Dimensionality estimation for optimal detection of functional networks in BOLD fMRI data
Estimation of the intrinsic dimensionality of fMRI data is an important part of data analysis that helps to separate the signal of interest from noise. We have studied multiple methods of dimensionality estimation proposed in the literature and used these estimates to select a subset of principal co...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 56; no. 2; pp. 531 - 543 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.05.2011
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2010.09.034 |
Cover
Abstract | Estimation of the intrinsic dimensionality of fMRI data is an important part of data analysis that helps to separate the signal of interest from noise. We have studied multiple methods of dimensionality estimation proposed in the literature and used these estimates to select a subset of principal components that was subsequently processed by linear discriminant analysis (LDA). Using simulated multivariate Gaussian data, we show that the dimensionality that optimizes signal detection (in terms of the receiver operating characteristic (ROC) metric) goes through a transition from many dimensions to a single dimension as a function of the signal-to-noise ratio. This transition happens when the loci of activation are organized into a spatial network and the variance of the networked, task-related signals is high enough for the signal to be easily detected in the data. We show that reproducibility of activation maps is a metric that captures this switch in intrinsic dimensionality. Except for reproducibility, all of the methods of dimensionality estimation we considered failed to capture this transition: optimization of Bayesian evidence, minimum description length, supervised and unsupervised LDA prediction, and Stein's unbiased risk estimator. This failure results in sub-optimal ROC performance of LDA in the presence of a spatially distributed network, and may have caused LDA to underperform in many of the reported comparisons in the literature. Using real fMRI data sets, including multi-subject group and within-subject longitudinal analysis we demonstrate the existence of these dimensionality transitions in real data.
► We test multiple PCA-based dimensionality estimators for fMRI discriminant analysis. ► Spatial map reproducibility optimally detects covariance-based network signals. ► Only reproducibility detects dimensionality changes with stronger network signals. ► Other dimension estimates are unstable (eg, classification) or too big (eg, MDL). ► All results are demonstrated in simulations and multiple real fMRI data sets. |
---|---|
AbstractList | Estimation of the intrinsic dimensionality of fMRI data is an important part of data analysis that helps to separate the signal of interest from noise. We have studied multiple methods of dimensionality estimation proposed in the literature and used these estimates to select a subset of principal components that was subsequently processed by linear discriminant analysis (LDA). Using simulated multivariate Gaussian data, we show that the dimensionality that optimizes signal detection (in terms of the receiver operating characteristic (ROC) metric) goes through a transition from many dimensions to a single dimension as a function of the signal-to-noise ratio. This transition happens when the loci of activation are organized into a spatial network and the variance of the networked, task-related signals is high enough for the signal to be easily detected in the data. We show that reproducibility of activation maps is a metric that captures this switch in intrinsic dimensionality. Except for reproducibility, all of the methods of dimensionality estimation we considered failed to capture this transition: optimization of Bayesian evidence, minimum description length, supervised and unsupervised LDA prediction, and Stein's unbiased risk estimator. This failure results in sub-optimal ROC performance of LDA in the presence of a spatially distributed network, and may have caused LDA to underperform in many of the reported comparisons in the literature. Using real fMRI data sets, including multi-subject group and within-subject longitudinal analysis we demonstrate the existence of these dimensionality transitions in real data. Estimation of the intrinsic dimensionality of fMRI data is an important part of data analysis that helps to separate the signal of interest from noise. We have studied multiple methods of dimensionality estimation proposed in the literature and used these estimates to select a subset of principal components that was subsequently processed by linear discriminant analysis (LDA). Using simulated multivariate Gaussian data, we show that the dimensionality that optimizes signal detection (in terms of the receiver operating characteristic (ROC) metric) goes through a transition from many dimensions to a single dimension as a function of the signal-to-noise ratio. This transition happens when the loci of activation are organized into a spatial network and the variance of the networked, task-related signals is high enough for the signal to be easily detected in the data. We show that reproducibility of activation maps is a metric that captures this switch in intrinsic dimensionality. Except for reproducibility, all of the methods of dimensionality estimation we considered failed to capture this transition: optimization of Bayesian evidence, minimum description length, supervised and unsupervised LDA prediction, and Stein's unbiased risk estimator. This failure results in sub-optimal ROC performance of LDA in the presence of a spatially distributed network, and may have caused LDA to underperform in many of the reported comparisons in the literature. Using real fMRI data sets, including multi-subject group and within-subject longitudinal analysis we demonstrate the existence of these dimensionality transitions in real data. ► We test multiple PCA-based dimensionality estimators for fMRI discriminant analysis. ► Spatial map reproducibility optimally detects covariance-based network signals. ► Only reproducibility detects dimensionality changes with stronger network signals. ► Other dimension estimates are unstable (eg, classification) or too big (eg, MDL). ► All results are demonstrated in simulations and multiple real fMRI data sets. Estimation of the intrinsic dimensionality of fMRI data is an important part of data analysis that helps to separate the signal of interest from noise. We have studied multiple methods of dimensionality estimation proposed in the literature and used these estimates to select a subset of principal components that was subsequently processed by linear discriminant analysis (LDA). Using simulated multivariate Gaussian data, we show that the dimensionality that optimizes signal detection (in terms of the receiver operating characteristic (ROC) metric) goes through a transition from many dimensions to a single dimension as a function of the signal-to-noise ratio. This transition happens when the loci of activation are organized into a spatial network and the variance of the networked, task-related signals is high enough for the signal to be easily detected in the data. We show that reproducibility of activation maps is a metric that captures this switch in intrinsic dimensionality. Except for reproducibility, all of the methods of dimensionality estimation we considered failed to capture this transition: optimization of Bayesian evidence, minimum description length, supervised and unsupervised LDA prediction, and Stein's unbiased risk estimator. This failure results in sub-optimal ROC performance of LDA in the presence of a spatially distributed network, and may have caused LDA to underperform in many of the reported comparisons in the literature. Using real fMRI data sets, including multi-subject group and within-subject longitudinal analysis we demonstrate the existence of these dimensionality transitions in real data.Estimation of the intrinsic dimensionality of fMRI data is an important part of data analysis that helps to separate the signal of interest from noise. We have studied multiple methods of dimensionality estimation proposed in the literature and used these estimates to select a subset of principal components that was subsequently processed by linear discriminant analysis (LDA). Using simulated multivariate Gaussian data, we show that the dimensionality that optimizes signal detection (in terms of the receiver operating characteristic (ROC) metric) goes through a transition from many dimensions to a single dimension as a function of the signal-to-noise ratio. This transition happens when the loci of activation are organized into a spatial network and the variance of the networked, task-related signals is high enough for the signal to be easily detected in the data. We show that reproducibility of activation maps is a metric that captures this switch in intrinsic dimensionality. Except for reproducibility, all of the methods of dimensionality estimation we considered failed to capture this transition: optimization of Bayesian evidence, minimum description length, supervised and unsupervised LDA prediction, and Stein's unbiased risk estimator. This failure results in sub-optimal ROC performance of LDA in the presence of a spatially distributed network, and may have caused LDA to underperform in many of the reported comparisons in the literature. Using real fMRI data sets, including multi-subject group and within-subject longitudinal analysis we demonstrate the existence of these dimensionality transitions in real data. |
Author | Strother, Stephen C. Lukic, Ana S. Wernick, Miles N. Yourganov, Grigori Chen, Xu Small, Steven L. Grady, Cheryl L. |
AuthorAffiliation | b Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, ON, Canada d Predictek, Inc., Chicago, IL, United States e Department of Psychology, University of Toronto, Toronto, ON, Canada a Institute of Medical Science, University of Toronto, Toronto, ON, Canada c Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, United States f Department of Neurology, University of Chicago, Chicago, IL, United States g Medical Imaging Research Center, Illinois Institute of Technology, Chicago, IL, United States |
AuthorAffiliation_xml | – name: a Institute of Medical Science, University of Toronto, Toronto, ON, Canada – name: b Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, ON, Canada – name: e Department of Psychology, University of Toronto, Toronto, ON, Canada – name: f Department of Neurology, University of Chicago, Chicago, IL, United States – name: g Medical Imaging Research Center, Illinois Institute of Technology, Chicago, IL, United States – name: c Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, United States – name: d Predictek, Inc., Chicago, IL, United States |
Author_xml | – sequence: 1 givenname: Grigori surname: Yourganov fullname: Yourganov, Grigori email: gyourganov@rotman-baycrest.on.ca organization: Institute of Medical Science, University of Toronto, Toronto, ON, Canada – sequence: 2 givenname: Xu surname: Chen fullname: Chen, Xu organization: Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, USA – sequence: 3 givenname: Ana S. surname: Lukic fullname: Lukic, Ana S. organization: Predictek, Inc., Chicago, IL, USA – sequence: 4 givenname: Cheryl L. surname: Grady fullname: Grady, Cheryl L. organization: Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, ON, Canada – sequence: 5 givenname: Steven L. surname: Small fullname: Small, Steven L. organization: Department of Neurology, University of Chicago, Chicago, IL, USA – sequence: 6 givenname: Miles N. surname: Wernick fullname: Wernick, Miles N. organization: Predictek, Inc., Chicago, IL, USA – sequence: 7 givenname: Stephen C. surname: Strother fullname: Strother, Stephen C. organization: Institute of Medical Science, University of Toronto, Toronto, ON, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20858546$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAURi1URH_gFVAkFrDJYDtxYm8QtKWl0qBKCCR2lmNfF08z9mAnRfP2ODNlCl2gWdm-OT7Kvf6O0YEPHhAqCJ4RTJq3i5mHMQa3VDcwoziXsZjhqn6CjggWrBSspQfTnlUlJ0QcouOUFhhjQWr-DB1SzBlndXOEvp-7Jfjkgle9G9YFpCFbh3wubIhFWE3HvjAwgN5Ugy3s6Df7XPcw_ArxNhXOF6fX8_PCfv5yVRg1qOfoqVV9ghf36wn6dvHx69mncn59eXX2YV7qhvKhrJWpKSM1Nbwj2kIltOaGaGpZZ6kyiljdda3omBCmYqQBSjvBGRiFW82r6gS923pXY7cEo8EPUfVyFfN_x7UMysl_v3j3Q96EO1lhRmvCs-D1vSCGn2PuXy5d0tD3ykMYk-RNncfZYLwHWdUVpm2byTf_JUnTkopk8YS-eoQuwhjzbCeq4bjOPYpMvfy7y117fx4yA3wL6BhSimB3CMFyyoxcyIfMyCkzEguZM_Mwwd1V7YZNBPK8XL-P4HQrgPzOdw6iTNqB12BczKmRJrh9JO8fSXTvvNOqv4X1forfgjD7ag |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2012_01_096 crossref_primary_10_1007_s40473_013_0001_y crossref_primary_10_1016_j_neuroimage_2017_08_005 crossref_primary_10_1016_j_neuroimage_2011_10_010 crossref_primary_10_1016_j_neuroimage_2010_12_086 crossref_primary_10_1371_journal_pone_0131520 crossref_primary_10_1016_j_neuroimage_2013_07_019 crossref_primary_10_1109_TMI_2017_2678483 crossref_primary_10_1109_TMI_2018_2866640 crossref_primary_10_3389_fnins_2021_715861 crossref_primary_10_1016_j_patrec_2011_08_006 crossref_primary_10_1038_ncomms2374 crossref_primary_10_3389_fnins_2017_00062 crossref_primary_10_1016_j_neuroimage_2012_01_137 crossref_primary_10_1016_j_biopsycho_2013_12_016 crossref_primary_10_1016_j_neuroimage_2011_08_021 crossref_primary_10_1371_journal_pone_0118877 crossref_primary_10_1109_MSP_2022_3163870 crossref_primary_10_1002_hbm_22490 crossref_primary_10_1371_journal_pone_0031147 crossref_primary_10_1109_JBHI_2015_2439685 crossref_primary_10_1016_j_neuroimage_2014_03_074 crossref_primary_10_1016_j_neuroimage_2011_11_088 crossref_primary_10_1016_j_neuroimage_2013_05_102 crossref_primary_10_1016_j_patcog_2011_09_011 crossref_primary_10_1089_brain_2012_0133 crossref_primary_10_1016_j_neuroimage_2013_10_062 crossref_primary_10_1016_j_jneumeth_2018_10_008 crossref_primary_10_1016_j_mri_2013_06_002 crossref_primary_10_1016_j_jneumeth_2020_108628 |
Cites_doi | 10.1103/PhysRevE.75.016101 10.1006/nimg.2002.1300 10.1016/S1053-8119(03)00049-1 10.1002/hbm.20432 10.1002/(SICI)1097-0193(1999)7:4<267::AID-HBM5>3.0.CO;2-3 10.1109/42.925291 10.1093/brain/awf148 10.1016/j.neuroimage.2005.01.048 10.1002/hbm.1048 10.1016/j.csda.2004.06.015 10.1080/00401706.1978.10489693 10.1088/0305-4470/27/6/015 10.1002/(SICI)1097-0258(19980515)17:9<1033::AID-SIM784>3.0.CO;2-Z 10.1016/j.neuroimage.2007.03.061 10.1016/j.neuroimage.2004.07.022 10.1006/cbmr.1996.0014 10.1162/NECO_a_00024 10.1016/S0933-3657(02)00009-X 10.1016/j.neuroimage.2004.05.020 10.1006/nimg.1998.0419 10.1162/neco.2007.07-06-282 10.1016/j.neuroimage.2005.06.070 10.1016/j.neuroimage.2004.07.051 10.1002/(SICI)1097-0193(1997)5:4<312::AID-HBM18>3.0.CO;2-F 10.1002/hbm.20359 10.1006/nimg.2001.1034 10.1016/j.neuroimage.2005.07.054 10.1007/s12021-008-9014-1 10.1006/nimg.1995.1019 10.1007/3-540-63046-5_20 10.1002/hbm.460020402 10.1006/nimg.1999.0472 10.1109/TMI.2003.822821 10.1016/j.neuroimage.2004.07.020 10.1109/TSP.2008.2005865 10.1006/nimg.1998.0425 10.1088/0305-4470/27/6/016 10.1207/s15327906mbr3002_2 10.1080/00401706.1982.10487712 10.1109/TASSP.1985.1164557 10.1111/1467-9868.00196 10.1162/jocn.2006.18.2.227 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Inc. Copyright © 2010 Elsevier Inc. All rights reserved. Copyright Elsevier Limited May 15, 2011 2010 Elsevier Inc. All rights reserved. 2010 |
Copyright_xml | – notice: 2010 Elsevier Inc. – notice: Copyright © 2010 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited May 15, 2011 – notice: 2010 Elsevier Inc. All rights reserved. 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7U5 L7M 7X8 7QO 5PM |
DOI | 10.1016/j.neuroimage.2010.09.034 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | ProQuest One Psychology Engineering Research Database Technology Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 543 |
ExternalDocumentID | PMC3052418 3642015801 20858546 10_1016_j_neuroimage_2010_09_034 S1053811910012152 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: PHS HHS grantid: 073204 – fundername: NIMH NIH HHS grantid: R43 MH073204 – fundername: CIHR grantid: MOP14036 – fundername: CIHR grantid: MOP84483 |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 .1- .FO 29N 53G AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AFRHN AGHFR AGQPQ AGRNS AIGII AJUYK AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF OK1 R2- SEW WUQ XPP Z5R ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7U5 L7M 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c628t-4ad425142d8b1cfe39cc8d1c2f5bf2ada1fcbb79b599d3516e22b985eda07c833 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 13:41:26 EDT 2025 Fri Sep 05 09:53:23 EDT 2025 Thu Sep 04 22:35:16 EDT 2025 Fri Sep 05 00:45:24 EDT 2025 Wed Aug 13 10:42:14 EDT 2025 Mon Jul 21 06:01:19 EDT 2025 Thu Apr 24 22:49:23 EDT 2025 Tue Jul 01 02:14:39 EDT 2025 Fri Feb 23 02:20:28 EST 2024 Tue Aug 26 16:36:48 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Linear discriminant Analysis (LDA) fMRI Model order selection Dimensionality estimation Principal component analysis (PCA) Signal detection |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2010 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c628t-4ad425142d8b1cfe39cc8d1c2f5bf2ada1fcbb79b599d3516e22b985eda07c833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3052418 |
PMID | 20858546 |
PQID | 1668048339 |
PQPubID | 2031077 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3052418 proquest_miscellaneous_864957600 proquest_miscellaneous_863430277 proquest_miscellaneous_1671316497 proquest_journals_1668048339 pubmed_primary_20858546 crossref_primary_10_1016_j_neuroimage_2010_09_034 crossref_citationtrail_10_1016_j_neuroimage_2010_09_034 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2010_09_034 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2010_09_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-05-15 |
PublicationDateYYYYMMDD | 2011-05-15 |
PublicationDate_xml | – month: 05 year: 2011 text: 2011-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2011 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Calhoun, Adali, Pearlson, Pekar (bb0020) 2001; 14 Beckmann, Smith (bb0005) 2004; 23 Eastment, Krzanowski (bb0040) 1982; 24 Mourão-Miranda, Bokde, Born, Hampel, Stetter (bb0155) 2005; 28 Tipping, Bishop (bb0210) 1999; 61 Wax, Kailath (bb0230) 1985; ASSP-33 Friston, Holmes, Worsley, Poline, Frith, Frackowiak (bb0050) 1995; 2 Strother, LaConte, Hansen, Anderson, Zhang, Pulapura, Rottenberg (bb0195) 2004; 23 Krzanowski, Kline (bb0095) 1995; 30 Wold (bb0235) 1978; 20 Mørch, Hansen, Strother, Svarer, Rottenberg, Lautrup, Savoy, Paulson (bb0150) 1997; 1230 Schmah, T., Yourganov, G., Zemel, R.S., Hinton, G.E., Small, S.L., Strother, S.C., 2010. Comparing classification methods for longitudinal fMRI studies. Journal of Neural Computation 22 (11) Zhang, Liang, Anderson, Gatewood, Rottenberg, Strother (bb0250) 2008; 6 Li, Adali, Calhoun (bb0120) 2007; 28 . Strother, Anderson, Hansen, Kjems, Kustra, Sidtis, Frutinger, Muley, LaConte, Rottenberg (bb0190) 2002; 15 Worsley (bb0240) 2001 Bishop (bb0015) 2006 Grady (bb0065) 2008 Hoyle, Rattray (bb0085) 2007; 75 Tegeler, Strother, Anderson, Kim (bb0205) 1999; 7 Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney, Niazy, Saunders, Vickers, Zhang, De Stefano, Brady, Matthews (bb0180) 2004; 23 Wang, Peterson (bb0220) 2008; 29 Yang, LaConte, Weng, Hu (bb0245) 2008; 29 Strother, Oder, Spring, Grady (bb0200) 2010 Friston, Frith, Frackowiak, Turner (bb0045) 1995; 2 Mardia, Kent, Bibby (bb0130) 1979 Cordes, Nandy (bb0025) 2006; 29 Biehl, Mietzner (bb0010) 1994; 27 Lange, Strother, Anderson, Nielsen, Holmes, Kolenda, Savoy, Hansen (bb0115) 1999; 10 Hansen, Larsen, Nielsen, Strother, Rostrup, Savoy, Lange, Sidtis, Svarer, Paulson (bb0075) 1999; 9 Cox (bb0030) 1996; 29 Metz, Herman, Shen (bb0140) 1998; 17 Raemaekers, Vink, Zandbelt, van Wezel, Kahn, Ramsey (bb0165) 2007; 36 Hanson, Matsuka, Haxby (bb0080) 2004; 23 Jacobsen, Hansen, Madsen (bb0090) 2008; 20 McIntosh, Lobaugh (bb0135) 2004; 23 Strother, Lange, Anderson, Schaper, Rehm, Hansen, Rottenberg (bb0185) 1997; 5 Grady, Springer, Hongwanishkul, McIntosh, Winocur (bb0070) 2006; 18 LaConte, Anderson, Muley, Ashe, Frutiger, Rehm, Hansen, Yacoub, Hu, Rottenberg, Strother (bb0105) 2003; 18 Kustra, Strother (bb0100) 2001; 20 LaConte, Strother, Cherkassky, Anderson, Hu (bb0110) 2005; 26 Minka (bb0145) 2000 Peres-Neto, Jackson, Somers (bb0160) 2005; 49 Watkin, Nadal (bb0225) 1994; 27 Lukic, Wernick, Strother (bb0125) 2002; 25 Ulfarsson, Solo (bb0215) 2008; 56 Cox, Savoy (bb0035) 2003; 19 Small, Hlustik, Noll, Genovese, Solodkin (bb0175) 2002; 125 Glover (bb0055) 1999; 9 Golub, van Loan (bb0060) 1996 Grady (10.1016/j.neuroimage.2010.09.034_bb0070) 2006; 18 Mørch (10.1016/j.neuroimage.2010.09.034_bb0150) 1997; 1230 Raemaekers (10.1016/j.neuroimage.2010.09.034_bb0165) 2007; 36 Bishop (10.1016/j.neuroimage.2010.09.034_bb0015) 2006 Hanson (10.1016/j.neuroimage.2010.09.034_bb0080) 2004; 23 Minka (10.1016/j.neuroimage.2010.09.034_bb0145) 2000 Beckmann (10.1016/j.neuroimage.2010.09.034_bb0005) 2004; 23 LaConte (10.1016/j.neuroimage.2010.09.034_bb0105) 2003; 18 Friston (10.1016/j.neuroimage.2010.09.034_bb0050) 1995; 2 Jacobsen (10.1016/j.neuroimage.2010.09.034_bb0090) 2008; 20 Mourão-Miranda (10.1016/j.neuroimage.2010.09.034_bb0155) 2005; 28 Hoyle (10.1016/j.neuroimage.2010.09.034_bb0085) 2007; 75 Lange (10.1016/j.neuroimage.2010.09.034_bb0115) 1999; 10 10.1016/j.neuroimage.2010.09.034_bb0170 Ulfarsson (10.1016/j.neuroimage.2010.09.034_bb0215) 2008; 56 Glover (10.1016/j.neuroimage.2010.09.034_bb0055) 1999; 9 Wang (10.1016/j.neuroimage.2010.09.034_bb0220) 2008; 29 Golub (10.1016/j.neuroimage.2010.09.034_bb0060) 1996 Grady (10.1016/j.neuroimage.2010.09.034_bb0065) 2008 Li (10.1016/j.neuroimage.2010.09.034_bb0120) 2007; 28 Strother (10.1016/j.neuroimage.2010.09.034_bb0200) 2010 McIntosh (10.1016/j.neuroimage.2010.09.034_bb0135) 2004; 23 Yang (10.1016/j.neuroimage.2010.09.034_bb0245) 2008; 29 Peres-Neto (10.1016/j.neuroimage.2010.09.034_bb0160) 2005; 49 Small (10.1016/j.neuroimage.2010.09.034_bb0175) 2002; 125 Friston (10.1016/j.neuroimage.2010.09.034_bb0045) 1995; 2 Lukic (10.1016/j.neuroimage.2010.09.034_bb0125) 2002; 25 Strother (10.1016/j.neuroimage.2010.09.034_bb0185) 1997; 5 Wold (10.1016/j.neuroimage.2010.09.034_bb0235) 1978; 20 Strother (10.1016/j.neuroimage.2010.09.034_bb0190) 2002; 15 Kustra (10.1016/j.neuroimage.2010.09.034_bb0100) 2001; 20 Cox (10.1016/j.neuroimage.2010.09.034_bb0035) 2003; 19 Metz (10.1016/j.neuroimage.2010.09.034_bb0140) 1998; 17 Zhang (10.1016/j.neuroimage.2010.09.034_bb0250) 2008; 6 Eastment (10.1016/j.neuroimage.2010.09.034_bb0040) 1982; 24 Hansen (10.1016/j.neuroimage.2010.09.034_bb0075) 1999; 9 Krzanowski (10.1016/j.neuroimage.2010.09.034_bb0095) 1995; 30 Tegeler (10.1016/j.neuroimage.2010.09.034_bb0205) 1999; 7 Tipping (10.1016/j.neuroimage.2010.09.034_bb0210) 1999; 61 Worsley (10.1016/j.neuroimage.2010.09.034_bb0240) 2001 Cordes (10.1016/j.neuroimage.2010.09.034_bb0025) 2006; 29 Watkin (10.1016/j.neuroimage.2010.09.034_bb0225) 1994; 27 Biehl (10.1016/j.neuroimage.2010.09.034_bb0010) 1994; 27 Mardia (10.1016/j.neuroimage.2010.09.034_bb0130) 1979 Wax (10.1016/j.neuroimage.2010.09.034_bb0230) 1985; ASSP-33 Strother (10.1016/j.neuroimage.2010.09.034_bb0195) 2004; 23 Calhoun (10.1016/j.neuroimage.2010.09.034_bb0020) 2001; 14 LaConte (10.1016/j.neuroimage.2010.09.034_bb0110) 2005; 26 Smith (10.1016/j.neuroimage.2010.09.034_bb0180) 2004; 23 Cox (10.1016/j.neuroimage.2010.09.034_bb0030) 1996; 29 |
References_xml | – volume: 20 start-page: 738 year: 2008 end-page: 755 ident: bb0090 article-title: Bayesian model comparison in nonlinear BOLD fMRI hemodynamics publication-title: Neural Comput. – volume: 7 start-page: 267 year: 1999 end-page: 283 ident: bb0205 article-title: Reproducibility of BOLD-based functional MRI obtained at 4T publication-title: Hum. Brain Mapp. – volume: 29 start-page: 162 year: 1996 end-page: 173 ident: bb0030 article-title: AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput. Biomed. Res. – volume: 23 start-page: S250 year: 2004 end-page: S263 ident: bb0135 article-title: Partial least squares analysis of neuroimaging data: applications and advances publication-title: Neuroimage – volume: 36 start-page: 532 year: 2007 end-page: 542 ident: bb0165 article-title: Test-retest reliability of fMRI activation during prosaccades and antisaccades publication-title: Neuroimage – volume: 23 start-page: 156 year: 2004 end-page: 166 ident: bb0080 article-title: Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: Is there a “face” area? publication-title: Neuroimage – volume: 27 start-page: 1899 year: 1994 end-page: 1915 ident: bb0225 article-title: Optimal unsupervised learning publication-title: J. Phys. A – volume: 17 start-page: 1033 year: 1998 end-page: 1053 ident: bb0140 article-title: Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data publication-title: Stat. Med. – volume: 56 start-page: 5804 year: 2008 end-page: 5816 ident: bb0215 article-title: Dimension estimation in noisy PCA with SURE and random matrix theory publication-title: IEEE Trans. Signal Process. – start-page: 127 year: 2008 end-page: 144 ident: bb0065 article-title: Cognitive Neuroscience of Aging publication-title: The Year in Cognitive Neuroscience – volume: 75 start-page: 016101 year: 2007 ident: bb0085 article-title: Statistical mechanics of learning multiple orthogonal signals: asymptotic theory and fluctuation effects publication-title: Phys. Rev. E – volume: 9 start-page: 534 year: 1999 end-page: 544 ident: bb0075 article-title: Generalizable patterns in neuroimaging: How many principal components? publication-title: Neuroimage – volume: 30 start-page: 149 year: 1995 end-page: 165 ident: bb0095 article-title: Cross-Validation for Choosing the Number of Principal Components in Principal Component Analysis publication-title: Multivariate Behav. Res. – volume: 15 start-page: 747 year: 2002 end-page: 771 ident: bb0190 article-title: The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework publication-title: Neuroimage – volume: 18 start-page: 10 year: 2003 end-page: 27 ident: bb0105 article-title: The evaluation of preprocessing choices in single-subject BOLD fMRI using NPAIRS performance metrics publication-title: Neuroimage – start-page: 251 year: 2001 end-page: 270 ident: bb0240 article-title: Statistical analysis of activation images publication-title: Functional MRI: An Introduction to Methods – volume: 125 start-page: 1544 year: 2002 end-page: 1557 ident: bb0175 article-title: Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke publication-title: Brain – volume: 49 start-page: 974 year: 2005 end-page: 997 ident: bb0160 article-title: How many principal components? Stopping rules for determining the number of non-trivial axes revisited publication-title: Comput. Stat. Data Anal. – volume: 18 start-page: 227 year: 2006 end-page: 241 ident: bb0070 article-title: Age-related changes in brain activity across the adult lifespan publication-title: J. Cogn. Neurosci. – volume: 10 start-page: 282 year: 1999 end-page: 303 ident: bb0115 article-title: Plurality and resemblance in fMRI data analysis publication-title: Neuroimage – volume: 9 start-page: 416 year: 1999 end-page: 429 ident: bb0055 article-title: Deconvolution of impulse response in event-related BOLD fMRI publication-title: Neuroimage – volume: 28 start-page: 980 year: 2005 end-page: 995 ident: bb0155 article-title: Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data publication-title: Neuroimage – volume: 29 start-page: 145 year: 2006 end-page: 154 ident: bb0025 article-title: Estimation of intrinsic dimensionality of fMRI data publication-title: Neuroimage – volume: 20 start-page: 376 year: 2001 end-page: 387 ident: bb0100 article-title: Penalized discriminant analysis of 15O-water PET brain images with prediction error selection of smoothing and regularization hyperparameters publication-title: IEEE Trans. Med. Imaging – volume: 6 start-page: 123 year: 2008 end-page: 134 ident: bb0250 article-title: A Java-based fMRI processing pipeline evaluation system for assessment of univariate general linear model and multivariate canonical variate analysis-based pipelines publication-title: Neuroinformatics – volume: 61 start-page: 611 year: 1999 end-page: 622 ident: bb0210 article-title: Probabilistic principal component analysis publication-title: J. R. Stat. Soc. B – volume: 23 start-page: 208 year: 2004 end-page: 219 ident: bb0180 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage – volume: 24 start-page: 73 year: 1982 end-page: 77 ident: bb0040 article-title: Cross-validatory choice of the number of components from a principal component analysis publication-title: Technometrics – volume: 26 start-page: 317 year: 2005 end-page: 329 ident: bb0110 article-title: Support vector machines for temporal classification of block design fMRI data publication-title: Neuroimage – volume: 23 start-page: S196 year: 2004 end-page: S207 ident: bb0195 article-title: Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis publication-title: Neuroimage – volume: 28 start-page: 1251 year: 2007 end-page: 1266 ident: bb0120 article-title: Estimating the number of independent components for functional magnetic resonance imaging data publication-title: Hum. Brain Mapp. – start-page: 111 year: 2010 end-page: 120 ident: bb0200 article-title: The NPAIRS Computational Statistics Framework for Data Analysis in Neuroimaging publication-title: 19th International Conference on Computational Statistics: Keynote, Invited and Contributed Papers – volume: 5 start-page: 312 year: 1997 end-page: 316 ident: bb0185 article-title: Activation pattern reproducibility: Measuring the effects of group size and data analysis models publication-title: Hum. Brain Mapp. – volume: 19 start-page: 261 year: 2003 end-page: 270 ident: bb0035 article-title: Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex publication-title: Neuroimage – volume: 20 start-page: 397 year: 1978 end-page: 405 ident: bb0235 article-title: Cross-validatory estimation of the number of principal components in factor and principal components analysis publication-title: Technometrics – volume: 29 start-page: 711 year: 2008 end-page: 725 ident: bb0245 article-title: Ranking and averaging independent component analysis by reproducibility (RAICAR) publication-title: Hum. Brain Mapp. – volume: 14 start-page: 140 year: 2001 end-page: 151 ident: bb0020 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum. Brain Mapp. – year: 2006 ident: bb0015 article-title: Pattern Recognition and Machine Learning – volume: 29 start-page: 875 year: 2008 end-page: 893 ident: bb0220 article-title: Partner-matching for the automated identification of reproducible ICA components from fMRI datasets: Algorithm and validation publication-title: Neuroimage – volume: 23 start-page: 137 year: 2004 end-page: 152 ident: bb0005 article-title: Probabilistic independent component analysis for functional medical imaging publication-title: IEEE Trans. Med. Imaging – volume: 2 start-page: 166 year: 1995 end-page: 172 ident: bb0045 article-title: Characterizing dynamic brain responses with fMRI: a multivariate approach publication-title: Neuroimage – volume: 25 start-page: 69 year: 2002 end-page: 88 ident: bb0125 article-title: An evaluation of methods for detecting brain activations from functional neuroimages publication-title: Artif. Intell. Med. – reference: . – year: 1996 ident: bb0060 article-title: Matrix Computations – reference: Schmah, T., Yourganov, G., Zemel, R.S., Hinton, G.E., Small, S.L., Strother, S.C., 2010. Comparing classification methods for longitudinal fMRI studies. Journal of Neural Computation 22 (11), – volume: ASSP-33 start-page: 387 year: 1985 end-page: 392 ident: bb0230 article-title: Detection of signals by information theoretic criteria publication-title: IEEE Trans. Acoust. Speech Signal Process. – year: 2000 ident: bb0145 article-title: Automatic choice of dimensionality for PCA publication-title: Technical Report 514, MIT Media Laboratory, Perceptual Computing Section – volume: 1230 start-page: 259 year: 1997 end-page: 270 ident: bb0150 article-title: Nonlinear versus linear models in functional neuroimaging: learning curves and generalization crossover publication-title: Lect. Notes Comput. Sci. – volume: 27 start-page: 1885 year: 1994 end-page: 1897 ident: bb0010 article-title: Statistical mechanics of unsupervised structure recognition publication-title: J. Phys. A – volume: 2 start-page: 189 year: 1995 end-page: 210 ident: bb0050 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Mapp. – year: 1979 ident: bb0130 article-title: Multivariate Analysis – volume: 75 start-page: 016101 issue: 1 Pt 2 year: 2007 ident: 10.1016/j.neuroimage.2010.09.034_bb0085 article-title: Statistical mechanics of learning multiple orthogonal signals: asymptotic theory and fluctuation effects publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.75.016101 – volume: 18 start-page: 10 year: 2003 ident: 10.1016/j.neuroimage.2010.09.034_bb0105 article-title: The evaluation of preprocessing choices in single-subject BOLD fMRI using NPAIRS performance metrics publication-title: Neuroimage doi: 10.1006/nimg.2002.1300 – year: 2000 ident: 10.1016/j.neuroimage.2010.09.034_bb0145 article-title: Automatic choice of dimensionality for PCA – volume: 19 start-page: 261 year: 2003 ident: 10.1016/j.neuroimage.2010.09.034_bb0035 article-title: Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00049-1 – volume: 29 start-page: 711 year: 2008 ident: 10.1016/j.neuroimage.2010.09.034_bb0245 article-title: Ranking and averaging independent component analysis by reproducibility (RAICAR) publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20432 – volume: 7 start-page: 267 year: 1999 ident: 10.1016/j.neuroimage.2010.09.034_bb0205 article-title: Reproducibility of BOLD-based functional MRI obtained at 4T publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)7:4<267::AID-HBM5>3.0.CO;2-3 – volume: 20 start-page: 376 year: 2001 ident: 10.1016/j.neuroimage.2010.09.034_bb0100 article-title: Penalized discriminant analysis of 15O-water PET brain images with prediction error selection of smoothing and regularization hyperparameters publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.925291 – volume: 125 start-page: 1544 issue: 7 year: 2002 ident: 10.1016/j.neuroimage.2010.09.034_bb0175 article-title: Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke publication-title: Brain doi: 10.1093/brain/awf148 – volume: 26 start-page: 317 year: 2005 ident: 10.1016/j.neuroimage.2010.09.034_bb0110 article-title: Support vector machines for temporal classification of block design fMRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.01.048 – volume: 14 start-page: 140 year: 2001 ident: 10.1016/j.neuroimage.2010.09.034_bb0020 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.1048 – volume: 49 start-page: 974 year: 2005 ident: 10.1016/j.neuroimage.2010.09.034_bb0160 article-title: How many principal components? Stopping rules for determining the number of non-trivial axes revisited publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2004.06.015 – volume: 20 start-page: 397 issue: 4 year: 1978 ident: 10.1016/j.neuroimage.2010.09.034_bb0235 article-title: Cross-validatory estimation of the number of principal components in factor and principal components analysis publication-title: Technometrics doi: 10.1080/00401706.1978.10489693 – volume: 27 start-page: 1885 year: 1994 ident: 10.1016/j.neuroimage.2010.09.034_bb0010 article-title: Statistical mechanics of unsupervised structure recognition publication-title: J. Phys. A doi: 10.1088/0305-4470/27/6/015 – volume: 17 start-page: 1033 issue: 9 year: 1998 ident: 10.1016/j.neuroimage.2010.09.034_bb0140 article-title: Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19980515)17:9<1033::AID-SIM784>3.0.CO;2-Z – volume: 36 start-page: 532 year: 2007 ident: 10.1016/j.neuroimage.2010.09.034_bb0165 article-title: Test-retest reliability of fMRI activation during prosaccades and antisaccades publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.03.061 – volume: 23 start-page: S196 year: 2004 ident: 10.1016/j.neuroimage.2010.09.034_bb0195 article-title: Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.022 – volume: 29 start-page: 162 year: 1996 ident: 10.1016/j.neuroimage.2010.09.034_bb0030 article-title: AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput. Biomed. Res. doi: 10.1006/cbmr.1996.0014 – ident: 10.1016/j.neuroimage.2010.09.034_bb0170 doi: 10.1162/NECO_a_00024 – volume: 25 start-page: 69 year: 2002 ident: 10.1016/j.neuroimage.2010.09.034_bb0125 article-title: An evaluation of methods for detecting brain activations from functional neuroimages publication-title: Artif. Intell. Med. doi: 10.1016/S0933-3657(02)00009-X – volume: 29 start-page: 875 year: 2008 ident: 10.1016/j.neuroimage.2010.09.034_bb0220 article-title: Partner-matching for the automated identification of reproducible ICA components from fMRI datasets: Algorithm and validation publication-title: Neuroimage – volume: 23 start-page: 156 issue: 1 year: 2004 ident: 10.1016/j.neuroimage.2010.09.034_bb0080 article-title: Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: Is there a “face” area? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.05.020 – volume: 9 start-page: 416 year: 1999 ident: 10.1016/j.neuroimage.2010.09.034_bb0055 article-title: Deconvolution of impulse response in event-related BOLD fMRI publication-title: Neuroimage doi: 10.1006/nimg.1998.0419 – volume: 20 start-page: 738 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2010.09.034_bb0090 article-title: Bayesian model comparison in nonlinear BOLD fMRI hemodynamics publication-title: Neural Comput. doi: 10.1162/neco.2007.07-06-282 – volume: 28 start-page: 980 year: 2005 ident: 10.1016/j.neuroimage.2010.09.034_bb0155 article-title: Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.06.070 – start-page: 251 year: 2001 ident: 10.1016/j.neuroimage.2010.09.034_bb0240 article-title: Statistical analysis of activation images – volume: 23 start-page: 208 issue: S1 year: 2004 ident: 10.1016/j.neuroimage.2010.09.034_bb0180 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 5 start-page: 312 year: 1997 ident: 10.1016/j.neuroimage.2010.09.034_bb0185 article-title: Activation pattern reproducibility: Measuring the effects of group size and data analysis models publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1997)5:4<312::AID-HBM18>3.0.CO;2-F – volume: 28 start-page: 1251 year: 2007 ident: 10.1016/j.neuroimage.2010.09.034_bb0120 article-title: Estimating the number of independent components for functional magnetic resonance imaging data publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20359 – volume: 15 start-page: 747 year: 2002 ident: 10.1016/j.neuroimage.2010.09.034_bb0190 article-title: The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework publication-title: Neuroimage doi: 10.1006/nimg.2001.1034 – volume: 29 start-page: 145 year: 2006 ident: 10.1016/j.neuroimage.2010.09.034_bb0025 article-title: Estimation of intrinsic dimensionality of fMRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.07.054 – start-page: 111 year: 2010 ident: 10.1016/j.neuroimage.2010.09.034_bb0200 article-title: The NPAIRS Computational Statistics Framework for Data Analysis in Neuroimaging – year: 2006 ident: 10.1016/j.neuroimage.2010.09.034_bb0015 – volume: 6 start-page: 123 issue: 2 year: 2008 ident: 10.1016/j.neuroimage.2010.09.034_bb0250 article-title: A Java-based fMRI processing pipeline evaluation system for assessment of univariate general linear model and multivariate canonical variate analysis-based pipelines publication-title: Neuroinformatics doi: 10.1007/s12021-008-9014-1 – volume: 2 start-page: 166 year: 1995 ident: 10.1016/j.neuroimage.2010.09.034_bb0045 article-title: Characterizing dynamic brain responses with fMRI: a multivariate approach publication-title: Neuroimage doi: 10.1006/nimg.1995.1019 – volume: 1230 start-page: 259 year: 1997 ident: 10.1016/j.neuroimage.2010.09.034_bb0150 article-title: Nonlinear versus linear models in functional neuroimaging: learning curves and generalization crossover publication-title: Lect. Notes Comput. Sci. doi: 10.1007/3-540-63046-5_20 – year: 1979 ident: 10.1016/j.neuroimage.2010.09.034_bb0130 – volume: 2 start-page: 189 year: 1995 ident: 10.1016/j.neuroimage.2010.09.034_bb0050 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460020402 – volume: 10 start-page: 282 year: 1999 ident: 10.1016/j.neuroimage.2010.09.034_bb0115 article-title: Plurality and resemblance in fMRI data analysis publication-title: Neuroimage doi: 10.1006/nimg.1999.0472 – start-page: 127 year: 2008 ident: 10.1016/j.neuroimage.2010.09.034_bb0065 article-title: Cognitive Neuroscience of Aging – volume: 23 start-page: 137 issue: 2 year: 2004 ident: 10.1016/j.neuroimage.2010.09.034_bb0005 article-title: Probabilistic independent component analysis for functional medical imaging publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.822821 – volume: 23 start-page: S250 year: 2004 ident: 10.1016/j.neuroimage.2010.09.034_bb0135 article-title: Partial least squares analysis of neuroimaging data: applications and advances publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.020 – volume: 56 start-page: 5804 issue: 12 year: 2008 ident: 10.1016/j.neuroimage.2010.09.034_bb0215 article-title: Dimension estimation in noisy PCA with SURE and random matrix theory publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.2005865 – volume: 9 start-page: 534 year: 1999 ident: 10.1016/j.neuroimage.2010.09.034_bb0075 article-title: Generalizable patterns in neuroimaging: How many principal components? publication-title: Neuroimage doi: 10.1006/nimg.1998.0425 – volume: 27 start-page: 1899 year: 1994 ident: 10.1016/j.neuroimage.2010.09.034_bb0225 article-title: Optimal unsupervised learning publication-title: J. Phys. A doi: 10.1088/0305-4470/27/6/016 – volume: 30 start-page: 149 issue: 2 year: 1995 ident: 10.1016/j.neuroimage.2010.09.034_bb0095 article-title: Cross-Validation for Choosing the Number of Principal Components in Principal Component Analysis publication-title: Multivariate Behav. Res. doi: 10.1207/s15327906mbr3002_2 – volume: 24 start-page: 73 issue: 1 year: 1982 ident: 10.1016/j.neuroimage.2010.09.034_bb0040 article-title: Cross-validatory choice of the number of components from a principal component analysis publication-title: Technometrics doi: 10.1080/00401706.1982.10487712 – volume: ASSP-33 start-page: 387 issue: 2 year: 1985 ident: 10.1016/j.neuroimage.2010.09.034_bb0230 article-title: Detection of signals by information theoretic criteria publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1985.1164557 – volume: 61 start-page: 611 issue: 3 year: 1999 ident: 10.1016/j.neuroimage.2010.09.034_bb0210 article-title: Probabilistic principal component analysis publication-title: J. R. Stat. Soc. B doi: 10.1111/1467-9868.00196 – year: 1996 ident: 10.1016/j.neuroimage.2010.09.034_bb0060 – volume: 18 start-page: 227 issue: 2 year: 2006 ident: 10.1016/j.neuroimage.2010.09.034_bb0070 article-title: Age-related changes in brain activity across the adult lifespan publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.2006.18.2.227 |
SSID | ssj0009148 |
Score | 2.2079904 |
Snippet | Estimation of the intrinsic dimensionality of fMRI data is an important part of data analysis that helps to separate the signal of interest from noise. We have... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 531 |
SubjectTerms | Activation Adult Aged Algorithms Area Under Curve Brain - physiology Brain Mapping - methods Dimensionality estimation Estimates Failure fMRI Humans Image Processing, Computer-Assisted - methods Linear discriminant Analysis (LDA) Loci Magnetic Resonance Imaging Methods Middle Aged Model order selection Multivariate analysis Nerve Net - physiology Networks Noise Optimization Principal component analysis (PCA) Principal components analysis Reproducibility Reproducibility of Results Risk ROC Curve Signal detection Switching theory Young Adult |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection Journals dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqrYS4IN4ECjIS12jXr9gWp9JSbYEtElBpb1bsJGpQya7o9v8zEzspCypaiWPiGSkaex6Ov_lMyBteB433l-dea5FD_c9yqPJh11qpIJtKlpJjv_PirJifyw9LtdwjR0MvDMIqU-yPMb2P1unNNFlzum7b6VeoDCDdwH6j5yVTEIf3ubCFmpD9w9OP87Mb7l0mY0ecEjkqJEBPhHn1tJHtD3DehPNC0lN5W5b6uwr9E0z5W3Y6uU_upbKSHsYvf0D26u4hubNIB-ePyPIYWfwjAwfU3RS5NWLTIoWqla7W-HhJq3rTQ7M6umooprz4p5B2ESx-RduOvvv86Zg2iy-nFNGlj8n5yftvR_M8XaqQh4KbTS7LCtyUwRQYz0JTCxuCqVjgjfINL6uSNcF7bb2ythKKFTXn3hpVV-VMByPEEzLpVl39DIzIrZ55CPalF5KzwkhlJXY5e-OD0mVG9GBEFxLjOF58cekGaNl3d2N-h-Z3M-vA_Blho-Y6sm7soGOHeXJDVynEQQepYQfdt6Pu1urbUftgWBYuRYArx4rCIF2_sBl5PQ6D7-KBTNnVq2uUAT-B_arVGaG3yJhCSDxb_qcI7HLxgDUjT-NaHI2GN7AaJQuYiq1VOgogu_j2SNde9CzjkAjAac3z_zLNC3I3_oRXOVMHZLL5eV2_hCpu418lL_0F-SJI_A priority: 102 providerName: Elsevier |
Title | Dimensionality estimation for optimal detection of functional networks in BOLD fMRI data |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811910012152 https://dx.doi.org/10.1016/j.neuroimage.2010.09.034 https://www.ncbi.nlm.nih.gov/pubmed/20858546 https://www.proquest.com/docview/1668048339 https://www.proquest.com/docview/1671316497 https://www.proquest.com/docview/863430277 https://www.proquest.com/docview/864957600 https://pubmed.ncbi.nlm.nih.gov/PMC3052418 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJiFeEN9kjMpIvAbqxI5t8YD2qQ7WMlVM6psVO4lWNJKOdq_87dzFTspAm_oURbl7yPnOd_bd_Y6Q90npJM4vj62UaQzxP4shyodTayEcrwqe8wT7nceTbHTBv8zELFy4LUNZZbcntht10Ti8I__Iskwh_HmqPy-uY5wahdnVMEJji-y00GWgz3Im16C7jPtWOJHGCghCJY-v72rxIuc_wWpDgReinfK73NP_4ee_VZR_uaWTJ-RxiCfpvleAp-RBWT8jD8chY_6czI4Qvt9Db0DATRFUw3crUghXabPA1ytalKu2JqumTUXR1_krQlr7KvElndf04NvZEa3G01OKZaUvyMXJ8ffDURymKcQuS9Qq5nkB9slA9soyV5Wpdk4VzCWVsFWSFzmrnLVSW6F1kQqWlUlitRJlkQ-lA8G_JNt1U5evQYiJlkMLu3xuU56wTHGhObY3W2WdkHlEZCdE4wLUOE68uDJdTdkPsxa_QfGboTYg_oiwnnPh4TY24NHdOpmunRQ2QAM-YQPeTz1vCDl8KLEh916nFiaY_tKsFTUi7_rPYLSYicnrsrlBGjAQOKhqGRF6B43KUo5J5XtJ4HiLmdWIvPK62AsNR68qwTNYilta2hMgrPjtL_X8soUXBw8A1qp27_-5N-SRv14XMRN7ZHv166Z8C_HZyg7I1offbNCa4oDs7B9Oz87xefp1NIHnwfHkfPoHB9FCGw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELemTgJeEP_JGGAkeIyoHTuxhRBidFPL2oKmTeqbiR1HFG1JoZ0QX4rPyF2dtAy0qS97jHInJefz3dl39ztCXnLvMpxfHtssS2KI_1kMUT6cWgvpRFmIXHDsdx6N0_6J-DiRky3yu-2FwbLK1iYuDXVRO7wjf83SVCH8eaLfzb7HODUKs6vtCI2gFof-1084ss3fDnqwvq84P9g__tCPm6kCsUu5WsQiL0BPGXyDssyVPtHOqYI5Xkpb8rzIWemszbSVWheJZKnn3GolfZF3M6fwAhRM_rbAjtYO2d7bH38-WsP8MhGa72QSK8Z0UzsUKsqWCJXTM7ATTUkZ4quKyxzi_wHvv3WbfznCgzvkdhPB0vdB5e6SLV_dIzdGTY7-Ppn0cGBAAPuAEJ8ijEfoj6QQINN6ho-ntPCLZRVYReuSoncNl5K0CnXpczqt6N6nYY-Wo6MBxULWB-TkWiT9kHSquvKPQYhcZ10LfiW3ieAsVUJqgQ3VVlknszwiWStE4xpwc5yxcWraKrZvZi1-g-I3XW1A_BFhK85ZAPjYgEe362TaBlYwuQa80Aa8b1a8TZATgpcNuXdbtTCNsZmb9daIyIvVazATmPvJK1-fIw1sSTga6ywi9BIalSYC09hXksCBGnO5EXkUdHElNBz2qqRIYSkuaOmKAIHML76ppl-XgObgc8A-qJ2rf-45udk_Hg3NcDA-fEJuhct9GTO5SzqLH-f-KUSHC_us2ZKUfLluK_AHM0F8VQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIU28IL4JDDASPEarHTu2hRACSrWydSDEpL6Z2HFE0UgK7YT41_jruIuTloE29WWPUXxScr4v-353R8hTHrzC-eWpUypLIf5nKUT5cGotpRdVKQrBsd55cpTvH4t3UzndIr_7WhiEVfY2sTXUZePxjnyP5bnG9ueZ2as6WMSH4ejl_HuKE6Qw09qP04gichB-_YTj2-LFeAh7_Yzz0dtPb_bTbsJA6nOul6koSpBZBt-jHfNVyIz3umSeV9JVvCgLVnnnlHHSmDKTLA-cO6NlKIuB8hovQ8H8X1EZRFWgS2qq1g1_mYhleDJLNWOmQxFFbFnbq3L2DSxGBy7DTqviPNf4f-j7L4LzL5c4uk6udbEsfRWF7wbZCvVNsjPpsvW3yHSIowNi2w8I9ik29IiVkhRCZdrM8fGElmHZ4sFq2lQU_Wy8nqR1RKgv6Kymr98fDmk1-TimCGm9TY4vhc93yHbd1OEeMJEbNXDgYQqXCc5yLaQRWFrttPNSFQlRPROt79qc47SNE9vj2b7aNfstst8OjAX2J4StKOex1ccGNKbfJ9uXsoLxteCPNqB9vqLtwp0YxmxIvduLhe3MzsKulSQhT1avwWBgFqioQ3OKa0A54ZBsVELoOWt0nglMaF-4BI7WmNVNyN0oiyum4dhXLUUOW3FGSlcLsKX52Tf17Evb2hy8D1gKff_in3tMdkD37eH46OABuRpv-WXK5C7ZXv44DQ8hTFy6R60-UvL5sg3AHzfgfxw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimensionality+Estimation+for+Optimal+Detection+of+Functional+Networks+in+BOLD+fMRI+data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Yourganov%2C+Grigori&rft.au=Chen%2C+Xu&rft.au=Lukic%2C+Ana+S.&rft.au=Grady%2C+Cheryl+L.&rft.date=2011-05-15&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=56&rft.issue=2&rft.spage=531&rft.epage=543&rft_id=info:doi/10.1016%2Fj.neuroimage.2010.09.034&rft_id=info%3Apmid%2F20858546&rft.externalDocID=PMC3052418 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |