Improvement in blastocyst quality by neurotensin signaling via its receptors in bovine spermatozoa during in vitro fertilization
Previously, we reported that neurotensin (NT), which is expressed in the uterus and oviduct, enhanced bovine sperm capacitation and acrosome reactions. As NT mRNA expression in bovine oviducts increases dramatically in the follicular phase, we hypothesized that NT modulates fertilization and subsequ...
Saved in:
Published in | Journal of Reproduction and Development Vol. 65; no. 2; pp. 147 - 153 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT
2019
Japan Science and Technology Agency The Society for Reproduction and Development |
Subjects | |
Online Access | Get full text |
ISSN | 0916-8818 1348-4400 |
DOI | 10.1262/jrd.2018-147 |
Cover
Loading…
Abstract | Previously, we reported that neurotensin (NT), which is expressed in the uterus and oviduct, enhanced bovine sperm capacitation and acrosome reactions. As NT mRNA expression in bovine oviducts increases dramatically in the follicular phase, we hypothesized that NT modulates fertilization and subsequent conception in cattle. The objective of this study was to evaluate the effect of NT on embryo development and blastocyst quality. The rate of embryo cleavage was significantly increased by the addition of NT to the fertilization medium. Furthermore, the total number of cells and numbers of cells in the inner cell mass of blastocysts were significantly increased by NT during in vitro fertilization (IVF). These results suggested that NT enhanced the efficiency of early bovine embryo development and blastocyst quality. The expression of NT receptors (NTRs) in sperm, testes, oocytes, and cumulus cells was evaluated to determine whether NT acted via NTRs in sperm alone or in both male and female reproductive cells during IVF. Immunocytochemistry and reverse transcription polymerase chain reaction revealed that NTR1 and NTR2 were expressed in sperm and testes, but not in oocytes and cumulus cells. We propose that NT selectively acts upon sperm via NTR1 and NTR2 during IVF to improve the cleavage rate and quality of blastocysts, which are important determinants of sperm quality for successful conception. This research supports our hypothesis that NT acts as a key modulator of fertilization and conception in cattle. Further studies are necessary to apply our findings to the industrial framework of bovine reproduction. |
---|---|
AbstractList | Previously, we reported that neurotensin (NT), which is expressed in the uterus and oviduct, enhanced bovine sperm capacitation and acrosome reactions. As NT mRNA expression in bovine oviducts increases dramatically in the follicular phase, we hypothesized that NT modulates fertilization and subsequent conception in cattle. The objective of this study was to evaluate the effect of NT on embryo development and blastocyst quality. The rate of embryo cleavage was significantly increased by the addition of NT to the fertilization medium. Furthermore, the total number of cells and numbers of cells in the inner cell mass of blastocysts were significantly increased by NT during in vitro fertilization (IVF). These results suggested that NT enhanced the efficiency of early bovine embryo development and blastocyst quality. The expression of NT receptors (NTRs) in sperm, testes, oocytes, and cumulus cells was evaluated to determine whether NT acted via NTRs in sperm alone or in both male and female reproductive cells during IVF. Immunocytochemistry and reverse transcription polymerase chain reaction revealed that NTR1 and NTR2 were expressed in sperm and testes, but not in oocytes and cumulus cells. We propose that NT selectively acts upon sperm via NTR1 and NTR2 during IVF to improve the cleavage rate and quality of blastocysts, which are important determinants of sperm quality for successful conception. This research supports our hypothesis that NT acts as a key modulator of fertilization and conception in cattle. Further studies are necessary to apply our findings to the industrial framework of bovine reproduction. Previously, we reported that neurotensin (NT), which is expressed in the uterus and oviduct, enhanced bovine sperm capacitation and acrosome reactions. As NT mRNA expression in bovine oviducts increases dramatically in the follicular phase, we hypothesized that NT modulates fertilization and subsequent conception in cattle. The objective of this study was to evaluate the effect of NT on embryo development and blastocyst quality. The rate of embryo cleavage was significantly increased by the addition of NT to the fertilization medium. Furthermore, the total number of cells and numbers of cells in the inner cell mass of blastocysts were significantly increased by NT during in vitro fertilization (IVF). These results suggested that NT enhanced the efficiency of early bovine embryo development and blastocyst quality. The expression of NT receptors (NTRs) in sperm, testes, oocytes, and cumulus cells was evaluated to determine whether NT acted via NTRs in sperm alone or in both male and female reproductive cells during IVF. Immunocytochemistry and reverse transcription polymerase chain reaction revealed that NTR1 and NTR2 were expressed in sperm and testes, but not in oocytes and cumulus cells. We propose that NT selectively acts upon sperm via NTR1 and NTR2 during IVF to improve the cleavage rate and quality of blastocysts, which are important determinants of sperm quality for successful conception. This research supports our hypothesis that NT acts as a key modulator of fertilization and conception in cattle. Further studies are necessary to apply our findings to the industrial framework of bovine reproduction. |
Author | NUMABE, Takashi OIKAWA, Toshinori TANEMURA, Kentaro YANAI, Rin YAJIMA, Risa HIRADATE, Yuuki UMEZU, Kohei HARA, Kenshiro |
Author_xml | – sequence: 1 fullname: OIKAWA, Toshinori organization: Miyagi Prefectural Livestock Experiment Station, Miyagi 989-6445, Japan – sequence: 1 fullname: YAJIMA, Risa organization: Miyagi Prefectural Livestock Experiment Station, Miyagi 989-6445, Japan – sequence: 1 fullname: HARA, Kenshiro organization: Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-0845, Japan – sequence: 1 fullname: HIRADATE, Yuuki organization: Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-0845, Japan – sequence: 1 fullname: NUMABE, Takashi organization: Miyagi Agricultural Development Corporation, Miyagi 981-0914, Japan – sequence: 1 fullname: UMEZU, Kohei organization: Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-0845, Japan – sequence: 1 fullname: TANEMURA, Kentaro organization: Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-0845, Japan – sequence: 1 fullname: YANAI, Rin organization: Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-0845, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30662011$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1rGzEQxZeS0jhpbz0XQa_dVN_SXgpNaFJDoJf2LLS7s47MWnIkrcE59U-v_BHTFHqRQO-93wyjuajOfPBQVe8JviJU0s_L2F9RTHRNuHpVzQjjuuYc47Nqhhsia62JPq8uUlpizKiQ_E11zrCUJUNm1e_5ah3DBlbgM3IetaNNOXTblNHjZEeXt6jdIg9TDBl8Ko7kFr4IfoE2ziKXE4rQwTqHmPaAsHEeUFpDXNkcnoJF_RR39iJuXI4BDRCzG92TzS74t9XrwY4J3h3vy-rX7befN9_r-x9385uv93Unqcr1MLQCK2t1T5tGKU2hFVJQQQRvFZcMd0oxBlISTomARmgtGWtEy7XtOVbsspofuH2wS7OObmXj1gTrzP4hxIWxpa1uBNO3FCyBQTLCeT-oVnZNSzXVXdsoELqwvhxY66ldQd-V2UU7voC-VLx7MIuwMZIrRggrgI9HQAyPE6RslmGKZazJUMoaSZlgu5Y__F3mxH_-vWL4dDB0MaQUYThZCDa75TBlOcxuOUxZjmKn_9g7l_efUJp04_9C14fQMmW7gFOF52HtzFIYuj-OoZPYPdhowLM_B9XXqw |
CitedBy_id | crossref_primary_10_1016_j_xfss_2020_03_001 crossref_primary_10_1371_journal_pone_0232536 crossref_primary_10_3390_ijms24054594 |
Cites_doi | 10.1095/biolreprod.113.112789 10.1095/biolreprod65.5.1606 10.1073/pnas.1717974115 10.1016/j.pneurobio.2007.06.006 10.1262/jrd.2016-055 10.1002/jcp.26883 10.1262/jrd.2015-073 10.1016/S0165-6147(99)01357-7 10.1016/S1472-6483(10)61960-8 10.1530/jrf.0.1090153 10.1093/humrep/des417 10.1016/j.anireprosci.2011.07.001 10.1016/0093-691X(92)90096-A 10.1002/rmb2.12021 10.1073/pnas.1018202108 10.1038/s41598-018-21335-8 10.1186/s12958-015-0077-1 10.1002/ijc.22407 10.1016/j.theriogenology.2014.01.041 10.1262/jrd.2017-041 10.3168/jds.2017-13138 10.1262/jrd.1056S15 10.1016/S0021-9258(17)32938-1 10.1262/jrd.2015-067 10.1262/jrd.2014-140 10.1002/jez.1402260120 10.1002/j.1939-4640.1991.tb00262.x 10.1262/jrd.1056S61 10.1016/j.anireprosci.2013.01.010 10.1016/j.theriogenology.2015.12.001 10.1046/j.0022-202x.2001.01439.x 10.3168/jds.S0022-0302(01)70158-0 10.1111/j.1476-5381.1995.tb13371.x 10.1016/j.peptides.2006.04.027 10.1016/S0093-691X(99)00162-4 10.1016/j.biochi.2011.04.024 10.1016/j.peptides.2006.08.009 10.1262/jrd.19031 10.1371/journal.pone.0036627 10.1111/j.1439-0531.2004.00559.x 10.1095/biolreprod.114.127266 10.1095/biolreprod.108.070961 10.1016/j.peptides.2005.12.016 10.1242/jcs.100867 |
ContentType | Journal Article |
Copyright | 2019 Society for Reproduction and Development Copyright Japan Science and Technology Agency 2019 2019 Society for Reproduction and Development 2019 |
Copyright_xml | – notice: 2019 Society for Reproduction and Development – notice: Copyright Japan Science and Technology Agency 2019 – notice: 2019 Society for Reproduction and Development 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK H94 K9. 5PM DOA |
DOI | 10.1262/jrd.2018-147 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Neurosciences Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Neurosciences Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1348-4400 |
EndPage | 153 |
ExternalDocumentID | oai_doaj_org_article_db2ea1ef63144df7b6c9b2828cb97e58 PMC6473113 30662011 10_1262_jrd_2018_147 article_jrd_65_2_65_2018_147_article_char_en |
Genre | Journal Article |
GroupedDBID | --- 29L 2WC 53G 5GY ACGFO ACPRK ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS B.T BAWUL CS3 DIK DU5 E3Z EBS EJD F5P GROUPED_DOAJ GX1 HYE JSF JSH KQ8 M48 N5S OK1 OVT P2P PGMZT RJT RNS RPM RZJ TKC TR2 XSB AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK H94 K9. 5PM |
ID | FETCH-LOGICAL-c627t-ffb507aa8d2997782eb56525154b74630c7733e6614215e958863395b48ad4073 |
IEDL.DBID | M48 |
ISSN | 0916-8818 |
IngestDate | Wed Aug 27 01:18:22 EDT 2025 Thu Aug 21 18:18:59 EDT 2025 Mon Jun 30 07:49:14 EDT 2025 Mon Apr 07 02:14:11 EDT 2025 Tue Jul 01 02:55:19 EDT 2025 Thu Apr 24 23:03:42 EDT 2025 Wed Sep 03 06:13:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | In vitro fertilization Cumulus-oocyte complex Neurotensin Bovine sperm Blastocyst |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c627t-ffb507aa8d2997782eb56525154b74630c7733e6614215e958863395b48ad4073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1262/jrd.2018-147 |
PMID | 30662011 |
PQID | 2239623537 |
PQPubID | 2048441 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_db2ea1ef63144df7b6c9b2828cb97e58 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6473113 proquest_journals_2239623537 pubmed_primary_30662011 crossref_primary_10_1262_jrd_2018_147 crossref_citationtrail_10_1262_jrd_2018_147 jstage_primary_article_jrd_65_2_65_2018_147_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-00-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Journal of Reproduction and Development |
PublicationTitleAlternate | J. Reprod. Dev. |
PublicationYear | 2019 |
Publisher | THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT Japan Science and Technology Agency The Society for Reproduction and Development |
Publisher_xml | – name: THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT – name: Japan Science and Technology Agency – name: The Society for Reproduction and Development |
References | 6. Ramírez AR, Castro MA, Angulo C, Ramió L, Rivera MM, Torres M, Rigau T, Rodríguez-Gil JE, Concha II. The presence and function of dopamine type 2 receptors in boar sperm: a possible role for dopamine in viability, capacitation, and modulation of sperm motility. Biol Reprod 2009; 80: 753–761. 17. Yamauchi R, Wada E, Yamada D, Yoshikawa M, Wada K. Effect of beta-lactotensin on acute stress and fear memory. Peptides 2006; 27: 3176–3182. 27. Lane M, Gardner DK. Differential regulation of mouse embryo development and viability by amino acids. J Reprod Fertil 1997; 109: 153–164. 32. Harayama H, Minami K, Kishida K, Noda T. Protein biomarkers for male artificial insemination subfertility in bovine spermatozoa. Reprod Med Biol 2017; 16: 89–98. 43. Pérez-Cerezales S, Laguna-Barraza R, de Castro AC, Sánchez-Calabuig MJ, Cano-Oliva E, de Castro-Pita FJ, Montoro-Buils L, Pericuesta E, Fernández-González R, Gutiérrez-Adán A. Sperm selection by thermotaxis improves ICSI outcome in mice. Sci Rep 2018; 8: 2902. 4. Kishida K, Sakase M, Minami K, Arai MM, Syoji R, Kohama N, Akiyama T, Oka A, Harayama H, Fukushima M. Effects of acrosomal conditions of frozen-thawed spermatozoa on the results of artificial insemination in Japanese Black cattle. J Reprod Dev 2015; 61: 519–524. 25. Oikawa T, Itahashi T, Numabe T. Improved embryo development in Japanese black cattle by in vitro fertilization using ovum pick-up plus intracytoplasmic sperm injection with dithiothreitol. J Reprod Dev 2016; 62: 11–16. 23. Sugimura S, Akai T, Hashiyada Y, Somfai T, Inaba Y, Hirayama M, Yamanouchi T, Matsuda H, Kobayashi S, Aikawa Y, Ohtake M, Kobayashi E, Konishi K, Imai K. Promising system for selecting healthy in vitro-fertilized embryos in cattle. PLoS One 2012; 7: e36627. 24. Sugimura S, Akai T, Imai K. Selection of viable in vitro-fertilized bovine embryos using time-lapse monitoring in microwell culture dishes. J Reprod Dev 2017; 63: 353–357. 45. Moore SG, Hasler JF. A 100-Year Review: Reproductive technologies in dairy science. J Dairy Sci 2017; 100: 10314–10331. 40. Dirican EK, Ozgün OD, Akarsu S, Akin KO, Ercan O, Uğurlu M, Camsari C, Kanyilmaz O, Kaya A, Unsal A. Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J Assist Reprod Genet 2008; 25: 375–381. 42. Li J, Zhu S, He X, Sun R, He Q, Gan Y, Liu S, Funahashi H, Li Y. Application of a microfluidic sperm sorter to in vitro production of dairy cattle sex-sorted embryos. Theriogenology 2016; 85: 1211–1218. 7. Meizel S, Turner KO. Serotonin or its agonist 5-methoxytryptamine can stimulate hamster sperm acrosome reactions in a more direct manner than catecholamines. J Exp Zool 1983; 226: 171–174. 30. Oliveira LZ, de Arruda RP, de Andrade AF, Celeghini EC, Reeb PD, Martins JP, dos Santos RM, Beletti ME, Peres RF, Monteiro FM, Hossepian de Lima VF. Assessment of in vitro sperm characteristics and their importance in the prediction of conception rate in a bovine timed-AI program. Anim Reprod Sci 2013; 137: 145–155. 36. Luque GM, Dalotto-Moreno T, Martín-Hidalgo D, Ritagliati C, Puga Molina LC, Romarowski A, Balestrini PA, Schiavi-Ehrenhaus LJ, Gilio N, Krapf D, Visconti PE, Buffone MG. Only a subpopulation of mouse sperm displays a rapid increase in intracellular calcium during capacitation. J Cell Physiol 2018; 233: 9685–9700. 44. Nagata MPB, Endo K, Ogata K, Yamanaka K, Egashira J, Katafuchi N, Yamanouchi T, Matsuda H, Goto Y, Sakatani M, Hojo T, Nishizono H, Yotsushima K, Takenouchi N, Hashiyada Y, Yamashita K. Live births from artificial insemination of microfluidic-sorted bovine spermatozoa characterized by trajectories correlated with fertility. Proc Natl Acad Sci USA 2018; 115: E3087–E3096. 39. Lukoseviciute K, Zilinskas H, Januskauskas A. The effect of oestradiol, progesterone and heparin on bovine spermatozoa function after thawing. Reprod Domest Anim 2005; 40: 100–107. 26. Thouas GA, Korfiatis NA, French AJ, Jones GM, Trounson AO. Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod Biomed Online 2001; 3: 25–29. 3. Lucy MC. Reproductive loss in high-producing dairy cattle: where will it end? J Dairy Sci 2001; 84: 1277–1293. 10. Carraway R, Leeman SE. Characterization of radioimmunoassayable neurotensin in the rat. Its differential distribution in the central nervous system, small intestine, and stomach. J Biol Chem 1976; 251: 7045–7052. 5. Puente MA, Tartaglione CM, Ritta MN. Bull sperm acrosome reaction induced by gamma-aminobutyric acid (GABA) is mediated by GABAergic receptors type A. Anim Reprod Sci 2011; 127: 31–37. 8. Hiradate Y, Inoue H, Kobayashi N, Shirakata Y, Suzuki Y, Gotoh A, Roh SG, Uchida T, Katoh K, Yoshida M, Sato E, Tanemura K. Neurotensin enhances sperm capacitation and acrosome reaction in mice. Biol Reprod 2014; 91: 53. 22. Takahashi Y, First NL. In vitro development of bovine one-cell embryos: Influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology 1992; 37: 963–978. 31. Takeda K, Uchiyama K, Kinukawa M, Tagami T, Kaneda M, Watanabe S. Evaluation of sperm DNA damage in bulls by TUNEL assay as a parameter of semen quality. J Reprod Dev 2015; 61: 185–190. 13. Vincent JP, Mazella J, Kitabgi P. Neurotensin and neurotensin receptors. Trends Pharmacol Sci 1999; 20: 302–309. 29. Kuroda K, Fukushima M, Harayama H. Premature capacitation of frozen-thawed spermatozoa from subfertile Japanese black cattle. J Reprod Dev 2007; 53: 1079–1086. 35. Escoffier J, Navarrete F, Haddad D, Santi CM, Darszon A, Visconti PE. Flow cytometry analysis reveals that only a subpopulation of mouse sperm undergoes hyperpolarization during capacitation. Biol Reprod 2015; 92: 121. 21. Holm P, Booth PJ, Schmidt MH, Greve T, Callesen H. High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 1999; 52: 683–700. 33. Jin M, Fujiwara E, Kakiuchi Y, Okabe M, Satouh Y, Baba SA, Chiba K, Hirohashi N. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc Natl Acad Sci USA 2011; 108: 4892–4896. 15. Dupouy S, Mourra N, Doan VK, Gompel A, Alifano M, Forgez P. The potential use of the neurotensin high affinity receptor 1 as a biomarker for cancer progression and as a component of personalized medicine in selective cancers. Biochimie 2011; 93: 1369–1378. 2. Dochi O, Kabeya S, Koyama H. Factors affecting reproductive performance in high milk-producing Holstein cows. J Reprod Dev 2010; 56(Suppl): S61–S65. 11. Zhao D, Pothoulakis C. Effects of NT on gastrointestinal motility and secretion, and role in intestinal inflammation. Peptides 2006; 27: 2434–2444. 14. Pelaprat D. Interactions between neurotensin receptors and G proteins. Peptides 2006; 27: 2476–2487. 16. Miller LA, Cochrane DE, Carraway RE, Feldberg RS. Blockade of mast cell histamine secretion in response to neurotensin by SR 48692, a nonpeptide antagonist of the neurotensin brain receptor. Br J Pharmacol 1995; 114: 1466–1470. 34. Satouh Y, Inoue N, Ikawa M, Okabe M. Visualization of the moment of mouse sperm-egg fusion and dynamic localization of IZUMO1. J Cell Sci 2012; 125: 4985–4990. 37. McNutt TL, Killian GJ. Influence of bovine follicular and oviduct fluids on sperm capacitation in vitro. J Androl 1991; 12: 244–252. 38. Ho HC, Suarez SS. An inositol 1,4,5-trisphosphate receptor-gated intracellular Ca(2+) store is involved in regulating sperm hyperactivated motility. Biol Reprod 2001; 65: 1606–1615. 18. Zhao D, Zhan Y, Zeng H, Koon HW, Moyer MP, Pothoulakis C. Neurotensin stimulates expression of early growth response gene-1 and EGF receptor through MAP kinase activation in human colonic epithelial cells. Int J Cancer 2007; 120: 1652–1656. 20. Cerny KL, Garrett E, Walton AJ, Anderson LH, Bridges PJ. A transcriptomal analysis of bovine oviductal epithelial cells collected during the follicular phase versus the luteal phase of the estrous cycle. Reprod Biol Endocrinol 2015; 13: 84. 28. O’Hara L, Forde N, Kelly AK, Lonergan P. Effect of bovine blastocyst size at embryo transfer on day 7 on conceptus length on day 14: can supplementary progesterone rescue small embryos? Theriogenology 2014; 81: 1123–1128. 41. Worrilow KC, Eid S, Woodhouse D, Perloe M, Smith S, Witmyer J, Ivani K, Khoury C, Ball GD, Elliot T, Lieberman J. Use of hyaluronan in the selection of sperm for intracytoplasmic sperm injection (ICSI): significant improvement in clinical outcomes--multicenter, double-blinded and randomized controlled trial. Hum Reprod 2013; 28: 306–314. 1. Barbat A, Le Mézec P, Ducrocq V, Mattalia S, Fritz S, Boichard D, Ponsart C, Humblot P. Female fertility in French dairy breeds: current situation and strategies for improvement. J Reprod Dev 2010; 56(Suppl): S15–S21. 12. Ramez M, Bagot M, Nikolova M, Boumsell L, Vita N, Chalon P, Caput D, Ferrara P, Bensussan A. Functional characterization of neurotensin receptors in human cutaneous T cell lymphoma malignant lymphocytes. J Invest Dermatol 2001; 117: 687–693. 9. Umezu K, Hiradate Y, Oikawa T, Ishiguro H, Numabe T, Hara K, Tanemura K. Exogenous neurotensin modulates sperm function in Japanese Black cattle. J Reprod Dev 2016; 62: 409–414. 19. Antonelli T, Fuxe K, Tomasini MC, Mazzoni E, Agnati LF, Tanganelli S, Ferraro L. Neurotensin receptor mechanisms and its modulation of glutamate transmission in the brain: relevance for neurodegenerative diseases and their treatment. Prog Neurobiol 2007; 83: 92–109. 22 44 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 |
References_xml | – reference: 25. Oikawa T, Itahashi T, Numabe T. Improved embryo development in Japanese black cattle by in vitro fertilization using ovum pick-up plus intracytoplasmic sperm injection with dithiothreitol. J Reprod Dev 2016; 62: 11–16. – reference: 31. Takeda K, Uchiyama K, Kinukawa M, Tagami T, Kaneda M, Watanabe S. Evaluation of sperm DNA damage in bulls by TUNEL assay as a parameter of semen quality. J Reprod Dev 2015; 61: 185–190. – reference: 16. Miller LA, Cochrane DE, Carraway RE, Feldberg RS. Blockade of mast cell histamine secretion in response to neurotensin by SR 48692, a nonpeptide antagonist of the neurotensin brain receptor. Br J Pharmacol 1995; 114: 1466–1470. – reference: 26. Thouas GA, Korfiatis NA, French AJ, Jones GM, Trounson AO. Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod Biomed Online 2001; 3: 25–29. – reference: 9. Umezu K, Hiradate Y, Oikawa T, Ishiguro H, Numabe T, Hara K, Tanemura K. Exogenous neurotensin modulates sperm function in Japanese Black cattle. J Reprod Dev 2016; 62: 409–414. – reference: 21. Holm P, Booth PJ, Schmidt MH, Greve T, Callesen H. High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 1999; 52: 683–700. – reference: 33. Jin M, Fujiwara E, Kakiuchi Y, Okabe M, Satouh Y, Baba SA, Chiba K, Hirohashi N. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc Natl Acad Sci USA 2011; 108: 4892–4896. – reference: 42. Li J, Zhu S, He X, Sun R, He Q, Gan Y, Liu S, Funahashi H, Li Y. Application of a microfluidic sperm sorter to in vitro production of dairy cattle sex-sorted embryos. Theriogenology 2016; 85: 1211–1218. – reference: 15. Dupouy S, Mourra N, Doan VK, Gompel A, Alifano M, Forgez P. The potential use of the neurotensin high affinity receptor 1 as a biomarker for cancer progression and as a component of personalized medicine in selective cancers. Biochimie 2011; 93: 1369–1378. – reference: 12. Ramez M, Bagot M, Nikolova M, Boumsell L, Vita N, Chalon P, Caput D, Ferrara P, Bensussan A. Functional characterization of neurotensin receptors in human cutaneous T cell lymphoma malignant lymphocytes. J Invest Dermatol 2001; 117: 687–693. – reference: 38. Ho HC, Suarez SS. An inositol 1,4,5-trisphosphate receptor-gated intracellular Ca(2+) store is involved in regulating sperm hyperactivated motility. Biol Reprod 2001; 65: 1606–1615. – reference: 7. Meizel S, Turner KO. Serotonin or its agonist 5-methoxytryptamine can stimulate hamster sperm acrosome reactions in a more direct manner than catecholamines. J Exp Zool 1983; 226: 171–174. – reference: 8. Hiradate Y, Inoue H, Kobayashi N, Shirakata Y, Suzuki Y, Gotoh A, Roh SG, Uchida T, Katoh K, Yoshida M, Sato E, Tanemura K. Neurotensin enhances sperm capacitation and acrosome reaction in mice. Biol Reprod 2014; 91: 53. – reference: 18. Zhao D, Zhan Y, Zeng H, Koon HW, Moyer MP, Pothoulakis C. Neurotensin stimulates expression of early growth response gene-1 and EGF receptor through MAP kinase activation in human colonic epithelial cells. Int J Cancer 2007; 120: 1652–1656. – reference: 10. Carraway R, Leeman SE. Characterization of radioimmunoassayable neurotensin in the rat. Its differential distribution in the central nervous system, small intestine, and stomach. J Biol Chem 1976; 251: 7045–7052. – reference: 13. Vincent JP, Mazella J, Kitabgi P. Neurotensin and neurotensin receptors. Trends Pharmacol Sci 1999; 20: 302–309. – reference: 32. Harayama H, Minami K, Kishida K, Noda T. Protein biomarkers for male artificial insemination subfertility in bovine spermatozoa. Reprod Med Biol 2017; 16: 89–98. – reference: 14. Pelaprat D. Interactions between neurotensin receptors and G proteins. Peptides 2006; 27: 2476–2487. – reference: 17. Yamauchi R, Wada E, Yamada D, Yoshikawa M, Wada K. Effect of beta-lactotensin on acute stress and fear memory. Peptides 2006; 27: 3176–3182. – reference: 36. Luque GM, Dalotto-Moreno T, Martín-Hidalgo D, Ritagliati C, Puga Molina LC, Romarowski A, Balestrini PA, Schiavi-Ehrenhaus LJ, Gilio N, Krapf D, Visconti PE, Buffone MG. Only a subpopulation of mouse sperm displays a rapid increase in intracellular calcium during capacitation. J Cell Physiol 2018; 233: 9685–9700. – reference: 28. O’Hara L, Forde N, Kelly AK, Lonergan P. Effect of bovine blastocyst size at embryo transfer on day 7 on conceptus length on day 14: can supplementary progesterone rescue small embryos? Theriogenology 2014; 81: 1123–1128. – reference: 34. Satouh Y, Inoue N, Ikawa M, Okabe M. Visualization of the moment of mouse sperm-egg fusion and dynamic localization of IZUMO1. J Cell Sci 2012; 125: 4985–4990. – reference: 37. McNutt TL, Killian GJ. Influence of bovine follicular and oviduct fluids on sperm capacitation in vitro. J Androl 1991; 12: 244–252. – reference: 40. Dirican EK, Ozgün OD, Akarsu S, Akin KO, Ercan O, Uğurlu M, Camsari C, Kanyilmaz O, Kaya A, Unsal A. Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J Assist Reprod Genet 2008; 25: 375–381. – reference: 3. Lucy MC. Reproductive loss in high-producing dairy cattle: where will it end? J Dairy Sci 2001; 84: 1277–1293. – reference: 45. Moore SG, Hasler JF. A 100-Year Review: Reproductive technologies in dairy science. J Dairy Sci 2017; 100: 10314–10331. – reference: 20. Cerny KL, Garrett E, Walton AJ, Anderson LH, Bridges PJ. A transcriptomal analysis of bovine oviductal epithelial cells collected during the follicular phase versus the luteal phase of the estrous cycle. Reprod Biol Endocrinol 2015; 13: 84. – reference: 41. Worrilow KC, Eid S, Woodhouse D, Perloe M, Smith S, Witmyer J, Ivani K, Khoury C, Ball GD, Elliot T, Lieberman J. Use of hyaluronan in the selection of sperm for intracytoplasmic sperm injection (ICSI): significant improvement in clinical outcomes--multicenter, double-blinded and randomized controlled trial. Hum Reprod 2013; 28: 306–314. – reference: 11. Zhao D, Pothoulakis C. Effects of NT on gastrointestinal motility and secretion, and role in intestinal inflammation. Peptides 2006; 27: 2434–2444. – reference: 4. Kishida K, Sakase M, Minami K, Arai MM, Syoji R, Kohama N, Akiyama T, Oka A, Harayama H, Fukushima M. Effects of acrosomal conditions of frozen-thawed spermatozoa on the results of artificial insemination in Japanese Black cattle. J Reprod Dev 2015; 61: 519–524. – reference: 6. Ramírez AR, Castro MA, Angulo C, Ramió L, Rivera MM, Torres M, Rigau T, Rodríguez-Gil JE, Concha II. The presence and function of dopamine type 2 receptors in boar sperm: a possible role for dopamine in viability, capacitation, and modulation of sperm motility. Biol Reprod 2009; 80: 753–761. – reference: 2. Dochi O, Kabeya S, Koyama H. Factors affecting reproductive performance in high milk-producing Holstein cows. J Reprod Dev 2010; 56(Suppl): S61–S65. – reference: 27. Lane M, Gardner DK. Differential regulation of mouse embryo development and viability by amino acids. J Reprod Fertil 1997; 109: 153–164. – reference: 30. Oliveira LZ, de Arruda RP, de Andrade AF, Celeghini EC, Reeb PD, Martins JP, dos Santos RM, Beletti ME, Peres RF, Monteiro FM, Hossepian de Lima VF. Assessment of in vitro sperm characteristics and their importance in the prediction of conception rate in a bovine timed-AI program. Anim Reprod Sci 2013; 137: 145–155. – reference: 39. Lukoseviciute K, Zilinskas H, Januskauskas A. The effect of oestradiol, progesterone and heparin on bovine spermatozoa function after thawing. Reprod Domest Anim 2005; 40: 100–107. – reference: 44. Nagata MPB, Endo K, Ogata K, Yamanaka K, Egashira J, Katafuchi N, Yamanouchi T, Matsuda H, Goto Y, Sakatani M, Hojo T, Nishizono H, Yotsushima K, Takenouchi N, Hashiyada Y, Yamashita K. Live births from artificial insemination of microfluidic-sorted bovine spermatozoa characterized by trajectories correlated with fertility. Proc Natl Acad Sci USA 2018; 115: E3087–E3096. – reference: 1. Barbat A, Le Mézec P, Ducrocq V, Mattalia S, Fritz S, Boichard D, Ponsart C, Humblot P. Female fertility in French dairy breeds: current situation and strategies for improvement. J Reprod Dev 2010; 56(Suppl): S15–S21. – reference: 35. Escoffier J, Navarrete F, Haddad D, Santi CM, Darszon A, Visconti PE. Flow cytometry analysis reveals that only a subpopulation of mouse sperm undergoes hyperpolarization during capacitation. Biol Reprod 2015; 92: 121. – reference: 22. Takahashi Y, First NL. In vitro development of bovine one-cell embryos: Influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology 1992; 37: 963–978. – reference: 19. Antonelli T, Fuxe K, Tomasini MC, Mazzoni E, Agnati LF, Tanganelli S, Ferraro L. Neurotensin receptor mechanisms and its modulation of glutamate transmission in the brain: relevance for neurodegenerative diseases and their treatment. Prog Neurobiol 2007; 83: 92–109. – reference: 24. Sugimura S, Akai T, Imai K. Selection of viable in vitro-fertilized bovine embryos using time-lapse monitoring in microwell culture dishes. J Reprod Dev 2017; 63: 353–357. – reference: 29. Kuroda K, Fukushima M, Harayama H. Premature capacitation of frozen-thawed spermatozoa from subfertile Japanese black cattle. J Reprod Dev 2007; 53: 1079–1086. – reference: 43. Pérez-Cerezales S, Laguna-Barraza R, de Castro AC, Sánchez-Calabuig MJ, Cano-Oliva E, de Castro-Pita FJ, Montoro-Buils L, Pericuesta E, Fernández-González R, Gutiérrez-Adán A. Sperm selection by thermotaxis improves ICSI outcome in mice. Sci Rep 2018; 8: 2902. – reference: 5. Puente MA, Tartaglione CM, Ritta MN. Bull sperm acrosome reaction induced by gamma-aminobutyric acid (GABA) is mediated by GABAergic receptors type A. Anim Reprod Sci 2011; 127: 31–37. – reference: 23. Sugimura S, Akai T, Hashiyada Y, Somfai T, Inaba Y, Hirayama M, Yamanouchi T, Matsuda H, Kobayashi S, Aikawa Y, Ohtake M, Kobayashi E, Konishi K, Imai K. Promising system for selecting healthy in vitro-fertilized embryos in cattle. PLoS One 2012; 7: e36627. – ident: 8 doi: 10.1095/biolreprod.113.112789 – ident: 38 doi: 10.1095/biolreprod65.5.1606 – ident: 43 doi: 10.1073/pnas.1717974115 – ident: 19 doi: 10.1016/j.pneurobio.2007.06.006 – ident: 9 doi: 10.1262/jrd.2016-055 – ident: 36 doi: 10.1002/jcp.26883 – ident: 4 doi: 10.1262/jrd.2015-073 – ident: 13 doi: 10.1016/S0165-6147(99)01357-7 – ident: 26 doi: 10.1016/S1472-6483(10)61960-8 – ident: 27 doi: 10.1530/jrf.0.1090153 – ident: 40 doi: 10.1093/humrep/des417 – ident: 5 doi: 10.1016/j.anireprosci.2011.07.001 – ident: 22 doi: 10.1016/0093-691X(92)90096-A – ident: 32 doi: 10.1002/rmb2.12021 – ident: 33 doi: 10.1073/pnas.1018202108 – ident: 42 doi: 10.1038/s41598-018-21335-8 – ident: 20 doi: 10.1186/s12958-015-0077-1 – ident: 18 doi: 10.1002/ijc.22407 – ident: 28 doi: 10.1016/j.theriogenology.2014.01.041 – ident: 24 doi: 10.1262/jrd.2017-041 – ident: 44 doi: 10.3168/jds.2017-13138 – ident: 1 doi: 10.1262/jrd.1056S15 – ident: 10 doi: 10.1016/S0021-9258(17)32938-1 – ident: 25 doi: 10.1262/jrd.2015-067 – ident: 31 doi: 10.1262/jrd.2014-140 – ident: 7 doi: 10.1002/jez.1402260120 – ident: 37 doi: 10.1002/j.1939-4640.1991.tb00262.x – ident: 2 doi: 10.1262/jrd.1056S61 – ident: 30 doi: 10.1016/j.anireprosci.2013.01.010 – ident: 41 doi: 10.1016/j.theriogenology.2015.12.001 – ident: 12 doi: 10.1046/j.0022-202x.2001.01439.x – ident: 3 doi: 10.3168/jds.S0022-0302(01)70158-0 – ident: 16 doi: 10.1111/j.1476-5381.1995.tb13371.x – ident: 14 doi: 10.1016/j.peptides.2006.04.027 – ident: 21 doi: 10.1016/S0093-691X(99)00162-4 – ident: 15 doi: 10.1016/j.biochi.2011.04.024 – ident: 17 doi: 10.1016/j.peptides.2006.08.009 – ident: 29 doi: 10.1262/jrd.19031 – ident: 23 doi: 10.1371/journal.pone.0036627 – ident: 39 doi: 10.1111/j.1439-0531.2004.00559.x – ident: 35 doi: 10.1095/biolreprod.114.127266 – ident: 6 doi: 10.1095/biolreprod.108.070961 – ident: 11 doi: 10.1016/j.peptides.2005.12.016 – ident: 34 doi: 10.1242/jcs.100867 |
SSID | ssj0032564 ssib044745553 ssib006551142 |
Score | 2.172625 |
Snippet | Previously, we reported that neurotensin (NT), which is expressed in the uterus and oviduct, enhanced bovine sperm capacitation and acrosome reactions. As NT... |
SourceID | doaj pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 147 |
SubjectTerms | Acrosome Reaction - drug effects Acrosome Reaction - genetics Animals Blastocyst Blastocyst - cytology Blastocyst - drug effects Blastocyst - physiology Blastocysts Bovine sperm Capacitation Cattle - embryology Cells, Cultured Cumulus-oocyte complex Embryo Culture Techniques - methods Embryo Culture Techniques - veterinary Embryo, Mammalian Embryonic Development - drug effects Embryonic Development - genetics Female Fertilization - drug effects Fertilization - genetics Fertilization in Vitro - veterinary Gene expression Immunocytochemistry In vitro fertilization Male Neurotensin Neurotensin - metabolism Neurotensin - pharmacology Neurotensin - physiology Oocytes Original Oviduct Polymerase chain reaction Quality Receptors, Neurotensin - genetics Receptors, Neurotensin - metabolism Receptors, Neurotensin - physiology Reverse transcription Signal Transduction - drug effects Signal Transduction - genetics Sperm Sperm Capacitation - drug effects Sperm Capacitation - genetics Spermatozoa - drug effects Spermatozoa - physiology Testes Uterus |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSiAuCMortCAf4ISisvErESdAVBVSOVGpN8tObEhVJdVuWmk58dM7Y3ujXQTiwiWHteM49mTmG-_MNwCvrdVOcUtB7UqUgitX1laFsrJBu6oJduHJUTz9qk7OxJdzeb5V6otiwhI9cFq4o85VHm8IiiP073AA1TaO_ITWNdrLmOaLNm_jTCUdzNGQR-IoBD9ljTYph7xXqjq6WBJB6AJ9JyqpsmWMImc_GqILhGXf_Z8Q5--Bk1uW6PghPMgQkn1IU38Ed_ywD3dTUcn1Ptw7zX-XP4Zf6cggngCyfmAOofI0tuvVxFIy5Zq5NYuUljGQfWAUzmEpQ53d9Jb104qhRvRXVJInDkDnD54Ruzgi3fHnaFnKc6TGm35ajixQoPZlzu58AmfHn799OilzyYWyVZWeyhAcAkRr6w7NlEb04B0iPsRAUjgtFH_Xas25J6OOWME3sq4V5410orYd-ob8KewN4-CfA9OIHZWQneABncjaWul9hQsf6iCwry3g7WbtTZv5yKksxqUhvwR3yuBOGdopdE90AW_m3leJh-Mv_T7SNs59iD07_oAyZbJMmX_JVAHvkxDMw2zupEcpaap4yY-cGylPDpVNAYcbyTFZIawMorAGkabkOMNnSYjmwTmx8KOeLUDviNfOS-y2DP2PSAWuhOaLBX_xP976AO7jLJp0vnQIe9Py2r9ExDW5V_HjugWlMSxU priority: 102 providerName: Directory of Open Access Journals |
Title | Improvement in blastocyst quality by neurotensin signaling via its receptors in bovine spermatozoa during in vitro fertilization |
URI | https://www.jstage.jst.go.jp/article/jrd/65/2/65_2018-147/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/30662011 https://www.proquest.com/docview/2239623537 https://pubmed.ncbi.nlm.nih.gov/PMC6473113 https://doaj.org/article/db2ea1ef63144df7b6c9b2828cb97e58 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Reproduction and Development, 2019, Vol.65(2), pp.147-153 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKEYgLgvJKKSsf4IQCJH4lQggBalVAW3Fgpd4iO7HbrFZJyaYV4YD46cw4D3WrwsWH2LGz9tjzjXfmG0Kea62MZBqd2iUPOZMmTLR0YaydMnHqdGTRUJwfycMF_3IsjrfImG10mMD1taYd5pNaNKtXP39072HDv_PcCDJ-vWyQ8jMCa4irG-Qm6CSFSRzml4C-BGAQ8UmRc664EGI6sxkofk80BWApTECHDS7yV3vfUF6e4x8U1xJg3Im9DqFedbS8pLkO7pG7A-SkH3oZuU-2lnqH3OqTUHY75PZ8-Hv9AfnTXzH4G0NaVtQAtG7rvFu3tA--7KjpqKfA9I7vFUX3D40R7fSi1LRs1xROUHuGKXx8B3hfYSmykQMyrn_VmvZxkVh5UbZNTR06dq-GaNCHZHGw__3TYTikaAhzGas2dM4AoNQ6KUCtKUAb1gBCBMwkuFFcsje5UoxZBAGALWwqkkQylgrDE12ALckeke2qruwTQhVgTclFwZkDozPRWlgbw8S7xHFoqwPycpz7LB_4yzGNxipDOwZWKoOVynClwJxRAXkxtT7reTv-0e4jLuPUBtm2_YO6OcmGzZsVJrYgtE4yMD8LEGKZpwZt1dykyookIG97IZi6Gd_EoaTIYl8MQ06VGFcHh1NA9kbJyUb5zwC1pYBMBYMvfNwL0dQ5Q9Z-OJcDojbEa-NHbNZU5amnDpdcsShiu_8f8im5A_2n_U3THtlum3P7DLBXa2ZgdXz-OvM3FzO_xbD8vQ_l0bf5X2MSMIM |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+in+blastocyst+quality+by+neurotensin+signaling+via+its+receptors+in+bovine+spermatozoa+during+in+vitro+fertilization&rft.jtitle=The+Journal+of+reproduction+and+development&rft.au=UMEZU%2C+Kohei&rft.au=YAJIMA%2C+Risa&rft.au=HIRADATE%2C+Yuuki&rft.au=YANAI%2C+Rin&rft.date=2019&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=0916-8818&rft.eissn=1348-4400&rft.volume=65&rft.issue=2&rft.spage=147&rft_id=info:doi/10.1262%2Fjrd.2018-147&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8818&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8818&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8818&client=summon |