtmrYJBEyFnqwHjzrNW7y3UOgjotH24N2gihf6vvKjPPn_OF7ArfHB3q7enUx3nsIa1epo8Oswms8a-wy9vHn-vF9aDH5c92r-A_w_ZDw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKEYgL4p9AAYNAcDGbOI6dHBCqKKsuhQoBlfZmHMfmUiVls1HVV-CReDpmnGTpVoVbpb157HjjmfnG8ecZQp4XgNveuIKp3ORMJHnMyrTkrJKmSDIfQzteTv60L3cPxId5Nt8gv8e7MEirHH1icNRVY_Eb-QSgGXZyiP8TP9AiPu9M3x79ZFhBCk9ax3IavYrsuZNj2L61b2Y7sNYvOJ--__Zulw0VBpiVPF-ynBsnMUOWS6wqnE8LL7IitVLCLzeJrDJQ-kp4o6wELPQ-dt5yxXnlwvdDGPcSuazSLEEbU_PVZk-oNFSvBXQWDGC0GBNGpvmkxhQMyCqTr-MkXQPEs7BwChfPHNQG_JveINeHwJVu95p2k2y4-ha50peyPLlNfiFhhLVIh-_rUVBQ3QWy2ylm8Kw7iGkrumwg1qcwBzwsQH2j2KNZtBRiZ-hBoXdHA8kRue5NDZBIK7cMfLGaNp6CNwVdOnS0L0dlaZDr6qrF7sfwlMUdcnAhq3CXbNYwo_uEwobbytjI0ooMNlbgnJQ0ooSgkpcKlC8ibHzZ2g5J0LEWx6EOh_FprsPiaFwcDWNH5OVK_qhP__FPyWe4dhpzatSonT9M17Z69vWL3haYZ01xIWG4Qcg38FhrhjsQMHlMw7UmubUmCUZv15tHFdGD02l1ojB7IF5dPLf5rwVF5OmqGQdGnl3tmi4MAdApIaaNyL1e81b_m0uIFsF9R-TVqIqnnn3uS3nw_3k8IVfBhvXH2f7eQ3INO_V8-C2yuVx07hGEe8vycbArSr5ftCH_AZUJZww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-sensitivity+infrared+attenuated+total+reflectance+sensors+for+in+situ+multicomponent+detection+of+volatile+organic+compounds+in+water&rft.jtitle=Nature+protocols&rft.au=Lu%2C+Rui&rft.au=Li%2C+Wen-Wei&rft.au=Mizaikoff%2C+Boris&rft.au=Katzir%2C+Abraham&rft.date=2016-02-01&rft.issn=1754-2189&rft.eissn=1750-2799&rft.volume=11&rft.issue=2&rft.spage=377&rft.epage=386&rft_id=info:doi/10.1038%2Fnprot.2016.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nprot_2016_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-2189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-2189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-2189&client=summon