High-sensitivity infrared attenuated total reflectance sensors for in situ multicomponent detection of volatile organic compounds in water
Volatile organic compounds (VOCs) are by-products of human activity that are particularly difficult to detect in water. This protocol describes an infrared chemical sensing device for enriching and detecting VOCs via attenuated total reflection spectroscopy. In situ detection of volatile organic com...
Saved in:
Published in | Nature protocols Vol. 11; no. 2; pp. 377 - 386 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.02.2016
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Volatile organic compounds (VOCs) are by-products of human activity that are particularly difficult to detect in water. This protocol describes an infrared chemical sensing device for enriching and detecting VOCs via attenuated total reflection spectroscopy.
In situ
detection of volatile organic compounds (VOCs) in aqueous environments is imperative for ensuring the quality and safety of water supplies, yet it remains a challenging analytical task. We present a high-sensitivity method for
in situ
analysis of multicomponent VOCs at low concentrations based on the use of infrared attenuated total reflection (IR-ATR) spectroscopy. This protocol uses a unique ATR waveguide, which comprises a planar silver halide (AgCl
x
Br
1−
x
) fiber with cylindrical extensions at both ends to increase the number of internal reflections, and a polymer coating that traps VOCs and excludes water molecules. Depending on the type of VOC and measurement scenario, IR spectra with specific frequency windows, scan times and spectral resolutions are obtained, from which concentration information is derived. This protocol allows simultaneous detection of multiple VOCs at concentrations around 10 p.p.b., and it enables accurate quantification via a single measurement within 5 min without the need for sample collection or sample pretreatment. This IR-ATR sensor technology will be useful for other applications; we have included a procedure for the analysis of protein conformation changes in
Supplementary Methods
as an example. |
---|---|
AbstractList | In situ detection of volatile organic compounds (VOCs) in aqueous environments is imperative for ensuring the quality and safety of water supplies, yet it remains a challenging analytical task. We present a high-sensitivity method for in situ analysis of multicomponent VOCs at low concentrations based on the use of infrared attenuated total reflection (IR-ATR) spectroscopy. This protocol uses a unique ATR waveguide, which comprises a planar silver halide (AgCl(x)Br(1-x)) fiber with cylindrical extensions at both ends to increase the number of internal reflections, and a polymer coating that traps VOCs and excludes water molecules. Depending on the type of VOC and measurement scenario, IR spectra with specific frequency windows, scan times and spectral resolutions are obtained, from which concentration information is derived. This protocol allows simultaneous detection of multiple VOCs at concentrations around 10 p.p.b., and it enables accurate quantification via a single measurement within 5 min without the need for sample collection or sample pretreatment. This IR-ATR sensor technology will be useful for other applications; we have included a procedure for the analysis of protein conformation changes in Supplementary Methods as an example.In situ detection of volatile organic compounds (VOCs) in aqueous environments is imperative for ensuring the quality and safety of water supplies, yet it remains a challenging analytical task. We present a high-sensitivity method for in situ analysis of multicomponent VOCs at low concentrations based on the use of infrared attenuated total reflection (IR-ATR) spectroscopy. This protocol uses a unique ATR waveguide, which comprises a planar silver halide (AgCl(x)Br(1-x)) fiber with cylindrical extensions at both ends to increase the number of internal reflections, and a polymer coating that traps VOCs and excludes water molecules. Depending on the type of VOC and measurement scenario, IR spectra with specific frequency windows, scan times and spectral resolutions are obtained, from which concentration information is derived. This protocol allows simultaneous detection of multiple VOCs at concentrations around 10 p.p.b., and it enables accurate quantification via a single measurement within 5 min without the need for sample collection or sample pretreatment. This IR-ATR sensor technology will be useful for other applications; we have included a procedure for the analysis of protein conformation changes in Supplementary Methods as an example. In situ detection of volatile organic compounds (VOCs) in aqueous environments is imperative for ensuring the quality and safety of water supplies, yet it remains a challenging analytical task. We present a high-sensitivity method for in situ analysis of multicomponent Vocs at low concentrations based on the use of infrared attenuated total reflection (IR-ATR) spectroscopy. this protocol uses a unique ATR waveguide, which comprises a planar silver halide (Ag[Cl.sub.x][Br.sub.1-x]) fiber with cylindrical extensions at both ends to increase the number of internal reflections, and a polymer coating that traps Vocs and excludes water molecules. Depending on the type of Voc and measurement scenario, IR spectra with specific frequency windows, scan times and spectral resolutions are obtained, from which concentration information is derived. this protocol allows simultaneous detection of multiple Vocs at concentrations around 10 p.p.b., and it enables accurate quantification via a single measurement within 5 min without the need for sample collection or sample pretreatment. this IR-ATR sensor technology will be useful for other applications; we have included a procedure for the analysis of protein conformation changes in supplementary Methods as an example. Volatile organic compounds (VOCs) are by-products of human activity that are particularly difficult to detect in water. This protocol describes an infrared chemical sensing device for enriching and detecting VOCs via attenuated total reflection spectroscopy.In situ detection of volatile organic compounds (VOCs) in aqueous environments is imperative for ensuring the quality and safety of water supplies, yet it remains a challenging analytical task. We present a high-sensitivity method for in situ analysis of multicomponent VOCs at low concentrations based on the use of infrared attenuated total reflection (IR-ATR) spectroscopy. This protocol uses a unique ATR waveguide, which comprises a planar silver halide (AgClxBr1−x) fiber with cylindrical extensions at both ends to increase the number of internal reflections, and a polymer coating that traps VOCs and excludes water molecules. Depending on the type of VOC and measurement scenario, IR spectra with specific frequency windows, scan times and spectral resolutions are obtained, from which concentration information is derived. This protocol allows simultaneous detection of multiple VOCs at concentrations around 10 p.p.b., and it enables accurate quantification via a single measurement within 5 min without the need for sample collection or sample pretreatment. This IR-ATR sensor technology will be useful for other applications; we have included a procedure for the analysis of protein conformation changes in Supplementary Methods as an example. In situ detection of volatile organic compounds (VOCs) in aqueous environments is imperative for ensuring the quality and safety of water supplies, yet it remains a challenging analytical task. We present a high-sensitivity method for in situ analysis of multicomponent VOCs at low concentrations based on the use of infrared attenuated total reflection (IR-ATR) spectroscopy. This protocol uses a unique ATR waveguide, which comprises a planar silver halide (AgCl(x)Br(1-x)) fiber with cylindrical extensions at both ends to increase the number of internal reflections, and a polymer coating that traps VOCs and excludes water molecules. Depending on the type of VOC and measurement scenario, IR spectra with specific frequency windows, scan times and spectral resolutions are obtained, from which concentration information is derived. This protocol allows simultaneous detection of multiple VOCs at concentrations around 10 p.p.b., and it enables accurate quantification via a single measurement within 5 min without the need for sample collection or sample pretreatment. This IR-ATR sensor technology will be useful for other applications; we have included a procedure for the analysis of protein conformation changes in Supplementary Methods as an example. Volatile organic compounds (VOCs) are by-products of human activity that are particularly difficult to detect in water. This protocol describes an infrared chemical sensing device for enriching and detecting VOCs via attenuated total reflection spectroscopy. In situ detection of volatile organic compounds (VOCs) in aqueous environments is imperative for ensuring the quality and safety of water supplies, yet it remains a challenging analytical task. We present a high-sensitivity method for in situ analysis of multicomponent VOCs at low concentrations based on the use of infrared attenuated total reflection (IR-ATR) spectroscopy. This protocol uses a unique ATR waveguide, which comprises a planar silver halide (AgCl x Br 1− x ) fiber with cylindrical extensions at both ends to increase the number of internal reflections, and a polymer coating that traps VOCs and excludes water molecules. Depending on the type of VOC and measurement scenario, IR spectra with specific frequency windows, scan times and spectral resolutions are obtained, from which concentration information is derived. This protocol allows simultaneous detection of multiple VOCs at concentrations around 10 p.p.b., and it enables accurate quantification via a single measurement within 5 min without the need for sample collection or sample pretreatment. This IR-ATR sensor technology will be useful for other applications; we have included a procedure for the analysis of protein conformation changes in Supplementary Methods as an example. In situ detection of volatile organic compounds (VOCs) in aqueous environments is imperative for ensuring the quality and safety of water supplies, yet it remains a challenging analytical task. We present a high-sensitivity method for in situ analysis of multicomponent VOCs at low concentrations based on the use of infrared attenuated total reflection (IR-ATR) spectroscopy. This protocol uses a unique ATR waveguide, which comprises a planar silver halide (AgClx Br1-x ) fiber with cylindrical extensions at both ends to increase the number of internal reflections, and a polymer coating that traps VOCs and excludes water molecules. Depending on the type of VOC and measurement scenario, IR spectra with specific frequency windows, scan times and spectral resolutions are obtained, from which concentration information is derived. This protocol allows simultaneous detection of multiple VOCs at concentrations around 10 p.p.b., and it enables accurate quantification via a single measurement within 5 min without the need for sample collection or sample pretreatment. This IR-ATR sensor technology will be useful for other applications; we have included a procedure for the analysis of protein conformation changes in Supplementary Methods as an example. |
Audience | Academic |
Author | Mizaikoff, Boris Sheng, Guo-Ping Lu, Rui Li, Wen-Wei Yu, Han-Qing Raichlin, Yosef Katzir, Abraham |
Author_xml | – sequence: 1 givenname: Rui surname: Lu fullname: Lu, Rui organization: Department of Chemistry, Chinese Academy of Sciences (CAS) Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology – sequence: 2 givenname: Wen-Wei surname: Li fullname: Li, Wen-Wei organization: Department of Chemistry, Chinese Academy of Sciences (CAS) Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China – sequence: 3 givenname: Boris orcidid: 0000-0002-5583-7962 surname: Mizaikoff fullname: Mizaikoff, Boris email: boris.mizaikoff@uni-ulm.de organization: Institute of Analytical and Bioanalytical Chemistry, University of Ulm – sequence: 4 givenname: Abraham surname: Katzir fullname: Katzir, Abraham organization: School of Physics, Tel Aviv University – sequence: 5 givenname: Yosef surname: Raichlin fullname: Raichlin, Yosef organization: Department of Applied Physics, Ariel University Center of Samaria – sequence: 6 givenname: Guo-Ping surname: Sheng fullname: Sheng, Guo-Ping organization: Department of Chemistry, Chinese Academy of Sciences (CAS) Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China – sequence: 7 givenname: Han-Qing surname: Yu fullname: Yu, Han-Qing email: hqyu@ustc.edu.cn organization: Department of Chemistry, Chinese Academy of Sciences (CAS) Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26820794$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhiNURD_gyhFZ4gKHbG3HsZNjVQGtVAmJj7NlnPHiKrEX2yn0L_CrmWwLdKuCYik-PM_M6PUcVnshBqiq54yuGG2647BJsaw4ZXJFWfOoOmCqpTVXfb-3vYuas67frw5zvqRUqEaqJ9U-lx2nqhcH1c8zv_5aZwjZF3_lyzXxwSWTYCCmFAizKXgtsZiRJHAj2GKCBbIYMWXiYkKDoD2TaR6Lt3Ha4IihkAEK0j4GEh25iqMpfgQS09oEb8mWm8OQF_07dklPq8fOjBme3f6Pqs9v33w6Pasv3r87Pz25qK3kXak7bkC2sqHArOrBNb0Tbd9YKfF0hsmhpQ0bhDPKStYx5yg4yxXnA2BE0BxVr27qYnTfZshFTz5bGEcTIM5ZMyWZkJKrBtGX99DLOKeA02neSiF73nDxPwpr0b5l4i61NiNoTDmWZOzSWp8IwXmnuJBIrR6g8BtgwmwDOAxxV3i9IyBT4EdZmzlnff7xwy774nbQ-csEg94kP5l0rX-vw9_uNsWc8b3_IIzqZd_0dt_0sm8aw0RB3BOsL2Z5dBzbj__Wjm-0jPXDGtKdxB42fgG7JOnR |
CitedBy_id | crossref_primary_10_1021_acs_analchem_1c01800 crossref_primary_10_1007_s10853_021_05942_x crossref_primary_10_1021_acs_chemmater_6b05431 crossref_primary_10_1016_j_rser_2024_114365 crossref_primary_10_1016_j_snb_2017_07_032 crossref_primary_10_1021_acsphotonics_1c01750 crossref_primary_10_1021_acssensors_6b00250 crossref_primary_10_3390_chemosensors8030075 crossref_primary_10_3390_molecules27010234 crossref_primary_10_1016_j_scitotenv_2020_139191 crossref_primary_10_1039_C7TC05390H crossref_primary_10_1007_s40825_022_00220_x crossref_primary_10_1021_acssensors_6b00530 crossref_primary_10_1016_j_snb_2018_05_106 crossref_primary_10_1007_s11220_024_00520_2 crossref_primary_10_1038_s41586_019_1850_7 crossref_primary_10_1016_j_scitotenv_2022_159563 crossref_primary_10_1038_s41598_017_07502_3 crossref_primary_10_1039_D1LC00438G crossref_primary_10_1016_j_snb_2018_08_111 crossref_primary_10_1016_j_talanta_2019_120631 crossref_primary_10_3390_s19173644 crossref_primary_10_1016_j_sna_2022_113455 crossref_primary_10_1016_j_jnoncrysol_2022_121420 crossref_primary_10_1016_j_ceramint_2022_09_108 crossref_primary_10_1021_acs_analchem_0c01240 crossref_primary_10_3390_bios12111038 crossref_primary_10_1021_acsami_8b16876 crossref_primary_10_1021_acsnano_0c07464 crossref_primary_10_1063_5_0197236 crossref_primary_10_1016_j_infrared_2022_104529 crossref_primary_10_1016_j_snb_2018_07_092 crossref_primary_10_1039_C6AY01450J crossref_primary_10_1016_j_rinp_2023_106348 crossref_primary_10_1039_C6AN01477A crossref_primary_10_1039_D0MH00249F crossref_primary_10_1364_OL_43_005997 crossref_primary_10_1039_D1TC01351C crossref_primary_10_1021_acsphotonics_0c00071 crossref_primary_10_1016_j_aca_2020_06_062 crossref_primary_10_1016_j_isci_2023_107821 crossref_primary_10_1002_pssa_201600134 crossref_primary_10_1021_acs_chemrev_8b00573 crossref_primary_10_1021_acsomega_2c05502 crossref_primary_10_1021_acs_analchem_7b03623 crossref_primary_10_1039_C9RA04104D crossref_primary_10_1364_OE_399646 crossref_primary_10_1021_acs_est_3c07193 crossref_primary_10_2166_ws_2024_224 crossref_primary_10_1016_j_trac_2020_115892 crossref_primary_10_1039_D2SD00177B crossref_primary_10_1080_10408347_2022_2041390 crossref_primary_10_1039_C6TA08235A crossref_primary_10_1364_AO_58_002091 crossref_primary_10_1364_OE_381955 crossref_primary_10_1039_D0AY01749C crossref_primary_10_1016_j_scitotenv_2022_153065 crossref_primary_10_1021_acscentsci_6b00075 crossref_primary_10_1016_j_chemolab_2018_12_008 crossref_primary_10_1073_pnas_2319465121 crossref_primary_10_1016_j_snb_2019_01_042 crossref_primary_10_1039_D2MA00319H crossref_primary_10_1002_adma_202110525 crossref_primary_10_1039_C8TC02049C crossref_primary_10_1364_JOSAB_35_0000C8 crossref_primary_10_1038_s41467_023_38200_6 crossref_primary_10_1039_C8LC00317C crossref_primary_10_1021_acs_analchem_3c00691 crossref_primary_10_1063_5_0064234 crossref_primary_10_3389_fpls_2022_991883 crossref_primary_10_1039_D2TC00265E crossref_primary_10_1016_j_watres_2020_116759 crossref_primary_10_1021_acs_cgd_2c00701 |
Cites_doi | 10.1021/ac0347009 10.1366/000370203322005274 10.1021/jf400301y 10.1021/ac070832g 10.1016/j.ijms.2013.07.001 10.1021/ac960761d 10.1364/OPEX.13.005953 10.1016/j.snb.2008.06.058 10.1007/s001289900209 10.1366/12-06898 10.1016/S0021-9673(02)00439-9 10.1039/c3cs60173k 10.1016/j.colsurfb.2009.02.003 10.3390/membranes2040804 10.1021/ac048189a 10.1080/03067310500291585 10.1080/08927019109378165 10.1016/S0043-1354(01)00371-2 10.3390/s90806232 10.1021/jf0612373 10.1366/000370203322005256 10.1088/0957-0233/10/12/310 10.1016/j.colsurfb.2012.08.027 10.1021/ac051828c 10.1039/C1AN15521K 10.1126/science.1235053 10.1038/srep02525 10.1021/ac00099a018 10.1002/anie.201209256 10.1039/c0an00504e 10.1016/S0167-7012(01)00268-8 10.1021/ac201664p 10.1021/jp037983h 10.1016/j.jcis.2011.03.066 10.1021/ac901192d 10.1063/1.1752094 10.1021/ac00158a021 10.1016/S0021-9673(99)01144-9 10.1038/nprot.2014.110 10.1039/C4AN01495B 10.1002/cphc.201500932 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2016 COPYRIGHT 2016 Nature Publishing Group Copyright Nature Publishing Group Feb 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016. |
Copyright_xml | – notice: Springer Nature Limited 2016 – notice: COPYRIGHT 2016 Nature Publishing Group – notice: Copyright Nature Publishing Group Feb 2016 – notice: Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QG 7T5 7T7 7TM 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY RC3 7X8 |
DOI | 10.1038/nprot.2016.013 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student MEDLINE ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1750-2799 |
EndPage | 386 |
ExternalDocumentID | 3935489481 A442287246 26820794 10_1038_nprot_2016_013 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 123 29M 39C 3TQ 3V. 4.4 53G 5BI 5M7 70F 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABJNI ABLJU ABUWG ACGFO ACGFS ACMJI ACPRK ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AHBCP AHMBA AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CAG CCPQU COF DB5 DU5 EBS EE. EJD EMOBN F5P FEDTE FSGXE FYUFA FZEXT HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR ISR ITC LGEZI LK8 LOTEE M1P M7P NADUK NNMJJ NXXTH O9- ODYON P2P PATMY PQQKQ PROAC PSQYO PYCSY RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG UKHRP AAYXX ACMFV AFANA ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB PMFND 7QG 7T5 7T7 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS PUEGO RC3 7X8 |
ID | FETCH-LOGICAL-c628t-82ae65630e1c79ef39f4593c66c668a16d5031d4fa7c6181ff0efc2722de013e3 |
IEDL.DBID | 7X7 |
ISSN | 1754-2189 1750-2799 |
IngestDate | Thu Jul 10 19:36:20 EDT 2025 Fri Jul 25 09:05:32 EDT 2025 Sat Aug 23 15:00:09 EDT 2025 Tue Jun 17 21:07:32 EDT 2025 Tue Jun 10 20:32:36 EDT 2025 Fri Jun 27 03:53:22 EDT 2025 Mon Jul 21 05:48:18 EDT 2025 Tue Jul 01 00:19:31 EDT 2025 Thu Apr 24 22:57:18 EDT 2025 Fri Feb 21 02:37:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c628t-82ae65630e1c79ef39f4593c66c668a16d5031d4fa7c6181ff0efc2722de013e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5583-7962 |
PMID | 26820794 |
PQID | 1760951424 |
PQPubID | 536306 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1761466273 proquest_journals_2564692324 proquest_journals_1760951424 gale_infotracmisc_A442287246 gale_infotracacademiconefile_A442287246 gale_incontextgauss_ISR_A442287246 pubmed_primary_26820794 crossref_primary_10_1038_nprot_2016_013 crossref_citationtrail_10_1038_nprot_2016_013 springer_journals_10_1038_nprot_2016_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | Recipes for Researchers |
PublicationTitle | Nature protocols |
PublicationTitleAbbrev | Nat Protoc |
PublicationTitleAlternate | Nat Protoc |
PublicationYear | 2016 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Schädle (CR13) 2013; 67 Luzinova (CR11) 2011; 84 Kraft (CR37) 2003; 57 Pejcic, Myers, Ross (CR9) 2009; 9 Chen (CR14) 2005; 13 Park (CR1) 2013; 341 Karlowatz, Kraft, Mizaikoff (CR8) 2004; 76 CR36 Yu, Ganjoo, Jain, Pantano, Irudayaraj (CR42) 2006; 78 Bremer, Geesey (CR32) 1991; 3 Kraft (CR28) 2003; 57 Wittkamp, Hawthorne, Tilotta (CR24) 1997; 69 Carr, Harris (CR26) 1988; 60 Gao, Chorover (CR30) 2009; 71 Suci, Geesey, Tyler (CR31) 2001; 46 Baker (CR39) 2014; 9 Riccardi, Hess, Mizaikoff (CR41) 2011; 136 Luzinova (CR10) 2012; 137 Ayad, El-Hefnawey, Torad (CR22) 2008; 134 Lu (CR5) 2013; 52 Liska (CR19) 2000; 885 Stockbarger (CR38) 1936; 7 Steiner (CR18) 2003; 57 Nguyen, Roddick, Fan (CR35) 2012; 2 Lorite (CR34) 2013; 102 Flavin (CR17) 2006; 86 Charlton (CR12) 2005; 77 Mizaikoff (CR27) 1999; 10 Lu (CR7) 2015; 140 Martinez (CR21) 2002; 959 Kosower (CR15) 2004; 108 Lin, Li (CR3) 2010; 82 Louarn (CR4) 2013; 353 Lu (CR6) 2013; 3 Wilkins, Singh-Thandi, Langdon (CR20) 1996; 57 Roy, Mielczarski (CR2) 2002; 36 Sanvicens (CR23) 2006; 54 Wittkamp, Tilotta (CR25) 1995; 67 Mizaikoff (CR16) 2013; 42 Lorite (CR33) 2011; 359 Dobbs (CR40) 2007; 79 Theodoridou, Yu (CR29) 2013; 61 GS Lorite (BFnprot2016013_CR34) 2013; 102 N Sanvicens (BFnprot2016013_CR23) 2006; 54 W Lin (BFnprot2016013_CR3) 2010; 82 BFnprot2016013_CR36 BL Wittkamp (BFnprot2016013_CR25) 1995; 67 Y Luzinova (BFnprot2016013_CR10) 2012; 137 C Charlton (BFnprot2016013_CR12) 2005; 77 GT Dobbs (BFnprot2016013_CR40) 2007; 79 H Steiner (BFnprot2016013_CR18) 2003; 57 Y Luzinova (BFnprot2016013_CR11) 2011; 84 AL Wilkins (BFnprot2016013_CR20) 1996; 57 T Schädle (BFnprot2016013_CR13) 2013; 67 T Nguyen (BFnprot2016013_CR35) 2012; 2 JH Park (BFnprot2016013_CR1) 2013; 341 MM Ayad (BFnprot2016013_CR22) 2008; 134 M Karlowatz (BFnprot2016013_CR8) 2004; 76 I Liska (BFnprot2016013_CR19) 2000; 885 X Gao (BFnprot2016013_CR30) 2009; 71 G Roy (BFnprot2016013_CR2) 2002; 36 M Kraft (BFnprot2016013_CR28) 2003; 57 GS Lorite (BFnprot2016013_CR33) 2011; 359 MJ Baker (BFnprot2016013_CR39) 2014; 9 JW Carr (BFnprot2016013_CR26) 1988; 60 PA Suci (BFnprot2016013_CR31) 2001; 46 R Lu (BFnprot2016013_CR5) 2013; 52 K Flavin (BFnprot2016013_CR17) 2006; 86 E Martinez (BFnprot2016013_CR21) 2002; 959 CS Riccardi (BFnprot2016013_CR41) 2011; 136 B Mizaikoff (BFnprot2016013_CR27) 1999; 10 J Chen (BFnprot2016013_CR14) 2005; 13 M Kraft (BFnprot2016013_CR37) 2003; 57 R Lu (BFnprot2016013_CR7) 2015; 140 K Theodoridou (BFnprot2016013_CR29) 2013; 61 DC Stockbarger (BFnprot2016013_CR38) 1936; 7 E Louarn (BFnprot2016013_CR4) 2013; 353 B Mizaikoff (BFnprot2016013_CR16) 2013; 42 BL Wittkamp (BFnprot2016013_CR24) 1997; 69 EM Kosower (BFnprot2016013_CR15) 2004; 108 PJ Bremer (BFnprot2016013_CR32) 1991; 3 B Pejcic (BFnprot2016013_CR9) 2009; 9 R Lu (BFnprot2016013_CR6) 2013; 3 C Yu (BFnprot2016013_CR42) 2006; 78 15117210 - Anal Chem. 2004 May 1;76(9):2643-8 26639164 - Chemphyschem. 2016 Feb 3;17(3):358-63 22103793 - Anal Chem. 2012 Feb 7;84(3):1274-80 24958430 - Membranes (Basel). 2012 Nov 21;2(4):804-40 12044090 - Water Res. 2002 Apr;36(7):1902-8 25525641 - Analyst. 2015 Feb 7;140(3):765-70 23929979 - Science. 2013 Aug 9;341(6146):643-7 24067637 - Appl Spectrosc. 2013 Sep;67(9):1057-63 19269797 - Colloids Surf B Biointerfaces. 2009 Jul 1;71(2):169-76 11438184 - J Microbiol Methods. 2001 Sep;46(3):193-208 21486669 - J Colloid Interface Sci. 2011 Jul 1;359(1):289-95 14658689 - Appl Spectrosc. 2003 Jun;57(6):591-9 18020310 - Anal Chem. 2007 Dec 15;79(24):9566-71 12141544 - J Chromatogr A. 2002 Jun 14;959(1-2):181-90 19498602 - Opt Express. 2005 Aug 8;13(16):5953-60 10941664 - J Chromatogr A. 2000 Jul 14;885(1-2):3-16 16013852 - Anal Chem. 2005 Jul 15;77(14):4398-403 20038113 - Anal Chem. 2010 Jan 15;82(2):505-15 17117807 - J Agric Food Chem. 2006 Nov 29;54(24):9176-83 22132414 - Analyst. 2012 Jan 21;137(2):333-41 23164974 - Colloids Surf B Biointerfaces. 2013 Feb 1;102:519-25 23683050 - J Agric Food Chem. 2013 Jun 12;61(23):5449-58 24992094 - Nat Protoc. 2014 Aug;9(8):1771-91 23982222 - Sci Rep. 2013;3:2525 23995692 - Chem Soc Rev. 2013 Nov 21;42(22):8683-99 2837924 - Anal Chem. 1988 Apr 1;60(7):698-702 21994915 - Analyst. 2011 Dec 7;136(23 ):4906-11 23371487 - Angew Chem Int Ed Engl. 2013 Feb 18;52(8):2265-8 14658691 - Appl Spectrosc. 2003 Jun;57(6):607-13 8672070 - Bull Environ Contam Toxicol. 1996 Sep;57(3):434-41 22454582 - Sensors (Basel). 2009;9(8):6232-53 16615756 - Anal Chem. 2006 Apr 15;78(8):2500-6 |
References_xml | – volume: 76 start-page: 2643 year: 2004 end-page: 2648 ident: CR8 article-title: Simultaneous quantitative determination of benzene, toluene, and xylenes in water using mid-infrared evanescent field spectroscopy publication-title: Anal. Chem. doi: 10.1021/ac0347009 – volume: 57 start-page: 607 year: 2003 end-page: 613 ident: CR18 article-title: sensing of volatile organic compounds in groundwater: first field tests of a mid-infrared fiber-optic sensing system publication-title: Appl. Spectrosc. doi: 10.1366/000370203322005274 – volume: 61 start-page: 5449 year: 2013 end-page: 5458 ident: CR29 article-title: Application potential of ATR-FT/IR molecular spectroscopy in animal nutrition: revelation of protein molecular structures of canola meal and presscake, as affected by heat-processing methods, in relationship with their protein digestive behavior and utilization for dairy cattle publication-title: J. Agric. Food Chem. doi: 10.1021/jf400301y – volume: 79 start-page: 9566 year: 2007 end-page: 9571 ident: CR40 article-title: Mid-infrared chemical sensors utilizing plasma-deposited fluorocarbon membranes publication-title: Anal. Chem. doi: 10.1021/ac070832g – volume: 353 start-page: 26 year: 2013 end-page: 35 ident: CR4 article-title: Characterization of a membrane inlet interfaced with a compact chemical ionization FT-ICR for real-time and quantitative VOC analysis in water publication-title: Int. J. Mass Spectrom. doi: 10.1016/j.ijms.2013.07.001 – volume: 69 start-page: 1197 year: 1997 end-page: 1203 ident: CR24 article-title: Determination of aromatic compounds in water by solid phase microextraction and ultraviolet absorption spectroscopy. 1. Methodology publication-title: Anal. Chem. doi: 10.1021/ac960761d – volume: 13 start-page: 5953 year: 2005 end-page: 5960 ident: CR14 article-title: Silver halide fiber-based evanescent-wave liquid droplet sensing with room temperature mid-infrared quantum cascade lasers publication-title: Opt. Express doi: 10.1364/OPEX.13.005953 – volume: 134 start-page: 887 year: 2008 end-page: 894 ident: CR22 article-title: Quartz crystal microbalance sensor coated with polyaniline emeraldine base for determination of chlorinated aliphatic hydrocarbons publication-title: Sens. Actuator B-Chem. doi: 10.1016/j.snb.2008.06.058 – volume: 57 start-page: 434 year: 1996 end-page: 441 ident: CR20 article-title: Pulp mill sourced organic compounds and sodium levels in water and sediments from the Tarawera River, New Zealand publication-title: Bull. Environ. Contam. Toxicol. doi: 10.1007/s001289900209 – volume: 67 start-page: 1057 year: 2013 end-page: 1063 ident: CR13 article-title: Mid-infrared planar silver halide waveguides with integrated grating couplers publication-title: Appl. Spectrosc. doi: 10.1366/12-06898 – volume: 959 start-page: 181 year: 2002 end-page: 190 ident: CR21 article-title: Multicomponent analysis of volatile organic compounds in water by automated purge and trap coupled to gas chromatography-mass spectrometry publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(02)00439-9 – volume: 42 start-page: 8683 year: 2013 end-page: 8699 ident: CR16 article-title: Waveguide-enhanced mid-infrared chem/bio sensors publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60173k – volume: 71 start-page: 169 year: 2009 end-page: 176 ident: CR30 article-title: monitoring of oocyst surface adhesion using ATR-FTIR spectroscopy publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2009.02.003 – volume: 2 start-page: 804 year: 2012 end-page: 840 ident: CR35 article-title: Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures publication-title: Membranes doi: 10.3390/membranes2040804 – volume: 77 start-page: 4398 year: 2005 end-page: 4403 ident: CR12 article-title: Infrared evanescent field sensing with quantum cascade lasers and planar silver halide waveguides publication-title: Anal. Chem. doi: 10.1021/ac048189a – volume: 86 start-page: 401 year: 2006 end-page: 415 ident: CR17 article-title: A comparison of polymeric materials as pre-concentrating media for use with ATR/FTIR sensing publication-title: Int. J. Environ. Anal. Chem. doi: 10.1080/03067310500291585 – volume: 3 start-page: 89 year: 1991 end-page: 100 ident: CR32 article-title: An evaluation of biofilm development utilizing non-destructive attenuated total reflectance Fourier transform infrared spectroscopy publication-title: Biofouling doi: 10.1080/08927019109378165 – volume: 36 start-page: 1902 year: 2002 end-page: 1908 ident: CR2 article-title: Infrared detection of chlorinated hydrocarbons in water at ppb levels of concentrations publication-title: Water Res. doi: 10.1016/S0043-1354(01)00371-2 – volume: 9 start-page: 6232 year: 2009 end-page: 6253 ident: CR9 article-title: Mid-infrared sensing of organic pollutants in aqueous environments publication-title: Sensors doi: 10.3390/s90806232 – volume: 54 start-page: 9176 year: 2006 end-page: 9183 ident: CR23 article-title: Determination of haloanisols in white wine by immunosorbent solid-phase extraction followed by enzyme-linked immunosorbent assay publication-title: J. Agric. Food Chem. doi: 10.1021/jf0612373 – volume: 57 start-page: 591 year: 2003 end-page: 599 ident: CR37 article-title: New frontiers for mid-infrared sensors: towards deep sea monitoring with a submarine FT-IR sensor system publication-title: Appl. Spectrosc. doi: 10.1366/000370203322005256 – volume: 10 start-page: 1185 year: 1999 end-page: 1194 ident: CR27 article-title: Mid-infrared evanescent wave sensors: a novel approach for subsea monitoring publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/10/12/310 – volume: 102 start-page: 519 year: 2013 end-page: 525 ident: CR34 article-title: On the role of extracellular polymeric substances during early stages of biofilm formation publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2012.08.027 – volume: 78 start-page: 2500 year: 2006 end-page: 2506 ident: CR42 article-title: Mid-IR biosensor: detection and fingerprinting of pathogens on gold island functionalized chalcogenide films publication-title: Anal. Chem. doi: 10.1021/ac051828c – volume: 137 start-page: 333 year: 2012 end-page: 341 ident: CR10 article-title: Detecting trace amounts of water in hydrocarbon matrices with infrared fiberoptic evanescent field sensors publication-title: Analyst doi: 10.1039/C1AN15521K – volume: 341 start-page: 643 year: 2013 end-page: 647 ident: CR1 article-title: Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds publication-title: Science doi: 10.1126/science.1235053 – volume: 3 start-page: 2525 year: 2013 end-page: 2531 ident: CR6 article-title: Determination of chlorinated hydrocarbons in water using highly sensitive mid-infrared sensor technology publication-title: Sci. Rep. doi: 10.1038/srep02525 – volume: 57 start-page: 591 year: 2003 end-page: 599 ident: CR28 article-title: New frontiers for mid-infrared sensors: towards deep sea monitoring with a submarine FT-IR sensor system publication-title: Appl. Spectrosc. doi: 10.1366/000370203322005256 – volume: 67 start-page: 600 year: 1995 end-page: 605 ident: CR25 article-title: Determination of BTEX compounds in water by solid-phase microextraction and Raman spectroscopy publication-title: Anal. Chem. doi: 10.1021/ac00099a018 – volume: 52 start-page: 2265 year: 2013 end-page: 2268 ident: CR5 article-title: IR-ATR chemical sensors based on planar silver halide waveguides coated with an ethylene/propylene copolymer for detection of multiple organic contaminants in water publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201209256 – volume: 136 start-page: 4906 year: 2011 end-page: 4911 ident: CR41 article-title: Surface-modified ZnSe waveguides for label-free infrared attenuated total reflection detection of DNA hybridization publication-title: Analyst doi: 10.1039/c0an00504e – volume: 46 start-page: 193 year: 2001 end-page: 208 ident: CR31 article-title: Integration of Raman microscopy, differential interference contrast microscopy, and attenuated total reflection Fourier transform infrared spectroscopy to investigate chlorhexidine spatial and temporal distribution in biofilms publication-title: J. Microbiol. Methods doi: 10.1016/S0167-7012(01)00268-8 – volume: 84 start-page: 1274 year: 2011 end-page: 1280 ident: CR11 article-title: trace analysis of oil in water with mid-infrared fiberoptic chemical sensors publication-title: Anal. Chem. doi: 10.1021/ac201664p – volume: 108 start-page: 12633 year: 2004 end-page: 12636 ident: CR15 article-title: Surface-enhanced infrared absorption and amplified spectra on planar silver halide fiber publication-title: J. Phys. Chem. B doi: 10.1021/jp037983h – volume: 359 start-page: 289 year: 2011 end-page: 295 ident: CR33 article-title: The role of conditioning film formation and surface chemical changes on adhesion and biofilm evolution publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.03.066 – ident: CR36 – volume: 82 start-page: 505 year: 2010 end-page: 515 ident: CR3 article-title: Detection and quantification of trace organic contaminants in water using the FT-IR-attenuated total reflectance technique publication-title: Anal. Chem. doi: 10.1021/ac901192d – volume: 7 start-page: 133 year: 1936 end-page: 136 ident: CR38 article-title: The production of large single crystals of lithium fluoride publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1752094 – volume: 60 start-page: 698 year: 1988 end-page: 702 ident: CR26 article-title: fluorescence detection of polycyclic aromatic hydrocarbons following preconcentration on alkylated silica adsorbents publication-title: Anal. Chem. doi: 10.1021/ac00158a021 – volume: 885 start-page: 3 year: 2000 end-page: 16 ident: CR19 article-title: Fifty years of solid-phase extraction in water analysis: historical development and overview publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(99)01144-9 – volume: 9 start-page: 1771 year: 2014 end-page: 1791 ident: CR39 article-title: Using Fourier transform IR spectroscopy to analyze biological materials publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.110 – volume: 140 start-page: 765 year: 2015 end-page: 770 ident: CR7 article-title: Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors publication-title: Analyst doi: 10.1039/C4AN01495B – volume: 79 start-page: 9566 year: 2007 ident: BFnprot2016013_CR40 publication-title: Anal. Chem. doi: 10.1021/ac070832g – volume: 140 start-page: 765 year: 2015 ident: BFnprot2016013_CR7 publication-title: Analyst doi: 10.1039/C4AN01495B – volume: 77 start-page: 4398 year: 2005 ident: BFnprot2016013_CR12 publication-title: Anal. Chem. doi: 10.1021/ac048189a – volume: 57 start-page: 607 year: 2003 ident: BFnprot2016013_CR18 publication-title: Appl. Spectrosc. doi: 10.1366/000370203322005274 – volume: 61 start-page: 5449 year: 2013 ident: BFnprot2016013_CR29 publication-title: J. Agric. Food Chem. doi: 10.1021/jf400301y – volume: 78 start-page: 2500 year: 2006 ident: BFnprot2016013_CR42 publication-title: Anal. Chem. doi: 10.1021/ac051828c – volume: 108 start-page: 12633 year: 2004 ident: BFnprot2016013_CR15 publication-title: J. Phys. Chem. B doi: 10.1021/jp037983h – volume: 2 start-page: 804 year: 2012 ident: BFnprot2016013_CR35 publication-title: Membranes doi: 10.3390/membranes2040804 – volume: 46 start-page: 193 year: 2001 ident: BFnprot2016013_CR31 publication-title: J. Microbiol. Methods doi: 10.1016/S0167-7012(01)00268-8 – volume: 13 start-page: 5953 year: 2005 ident: BFnprot2016013_CR14 publication-title: Opt. Express doi: 10.1364/OPEX.13.005953 – volume: 57 start-page: 591 year: 2003 ident: BFnprot2016013_CR28 publication-title: Appl. Spectrosc. doi: 10.1366/000370203322005256 – ident: BFnprot2016013_CR36 doi: 10.1002/cphc.201500932 – volume: 10 start-page: 1185 year: 1999 ident: BFnprot2016013_CR27 publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/10/12/310 – volume: 82 start-page: 505 year: 2010 ident: BFnprot2016013_CR3 publication-title: Anal. Chem. doi: 10.1021/ac901192d – volume: 353 start-page: 26 year: 2013 ident: BFnprot2016013_CR4 publication-title: Int. J. Mass Spectrom. doi: 10.1016/j.ijms.2013.07.001 – volume: 57 start-page: 591 year: 2003 ident: BFnprot2016013_CR37 publication-title: Appl. Spectrosc. doi: 10.1366/000370203322005256 – volume: 36 start-page: 1902 year: 2002 ident: BFnprot2016013_CR2 publication-title: Water Res. doi: 10.1016/S0043-1354(01)00371-2 – volume: 9 start-page: 6232 year: 2009 ident: BFnprot2016013_CR9 publication-title: Sensors doi: 10.3390/s90806232 – volume: 359 start-page: 289 year: 2011 ident: BFnprot2016013_CR33 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.03.066 – volume: 3 start-page: 2525 year: 2013 ident: BFnprot2016013_CR6 publication-title: Sci. Rep. doi: 10.1038/srep02525 – volume: 86 start-page: 401 year: 2006 ident: BFnprot2016013_CR17 publication-title: Int. J. Environ. Anal. Chem. doi: 10.1080/03067310500291585 – volume: 52 start-page: 2265 year: 2013 ident: BFnprot2016013_CR5 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201209256 – volume: 60 start-page: 698 year: 1988 ident: BFnprot2016013_CR26 publication-title: Anal. Chem. doi: 10.1021/ac00158a021 – volume: 341 start-page: 643 year: 2013 ident: BFnprot2016013_CR1 publication-title: Science doi: 10.1126/science.1235053 – volume: 9 start-page: 1771 year: 2014 ident: BFnprot2016013_CR39 publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.110 – volume: 67 start-page: 1057 year: 2013 ident: BFnprot2016013_CR13 publication-title: Appl. Spectrosc. doi: 10.1366/12-06898 – volume: 71 start-page: 169 year: 2009 ident: BFnprot2016013_CR30 publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2009.02.003 – volume: 102 start-page: 519 year: 2013 ident: BFnprot2016013_CR34 publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2012.08.027 – volume: 54 start-page: 9176 year: 2006 ident: BFnprot2016013_CR23 publication-title: J. Agric. Food Chem. doi: 10.1021/jf0612373 – volume: 67 start-page: 600 year: 1995 ident: BFnprot2016013_CR25 publication-title: Anal. Chem. doi: 10.1021/ac00099a018 – volume: 885 start-page: 3 year: 2000 ident: BFnprot2016013_CR19 publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(99)01144-9 – volume: 3 start-page: 89 year: 1991 ident: BFnprot2016013_CR32 publication-title: Biofouling doi: 10.1080/08927019109378165 – volume: 136 start-page: 4906 year: 2011 ident: BFnprot2016013_CR41 publication-title: Analyst doi: 10.1039/c0an00504e – volume: 76 start-page: 2643 year: 2004 ident: BFnprot2016013_CR8 publication-title: Anal. Chem. doi: 10.1021/ac0347009 – volume: 42 start-page: 8683 year: 2013 ident: BFnprot2016013_CR16 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60173k – volume: 959 start-page: 181 year: 2002 ident: BFnprot2016013_CR21 publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(02)00439-9 – volume: 57 start-page: 434 year: 1996 ident: BFnprot2016013_CR20 publication-title: Bull. Environ. Contam. Toxicol. doi: 10.1007/s001289900209 – volume: 84 start-page: 1274 year: 2011 ident: BFnprot2016013_CR11 publication-title: Anal. Chem. doi: 10.1021/ac201664p – volume: 69 start-page: 1197 year: 1997 ident: BFnprot2016013_CR24 publication-title: Anal. Chem. doi: 10.1021/ac960761d – volume: 7 start-page: 133 year: 1936 ident: BFnprot2016013_CR38 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1752094 – volume: 137 start-page: 333 year: 2012 ident: BFnprot2016013_CR10 publication-title: Analyst doi: 10.1039/C1AN15521K – volume: 134 start-page: 887 year: 2008 ident: BFnprot2016013_CR22 publication-title: Sens. Actuator B-Chem. doi: 10.1016/j.snb.2008.06.058 – reference: 23371487 - Angew Chem Int Ed Engl. 2013 Feb 18;52(8):2265-8 – reference: 22103793 - Anal Chem. 2012 Feb 7;84(3):1274-80 – reference: 16013852 - Anal Chem. 2005 Jul 15;77(14):4398-403 – reference: 23982222 - Sci Rep. 2013;3:2525 – reference: 17117807 - J Agric Food Chem. 2006 Nov 29;54(24):9176-83 – reference: 10941664 - J Chromatogr A. 2000 Jul 14;885(1-2):3-16 – reference: 24067637 - Appl Spectrosc. 2013 Sep;67(9):1057-63 – reference: 8672070 - Bull Environ Contam Toxicol. 1996 Sep;57(3):434-41 – reference: 23995692 - Chem Soc Rev. 2013 Nov 21;42(22):8683-99 – reference: 22454582 - Sensors (Basel). 2009;9(8):6232-53 – reference: 21486669 - J Colloid Interface Sci. 2011 Jul 1;359(1):289-95 – reference: 24958430 - Membranes (Basel). 2012 Nov 21;2(4):804-40 – reference: 14658691 - Appl Spectrosc. 2003 Jun;57(6):607-13 – reference: 24992094 - Nat Protoc. 2014 Aug;9(8):1771-91 – reference: 23929979 - Science. 2013 Aug 9;341(6146):643-7 – reference: 21994915 - Analyst. 2011 Dec 7;136(23 ):4906-11 – reference: 20038113 - Anal Chem. 2010 Jan 15;82(2):505-15 – reference: 22132414 - Analyst. 2012 Jan 21;137(2):333-41 – reference: 16615756 - Anal Chem. 2006 Apr 15;78(8):2500-6 – reference: 12044090 - Water Res. 2002 Apr;36(7):1902-8 – reference: 19269797 - Colloids Surf B Biointerfaces. 2009 Jul 1;71(2):169-76 – reference: 15117210 - Anal Chem. 2004 May 1;76(9):2643-8 – reference: 14658689 - Appl Spectrosc. 2003 Jun;57(6):591-9 – reference: 26639164 - Chemphyschem. 2016 Feb 3;17(3):358-63 – reference: 23683050 - J Agric Food Chem. 2013 Jun 12;61(23):5449-58 – reference: 11438184 - J Microbiol Methods. 2001 Sep;46(3):193-208 – reference: 23164974 - Colloids Surf B Biointerfaces. 2013 Feb 1;102:519-25 – reference: 12141544 - J Chromatogr A. 2002 Jun 14;959(1-2):181-90 – reference: 18020310 - Anal Chem. 2007 Dec 15;79(24):9566-71 – reference: 25525641 - Analyst. 2015 Feb 7;140(3):765-70 – reference: 19498602 - Opt Express. 2005 Aug 8;13(16):5953-60 – reference: 2837924 - Anal Chem. 1988 Apr 1;60(7):698-702 |
SSID | ssj0047367 |
Score | 2.4863043 |
SecondaryResourceType | review_article |
Snippet | Volatile organic compounds (VOCs) are by-products of human activity that are particularly difficult to detect in water. This protocol describes an infrared... In situ detection of volatile organic compounds (VOCs) in aqueous environments is imperative for ensuring the quality and safety of water supplies, yet it... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 377 |
SubjectTerms | 631/1647/527/2257 631/92/612 639/638/11/872 639/638/169/895 Analysis Analytical Chemistry Aqueous environments Attenuation Biological Techniques Chemical perception Chemistry Techniques, Analytical Chemoreception Computational Biology/Bioinformatics Identification and classification Infrared detectors Infrared reflection Infrared spectroscopy Innovations Life Sciences Low concentrations Microarrays Organic Chemistry Organic compounds Polymer coatings Polymers Properties Protein structure protocol Spectrophotometry, Infrared - methods Spectroscopy Spectrum analysis VOCs Volatile organic compounds Volatile Organic Compounds - analysis Water Water - chemistry Water supply Waveguides |
Title | High-sensitivity infrared attenuated total reflectance sensors for in situ multicomponent detection of volatile organic compounds in water |
URI | https://link.springer.com/article/10.1038/nprot.2016.013 https://www.ncbi.nlm.nih.gov/pubmed/26820794 https://www.proquest.com/docview/1760951424 https://www.proquest.com/docview/2564692324 https://www.proquest.com/docview/1761466273 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFRIXVN4pbWUQElxM83Ds5FQV1KogUaFCpb1ZjmNzqZyySVTxF_jVzDjOtlsVpL15_NjM2DO2P39DyNsa_LbTtmay0hXjWZWypmhy1gpdZ6VLoRwfJ389FSfn_MuiXMQDtz7CKuc1MSzUbWfwjHwfXDPs5ND_H1z-Ypg1Cm9XYwqN-2QTqcsQ0iUXqw0Xl0XIIAsekjNwZfVM2lhU-x5pEBDZJT6kWbHmlG4vzTd8063L0uCDjrfIoxg80sNJ24_JPeufkAdTOsnfT8kfBG2wHiHpU04ICuazRIQ5RRZNP0Jc2dKhg3ibwhjwwB51TrFGt-wpxK9Qg0LtkQagIeLNOw9uibZ2CJgtTztHYUUDfV5YOqWEMjTIjb7tsfoV9LJ8Rs6Pj358OmEx1wIzIq8GVuXaCuQKs5mRtXVF7XhZF0YI-FU6E20J07_lTksjICpwLrXO5DLPWxtOUp-TDQ8jekkobHqNSLVoDC9hcwMLhBSaNxDY5Y0EA0gImz-2MpGIHPNhXKhwIV5UKihHoXIUtJ2Qdyv5y4mC45-Sb1B3CnktPAJnfuqx79Xn72fqkCPXmcy5gOaikOugW6PjOwQYPFJhrUnurEnCxDPrxbOJqDjxe5VJZPDD54N3Fl9bcUJer4qxYcS6eduNoQlwXwLiyoS8mCxv9b9zAREbLKEJeT-b4o2-7_wo2_8fxyvyECUnIPoO2RiWo92FOGto9sJk2iObH49Ov539BVatKBs |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRC9IN4EChgEgotp4jhOckCoQKtd2q5QaaXeTOLYvVRJ2WxU9S_wY_iNzOSxdKvCrVJuHj8Sj-cbx59nAF6niNsusymPkyzhMkh8noe54IXK0iByPpbT5eS9qRofyq9H0dEK_B7uwhCtcrCJraEuKkP_yDcQmnEnR_j_8fQnp6xRdLo6pNDo1GLHnp_hlq3-MPmC8_tGiO2tg89j3mcV4EaJZM4TkVlFUbFsYOLUujB1MkpDoxQ-SRaoIkJFL6TLYqMQ_5zzrTMiFqKw7T9DbPcGrMoQtzIjWP20Nf22P9h-GYdtzlrEZMkRPNMhTGSYbJQUeIG4ZOq9H4RLMHgZDC6g4aXj2Rb1tu_A7d5dZZudft2FFVveg5tdAsvz-_CLaCK8JhJ8l4WCocLOiNPOKG5n2aAnW7B5hR4-wzHQEQFpGaMa1axm6DFjDYa1G9ZSG4nhXpUIhKyw85YlVrLKMbShqEEnlnVJqAxr5ZqyqKn6GfYyewCH1zIPD2FU4ogeA8NttlF-pnIjI9xOoUmKVSZzdCVFHqPKecCHj61NH_qcMnCc6PYIPkx0OzmaJkdj2x68XcifdkE__in5iuZOUySNkqg6x1lT13ryfV9vSoquFgupsLleyFXYrcn6mw84eAq-tSS5viSJS90sFw8qontTU-sgppiBdGHxyuK_68aDl4tiapjYdaWtmrYJBEyFnqwHjzrNW7y3UOgjotH24N2gihf6vvKjPPn_OF7ArfHB3q7enUx3nsIa1epo8Oswms8a-wy9vHn-vF9aDH5c92r-A_w_ZDw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKEYgL4p9AAYNAcDGbOI6dHBCqKKsuhQoBlfZmHMfmUiVls1HVV-CReDpmnGTpVoVbpb157HjjmfnG8ecZQp4XgNveuIKp3ORMJHnMyrTkrJKmSDIfQzteTv60L3cPxId5Nt8gv8e7MEirHH1icNRVY_Eb-QSgGXZyiP8TP9AiPu9M3x79ZFhBCk9ax3IavYrsuZNj2L61b2Y7sNYvOJ--__Zulw0VBpiVPF-ynBsnMUOWS6wqnE8LL7IitVLCLzeJrDJQ-kp4o6wELPQ-dt5yxXnlwvdDGPcSuazSLEEbU_PVZk-oNFSvBXQWDGC0GBNGpvmkxhQMyCqTr-MkXQPEs7BwChfPHNQG_JveINeHwJVu95p2k2y4-ha50peyPLlNfiFhhLVIh-_rUVBQ3QWy2ylm8Kw7iGkrumwg1qcwBzwsQH2j2KNZtBRiZ-hBoXdHA8kRue5NDZBIK7cMfLGaNp6CNwVdOnS0L0dlaZDr6qrF7sfwlMUdcnAhq3CXbNYwo_uEwobbytjI0ooMNlbgnJQ0ooSgkpcKlC8ibHzZ2g5J0LEWx6EOh_FprsPiaFwcDWNH5OVK_qhP__FPyWe4dhpzatSonT9M17Z69vWL3haYZ01xIWG4Qcg38FhrhjsQMHlMw7UmubUmCUZv15tHFdGD02l1ojB7IF5dPLf5rwVF5OmqGQdGnl3tmi4MAdApIaaNyL1e81b_m0uIFsF9R-TVqIqnnn3uS3nw_3k8IVfBhvXH2f7eQ3INO_V8-C2yuVx07hGEe8vycbArSr5ftCH_AZUJZww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-sensitivity+infrared+attenuated+total+reflectance+sensors+for+in+situ+multicomponent+detection+of+volatile+organic+compounds+in+water&rft.jtitle=Nature+protocols&rft.au=Lu%2C+Rui&rft.au=Li%2C+Wen-Wei&rft.au=Mizaikoff%2C+Boris&rft.au=Katzir%2C+Abraham&rft.date=2016-02-01&rft.issn=1754-2189&rft.eissn=1750-2799&rft.volume=11&rft.issue=2&rft.spage=377&rft.epage=386&rft_id=info:doi/10.1038%2Fnprot.2016.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nprot_2016_013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-2189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-2189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-2189&client=summon |