Source-Sink Balance and Carbon Allocation below Ground in Plants Exposed to Ozone

The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects of ozone are discussed...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 157; no. 2; pp. 213 - 228
Main Author Andersen, Christian P.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science 01.02.2003
Blackwell Science Ltd
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects of ozone are discussed using the flow of carbon from the atmosphere, through the plant to soils, and back to the atmosphere as a framework. A conceptual model based on carbohydrate signaling is used to illustrate physiological changes in response to ozone, and to discuss possible feedbacks that may occur. Despite past emphasis on above-ground effects, ozone has the potential to alter below-ground processes and hence ecosystem characteristics in ways that are not currently being considered.
AbstractList The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects of ozone are discussed using the flow of carbon from the atmosphere, through the plant to soils, and back to the atmosphere as a framework. A conceptual model based on carbohydrate signaling is used to illustrate physiological changes in response to ozone, and to discuss possible feedbacks that may occur. Despite past emphasis on aboveground effects, ozone has the potential to alter belowground processes and hence ecosystem characteristics in ways that are not currently being considered.
The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects of ozone are discussed using the flow of carbon from the atmosphere, through the plant to soils, and back to the atmosphere as a framework. A conceptual model based on carbohydrate signaling is used to illustrate physiological changes in response to ozone, and to discuss possible feedbacks that may occur. Despite past emphasis on above-ground effects, ozone has the potential to alter below-ground processes and hence ecosystem characteristics in ways that are not currently being considered.
Contents Summary 213 I. Introduction 213 II. Source–sink model: carbohydrate signaling 214 III. Effect of ozone on above‐ground sources and sinks 216 IV. Decreased allocation below ground 218 V. Carbon flux to soils 220 VI. Soil food web 223 VII. Summary, conclusions and future research 223 Acknowledgements 223 References 223 Summary The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects of ozone are discussed using the flow of carbon from the atmosphere, through the plant to soils, and back to the atmosphere as a framework. A conceptual model based on carbohydrate signaling is used to illustrate physiological changes in response to ozone, and to discuss possible feedbacks that may occur. Despite past emphasis on above‐ground effects, ozone has the potential to alter below‐ground processes and hence ecosystem characteristics in ways that are not currently being considered.
The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects of ozone are discussed using the flow of carbon from the atmosphere, through the plant to soils, and back to the atmosphere as a framework. A conceptual model based on carbohydrate signaling is used to illustrate physiological changes in response to ozone, and to discuss possible feedbacks that may occur. Despite past emphasis on above-ground effects, ozone has the potential to alter below-ground processes and hence ecosystem characteristics in ways that are not currently being considered. Contents Summary 213 I. Introduction 213 II. Source-sink model: carbohydrate signaling 214 III. Effect of ozone on above-ground sources and sinks 216 IV. Decreased allocation below ground 218 V. Carbon flux to soils 220 VI. Soil food web 223 VII. Summary, conclusions and future research 223 Acknowledgements 223 References 223.The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects of ozone are discussed using the flow of carbon from the atmosphere, through the plant to soils, and back to the atmosphere as a framework. A conceptual model based on carbohydrate signaling is used to illustrate physiological changes in response to ozone, and to discuss possible feedbacks that may occur. Despite past emphasis on above-ground effects, ozone has the potential to alter below-ground processes and hence ecosystem characteristics in ways that are not currently being considered. Contents Summary 213 I. Introduction 213 II. Source-sink model: carbohydrate signaling 214 III. Effect of ozone on above-ground sources and sinks 216 IV. Decreased allocation below ground 218 V. Carbon flux to soils 220 VI. Soil food web 223 VII. Summary, conclusions and future research 223 Acknowledgements 223 References 223.
The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects of ozone are discussed using the flow of carbon from the atmosphere, through the plant to soils, and back to the atmosphere as a framework. A conceptual model based on carbohydrate signaling is used to illustrate physiological changes in response to ozone, and to discuss possible feedbacks that may occur. Despite past emphasis on above‐ground effects, ozone has the potential to alter below‐ground processes and hence ecosystem characteristics in ways that are not currently being considered. Contents Summary 213 I. Introduction 213 II. Source–sink model: carbohydrate signaling 214 III. Effect of ozone on above‐ground sources and sinks 216 IV. Decreased allocation below ground 218 V. Carbon flux to soils 220 VI. Soil food web 223 VII. Summary, conclusions and future research 223 Acknowledgements 223 References 223
The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects of ozone are discussed using the flow of carbon from the atmosphere, through the plant to soils, and back to the atmosphere as a framework. A conceptual model based on carbohydrate signaling is used to illustrate physiological changes in response to ozone, and to discuss possible feedbacks that may occur. Despite past emphasis on above‐ground effects, ozone has the potential to alter below‐ground processes and hence ecosystem characteristics in ways that are not currently being considered. Contents Summary 213 I. Introduction 213 II. Source–sink model: carbohydrate signaling 214 III. Effect of ozone on above‐ground sources and sinks 216 IV. Decreased allocation below ground 218 V. Carbon flux to soils 220 VI. Soil food web 223 VII. Summary, conclusions and future research 223 Acknowledgements 223 References 223
The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects of ozone are discussed using the flow of carbon from the atmosphere, through the plant to soils, and back to the atmosphere as a framework. A conceptual model based on carbohydrate signaling is used to illustrate physiological changes in response to ozone, and to discuss possible feedbacks that may occur. Despite past emphasis on above-ground effects, ozone has the potential to alter below-ground processes and hence ecosystem characteristics in ways that are not currently being considered. Contents Summary 213 I. Introduction 213 II. Source-sink model: carbohydrate signaling 214 III. Effect of ozone on above-ground sources and sinks 216 IV. Decreased allocation below ground 218 V. Carbon flux to soils 220 VI. Soil food web 223 VII. Summary, conclusions and future research 223 Acknowledgements 223 References 223.
Author Andersen, Christian P.
Author_xml – sequence: 1
  givenname: Christian P.
  surname: Andersen
  fullname: Andersen, Christian P.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14529637$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/33873636$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhoNU7Lb6D0Ryo3gzY74_QIS61FYotlIF70ImycCss5NtMku3_noz3bUFL3TJRQ6c5z0fvOcIHAxxCABAjGqMmHi3qDETulKYypogRGuEhGT15gmYPSQOwAwhoirBxI9DcJTzAiGkuSDPwCGlSlJBxQx8vY7r5EJ13Q0_4Ufb28EFaAcP5zY1cYAnfR-dHbsSNqGPt_AsxXVJdwO8KvCY4elmFXPwcIzw8lcZ8zl42to-hxe7_xh8_3T6bX5eXVyefZ6fXFROEMUqT7THglHV8oYziYhUvJWtlkoE1jTaesYY8dQ5rzHW3mnKsSeUu9Yy0TT0GLzZ1l2leLMOeTTLLrvQl6lCXGfDNOJlW1bAt_8ECSeMCKkx3QPFXCglhfpve6zLo3pq_2oHrptl8GaVuqVNd-aPBwV4vQNsdrZvU_Ggyw8cZpxoQWXh1JZzKeacQvuIIDOdhVmYyX0zuW-mszD3Z2E2RfrhL6nrxntXx2S7fp8C77cFbrs-3O3d2Hy5Oi9Bkb_cyhd5jOlRzjFDRNPfVcTXFg
CODEN NEPHAV
CitedBy_id crossref_primary_10_1007_s11270_010_0448_3
crossref_primary_10_3390_horticulturae7110435
crossref_primary_10_4028_www_scientific_net_AMR_204_210_672
crossref_primary_10_1007_s40011_012_0032_2
crossref_primary_10_1016_j_atmosenv_2014_06_001
crossref_primary_10_1111_plb_12383
crossref_primary_10_1016_j_envpol_2018_07_059
crossref_primary_10_1016_j_agrformet_2024_110363
crossref_primary_10_1002_ps_7819
crossref_primary_10_1016_j_envexpbot_2008_11_009
crossref_primary_10_1016_j_envpol_2009_07_036
crossref_primary_10_1016_j_scitotenv_2022_160675
crossref_primary_10_1126_sciadv_abe9256
crossref_primary_10_1007_s10310_007_0040_x
crossref_primary_10_1007_s11104_016_3122_8
crossref_primary_10_1016_j_envpol_2019_113466
crossref_primary_10_1016_j_soilbio_2017_07_024
crossref_primary_10_1007_s11270_006_9167_1
crossref_primary_10_3832_ifor2805_011
crossref_primary_10_1016_j_envpol_2014_11_032
crossref_primary_10_1016_j_agee_2016_07_025
crossref_primary_10_1016_j_envres_2022_114142
crossref_primary_10_1016_j_foreco_2004_09_010
crossref_primary_10_1016_j_scitotenv_2018_11_130
crossref_primary_10_1016_j_plantsci_2021_110855
crossref_primary_10_1079_cabireviews202217002
crossref_primary_10_1007_s11356_017_9417_3
crossref_primary_10_5194_bg_15_4245_2018
crossref_primary_10_1016_j_atmosenv_2015_12_004
crossref_primary_10_1111_j_1365_2486_2010_02228_x
crossref_primary_10_1007_s11104_020_04510_7
crossref_primary_10_1016_j_ecoenv_2018_04_014
crossref_primary_10_1111_j_1744_7909_2008_00805_x
crossref_primary_10_1093_aob_mct166
crossref_primary_10_1016_j_envpol_2015_08_014
crossref_primary_10_1016_j_scitotenv_2019_04_310
crossref_primary_10_1055_s_2006_955916
crossref_primary_10_1111_j_1365_2486_2008_01615_x
crossref_primary_10_1111_pce_12261
crossref_primary_10_1093_treephys_tps087
crossref_primary_10_1016_j_scitotenv_2020_144292
crossref_primary_10_1016_j_agee_2025_109577
crossref_primary_10_1371_journal_pone_0183147
crossref_primary_10_3390_su13084571
crossref_primary_10_1007_s10342_005_0072_8
crossref_primary_10_1371_journal_pone_0021377
crossref_primary_10_1093_treephys_tpab125
crossref_primary_10_1016_j_scitotenv_2019_02_182
crossref_primary_10_1055_s_2005_872902
crossref_primary_10_1071_FP20324
crossref_primary_10_1016_j_atmosenv_2019_05_027
crossref_primary_10_1111_gfs_12090
crossref_primary_10_1111_j_1365_2486_2007_01477_x
crossref_primary_10_1007_s10342_016_0964_9
crossref_primary_10_1016_j_atmosenv_2019_05_023
crossref_primary_10_1111_j_1365_3040_2005_01349_x
crossref_primary_10_1007_s10342_013_0751_9
crossref_primary_10_1016_j_scitotenv_2020_143795
crossref_primary_10_1016_j_envexpbot_2007_08_008
crossref_primary_10_1111_jam_15751
crossref_primary_10_1007_s00248_011_9895_7
crossref_primary_10_1016_j_envexpbot_2023_105269
crossref_primary_10_1038_ismej_2012_120
crossref_primary_10_1007_s11270_016_3214_3
crossref_primary_10_1007_s13205_022_03215_1
crossref_primary_10_1016_j_ecoenv_2004_10_009
crossref_primary_10_1016_j_envexpbot_2011_07_006
crossref_primary_10_1111_j_1365_2486_2006_01332_x
crossref_primary_10_3390_ijms24076236
crossref_primary_10_1186_s12870_021_02934_6
crossref_primary_10_1016_j_envexpbot_2006_06_004
crossref_primary_10_3390_ijms17121964
crossref_primary_10_1111_1365_2745_12941
crossref_primary_10_3390_plants9070861
crossref_primary_10_1111_j_1469_8137_2008_02564_x
crossref_primary_10_1007_s11104_011_1094_2
crossref_primary_10_1016_j_envpol_2021_117099
crossref_primary_10_1007_s10342_008_0221_y
crossref_primary_10_1016_j_foodres_2023_113316
crossref_primary_10_1111_plb_12971
crossref_primary_10_1007_s11104_006_9026_2
crossref_primary_10_1016_j_apsoil_2014_11_003
crossref_primary_10_1016_j_jes_2021_06_006
crossref_primary_10_1371_journal_pone_0163178
crossref_primary_10_1016_j_envexpbot_2012_09_008
crossref_primary_10_1016_j_ecoenv_2011_02_023
crossref_primary_10_3390_molecules24132452
crossref_primary_10_1016_j_envexpbot_2008_12_005
crossref_primary_10_1002_fes3_152
crossref_primary_10_1016_j_plaphy_2006_03_007
crossref_primary_10_1016_j_soilbio_2008_06_007
crossref_primary_10_3390_ijms25073786
crossref_primary_10_1016_j_envpol_2010_10_033
crossref_primary_10_1016_j_heliyon_2021_e06049
crossref_primary_10_1021_acs_est_8b01093
crossref_primary_10_1007_s11104_009_9927_y
crossref_primary_10_3390_soilsystems8020054
crossref_primary_10_1111_j_1469_8137_2012_04152_x
crossref_primary_10_1016_j_fcr_2021_108076
crossref_primary_10_3390_su152215889
crossref_primary_10_1016_j_envpol_2006_03_055
crossref_primary_10_1016_j_ecolind_2025_113263
crossref_primary_10_1016_j_envpol_2010_09_024
crossref_primary_10_1111_nph_13224
crossref_primary_10_1016_j_envpol_2008_09_001
crossref_primary_10_1016_j_envpol_2014_02_032
crossref_primary_10_1016_j_still_2016_02_001
crossref_primary_10_1016_j_still_2016_04_015
crossref_primary_10_1016_j_envpol_2018_11_074
crossref_primary_10_1016_j_envpol_2016_01_062
crossref_primary_10_1016_j_soilbio_2005_12_003
crossref_primary_10_1016_j_ufug_2022_127735
crossref_primary_10_1016_j_scitotenv_2024_177358
crossref_primary_10_3390_ijms241411693
crossref_primary_10_1007_s00128_010_0039_4
crossref_primary_10_1016_j_envexpbot_2012_10_009
crossref_primary_10_1055_s_2006_924762
crossref_primary_10_1016_j_jclepro_2020_125773
crossref_primary_10_1139_cjm_2013_0851
crossref_primary_10_1007_s11104_005_6026_6
crossref_primary_10_1016_j_apsoil_2016_08_015
crossref_primary_10_1016_j_envpol_2005_01_039
crossref_primary_10_1016_j_envres_2021_111773
crossref_primary_10_1055_s_2006_924758
crossref_primary_10_3390_ijerph16101755
crossref_primary_10_3390_metabo12070622
crossref_primary_10_1016_j_envexpbot_2013_12_016
crossref_primary_10_1016_S1001_0742_10_60503_7
crossref_primary_10_1007_s00248_006_9183_0
crossref_primary_10_1093_jxb_erab317
crossref_primary_10_1111_j_1469_8137_2007_02163_x
crossref_primary_10_1111_j_1365_2486_2007_01332_x
crossref_primary_10_1111_j_1469_8137_2005_01557_x
crossref_primary_10_1016_j_funeco_2014_01_005
crossref_primary_10_1093_aob_mcad019
crossref_primary_10_1016_j_scitotenv_2021_150563
crossref_primary_10_1016_j_atmosenv_2007_04_035
crossref_primary_10_1016_j_envpol_2012_02_010
crossref_primary_10_1007_s00442_005_0249_3
crossref_primary_10_1016_j_envpol_2012_02_011
crossref_primary_10_3389_fmars_2015_00111
crossref_primary_10_1038_nature02047
crossref_primary_10_3390_f16020216
crossref_primary_10_1007_s11104_018_3592_y
crossref_primary_10_1016_j_envpol_2008_01_033
crossref_primary_10_1016_j_funeco_2013_10_005
crossref_primary_10_1088_1748_9326_aa7885
crossref_primary_10_1016_j_envpol_2014_06_032
crossref_primary_10_1111_j_1469_8137_2005_01391_x
crossref_primary_10_1016_j_envpol_2006_02_032
crossref_primary_10_1093_jxb_erp213
crossref_primary_10_1007_s11557_011_0750_5
crossref_primary_10_1016_j_envpol_2006_06_010
crossref_primary_10_1016_j_envexpbot_2010_04_006
crossref_primary_10_1016_j_envpol_2023_123143
crossref_primary_10_1016_j_scitotenv_2018_09_246
crossref_primary_10_1007_s00468_013_0922_9
crossref_primary_10_1111_gcb_17215
crossref_primary_10_3389_fpls_2023_1144319
crossref_primary_10_1016_j_proenv_2011_10_008
crossref_primary_10_1007_s11356_019_05199_7
crossref_primary_10_1111_j_1365_3040_2005_01362_x
crossref_primary_10_1016_j_envexpbot_2020_104037
crossref_primary_10_1007_s10661_006_9414_3
crossref_primary_10_1146_annurev_arplant_042110_103829
crossref_primary_10_1016_j_apsoil_2014_10_012
crossref_primary_10_1016_j_eja_2018_06_002
crossref_primary_10_1016_j_envexpbot_2010_09_012
crossref_primary_10_1016_j_envpol_2012_07_028
crossref_primary_10_1016_j_envpol_2014_12_011
crossref_primary_10_1016_j_soilbio_2024_109559
crossref_primary_10_1046_j_1469_8137_2003_00766_x
crossref_primary_10_3390_f12121680
crossref_primary_10_1111_j_1365_2486_2004_00841_x
crossref_primary_10_1007_s12298_023_01311_x
crossref_primary_10_1016_j_jenvman_2020_111439
crossref_primary_10_1007_s00374_018_1318_1
crossref_primary_10_1016_j_envexpbot_2020_103994
crossref_primary_10_1071_SR11296
crossref_primary_10_1016_j_scitotenv_2020_136837
crossref_primary_10_1042_BJ20110078
crossref_primary_10_1007_s10646_013_1146_x
crossref_primary_10_1111_j_1469_8137_2004_01014_x
crossref_primary_10_2135_cropsci2004_0619
crossref_primary_10_1371_journal_pone_0182796
crossref_primary_10_1371_journal_pone_0223508
crossref_primary_10_1080_17429145_2018_1556356
crossref_primary_10_1007_s11104_016_2982_2
crossref_primary_10_1016_j_chemosphere_2009_05_028
crossref_primary_10_1016_j_ecoenv_2019_109404
crossref_primary_10_1016_j_envpol_2009_08_002
crossref_primary_10_2480_agrmet_D_14_00045
crossref_primary_10_1016_j_envpol_2006_03_019
crossref_primary_10_1007_s10021_013_9670_3
crossref_primary_10_1111_j_1365_2486_2010_02258_x
crossref_primary_10_7567_JJAP_55_01AB06
crossref_primary_10_3389_fpls_2017_01568
crossref_primary_10_1007_s11104_009_9936_x
crossref_primary_10_1016_j_agee_2017_11_010
crossref_primary_10_1016_j_envpol_2006_11_011
crossref_primary_10_1016_j_envpol_2014_08_022
crossref_primary_10_1016_j_chemosphere_2006_07_021
crossref_primary_10_18006_2020_8_Spl_2_AABAS__S292_S297
crossref_primary_10_1093_treephys_tpx009
crossref_primary_10_1016_j_envpol_2020_116117
crossref_primary_10_1016_j_scitotenv_2019_07_133
crossref_primary_10_1016_j_apgeochem_2022_105400
crossref_primary_10_1016_j_catena_2016_10_002
crossref_primary_10_1111_jac_12268
crossref_primary_10_1111_j_1365_2486_2005_00970_x
crossref_primary_10_1016_j_plantsci_2014_06_005
crossref_primary_10_3390_plants12030664
crossref_primary_10_1016_S1001_0742_06_60017_X
crossref_primary_10_1371_journal_pone_0060109
crossref_primary_10_1007_s11270_008_9838_1
crossref_primary_10_3390_environments10100178
crossref_primary_10_1016_j_jes_2024_03_026
crossref_primary_10_1016_j_scitotenv_2022_161008
crossref_primary_10_3390_f8090323
crossref_primary_10_1371_journal_pone_0283480
crossref_primary_10_1016_j_envexpbot_2012_11_003
crossref_primary_10_1890_1051_0761_2006_016_2368_PADEOO_2_0_CO_2
crossref_primary_10_18006_2020_8_Spl_2_AABAS__S327_S335
crossref_primary_10_3390_f15010205
crossref_primary_10_1080_11263500701626028
crossref_primary_10_3389_fpls_2018_01764
crossref_primary_10_1016_j_scitotenv_2023_162721
crossref_primary_10_1016_j_atmosenv_2011_04_057
crossref_primary_10_1016_j_soilbio_2007_07_010
crossref_primary_10_1016_j_envpol_2011_06_022
crossref_primary_10_1093_treephys_tps005
crossref_primary_10_1111_jac_12257
crossref_primary_10_1186_s13020_024_01013_w
crossref_primary_10_1007_s00128_020_02832_x
crossref_primary_10_1016_j_plaphy_2013_05_009
crossref_primary_10_1007_s11356_023_28634_2
crossref_primary_10_1614_WS_07_202_1
crossref_primary_10_1007_s10342_012_0656_z
crossref_primary_10_1007_s11829_012_9189_0
crossref_primary_10_1055_s_2005_872981
crossref_primary_10_1080_21580103_2018_1499557
crossref_primary_10_1111_tpj_16465
crossref_primary_10_1007_s00442_009_1339_4
crossref_primary_10_1111_pce_14808
crossref_primary_10_1093_jxb_erp255
crossref_primary_10_3389_fpls_2017_01307
crossref_primary_10_1016_j_envpol_2018_06_073
crossref_primary_10_1016_j_scienta_2021_110248
crossref_primary_10_1007_s11270_019_4339_y
crossref_primary_10_1111_j_1461_0248_2009_01334_x
crossref_primary_10_1055_s_2005_872987
crossref_primary_10_1007_s00468_021_02111_0
crossref_primary_10_1016_j_ecoenv_2020_111644
crossref_primary_10_1016_j_envpol_2009_05_006
crossref_primary_10_1016_j_envpol_2005_08_024
crossref_primary_10_1016_j_plaphy_2005_01_010
crossref_primary_10_3390_molecules29225351
crossref_primary_10_1080_00103624_2017_1282509
crossref_primary_10_1016_j_atmosenv_2008_11_033
crossref_primary_10_3390_plants12010179
crossref_primary_10_3389_fpls_2020_623722
crossref_primary_10_1007_s11104_009_9972_6
crossref_primary_10_1016_j_envexpbot_2010_03_007
crossref_primary_10_1007_s10661_018_6563_0
crossref_primary_10_1016_j_atmosenv_2017_06_030
crossref_primary_10_1055_s_2005_873025
crossref_primary_10_1007_s42965_023_00298_6
crossref_primary_10_2135_cropsci2009_03_0127
crossref_primary_10_1016_j_ecoenv_2014_09_018
crossref_primary_10_1016_j_scitotenv_2019_136379
crossref_primary_10_1055_s_2005_872972
crossref_primary_10_1093_jxb_err443
crossref_primary_10_1007_s00442_006_0381_8
crossref_primary_10_1016_j_ecoenv_2017_09_068
crossref_primary_10_1016_j_scitotenv_2016_10_188
crossref_primary_10_1111_j_1365_2486_2005_00939_x
crossref_primary_10_1016_j_scitotenv_2020_137141
crossref_primary_10_1111_j_1442_9993_2009_01995_x
crossref_primary_10_1021_acs_est_8b00495
crossref_primary_10_5094_APR_2013_014
crossref_primary_10_1038_srep03193
crossref_primary_10_1016_j_envpol_2011_06_009
crossref_primary_10_1007_s11104_013_1973_9
crossref_primary_10_1016_j_envpol_2009_09_008
crossref_primary_10_1016_j_envpol_2010_05_003
crossref_primary_10_1016_j_scienta_2012_11_015
crossref_primary_10_1046_j_1469_8137_2003_00685_x
crossref_primary_10_1016_j_soilbio_2011_12_012
crossref_primary_10_1111_j_1365_2486_2007_01472_x
crossref_primary_10_1016_j_envpol_2010_05_008
crossref_primary_10_1007_s11270_005_2717_0
crossref_primary_10_1016_j_envpol_2009_06_031
crossref_primary_10_1007_s10533_022_00962_4
crossref_primary_10_1007_s10661_022_10551_5
crossref_primary_10_1007_s11267_007_9164_4
crossref_primary_10_1055_s_2006_924489
crossref_primary_10_1007_s00468_007_0184_5
crossref_primary_10_1016_j_scitotenv_2019_01_040
crossref_primary_10_1007_s11356_022_24327_4
crossref_primary_10_1007_s00442_010_1572_x
crossref_primary_10_1007_s10886_009_9644_2
crossref_primary_10_1016_j_agee_2015_02_013
crossref_primary_10_1016_j_envpol_2015_02_038
crossref_primary_10_1111_gcb_12810
crossref_primary_10_1016_j_envpol_2009_10_006
crossref_primary_10_1139_cjb_2016_0275
crossref_primary_10_1017_S0014479718000170
crossref_primary_10_1046_j_1365_2486_2003_00669_x
crossref_primary_10_1016_j_soilbio_2015_08_029
crossref_primary_10_1186_s40538_023_00496_3
crossref_primary_10_1016_j_scitotenv_2020_140847
crossref_primary_10_1111_j_1469_8137_2006_01658_x
crossref_primary_10_3390_f7040078
crossref_primary_10_3390_ijms25179381
crossref_primary_10_1016_j_agee_2011_07_003
crossref_primary_10_1093_jxb_ers118
crossref_primary_10_1016_j_scitotenv_2017_07_069
crossref_primary_10_1007_s11104_009_9945_9
crossref_primary_10_1016_j_jes_2014_12_018
crossref_primary_10_1007_s11104_009_9968_2
crossref_primary_10_1007_s11270_015_2555_7
crossref_primary_10_1007_s11356_013_1517_0
crossref_primary_10_1016_j_scienta_2019_108874
crossref_primary_10_1038_srep05350
crossref_primary_10_1007_s00114_008_0468_7
crossref_primary_10_1016_j_envpol_2018_03_061
crossref_primary_10_1007_s11356_014_3481_8
crossref_primary_10_1007_s11270_007_9475_0
crossref_primary_10_1016_j_agee_2009_09_004
crossref_primary_10_1016_j_envpol_2023_122334
crossref_primary_10_1055_s_2007_964883
crossref_primary_10_1093_jxb_eri214
crossref_primary_10_1093_treephys_tpab041
crossref_primary_10_1007_s11104_011_0961_1
crossref_primary_10_1111_j_1365_2486_2010_02376_x
crossref_primary_10_1007_s10886_009_9731_4
crossref_primary_10_1007_s00572_014_0577_4
crossref_primary_10_4028_www_scientific_net_AMR_864_867_2478
crossref_primary_10_1016_j_envpol_2011_03_011
crossref_primary_10_1111_1365_2745_12351
crossref_primary_10_2135_cropsci2005_06_0167
crossref_primary_10_1038_s41598_017_11190_4
crossref_primary_10_1007_s11270_015_2715_9
crossref_primary_10_1016_j_envpol_2009_11_033
crossref_primary_10_1016_j_scitotenv_2017_05_021
crossref_primary_10_1039_c1em10305a
crossref_primary_10_3389_fpls_2022_1045239
crossref_primary_10_2134_agronj2017_09_0514
crossref_primary_10_1007_s11104_009_0090_2
crossref_primary_10_2135_cropsci2008_10_0603
crossref_primary_10_1007_s11104_025_07309_6
crossref_primary_10_1111_j_1365_2486_2010_02267_x
crossref_primary_10_1007_s11104_011_0912_x
crossref_primary_10_1111_ejss_13186
crossref_primary_10_1088_1748_9326_ac49b9
crossref_primary_10_5194_bg_8_3127_2011
crossref_primary_10_1016_j_envpol_2005_02_002
crossref_primary_10_1111_nph_14124
crossref_primary_10_3389_fmicb_2022_916875
crossref_primary_10_1016_j_envpol_2010_01_019
crossref_primary_10_1016_j_envpol_2006_10_009
crossref_primary_10_2480_agrmet_D_18_00009
crossref_primary_10_1016_j_ecoleng_2008_08_009
crossref_primary_10_1016_j_jhazmat_2020_124968
crossref_primary_10_1002_ece3_2568
crossref_primary_10_1016_j_apsoil_2010_10_013
crossref_primary_10_2136_sssaj2009_0258
crossref_primary_10_1016_j_scitotenv_2020_142134
crossref_primary_10_1007_s12647_023_00643_z
Cites_doi 10.1046/j.1469-8137.1997.00779.x
10.1007/978-94-011-1294-9_18
10.1094/MPMI.1998.11.3.167
10.1104/pp.73.1.185
10.1111/j.1469-8137.1978.tb01627.x
10.1016/0269-7491(90)90107-N
10.1016/0167-8809(92)90172-8
10.1111/j.1469-8137.1994.tb04032.x
10.1046/j.1365-3040.2002.00859.x
10.1016/S0981-9428(01)01291-8
10.1139/b77-190
10.1007/BF02183063
10.1007/978-3-642-70118-4
10.1016/0013-9327(71)90023-1
10.1016/0098-8472(92)90035-Z
10.1046/j.1365-2486.2000.00310.x
10.1016/0269-7491(93)90203-Z
10.1016/S0176-1617(96)80250-1
10.1111/j.1469-8137.1994.tb03977.x
10.1046/j.1469-8137.1998.00100.x
10.1007/BF00477186
10.1104/pp.88.3.559
10.1007/978-94-015-9803-3_4
10.1016/S0378-1127(98)00290-4
10.1016/0269-7491(88)90202-3
10.1093/jxb/48.2.307
10.1007/BF02407207
10.1080/02827589809382976
10.1046/j.1365-2486.1999.00274.x
10.1104/pp.82.1.336
10.1890/06-0822.1
10.2134/agronj1958.00021962005000090019x
10.1093/forestscience/38.1.102
10.1093/treephys/19.2.71
10.1093/forestscience/33.3.801
10.1016/0004-6981(77)90182-2
10.1007/BF00226583
10.1016/0098-8472(84)90062-5
10.1046/j.1469-8137.1997.00843.x
10.1093/treephys/21.2-3.173
10.1038/268329a0
10.1139/b69-247
10.2134/jeq1998.00472425002700040032x
10.1146/annurev.phyto.34.1.347
10.2307/2269570
10.1007/BF00376884
10.1016/0269-7491(92)90118-T
10.1093/treephys/21.16.1205
10.1016/S0269-7491(98)00130-4
10.1093/forestscience/37.1.5
10.1046/j.1469-8137.1999.00486.x
10.1093/treephys/16.1-2.145
10.1093/jxb/50.336.1253
10.1016/0098-8472(93)90045-H
10.1016/S0269-7491(99)00122-0
10.1016/0269-7491(90)90092-Q
10.1146/annurev.arplant.47.1.509
10.1104/pp.73.3.630
10.2307/3544442
10.1046/j.1365-2486.2000.00307.x
10.1104/pp.010497
10.1126/science.129.3343.208
10.1016/0004-6981(81)90178-5
10.1016/0269-7491(91)90051-W
10.1016/S0045-6535(97)10112-6
10.2307/1936576
10.1046/j.1365-3040.2001.00678.x
10.1023/A:1010351406931
10.1104/pp.120.4.1015
10.1016/B978-012424162-6/50017-X
10.1023/A:1005267214560
10.1007/BF00388079
10.1104/pp.68.3.548
10.1046/j.1365-3040.1999.00432.x
10.1073/pnas.96.23.13577
10.21273/JASHS.104.2.151
10.1007/BF00323541
10.1093/treephys/14.6.647
10.1007/s004420100656
10.1016/S0176-1617(96)80256-2
10.1038/369058a0
10.1016/0378-1127(95)03668-7
10.1890/1051-0761(2000)010[0484:SIAMCA]2.0.CO;2
10.1139/x26-003
10.1086/417659
10.1093/treephys/21.5.319
10.1093/jxb/36.4.652
10.1007/BF00225329
10.1034/j.1399-3054.2001.1110307.x
10.1016/0269-7491(87)90040-6
10.1007/978-1-4612-1436-6_7
10.1890/0012-9658(2002)083[0104:BEFCCO]2.0.CO;2
10.1093/treephys/11.3.215
10.2134/jeq1973.00472425000200030006x
10.1007/BF02182683
10.1093/jexbot/51.346.919
10.1111/j.1399-3054.1997.tb04782.x
10.1016/0378-1127(95)03603-2
10.2307/2960528
10.1201/9780203909423.ch12
10.1016/0304-4017(93)90160-O
10.1046/j.1439-0329.1999.00156.x
10.1111/j.1469-8137.1995.tb03084.x
10.1093/jexbot/52.362.1901
10.1094/Phyto-75-679
10.1023/A:1015802823398
10.1139/b88-105
10.1890/0012-9658(1998)079[1595:MODWPC]2.0.CO;2
10.1007/978-94-011-1294-9_13
10.1007/s00442-002-0868-x
10.1139/b85-287
10.1007/978-94-009-5925-5
10.2307/2403853
10.1146/annurev.en.36.010191.000325
10.1146/annurev.arplant.53.100301.135256
10.1016/S1369-5266(99)00014-X
10.1111/j.1469-8137.1991.tb00983.x
10.1111/j.1469-8137.1988.tb04191.x
10.1046/j.1469-8137.2001.00180.x
10.1046/j.1469-8137.1998.00277.x
10.1046/j.0028-646X.2001.00270.x
10.1038/368734a0
10.1007/978-1-4612-3060-1_12
10.1016/0013-9327(75)90099-3
10.2307/1940888
10.1007/BF00228785
10.2134/jeq1973.00472425000200020019x
10.1139/x91-179
10.1023/A:1010321509628
10.1016/0038-0717(91)90022-C
10.1016/S0378-1127(00)00368-6
10.1016/0269-7491(90)90040-J
10.1111/j.1469-8137.1992.tb00055.x
10.2475/ajs.s2-37.111.373
10.1111/j.1469-8137.1988.tb00268.x
10.21273/JASHS.107.5.839
10.1098/rstb.1995.0025
10.1046/j.1469-8137.2000.00688.x
10.1111/j.1469-8137.1991.tb01027.x
10.1139/x85-129
10.1111/j.1469-8137.1994.tb04016.x
10.1046/j.1469-8137.2002.00446.x
10.1111/j.1365-3040.1995.tb00364.x
10.1126/science.1068326
10.2134/jeq1991.00472425002000010027x
10.1016/S0038-0717(00)00151-6
10.2136/sssaj1964.03615995002800030006x
10.1146/annurev.phyto.34.1.325
10.1093/treephys/13.2.157
10.1016/S0929-1393(98)00121-8
10.1093/treephys/17.6.377
10.1046/j.1469-8137.2000.00687.x
10.1093/treephys/17.12.805
10.1002/j.1537-2197.1995.tb11484.x
10.1093/treephys/8.3.289
10.1139/b88-209
10.1111/j.1469-8137.1983.tb04497.x
10.1023/A:1004929801839
10.1104/pp.91.1.427
10.1111/j.1469-8137.1989.tb02359.x
ContentType Journal Article
Copyright Copyright 2003 New Phytologist
2003 INIST-CNRS
Copyright_xml – notice: Copyright 2003 New Phytologist
– notice: 2003 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7SN
C1K
7X8
7S9
L.6
DOI 10.1046/j.1469-8137.2003.00674.x
DatabaseName CrossRef
Pascal-Francis
PubMed
Ecology Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Ecology Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Ecology Abstracts


MEDLINE - Academic
AGRICOLA
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 228
ExternalDocumentID 33873636
14529637
10_1046_j_1469_8137_2003_00674_x
NPH674
1514029
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZCG
ZZTAW
~02
~IA
~KM
~WT
AASVR
ABEML
ABGDZ
ACQPF
ADXHL
AGHNM
HF~
LPU
NEJ
RCA
WHG
XOL
YXE
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
IQODW
NPM
7SN
C1K
7X8
7S9
L.6
ID FETCH-LOGICAL-c6284-d29d16438f5b54702785f7f9786e4bb9ad4442d3ccd9119dc9351d235cfa46bb3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 10:05:39 EDT 2025
Fri Jul 11 18:24:27 EDT 2025
Fri Jul 11 16:28:24 EDT 2025
Fri Jul 11 09:51:02 EDT 2025
Mon Jul 21 06:05:51 EDT 2025
Wed Apr 02 07:12:58 EDT 2025
Tue Jul 01 04:20:35 EDT 2025
Thu Apr 24 23:07:56 EDT 2025
Wed Aug 20 07:26:18 EDT 2025
Thu Jul 03 22:53:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords carbohydrate signaling
Growth
symbionts
Resource allocation
Environmental factor
Ozone
Oxidant
Review
Metabolism
Source sink relationship
Carbon cycle
Pollutant
Signal transduction
tropospheric ozone
Phytotoxicity
rhizodeposition
Ecosystem
source-sink balance
Air pollution
carbon allocation
roots soil processes
roots
soil processes
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6284-d29d16438f5b54702785f7f9786e4bb9ad4442d3ccd9119dc9351d235cfa46bb3
Notes Note: The information in this article has been funded by the U.S. Environmental Protection Agency. It has been subjected to the Agency's peer and administrative review, and it has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
ObjectType-Review-3
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1046/j.1469-8137.2003.00674.x
PMID 33873636
PQID 19191394
PQPubID 24069
PageCount 16
ParticipantIDs proquest_miscellaneous_49055624
proquest_miscellaneous_2524267913
proquest_miscellaneous_2515688768
proquest_miscellaneous_19191394
pubmed_primary_33873636
pascalfrancis_primary_14529637
crossref_primary_10_1046_j_1469_8137_2003_00674_x
crossref_citationtrail_10_1046_j_1469_8137_2003_00674_x
wiley_primary_10_1046_j_1469_8137_2003_00674_x_NPH674
jstor_primary_1514029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2003
PublicationDateYYYYMMDD 2003-02-01
PublicationDate_xml – month: 02
  year: 2003
  text: February 2003
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2003
Publisher Blackwell Science
Blackwell Science Ltd
Blackwell
Publisher_xml – name: Blackwell Science
– name: Blackwell Science Ltd
– name: Blackwell
References 2001; 144
1987; 33
1989; 44
1992; 122
1997; 48
2002; 155
1989; 111
1976
1983; 94
1958; 50
1995; 131
1991; 118
1996; 148
1998; 396
1996.; 26
1988; 108
1978
1991; 119
1992; 6
1987; 47
1950; 34
1998; 19
1986; 82
2002; 83
2000; 10
1993; 33
1980; 32
1988; 88
1985
1969; 47
2001; 24
1982
1999; 50
1971; 1
1998; 10
1985; 15
2001; 52
1998; 11
1989
1988
1998; 13
1994; 75
1993; 48
1960.
1979; 13
1996.
1990; 36
2002; 131
1964; 28
1999; 29
1991; 72
1991; 73
2002; 139
1981; 24
1983; 73
1999; 22
1994
1983; 71
1978; 59
2001; 27
1992; 38
1991
1998; 138
1992; 32
1996; 16
1970; 16
2001; 21
1999
2001; 151
1987; 64
1997.
2001; 152
1991; 67
1988; 25
2000; 107
1996; 82
1994; 14
1981; 15
1977; 11
1970; 83
2001; 39
2001; 33
1985; 75
1999; 116
1998; 140
1973; 2
1998; 79
1982.
1979; 104
1976; 22
2000; 6
2002; 53
1997; 85
1982; 107
1995; 79
1999; 120
2000; 51
1985; 63
1983; 59
1992; 11
1864; 37
1996; 34
1995; 170
1994; 105
1982; 28
2001
1997; 96
1997; 100
1997; 12
1981; 36
1997; 17
1999; 96
1975; 8
1996; 6
1998; 27
1997; 136
1997; 137
2000; 27
1991; 37
2002; 296
1993; 81
1981; 68
1988; 51
1999; 144
1999; 2
1995; 18
2002
1992; 76
1999; 5
1977; 268
1991; 8
1990; 82
2001; 128
2001; 127
1991; 5
2001; 111
1978; 81
1995; 85
1990; 64
1993; 13
2002; 25
2001; 233
1994; 127
1995; 82
1994; 369
1994; 128
1990; 68
1994; 368
1991; 23
2000; 147
1991; 21
1989; 91
1991; 20
1980; 10
1988; 66
1995; 347
1998; 109
1988; 110
1977; 55
1998; 103
1996; 47
1959; 129
1998; 36
1985; 36
e_1_2_9_75_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
McLaughlin SB (e_1_2_9_104_1) 1982; 28
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
McCool PM (e_1_2_9_101_1) 1982; 107
e_1_2_9_6_1
e_1_2_9_119_1
Posthumus AC (e_1_2_9_131_1) 1976
Ritchie GA (e_1_2_9_143_1) 1980; 10
e_1_2_9_60_1
Skarby L (e_1_2_9_155_1) 1987; 33
e_1_2_9_138_1
e_1_2_9_111_1
Berg B (e_1_2_9_16_1) 1980; 32
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_157_1
e_1_2_9_26_1
Daines RH (e_1_2_9_27_1) 1960
e_1_2_9_49_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_172_1
Wolters V (e_1_2_9_180_1) 1998; 10
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
Van Den Driessche R (e_1_2_9_30_1) 1978
Findlay S (e_1_2_9_40_1) 1991; 72
e_1_2_9_102_1
e_1_2_9_148_1
Bjorkman E (e_1_2_9_20_1) 1970; 83
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
Adams MB (e_1_2_9_2_1) 1991; 37
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
Alscher RG (e_1_2_9_4_1) 1988
e_1_2_9_5_1
McCool PM (e_1_2_9_100_1) 1979; 104
Middleton JT (e_1_2_9_108_1) 1950; 34
Bender J (e_1_2_9_15_1) 1990; 64
e_1_2_9_114_1
e_1_2_9_137_1
Stow TK (e_1_2_9_159_1) 1992; 38
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_179_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_69_1
e_1_2_9_171_1
Beckerson DW (e_1_2_9_13_1) 1979; 13
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
US Environmental Protection Agency (e_1_2_9_170_1) 1996
Tingey DT (e_1_2_9_167_1) 1976; 22
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
Gordon JC (e_1_2_9_47_1) 1970; 16
e_1_2_9_92_1
e_1_2_9_109_1
Plocher MD (e_1_2_9_130_1) 1994; 105
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_147_1
Smith SE (e_1_2_9_156_1) 1997
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_185_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_113_1
Tingey DT (e_1_2_9_165_1) 1994
e_1_2_9_117_1
e_1_2_9_136_1
e_1_2_9_178_1
e_1_2_9_151_1
e_1_2_9_28_1
Duriscoe DM (e_1_2_9_33_1) 1989
e_1_2_9_132_1
e_1_2_9_174_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_63_1
e_1_2_9_21_1
e_1_2_9_67_1
Miller PR (e_1_2_9_110_1) 1989
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
Grantz DA (e_1_2_9_55_1) 2000; 27
e_1_2_9_3_1
Maurer S (e_1_2_9_98_1) 1997; 12
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_25_1
e_1_2_9_154_1
e_1_2_9_173_1
e_1_2_9_48_1
e_1_2_9_29_1
e_1_2_9_150_1
Winner WE (e_1_2_9_177_1) 1988
References_xml – volume: 15
  start-page: 483
  year: 1981
  end-page: 487
  article-title: The rapid inhibition of root respiration after exposure of bean ( L.) plants to ozone
  publication-title: Atmospheric Environment
– volume: 10
  start-page: 484
  year: 2000
  end-page: 496
  article-title: Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient
  publication-title: Ecological Applications
– volume: 23
  start-page: 1115
  year: 1991
  end-page: 1119
  article-title: Enzymatic changes in the rhizosphere of loblolly pine exposed to ozone and acid rain
  publication-title: Soil Biological Biochemistry
– volume: 13
  start-page: 157
  year: 1993
  end-page: 172
  article-title: Analysis of the relationships among O uptake, conductance, and photosynthesis in needles of
  publication-title: Tree Physiology
– volume: 27
  start-page: 859
  year: 2000
  end-page: 868
  article-title: Ozone inhibits phloem loading from a transport pool: compartmental efflux analysis in Pima cotton
  publication-title: Australian Journal of Plant Physiology
– volume: 16
  start-page: 14
  year: 1970
  end-page: 20
  article-title: Redistribution of ‘C‐labeled reserve food in young red pines during shoot elongation
  publication-title: Forest Science
– start-page: 127
  year: 1985
  end-page: 333
– start-page: 115
  year: 1976
  end-page: 120
– volume: 32
  start-page: 101
  year: 1992
  end-page: 113
  article-title: Foliar injury responses of ponderosa pine seedlings to ozone, wet an dry acidic deposition, and drought
  publication-title: Environmental and Experimental Botany
– volume: 347
  start-page: 248
  year: 1995
  end-page: 262
  article-title: Empirical evidence that declining species diversity may alter the performance of terrestrial ecosystems
  publication-title: Philosophical Transactions of the R Society of London B
– year: 1982.
– volume: 103
  start-page: 263
  year: 1998
  end-page: 276
  article-title: The effects of acid precipitation and ozone on the ectomycorrhizae of red spruce saplings
  publication-title: Water, Air and Soil Pollution
– volume: 73
  start-page: 217
  year: 1991
  end-page: 244
  article-title: Stress interactions and mycorrhizal plant response: understanding carbon allocation priorities
  publication-title: Environmental Pollution
– volume: 52
  start-page: 1901
  year: 2001
  end-page: 1911
  article-title: Does nitrogen supply affect the response of wheat ( cv. Hanno) to the combination of elevated CO and O ?
  publication-title: Journal of Experimental Botany
– volume: 82
  start-page: 248
  year: 1990
  end-page: 250
  article-title: Exposure of cottonwood plants to ozone alters subsequent decomposition
  publication-title: Oecologia
– volume: 28
  start-page: 60
  year: 1982
  end-page: 70
  article-title: Effects of chronic air pollution stress on photosynthesis, carbon allocation, and growth of white pine trees
  publication-title: Forest Science
– volume: 128
  start-page: 237
  year: 2001
  end-page: 250
  article-title: Fine‐root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO and tropospheric O
  publication-title: Oecologia
– volume: 148
  start-page: 296
  year: 1996
  end-page: 301
  article-title: Consequences of air pollution on shoot–root interactions
  publication-title: Journal of Plant Physiology
– volume: 94
  start-page: 241
  year: 1983
  end-page: 247
  article-title: Influence of ozone on carbon partitioning in tomato: potential role of carbon flow in regulation of the mycorrhizal symbiosis under conditions of stress
  publication-title: New Phytologist
– volume: 81
  start-page: 543
  year: 1978
  end-page: 552
  article-title: Root exudation in relation to supply of phosphorus and its possible relevance to mycorrhiza formation
  publication-title: New Phytologist
– volume: 103
  start-page: 63
  year: 1998
  end-page: 73
  article-title: Ozone exposure and nitrogen deposition lowers root biomass of ponderosa pine in the San Bernardino Mountains, California
  publication-title: Environmental Pollution
– volume: 127
  start-page: 1787
  year: 2001
  article-title: Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes
  publication-title: Plant Physiology
– volume: 10
  start-page: 218
  year: 1980
  end-page: 248
  article-title: Root growth potential: its development and expression in forest tree seedlings
  publication-title: New Zealand Journal of Forest Science
– volume: 140
  start-page: 219
  year: 1998
  end-page: 230
  article-title: The effects of nutrient limitation on the response of to ozone
  publication-title: New Phytologist
– volume: 138
  start-page: 315
  year: 1998
  end-page: 325
  article-title: Elevated carbon dioxide ameliorates the effects of ozone on photosynthesis and growth: species respond similarly regardless of photosynthetic pathway or plant functional group
  publication-title: New Phytologist
– volume: 116
  start-page: 199
  year: 1999
  end-page: 226
  article-title: Ozone – a risk factor for trees and forests in Europe?
  publication-title: Water, Air, and Soil Pollution
– volume: 120
  start-page: 1015
  year: 1999
  end-page: 1024
  article-title: Senescence‐associated gene expression during ozone‐induced leaf senescence in Arabidopsis
  publication-title: Plant Physiology
– volume: 59
  start-page: 88
  year: 1983
  end-page: 93
  article-title: Wound induced defences in plants and their consequences for patterns of insect grazing
  publication-title: Oecologia
– volume: 91
  start-page: 427
  year: 1989
  end-page: 432
  article-title: Decline of activity and quantity of ribulose bisphosphate carboxylase/oxygenase and net photosynthesis in ozone‐treated potato foliage
  publication-title: Plant Physiology
– volume: 268
  start-page: 329
  year: 1977
  end-page: 331
  article-title: Number of trophic levels in ecological communities
  publication-title: Nature
– volume: 37
  start-page: 5
  year: 1991
  end-page: 16
  article-title: Effects of ozone and acidic deposition on carbon allocation and mycorrhizal colonization of Pinus Taeda L
  publication-title: Seedlings Forest Science
– volume: 79
  start-page: 1595
  year: 1998
  end-page: 1601
  article-title: Maintenance of diversity within plant communities: Soil pathogens as agents of negative feedback
  publication-title: Ecology
– volume: 67
  start-page: 283
  year: 1991
  end-page: 335
  article-title: The dilemma of plants: to grow or defend
  publication-title: The Quarterly Review of Biology
– volume: 44
  start-page: 159
  year: 1989
  end-page: 171
  article-title: Influence of O , rainfall acidity, and soil Mg status on growth and ectomycorrhizal colonization of loblolly pine roots
  publication-title: Water, Air, and Soil Pollution
– volume: 59
  start-page: 465
  year: 1978
  end-page: 472
  article-title: Macroclimate and lignin control of litter decomposition rates
  publication-title: Ecology
– start-page: 195
  year: 1994
  end-page: 206
– volume: 47
  start-page: 509
  year: 1996
  end-page: 540
  article-title: Carbohydrate‐moldulated gene expression in plants
  publication-title: Annual Review of Plant Physiological Plant Molecular Biology
– volume: 79
  start-page: 197
  year: 1995
  end-page: 206
  article-title: The effects of ozone on the root dynamics of seedlings and mature red oak ( L.)
  publication-title: Forest Ecology and Management
– volume: 24
  start-page: 327
  year: 2001
  end-page: 336
  article-title: Stomatal and non‐stomatal limitation to photosynthesis in two trembling aspen ( michx.) clones exposed to elevated CO and/or O
  publication-title: Plant, Cell & Environment
– volume: 2
  start-page: 341
  year: 1973
  end-page: 342
  article-title: Effects of ozone on soybean nodules
  publication-title: Journal of Environmental Quality
– volume: 155
  start-page: 67
  year: 2002
  end-page: 78
  article-title: Limitations to CO assimilation in ozone‐exposed leaves of
  publication-title: New Phytologist
– volume: 110
  start-page: 319
  year: 1988
  end-page: 325
  article-title: Growth and maintenance respiration in leaves of bean ( L.) Exposed to ozone in open‐top chambers in the field
  publication-title: New Phytologist
– volume: 71
  start-page: 415
  year: 1983
  end-page: 432
  article-title: Nitrogen nutrition, photosynthesis and carbon allocation in ectomycorrhizal pine
  publication-title: Plant and Soil
– volume: 25
  start-page: 717
  year: 2002
  end-page: 726
  article-title: Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone
  publication-title: Plant, Cell & Environment
– volume: 96
  start-page: 233
  year: 1997
  end-page: 248
  article-title: Influence of mycorrhizal fungus and/or rhizobium on growth and biomass partitioning of subterranean clover exposed to ozone
  publication-title: Water, Air and Soil Pollution
– volume: 38
  start-page: 102
  year: 1992
  end-page: 119
  article-title: Ozone impacts on seasonal foliage dynamics of young loblolly pine
  publication-title: Forest Science
– volume: 21
  start-page: 1205
  year: 2001
  end-page: 1213
  article-title: Nitrogen availability modifies the ozone responses of Scots pine seedlings exposed in an open‐field system
  publication-title: Tree Physiology
– volume: 119
  start-page: 243
  year: 1991
  end-page: 250
  article-title: Effects of ozone and ammonium sulphate on carbon partitioning on mycorrhizal roots of juvenile Douglas fir
  publication-title: New Phytologist
– volume: 111
  start-page: 647
  year: 1989
  end-page: 656
  article-title: Effects of O on alder photosynthesis and symbiosis with
  publication-title: New Phytologist
– volume: 24
  start-page: 71
  year: 1981
  end-page: 74
  article-title: Effects of ozone exposure on mycorrhiza formation and growth of
  publication-title: Environmental and Experimental Botany
– volume: 139
  start-page: 325
  year: 2002
  end-page: 341
– volume: 50
  start-page: 559
  year: 1958
  end-page: 561
  article-title: Air pollution with relation to agronomic crops. V. Oxidant stipple of grape
  publication-title: Agronomy Journal
– volume: 27
  start-page: 1049
  year: 2001
  end-page: 1062
  article-title: Effects of long‐term open‐field ozone exposure on leaf phenolics of European silver birch ( Roth)
  publication-title: Journal of Chemical Ecology
– volume: 109
  start-page: 355
  year: 1998
  end-page: 366
  article-title: Foliar nitrogen dynamics and decomposition of yellow‐poplar and eastern white pine during four seasons of exposure to elevated ozone and carbon dioxide
  publication-title: Forest Ecology and Management
– volume: 82
  start-page: 336
  year: 1986
  end-page: 338
  article-title: Effect of SO and O on production of antioxidants in conifers
  publication-title: Plant Physiology
– volume: 64
  start-page: 284
  year: 1987
  end-page: 286
  article-title: The influence of a fall fumigation with ozone on the stomatal behavior of spruce and fir
  publication-title: Oecologia
– volume: 64
  start-page: 329
  year: 1990
  end-page: 343
  article-title: Regression analysis to describe yield and metabolic responses of beans ( ) to chronic ozone stress
  publication-title: Angewandte Botanik
– year: 1996.
– volume: 39
  start-page: 729
  year: 2001
  end-page: 742
  article-title: Effects of ozone on the carbon metabolism of forest trees
  publication-title: Plant Physiology and Biochemistry
– volume: 21
  start-page: 173
  year: 2001
  end-page: 181
  article-title: Seasonal changes in above‐ and belowground carbohydrate concentrations of ponderosa pine along a pollution gradient
  publication-title: Tree Physiology
– volume: 118
  start-page: 315
  year: 1991
  end-page: 321
  article-title: Root and soil respiration responses to ozone in L. seedlings
  publication-title: New Phytologist
– volume: 148
  start-page: 249
  year: 1996
  end-page: 257
  article-title: Mechanisms of oxygen activation during plant stress: Biochemical effects of air pollutants
  publication-title: Journal of Plant Physiology
– volume: 33
  start-page: 365
  year: 2001
  end-page: 373
  article-title: Contrasting effects of elevated CO on old and new soil carbon pools
  publication-title: Soil Biology and Biochemistry
– volume: 396
  start-page: 69
  year: 1998
  end-page: 72
  article-title: Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity
  publication-title: Nature
– start-page: 209
  year: 1991
  end-page: 235
– volume: 127
  start-page: 579
  year: 1994
  end-page: 589
  article-title: Analysis of aspen foliage exposed to multiple stresses‐ozone, nitrogen deficiency and drought
  publication-title: New Phytologist
– volume: 369
  start-page: 58
  year: 1994
  end-page: 60
  article-title: Mycorrhizae alter quality and quantity of carbon allocated below ground
  publication-title: Nature
– volume: 100
  start-page: 264
  year: 1997
  end-page: 273
  article-title: Ozone‐induced oxidative stress: Mechanisms of action and reaction
  publication-title: Physiologia Plantarum
– volume: 13
  start-page: 33
  year: 1979
  end-page: 35
  article-title: Stomatal responses of white bean to O and SO singly or in combination
  publication-title: Atmospheric Environment
– start-page: 205
  year: 2002
  end-page: 220
– volume: 6
  start-page: 269
  year: 1996
  end-page: 275
  article-title: Effects of damage to living plants on leaf litter quality
  publication-title: Ecological Applications
– volume: 96
  start-page: 13577
  year: 1999
  end-page: 13582
  article-title: Ozone inhibits guard cell K+ channels implicated in stomatal opening
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 73
  start-page: 185
  year: 1983
  end-page: 187
  article-title: Ozone‐induced reduction in quantity of ribulose‐1,5‐bisphosphate carboxylase in alfalfa foliage
  publication-title: Plant Physiology
– volume: 51
  start-page: 919
  year: 2000
  end-page: 927
  article-title: Ozone impacts on allometry and root hydraulic conductance are not mediated by source limitation nor developmental age
  publication-title: Journal of Experimental Botany
– volume: 73
  start-page: 630
  year: 1983
  end-page: 635
  article-title: Effects of SO and O on allocation of 14C labeled photosynthate in
  publication-title: Plant Physiology
– volume: 144
  start-page: 159
  year: 2001
  end-page: 173
  article-title: Current and future effects of ozone and atmospheric nitrogen deposition on California's mixed conifer forests
  publication-title: Forest Ecology and Management
– volume: 17
  start-page: 377
  year: 1997
  end-page: 387
  article-title: Nutrient availability alters belowground respiration of ozone‐exposed ponderosa pine
  publication-title: Tree Physiology
– volume: 36
  start-page: 25
  year: 1990
  end-page: 42
  article-title: Induction of defenses in trees
  publication-title: Annual Review of Entomology
– volume: 147
  start-page: 43
  year: 2000
  end-page: 53
  article-title: The control of carbon acquisition by roots
  publication-title: New Phytologist
– volume: 128
  start-page: 679
  year: 1994
  end-page: 687
  article-title: Interactions between exposure to O and nutrient status of trees: effects on nutrient content and uptake, growth, mycorrhiza and needle ultrastructure
  publication-title: New Phytologist
– volume: 111
  start-page: 305
  year: 2001
  end-page: 312
  article-title: Elevated CO and ozone reduce nitrogen acquisition by from its mycorrhizal symbiont
  publication-title: Physiologia Plantarum
– volume: 66
  start-page: 1510
  year: 1988
  end-page: 1516
  article-title: Effects of ozone and acid rain on white pine ( ) seedlings grown in five soils. II. Mycorrhizal infection
  publication-title: Canadian Journal of Botany
– volume: 17
  start-page: 805
  year: 1997
  end-page: 811
  article-title: Carry‐over effects of ozone on root growth and carbohydrate concentrations of ponderosa pine seedlings
  publication-title: Tree Physiology
– volume: 122
  start-page: 81
  year: 1992
  end-page: 90
  article-title: Effects of long‐term ozone exposure and drought on the photosynthetic capacity of ponderosa pine (Pinus ponderosa Laws.)
  publication-title: New Phytologist
– volume: 10
  start-page: 185
  year: 1998
  end-page: 190
  article-title: Functional aspects of animal diversity in soil – Introduction and overview
  publication-title: Applied Soil Ecology
– volume: 34
  start-page: 325
  year: 1996
  end-page: 346
  article-title: Root system regulation of whole plant growth
  publication-title: Annual Review of Phytopathology
– volume: 76
  start-page: 71
  year: 1992
  end-page: 77
  article-title: Ectomycorrhizal colonization of loblolly pine seedlings during three growing seasons in response to ozone, acidic precipitation, and soil Mg status
  publication-title: Environmental Pollution
– volume: 20
  start-page: 169
  year: 1991
  end-page: 173
  article-title: Concentration‐dependent effects of ozone on translocation of assimilates in Douglas fir
  publication-title: Journal of Environmental Quality
– volume: 48
  start-page: 247
  year: 1993
  end-page: 260
  article-title: Soil invertebrate/micro– invertebrate interactions: disproportionate effects of species on food web structure and function
  publication-title: Veterinary Parasitology
– volume: 136
  start-page: 627
  year: 1997
  end-page: 643
  article-title: Seasonal changes in root and soil respiration of ozone‐exposed ponderosa pine ( ) grown in different substrates
  publication-title: New Phytologist
– volume: 16
  start-page: 145
  year: 1996
  end-page: 152
  article-title: Root growth and physiology of potted and field‐grown trembling aspen exposed to tropospheric ozone
  publication-title: Tree Physiology
– volume: 147
  start-page: 201
  year: 2000
  end-page: 222
  article-title: Elevated atmospheric CO , fine roots and the response of soil microorganisms: a review and hypothesis
  publication-title: New Phytologist
– volume: 107
  start-page: 465
  year: 2000
  end-page: 472
  article-title: The effect of ozone on below‐ground carbon allocation in what
  publication-title: Environmental Pollution
– volume: 2
  start-page: 259
  year: 1973
  end-page: 264
  article-title: Removal of ozone by soil
  publication-title: Journal of Environmental Quality
– start-page: 261
  year: 1989
  end-page: 278
– volume: 21
  start-page: 1288
  year: 1991
  end-page: 1291
  article-title: Ozone decreases spring root growth and root carbohydrate content in ponderosa pine the year following exposure
  publication-title: Canadian Journal of Forest Research
– volume: 72
  start-page: 113
  year: 1991
  article-title: Ozone stress and mite damage to cottonwood plants alter subsequent litter decomposition: The afterlife effect
  publication-title: (Suppl )Bulletin of the Ecological Society of America
– start-page: 309
  year: 1989
  end-page: 323
– start-page: 239
  year: 1994
  end-page: 253
– volume: 51
  start-page: 131
  year: 1988
  end-page: 152
  article-title: Influence of ozone and simulated acidic rain on microorganisms in the rhizosphere of
  publication-title: Environmental Pollution
– start-page: 53
  year: 2001
  end-page: 62
– volume: 36
  start-page: 171
  year: 1981
  end-page: 176
  article-title: Elevated ozone levels in ambient air in and around Copenhagen indicated by means of tobacco indicator plants
  publication-title: Oikos
– volume: 131
  start-page: 236
  year: 2002
  end-page: 244
  article-title: Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone
  publication-title: Oecologia
– volume: 85
  start-page: 1455
  year: 1995
  end-page: 1460
  article-title: Ozone sensitivity of in relation to cultivar differences, growth stage and growing conditions
  publication-title: Water, Air and Soil Pollution
– volume: 18
  start-page: 291
  year: 1995
  end-page: 302
  article-title: Effect of open‐air fumigation with sulphur dioxide and ozone on phyllosphere and endophytic fungi of conifer needles
  publication-title: Plant, Cell & Environment
– volume: 83
  start-page: 104
  year: 2002
  end-page: 115
  article-title: Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska
  publication-title: Ecology
– volume: 137
  start-page: 389
  year: 1997
  end-page: 397
  article-title: Effect of fertilization on ozone‐induced changes in the metabolism of birch ( ) leaves
  publication-title: New Phytologist
– volume: 22
  start-page: 234
  year: 1976
  end-page: 241
  article-title: The effect of chronic ozone exposures on the metabolite content of ponderosa pine seedlings
  publication-title: Forest Science
– volume: 19
  start-page: 71
  year: 1998
  end-page: 78
  article-title: Predisposition of trees to drought stress by ozone
  publication-title: Tree Physiology
– volume: 27
  start-page: 953
  year: 1998
  end-page: 960
  article-title: Decomposition of blackberry and broomsedge bluestem as influenced by ozone
  publication-title: Journal of Enviornmental Quality
– volume: 5
  start-page: 5
  year: 1991
  article-title: Impairment of gas exchange and structure in birch leaves ( ) caused by two ozone concentrations
  publication-title: Trees
– volume: 85
  start-page: 561
  year: 1997
  end-page: 573
  article-title: Incorporating the soil community into plant population dynamics: the utility of the feedback approach
  publication-title: Journal of Ecology
– volume: 6
  start-page: 345
  year: 2000
  end-page: 355
  article-title: Influence of elevated ozone and limited nitrogen availability on conifer seedlings in an open‐air fumigation system: effects on growth, nutrient content, mycorrhiza, needle ultrastructure, starch and secondary compounds
  publication-title: Global Change Biology
– volume: 82
  start-page: 150
  year: 1995
  end-page: 158
  article-title: Stand characteristics of ozone‐stressed populations of (Pinaceae): extent, development, and physiological consequences of visible injury
  publication-title: American Journal of Botany
– start-page: 255
  year: 1988
  end-page: 271
– volume: 88
  start-page: 559
  year: 1988
  end-page: 563
  article-title: Temporary disturbance of translocation of assimilates in Douglas firs caused by low levels of ozone and sulfur dioxide
  publication-title: Plant Physiology
– volume: 82
  start-page: 211
  year: 1996
  end-page: 230
  article-title: Evidence for nitrogen saturation in the San Bernardino Mountains in Southern California
  publication-title: Forest Ecology and Management
– volume: 34
  start-page: 245
  year: 1950
  end-page: 252
  article-title: Injury to herbaceous plants by smog or air pollution
  publication-title: Plant Disease Reporter
– volume: 108
  start-page: 489
  year: 1988
  end-page: 494
  article-title: Increases in *13C values of radish and soybean plants caused by ozone
  publication-title: New Phytologist
– volume: 6
  start-page: 69
  year: 1992
  end-page: 76
  article-title: Seasonal growth, del 13C in leaves and stem, and phloem structure of birch ( ) under low ozone concentrations
  publication-title: Trees
– volume: 233
  start-page: 203
  year: 2001
  end-page: 211
  article-title: Differences in above‐ and below‐ground responses to ozone between two populations of a perennial grass
  publication-title: Plant and Soil
– volume: 81
  start-page: 207
  year: 1993
  end-page: 221
  article-title: Whole‐plant growth and leaf formation in ozonated hybrid poplar ( × )
  publication-title: Environmental Pollution
– year: 1982
– volume: 105
  start-page: 106
  year: 1994
  article-title: Effects of ozone on needle growth, production and senescence in Ponderosa pine
  publication-title: Plant Physiology Suppl
– start-page: 6
  year: 1978
  end-page: 19
– volume: 14
  start-page: 647
  year: 1994
  end-page: 657
  article-title: Effects of short‐term ozone exposure and soil water availability on the carbon economy of juvenile Douglas‐fir
  publication-title: Tree Physiology
– volume: 25
  start-page: 659
  year: 1988
  end-page: 681
  article-title: Effects of ozone on the regrowth and energy reserves of a ladino clover‐tall fescue pasture
  publication-title: Journal of Applied Ecology
– volume: 129
  start-page: 208
  year: 1959
  end-page: 210
  article-title: Ozone in high concentrations as cause of tobacco leaf injury
  publication-title: Science
– volume: 47
  start-page: 1701
  year: 1969
  end-page: 1712
  article-title: Foliar nutrition and wood growth in red pine: the distribution of radiocarbon photoassimilated by individual branches of young trees
  publication-title: Canadian Journal of Botany
– start-page: 339
  year: 1994
  end-page: 353
– volume: 107
  start-page: 839
  year: 1982
  end-page: 842
  article-title: Effect of ozone injury and light stress on response of tomato to infection by the vesicular–arbuscular mycorrhizal fungus,
  publication-title: Journal of the American Society of Horticultural Science
– volume: 28
  start-page: 305
  year: 1964
  end-page: 308
  article-title: Physiological changes in and ozone susceptibility of the tomato plant after short periods of inadequate oxygen diffusion to the roots
  publication-title: Soil Science Society of America Proceedings
– volume: 36
  start-page: 652
  year: 1985
  end-page: 662
  article-title: Effects of NO and O alone or in combination on kidney bean plants ( L.): growth, partitioning of assimilates and root activities
  publication-title: Journal of Experimental Botany
– volume: 63
  start-page: 2049
  year: 1985
  end-page: 2055
  article-title: Effects of O , SO and acidic rain on mycorrhizal infection in northern red oak seedlings
  publication-title: Canadian Journal of Botany
– volume: 38
  start-page: 107
  year: 1992
  end-page: 118
  article-title: Growth and physiological characteristics of soybean in open‐top chambers in response to ozone and increased atmospheric CO
  publication-title: Agriculture Ecosystems Environment
– volume: 83
  start-page: 1
  year: 1970
  end-page: 24
  article-title: Mycorrhiza and tree nutrition in poor forest soils
  publication-title: Studia Forestalia Succica
– volume: 104
  start-page: 151
  year: 1979
  end-page: 154
  article-title: Effects of ozone and HCI gas on the development of the mycorrhizal fungus, and growth of ‘Troyer’ citrange
  publication-title: Journal of the American Society of Hort Science
– volume: 22
  start-page: 567
  year: 1999
  end-page: 582
  article-title: The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO
  publication-title: Plant, Cell & Environment
– volume: 11
  start-page: 737
  year: 1977
  end-page: 739
  article-title: A study of the potential ways in which ozone could reduce root growth and nodulation of soybean
  publication-title: Atmospheric Environment
– volume: 11
  start-page: 167
  year: 1998
  end-page: 176
  article-title: Carbon allocation in ectomycorrhiza: identification and expression analysis of an monosaccharide transporter
  publication-title: Molecular Plant Microbe–Internations
– year: 1997.
– volume: 8
  start-page: 289
  year: 1991
  end-page: 295
  article-title: New root growth of Douglas‐fir seedlings at low carbon dioxide concentration
  publication-title: Tree Physiology
– volume: 50
  start-page: 1253
  year: 1999
  end-page: 1262
  article-title: Acute exposure to ozone inhibits rapid carbon translocation from source leaves of Pima cotton
  publication-title: Journal of Experimental Botany
– volume: 8
  start-page: 163
  year: 1975
  end-page: 170
  article-title: Atmospheric ozone and plant damage in the United Kingdom
  publication-title: Environmental Pollution
– volume: 68
  start-page: 383
  year: 1990
  end-page: 407
  article-title: Fine root studies in situ and in the laboratory
  publication-title: Environmental Pollution
– volume: 152
  start-page: 455
  year: 2001
  end-page: 461
  article-title: 14C‐allocation of flowering and deblossomed strawberry in response to elevated ozone
  publication-title: New Phytologist
– volume: 48
  start-page: 307
  year: 1997
  end-page: 313
  article-title: Elevated CO reduced O‐ flux and O‐ ‐induced yield losses in soybeans: Possible implications for elevated CO studies
  publication-title: Journal of Experimental Botany
– start-page: 126
  year: 1999
  end-page: 163
– volume: 47
  start-page: 95
  year: 1987
  end-page: 113
  article-title: The impact of ozone on assimilate partitioning in plants: a review
  publication-title: Environmental Pollution
– volume: 10
  start-page: 217
  year: 1998
  end-page: 228
  article-title: Biodiversity in soil ecosystems: the role of energy flow and community stability
  publication-title: Applied Soil Ecology
– volume: 26
  start-page: 23
  year: 1996.
  end-page: 37
  article-title: Changes in growth, leaf abscission, and biomass associated with seasonal tropospheric ozone exposures of Populus tremuloides clones and seedlings
  publication-title: Canadian Journal of Forest Research
– volume: 170
  start-page: 149
  year: 1995
  end-page: 157
  article-title: Decomposition and nitrogen release from leaves of three hardwood species grown under elevated O and/or CO
  publication-title: Plant and Soil
– volume: 15
  start-page: 791
  year: 1985
  end-page: 800
  article-title: Predicting fine root production and turnover by monitoring root starch and soil temperature
  publication-title: Canadian Journal of Forest Research
– volume: 55
  start-page: 1631
  year: 1977
  end-page: 1640
  article-title: Effects of habitat and substrate quality on Douglas fir litter decomposition in western Oregon
  publication-title: Canadian Journal of Botany
– volume: 12
  start-page: 11
  year: 1997
  end-page: 20
  article-title: Nutrition and the ozone sensitivity of birch ( ). II. Carbon balance, water‐use efficiency and nutritional status of the whole plant
  publication-title: Trees
– volume: 11
  start-page: 215
  year: 1992
  end-page: 227
  article-title: Mild ozone exposure alters 14C dynamics in foliage of L
  publication-title: Tree Physiology
– volume: 68
  start-page: 548
  year: 1981
  end-page: 552
  article-title: Membrane‐mediated decrease in root exudation responsible for phosphorus inhibition of vesicular–arbuscular mycorrhiza formation
  publication-title: Plant Physiology
– volume: 2
  start-page: 410
  year: 1999
  end-page: 418
  article-title: Sugars as signaling molecules
  publication-title: Current Opinion in Plant Biology
– year: 1960.
– volume: 75
  start-page: 679
  year: 1985
  end-page: 682
  article-title: Influence of mycorrhizae on the growth of loblolly pine seedlings exposed to zone and sulfur dioxide
  publication-title: Phytopathology
– volume: 64
  start-page: 11
  year: 1990
  end-page: 27
  article-title: Growth, ectomycorrhizae and nonstructural carbohydrates of loblolly pine seedlings exposed to ozone and soil water deficit
  publication-title: Environmental Pollution
– volume: 29
  start-page: 281
  year: 1999
  end-page: 294
  article-title: Simultaneous analyses of chromosomes in root meristems and of the biochemical status of needle tissues of three different clones of Norway spruce trees challenged with moderate ozone levels
  publication-title: European Journal of Forest Pathology
– volume: 6
  start-page: 255
  year: 2000
  end-page: 265
  article-title: Interactions of tropospheric CO and O enrichments and moisture variations on microbial biomass and respiration in soil
  publication-title: Global Change Biology
– volume: 5
  start-page: 771
  year: 1999
  end-page: 780
  article-title: The influence of elevated CO and O on fine roots and mycorrhizas of naturally growing young Scots pine trees during three exposure years
  publication-title: Global Change Biology
– volume: 64
  start-page: 93
  year: 1990
  end-page: 106
  article-title: Ozone alters carbon allocation in loblolly pine: Assessment with carbon‐11 labeling
  publication-title: Environmental Pollution
– volume: 53
  start-page: 203
  year: 2002
  end-page: 224
  article-title: Local and long‐range signaling pathways regulating plant responses to nitrate
  publication-title: Annual Review Plant Biology
– volume: 144
  start-page: 95
  year: 1999
  end-page: 107
  article-title: Interactions of chronic exposure to elevated CO and O levels in the photsynthetic light and dark reactions of European beech ( )
  publication-title: New Phytologist
– volume: 33
  start-page: 801
  year: 1987
  end-page: 808
  article-title: Ozone uptake and effects on transpiration, net photosynthesis, and dark respiration in Scots pine
  publication-title: Forest Science
– volume: 32
  start-page: 373
  year: 1980
  end-page: 390
  article-title: Decomposition rate and chemical changes of Scots pine needle slitter. II. Influence of chemical composition
  publication-title: Ecological Bulletin
– volume: 151
  start-page: 543
  year: 2001
  end-page: 550
  article-title: Do nutrient additions alter carbon sink strength of ectomycorrhizal fungi?
  publication-title: New Phytologist
– volume: 37
  start-page: 373
  year: 1864
  end-page: 376
  article-title: On the influence of ozone and some other chemical agents on germination and vegetation
  publication-title: American Journal of Science Arts
– volume: 33
  start-page: 423
  year: 1993
  end-page: 431
  article-title: Effects of ozone and simulated acidic precipitation on ectomycorrhizal formation on loblolly pine seedlings
  publication-title: Environmental and Experimental Botany
– volume: 13
  start-page: 189
  year: 1998
  end-page: 196
  article-title: Growth responses of seedlings of six Ehrh. Provenances to six ozone exposure regimes
  publication-title: Scandinavian Journal of Forest Research
– volume: 66
  start-page: 724
  year: 1988
  end-page: 726
  article-title: Low levels of ozone increase bean leaf maintenance respiration
  publication-title: Canadian Journal of Botany
– volume: 128
  start-page: 323
  year: 1994
  end-page: 330
  article-title: Influence of different nutrient regimes on the regulation of carbon metabolism in Norway spruce ( [L.] Karst.) Seedlings
  publication-title: New Phytologist
– volume: 296
  start-page: 1120
  year: 2002
  end-page: 1123
  article-title: Stability in real food webs: weak links in long loops
  publication-title: Science
– volume: 21
  start-page: 319
  year: 2001
  end-page: 327
  article-title: Blue‐wild‐rye grass competition increases the effect of ozone on ponderosa pine seedlings
  publication-title: Tree Physiology
– volume: 34
  start-page: 347
  year: 1996
  end-page: 366
  article-title: Ozone and plant health
  publication-title: Annual Review of Phytopathology
– volume: 36
  start-page: 709
  year: 1998
  end-page: 714
  article-title: Stress‐physiological investigations and chromosomal analyses on cloned Norway spruce trees exposed to various levels of ozone in open‐top chambers
  publication-title: Chemosphere
– volume: 131
  start-page: 471
  year: 1995
  end-page: 480
  article-title: Allocation of carbon in mycorrhizal Pinus ponderosa seedlings exposed to ozone
  publication-title: New Phytologist
– volume: 368
  start-page: 734
  year: 1994
  end-page: 737
  article-title: Declining biodiversity can alter the performance of ecosystems
  publication-title: Nature
– volume: 1
  start-page: 305
  year: 1971
  end-page: 312
  article-title: Influence of foliar ozone injury on root development and root surface fungi of pinto bean plants
  publication-title: Environmental Pollution
– volume: 75
  start-page: 2333
  year: 1994
  end-page: 2347
  article-title: Plant production and soil microorganisms in late‐ successional ecosystems: a continental‐scale study
  publication-title: Ecology
– start-page: 94
  year: 1988
  end-page: 115
– ident: e_1_2_9_150_1
  doi: 10.1046/j.1469-8137.1997.00779.x
– ident: e_1_2_9_74_1
  doi: 10.1007/978-94-011-1294-9_18
– ident: e_1_2_9_120_1
  doi: 10.1094/MPMI.1998.11.3.167
– ident: e_1_2_9_125_1
  doi: 10.1104/pp.73.1.185
– ident: e_1_2_9_135_1
  doi: 10.1111/j.1469-8137.1978.tb01627.x
– ident: e_1_2_9_157_1
  doi: 10.1016/0269-7491(90)90107-N
– ident: e_1_2_9_117_1
  doi: 10.1016/0167-8809(92)90172-8
– ident: e_1_2_9_134_1
  doi: 10.1111/j.1469-8137.1994.tb04032.x
– ident: e_1_2_9_178_1
  doi: 10.1046/j.1365-3040.2002.00859.x
– ident: e_1_2_9_29_1
  doi: 10.1016/S0981-9428(01)01291-8
– ident: e_1_2_9_44_1
  doi: 10.1139/b77-190
– volume: 12
  start-page: 11
  year: 1997
  ident: e_1_2_9_98_1
  article-title: Nutrition and the ozone sensitivity of birch (Betula pendula). II. Carbon balance, water‐use efficiency and nutritional status of the whole plant
  publication-title: Trees
– ident: e_1_2_9_22_1
  doi: 10.1007/BF02183063
– volume: 13
  start-page: 33
  year: 1979
  ident: e_1_2_9_13_1
  article-title: Stomatal responses of white bean to O3 and SO2 singly or in combination
  publication-title: Atmospheric Environment
– ident: e_1_2_9_63_1
  doi: 10.1007/978-3-642-70118-4
– ident: e_1_2_9_92_1
  doi: 10.1016/0013-9327(71)90023-1
– ident: e_1_2_9_162_1
  doi: 10.1016/0098-8472(92)90035-Z
– ident: e_1_2_9_75_1
  doi: 10.1046/j.1365-2486.2000.00310.x
– ident: e_1_2_9_95_1
  doi: 10.1016/0269-7491(93)90203-Z
– ident: e_1_2_9_69_1
  doi: 10.1016/S0176-1617(96)80250-1
– ident: e_1_2_9_57_1
  doi: 10.1111/j.1469-8137.1994.tb03977.x
– volume: 34
  start-page: 245
  year: 1950
  ident: e_1_2_9_108_1
  article-title: Injury to herbaceous plants by smog or air pollution
  publication-title: Plant Disease Reporter
– ident: e_1_2_9_173_1
  doi: 10.1046/j.1469-8137.1998.00100.x
– ident: e_1_2_9_172_1
  doi: 10.1007/BF00477186
– ident: e_1_2_9_51_1
  doi: 10.1104/pp.88.3.559
– ident: e_1_2_9_64_1
  doi: 10.1007/978-94-015-9803-3_4
– ident: e_1_2_9_151_1
  doi: 10.1016/S0378-1127(98)00290-4
– ident: e_1_2_9_152_1
  doi: 10.1016/0269-7491(88)90202-3
– ident: e_1_2_9_43_1
  doi: 10.1093/jxb/48.2.307
– ident: e_1_2_9_111_1
  doi: 10.1007/BF02407207
– ident: e_1_2_9_116_1
  doi: 10.1080/02827589809382976
– ident: e_1_2_9_77_1
  doi: 10.1046/j.1365-2486.1999.00274.x
– volume: 64
  start-page: 329
  year: 1990
  ident: e_1_2_9_15_1
  article-title: Regression analysis to describe yield and metabolic responses of beans (Phaseolus vulgaris) to chronic ozone stress
  publication-title: Angewandte Botanik
– ident: e_1_2_9_107_1
  doi: 10.1104/pp.82.1.336
– ident: e_1_2_9_67_1
  doi: 10.1890/06-0822.1
– ident: e_1_2_9_142_1
  doi: 10.2134/agronj1958.00021962005000090019x
– volume: 38
  start-page: 102
  year: 1992
  ident: e_1_2_9_159_1
  article-title: Ozone impacts on seasonal foliage dynamics of young loblolly pine
  publication-title: Forest Science
  doi: 10.1093/forestscience/38.1.102
– volume: 83
  start-page: 1
  year: 1970
  ident: e_1_2_9_20_1
  article-title: Mycorrhiza and tree nutrition in poor forest soils
  publication-title: Studia Forestalia Succica
– ident: e_1_2_9_91_1
  doi: 10.1093/treephys/19.2.71
– volume: 33
  start-page: 801
  year: 1987
  ident: e_1_2_9_155_1
  article-title: Ozone uptake and effects on transpiration, net photosynthesis, and dark respiration in Scots pine
  publication-title: Forest Science
  doi: 10.1093/forestscience/33.3.801
– ident: e_1_2_9_21_1
  doi: 10.1016/0004-6981(77)90182-2
– ident: e_1_2_9_96_1
  doi: 10.1007/BF00226583
– ident: e_1_2_9_70_1
  doi: 10.1016/0098-8472(84)90062-5
– start-page: 261
  volume-title: Effects of air pollution on western forests (an A&WMA Symposium; June; Anaheim CA)
  year: 1989
  ident: e_1_2_9_33_1
– ident: e_1_2_9_85_1
  doi: 10.1046/j.1469-8137.1997.00843.x
– ident: e_1_2_9_62_1
  doi: 10.1093/treephys/21.2-3.173
– ident: e_1_2_9_129_1
  doi: 10.1038/268329a0
– ident: e_1_2_9_133_1
  doi: 10.1139/b69-247
– ident: e_1_2_9_80_1
  doi: 10.2134/jeq1998.00472425002700040032x
– ident: e_1_2_9_149_1
  doi: 10.1146/annurev.phyto.34.1.347
– ident: e_1_2_9_41_1
  doi: 10.2307/2269570
– ident: e_1_2_9_78_1
  doi: 10.1007/BF00376884
– start-page: 195
  volume-title: Immissionsökologische Forschung Im Wandel der Zeit
  year: 1994
  ident: e_1_2_9_165_1
– ident: e_1_2_9_35_1
  doi: 10.1016/0269-7491(92)90118-T
– ident: e_1_2_9_171_1
  doi: 10.1093/treephys/21.16.1205
– ident: e_1_2_9_61_1
  doi: 10.1016/S0269-7491(98)00130-4
– volume: 37
  start-page: 5
  year: 1991
  ident: e_1_2_9_2_1
  article-title: Effects of ozone and acidic deposition on carbon allocation and mycorrhizal colonization of Pinus Taeda L
  publication-title: Seedlings Forest Science
  doi: 10.1093/forestscience/37.1.5
– ident: e_1_2_9_53_1
  doi: 10.1046/j.1469-8137.1999.00486.x
– ident: e_1_2_9_25_1
  doi: 10.1093/treephys/16.1-2.145
– ident: e_1_2_9_112_1
– ident: e_1_2_9_54_1
  doi: 10.1093/jxb/50.336.1253
– start-page: 115
  volume-title: Proceedings of the Kuopio meeting on plant damages caused by air pollution
  year: 1976
  ident: e_1_2_9_131_1
– ident: e_1_2_9_132_1
  doi: 10.1016/0098-8472(93)90045-H
– ident: e_1_2_9_102_1
  doi: 10.1016/S0269-7491(99)00122-0
– volume: 27
  start-page: 859
  year: 2000
  ident: e_1_2_9_55_1
  article-title: Ozone inhibits phloem loading from a transport pool: compartmental efflux analysis in Pima cotton
  publication-title: Australian Journal of Plant Physiology
– volume: 10
  start-page: 185
  year: 1998
  ident: e_1_2_9_180_1
  article-title: Functional aspects of animal diversity in soil – Introduction and overview
  publication-title: Applied Soil Ecology
– ident: e_1_2_9_106_1
  doi: 10.1016/0269-7491(90)90092-Q
– ident: e_1_2_9_82_1
  doi: 10.1146/annurev.arplant.47.1.509
– ident: e_1_2_9_103_1
  doi: 10.1104/pp.73.3.630
– ident: e_1_2_9_144_1
  doi: 10.2307/3544442
– ident: e_1_2_9_72_1
  doi: 10.1046/j.1365-2486.2000.00307.x
– ident: e_1_2_9_88_1
  doi: 10.1104/pp.010497
– ident: e_1_2_9_66_1
  doi: 10.1126/science.129.3343.208
– ident: e_1_2_9_71_1
  doi: 10.1016/0004-6981(81)90178-5
– ident: e_1_2_9_9_1
  doi: 10.1016/0269-7491(91)90051-W
– ident: e_1_2_9_181_1
  doi: 10.1016/S0045-6535(97)10112-6
– ident: e_1_2_9_105_1
  doi: 10.2307/1936576
– ident: e_1_2_9_122_1
  doi: 10.1046/j.1365-3040.2001.00678.x
– ident: e_1_2_9_148_1
  doi: 10.1023/A:1010351406931
– ident: e_1_2_9_109_1
  doi: 10.1104/pp.120.4.1015
– ident: e_1_2_9_83_1
  doi: 10.1016/B978-012424162-6/50017-X
– volume: 10
  start-page: 218
  year: 1980
  ident: e_1_2_9_143_1
  article-title: Root growth potential: its development and expression in forest tree seedlings
  publication-title: New Zealand Journal of Forest Science
– ident: e_1_2_9_97_1
  doi: 10.1023/A:1005267214560
– ident: e_1_2_9_36_1
  doi: 10.1007/BF00388079
– ident: e_1_2_9_52_1
  doi: 10.1104/pp.68.3.548
– ident: e_1_2_9_114_1
  doi: 10.1046/j.1365-3040.1999.00432.x
– ident: e_1_2_9_168_1
  doi: 10.1073/pnas.96.23.13577
– volume: 104
  start-page: 151
  year: 1979
  ident: e_1_2_9_100_1
  article-title: Effects of ozone and HCI gas on the development of the mycorrhizal fungus, Glomus fasciculatus and growth of ‘Troyer’ citrange
  publication-title: Journal of the American Society of Hort Science
  doi: 10.21273/JASHS.104.2.151
– ident: e_1_2_9_42_1
  doi: 10.1007/BF00323541
– ident: e_1_2_9_49_1
  doi: 10.1093/treephys/14.6.647
– ident: e_1_2_9_81_1
  doi: 10.1007/s004420100656
– ident: e_1_2_9_141_1
  doi: 10.1016/S0176-1617(96)80256-2
– ident: e_1_2_9_147_1
  doi: 10.1038/369058a0
– ident: e_1_2_9_39_1
  doi: 10.1016/0378-1127(95)03668-7
– start-page: 255
  volume-title: Air pollution and plant metabolism
  year: 1988
  ident: e_1_2_9_177_1
– ident: e_1_2_9_37_1
  doi: 10.1890/1051-0761(2000)010[0484:SIAMCA]2.0.CO;2
– ident: e_1_2_9_76_1
  doi: 10.1139/x26-003
– ident: e_1_2_9_68_1
  doi: 10.1086/417659
– ident: e_1_2_9_7_1
  doi: 10.1093/treephys/21.5.319
– ident: e_1_2_9_73_1
  doi: 10.1093/jxb/36.4.652
– ident: e_1_2_9_94_1
  doi: 10.1007/BF00225329
– ident: e_1_2_9_84_1
  doi: 10.1034/j.1399-3054.2001.1110307.x
– ident: e_1_2_9_26_1
  doi: 10.1016/0269-7491(87)90040-6
– ident: e_1_2_9_60_1
  doi: 10.1007/978-1-4612-1436-6_7
– ident: e_1_2_9_87_1
  doi: 10.1890/0012-9658(2002)083[0104:BEFCCO]2.0.CO;2
– ident: e_1_2_9_46_1
  doi: 10.1093/treephys/11.3.215
– ident: e_1_2_9_164_1
  doi: 10.2134/jeq1973.00472425000200030006x
– ident: e_1_2_9_140_1
  doi: 10.1007/BF02182683
– volume-title: Air quality criteria for ozone and related photochemical oxidants, II.
  year: 1996
  ident: e_1_2_9_170_1
– ident: e_1_2_9_56_1
  doi: 10.1093/jexbot/51.346.919
– ident: e_1_2_9_126_1
  doi: 10.1111/j.1399-3054.1997.tb04782.x
– start-page: 6
  volume-title: Proceedings of the IUFRO symposium on root physiology and symbiosis Nancy, France
  year: 1978
  ident: e_1_2_9_30_1
– ident: e_1_2_9_79_1
  doi: 10.1016/0378-1127(95)03603-2
– ident: e_1_2_9_17_1
  doi: 10.2307/2960528
– ident: e_1_2_9_138_1
  doi: 10.1201/9780203909423.ch12
– ident: e_1_2_9_115_1
  doi: 10.1016/0304-4017(93)90160-O
– ident: e_1_2_9_182_1
  doi: 10.1046/j.1439-0329.1999.00156.x
– ident: e_1_2_9_10_1
  doi: 10.1111/j.1469-8137.1995.tb03084.x
– ident: e_1_2_9_24_1
  doi: 10.1093/jexbot/52.362.1901
– ident: e_1_2_9_90_1
  doi: 10.1094/Phyto-75-679
– ident: e_1_2_9_166_1
  doi: 10.1023/A:1015802823398
– ident: e_1_2_9_6_1
  doi: 10.1139/b88-105
– volume: 32
  start-page: 373
  year: 1980
  ident: e_1_2_9_16_1
  article-title: Decomposition rate and chemical changes of Scots pine needle slitter. II. Influence of chemical composition
  publication-title: Ecological Bulletin
– ident: e_1_2_9_113_1
  doi: 10.1890/0012-9658(1998)079[1595:MODWPC]2.0.CO;2
– ident: e_1_2_9_124_1
  doi: 10.1007/978-94-011-1294-9_13
– ident: e_1_2_9_127_1
  doi: 10.1007/s00442-002-0868-x
– ident: e_1_2_9_139_1
  doi: 10.1139/b85-287
– ident: e_1_2_9_128_1
  doi: 10.1007/978-94-009-5925-5
– ident: e_1_2_9_136_1
  doi: 10.2307/2403853
– ident: e_1_2_9_65_1
  doi: 10.1146/annurev.en.36.010191.000325
– start-page: 94
  volume-title: Air Pollution and Plant Metabolism
  year: 1988
  ident: e_1_2_9_4_1
– ident: e_1_2_9_45_1
  doi: 10.1146/annurev.arplant.53.100301.135256
– ident: e_1_2_9_153_1
  doi: 10.1016/S1369-5266(99)00014-X
– ident: e_1_2_9_34_1
  doi: 10.1111/j.1469-8137.1991.tb00983.x
– ident: e_1_2_9_58_1
  doi: 10.1111/j.1469-8137.1988.tb04191.x
– ident: e_1_2_9_19_1
  doi: 10.1046/j.1469-8137.2001.00180.x
– ident: e_1_2_9_175_1
  doi: 10.1046/j.1469-8137.1998.00277.x
– ident: e_1_2_9_32_1
  doi: 10.1046/j.0028-646X.2001.00270.x
– ident: e_1_2_9_118_1
  doi: 10.1038/368734a0
– ident: e_1_2_9_163_1
  doi: 10.1007/978-1-4612-3060-1_12
– ident: e_1_2_9_14_1
  doi: 10.1016/0013-9327(75)90099-3
– ident: e_1_2_9_185_1
  doi: 10.2307/1940888
– ident: e_1_2_9_154_1
  doi: 10.1007/BF00228785
– ident: e_1_2_9_169_1
  doi: 10.2134/jeq1973.00472425000200020019x
– ident: e_1_2_9_8_1
  doi: 10.1139/x91-179
– ident: e_1_2_9_183_1
  doi: 10.1023/A:1010321509628
– ident: e_1_2_9_137_1
  doi: 10.1016/0038-0717(91)90022-C
– ident: e_1_2_9_161_1
  doi: 10.1016/S0378-1127(00)00368-6
– ident: e_1_2_9_179_1
  doi: 10.1016/0269-7491(90)90040-J
– ident: e_1_2_9_18_1
  doi: 10.1111/j.1469-8137.1992.tb00055.x
– ident: e_1_2_9_86_1
  doi: 10.2475/ajs.s2-37.111.373
– ident: e_1_2_9_5_1
  doi: 10.1111/j.1469-8137.1988.tb00268.x
– volume: 107
  start-page: 839
  year: 1982
  ident: e_1_2_9_101_1
  article-title: Effect of ozone injury and light stress on response of tomato to infection by the vesicular–arbuscular mycorrhizal fungus, Glomus fasciculatus
  publication-title: Journal of the American Society of Horticultural Science
  doi: 10.21273/JASHS.107.5.839
– ident: e_1_2_9_119_1
  doi: 10.1098/rstb.1995.0025
– ident: e_1_2_9_38_1
  doi: 10.1046/j.1469-8137.2000.00688.x
– ident: e_1_2_9_48_1
  doi: 10.1111/j.1469-8137.1991.tb01027.x
– volume: 105
  start-page: 106
  year: 1994
  ident: e_1_2_9_130_1
  article-title: Effects of ozone on needle growth, production and senescence in Ponderosa pine
  publication-title: Plant Physiology Suppl
– ident: e_1_2_9_93_1
  doi: 10.1139/x85-129
– ident: e_1_2_9_176_1
  doi: 10.1111/j.1469-8137.1994.tb04016.x
– ident: e_1_2_9_186_1
  doi: 10.1046/j.1469-8137.2002.00446.x
– ident: e_1_2_9_89_1
  doi: 10.1111/j.1365-3040.1995.tb00364.x
– ident: e_1_2_9_121_1
  doi: 10.1126/science.1068326
– ident: e_1_2_9_50_1
  doi: 10.2134/jeq1991.00472425002000010027x
– ident: e_1_2_9_23_1
  doi: 10.1016/S0038-0717(00)00151-6
– volume-title: Air pollution as it affects agriculture in New Jersey
  year: 1960
  ident: e_1_2_9_27_1
– ident: e_1_2_9_158_1
  doi: 10.2136/sssaj1964.03615995002800030006x
– ident: e_1_2_9_3_1
  doi: 10.1146/annurev.phyto.34.1.325
– volume: 72
  start-page: 113
  year: 1991
  ident: e_1_2_9_40_1
  article-title: Ozone stress and mite damage to cottonwood plants alter subsequent litter decomposition: The afterlife effect
  publication-title: (Suppl )Bulletin of the Ecological Society of America
– volume-title: Mycorrhizal symbiosis
  year: 1997
  ident: e_1_2_9_156_1
– ident: e_1_2_9_174_1
  doi: 10.1093/treephys/13.2.157
– volume: 16
  start-page: 14
  year: 1970
  ident: e_1_2_9_47_1
  article-title: Redistribution of ‘C‐labeled reserve food in young red pines during shoot elongation
  publication-title: Forest Science
– start-page: 309
  volume-title: Effects of air pollution on western forests.
  year: 1989
  ident: e_1_2_9_110_1
– ident: e_1_2_9_146_1
  doi: 10.1016/S0929-1393(98)00121-8
– ident: e_1_2_9_11_1
  doi: 10.1093/treephys/17.6.377
– ident: e_1_2_9_184_1
  doi: 10.1046/j.1469-8137.2000.00687.x
– ident: e_1_2_9_12_1
  doi: 10.1093/treephys/17.12.805
– ident: e_1_2_9_123_1
  doi: 10.1002/j.1537-2197.1995.tb11484.x
– volume: 28
  start-page: 60
  year: 1982
  ident: e_1_2_9_104_1
  article-title: Effects of chronic air pollution stress on photosynthesis, carbon allocation, and growth of white pine trees
  publication-title: Forest Science
– ident: e_1_2_9_31_1
  doi: 10.1093/treephys/8.3.289
– ident: e_1_2_9_160_1
  doi: 10.1139/b88-209
– ident: e_1_2_9_99_1
  doi: 10.1111/j.1469-8137.1983.tb04497.x
– ident: e_1_2_9_145_1
  doi: 10.1023/A:1004929801839
– ident: e_1_2_9_28_1
  doi: 10.1104/pp.91.1.427
– volume: 22
  start-page: 234
  year: 1976
  ident: e_1_2_9_167_1
  article-title: The effect of chronic ozone exposures on the metabolite content of ponderosa pine seedlings
  publication-title: Forest Science
– ident: e_1_2_9_59_1
  doi: 10.1111/j.1469-8137.1989.tb02359.x
SSID ssj0009562
Score 2.3020422
SecondaryResourceType review_article
Snippet The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still,...
Contents Summary 213 I. Introduction 213 II. Source–sink model: carbohydrate signaling 214 III. Effect of ozone on above‐ground sources and sinks 216 IV....
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 213
SubjectTerms Acid soils
Animal, plant and microbial ecology
Applied ecology
biochemical pathways
Biological and medical sciences
carbohydrate signaling
carbohydrates
carbon
carbon allocation
Carbon dioxide
dry matter partitioning
ecosystems
Ecotoxicology, biological effects of pollution
environmental exposure
Fundamental and applied biological sciences. Psychology
growth and development
Lead
Leaves
Non agrochemicals pollutants
Ozone
Phytopathology. Animal pests. Plant and forest protection
Pine trees
plant development
plant growth
Plant roots
Plants
Pollution effects and side effects of agrochemicals on crop plants and forest trees. Other anthropogenic factors
Pollution effects. Side effects of agrochemicals
rhizodeposition
root systems
roots
Seedlings
soil
Soil ecology
soil food webs
soil processes
source-sink relationships
source–sink balance
symbionts
symbiosis
Tansley Reviews
Terrestrial environment, soil, air
troposphere
tropospheric ozone
Title Source-Sink Balance and Carbon Allocation below Ground in Plants Exposed to Ozone
URI https://www.jstor.org/stable/1514029
https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1469-8137.2003.00674.x
https://www.ncbi.nlm.nih.gov/pubmed/33873636
https://www.proquest.com/docview/19191394
https://www.proquest.com/docview/2515688768
https://www.proquest.com/docview/2524267913
https://www.proquest.com/docview/49055624
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6higMXngXCoxiJa1ZN_IqPgKhWSFSIUmlvkR07EuoqWXV3RemJ_8A_5JcwYydbFrWoQtxWSuzszs7Y33i-fAPwShWFV1rZ3GgZcsG9zJ0MmKUEzk0VvAvxQP_DoZoei_czORv4T_QuTNKH2By4UWTE9ZoC3LrUhWQ_qtvGIKcjLK6jrCcxtLSYEJ4k6hbho0_lb_q7qhwFmZVQs4HUMxY4L5toa6dKZEViTtolGq9NXS8ug6XbKDduUwd34GT8gYmdcjJZr9ykOf9D-_H_WOAu3B7QLHud3O8e3Ajdfbj5pkfE-e0BHB3FysDP7z-WmPEyRyzKJjDbedbYU9d3jKr-6cyQuTDvvzJ6yQQvf-nYYk4MHRbOFv0yeLbqWX_ed2EXjg_efX47zYcmDnmjcOvLfWk8pmS8aqWTQlOhU7a6xeRVBeGcsV4IUXreNB7XXeMbw2XhSy6b1grlHH8IOx1O_xiYohoortDoQUYEi9Cz8iUuIm3BXfDKZaDHP6xuBoVzarQxr2OlXaiU6ZiaLEb9N3kdLVafZVBsRi6Sysc1xuxGn7gYgNhzvzQZ7G35yMX1WOPmOoMXo9PUGMtUoLFd6NfLGnNnUmkVGby84g5Eo1LhvqCqv91DsEvjTFc_SRgSUSrxSY-S126-JeeV5oqrDGT0vWvboz78OMUPT_5x3FO4FXmSkRD_DHZWp-vwHPHeyu3FSP4Fmy5E6A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hggQXnqVNgdZIXLOQ-BUfaUW1QLtCtJX2FsWxIyFWyaq7K9qe-A_8Q34JM06yZVGLKsQtUmInmczY3zzyDcArlSROaVXERksfC-5kbKVHL8VzbjLvrA8B_cORGp6ID2M57toB0b8wLT_EMuBGlhHWazJwCki_7tKSvZVTDIvrwOtJJVpaDBBQ3qYG38G_-pz-xsCr0p6SWQk17sp6-hTnVTOt7FVtuSLVThYzFF_V9r24Cpiu4tywUe0_gEn_im19ytfBYm4H5cUf7I__SQYP4X4HaNnbVgMfwS1fP4Y7uw2CzvMncHQUkgM_v_-YodPLLBVSlp4VtWNlcWqbmlHivw0bMusnzTdG_5ng6S81m06oSIf5s2kz847NG9ZcNLVfh5P9d8d7w7jr4xCXCne_2KXGoVfGs0paKTTlOmWlK_RflRfWmsIJIVLHy9Lh0mtcabhMXMplWRVCWcufwlqN028CU5QGxUUalcgIXyD6zFyK60iVcOudshHo_ovlZUdyTr02JnlItgvVOjsmJ4lRC06eB4nlZxEky5HTlujjBmPWg1JcDkD4-SY1EWyvKMnl-ZDm5jqCnV5rcjRnytEUtW8WsxzdZyJqFRG8vOYKBKRS4dagsr9dQ8hL40zX30kY4lFK8U4brdoun5LzTHPFVQQyKN-N5ZGPPg3xYOsfx-3A3eHx4UF-8H708RncC2WToT7-OazNTxf-BcK_ud0OZv0L3o5JAw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtQwEB2hghAvXAuES2skXrM08S1-BMpqua0qSqV9i-LYkVBXyaq7q16e-Af-kC9hxkm2LGpRhXiLlNhJJjP2GZ-TMcBLlSROaVXERksfC-5kbKXHLMVzbjLvrA8L-p_HanQgPkzkpNM_0b8wbX2I1YIbRUYYrynAZ6561bGSfZDTEhbXoawnKbS0GCCevC7UTkYevvsl_a0Ar0r7isxKqEmn6ukZzot6WpuqWrUiSSeLOVqvare9uAiXrsPcME8N78Bh_4atPOVwsFzYQXn2R_HH_2OCu3C7g7Psdet_9-Car-_DjTcNQs7TB7C_H6iBn99_zDHlZZZklKVnRe1YWRzZpmZE-7eLhsz6aXPM6C8TPP2tZrMpSXSYP5k1c-_YomHNWVP7TTgYvvv6dhR3uzjEpcK5L3apcZiT8aySVgpNTKesdIXZq_LCWlM4IUTqeFk6HHiNKw2XiUu5LKtCKGv5Q9iosfvHwBSRoDhEowsZ4QvEnplLcRSpEm69UzYC3X-wvOxKnNNOG9M8UO1CtamOyclitAEnz4PF8pMIklXLWVvm4wptNoNPnDdA8LmTmgi21nzk_HwgubmOYLt3mhyDmRiaovbNcp5j8kxlWkUELy65AuGoVDgxqOxv1xDu0tjT5XcShqoopXinR63Xrp6S80xzxVUEMvjele2Rj_dGePDkH9ttw8293WH-6f3441O4FTSTQRz_DDYWR0v_HLHfwm6FoP4F1pFHuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Source-sink+balance+and+carbon+allocation+below+ground+in+plants+exposed+to+ozone&rft.jtitle=The+New+phytologist&rft.au=Andersen%2C+Christian+P&rft.date=2003-02-01&rft.issn=1469-8137&rft.eissn=1469-8137&rft.volume=157&rft.issue=2&rft.spage=213&rft_id=info:doi/10.1046%2Fj.1469-8137.2003.00674.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon