Effects of hardware heterogeneity on the performance of SVM Alzheimer's disease classifier
Fully automated machine learning methods based on structural magnetic resonance imaging (MRI) data can assist radiologists in the diagnosis of Alzheimer's disease (AD). These algorithms require large data sets to learn the separation of subjects with and without AD. Training and test data may c...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 58; no. 3; pp. 785 - 792 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.10.2011
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fully automated machine learning methods based on structural magnetic resonance imaging (MRI) data can assist radiologists in the diagnosis of Alzheimer's disease (AD). These algorithms require large data sets to learn the separation of subjects with and without AD. Training and test data may come from heterogeneous hardware settings, which can potentially affect the performance of disease classification.
A total of 518 MRI sessions from 226 healthy controls and 191 individuals with probable AD from the multicenter Alzheimer's Disease Neuroimaging Initiative (ADNI) were used to investigate whether grouping data by acquisition hardware (i.e. vendor, field strength, coil system) is beneficial for the performance of a support vector machine (SVM) classifier, compared to the case where data from different hardware is mixed. We compared the change of the SVM decision value resulting from (a) changes in hardware against the effect of disease and (b) changes resulting simply from rescanning the same subject on the same machine.
Maximum accuracy of 87% was obtained with a training set of all 417 subjects. Classifiers trained with 95 subjects in each diagnostic group and acquired with heterogeneous scanner settings had an empirical detection accuracy of 84.2±2.4% when tested on an independent set of the same size. These results mirror the accuracy reported in recent studies. Encouragingly, classifiers trained on images acquired with homogenous and heterogeneous hardware settings had equivalent cross-validation performances. Two scans of the same subject acquired on the same machine had very similar decision values and were generally classified into the same group. Higher variation was introduced when two acquisitions of the same subject were performed on two scanners with different field strengths. The variation was unbiased and similar for both diagnostic groups.
The findings of the study encourage the pooling of data from different sites to increase the number of training samples and thereby improving performance of disease classifiers. Although small, a change in hardware could lead to a change of the decision value and thus diagnostic grouping. The findings of this study provide estimators for diagnostic accuracy of an automated disease diagnosis method involving scans acquired with different sets of hardware. Furthermore, we show that the level of confidence in the performance estimation significantly depends on the size of the training sample, and hence should be taken into account in a clinical setting.
► MRI data from multiple scanners was used to asses performance of disease classifier. ► Larger training sets led to higher performance and smaller confidence intervals. ► Scanning subjects on different systems introduced variance. ► No systematic effect due to change in field strength was found. ► For the presented setting, pooling of data was beneficial for the performance. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://www.loni.ucla.edu/ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. ADNI investigators include (complete listing available at: http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Authorship_List.pdf). |
ISSN: | 1053-8119 1095-9572 1095-9572 |
DOI: | 10.1016/j.neuroimage.2011.06.029 |