Source-Sink Balance and Carbon Allocation below Ground in Plants Exposed to Ozone
The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects of ozone are discussed...
Saved in:
Published in | The New phytologist Vol. 157; no. 2; pp. 213 - 228 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Science
01.02.2003
Blackwell Science Ltd Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects of ozone are discussed using the flow of carbon from the atmosphere, through the plant to soils, and back to the atmosphere as a framework. A conceptual model based on carbohydrate signaling is used to illustrate physiological changes in response to ozone, and to discuss possible feedbacks that may occur. Despite past emphasis on above-ground effects, ozone has the potential to alter below-ground processes and hence ecosystem characteristics in ways that are not currently being considered. |
---|---|
AbstractList | The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects of ozone are discussed using the flow of carbon from the atmosphere, through the plant to soils, and back to the atmosphere as a framework. A conceptual model based on carbohydrate signaling is used to illustrate physiological changes in response to ozone, and to discuss possible feedbacks that may occur. Despite past emphasis on aboveground effects, ozone has the potential to alter belowground processes and hence ecosystem characteristics in ways that are not currently being considered. The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects of ozone are discussed using the flow of carbon from the atmosphere, through the plant to soils, and back to the atmosphere as a framework. A conceptual model based on carbohydrate signaling is used to illustrate physiological changes in response to ozone, and to discuss possible feedbacks that may occur. Despite past emphasis on above-ground effects, ozone has the potential to alter below-ground processes and hence ecosystem characteristics in ways that are not currently being considered. Contents Summary 213 I. Introduction 213 II. Source–sink model: carbohydrate signaling 214 III. Effect of ozone on above‐ground sources and sinks 216 IV. Decreased allocation below ground 218 V. Carbon flux to soils 220 VI. Soil food web 223 VII. Summary, conclusions and future research 223 Acknowledgements 223 References 223 Summary The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects of ozone are discussed using the flow of carbon from the atmosphere, through the plant to soils, and back to the atmosphere as a framework. A conceptual model based on carbohydrate signaling is used to illustrate physiological changes in response to ozone, and to discuss possible feedbacks that may occur. Despite past emphasis on above‐ground effects, ozone has the potential to alter below‐ground processes and hence ecosystem characteristics in ways that are not currently being considered. The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects of ozone are discussed using the flow of carbon from the atmosphere, through the plant to soils, and back to the atmosphere as a framework. A conceptual model based on carbohydrate signaling is used to illustrate physiological changes in response to ozone, and to discuss possible feedbacks that may occur. Despite past emphasis on above-ground effects, ozone has the potential to alter below-ground processes and hence ecosystem characteristics in ways that are not currently being considered. Contents Summary 213 I. Introduction 213 II. Source-sink model: carbohydrate signaling 214 III. Effect of ozone on above-ground sources and sinks 216 IV. Decreased allocation below ground 218 V. Carbon flux to soils 220 VI. Soil food web 223 VII. Summary, conclusions and future research 223 Acknowledgements 223 References 223.The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects of ozone are discussed using the flow of carbon from the atmosphere, through the plant to soils, and back to the atmosphere as a framework. A conceptual model based on carbohydrate signaling is used to illustrate physiological changes in response to ozone, and to discuss possible feedbacks that may occur. Despite past emphasis on above-ground effects, ozone has the potential to alter below-ground processes and hence ecosystem characteristics in ways that are not currently being considered. Contents Summary 213 I. Introduction 213 II. Source-sink model: carbohydrate signaling 214 III. Effect of ozone on above-ground sources and sinks 216 IV. Decreased allocation below ground 218 V. Carbon flux to soils 220 VI. Soil food web 223 VII. Summary, conclusions and future research 223 Acknowledgements 223 References 223. The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects of ozone are discussed using the flow of carbon from the atmosphere, through the plant to soils, and back to the atmosphere as a framework. A conceptual model based on carbohydrate signaling is used to illustrate physiological changes in response to ozone, and to discuss possible feedbacks that may occur. Despite past emphasis on above‐ground effects, ozone has the potential to alter below‐ground processes and hence ecosystem characteristics in ways that are not currently being considered. Contents Summary 213 I. Introduction 213 II. Source–sink model: carbohydrate signaling 214 III. Effect of ozone on above‐ground sources and sinks 216 IV. Decreased allocation below ground 218 V. Carbon flux to soils 220 VI. Soil food web 223 VII. Summary, conclusions and future research 223 Acknowledgements 223 References 223 The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects of ozone are discussed using the flow of carbon from the atmosphere, through the plant to soils, and back to the atmosphere as a framework. A conceptual model based on carbohydrate signaling is used to illustrate physiological changes in response to ozone, and to discuss possible feedbacks that may occur. Despite past emphasis on above‐ground effects, ozone has the potential to alter below‐ground processes and hence ecosystem characteristics in ways that are not currently being considered. Contents Summary 213 I. Introduction 213 II. Source–sink model: carbohydrate signaling 214 III. Effect of ozone on above‐ground sources and sinks 216 IV. Decreased allocation below ground 218 V. Carbon flux to soils 220 VI. Soil food web 223 VII. Summary, conclusions and future research 223 Acknowledgements 223 References 223 The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects of ozone are discussed using the flow of carbon from the atmosphere, through the plant to soils, and back to the atmosphere as a framework. A conceptual model based on carbohydrate signaling is used to illustrate physiological changes in response to ozone, and to discuss possible feedbacks that may occur. Despite past emphasis on above-ground effects, ozone has the potential to alter below-ground processes and hence ecosystem characteristics in ways that are not currently being considered. Contents Summary 213 I. Introduction 213 II. Source-sink model: carbohydrate signaling 214 III. Effect of ozone on above-ground sources and sinks 216 IV. Decreased allocation below ground 218 V. Carbon flux to soils 220 VI. Soil food web 223 VII. Summary, conclusions and future research 223 Acknowledgements 223 References 223. |
Author | Andersen, Christian P. |
Author_xml | – sequence: 1 givenname: Christian P. surname: Andersen fullname: Andersen, Christian P. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14529637$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/33873636$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFDEUhoNU7Lb6D0Ryo3gzY74_QIS61FYotlIF70ImycCss5NtMku3_noz3bUFL3TJRQ6c5z0fvOcIHAxxCABAjGqMmHi3qDETulKYypogRGuEhGT15gmYPSQOwAwhoirBxI9DcJTzAiGkuSDPwCGlSlJBxQx8vY7r5EJ13Q0_4Ufb28EFaAcP5zY1cYAnfR-dHbsSNqGPt_AsxXVJdwO8KvCY4elmFXPwcIzw8lcZ8zl42to-hxe7_xh8_3T6bX5eXVyefZ6fXFROEMUqT7THglHV8oYziYhUvJWtlkoE1jTaesYY8dQ5rzHW3mnKsSeUu9Yy0TT0GLzZ1l2leLMOeTTLLrvQl6lCXGfDNOJlW1bAt_8ECSeMCKkx3QPFXCglhfpve6zLo3pq_2oHrptl8GaVuqVNd-aPBwV4vQNsdrZvU_Ggyw8cZpxoQWXh1JZzKeacQvuIIDOdhVmYyX0zuW-mszD3Z2E2RfrhL6nrxntXx2S7fp8C77cFbrs-3O3d2Hy5Oi9Bkb_cyhd5jOlRzjFDRNPfVcTXFg |
CODEN | NEPHAV |
CitedBy_id | crossref_primary_10_1007_s11270_010_0448_3 crossref_primary_10_3390_horticulturae7110435 crossref_primary_10_4028_www_scientific_net_AMR_204_210_672 crossref_primary_10_1007_s40011_012_0032_2 crossref_primary_10_1016_j_atmosenv_2014_06_001 crossref_primary_10_1111_plb_12383 crossref_primary_10_1016_j_envpol_2018_07_059 crossref_primary_10_1016_j_agrformet_2024_110363 crossref_primary_10_1002_ps_7819 crossref_primary_10_1016_j_envexpbot_2008_11_009 crossref_primary_10_1016_j_envpol_2009_07_036 crossref_primary_10_1016_j_scitotenv_2022_160675 crossref_primary_10_1126_sciadv_abe9256 crossref_primary_10_1007_s10310_007_0040_x crossref_primary_10_1007_s11104_016_3122_8 crossref_primary_10_1016_j_envpol_2019_113466 crossref_primary_10_1016_j_soilbio_2017_07_024 crossref_primary_10_1007_s11270_006_9167_1 crossref_primary_10_3832_ifor2805_011 crossref_primary_10_1016_j_envpol_2014_11_032 crossref_primary_10_1016_j_agee_2016_07_025 crossref_primary_10_1016_j_envres_2022_114142 crossref_primary_10_1016_j_foreco_2004_09_010 crossref_primary_10_1016_j_scitotenv_2018_11_130 crossref_primary_10_1016_j_plantsci_2021_110855 crossref_primary_10_1079_cabireviews202217002 crossref_primary_10_1007_s11356_017_9417_3 crossref_primary_10_5194_bg_15_4245_2018 crossref_primary_10_1016_j_atmosenv_2015_12_004 crossref_primary_10_1111_j_1365_2486_2010_02228_x crossref_primary_10_1007_s11104_020_04510_7 crossref_primary_10_1016_j_ecoenv_2018_04_014 crossref_primary_10_1111_j_1744_7909_2008_00805_x crossref_primary_10_1093_aob_mct166 crossref_primary_10_1016_j_envpol_2015_08_014 crossref_primary_10_1016_j_scitotenv_2019_04_310 crossref_primary_10_1055_s_2006_955916 crossref_primary_10_1111_j_1365_2486_2008_01615_x crossref_primary_10_1111_pce_12261 crossref_primary_10_1093_treephys_tps087 crossref_primary_10_1016_j_scitotenv_2020_144292 crossref_primary_10_1016_j_agee_2025_109577 crossref_primary_10_1371_journal_pone_0183147 crossref_primary_10_3390_su13084571 crossref_primary_10_1007_s10342_005_0072_8 crossref_primary_10_1371_journal_pone_0021377 crossref_primary_10_1093_treephys_tpab125 crossref_primary_10_1016_j_scitotenv_2019_02_182 crossref_primary_10_1055_s_2005_872902 crossref_primary_10_1071_FP20324 crossref_primary_10_1016_j_atmosenv_2019_05_027 crossref_primary_10_1111_gfs_12090 crossref_primary_10_1111_j_1365_2486_2007_01477_x crossref_primary_10_1007_s10342_016_0964_9 crossref_primary_10_1016_j_atmosenv_2019_05_023 crossref_primary_10_1111_j_1365_3040_2005_01349_x crossref_primary_10_1007_s10342_013_0751_9 crossref_primary_10_1016_j_scitotenv_2020_143795 crossref_primary_10_1016_j_envexpbot_2007_08_008 crossref_primary_10_1111_jam_15751 crossref_primary_10_1007_s00248_011_9895_7 crossref_primary_10_1016_j_envexpbot_2023_105269 crossref_primary_10_1038_ismej_2012_120 crossref_primary_10_1007_s11270_016_3214_3 crossref_primary_10_1007_s13205_022_03215_1 crossref_primary_10_1016_j_ecoenv_2004_10_009 crossref_primary_10_1016_j_envexpbot_2011_07_006 crossref_primary_10_1111_j_1365_2486_2006_01332_x crossref_primary_10_3390_ijms24076236 crossref_primary_10_1186_s12870_021_02934_6 crossref_primary_10_1016_j_envexpbot_2006_06_004 crossref_primary_10_3390_ijms17121964 crossref_primary_10_1111_1365_2745_12941 crossref_primary_10_3390_plants9070861 crossref_primary_10_1111_j_1469_8137_2008_02564_x crossref_primary_10_1007_s11104_011_1094_2 crossref_primary_10_1016_j_envpol_2021_117099 crossref_primary_10_1007_s10342_008_0221_y crossref_primary_10_1016_j_foodres_2023_113316 crossref_primary_10_1111_plb_12971 crossref_primary_10_1007_s11104_006_9026_2 crossref_primary_10_1016_j_apsoil_2014_11_003 crossref_primary_10_1016_j_jes_2021_06_006 crossref_primary_10_1371_journal_pone_0163178 crossref_primary_10_1016_j_envexpbot_2012_09_008 crossref_primary_10_1016_j_ecoenv_2011_02_023 crossref_primary_10_3390_molecules24132452 crossref_primary_10_1016_j_envexpbot_2008_12_005 crossref_primary_10_1002_fes3_152 crossref_primary_10_1016_j_plaphy_2006_03_007 crossref_primary_10_1016_j_soilbio_2008_06_007 crossref_primary_10_3390_ijms25073786 crossref_primary_10_1016_j_envpol_2010_10_033 crossref_primary_10_1016_j_heliyon_2021_e06049 crossref_primary_10_1021_acs_est_8b01093 crossref_primary_10_1007_s11104_009_9927_y crossref_primary_10_3390_soilsystems8020054 crossref_primary_10_1111_j_1469_8137_2012_04152_x crossref_primary_10_1016_j_fcr_2021_108076 crossref_primary_10_3390_su152215889 crossref_primary_10_1016_j_envpol_2006_03_055 crossref_primary_10_1016_j_ecolind_2025_113263 crossref_primary_10_1016_j_envpol_2010_09_024 crossref_primary_10_1111_nph_13224 crossref_primary_10_1016_j_envpol_2008_09_001 crossref_primary_10_1016_j_envpol_2014_02_032 crossref_primary_10_1016_j_still_2016_02_001 crossref_primary_10_1016_j_still_2016_04_015 crossref_primary_10_1016_j_envpol_2018_11_074 crossref_primary_10_1016_j_envpol_2016_01_062 crossref_primary_10_1016_j_soilbio_2005_12_003 crossref_primary_10_1016_j_ufug_2022_127735 crossref_primary_10_1016_j_scitotenv_2024_177358 crossref_primary_10_3390_ijms241411693 crossref_primary_10_1007_s00128_010_0039_4 crossref_primary_10_1016_j_envexpbot_2012_10_009 crossref_primary_10_1055_s_2006_924762 crossref_primary_10_1016_j_jclepro_2020_125773 crossref_primary_10_1139_cjm_2013_0851 crossref_primary_10_1007_s11104_005_6026_6 crossref_primary_10_1016_j_apsoil_2016_08_015 crossref_primary_10_1016_j_envpol_2005_01_039 crossref_primary_10_1016_j_envres_2021_111773 crossref_primary_10_1055_s_2006_924758 crossref_primary_10_3390_ijerph16101755 crossref_primary_10_3390_metabo12070622 crossref_primary_10_1016_j_envexpbot_2013_12_016 crossref_primary_10_1016_S1001_0742_10_60503_7 crossref_primary_10_1007_s00248_006_9183_0 crossref_primary_10_1093_jxb_erab317 crossref_primary_10_1111_j_1469_8137_2007_02163_x crossref_primary_10_1111_j_1365_2486_2007_01332_x crossref_primary_10_1111_j_1469_8137_2005_01557_x crossref_primary_10_1016_j_funeco_2014_01_005 crossref_primary_10_1093_aob_mcad019 crossref_primary_10_1016_j_scitotenv_2021_150563 crossref_primary_10_1016_j_atmosenv_2007_04_035 crossref_primary_10_1016_j_envpol_2012_02_010 crossref_primary_10_1007_s00442_005_0249_3 crossref_primary_10_1016_j_envpol_2012_02_011 crossref_primary_10_3389_fmars_2015_00111 crossref_primary_10_1038_nature02047 crossref_primary_10_3390_f16020216 crossref_primary_10_1007_s11104_018_3592_y crossref_primary_10_1016_j_envpol_2008_01_033 crossref_primary_10_1016_j_funeco_2013_10_005 crossref_primary_10_1088_1748_9326_aa7885 crossref_primary_10_1016_j_envpol_2014_06_032 crossref_primary_10_1111_j_1469_8137_2005_01391_x crossref_primary_10_1016_j_envpol_2006_02_032 crossref_primary_10_1093_jxb_erp213 crossref_primary_10_1007_s11557_011_0750_5 crossref_primary_10_1016_j_envpol_2006_06_010 crossref_primary_10_1016_j_envexpbot_2010_04_006 crossref_primary_10_1016_j_envpol_2023_123143 crossref_primary_10_1016_j_scitotenv_2018_09_246 crossref_primary_10_1007_s00468_013_0922_9 crossref_primary_10_1111_gcb_17215 crossref_primary_10_3389_fpls_2023_1144319 crossref_primary_10_1016_j_proenv_2011_10_008 crossref_primary_10_1007_s11356_019_05199_7 crossref_primary_10_1111_j_1365_3040_2005_01362_x crossref_primary_10_1016_j_envexpbot_2020_104037 crossref_primary_10_1007_s10661_006_9414_3 crossref_primary_10_1146_annurev_arplant_042110_103829 crossref_primary_10_1016_j_apsoil_2014_10_012 crossref_primary_10_1016_j_eja_2018_06_002 crossref_primary_10_1016_j_envexpbot_2010_09_012 crossref_primary_10_1016_j_envpol_2012_07_028 crossref_primary_10_1016_j_envpol_2014_12_011 crossref_primary_10_1016_j_soilbio_2024_109559 crossref_primary_10_1046_j_1469_8137_2003_00766_x crossref_primary_10_3390_f12121680 crossref_primary_10_1111_j_1365_2486_2004_00841_x crossref_primary_10_1007_s12298_023_01311_x crossref_primary_10_1016_j_jenvman_2020_111439 crossref_primary_10_1007_s00374_018_1318_1 crossref_primary_10_1016_j_envexpbot_2020_103994 crossref_primary_10_1071_SR11296 crossref_primary_10_1016_j_scitotenv_2020_136837 crossref_primary_10_1042_BJ20110078 crossref_primary_10_1007_s10646_013_1146_x crossref_primary_10_1111_j_1469_8137_2004_01014_x crossref_primary_10_2135_cropsci2004_0619 crossref_primary_10_1371_journal_pone_0182796 crossref_primary_10_1371_journal_pone_0223508 crossref_primary_10_1080_17429145_2018_1556356 crossref_primary_10_1007_s11104_016_2982_2 crossref_primary_10_1016_j_chemosphere_2009_05_028 crossref_primary_10_1016_j_ecoenv_2019_109404 crossref_primary_10_1016_j_envpol_2009_08_002 crossref_primary_10_2480_agrmet_D_14_00045 crossref_primary_10_1016_j_envpol_2006_03_019 crossref_primary_10_1007_s10021_013_9670_3 crossref_primary_10_1111_j_1365_2486_2010_02258_x crossref_primary_10_7567_JJAP_55_01AB06 crossref_primary_10_3389_fpls_2017_01568 crossref_primary_10_1007_s11104_009_9936_x crossref_primary_10_1016_j_agee_2017_11_010 crossref_primary_10_1016_j_envpol_2006_11_011 crossref_primary_10_1016_j_envpol_2014_08_022 crossref_primary_10_1016_j_chemosphere_2006_07_021 crossref_primary_10_18006_2020_8_Spl_2_AABAS__S292_S297 crossref_primary_10_1093_treephys_tpx009 crossref_primary_10_1016_j_envpol_2020_116117 crossref_primary_10_1016_j_scitotenv_2019_07_133 crossref_primary_10_1016_j_apgeochem_2022_105400 crossref_primary_10_1016_j_catena_2016_10_002 crossref_primary_10_1111_jac_12268 crossref_primary_10_1111_j_1365_2486_2005_00970_x crossref_primary_10_1016_j_plantsci_2014_06_005 crossref_primary_10_3390_plants12030664 crossref_primary_10_1016_S1001_0742_06_60017_X crossref_primary_10_1371_journal_pone_0060109 crossref_primary_10_1007_s11270_008_9838_1 crossref_primary_10_3390_environments10100178 crossref_primary_10_1016_j_jes_2024_03_026 crossref_primary_10_1016_j_scitotenv_2022_161008 crossref_primary_10_3390_f8090323 crossref_primary_10_1371_journal_pone_0283480 crossref_primary_10_1016_j_envexpbot_2012_11_003 crossref_primary_10_1890_1051_0761_2006_016_2368_PADEOO_2_0_CO_2 crossref_primary_10_18006_2020_8_Spl_2_AABAS__S327_S335 crossref_primary_10_3390_f15010205 crossref_primary_10_1080_11263500701626028 crossref_primary_10_3389_fpls_2018_01764 crossref_primary_10_1016_j_scitotenv_2023_162721 crossref_primary_10_1016_j_atmosenv_2011_04_057 crossref_primary_10_1016_j_soilbio_2007_07_010 crossref_primary_10_1016_j_envpol_2011_06_022 crossref_primary_10_1093_treephys_tps005 crossref_primary_10_1111_jac_12257 crossref_primary_10_1186_s13020_024_01013_w crossref_primary_10_1007_s00128_020_02832_x crossref_primary_10_1016_j_plaphy_2013_05_009 crossref_primary_10_1007_s11356_023_28634_2 crossref_primary_10_1614_WS_07_202_1 crossref_primary_10_1007_s10342_012_0656_z crossref_primary_10_1007_s11829_012_9189_0 crossref_primary_10_1055_s_2005_872981 crossref_primary_10_1080_21580103_2018_1499557 crossref_primary_10_1111_tpj_16465 crossref_primary_10_1007_s00442_009_1339_4 crossref_primary_10_1111_pce_14808 crossref_primary_10_1093_jxb_erp255 crossref_primary_10_3389_fpls_2017_01307 crossref_primary_10_1016_j_envpol_2018_06_073 crossref_primary_10_1016_j_scienta_2021_110248 crossref_primary_10_1007_s11270_019_4339_y crossref_primary_10_1111_j_1461_0248_2009_01334_x crossref_primary_10_1055_s_2005_872987 crossref_primary_10_1007_s00468_021_02111_0 crossref_primary_10_1016_j_ecoenv_2020_111644 crossref_primary_10_1016_j_envpol_2009_05_006 crossref_primary_10_1016_j_envpol_2005_08_024 crossref_primary_10_1016_j_plaphy_2005_01_010 crossref_primary_10_3390_molecules29225351 crossref_primary_10_1080_00103624_2017_1282509 crossref_primary_10_1016_j_atmosenv_2008_11_033 crossref_primary_10_3390_plants12010179 crossref_primary_10_3389_fpls_2020_623722 crossref_primary_10_1007_s11104_009_9972_6 crossref_primary_10_1016_j_envexpbot_2010_03_007 crossref_primary_10_1007_s10661_018_6563_0 crossref_primary_10_1016_j_atmosenv_2017_06_030 crossref_primary_10_1055_s_2005_873025 crossref_primary_10_1007_s42965_023_00298_6 crossref_primary_10_2135_cropsci2009_03_0127 crossref_primary_10_1016_j_ecoenv_2014_09_018 crossref_primary_10_1016_j_scitotenv_2019_136379 crossref_primary_10_1055_s_2005_872972 crossref_primary_10_1093_jxb_err443 crossref_primary_10_1007_s00442_006_0381_8 crossref_primary_10_1016_j_ecoenv_2017_09_068 crossref_primary_10_1016_j_scitotenv_2016_10_188 crossref_primary_10_1111_j_1365_2486_2005_00939_x crossref_primary_10_1016_j_scitotenv_2020_137141 crossref_primary_10_1111_j_1442_9993_2009_01995_x crossref_primary_10_1021_acs_est_8b00495 crossref_primary_10_5094_APR_2013_014 crossref_primary_10_1038_srep03193 crossref_primary_10_1016_j_envpol_2011_06_009 crossref_primary_10_1007_s11104_013_1973_9 crossref_primary_10_1016_j_envpol_2009_09_008 crossref_primary_10_1016_j_envpol_2010_05_003 crossref_primary_10_1016_j_scienta_2012_11_015 crossref_primary_10_1046_j_1469_8137_2003_00685_x crossref_primary_10_1016_j_soilbio_2011_12_012 crossref_primary_10_1111_j_1365_2486_2007_01472_x crossref_primary_10_1016_j_envpol_2010_05_008 crossref_primary_10_1007_s11270_005_2717_0 crossref_primary_10_1016_j_envpol_2009_06_031 crossref_primary_10_1007_s10533_022_00962_4 crossref_primary_10_1007_s10661_022_10551_5 crossref_primary_10_1007_s11267_007_9164_4 crossref_primary_10_1055_s_2006_924489 crossref_primary_10_1007_s00468_007_0184_5 crossref_primary_10_1016_j_scitotenv_2019_01_040 crossref_primary_10_1007_s11356_022_24327_4 crossref_primary_10_1007_s00442_010_1572_x crossref_primary_10_1007_s10886_009_9644_2 crossref_primary_10_1016_j_agee_2015_02_013 crossref_primary_10_1016_j_envpol_2015_02_038 crossref_primary_10_1111_gcb_12810 crossref_primary_10_1016_j_envpol_2009_10_006 crossref_primary_10_1139_cjb_2016_0275 crossref_primary_10_1017_S0014479718000170 crossref_primary_10_1046_j_1365_2486_2003_00669_x crossref_primary_10_1016_j_soilbio_2015_08_029 crossref_primary_10_1186_s40538_023_00496_3 crossref_primary_10_1016_j_scitotenv_2020_140847 crossref_primary_10_1111_j_1469_8137_2006_01658_x crossref_primary_10_3390_f7040078 crossref_primary_10_3390_ijms25179381 crossref_primary_10_1016_j_agee_2011_07_003 crossref_primary_10_1093_jxb_ers118 crossref_primary_10_1016_j_scitotenv_2017_07_069 crossref_primary_10_1007_s11104_009_9945_9 crossref_primary_10_1016_j_jes_2014_12_018 crossref_primary_10_1007_s11104_009_9968_2 crossref_primary_10_1007_s11270_015_2555_7 crossref_primary_10_1007_s11356_013_1517_0 crossref_primary_10_1016_j_scienta_2019_108874 crossref_primary_10_1038_srep05350 crossref_primary_10_1007_s00114_008_0468_7 crossref_primary_10_1016_j_envpol_2018_03_061 crossref_primary_10_1007_s11356_014_3481_8 crossref_primary_10_1007_s11270_007_9475_0 crossref_primary_10_1016_j_agee_2009_09_004 crossref_primary_10_1016_j_envpol_2023_122334 crossref_primary_10_1055_s_2007_964883 crossref_primary_10_1093_jxb_eri214 crossref_primary_10_1093_treephys_tpab041 crossref_primary_10_1007_s11104_011_0961_1 crossref_primary_10_1111_j_1365_2486_2010_02376_x crossref_primary_10_1007_s10886_009_9731_4 crossref_primary_10_1007_s00572_014_0577_4 crossref_primary_10_4028_www_scientific_net_AMR_864_867_2478 crossref_primary_10_1016_j_envpol_2011_03_011 crossref_primary_10_1111_1365_2745_12351 crossref_primary_10_2135_cropsci2005_06_0167 crossref_primary_10_1038_s41598_017_11190_4 crossref_primary_10_1007_s11270_015_2715_9 crossref_primary_10_1016_j_envpol_2009_11_033 crossref_primary_10_1016_j_scitotenv_2017_05_021 crossref_primary_10_1039_c1em10305a crossref_primary_10_3389_fpls_2022_1045239 crossref_primary_10_2134_agronj2017_09_0514 crossref_primary_10_1007_s11104_009_0090_2 crossref_primary_10_2135_cropsci2008_10_0603 crossref_primary_10_1007_s11104_025_07309_6 crossref_primary_10_1111_j_1365_2486_2010_02267_x crossref_primary_10_1007_s11104_011_0912_x crossref_primary_10_1111_ejss_13186 crossref_primary_10_1088_1748_9326_ac49b9 crossref_primary_10_5194_bg_8_3127_2011 crossref_primary_10_1016_j_envpol_2005_02_002 crossref_primary_10_1111_nph_14124 crossref_primary_10_3389_fmicb_2022_916875 crossref_primary_10_1016_j_envpol_2010_01_019 crossref_primary_10_1016_j_envpol_2006_10_009 crossref_primary_10_2480_agrmet_D_18_00009 crossref_primary_10_1016_j_ecoleng_2008_08_009 crossref_primary_10_1016_j_jhazmat_2020_124968 crossref_primary_10_1002_ece3_2568 crossref_primary_10_1016_j_apsoil_2010_10_013 crossref_primary_10_2136_sssaj2009_0258 crossref_primary_10_1016_j_scitotenv_2020_142134 crossref_primary_10_1007_s12647_023_00643_z |
Cites_doi | 10.1046/j.1469-8137.1997.00779.x 10.1007/978-94-011-1294-9_18 10.1094/MPMI.1998.11.3.167 10.1104/pp.73.1.185 10.1111/j.1469-8137.1978.tb01627.x 10.1016/0269-7491(90)90107-N 10.1016/0167-8809(92)90172-8 10.1111/j.1469-8137.1994.tb04032.x 10.1046/j.1365-3040.2002.00859.x 10.1016/S0981-9428(01)01291-8 10.1139/b77-190 10.1007/BF02183063 10.1007/978-3-642-70118-4 10.1016/0013-9327(71)90023-1 10.1016/0098-8472(92)90035-Z 10.1046/j.1365-2486.2000.00310.x 10.1016/0269-7491(93)90203-Z 10.1016/S0176-1617(96)80250-1 10.1111/j.1469-8137.1994.tb03977.x 10.1046/j.1469-8137.1998.00100.x 10.1007/BF00477186 10.1104/pp.88.3.559 10.1007/978-94-015-9803-3_4 10.1016/S0378-1127(98)00290-4 10.1016/0269-7491(88)90202-3 10.1093/jxb/48.2.307 10.1007/BF02407207 10.1080/02827589809382976 10.1046/j.1365-2486.1999.00274.x 10.1104/pp.82.1.336 10.1890/06-0822.1 10.2134/agronj1958.00021962005000090019x 10.1093/forestscience/38.1.102 10.1093/treephys/19.2.71 10.1093/forestscience/33.3.801 10.1016/0004-6981(77)90182-2 10.1007/BF00226583 10.1016/0098-8472(84)90062-5 10.1046/j.1469-8137.1997.00843.x 10.1093/treephys/21.2-3.173 10.1038/268329a0 10.1139/b69-247 10.2134/jeq1998.00472425002700040032x 10.1146/annurev.phyto.34.1.347 10.2307/2269570 10.1007/BF00376884 10.1016/0269-7491(92)90118-T 10.1093/treephys/21.16.1205 10.1016/S0269-7491(98)00130-4 10.1093/forestscience/37.1.5 10.1046/j.1469-8137.1999.00486.x 10.1093/treephys/16.1-2.145 10.1093/jxb/50.336.1253 10.1016/0098-8472(93)90045-H 10.1016/S0269-7491(99)00122-0 10.1016/0269-7491(90)90092-Q 10.1146/annurev.arplant.47.1.509 10.1104/pp.73.3.630 10.2307/3544442 10.1046/j.1365-2486.2000.00307.x 10.1104/pp.010497 10.1126/science.129.3343.208 10.1016/0004-6981(81)90178-5 10.1016/0269-7491(91)90051-W 10.1016/S0045-6535(97)10112-6 10.2307/1936576 10.1046/j.1365-3040.2001.00678.x 10.1023/A:1010351406931 10.1104/pp.120.4.1015 10.1016/B978-012424162-6/50017-X 10.1023/A:1005267214560 10.1007/BF00388079 10.1104/pp.68.3.548 10.1046/j.1365-3040.1999.00432.x 10.1073/pnas.96.23.13577 10.21273/JASHS.104.2.151 10.1007/BF00323541 10.1093/treephys/14.6.647 10.1007/s004420100656 10.1016/S0176-1617(96)80256-2 10.1038/369058a0 10.1016/0378-1127(95)03668-7 10.1890/1051-0761(2000)010[0484:SIAMCA]2.0.CO;2 10.1139/x26-003 10.1086/417659 10.1093/treephys/21.5.319 10.1093/jxb/36.4.652 10.1007/BF00225329 10.1034/j.1399-3054.2001.1110307.x 10.1016/0269-7491(87)90040-6 10.1007/978-1-4612-1436-6_7 10.1890/0012-9658(2002)083[0104:BEFCCO]2.0.CO;2 10.1093/treephys/11.3.215 10.2134/jeq1973.00472425000200030006x 10.1007/BF02182683 10.1093/jexbot/51.346.919 10.1111/j.1399-3054.1997.tb04782.x 10.1016/0378-1127(95)03603-2 10.2307/2960528 10.1201/9780203909423.ch12 10.1016/0304-4017(93)90160-O 10.1046/j.1439-0329.1999.00156.x 10.1111/j.1469-8137.1995.tb03084.x 10.1093/jexbot/52.362.1901 10.1094/Phyto-75-679 10.1023/A:1015802823398 10.1139/b88-105 10.1890/0012-9658(1998)079[1595:MODWPC]2.0.CO;2 10.1007/978-94-011-1294-9_13 10.1007/s00442-002-0868-x 10.1139/b85-287 10.1007/978-94-009-5925-5 10.2307/2403853 10.1146/annurev.en.36.010191.000325 10.1146/annurev.arplant.53.100301.135256 10.1016/S1369-5266(99)00014-X 10.1111/j.1469-8137.1991.tb00983.x 10.1111/j.1469-8137.1988.tb04191.x 10.1046/j.1469-8137.2001.00180.x 10.1046/j.1469-8137.1998.00277.x 10.1046/j.0028-646X.2001.00270.x 10.1038/368734a0 10.1007/978-1-4612-3060-1_12 10.1016/0013-9327(75)90099-3 10.2307/1940888 10.1007/BF00228785 10.2134/jeq1973.00472425000200020019x 10.1139/x91-179 10.1023/A:1010321509628 10.1016/0038-0717(91)90022-C 10.1016/S0378-1127(00)00368-6 10.1016/0269-7491(90)90040-J 10.1111/j.1469-8137.1992.tb00055.x 10.2475/ajs.s2-37.111.373 10.1111/j.1469-8137.1988.tb00268.x 10.21273/JASHS.107.5.839 10.1098/rstb.1995.0025 10.1046/j.1469-8137.2000.00688.x 10.1111/j.1469-8137.1991.tb01027.x 10.1139/x85-129 10.1111/j.1469-8137.1994.tb04016.x 10.1046/j.1469-8137.2002.00446.x 10.1111/j.1365-3040.1995.tb00364.x 10.1126/science.1068326 10.2134/jeq1991.00472425002000010027x 10.1016/S0038-0717(00)00151-6 10.2136/sssaj1964.03615995002800030006x 10.1146/annurev.phyto.34.1.325 10.1093/treephys/13.2.157 10.1016/S0929-1393(98)00121-8 10.1093/treephys/17.6.377 10.1046/j.1469-8137.2000.00687.x 10.1093/treephys/17.12.805 10.1002/j.1537-2197.1995.tb11484.x 10.1093/treephys/8.3.289 10.1139/b88-209 10.1111/j.1469-8137.1983.tb04497.x 10.1023/A:1004929801839 10.1104/pp.91.1.427 10.1111/j.1469-8137.1989.tb02359.x |
ContentType | Journal Article |
Copyright | Copyright 2003 New Phytologist 2003 INIST-CNRS |
Copyright_xml | – notice: Copyright 2003 New Phytologist – notice: 2003 INIST-CNRS |
DBID | AAYXX CITATION IQODW NPM 7SN C1K 7X8 7S9 L.6 |
DOI | 10.1046/j.1469-8137.2003.00674.x |
DatabaseName | CrossRef Pascal-Francis PubMed Ecology Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Ecology Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Ecology Abstracts MEDLINE - Academic AGRICOLA CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 228 |
ExternalDocumentID | 33873636 14529637 10_1046_j_1469_8137_2003_00674_x NPH674 1514029 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZCG ZZTAW ~02 ~IA ~KM ~WT AASVR ABEML ABGDZ ACQPF ADXHL AGHNM HF~ LPU NEJ RCA WHG XOL YXE AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION IQODW NPM 7SN C1K 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c6284-d29d16438f5b54702785f7f9786e4bb9ad4442d3ccd9119dc9351d235cfa46bb3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 10:05:39 EDT 2025 Fri Jul 11 18:24:27 EDT 2025 Fri Jul 11 16:28:24 EDT 2025 Fri Jul 11 09:51:02 EDT 2025 Mon Jul 21 06:05:51 EDT 2025 Wed Apr 02 07:12:58 EDT 2025 Tue Jul 01 04:20:35 EDT 2025 Thu Apr 24 23:07:56 EDT 2025 Wed Aug 20 07:26:18 EDT 2025 Thu Jul 03 22:53:37 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | carbohydrate signaling Growth symbionts Resource allocation Environmental factor Ozone Oxidant Review Metabolism Source sink relationship Carbon cycle Pollutant Signal transduction tropospheric ozone Phytotoxicity rhizodeposition Ecosystem source-sink balance Air pollution carbon allocation roots soil processes roots soil processes |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6284-d29d16438f5b54702785f7f9786e4bb9ad4442d3ccd9119dc9351d235cfa46bb3 |
Notes | Note: The information in this article has been funded by the U.S. Environmental Protection Agency. It has been subjected to the Agency's peer and administrative review, and it has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 ObjectType-Review-3 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1046/j.1469-8137.2003.00674.x |
PMID | 33873636 |
PQID | 19191394 |
PQPubID | 24069 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_49055624 proquest_miscellaneous_2524267913 proquest_miscellaneous_2515688768 proquest_miscellaneous_19191394 pubmed_primary_33873636 pascalfrancis_primary_14529637 crossref_primary_10_1046_j_1469_8137_2003_00674_x crossref_citationtrail_10_1046_j_1469_8137_2003_00674_x wiley_primary_10_1046_j_1469_8137_2003_00674_x_NPH674 jstor_primary_1514029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2003 |
PublicationDateYYYYMMDD | 2003-02-01 |
PublicationDate_xml | – month: 02 year: 2003 text: February 2003 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2003 |
Publisher | Blackwell Science Blackwell Science Ltd Blackwell |
Publisher_xml | – name: Blackwell Science – name: Blackwell Science Ltd – name: Blackwell |
References | 2001; 144 1987; 33 1989; 44 1992; 122 1997; 48 2002; 155 1989; 111 1976 1983; 94 1958; 50 1995; 131 1991; 118 1996; 148 1998; 396 1996.; 26 1988; 108 1978 1991; 119 1992; 6 1987; 47 1950; 34 1998; 19 1986; 82 2002; 83 2000; 10 1993; 33 1980; 32 1988; 88 1985 1969; 47 2001; 24 1982 1999; 50 1971; 1 1998; 10 1985; 15 2001; 52 1998; 11 1989 1988 1998; 13 1994; 75 1993; 48 1960. 1979; 13 1996. 1990; 36 2002; 131 1964; 28 1999; 29 1991; 72 1991; 73 2002; 139 1981; 24 1983; 73 1999; 22 1994 1983; 71 1978; 59 2001; 27 1992; 38 1991 1998; 138 1992; 32 1996; 16 1970; 16 2001; 21 1999 2001; 151 1987; 64 1997. 2001; 152 1991; 67 1988; 25 2000; 107 1996; 82 1994; 14 1981; 15 1977; 11 1970; 83 2001; 39 2001; 33 1985; 75 1999; 116 1998; 140 1973; 2 1998; 79 1982. 1979; 104 1976; 22 2000; 6 2002; 53 1997; 85 1982; 107 1995; 79 1999; 120 2000; 51 1985; 63 1983; 59 1992; 11 1864; 37 1996; 34 1995; 170 1994; 105 1982; 28 2001 1997; 96 1997; 100 1997; 12 1981; 36 1997; 17 1999; 96 1975; 8 1996; 6 1998; 27 1997; 136 1997; 137 2000; 27 1991; 37 2002; 296 1993; 81 1981; 68 1988; 51 1999; 144 1999; 2 1995; 18 2002 1992; 76 1999; 5 1977; 268 1991; 8 1990; 82 2001; 128 2001; 127 1991; 5 2001; 111 1978; 81 1995; 85 1990; 64 1993; 13 2002; 25 2001; 233 1994; 127 1995; 82 1994; 369 1994; 128 1990; 68 1994; 368 1991; 23 2000; 147 1991; 21 1989; 91 1991; 20 1980; 10 1988; 66 1995; 347 1998; 109 1988; 110 1977; 55 1998; 103 1996; 47 1959; 129 1998; 36 1985; 36 e_1_2_9_75_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 McLaughlin SB (e_1_2_9_104_1) 1982; 28 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 McCool PM (e_1_2_9_101_1) 1982; 107 e_1_2_9_6_1 e_1_2_9_119_1 Posthumus AC (e_1_2_9_131_1) 1976 Ritchie GA (e_1_2_9_143_1) 1980; 10 e_1_2_9_60_1 Skarby L (e_1_2_9_155_1) 1987; 33 e_1_2_9_138_1 e_1_2_9_111_1 Berg B (e_1_2_9_16_1) 1980; 32 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_157_1 e_1_2_9_26_1 Daines RH (e_1_2_9_27_1) 1960 e_1_2_9_49_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_172_1 Wolters V (e_1_2_9_180_1) 1998; 10 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 Van Den Driessche R (e_1_2_9_30_1) 1978 Findlay S (e_1_2_9_40_1) 1991; 72 e_1_2_9_102_1 e_1_2_9_148_1 Bjorkman E (e_1_2_9_20_1) 1970; 83 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 Adams MB (e_1_2_9_2_1) 1991; 37 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 Alscher RG (e_1_2_9_4_1) 1988 e_1_2_9_5_1 McCool PM (e_1_2_9_100_1) 1979; 104 Middleton JT (e_1_2_9_108_1) 1950; 34 Bender J (e_1_2_9_15_1) 1990; 64 e_1_2_9_114_1 e_1_2_9_137_1 Stow TK (e_1_2_9_159_1) 1992; 38 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_179_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_69_1 e_1_2_9_171_1 Beckerson DW (e_1_2_9_13_1) 1979; 13 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 US Environmental Protection Agency (e_1_2_9_170_1) 1996 Tingey DT (e_1_2_9_167_1) 1976; 22 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 Gordon JC (e_1_2_9_47_1) 1970; 16 e_1_2_9_92_1 e_1_2_9_109_1 Plocher MD (e_1_2_9_130_1) 1994; 105 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_147_1 Smith SE (e_1_2_9_156_1) 1997 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_185_1 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_113_1 Tingey DT (e_1_2_9_165_1) 1994 e_1_2_9_117_1 e_1_2_9_136_1 e_1_2_9_178_1 e_1_2_9_151_1 e_1_2_9_28_1 Duriscoe DM (e_1_2_9_33_1) 1989 e_1_2_9_132_1 e_1_2_9_174_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_63_1 e_1_2_9_21_1 e_1_2_9_67_1 Miller PR (e_1_2_9_110_1) 1989 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 Grantz DA (e_1_2_9_55_1) 2000; 27 e_1_2_9_3_1 Maurer S (e_1_2_9_98_1) 1997; 12 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_25_1 e_1_2_9_154_1 e_1_2_9_173_1 e_1_2_9_48_1 e_1_2_9_29_1 e_1_2_9_150_1 Winner WE (e_1_2_9_177_1) 1988 |
References_xml | – volume: 15 start-page: 483 year: 1981 end-page: 487 article-title: The rapid inhibition of root respiration after exposure of bean ( L.) plants to ozone publication-title: Atmospheric Environment – volume: 10 start-page: 484 year: 2000 end-page: 496 article-title: Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient publication-title: Ecological Applications – volume: 23 start-page: 1115 year: 1991 end-page: 1119 article-title: Enzymatic changes in the rhizosphere of loblolly pine exposed to ozone and acid rain publication-title: Soil Biological Biochemistry – volume: 13 start-page: 157 year: 1993 end-page: 172 article-title: Analysis of the relationships among O uptake, conductance, and photosynthesis in needles of publication-title: Tree Physiology – volume: 27 start-page: 859 year: 2000 end-page: 868 article-title: Ozone inhibits phloem loading from a transport pool: compartmental efflux analysis in Pima cotton publication-title: Australian Journal of Plant Physiology – volume: 16 start-page: 14 year: 1970 end-page: 20 article-title: Redistribution of ‘C‐labeled reserve food in young red pines during shoot elongation publication-title: Forest Science – start-page: 127 year: 1985 end-page: 333 – start-page: 115 year: 1976 end-page: 120 – volume: 32 start-page: 101 year: 1992 end-page: 113 article-title: Foliar injury responses of ponderosa pine seedlings to ozone, wet an dry acidic deposition, and drought publication-title: Environmental and Experimental Botany – volume: 347 start-page: 248 year: 1995 end-page: 262 article-title: Empirical evidence that declining species diversity may alter the performance of terrestrial ecosystems publication-title: Philosophical Transactions of the R Society of London B – year: 1982. – volume: 103 start-page: 263 year: 1998 end-page: 276 article-title: The effects of acid precipitation and ozone on the ectomycorrhizae of red spruce saplings publication-title: Water, Air and Soil Pollution – volume: 73 start-page: 217 year: 1991 end-page: 244 article-title: Stress interactions and mycorrhizal plant response: understanding carbon allocation priorities publication-title: Environmental Pollution – volume: 52 start-page: 1901 year: 2001 end-page: 1911 article-title: Does nitrogen supply affect the response of wheat ( cv. Hanno) to the combination of elevated CO and O ? publication-title: Journal of Experimental Botany – volume: 82 start-page: 248 year: 1990 end-page: 250 article-title: Exposure of cottonwood plants to ozone alters subsequent decomposition publication-title: Oecologia – volume: 28 start-page: 60 year: 1982 end-page: 70 article-title: Effects of chronic air pollution stress on photosynthesis, carbon allocation, and growth of white pine trees publication-title: Forest Science – volume: 128 start-page: 237 year: 2001 end-page: 250 article-title: Fine‐root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO and tropospheric O publication-title: Oecologia – volume: 148 start-page: 296 year: 1996 end-page: 301 article-title: Consequences of air pollution on shoot–root interactions publication-title: Journal of Plant Physiology – volume: 94 start-page: 241 year: 1983 end-page: 247 article-title: Influence of ozone on carbon partitioning in tomato: potential role of carbon flow in regulation of the mycorrhizal symbiosis under conditions of stress publication-title: New Phytologist – volume: 81 start-page: 543 year: 1978 end-page: 552 article-title: Root exudation in relation to supply of phosphorus and its possible relevance to mycorrhiza formation publication-title: New Phytologist – volume: 103 start-page: 63 year: 1998 end-page: 73 article-title: Ozone exposure and nitrogen deposition lowers root biomass of ponderosa pine in the San Bernardino Mountains, California publication-title: Environmental Pollution – volume: 127 start-page: 1787 year: 2001 article-title: Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes publication-title: Plant Physiology – volume: 10 start-page: 218 year: 1980 end-page: 248 article-title: Root growth potential: its development and expression in forest tree seedlings publication-title: New Zealand Journal of Forest Science – volume: 140 start-page: 219 year: 1998 end-page: 230 article-title: The effects of nutrient limitation on the response of to ozone publication-title: New Phytologist – volume: 138 start-page: 315 year: 1998 end-page: 325 article-title: Elevated carbon dioxide ameliorates the effects of ozone on photosynthesis and growth: species respond similarly regardless of photosynthetic pathway or plant functional group publication-title: New Phytologist – volume: 116 start-page: 199 year: 1999 end-page: 226 article-title: Ozone – a risk factor for trees and forests in Europe? publication-title: Water, Air, and Soil Pollution – volume: 120 start-page: 1015 year: 1999 end-page: 1024 article-title: Senescence‐associated gene expression during ozone‐induced leaf senescence in Arabidopsis publication-title: Plant Physiology – volume: 59 start-page: 88 year: 1983 end-page: 93 article-title: Wound induced defences in plants and their consequences for patterns of insect grazing publication-title: Oecologia – volume: 91 start-page: 427 year: 1989 end-page: 432 article-title: Decline of activity and quantity of ribulose bisphosphate carboxylase/oxygenase and net photosynthesis in ozone‐treated potato foliage publication-title: Plant Physiology – volume: 268 start-page: 329 year: 1977 end-page: 331 article-title: Number of trophic levels in ecological communities publication-title: Nature – volume: 37 start-page: 5 year: 1991 end-page: 16 article-title: Effects of ozone and acidic deposition on carbon allocation and mycorrhizal colonization of Pinus Taeda L publication-title: Seedlings Forest Science – volume: 79 start-page: 1595 year: 1998 end-page: 1601 article-title: Maintenance of diversity within plant communities: Soil pathogens as agents of negative feedback publication-title: Ecology – volume: 67 start-page: 283 year: 1991 end-page: 335 article-title: The dilemma of plants: to grow or defend publication-title: The Quarterly Review of Biology – volume: 44 start-page: 159 year: 1989 end-page: 171 article-title: Influence of O , rainfall acidity, and soil Mg status on growth and ectomycorrhizal colonization of loblolly pine roots publication-title: Water, Air, and Soil Pollution – volume: 59 start-page: 465 year: 1978 end-page: 472 article-title: Macroclimate and lignin control of litter decomposition rates publication-title: Ecology – start-page: 195 year: 1994 end-page: 206 – volume: 47 start-page: 509 year: 1996 end-page: 540 article-title: Carbohydrate‐moldulated gene expression in plants publication-title: Annual Review of Plant Physiological Plant Molecular Biology – volume: 79 start-page: 197 year: 1995 end-page: 206 article-title: The effects of ozone on the root dynamics of seedlings and mature red oak ( L.) publication-title: Forest Ecology and Management – volume: 24 start-page: 327 year: 2001 end-page: 336 article-title: Stomatal and non‐stomatal limitation to photosynthesis in two trembling aspen ( michx.) clones exposed to elevated CO and/or O publication-title: Plant, Cell & Environment – volume: 2 start-page: 341 year: 1973 end-page: 342 article-title: Effects of ozone on soybean nodules publication-title: Journal of Environmental Quality – volume: 155 start-page: 67 year: 2002 end-page: 78 article-title: Limitations to CO assimilation in ozone‐exposed leaves of publication-title: New Phytologist – volume: 110 start-page: 319 year: 1988 end-page: 325 article-title: Growth and maintenance respiration in leaves of bean ( L.) Exposed to ozone in open‐top chambers in the field publication-title: New Phytologist – volume: 71 start-page: 415 year: 1983 end-page: 432 article-title: Nitrogen nutrition, photosynthesis and carbon allocation in ectomycorrhizal pine publication-title: Plant and Soil – volume: 25 start-page: 717 year: 2002 end-page: 726 article-title: Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone publication-title: Plant, Cell & Environment – volume: 96 start-page: 233 year: 1997 end-page: 248 article-title: Influence of mycorrhizal fungus and/or rhizobium on growth and biomass partitioning of subterranean clover exposed to ozone publication-title: Water, Air and Soil Pollution – volume: 38 start-page: 102 year: 1992 end-page: 119 article-title: Ozone impacts on seasonal foliage dynamics of young loblolly pine publication-title: Forest Science – volume: 21 start-page: 1205 year: 2001 end-page: 1213 article-title: Nitrogen availability modifies the ozone responses of Scots pine seedlings exposed in an open‐field system publication-title: Tree Physiology – volume: 119 start-page: 243 year: 1991 end-page: 250 article-title: Effects of ozone and ammonium sulphate on carbon partitioning on mycorrhizal roots of juvenile Douglas fir publication-title: New Phytologist – volume: 111 start-page: 647 year: 1989 end-page: 656 article-title: Effects of O on alder photosynthesis and symbiosis with publication-title: New Phytologist – volume: 24 start-page: 71 year: 1981 end-page: 74 article-title: Effects of ozone exposure on mycorrhiza formation and growth of publication-title: Environmental and Experimental Botany – volume: 139 start-page: 325 year: 2002 end-page: 341 – volume: 50 start-page: 559 year: 1958 end-page: 561 article-title: Air pollution with relation to agronomic crops. V. Oxidant stipple of grape publication-title: Agronomy Journal – volume: 27 start-page: 1049 year: 2001 end-page: 1062 article-title: Effects of long‐term open‐field ozone exposure on leaf phenolics of European silver birch ( Roth) publication-title: Journal of Chemical Ecology – volume: 109 start-page: 355 year: 1998 end-page: 366 article-title: Foliar nitrogen dynamics and decomposition of yellow‐poplar and eastern white pine during four seasons of exposure to elevated ozone and carbon dioxide publication-title: Forest Ecology and Management – volume: 82 start-page: 336 year: 1986 end-page: 338 article-title: Effect of SO and O on production of antioxidants in conifers publication-title: Plant Physiology – volume: 64 start-page: 284 year: 1987 end-page: 286 article-title: The influence of a fall fumigation with ozone on the stomatal behavior of spruce and fir publication-title: Oecologia – volume: 64 start-page: 329 year: 1990 end-page: 343 article-title: Regression analysis to describe yield and metabolic responses of beans ( ) to chronic ozone stress publication-title: Angewandte Botanik – year: 1996. – volume: 39 start-page: 729 year: 2001 end-page: 742 article-title: Effects of ozone on the carbon metabolism of forest trees publication-title: Plant Physiology and Biochemistry – volume: 21 start-page: 173 year: 2001 end-page: 181 article-title: Seasonal changes in above‐ and belowground carbohydrate concentrations of ponderosa pine along a pollution gradient publication-title: Tree Physiology – volume: 118 start-page: 315 year: 1991 end-page: 321 article-title: Root and soil respiration responses to ozone in L. seedlings publication-title: New Phytologist – volume: 148 start-page: 249 year: 1996 end-page: 257 article-title: Mechanisms of oxygen activation during plant stress: Biochemical effects of air pollutants publication-title: Journal of Plant Physiology – volume: 33 start-page: 365 year: 2001 end-page: 373 article-title: Contrasting effects of elevated CO on old and new soil carbon pools publication-title: Soil Biology and Biochemistry – volume: 396 start-page: 69 year: 1998 end-page: 72 article-title: Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity publication-title: Nature – start-page: 209 year: 1991 end-page: 235 – volume: 127 start-page: 579 year: 1994 end-page: 589 article-title: Analysis of aspen foliage exposed to multiple stresses‐ozone, nitrogen deficiency and drought publication-title: New Phytologist – volume: 369 start-page: 58 year: 1994 end-page: 60 article-title: Mycorrhizae alter quality and quantity of carbon allocated below ground publication-title: Nature – volume: 100 start-page: 264 year: 1997 end-page: 273 article-title: Ozone‐induced oxidative stress: Mechanisms of action and reaction publication-title: Physiologia Plantarum – volume: 13 start-page: 33 year: 1979 end-page: 35 article-title: Stomatal responses of white bean to O and SO singly or in combination publication-title: Atmospheric Environment – start-page: 205 year: 2002 end-page: 220 – volume: 6 start-page: 269 year: 1996 end-page: 275 article-title: Effects of damage to living plants on leaf litter quality publication-title: Ecological Applications – volume: 96 start-page: 13577 year: 1999 end-page: 13582 article-title: Ozone inhibits guard cell K+ channels implicated in stomatal opening publication-title: Proceedings of the National Academy of Sciences, USA – volume: 73 start-page: 185 year: 1983 end-page: 187 article-title: Ozone‐induced reduction in quantity of ribulose‐1,5‐bisphosphate carboxylase in alfalfa foliage publication-title: Plant Physiology – volume: 51 start-page: 919 year: 2000 end-page: 927 article-title: Ozone impacts on allometry and root hydraulic conductance are not mediated by source limitation nor developmental age publication-title: Journal of Experimental Botany – volume: 73 start-page: 630 year: 1983 end-page: 635 article-title: Effects of SO and O on allocation of 14C labeled photosynthate in publication-title: Plant Physiology – volume: 144 start-page: 159 year: 2001 end-page: 173 article-title: Current and future effects of ozone and atmospheric nitrogen deposition on California's mixed conifer forests publication-title: Forest Ecology and Management – volume: 17 start-page: 377 year: 1997 end-page: 387 article-title: Nutrient availability alters belowground respiration of ozone‐exposed ponderosa pine publication-title: Tree Physiology – volume: 36 start-page: 25 year: 1990 end-page: 42 article-title: Induction of defenses in trees publication-title: Annual Review of Entomology – volume: 147 start-page: 43 year: 2000 end-page: 53 article-title: The control of carbon acquisition by roots publication-title: New Phytologist – volume: 128 start-page: 679 year: 1994 end-page: 687 article-title: Interactions between exposure to O and nutrient status of trees: effects on nutrient content and uptake, growth, mycorrhiza and needle ultrastructure publication-title: New Phytologist – volume: 111 start-page: 305 year: 2001 end-page: 312 article-title: Elevated CO and ozone reduce nitrogen acquisition by from its mycorrhizal symbiont publication-title: Physiologia Plantarum – volume: 66 start-page: 1510 year: 1988 end-page: 1516 article-title: Effects of ozone and acid rain on white pine ( ) seedlings grown in five soils. II. Mycorrhizal infection publication-title: Canadian Journal of Botany – volume: 17 start-page: 805 year: 1997 end-page: 811 article-title: Carry‐over effects of ozone on root growth and carbohydrate concentrations of ponderosa pine seedlings publication-title: Tree Physiology – volume: 122 start-page: 81 year: 1992 end-page: 90 article-title: Effects of long‐term ozone exposure and drought on the photosynthetic capacity of ponderosa pine (Pinus ponderosa Laws.) publication-title: New Phytologist – volume: 10 start-page: 185 year: 1998 end-page: 190 article-title: Functional aspects of animal diversity in soil – Introduction and overview publication-title: Applied Soil Ecology – volume: 34 start-page: 325 year: 1996 end-page: 346 article-title: Root system regulation of whole plant growth publication-title: Annual Review of Phytopathology – volume: 76 start-page: 71 year: 1992 end-page: 77 article-title: Ectomycorrhizal colonization of loblolly pine seedlings during three growing seasons in response to ozone, acidic precipitation, and soil Mg status publication-title: Environmental Pollution – volume: 20 start-page: 169 year: 1991 end-page: 173 article-title: Concentration‐dependent effects of ozone on translocation of assimilates in Douglas fir publication-title: Journal of Environmental Quality – volume: 48 start-page: 247 year: 1993 end-page: 260 article-title: Soil invertebrate/micro– invertebrate interactions: disproportionate effects of species on food web structure and function publication-title: Veterinary Parasitology – volume: 136 start-page: 627 year: 1997 end-page: 643 article-title: Seasonal changes in root and soil respiration of ozone‐exposed ponderosa pine ( ) grown in different substrates publication-title: New Phytologist – volume: 16 start-page: 145 year: 1996 end-page: 152 article-title: Root growth and physiology of potted and field‐grown trembling aspen exposed to tropospheric ozone publication-title: Tree Physiology – volume: 147 start-page: 201 year: 2000 end-page: 222 article-title: Elevated atmospheric CO , fine roots and the response of soil microorganisms: a review and hypothesis publication-title: New Phytologist – volume: 107 start-page: 465 year: 2000 end-page: 472 article-title: The effect of ozone on below‐ground carbon allocation in what publication-title: Environmental Pollution – volume: 2 start-page: 259 year: 1973 end-page: 264 article-title: Removal of ozone by soil publication-title: Journal of Environmental Quality – start-page: 261 year: 1989 end-page: 278 – volume: 21 start-page: 1288 year: 1991 end-page: 1291 article-title: Ozone decreases spring root growth and root carbohydrate content in ponderosa pine the year following exposure publication-title: Canadian Journal of Forest Research – volume: 72 start-page: 113 year: 1991 article-title: Ozone stress and mite damage to cottonwood plants alter subsequent litter decomposition: The afterlife effect publication-title: (Suppl )Bulletin of the Ecological Society of America – start-page: 309 year: 1989 end-page: 323 – start-page: 239 year: 1994 end-page: 253 – volume: 51 start-page: 131 year: 1988 end-page: 152 article-title: Influence of ozone and simulated acidic rain on microorganisms in the rhizosphere of publication-title: Environmental Pollution – start-page: 53 year: 2001 end-page: 62 – volume: 36 start-page: 171 year: 1981 end-page: 176 article-title: Elevated ozone levels in ambient air in and around Copenhagen indicated by means of tobacco indicator plants publication-title: Oikos – volume: 131 start-page: 236 year: 2002 end-page: 244 article-title: Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone publication-title: Oecologia – volume: 85 start-page: 1455 year: 1995 end-page: 1460 article-title: Ozone sensitivity of in relation to cultivar differences, growth stage and growing conditions publication-title: Water, Air and Soil Pollution – volume: 18 start-page: 291 year: 1995 end-page: 302 article-title: Effect of open‐air fumigation with sulphur dioxide and ozone on phyllosphere and endophytic fungi of conifer needles publication-title: Plant, Cell & Environment – volume: 83 start-page: 104 year: 2002 end-page: 115 article-title: Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska publication-title: Ecology – volume: 137 start-page: 389 year: 1997 end-page: 397 article-title: Effect of fertilization on ozone‐induced changes in the metabolism of birch ( ) leaves publication-title: New Phytologist – volume: 22 start-page: 234 year: 1976 end-page: 241 article-title: The effect of chronic ozone exposures on the metabolite content of ponderosa pine seedlings publication-title: Forest Science – volume: 19 start-page: 71 year: 1998 end-page: 78 article-title: Predisposition of trees to drought stress by ozone publication-title: Tree Physiology – volume: 27 start-page: 953 year: 1998 end-page: 960 article-title: Decomposition of blackberry and broomsedge bluestem as influenced by ozone publication-title: Journal of Enviornmental Quality – volume: 5 start-page: 5 year: 1991 article-title: Impairment of gas exchange and structure in birch leaves ( ) caused by two ozone concentrations publication-title: Trees – volume: 85 start-page: 561 year: 1997 end-page: 573 article-title: Incorporating the soil community into plant population dynamics: the utility of the feedback approach publication-title: Journal of Ecology – volume: 6 start-page: 345 year: 2000 end-page: 355 article-title: Influence of elevated ozone and limited nitrogen availability on conifer seedlings in an open‐air fumigation system: effects on growth, nutrient content, mycorrhiza, needle ultrastructure, starch and secondary compounds publication-title: Global Change Biology – volume: 82 start-page: 150 year: 1995 end-page: 158 article-title: Stand characteristics of ozone‐stressed populations of (Pinaceae): extent, development, and physiological consequences of visible injury publication-title: American Journal of Botany – start-page: 255 year: 1988 end-page: 271 – volume: 88 start-page: 559 year: 1988 end-page: 563 article-title: Temporary disturbance of translocation of assimilates in Douglas firs caused by low levels of ozone and sulfur dioxide publication-title: Plant Physiology – volume: 82 start-page: 211 year: 1996 end-page: 230 article-title: Evidence for nitrogen saturation in the San Bernardino Mountains in Southern California publication-title: Forest Ecology and Management – volume: 34 start-page: 245 year: 1950 end-page: 252 article-title: Injury to herbaceous plants by smog or air pollution publication-title: Plant Disease Reporter – volume: 108 start-page: 489 year: 1988 end-page: 494 article-title: Increases in *13C values of radish and soybean plants caused by ozone publication-title: New Phytologist – volume: 6 start-page: 69 year: 1992 end-page: 76 article-title: Seasonal growth, del 13C in leaves and stem, and phloem structure of birch ( ) under low ozone concentrations publication-title: Trees – volume: 233 start-page: 203 year: 2001 end-page: 211 article-title: Differences in above‐ and below‐ground responses to ozone between two populations of a perennial grass publication-title: Plant and Soil – volume: 81 start-page: 207 year: 1993 end-page: 221 article-title: Whole‐plant growth and leaf formation in ozonated hybrid poplar ( × ) publication-title: Environmental Pollution – year: 1982 – volume: 105 start-page: 106 year: 1994 article-title: Effects of ozone on needle growth, production and senescence in Ponderosa pine publication-title: Plant Physiology Suppl – start-page: 6 year: 1978 end-page: 19 – volume: 14 start-page: 647 year: 1994 end-page: 657 article-title: Effects of short‐term ozone exposure and soil water availability on the carbon economy of juvenile Douglas‐fir publication-title: Tree Physiology – volume: 25 start-page: 659 year: 1988 end-page: 681 article-title: Effects of ozone on the regrowth and energy reserves of a ladino clover‐tall fescue pasture publication-title: Journal of Applied Ecology – volume: 129 start-page: 208 year: 1959 end-page: 210 article-title: Ozone in high concentrations as cause of tobacco leaf injury publication-title: Science – volume: 47 start-page: 1701 year: 1969 end-page: 1712 article-title: Foliar nutrition and wood growth in red pine: the distribution of radiocarbon photoassimilated by individual branches of young trees publication-title: Canadian Journal of Botany – start-page: 339 year: 1994 end-page: 353 – volume: 107 start-page: 839 year: 1982 end-page: 842 article-title: Effect of ozone injury and light stress on response of tomato to infection by the vesicular–arbuscular mycorrhizal fungus, publication-title: Journal of the American Society of Horticultural Science – volume: 28 start-page: 305 year: 1964 end-page: 308 article-title: Physiological changes in and ozone susceptibility of the tomato plant after short periods of inadequate oxygen diffusion to the roots publication-title: Soil Science Society of America Proceedings – volume: 36 start-page: 652 year: 1985 end-page: 662 article-title: Effects of NO and O alone or in combination on kidney bean plants ( L.): growth, partitioning of assimilates and root activities publication-title: Journal of Experimental Botany – volume: 63 start-page: 2049 year: 1985 end-page: 2055 article-title: Effects of O , SO and acidic rain on mycorrhizal infection in northern red oak seedlings publication-title: Canadian Journal of Botany – volume: 38 start-page: 107 year: 1992 end-page: 118 article-title: Growth and physiological characteristics of soybean in open‐top chambers in response to ozone and increased atmospheric CO publication-title: Agriculture Ecosystems Environment – volume: 83 start-page: 1 year: 1970 end-page: 24 article-title: Mycorrhiza and tree nutrition in poor forest soils publication-title: Studia Forestalia Succica – volume: 104 start-page: 151 year: 1979 end-page: 154 article-title: Effects of ozone and HCI gas on the development of the mycorrhizal fungus, and growth of ‘Troyer’ citrange publication-title: Journal of the American Society of Hort Science – volume: 22 start-page: 567 year: 1999 end-page: 582 article-title: The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO publication-title: Plant, Cell & Environment – volume: 11 start-page: 737 year: 1977 end-page: 739 article-title: A study of the potential ways in which ozone could reduce root growth and nodulation of soybean publication-title: Atmospheric Environment – volume: 11 start-page: 167 year: 1998 end-page: 176 article-title: Carbon allocation in ectomycorrhiza: identification and expression analysis of an monosaccharide transporter publication-title: Molecular Plant Microbe–Internations – year: 1997. – volume: 8 start-page: 289 year: 1991 end-page: 295 article-title: New root growth of Douglas‐fir seedlings at low carbon dioxide concentration publication-title: Tree Physiology – volume: 50 start-page: 1253 year: 1999 end-page: 1262 article-title: Acute exposure to ozone inhibits rapid carbon translocation from source leaves of Pima cotton publication-title: Journal of Experimental Botany – volume: 8 start-page: 163 year: 1975 end-page: 170 article-title: Atmospheric ozone and plant damage in the United Kingdom publication-title: Environmental Pollution – volume: 68 start-page: 383 year: 1990 end-page: 407 article-title: Fine root studies in situ and in the laboratory publication-title: Environmental Pollution – volume: 152 start-page: 455 year: 2001 end-page: 461 article-title: 14C‐allocation of flowering and deblossomed strawberry in response to elevated ozone publication-title: New Phytologist – volume: 48 start-page: 307 year: 1997 end-page: 313 article-title: Elevated CO reduced O‐ flux and O‐ ‐induced yield losses in soybeans: Possible implications for elevated CO studies publication-title: Journal of Experimental Botany – start-page: 126 year: 1999 end-page: 163 – volume: 47 start-page: 95 year: 1987 end-page: 113 article-title: The impact of ozone on assimilate partitioning in plants: a review publication-title: Environmental Pollution – volume: 10 start-page: 217 year: 1998 end-page: 228 article-title: Biodiversity in soil ecosystems: the role of energy flow and community stability publication-title: Applied Soil Ecology – volume: 26 start-page: 23 year: 1996. end-page: 37 article-title: Changes in growth, leaf abscission, and biomass associated with seasonal tropospheric ozone exposures of Populus tremuloides clones and seedlings publication-title: Canadian Journal of Forest Research – volume: 170 start-page: 149 year: 1995 end-page: 157 article-title: Decomposition and nitrogen release from leaves of three hardwood species grown under elevated O and/or CO publication-title: Plant and Soil – volume: 15 start-page: 791 year: 1985 end-page: 800 article-title: Predicting fine root production and turnover by monitoring root starch and soil temperature publication-title: Canadian Journal of Forest Research – volume: 55 start-page: 1631 year: 1977 end-page: 1640 article-title: Effects of habitat and substrate quality on Douglas fir litter decomposition in western Oregon publication-title: Canadian Journal of Botany – volume: 12 start-page: 11 year: 1997 end-page: 20 article-title: Nutrition and the ozone sensitivity of birch ( ). II. Carbon balance, water‐use efficiency and nutritional status of the whole plant publication-title: Trees – volume: 11 start-page: 215 year: 1992 end-page: 227 article-title: Mild ozone exposure alters 14C dynamics in foliage of L publication-title: Tree Physiology – volume: 68 start-page: 548 year: 1981 end-page: 552 article-title: Membrane‐mediated decrease in root exudation responsible for phosphorus inhibition of vesicular–arbuscular mycorrhiza formation publication-title: Plant Physiology – volume: 2 start-page: 410 year: 1999 end-page: 418 article-title: Sugars as signaling molecules publication-title: Current Opinion in Plant Biology – year: 1960. – volume: 75 start-page: 679 year: 1985 end-page: 682 article-title: Influence of mycorrhizae on the growth of loblolly pine seedlings exposed to zone and sulfur dioxide publication-title: Phytopathology – volume: 64 start-page: 11 year: 1990 end-page: 27 article-title: Growth, ectomycorrhizae and nonstructural carbohydrates of loblolly pine seedlings exposed to ozone and soil water deficit publication-title: Environmental Pollution – volume: 29 start-page: 281 year: 1999 end-page: 294 article-title: Simultaneous analyses of chromosomes in root meristems and of the biochemical status of needle tissues of three different clones of Norway spruce trees challenged with moderate ozone levels publication-title: European Journal of Forest Pathology – volume: 6 start-page: 255 year: 2000 end-page: 265 article-title: Interactions of tropospheric CO and O enrichments and moisture variations on microbial biomass and respiration in soil publication-title: Global Change Biology – volume: 5 start-page: 771 year: 1999 end-page: 780 article-title: The influence of elevated CO and O on fine roots and mycorrhizas of naturally growing young Scots pine trees during three exposure years publication-title: Global Change Biology – volume: 64 start-page: 93 year: 1990 end-page: 106 article-title: Ozone alters carbon allocation in loblolly pine: Assessment with carbon‐11 labeling publication-title: Environmental Pollution – volume: 53 start-page: 203 year: 2002 end-page: 224 article-title: Local and long‐range signaling pathways regulating plant responses to nitrate publication-title: Annual Review Plant Biology – volume: 144 start-page: 95 year: 1999 end-page: 107 article-title: Interactions of chronic exposure to elevated CO and O levels in the photsynthetic light and dark reactions of European beech ( ) publication-title: New Phytologist – volume: 33 start-page: 801 year: 1987 end-page: 808 article-title: Ozone uptake and effects on transpiration, net photosynthesis, and dark respiration in Scots pine publication-title: Forest Science – volume: 32 start-page: 373 year: 1980 end-page: 390 article-title: Decomposition rate and chemical changes of Scots pine needle slitter. II. Influence of chemical composition publication-title: Ecological Bulletin – volume: 151 start-page: 543 year: 2001 end-page: 550 article-title: Do nutrient additions alter carbon sink strength of ectomycorrhizal fungi? publication-title: New Phytologist – volume: 37 start-page: 373 year: 1864 end-page: 376 article-title: On the influence of ozone and some other chemical agents on germination and vegetation publication-title: American Journal of Science Arts – volume: 33 start-page: 423 year: 1993 end-page: 431 article-title: Effects of ozone and simulated acidic precipitation on ectomycorrhizal formation on loblolly pine seedlings publication-title: Environmental and Experimental Botany – volume: 13 start-page: 189 year: 1998 end-page: 196 article-title: Growth responses of seedlings of six Ehrh. Provenances to six ozone exposure regimes publication-title: Scandinavian Journal of Forest Research – volume: 66 start-page: 724 year: 1988 end-page: 726 article-title: Low levels of ozone increase bean leaf maintenance respiration publication-title: Canadian Journal of Botany – volume: 128 start-page: 323 year: 1994 end-page: 330 article-title: Influence of different nutrient regimes on the regulation of carbon metabolism in Norway spruce ( [L.] Karst.) Seedlings publication-title: New Phytologist – volume: 296 start-page: 1120 year: 2002 end-page: 1123 article-title: Stability in real food webs: weak links in long loops publication-title: Science – volume: 21 start-page: 319 year: 2001 end-page: 327 article-title: Blue‐wild‐rye grass competition increases the effect of ozone on ponderosa pine seedlings publication-title: Tree Physiology – volume: 34 start-page: 347 year: 1996 end-page: 366 article-title: Ozone and plant health publication-title: Annual Review of Phytopathology – volume: 36 start-page: 709 year: 1998 end-page: 714 article-title: Stress‐physiological investigations and chromosomal analyses on cloned Norway spruce trees exposed to various levels of ozone in open‐top chambers publication-title: Chemosphere – volume: 131 start-page: 471 year: 1995 end-page: 480 article-title: Allocation of carbon in mycorrhizal Pinus ponderosa seedlings exposed to ozone publication-title: New Phytologist – volume: 368 start-page: 734 year: 1994 end-page: 737 article-title: Declining biodiversity can alter the performance of ecosystems publication-title: Nature – volume: 1 start-page: 305 year: 1971 end-page: 312 article-title: Influence of foliar ozone injury on root development and root surface fungi of pinto bean plants publication-title: Environmental Pollution – volume: 75 start-page: 2333 year: 1994 end-page: 2347 article-title: Plant production and soil microorganisms in late‐ successional ecosystems: a continental‐scale study publication-title: Ecology – start-page: 94 year: 1988 end-page: 115 – ident: e_1_2_9_150_1 doi: 10.1046/j.1469-8137.1997.00779.x – ident: e_1_2_9_74_1 doi: 10.1007/978-94-011-1294-9_18 – ident: e_1_2_9_120_1 doi: 10.1094/MPMI.1998.11.3.167 – ident: e_1_2_9_125_1 doi: 10.1104/pp.73.1.185 – ident: e_1_2_9_135_1 doi: 10.1111/j.1469-8137.1978.tb01627.x – ident: e_1_2_9_157_1 doi: 10.1016/0269-7491(90)90107-N – ident: e_1_2_9_117_1 doi: 10.1016/0167-8809(92)90172-8 – ident: e_1_2_9_134_1 doi: 10.1111/j.1469-8137.1994.tb04032.x – ident: e_1_2_9_178_1 doi: 10.1046/j.1365-3040.2002.00859.x – ident: e_1_2_9_29_1 doi: 10.1016/S0981-9428(01)01291-8 – ident: e_1_2_9_44_1 doi: 10.1139/b77-190 – volume: 12 start-page: 11 year: 1997 ident: e_1_2_9_98_1 article-title: Nutrition and the ozone sensitivity of birch (Betula pendula). II. Carbon balance, water‐use efficiency and nutritional status of the whole plant publication-title: Trees – ident: e_1_2_9_22_1 doi: 10.1007/BF02183063 – volume: 13 start-page: 33 year: 1979 ident: e_1_2_9_13_1 article-title: Stomatal responses of white bean to O3 and SO2 singly or in combination publication-title: Atmospheric Environment – ident: e_1_2_9_63_1 doi: 10.1007/978-3-642-70118-4 – ident: e_1_2_9_92_1 doi: 10.1016/0013-9327(71)90023-1 – ident: e_1_2_9_162_1 doi: 10.1016/0098-8472(92)90035-Z – ident: e_1_2_9_75_1 doi: 10.1046/j.1365-2486.2000.00310.x – ident: e_1_2_9_95_1 doi: 10.1016/0269-7491(93)90203-Z – ident: e_1_2_9_69_1 doi: 10.1016/S0176-1617(96)80250-1 – ident: e_1_2_9_57_1 doi: 10.1111/j.1469-8137.1994.tb03977.x – volume: 34 start-page: 245 year: 1950 ident: e_1_2_9_108_1 article-title: Injury to herbaceous plants by smog or air pollution publication-title: Plant Disease Reporter – ident: e_1_2_9_173_1 doi: 10.1046/j.1469-8137.1998.00100.x – ident: e_1_2_9_172_1 doi: 10.1007/BF00477186 – ident: e_1_2_9_51_1 doi: 10.1104/pp.88.3.559 – ident: e_1_2_9_64_1 doi: 10.1007/978-94-015-9803-3_4 – ident: e_1_2_9_151_1 doi: 10.1016/S0378-1127(98)00290-4 – ident: e_1_2_9_152_1 doi: 10.1016/0269-7491(88)90202-3 – ident: e_1_2_9_43_1 doi: 10.1093/jxb/48.2.307 – ident: e_1_2_9_111_1 doi: 10.1007/BF02407207 – ident: e_1_2_9_116_1 doi: 10.1080/02827589809382976 – ident: e_1_2_9_77_1 doi: 10.1046/j.1365-2486.1999.00274.x – volume: 64 start-page: 329 year: 1990 ident: e_1_2_9_15_1 article-title: Regression analysis to describe yield and metabolic responses of beans (Phaseolus vulgaris) to chronic ozone stress publication-title: Angewandte Botanik – ident: e_1_2_9_107_1 doi: 10.1104/pp.82.1.336 – ident: e_1_2_9_67_1 doi: 10.1890/06-0822.1 – ident: e_1_2_9_142_1 doi: 10.2134/agronj1958.00021962005000090019x – volume: 38 start-page: 102 year: 1992 ident: e_1_2_9_159_1 article-title: Ozone impacts on seasonal foliage dynamics of young loblolly pine publication-title: Forest Science doi: 10.1093/forestscience/38.1.102 – volume: 83 start-page: 1 year: 1970 ident: e_1_2_9_20_1 article-title: Mycorrhiza and tree nutrition in poor forest soils publication-title: Studia Forestalia Succica – ident: e_1_2_9_91_1 doi: 10.1093/treephys/19.2.71 – volume: 33 start-page: 801 year: 1987 ident: e_1_2_9_155_1 article-title: Ozone uptake and effects on transpiration, net photosynthesis, and dark respiration in Scots pine publication-title: Forest Science doi: 10.1093/forestscience/33.3.801 – ident: e_1_2_9_21_1 doi: 10.1016/0004-6981(77)90182-2 – ident: e_1_2_9_96_1 doi: 10.1007/BF00226583 – ident: e_1_2_9_70_1 doi: 10.1016/0098-8472(84)90062-5 – start-page: 261 volume-title: Effects of air pollution on western forests (an A&WMA Symposium; June; Anaheim CA) year: 1989 ident: e_1_2_9_33_1 – ident: e_1_2_9_85_1 doi: 10.1046/j.1469-8137.1997.00843.x – ident: e_1_2_9_62_1 doi: 10.1093/treephys/21.2-3.173 – ident: e_1_2_9_129_1 doi: 10.1038/268329a0 – ident: e_1_2_9_133_1 doi: 10.1139/b69-247 – ident: e_1_2_9_80_1 doi: 10.2134/jeq1998.00472425002700040032x – ident: e_1_2_9_149_1 doi: 10.1146/annurev.phyto.34.1.347 – ident: e_1_2_9_41_1 doi: 10.2307/2269570 – ident: e_1_2_9_78_1 doi: 10.1007/BF00376884 – start-page: 195 volume-title: Immissionsökologische Forschung Im Wandel der Zeit year: 1994 ident: e_1_2_9_165_1 – ident: e_1_2_9_35_1 doi: 10.1016/0269-7491(92)90118-T – ident: e_1_2_9_171_1 doi: 10.1093/treephys/21.16.1205 – ident: e_1_2_9_61_1 doi: 10.1016/S0269-7491(98)00130-4 – volume: 37 start-page: 5 year: 1991 ident: e_1_2_9_2_1 article-title: Effects of ozone and acidic deposition on carbon allocation and mycorrhizal colonization of Pinus Taeda L publication-title: Seedlings Forest Science doi: 10.1093/forestscience/37.1.5 – ident: e_1_2_9_53_1 doi: 10.1046/j.1469-8137.1999.00486.x – ident: e_1_2_9_25_1 doi: 10.1093/treephys/16.1-2.145 – ident: e_1_2_9_112_1 – ident: e_1_2_9_54_1 doi: 10.1093/jxb/50.336.1253 – start-page: 115 volume-title: Proceedings of the Kuopio meeting on plant damages caused by air pollution year: 1976 ident: e_1_2_9_131_1 – ident: e_1_2_9_132_1 doi: 10.1016/0098-8472(93)90045-H – ident: e_1_2_9_102_1 doi: 10.1016/S0269-7491(99)00122-0 – volume: 27 start-page: 859 year: 2000 ident: e_1_2_9_55_1 article-title: Ozone inhibits phloem loading from a transport pool: compartmental efflux analysis in Pima cotton publication-title: Australian Journal of Plant Physiology – volume: 10 start-page: 185 year: 1998 ident: e_1_2_9_180_1 article-title: Functional aspects of animal diversity in soil – Introduction and overview publication-title: Applied Soil Ecology – ident: e_1_2_9_106_1 doi: 10.1016/0269-7491(90)90092-Q – ident: e_1_2_9_82_1 doi: 10.1146/annurev.arplant.47.1.509 – ident: e_1_2_9_103_1 doi: 10.1104/pp.73.3.630 – ident: e_1_2_9_144_1 doi: 10.2307/3544442 – ident: e_1_2_9_72_1 doi: 10.1046/j.1365-2486.2000.00307.x – ident: e_1_2_9_88_1 doi: 10.1104/pp.010497 – ident: e_1_2_9_66_1 doi: 10.1126/science.129.3343.208 – ident: e_1_2_9_71_1 doi: 10.1016/0004-6981(81)90178-5 – ident: e_1_2_9_9_1 doi: 10.1016/0269-7491(91)90051-W – ident: e_1_2_9_181_1 doi: 10.1016/S0045-6535(97)10112-6 – ident: e_1_2_9_105_1 doi: 10.2307/1936576 – ident: e_1_2_9_122_1 doi: 10.1046/j.1365-3040.2001.00678.x – ident: e_1_2_9_148_1 doi: 10.1023/A:1010351406931 – ident: e_1_2_9_109_1 doi: 10.1104/pp.120.4.1015 – ident: e_1_2_9_83_1 doi: 10.1016/B978-012424162-6/50017-X – volume: 10 start-page: 218 year: 1980 ident: e_1_2_9_143_1 article-title: Root growth potential: its development and expression in forest tree seedlings publication-title: New Zealand Journal of Forest Science – ident: e_1_2_9_97_1 doi: 10.1023/A:1005267214560 – ident: e_1_2_9_36_1 doi: 10.1007/BF00388079 – ident: e_1_2_9_52_1 doi: 10.1104/pp.68.3.548 – ident: e_1_2_9_114_1 doi: 10.1046/j.1365-3040.1999.00432.x – ident: e_1_2_9_168_1 doi: 10.1073/pnas.96.23.13577 – volume: 104 start-page: 151 year: 1979 ident: e_1_2_9_100_1 article-title: Effects of ozone and HCI gas on the development of the mycorrhizal fungus, Glomus fasciculatus and growth of ‘Troyer’ citrange publication-title: Journal of the American Society of Hort Science doi: 10.21273/JASHS.104.2.151 – ident: e_1_2_9_42_1 doi: 10.1007/BF00323541 – ident: e_1_2_9_49_1 doi: 10.1093/treephys/14.6.647 – ident: e_1_2_9_81_1 doi: 10.1007/s004420100656 – ident: e_1_2_9_141_1 doi: 10.1016/S0176-1617(96)80256-2 – ident: e_1_2_9_147_1 doi: 10.1038/369058a0 – ident: e_1_2_9_39_1 doi: 10.1016/0378-1127(95)03668-7 – start-page: 255 volume-title: Air pollution and plant metabolism year: 1988 ident: e_1_2_9_177_1 – ident: e_1_2_9_37_1 doi: 10.1890/1051-0761(2000)010[0484:SIAMCA]2.0.CO;2 – ident: e_1_2_9_76_1 doi: 10.1139/x26-003 – ident: e_1_2_9_68_1 doi: 10.1086/417659 – ident: e_1_2_9_7_1 doi: 10.1093/treephys/21.5.319 – ident: e_1_2_9_73_1 doi: 10.1093/jxb/36.4.652 – ident: e_1_2_9_94_1 doi: 10.1007/BF00225329 – ident: e_1_2_9_84_1 doi: 10.1034/j.1399-3054.2001.1110307.x – ident: e_1_2_9_26_1 doi: 10.1016/0269-7491(87)90040-6 – ident: e_1_2_9_60_1 doi: 10.1007/978-1-4612-1436-6_7 – ident: e_1_2_9_87_1 doi: 10.1890/0012-9658(2002)083[0104:BEFCCO]2.0.CO;2 – ident: e_1_2_9_46_1 doi: 10.1093/treephys/11.3.215 – ident: e_1_2_9_164_1 doi: 10.2134/jeq1973.00472425000200030006x – ident: e_1_2_9_140_1 doi: 10.1007/BF02182683 – volume-title: Air quality criteria for ozone and related photochemical oxidants, II. year: 1996 ident: e_1_2_9_170_1 – ident: e_1_2_9_56_1 doi: 10.1093/jexbot/51.346.919 – ident: e_1_2_9_126_1 doi: 10.1111/j.1399-3054.1997.tb04782.x – start-page: 6 volume-title: Proceedings of the IUFRO symposium on root physiology and symbiosis Nancy, France year: 1978 ident: e_1_2_9_30_1 – ident: e_1_2_9_79_1 doi: 10.1016/0378-1127(95)03603-2 – ident: e_1_2_9_17_1 doi: 10.2307/2960528 – ident: e_1_2_9_138_1 doi: 10.1201/9780203909423.ch12 – ident: e_1_2_9_115_1 doi: 10.1016/0304-4017(93)90160-O – ident: e_1_2_9_182_1 doi: 10.1046/j.1439-0329.1999.00156.x – ident: e_1_2_9_10_1 doi: 10.1111/j.1469-8137.1995.tb03084.x – ident: e_1_2_9_24_1 doi: 10.1093/jexbot/52.362.1901 – ident: e_1_2_9_90_1 doi: 10.1094/Phyto-75-679 – ident: e_1_2_9_166_1 doi: 10.1023/A:1015802823398 – ident: e_1_2_9_6_1 doi: 10.1139/b88-105 – volume: 32 start-page: 373 year: 1980 ident: e_1_2_9_16_1 article-title: Decomposition rate and chemical changes of Scots pine needle slitter. II. Influence of chemical composition publication-title: Ecological Bulletin – ident: e_1_2_9_113_1 doi: 10.1890/0012-9658(1998)079[1595:MODWPC]2.0.CO;2 – ident: e_1_2_9_124_1 doi: 10.1007/978-94-011-1294-9_13 – ident: e_1_2_9_127_1 doi: 10.1007/s00442-002-0868-x – ident: e_1_2_9_139_1 doi: 10.1139/b85-287 – ident: e_1_2_9_128_1 doi: 10.1007/978-94-009-5925-5 – ident: e_1_2_9_136_1 doi: 10.2307/2403853 – ident: e_1_2_9_65_1 doi: 10.1146/annurev.en.36.010191.000325 – start-page: 94 volume-title: Air Pollution and Plant Metabolism year: 1988 ident: e_1_2_9_4_1 – ident: e_1_2_9_45_1 doi: 10.1146/annurev.arplant.53.100301.135256 – ident: e_1_2_9_153_1 doi: 10.1016/S1369-5266(99)00014-X – ident: e_1_2_9_34_1 doi: 10.1111/j.1469-8137.1991.tb00983.x – ident: e_1_2_9_58_1 doi: 10.1111/j.1469-8137.1988.tb04191.x – ident: e_1_2_9_19_1 doi: 10.1046/j.1469-8137.2001.00180.x – ident: e_1_2_9_175_1 doi: 10.1046/j.1469-8137.1998.00277.x – ident: e_1_2_9_32_1 doi: 10.1046/j.0028-646X.2001.00270.x – ident: e_1_2_9_118_1 doi: 10.1038/368734a0 – ident: e_1_2_9_163_1 doi: 10.1007/978-1-4612-3060-1_12 – ident: e_1_2_9_14_1 doi: 10.1016/0013-9327(75)90099-3 – ident: e_1_2_9_185_1 doi: 10.2307/1940888 – ident: e_1_2_9_154_1 doi: 10.1007/BF00228785 – ident: e_1_2_9_169_1 doi: 10.2134/jeq1973.00472425000200020019x – ident: e_1_2_9_8_1 doi: 10.1139/x91-179 – ident: e_1_2_9_183_1 doi: 10.1023/A:1010321509628 – ident: e_1_2_9_137_1 doi: 10.1016/0038-0717(91)90022-C – ident: e_1_2_9_161_1 doi: 10.1016/S0378-1127(00)00368-6 – ident: e_1_2_9_179_1 doi: 10.1016/0269-7491(90)90040-J – ident: e_1_2_9_18_1 doi: 10.1111/j.1469-8137.1992.tb00055.x – ident: e_1_2_9_86_1 doi: 10.2475/ajs.s2-37.111.373 – ident: e_1_2_9_5_1 doi: 10.1111/j.1469-8137.1988.tb00268.x – volume: 107 start-page: 839 year: 1982 ident: e_1_2_9_101_1 article-title: Effect of ozone injury and light stress on response of tomato to infection by the vesicular–arbuscular mycorrhizal fungus, Glomus fasciculatus publication-title: Journal of the American Society of Horticultural Science doi: 10.21273/JASHS.107.5.839 – ident: e_1_2_9_119_1 doi: 10.1098/rstb.1995.0025 – ident: e_1_2_9_38_1 doi: 10.1046/j.1469-8137.2000.00688.x – ident: e_1_2_9_48_1 doi: 10.1111/j.1469-8137.1991.tb01027.x – volume: 105 start-page: 106 year: 1994 ident: e_1_2_9_130_1 article-title: Effects of ozone on needle growth, production and senescence in Ponderosa pine publication-title: Plant Physiology Suppl – ident: e_1_2_9_93_1 doi: 10.1139/x85-129 – ident: e_1_2_9_176_1 doi: 10.1111/j.1469-8137.1994.tb04016.x – ident: e_1_2_9_186_1 doi: 10.1046/j.1469-8137.2002.00446.x – ident: e_1_2_9_89_1 doi: 10.1111/j.1365-3040.1995.tb00364.x – ident: e_1_2_9_121_1 doi: 10.1126/science.1068326 – ident: e_1_2_9_50_1 doi: 10.2134/jeq1991.00472425002000010027x – ident: e_1_2_9_23_1 doi: 10.1016/S0038-0717(00)00151-6 – volume-title: Air pollution as it affects agriculture in New Jersey year: 1960 ident: e_1_2_9_27_1 – ident: e_1_2_9_158_1 doi: 10.2136/sssaj1964.03615995002800030006x – ident: e_1_2_9_3_1 doi: 10.1146/annurev.phyto.34.1.325 – volume: 72 start-page: 113 year: 1991 ident: e_1_2_9_40_1 article-title: Ozone stress and mite damage to cottonwood plants alter subsequent litter decomposition: The afterlife effect publication-title: (Suppl )Bulletin of the Ecological Society of America – volume-title: Mycorrhizal symbiosis year: 1997 ident: e_1_2_9_156_1 – ident: e_1_2_9_174_1 doi: 10.1093/treephys/13.2.157 – volume: 16 start-page: 14 year: 1970 ident: e_1_2_9_47_1 article-title: Redistribution of ‘C‐labeled reserve food in young red pines during shoot elongation publication-title: Forest Science – start-page: 309 volume-title: Effects of air pollution on western forests. year: 1989 ident: e_1_2_9_110_1 – ident: e_1_2_9_146_1 doi: 10.1016/S0929-1393(98)00121-8 – ident: e_1_2_9_11_1 doi: 10.1093/treephys/17.6.377 – ident: e_1_2_9_184_1 doi: 10.1046/j.1469-8137.2000.00687.x – ident: e_1_2_9_12_1 doi: 10.1093/treephys/17.12.805 – ident: e_1_2_9_123_1 doi: 10.1002/j.1537-2197.1995.tb11484.x – volume: 28 start-page: 60 year: 1982 ident: e_1_2_9_104_1 article-title: Effects of chronic air pollution stress on photosynthesis, carbon allocation, and growth of white pine trees publication-title: Forest Science – ident: e_1_2_9_31_1 doi: 10.1093/treephys/8.3.289 – ident: e_1_2_9_160_1 doi: 10.1139/b88-209 – ident: e_1_2_9_99_1 doi: 10.1111/j.1469-8137.1983.tb04497.x – ident: e_1_2_9_145_1 doi: 10.1023/A:1004929801839 – ident: e_1_2_9_28_1 doi: 10.1104/pp.91.1.427 – volume: 22 start-page: 234 year: 1976 ident: e_1_2_9_167_1 article-title: The effect of chronic ozone exposures on the metabolite content of ponderosa pine seedlings publication-title: Forest Science – ident: e_1_2_9_59_1 doi: 10.1111/j.1469-8137.1989.tb02359.x |
SSID | ssj0009562 |
Score | 2.3020422 |
SecondaryResourceType | review_article |
Snippet | The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still,... Contents Summary 213 I. Introduction 213 II. Source–sink model: carbohydrate signaling 214 III. Effect of ozone on above‐ground sources and sinks 216 IV.... |
SourceID | proquest pubmed pascalfrancis crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 213 |
SubjectTerms | Acid soils Animal, plant and microbial ecology Applied ecology biochemical pathways Biological and medical sciences carbohydrate signaling carbohydrates carbon carbon allocation Carbon dioxide dry matter partitioning ecosystems Ecotoxicology, biological effects of pollution environmental exposure Fundamental and applied biological sciences. Psychology growth and development Lead Leaves Non agrochemicals pollutants Ozone Phytopathology. Animal pests. Plant and forest protection Pine trees plant development plant growth Plant roots Plants Pollution effects and side effects of agrochemicals on crop plants and forest trees. Other anthropogenic factors Pollution effects. Side effects of agrochemicals rhizodeposition root systems roots Seedlings soil Soil ecology soil food webs soil processes source-sink relationships source–sink balance symbionts symbiosis Tansley Reviews Terrestrial environment, soil, air troposphere tropospheric ozone |
Title | Source-Sink Balance and Carbon Allocation below Ground in Plants Exposed to Ozone |
URI | https://www.jstor.org/stable/1514029 https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1469-8137.2003.00674.x https://www.ncbi.nlm.nih.gov/pubmed/33873636 https://www.proquest.com/docview/19191394 https://www.proquest.com/docview/2515688768 https://www.proquest.com/docview/2524267913 https://www.proquest.com/docview/49055624 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6higMXngXCoxiJa1ZN_IqPgKhWSFSIUmlvkR07EuoqWXV3RemJ_8A_5JcwYydbFrWoQtxWSuzszs7Y33i-fAPwShWFV1rZ3GgZcsG9zJ0MmKUEzk0VvAvxQP_DoZoei_czORv4T_QuTNKH2By4UWTE9ZoC3LrUhWQ_qtvGIKcjLK6jrCcxtLSYEJ4k6hbho0_lb_q7qhwFmZVQs4HUMxY4L5toa6dKZEViTtolGq9NXS8ug6XbKDduUwd34GT8gYmdcjJZr9ykOf9D-_H_WOAu3B7QLHud3O8e3Ajdfbj5pkfE-e0BHB3FysDP7z-WmPEyRyzKJjDbedbYU9d3jKr-6cyQuTDvvzJ6yQQvf-nYYk4MHRbOFv0yeLbqWX_ed2EXjg_efX47zYcmDnmjcOvLfWk8pmS8aqWTQlOhU7a6xeRVBeGcsV4IUXreNB7XXeMbw2XhSy6b1grlHH8IOx1O_xiYohoortDoQUYEi9Cz8iUuIm3BXfDKZaDHP6xuBoVzarQxr2OlXaiU6ZiaLEb9N3kdLVafZVBsRi6Sysc1xuxGn7gYgNhzvzQZ7G35yMX1WOPmOoMXo9PUGMtUoLFd6NfLGnNnUmkVGby84g5Eo1LhvqCqv91DsEvjTFc_SRgSUSrxSY-S126-JeeV5oqrDGT0vWvboz78OMUPT_5x3FO4FXmSkRD_DHZWp-vwHPHeyu3FSP4Fmy5E6A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hggQXnqVNgdZIXLOQ-BUfaUW1QLtCtJX2FsWxIyFWyaq7K9qe-A_8Q34JM06yZVGLKsQtUmInmczY3zzyDcArlSROaVXERksfC-5kbKVHL8VzbjLvrA8B_cORGp6ID2M57toB0b8wLT_EMuBGlhHWazJwCki_7tKSvZVTDIvrwOtJJVpaDBBQ3qYG38G_-pz-xsCr0p6SWQk17sp6-hTnVTOt7FVtuSLVThYzFF_V9r24Cpiu4tywUe0_gEn_im19ytfBYm4H5cUf7I__SQYP4X4HaNnbVgMfwS1fP4Y7uw2CzvMncHQUkgM_v_-YodPLLBVSlp4VtWNlcWqbmlHivw0bMusnzTdG_5ng6S81m06oSIf5s2kz847NG9ZcNLVfh5P9d8d7w7jr4xCXCne_2KXGoVfGs0paKTTlOmWlK_RflRfWmsIJIVLHy9Lh0mtcabhMXMplWRVCWcufwlqN028CU5QGxUUalcgIXyD6zFyK60iVcOudshHo_ovlZUdyTr02JnlItgvVOjsmJ4lRC06eB4nlZxEky5HTlujjBmPWg1JcDkD4-SY1EWyvKMnl-ZDm5jqCnV5rcjRnytEUtW8WsxzdZyJqFRG8vOYKBKRS4dagsr9dQ8hL40zX30kY4lFK8U4brdoun5LzTHPFVQQyKN-N5ZGPPg3xYOsfx-3A3eHx4UF-8H708RncC2WToT7-OazNTxf-BcK_ud0OZv0L3o5JAw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtQwEB2hghAvXAuES2skXrM08S1-BMpqua0qSqV9i-LYkVBXyaq7q16e-Af-kC9hxkm2LGpRhXiLlNhJJjP2GZ-TMcBLlSROaVXERksfC-5kbKXHLMVzbjLvrA8L-p_HanQgPkzkpNM_0b8wbX2I1YIbRUYYrynAZ6561bGSfZDTEhbXoawnKbS0GCCevC7UTkYevvsl_a0Ar0r7isxKqEmn6ukZzot6WpuqWrUiSSeLOVqvare9uAiXrsPcME8N78Bh_4atPOVwsFzYQXn2R_HH_2OCu3C7g7Psdet_9-Car-_DjTcNQs7TB7C_H6iBn99_zDHlZZZklKVnRe1YWRzZpmZE-7eLhsz6aXPM6C8TPP2tZrMpSXSYP5k1c-_YomHNWVP7TTgYvvv6dhR3uzjEpcK5L3apcZiT8aySVgpNTKesdIXZq_LCWlM4IUTqeFk6HHiNKw2XiUu5LKtCKGv5Q9iosfvHwBSRoDhEowsZ4QvEnplLcRSpEm69UzYC3X-wvOxKnNNOG9M8UO1CtamOyclitAEnz4PF8pMIklXLWVvm4wptNoNPnDdA8LmTmgi21nzk_HwgubmOYLt3mhyDmRiaovbNcp5j8kxlWkUELy65AuGoVDgxqOxv1xDu0tjT5XcShqoopXinR63Xrp6S80xzxVUEMvjele2Rj_dGePDkH9ttw8293WH-6f3441O4FTSTQRz_DDYWR0v_HLHfwm6FoP4F1pFHuw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Source-sink+balance+and+carbon+allocation+below+ground+in+plants+exposed+to+ozone&rft.jtitle=The+New+phytologist&rft.au=Andersen%2C+Christian+P&rft.date=2003-02-01&rft.issn=1469-8137&rft.eissn=1469-8137&rft.volume=157&rft.issue=2&rft.spage=213&rft_id=info:doi/10.1046%2Fj.1469-8137.2003.00674.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |