Improvement in blastocyst quality by neurotensin signaling via its receptors in bovine spermatozoa during in vitro fertilization

Previously, we reported that neurotensin (NT), which is expressed in the uterus and oviduct, enhanced bovine sperm capacitation and acrosome reactions. As NT mRNA expression in bovine oviducts increases dramatically in the follicular phase, we hypothesized that NT modulates fertilization and subsequ...

Full description

Saved in:
Bibliographic Details
Published inJournal of Reproduction and Development Vol. 65; no. 2; pp. 147 - 153
Main Authors OIKAWA, Toshinori, YAJIMA, Risa, HARA, Kenshiro, HIRADATE, Yuuki, NUMABE, Takashi, UMEZU, Kohei, TANEMURA, Kentaro, YANAI, Rin
Format Journal Article
LanguageEnglish
Published Japan THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT 2019
Japan Science and Technology Agency
The Society for Reproduction and Development
Subjects
Online AccessGet full text
ISSN0916-8818
1348-4400
DOI10.1262/jrd.2018-147

Cover

Loading…
Abstract Previously, we reported that neurotensin (NT), which is expressed in the uterus and oviduct, enhanced bovine sperm capacitation and acrosome reactions. As NT mRNA expression in bovine oviducts increases dramatically in the follicular phase, we hypothesized that NT modulates fertilization and subsequent conception in cattle. The objective of this study was to evaluate the effect of NT on embryo development and blastocyst quality. The rate of embryo cleavage was significantly increased by the addition of NT to the fertilization medium. Furthermore, the total number of cells and numbers of cells in the inner cell mass of blastocysts were significantly increased by NT during in vitro fertilization (IVF). These results suggested that NT enhanced the efficiency of early bovine embryo development and blastocyst quality. The expression of NT receptors (NTRs) in sperm, testes, oocytes, and cumulus cells was evaluated to determine whether NT acted via NTRs in sperm alone or in both male and female reproductive cells during IVF. Immunocytochemistry and reverse transcription polymerase chain reaction revealed that NTR1 and NTR2 were expressed in sperm and testes, but not in oocytes and cumulus cells. We propose that NT selectively acts upon sperm via NTR1 and NTR2 during IVF to improve the cleavage rate and quality of blastocysts, which are important determinants of sperm quality for successful conception. This research supports our hypothesis that NT acts as a key modulator of fertilization and conception in cattle. Further studies are necessary to apply our findings to the industrial framework of bovine reproduction.
AbstractList Previously, we reported that neurotensin (NT), which is expressed in the uterus and oviduct, enhanced bovine sperm capacitation and acrosome reactions. As NT mRNA expression in bovine oviducts increases dramatically in the follicular phase, we hypothesized that NT modulates fertilization and subsequent conception in cattle. The objective of this study was to evaluate the effect of NT on embryo development and blastocyst quality. The rate of embryo cleavage was significantly increased by the addition of NT to the fertilization medium. Furthermore, the total number of cells and numbers of cells in the inner cell mass of blastocysts were significantly increased by NT during in vitro fertilization (IVF). These results suggested that NT enhanced the efficiency of early bovine embryo development and blastocyst quality. The expression of NT receptors (NTRs) in sperm, testes, oocytes, and cumulus cells was evaluated to determine whether NT acted via NTRs in sperm alone or in both male and female reproductive cells during IVF. Immunocytochemistry and reverse transcription polymerase chain reaction revealed that NTR1 and NTR2 were expressed in sperm and testes, but not in oocytes and cumulus cells. We propose that NT selectively acts upon sperm via NTR1 and NTR2 during IVF to improve the cleavage rate and quality of blastocysts, which are important determinants of sperm quality for successful conception. This research supports our hypothesis that NT acts as a key modulator of fertilization and conception in cattle. Further studies are necessary to apply our findings to the industrial framework of bovine reproduction.
Previously, we reported that neurotensin (NT), which is expressed in the uterus and oviduct, enhanced bovine sperm capacitation and acrosome reactions. As NT mRNA expression in bovine oviducts increases dramatically in the follicular phase, we hypothesized that NT modulates fertilization and subsequent conception in cattle. The objective of this study was to evaluate the effect of NT on embryo development and blastocyst quality. The rate of embryo cleavage was significantly increased by the addition of NT to the fertilization medium. Furthermore, the total number of cells and numbers of cells in the inner cell mass of blastocysts were significantly increased by NT during in vitro fertilization (IVF). These results suggested that NT enhanced the efficiency of early bovine embryo development and blastocyst quality. The expression of NT receptors (NTRs) in sperm, testes, oocytes, and cumulus cells was evaluated to determine whether NT acted via NTRs in sperm alone or in both male and female reproductive cells during IVF. Immunocytochemistry and reverse transcription polymerase chain reaction revealed that NTR1 and NTR2 were expressed in sperm and testes, but not in oocytes and cumulus cells. We propose that NT selectively acts upon sperm via NTR1 and NTR2 during IVF to improve the cleavage rate and quality of blastocysts, which are important determinants of sperm quality for successful conception. This research supports our hypothesis that NT acts as a key modulator of fertilization and conception in cattle. Further studies are necessary to apply our findings to the industrial framework of bovine reproduction.
Author NUMABE, Takashi
OIKAWA, Toshinori
TANEMURA, Kentaro
YANAI, Rin
YAJIMA, Risa
HIRADATE, Yuuki
UMEZU, Kohei
HARA, Kenshiro
Author_xml – sequence: 1
  fullname: OIKAWA, Toshinori
  organization: Miyagi Prefectural Livestock Experiment Station, Miyagi 989-6445, Japan
– sequence: 1
  fullname: YAJIMA, Risa
  organization: Miyagi Prefectural Livestock Experiment Station, Miyagi 989-6445, Japan
– sequence: 1
  fullname: HARA, Kenshiro
  organization: Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-0845, Japan
– sequence: 1
  fullname: HIRADATE, Yuuki
  organization: Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-0845, Japan
– sequence: 1
  fullname: NUMABE, Takashi
  organization: Miyagi Agricultural Development Corporation, Miyagi 981-0914, Japan
– sequence: 1
  fullname: UMEZU, Kohei
  organization: Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-0845, Japan
– sequence: 1
  fullname: TANEMURA, Kentaro
  organization: Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-0845, Japan
– sequence: 1
  fullname: YANAI, Rin
  organization: Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-0845, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30662011$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1rGzEQxZeS0jhpbz0XQa_dVN_SXgpNaFJDoJf2LLS7s47MWnIkrcE59U-v_BHTFHqRQO-93wyjuajOfPBQVe8JviJU0s_L2F9RTHRNuHpVzQjjuuYc47Nqhhsia62JPq8uUlpizKiQ_E11zrCUJUNm1e_5ah3DBlbgM3IetaNNOXTblNHjZEeXt6jdIg9TDBl8Ko7kFr4IfoE2ziKXE4rQwTqHmPaAsHEeUFpDXNkcnoJF_RR39iJuXI4BDRCzG92TzS74t9XrwY4J3h3vy-rX7befN9_r-x9385uv93Unqcr1MLQCK2t1T5tGKU2hFVJQQQRvFZcMd0oxBlISTomARmgtGWtEy7XtOVbsspofuH2wS7OObmXj1gTrzP4hxIWxpa1uBNO3FCyBQTLCeT-oVnZNSzXVXdsoELqwvhxY66ldQd-V2UU7voC-VLx7MIuwMZIrRggrgI9HQAyPE6RslmGKZazJUMoaSZlgu5Y__F3mxH_-vWL4dDB0MaQUYThZCDa75TBlOcxuOUxZjmKn_9g7l_efUJp04_9C14fQMmW7gFOF52HtzFIYuj-OoZPYPdhowLM_B9XXqw
CitedBy_id crossref_primary_10_1016_j_xfss_2020_03_001
crossref_primary_10_1371_journal_pone_0232536
crossref_primary_10_3390_ijms24054594
Cites_doi 10.1095/biolreprod.113.112789
10.1095/biolreprod65.5.1606
10.1073/pnas.1717974115
10.1016/j.pneurobio.2007.06.006
10.1262/jrd.2016-055
10.1002/jcp.26883
10.1262/jrd.2015-073
10.1016/S0165-6147(99)01357-7
10.1016/S1472-6483(10)61960-8
10.1530/jrf.0.1090153
10.1093/humrep/des417
10.1016/j.anireprosci.2011.07.001
10.1016/0093-691X(92)90096-A
10.1002/rmb2.12021
10.1073/pnas.1018202108
10.1038/s41598-018-21335-8
10.1186/s12958-015-0077-1
10.1002/ijc.22407
10.1016/j.theriogenology.2014.01.041
10.1262/jrd.2017-041
10.3168/jds.2017-13138
10.1262/jrd.1056S15
10.1016/S0021-9258(17)32938-1
10.1262/jrd.2015-067
10.1262/jrd.2014-140
10.1002/jez.1402260120
10.1002/j.1939-4640.1991.tb00262.x
10.1262/jrd.1056S61
10.1016/j.anireprosci.2013.01.010
10.1016/j.theriogenology.2015.12.001
10.1046/j.0022-202x.2001.01439.x
10.3168/jds.S0022-0302(01)70158-0
10.1111/j.1476-5381.1995.tb13371.x
10.1016/j.peptides.2006.04.027
10.1016/S0093-691X(99)00162-4
10.1016/j.biochi.2011.04.024
10.1016/j.peptides.2006.08.009
10.1262/jrd.19031
10.1371/journal.pone.0036627
10.1111/j.1439-0531.2004.00559.x
10.1095/biolreprod.114.127266
10.1095/biolreprod.108.070961
10.1016/j.peptides.2005.12.016
10.1242/jcs.100867
ContentType Journal Article
Copyright 2019 Society for Reproduction and Development
Copyright Japan Science and Technology Agency 2019
2019 Society for Reproduction and Development 2019
Copyright_xml – notice: 2019 Society for Reproduction and Development
– notice: Copyright Japan Science and Technology Agency 2019
– notice: 2019 Society for Reproduction and Development 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
H94
K9.
5PM
DOA
DOI 10.1262/jrd.2018-147
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Neurosciences Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Neurosciences Abstracts
DatabaseTitleList AIDS and Cancer Research Abstracts

MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1348-4400
EndPage 153
ExternalDocumentID oai_doaj_org_article_db2ea1ef63144df7b6c9b2828cb97e58
PMC6473113
30662011
10_1262_jrd_2018_147
article_jrd_65_2_65_2018_147_article_char_en
Genre Journal Article
GroupedDBID ---
29L
2WC
53G
5GY
ACGFO
ACPRK
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B.T
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
HYE
JSF
JSH
KQ8
M48
N5S
OK1
OVT
P2P
PGMZT
RJT
RNS
RPM
RZJ
TKC
TR2
XSB
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
H94
K9.
5PM
ID FETCH-LOGICAL-c627t-ffb507aa8d2997782eb56525154b74630c7733e6614215e958863395b48ad4073
IEDL.DBID M48
ISSN 0916-8818
IngestDate Wed Aug 27 01:18:22 EDT 2025
Thu Aug 21 18:18:59 EDT 2025
Mon Jun 30 07:49:14 EDT 2025
Mon Apr 07 02:14:11 EDT 2025
Tue Jul 01 02:55:19 EDT 2025
Thu Apr 24 23:03:42 EDT 2025
Wed Sep 03 06:13:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords In vitro fertilization
Cumulus-oocyte complex
Neurotensin
Bovine sperm
Blastocyst
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c627t-ffb507aa8d2997782eb56525154b74630c7733e6614215e958863395b48ad4073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1262/jrd.2018-147
PMID 30662011
PQID 2239623537
PQPubID 2048441
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_db2ea1ef63144df7b6c9b2828cb97e58
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6473113
proquest_journals_2239623537
pubmed_primary_30662011
crossref_primary_10_1262_jrd_2018_147
crossref_citationtrail_10_1262_jrd_2018_147
jstage_primary_article_jrd_65_2_65_2018_147_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of Reproduction and Development
PublicationTitleAlternate J. Reprod. Dev.
PublicationYear 2019
Publisher THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT
Japan Science and Technology Agency
The Society for Reproduction and Development
Publisher_xml – name: THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT
– name: Japan Science and Technology Agency
– name: The Society for Reproduction and Development
References 6. Ramírez AR, Castro MA, Angulo C, Ramió L, Rivera MM, Torres M, Rigau T, Rodríguez-Gil JE, Concha II. The presence and function of dopamine type 2 receptors in boar sperm: a possible role for dopamine in viability, capacitation, and modulation of sperm motility. Biol Reprod 2009; 80: 753–761.
17. Yamauchi R, Wada E, Yamada D, Yoshikawa M, Wada K. Effect of beta-lactotensin on acute stress and fear memory. Peptides 2006; 27: 3176–3182.
27. Lane M, Gardner DK. Differential regulation of mouse embryo development and viability by amino acids. J Reprod Fertil 1997; 109: 153–164.
32. Harayama H, Minami K, Kishida K, Noda T. Protein biomarkers for male artificial insemination subfertility in bovine spermatozoa. Reprod Med Biol 2017; 16: 89–98.
43. Pérez-Cerezales S, Laguna-Barraza R, de Castro AC, Sánchez-Calabuig MJ, Cano-Oliva E, de Castro-Pita FJ, Montoro-Buils L, Pericuesta E, Fernández-González R, Gutiérrez-Adán A. Sperm selection by thermotaxis improves ICSI outcome in mice. Sci Rep 2018; 8: 2902.
4. Kishida K, Sakase M, Minami K, Arai MM, Syoji R, Kohama N, Akiyama T, Oka A, Harayama H, Fukushima M. Effects of acrosomal conditions of frozen-thawed spermatozoa on the results of artificial insemination in Japanese Black cattle. J Reprod Dev 2015; 61: 519–524.
25. Oikawa T, Itahashi T, Numabe T. Improved embryo development in Japanese black cattle by in vitro fertilization using ovum pick-up plus intracytoplasmic sperm injection with dithiothreitol. J Reprod Dev 2016; 62: 11–16.
23. Sugimura S, Akai T, Hashiyada Y, Somfai T, Inaba Y, Hirayama M, Yamanouchi T, Matsuda H, Kobayashi S, Aikawa Y, Ohtake M, Kobayashi E, Konishi K, Imai K. Promising system for selecting healthy in vitro-fertilized embryos in cattle. PLoS One 2012; 7: e36627.
24. Sugimura S, Akai T, Imai K. Selection of viable in vitro-fertilized bovine embryos using time-lapse monitoring in microwell culture dishes. J Reprod Dev 2017; 63: 353–357.
45. Moore SG, Hasler JF. A 100-Year Review: Reproductive technologies in dairy science. J Dairy Sci 2017; 100: 10314–10331.
40. Dirican EK, Ozgün OD, Akarsu S, Akin KO, Ercan O, Uğurlu M, Camsari C, Kanyilmaz O, Kaya A, Unsal A. Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J Assist Reprod Genet 2008; 25: 375–381.
42. Li J, Zhu S, He X, Sun R, He Q, Gan Y, Liu S, Funahashi H, Li Y. Application of a microfluidic sperm sorter to in vitro production of dairy cattle sex-sorted embryos. Theriogenology 2016; 85: 1211–1218.
7. Meizel S, Turner KO. Serotonin or its agonist 5-methoxytryptamine can stimulate hamster sperm acrosome reactions in a more direct manner than catecholamines. J Exp Zool 1983; 226: 171–174.
30. Oliveira LZ, de Arruda RP, de Andrade AF, Celeghini EC, Reeb PD, Martins JP, dos Santos RM, Beletti ME, Peres RF, Monteiro FM, Hossepian de Lima VF. Assessment of in vitro sperm characteristics and their importance in the prediction of conception rate in a bovine timed-AI program. Anim Reprod Sci 2013; 137: 145–155.
36. Luque GM, Dalotto-Moreno T, Martín-Hidalgo D, Ritagliati C, Puga Molina LC, Romarowski A, Balestrini PA, Schiavi-Ehrenhaus LJ, Gilio N, Krapf D, Visconti PE, Buffone MG. Only a subpopulation of mouse sperm displays a rapid increase in intracellular calcium during capacitation. J Cell Physiol 2018; 233: 9685–9700.
44. Nagata MPB, Endo K, Ogata K, Yamanaka K, Egashira J, Katafuchi N, Yamanouchi T, Matsuda H, Goto Y, Sakatani M, Hojo T, Nishizono H, Yotsushima K, Takenouchi N, Hashiyada Y, Yamashita K. Live births from artificial insemination of microfluidic-sorted bovine spermatozoa characterized by trajectories correlated with fertility. Proc Natl Acad Sci USA 2018; 115: E3087–E3096.
39. Lukoseviciute K, Zilinskas H, Januskauskas A. The effect of oestradiol, progesterone and heparin on bovine spermatozoa function after thawing. Reprod Domest Anim 2005; 40: 100–107.
26. Thouas GA, Korfiatis NA, French AJ, Jones GM, Trounson AO. Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod Biomed Online 2001; 3: 25–29.
3. Lucy MC. Reproductive loss in high-producing dairy cattle: where will it end? J Dairy Sci 2001; 84: 1277–1293.
10. Carraway R, Leeman SE. Characterization of radioimmunoassayable neurotensin in the rat. Its differential distribution in the central nervous system, small intestine, and stomach. J Biol Chem 1976; 251: 7045–7052.
5. Puente MA, Tartaglione CM, Ritta MN. Bull sperm acrosome reaction induced by gamma-aminobutyric acid (GABA) is mediated by GABAergic receptors type A. Anim Reprod Sci 2011; 127: 31–37.
8. Hiradate Y, Inoue H, Kobayashi N, Shirakata Y, Suzuki Y, Gotoh A, Roh SG, Uchida T, Katoh K, Yoshida M, Sato E, Tanemura K. Neurotensin enhances sperm capacitation and acrosome reaction in mice. Biol Reprod 2014; 91: 53.
22. Takahashi Y, First NL. In vitro development of bovine one-cell embryos: Influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology 1992; 37: 963–978.
31. Takeda K, Uchiyama K, Kinukawa M, Tagami T, Kaneda M, Watanabe S. Evaluation of sperm DNA damage in bulls by TUNEL assay as a parameter of semen quality. J Reprod Dev 2015; 61: 185–190.
13. Vincent JP, Mazella J, Kitabgi P. Neurotensin and neurotensin receptors. Trends Pharmacol Sci 1999; 20: 302–309.
29. Kuroda K, Fukushima M, Harayama H. Premature capacitation of frozen-thawed spermatozoa from subfertile Japanese black cattle. J Reprod Dev 2007; 53: 1079–1086.
35. Escoffier J, Navarrete F, Haddad D, Santi CM, Darszon A, Visconti PE. Flow cytometry analysis reveals that only a subpopulation of mouse sperm undergoes hyperpolarization during capacitation. Biol Reprod 2015; 92: 121.
21. Holm P, Booth PJ, Schmidt MH, Greve T, Callesen H. High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 1999; 52: 683–700.
33. Jin M, Fujiwara E, Kakiuchi Y, Okabe M, Satouh Y, Baba SA, Chiba K, Hirohashi N. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc Natl Acad Sci USA 2011; 108: 4892–4896.
15. Dupouy S, Mourra N, Doan VK, Gompel A, Alifano M, Forgez P. The potential use of the neurotensin high affinity receptor 1 as a biomarker for cancer progression and as a component of personalized medicine in selective cancers. Biochimie 2011; 93: 1369–1378.
2. Dochi O, Kabeya S, Koyama H. Factors affecting reproductive performance in high milk-producing Holstein cows. J Reprod Dev 2010; 56(Suppl): S61–S65.
11. Zhao D, Pothoulakis C. Effects of NT on gastrointestinal motility and secretion, and role in intestinal inflammation. Peptides 2006; 27: 2434–2444.
14. Pelaprat D. Interactions between neurotensin receptors and G proteins. Peptides 2006; 27: 2476–2487.
16. Miller LA, Cochrane DE, Carraway RE, Feldberg RS. Blockade of mast cell histamine secretion in response to neurotensin by SR 48692, a nonpeptide antagonist of the neurotensin brain receptor. Br J Pharmacol 1995; 114: 1466–1470.
34. Satouh Y, Inoue N, Ikawa M, Okabe M. Visualization of the moment of mouse sperm-egg fusion and dynamic localization of IZUMO1. J Cell Sci 2012; 125: 4985–4990.
37. McNutt TL, Killian GJ. Influence of bovine follicular and oviduct fluids on sperm capacitation in vitro. J Androl 1991; 12: 244–252.
38. Ho HC, Suarez SS. An inositol 1,4,5-trisphosphate receptor-gated intracellular Ca(2+) store is involved in regulating sperm hyperactivated motility. Biol Reprod 2001; 65: 1606–1615.
18. Zhao D, Zhan Y, Zeng H, Koon HW, Moyer MP, Pothoulakis C. Neurotensin stimulates expression of early growth response gene-1 and EGF receptor through MAP kinase activation in human colonic epithelial cells. Int J Cancer 2007; 120: 1652–1656.
20. Cerny KL, Garrett E, Walton AJ, Anderson LH, Bridges PJ. A transcriptomal analysis of bovine oviductal epithelial cells collected during the follicular phase versus the luteal phase of the estrous cycle. Reprod Biol Endocrinol 2015; 13: 84.
28. O’Hara L, Forde N, Kelly AK, Lonergan P. Effect of bovine blastocyst size at embryo transfer on day 7 on conceptus length on day 14: can supplementary progesterone rescue small embryos? Theriogenology 2014; 81: 1123–1128.
41. Worrilow KC, Eid S, Woodhouse D, Perloe M, Smith S, Witmyer J, Ivani K, Khoury C, Ball GD, Elliot T, Lieberman J. Use of hyaluronan in the selection of sperm for intracytoplasmic sperm injection (ICSI): significant improvement in clinical outcomes--multicenter, double-blinded and randomized controlled trial. Hum Reprod 2013; 28: 306–314.
1. Barbat A, Le Mézec P, Ducrocq V, Mattalia S, Fritz S, Boichard D, Ponsart C, Humblot P. Female fertility in French dairy breeds: current situation and strategies for improvement. J Reprod Dev 2010; 56(Suppl): S15–S21.
12. Ramez M, Bagot M, Nikolova M, Boumsell L, Vita N, Chalon P, Caput D, Ferrara P, Bensussan A. Functional characterization of neurotensin receptors in human cutaneous T cell lymphoma malignant lymphocytes. J Invest Dermatol 2001; 117: 687–693.
9. Umezu K, Hiradate Y, Oikawa T, Ishiguro H, Numabe T, Hara K, Tanemura K. Exogenous neurotensin modulates sperm function in Japanese Black cattle. J Reprod Dev 2016; 62: 409–414.
19. Antonelli T, Fuxe K, Tomasini MC, Mazzoni E, Agnati LF, Tanganelli S, Ferraro L. Neurotensin receptor mechanisms and its modulation of glutamate transmission in the brain: relevance for neurodegenerative diseases and their treatment. Prog Neurobiol 2007; 83: 92–109.
22
44
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – reference: 25. Oikawa T, Itahashi T, Numabe T. Improved embryo development in Japanese black cattle by in vitro fertilization using ovum pick-up plus intracytoplasmic sperm injection with dithiothreitol. J Reprod Dev 2016; 62: 11–16.
– reference: 31. Takeda K, Uchiyama K, Kinukawa M, Tagami T, Kaneda M, Watanabe S. Evaluation of sperm DNA damage in bulls by TUNEL assay as a parameter of semen quality. J Reprod Dev 2015; 61: 185–190.
– reference: 16. Miller LA, Cochrane DE, Carraway RE, Feldberg RS. Blockade of mast cell histamine secretion in response to neurotensin by SR 48692, a nonpeptide antagonist of the neurotensin brain receptor. Br J Pharmacol 1995; 114: 1466–1470.
– reference: 26. Thouas GA, Korfiatis NA, French AJ, Jones GM, Trounson AO. Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod Biomed Online 2001; 3: 25–29.
– reference: 9. Umezu K, Hiradate Y, Oikawa T, Ishiguro H, Numabe T, Hara K, Tanemura K. Exogenous neurotensin modulates sperm function in Japanese Black cattle. J Reprod Dev 2016; 62: 409–414.
– reference: 21. Holm P, Booth PJ, Schmidt MH, Greve T, Callesen H. High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 1999; 52: 683–700.
– reference: 33. Jin M, Fujiwara E, Kakiuchi Y, Okabe M, Satouh Y, Baba SA, Chiba K, Hirohashi N. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc Natl Acad Sci USA 2011; 108: 4892–4896.
– reference: 42. Li J, Zhu S, He X, Sun R, He Q, Gan Y, Liu S, Funahashi H, Li Y. Application of a microfluidic sperm sorter to in vitro production of dairy cattle sex-sorted embryos. Theriogenology 2016; 85: 1211–1218.
– reference: 15. Dupouy S, Mourra N, Doan VK, Gompel A, Alifano M, Forgez P. The potential use of the neurotensin high affinity receptor 1 as a biomarker for cancer progression and as a component of personalized medicine in selective cancers. Biochimie 2011; 93: 1369–1378.
– reference: 12. Ramez M, Bagot M, Nikolova M, Boumsell L, Vita N, Chalon P, Caput D, Ferrara P, Bensussan A. Functional characterization of neurotensin receptors in human cutaneous T cell lymphoma malignant lymphocytes. J Invest Dermatol 2001; 117: 687–693.
– reference: 38. Ho HC, Suarez SS. An inositol 1,4,5-trisphosphate receptor-gated intracellular Ca(2+) store is involved in regulating sperm hyperactivated motility. Biol Reprod 2001; 65: 1606–1615.
– reference: 7. Meizel S, Turner KO. Serotonin or its agonist 5-methoxytryptamine can stimulate hamster sperm acrosome reactions in a more direct manner than catecholamines. J Exp Zool 1983; 226: 171–174.
– reference: 8. Hiradate Y, Inoue H, Kobayashi N, Shirakata Y, Suzuki Y, Gotoh A, Roh SG, Uchida T, Katoh K, Yoshida M, Sato E, Tanemura K. Neurotensin enhances sperm capacitation and acrosome reaction in mice. Biol Reprod 2014; 91: 53.
– reference: 18. Zhao D, Zhan Y, Zeng H, Koon HW, Moyer MP, Pothoulakis C. Neurotensin stimulates expression of early growth response gene-1 and EGF receptor through MAP kinase activation in human colonic epithelial cells. Int J Cancer 2007; 120: 1652–1656.
– reference: 10. Carraway R, Leeman SE. Characterization of radioimmunoassayable neurotensin in the rat. Its differential distribution in the central nervous system, small intestine, and stomach. J Biol Chem 1976; 251: 7045–7052.
– reference: 13. Vincent JP, Mazella J, Kitabgi P. Neurotensin and neurotensin receptors. Trends Pharmacol Sci 1999; 20: 302–309.
– reference: 32. Harayama H, Minami K, Kishida K, Noda T. Protein biomarkers for male artificial insemination subfertility in bovine spermatozoa. Reprod Med Biol 2017; 16: 89–98.
– reference: 14. Pelaprat D. Interactions between neurotensin receptors and G proteins. Peptides 2006; 27: 2476–2487.
– reference: 17. Yamauchi R, Wada E, Yamada D, Yoshikawa M, Wada K. Effect of beta-lactotensin on acute stress and fear memory. Peptides 2006; 27: 3176–3182.
– reference: 36. Luque GM, Dalotto-Moreno T, Martín-Hidalgo D, Ritagliati C, Puga Molina LC, Romarowski A, Balestrini PA, Schiavi-Ehrenhaus LJ, Gilio N, Krapf D, Visconti PE, Buffone MG. Only a subpopulation of mouse sperm displays a rapid increase in intracellular calcium during capacitation. J Cell Physiol 2018; 233: 9685–9700.
– reference: 28. O’Hara L, Forde N, Kelly AK, Lonergan P. Effect of bovine blastocyst size at embryo transfer on day 7 on conceptus length on day 14: can supplementary progesterone rescue small embryos? Theriogenology 2014; 81: 1123–1128.
– reference: 34. Satouh Y, Inoue N, Ikawa M, Okabe M. Visualization of the moment of mouse sperm-egg fusion and dynamic localization of IZUMO1. J Cell Sci 2012; 125: 4985–4990.
– reference: 37. McNutt TL, Killian GJ. Influence of bovine follicular and oviduct fluids on sperm capacitation in vitro. J Androl 1991; 12: 244–252.
– reference: 40. Dirican EK, Ozgün OD, Akarsu S, Akin KO, Ercan O, Uğurlu M, Camsari C, Kanyilmaz O, Kaya A, Unsal A. Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J Assist Reprod Genet 2008; 25: 375–381.
– reference: 3. Lucy MC. Reproductive loss in high-producing dairy cattle: where will it end? J Dairy Sci 2001; 84: 1277–1293.
– reference: 45. Moore SG, Hasler JF. A 100-Year Review: Reproductive technologies in dairy science. J Dairy Sci 2017; 100: 10314–10331.
– reference: 20. Cerny KL, Garrett E, Walton AJ, Anderson LH, Bridges PJ. A transcriptomal analysis of bovine oviductal epithelial cells collected during the follicular phase versus the luteal phase of the estrous cycle. Reprod Biol Endocrinol 2015; 13: 84.
– reference: 41. Worrilow KC, Eid S, Woodhouse D, Perloe M, Smith S, Witmyer J, Ivani K, Khoury C, Ball GD, Elliot T, Lieberman J. Use of hyaluronan in the selection of sperm for intracytoplasmic sperm injection (ICSI): significant improvement in clinical outcomes--multicenter, double-blinded and randomized controlled trial. Hum Reprod 2013; 28: 306–314.
– reference: 11. Zhao D, Pothoulakis C. Effects of NT on gastrointestinal motility and secretion, and role in intestinal inflammation. Peptides 2006; 27: 2434–2444.
– reference: 4. Kishida K, Sakase M, Minami K, Arai MM, Syoji R, Kohama N, Akiyama T, Oka A, Harayama H, Fukushima M. Effects of acrosomal conditions of frozen-thawed spermatozoa on the results of artificial insemination in Japanese Black cattle. J Reprod Dev 2015; 61: 519–524.
– reference: 6. Ramírez AR, Castro MA, Angulo C, Ramió L, Rivera MM, Torres M, Rigau T, Rodríguez-Gil JE, Concha II. The presence and function of dopamine type 2 receptors in boar sperm: a possible role for dopamine in viability, capacitation, and modulation of sperm motility. Biol Reprod 2009; 80: 753–761.
– reference: 2. Dochi O, Kabeya S, Koyama H. Factors affecting reproductive performance in high milk-producing Holstein cows. J Reprod Dev 2010; 56(Suppl): S61–S65.
– reference: 27. Lane M, Gardner DK. Differential regulation of mouse embryo development and viability by amino acids. J Reprod Fertil 1997; 109: 153–164.
– reference: 30. Oliveira LZ, de Arruda RP, de Andrade AF, Celeghini EC, Reeb PD, Martins JP, dos Santos RM, Beletti ME, Peres RF, Monteiro FM, Hossepian de Lima VF. Assessment of in vitro sperm characteristics and their importance in the prediction of conception rate in a bovine timed-AI program. Anim Reprod Sci 2013; 137: 145–155.
– reference: 39. Lukoseviciute K, Zilinskas H, Januskauskas A. The effect of oestradiol, progesterone and heparin on bovine spermatozoa function after thawing. Reprod Domest Anim 2005; 40: 100–107.
– reference: 44. Nagata MPB, Endo K, Ogata K, Yamanaka K, Egashira J, Katafuchi N, Yamanouchi T, Matsuda H, Goto Y, Sakatani M, Hojo T, Nishizono H, Yotsushima K, Takenouchi N, Hashiyada Y, Yamashita K. Live births from artificial insemination of microfluidic-sorted bovine spermatozoa characterized by trajectories correlated with fertility. Proc Natl Acad Sci USA 2018; 115: E3087–E3096.
– reference: 1. Barbat A, Le Mézec P, Ducrocq V, Mattalia S, Fritz S, Boichard D, Ponsart C, Humblot P. Female fertility in French dairy breeds: current situation and strategies for improvement. J Reprod Dev 2010; 56(Suppl): S15–S21.
– reference: 35. Escoffier J, Navarrete F, Haddad D, Santi CM, Darszon A, Visconti PE. Flow cytometry analysis reveals that only a subpopulation of mouse sperm undergoes hyperpolarization during capacitation. Biol Reprod 2015; 92: 121.
– reference: 22. Takahashi Y, First NL. In vitro development of bovine one-cell embryos: Influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology 1992; 37: 963–978.
– reference: 19. Antonelli T, Fuxe K, Tomasini MC, Mazzoni E, Agnati LF, Tanganelli S, Ferraro L. Neurotensin receptor mechanisms and its modulation of glutamate transmission in the brain: relevance for neurodegenerative diseases and their treatment. Prog Neurobiol 2007; 83: 92–109.
– reference: 24. Sugimura S, Akai T, Imai K. Selection of viable in vitro-fertilized bovine embryos using time-lapse monitoring in microwell culture dishes. J Reprod Dev 2017; 63: 353–357.
– reference: 29. Kuroda K, Fukushima M, Harayama H. Premature capacitation of frozen-thawed spermatozoa from subfertile Japanese black cattle. J Reprod Dev 2007; 53: 1079–1086.
– reference: 43. Pérez-Cerezales S, Laguna-Barraza R, de Castro AC, Sánchez-Calabuig MJ, Cano-Oliva E, de Castro-Pita FJ, Montoro-Buils L, Pericuesta E, Fernández-González R, Gutiérrez-Adán A. Sperm selection by thermotaxis improves ICSI outcome in mice. Sci Rep 2018; 8: 2902.
– reference: 5. Puente MA, Tartaglione CM, Ritta MN. Bull sperm acrosome reaction induced by gamma-aminobutyric acid (GABA) is mediated by GABAergic receptors type A. Anim Reprod Sci 2011; 127: 31–37.
– reference: 23. Sugimura S, Akai T, Hashiyada Y, Somfai T, Inaba Y, Hirayama M, Yamanouchi T, Matsuda H, Kobayashi S, Aikawa Y, Ohtake M, Kobayashi E, Konishi K, Imai K. Promising system for selecting healthy in vitro-fertilized embryos in cattle. PLoS One 2012; 7: e36627.
– ident: 8
  doi: 10.1095/biolreprod.113.112789
– ident: 38
  doi: 10.1095/biolreprod65.5.1606
– ident: 43
  doi: 10.1073/pnas.1717974115
– ident: 19
  doi: 10.1016/j.pneurobio.2007.06.006
– ident: 9
  doi: 10.1262/jrd.2016-055
– ident: 36
  doi: 10.1002/jcp.26883
– ident: 4
  doi: 10.1262/jrd.2015-073
– ident: 13
  doi: 10.1016/S0165-6147(99)01357-7
– ident: 26
  doi: 10.1016/S1472-6483(10)61960-8
– ident: 27
  doi: 10.1530/jrf.0.1090153
– ident: 40
  doi: 10.1093/humrep/des417
– ident: 5
  doi: 10.1016/j.anireprosci.2011.07.001
– ident: 22
  doi: 10.1016/0093-691X(92)90096-A
– ident: 32
  doi: 10.1002/rmb2.12021
– ident: 33
  doi: 10.1073/pnas.1018202108
– ident: 42
  doi: 10.1038/s41598-018-21335-8
– ident: 20
  doi: 10.1186/s12958-015-0077-1
– ident: 18
  doi: 10.1002/ijc.22407
– ident: 28
  doi: 10.1016/j.theriogenology.2014.01.041
– ident: 24
  doi: 10.1262/jrd.2017-041
– ident: 44
  doi: 10.3168/jds.2017-13138
– ident: 1
  doi: 10.1262/jrd.1056S15
– ident: 10
  doi: 10.1016/S0021-9258(17)32938-1
– ident: 25
  doi: 10.1262/jrd.2015-067
– ident: 31
  doi: 10.1262/jrd.2014-140
– ident: 7
  doi: 10.1002/jez.1402260120
– ident: 37
  doi: 10.1002/j.1939-4640.1991.tb00262.x
– ident: 2
  doi: 10.1262/jrd.1056S61
– ident: 30
  doi: 10.1016/j.anireprosci.2013.01.010
– ident: 41
  doi: 10.1016/j.theriogenology.2015.12.001
– ident: 12
  doi: 10.1046/j.0022-202x.2001.01439.x
– ident: 3
  doi: 10.3168/jds.S0022-0302(01)70158-0
– ident: 16
  doi: 10.1111/j.1476-5381.1995.tb13371.x
– ident: 14
  doi: 10.1016/j.peptides.2006.04.027
– ident: 21
  doi: 10.1016/S0093-691X(99)00162-4
– ident: 15
  doi: 10.1016/j.biochi.2011.04.024
– ident: 17
  doi: 10.1016/j.peptides.2006.08.009
– ident: 29
  doi: 10.1262/jrd.19031
– ident: 23
  doi: 10.1371/journal.pone.0036627
– ident: 39
  doi: 10.1111/j.1439-0531.2004.00559.x
– ident: 35
  doi: 10.1095/biolreprod.114.127266
– ident: 6
  doi: 10.1095/biolreprod.108.070961
– ident: 11
  doi: 10.1016/j.peptides.2005.12.016
– ident: 34
  doi: 10.1242/jcs.100867
SSID ssj0032564
ssib044745553
ssib006551142
Score 2.172625
Snippet Previously, we reported that neurotensin (NT), which is expressed in the uterus and oviduct, enhanced bovine sperm capacitation and acrosome reactions. As NT...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 147
SubjectTerms Acrosome Reaction - drug effects
Acrosome Reaction - genetics
Animals
Blastocyst
Blastocyst - cytology
Blastocyst - drug effects
Blastocyst - physiology
Blastocysts
Bovine sperm
Capacitation
Cattle - embryology
Cells, Cultured
Cumulus-oocyte complex
Embryo Culture Techniques - methods
Embryo Culture Techniques - veterinary
Embryo, Mammalian
Embryonic Development - drug effects
Embryonic Development - genetics
Female
Fertilization - drug effects
Fertilization - genetics
Fertilization in Vitro - veterinary
Gene expression
Immunocytochemistry
In vitro fertilization
Male
Neurotensin
Neurotensin - metabolism
Neurotensin - pharmacology
Neurotensin - physiology
Oocytes
Original
Oviduct
Polymerase chain reaction
Quality
Receptors, Neurotensin - genetics
Receptors, Neurotensin - metabolism
Receptors, Neurotensin - physiology
Reverse transcription
Signal Transduction - drug effects
Signal Transduction - genetics
Sperm
Sperm Capacitation - drug effects
Sperm Capacitation - genetics
Spermatozoa - drug effects
Spermatozoa - physiology
Testes
Uterus
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSiAuCMortCAf4ISisvErESdAVBVSOVGpN8tObEhVJdVuWmk58dM7Y3ujXQTiwiWHteM49mTmG-_MNwCvrdVOcUtB7UqUgitX1laFsrJBu6oJduHJUTz9qk7OxJdzeb5V6otiwhI9cFq4o85VHm8IiiP073AA1TaO_ITWNdrLmOaLNm_jTCUdzNGQR-IoBD9ljTYph7xXqjq6WBJB6AJ9JyqpsmWMImc_GqILhGXf_Z8Q5--Bk1uW6PghPMgQkn1IU38Ed_ywD3dTUcn1Ptw7zX-XP4Zf6cggngCyfmAOofI0tuvVxFIy5Zq5NYuUljGQfWAUzmEpQ53d9Jb104qhRvRXVJInDkDnD54Ruzgi3fHnaFnKc6TGm35ajixQoPZlzu58AmfHn799OilzyYWyVZWeyhAcAkRr6w7NlEb04B0iPsRAUjgtFH_Xas25J6OOWME3sq4V5410orYd-ob8KewN4-CfA9OIHZWQneABncjaWul9hQsf6iCwry3g7WbtTZv5yKksxqUhvwR3yuBOGdopdE90AW_m3leJh-Mv_T7SNs59iD07_oAyZbJMmX_JVAHvkxDMw2zupEcpaap4yY-cGylPDpVNAYcbyTFZIawMorAGkabkOMNnSYjmwTmx8KOeLUDviNfOS-y2DP2PSAWuhOaLBX_xP976AO7jLJp0vnQIe9Py2r9ExDW5V_HjugWlMSxU
  priority: 102
  providerName: Directory of Open Access Journals
Title Improvement in blastocyst quality by neurotensin signaling via its receptors in bovine spermatozoa during in vitro fertilization
URI https://www.jstage.jst.go.jp/article/jrd/65/2/65_2018-147/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/30662011
https://www.proquest.com/docview/2239623537
https://pubmed.ncbi.nlm.nih.gov/PMC6473113
https://doaj.org/article/db2ea1ef63144df7b6c9b2828cb97e58
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Reproduction and Development, 2019, Vol.65(2), pp.147-153
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKEYgLgvJKKSsf4IQCJH4lQggBalVAW3Fgpd4iO7HbrFZJyaYV4YD46cw4D3WrwsWH2LGz9tjzjXfmG0Kea62MZBqd2iUPOZMmTLR0YaydMnHqdGTRUJwfycMF_3IsjrfImG10mMD1taYd5pNaNKtXP39072HDv_PcCDJ-vWyQ8jMCa4irG-Qm6CSFSRzml4C-BGAQ8UmRc664EGI6sxkofk80BWApTECHDS7yV3vfUF6e4x8U1xJg3Im9DqFedbS8pLkO7pG7A-SkH3oZuU-2lnqH3OqTUHY75PZ8-Hv9AfnTXzH4G0NaVtQAtG7rvFu3tA--7KjpqKfA9I7vFUX3D40R7fSi1LRs1xROUHuGKXx8B3hfYSmykQMyrn_VmvZxkVh5UbZNTR06dq-GaNCHZHGw__3TYTikaAhzGas2dM4AoNQ6KUCtKUAb1gBCBMwkuFFcsje5UoxZBAGALWwqkkQylgrDE12ALckeke2qruwTQhVgTclFwZkDozPRWlgbw8S7xHFoqwPycpz7LB_4yzGNxipDOwZWKoOVynClwJxRAXkxtT7reTv-0e4jLuPUBtm2_YO6OcmGzZsVJrYgtE4yMD8LEGKZpwZt1dykyookIG97IZi6Gd_EoaTIYl8MQ06VGFcHh1NA9kbJyUb5zwC1pYBMBYMvfNwL0dQ5Q9Z-OJcDojbEa-NHbNZU5amnDpdcsShiu_8f8im5A_2n_U3THtlum3P7DLBXa2ZgdXz-OvM3FzO_xbD8vQ_l0bf5X2MSMIM
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+in+blastocyst+quality+by+neurotensin+signaling+via+its+receptors+in+bovine+spermatozoa+during+in+vitro+fertilization&rft.jtitle=The+Journal+of+reproduction+and+development&rft.au=UMEZU%2C+Kohei&rft.au=YAJIMA%2C+Risa&rft.au=HIRADATE%2C+Yuuki&rft.au=YANAI%2C+Rin&rft.date=2019&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=0916-8818&rft.eissn=1348-4400&rft.volume=65&rft.issue=2&rft.spage=147&rft_id=info:doi/10.1262%2Fjrd.2018-147&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8818&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8818&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8818&client=summon