A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans

•We developed a deep learning system for automatic ICH detection and subtype classification.•Our method produced AUCs around 0.99 for each ICH subtype and won 1st place in the RSNA challenge.•Our method generalizes across two independent external validation datasets.•Visualization technique makes th...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage clinical Vol. 32; p. 102785
Main Authors Wang, Xiyue, Shen, Tao, Yang, Sen, Lan, Jun, Xu, Yanming, Wang, Minghui, Zhang, Jing, Han, Xiao
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.01.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We developed a deep learning system for automatic ICH detection and subtype classification.•Our method produced AUCs around 0.99 for each ICH subtype and won 1st place in the RSNA challenge.•Our method generalizes across two independent external validation datasets.•Visualization technique makes the system more easily acceptable for clinicians. Acute Intracranial hemorrhage (ICH) is a life-threatening disease that requires emergency medical attention, which is routinely diagnosed using non-contrast head CT imaging. The diagnostic accuracy of acute ICH on CT varies greatly among radiologists due to the difficulty of interpreting subtle findings and the time pressure associated with the ever-increasing workload. The use of artificial intelligence technology may help automate the process and assist radiologists for more prompt and better decision-making. In this work, we design a deep learning approach that mimics the interpretation process of radiologists, and combines a 2D CNN model and two sequence models to achieve accurate acute ICH detection and subtype classification. Being developed using the extensive 2019-RSNA Brain CT Hemorrhage Challenge dataset with over 25000 CT scans, our deep learning algorithm can accurately classify the acute ICH and its five subtypes with AUCs of 0.988 (ICH), 0.984 (EDH), 0.992 (IPH), 0.996 (IVH), 0.985 (SAH), and 0.983 (SDH), respectively, reaching the accuracy level of expert radiologists. Our method won 1st place among 1345 teams from 75 countries in the RSNA challenge. We have further evaluated our algorithm on two independent external validation datasets with 75 and 491 CT scans, respectively, and our method maintained high AUCs of 0.964 and 0.949 for acute ICH detection. These results have demonstrated the high performance and robust generalization ability of our proposed method, which makes it a useful second-read or triage tool that can facilitate routine clinical applications.
AbstractList Acute Intracranial hemorrhage (ICH) is a life-threatening disease that requires emergency medical attention, which is routinely diagnosed using non-contrast head CT imaging. The diagnostic accuracy of acute ICH on CT varies greatly among radiologists due to the difficulty of interpreting subtle findings and the time pressure associated with the ever-increasing workload. The use of artificial intelligence technology may help automate the process and assist radiologists for more prompt and better decision-making. In this work, we design a deep learning approach that mimics the interpretation process of radiologists, and combines a 2D CNN model and two sequence models to achieve accurate acute ICH detection and subtype classification. Being developed using the extensive 2019-RSNA Brain CT Hemorrhage Challenge dataset with over 25000 CT scans, our deep learning algorithm can accurately classify the acute ICH and its five subtypes with AUCs of 0.988 (ICH), 0.984 (EDH), 0.992 (IPH), 0.996 (IVH), 0.985 (SAH), and 0.983 (SDH), respectively, reaching the accuracy level of expert radiologists. Our method won 1st place among 1345 teams from 75 countries in the RSNA challenge. We have further evaluated our algorithm on two independent external validation datasets with 75 and 491 CT scans, respectively, and our method maintained high AUCs of 0.964 and 0.949 for acute ICH detection. These results have demonstrated the high performance and robust generalization ability of our proposed method, which makes it a useful second-read or triage tool that can facilitate routine clinical applications.
Highlights•We developed a deep learning system for automatic ICH detection and subtype classification. •Our method produced AUCs around 0.99 for each ICH subtype and won 1st place in the RSNA challenge. •Our method generalizes across two independent external validation datasets. •Visualization technique makes the system more easily acceptable for clinicians.
Acute Intracranial hemorrhage (ICH) is a life-threatening disease that requires emergency medical attention, which is routinely diagnosed using non-contrast head CT imaging. The diagnostic accuracy of acute ICH on CT varies greatly among radiologists due to the difficulty of interpreting subtle findings and the time pressure associated with the ever-increasing workload. The use of artificial intelligence technology may help automate the process and assist radiologists for more prompt and better decision-making. In this work, we design a deep learning approach that mimics the interpretation process of radiologists, and combines a 2D CNN model and two sequence models to achieve accurate acute ICH detection and subtype classification. Being developed using the extensive 2019-RSNA Brain CT Hemorrhage Challenge dataset with over 25000 CT scans, our deep learning algorithm can accurately classify the acute ICH and its five subtypes with AUCs of 0.988 (ICH), 0.984 (EDH), 0.992 (IPH), 0.996 (IVH), 0.985 (SAH), and 0.983 (SDH), respectively, reaching the accuracy level of expert radiologists. Our method won 1st place among 1345 teams from 75 countries in the RSNA challenge. We have further evaluated our algorithm on two independent external validation datasets with 75 and 491 CT scans, respectively, and our method maintained high AUCs of 0.964 and 0.949 for acute ICH detection. These results have demonstrated the high performance and robust generalization ability of our proposed method, which makes it a useful second-read or triage tool that can facilitate routine clinical applications.Acute Intracranial hemorrhage (ICH) is a life-threatening disease that requires emergency medical attention, which is routinely diagnosed using non-contrast head CT imaging. The diagnostic accuracy of acute ICH on CT varies greatly among radiologists due to the difficulty of interpreting subtle findings and the time pressure associated with the ever-increasing workload. The use of artificial intelligence technology may help automate the process and assist radiologists for more prompt and better decision-making. In this work, we design a deep learning approach that mimics the interpretation process of radiologists, and combines a 2D CNN model and two sequence models to achieve accurate acute ICH detection and subtype classification. Being developed using the extensive 2019-RSNA Brain CT Hemorrhage Challenge dataset with over 25000 CT scans, our deep learning algorithm can accurately classify the acute ICH and its five subtypes with AUCs of 0.988 (ICH), 0.984 (EDH), 0.992 (IPH), 0.996 (IVH), 0.985 (SAH), and 0.983 (SDH), respectively, reaching the accuracy level of expert radiologists. Our method won 1st place among 1345 teams from 75 countries in the RSNA challenge. We have further evaluated our algorithm on two independent external validation datasets with 75 and 491 CT scans, respectively, and our method maintained high AUCs of 0.964 and 0.949 for acute ICH detection. These results have demonstrated the high performance and robust generalization ability of our proposed method, which makes it a useful second-read or triage tool that can facilitate routine clinical applications.
• We developed a deep learning system for automatic ICH detection and subtype classification. • Our method produced AUCs around 0.99 for each ICH subtype and won 1st place in the RSNA challenge. • Our method generalizes across two independent external validation datasets. • Visualization technique makes the system more easily acceptable for clinicians. Acute Intracranial hemorrhage (ICH) is a life-threatening disease that requires emergency medical attention, which is routinely diagnosed using non-contrast head CT imaging. The diagnostic accuracy of acute ICH on CT varies greatly among radiologists due to the difficulty of interpreting subtle findings and the time pressure associated with the ever-increasing workload. The use of artificial intelligence technology may help automate the process and assist radiologists for more prompt and better decision-making. In this work, we design a deep learning approach that mimics the interpretation process of radiologists, and combines a 2D CNN model and two sequence models to achieve accurate acute ICH detection and subtype classification. Being developed using the extensive 2019-RSNA Brain CT Hemorrhage Challenge dataset with over 25000 CT scans, our deep learning algorithm can accurately classify the acute ICH and its five subtypes with AUCs of 0.988 (ICH), 0.984 (EDH), 0.992 (IPH), 0.996 (IVH), 0.985 (SAH), and 0.983 (SDH), respectively, reaching the accuracy level of expert radiologists. Our method won 1st place among 1345 teams from 75 countries in the RSNA challenge. We have further evaluated our algorithm on two independent external validation datasets with 75 and 491 CT scans, respectively, and our method maintained high AUCs of 0.964 and 0.949 for acute ICH detection. These results have demonstrated the high performance and robust generalization ability of our proposed method, which makes it a useful second-read or triage tool that can facilitate routine clinical applications.
•We developed a deep learning system for automatic ICH detection and subtype classification.•Our method produced AUCs around 0.99 for each ICH subtype and won 1st place in the RSNA challenge.•Our method generalizes across two independent external validation datasets.•Visualization technique makes the system more easily acceptable for clinicians. Acute Intracranial hemorrhage (ICH) is a life-threatening disease that requires emergency medical attention, which is routinely diagnosed using non-contrast head CT imaging. The diagnostic accuracy of acute ICH on CT varies greatly among radiologists due to the difficulty of interpreting subtle findings and the time pressure associated with the ever-increasing workload. The use of artificial intelligence technology may help automate the process and assist radiologists for more prompt and better decision-making. In this work, we design a deep learning approach that mimics the interpretation process of radiologists, and combines a 2D CNN model and two sequence models to achieve accurate acute ICH detection and subtype classification. Being developed using the extensive 2019-RSNA Brain CT Hemorrhage Challenge dataset with over 25000 CT scans, our deep learning algorithm can accurately classify the acute ICH and its five subtypes with AUCs of 0.988 (ICH), 0.984 (EDH), 0.992 (IPH), 0.996 (IVH), 0.985 (SAH), and 0.983 (SDH), respectively, reaching the accuracy level of expert radiologists. Our method won 1st place among 1345 teams from 75 countries in the RSNA challenge. We have further evaluated our algorithm on two independent external validation datasets with 75 and 491 CT scans, respectively, and our method maintained high AUCs of 0.964 and 0.949 for acute ICH detection. These results have demonstrated the high performance and robust generalization ability of our proposed method, which makes it a useful second-read or triage tool that can facilitate routine clinical applications.
ArticleNumber 102785
Author Shen, Tao
Lan, Jun
Zhang, Jing
Xu, Yanming
Wang, Xiyue
Han, Xiao
Wang, Minghui
Yang, Sen
Author_xml – sequence: 1
  givenname: Xiyue
  surname: Wang
  fullname: Wang, Xiyue
  organization: College of Computer Science, Sichuan University, Chengdu 610065, China
– sequence: 2
  givenname: Tao
  surname: Shen
  fullname: Shen, Tao
  organization: Tencent AI Lab, Shenzhen 518057, China
– sequence: 3
  givenname: Sen
  surname: Yang
  fullname: Yang, Sen
  organization: Tencent AI Lab, Shenzhen 518057, China
– sequence: 4
  givenname: Jun
  surname: Lan
  fullname: Lan, Jun
  organization: Winning Health Technology Group Co., Ltd, Shanghai, China
– sequence: 5
  givenname: Yanming
  surname: Xu
  fullname: Xu, Yanming
  organization: Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
– sequence: 6
  givenname: Minghui
  surname: Wang
  fullname: Wang, Minghui
  organization: College of Computer Science, Sichuan University, Chengdu 610065, China
– sequence: 7
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  email: jing_zhang@scu.edu.cn
  organization: College of Biomedical Engineering, Sichuan University, Chengdu, China
– sequence: 8
  givenname: Xiao
  surname: Han
  fullname: Han, Xiao
  email: haroldhan@tencent.com
  organization: Tencent AI Lab, Shenzhen 518057, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34411910$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v3CAQtapUTZrmD_RQcexlt3wYg6sqUrTqR6RIPTQ9I4yHXbYYUrAT5d8X76ZREqkpF2DmvTcM815XByEGqKq3BC8JJs2H7TI445cUU1ICVEj-ojqilLAF4ZIePDgfVic5b3FZEmPRNK-qQ1bXhLQEH1U3Z6gHuEIedAourJH265jcuBmQjQnpaYyDHp0pqBHM6GJAOvTIeJ2zs87oXShapM00AnJhTNokHZz2aANDTGmj15BLolx1j1aXKBsd8pvqpdU-w8ndflz9_PL5cvVtcfH96_nq7GJhGirGhWVNJ3hTW2Ogs1IaEEIAsbUVlnW1toJ3LRU955T0pOtMUzdt08necmkEB3Zcne91-6i36iq5QadbFbVTu0BMa6VT6c-DspwBGGl5odYUWim1ZZIB7TRIXPOidbrXupq6AXoDc7P-kejjTHAbtY7XSjIh6pYVgfd3Ain-niCPanDZgPc6QJyyorxhNeWE0QJ997DWfZG_kysAugeYFHNOYO8hBKvZIWqrZoeo2SFq75BCkk9Ixo27EZb3Ov889dOeCmVa1w6SysZBMNC7VIxRvtM9Tz99QjfeFZT2v-AW8jZOKRQfKKIyVVj9mN07m5cSjCltSRH4-G-B_1X_A4HmARY
CitedBy_id crossref_primary_10_1097_JS9_0000000000001266
crossref_primary_10_1016_j_wneu_2023_03_019
crossref_primary_10_3389_fneur_2023_1176390
crossref_primary_10_1371_journal_pone_0286485
crossref_primary_10_2478_jce_2023_0019
crossref_primary_10_1002_mp_17689
crossref_primary_10_1007_s11910_025_01405_x
crossref_primary_10_1097_MD_0000000000031848
crossref_primary_10_3389_fneur_2023_1321964
crossref_primary_10_3390_diagnostics15020216
crossref_primary_10_1007_s11042_024_19318_1
crossref_primary_10_1177_19714009241269491
crossref_primary_10_1109_ACCESS_2022_3225671
crossref_primary_10_1155_2022_5416726
crossref_primary_10_1088_1361_6560_ad80f7
crossref_primary_10_1007_s10143_025_03403_6
crossref_primary_10_1016_j_jns_2024_123329
crossref_primary_10_3233_JIFS_221177
crossref_primary_10_3390_diagnostics13040652
crossref_primary_10_1109_ACCESS_2023_3301160
crossref_primary_10_3389_fneur_2023_1177723
crossref_primary_10_1148_ryai_230296
crossref_primary_10_1007_s11548_023_02965_4
crossref_primary_10_1002_cpe_7218
crossref_primary_10_1093_brain_awab453
crossref_primary_10_3390_app122110851
crossref_primary_10_3389_fnhum_2023_1254417
crossref_primary_10_1002_cpe_7167
crossref_primary_10_1080_03772063_2024_2351548
crossref_primary_10_1007_s00062_023_01291_1
crossref_primary_10_1088_2057_1976_adae14
crossref_primary_10_1016_j_compbiomed_2024_109533
crossref_primary_10_1148_ryai_230006
crossref_primary_10_3389_fneur_2022_956888
crossref_primary_10_1227_NEU_0000000000001841
crossref_primary_10_1016_j_mcpdig_2023_08_009
crossref_primary_10_1007_s00723_024_01661_z
crossref_primary_10_1007_s00234_025_03560_x
crossref_primary_10_1038_s41598_024_61960_0
crossref_primary_10_1186_s12880_024_01455_6
crossref_primary_10_3389_fnins_2023_1200630
crossref_primary_10_1007_s11548_024_03259_z
crossref_primary_10_1016_j_diii_2024_11_002
crossref_primary_10_1177_19714009241303078
crossref_primary_10_3390_diagnostics13182987
crossref_primary_10_3390_jimaging9020037
crossref_primary_10_3390_info15100612
crossref_primary_10_1155_2022_1133819
crossref_primary_10_1186_s12938_023_01172_1
crossref_primary_10_1016_j_pbiomolbio_2023_07_001
crossref_primary_10_1016_j_imed_2024_11_002
crossref_primary_10_17116_neiro20238702185
crossref_primary_10_3390_diagnostics13162670
crossref_primary_10_3389_fneur_2023_1244672
crossref_primary_10_1155_2022_9496764
crossref_primary_10_3389_fradi_2024_1460889
crossref_primary_10_1109_ACCESS_2023_3293754
crossref_primary_10_1136_jnis_2022_019627
crossref_primary_10_1148_ryai_230275
crossref_primary_10_1109_JTEHM_2022_3199987
crossref_primary_10_1038_s41598_023_46433_0
crossref_primary_10_54370_ordubtd_1545060
Cites_doi 10.1056/NEJM200105103441907
10.5853/jos.2016.00563
10.1016/j.compmedimag.2010.03.003
10.1101/2020.04.17.20070193
10.1148/rg.2019180118
10.1016/j.nicl.2017.02.007
10.1002/brb3.1113
10.1161/01.CIR.101.23.e215
10.1038/s41551-018-0195-0
10.1016/S0140-6736(18)31878-6
10.1038/s41598-019-54491-6
10.1212/01.wnl.0000172915.71933.00
10.1038/s41551-018-0324-9
10.1007/s00330-019-06163-2
10.1016/S0140-6736(09)60371-8
10.1001/jama.291.7.866
10.1161/01.STR.0000259661.05525.9a
10.1038/s41551-018-0305-z
10.1007/s13244-018-0599-0
10.1016/j.acra.2020.01.035
10.1136/jnnp.69.5.601
10.1136/jnnp-2016-313246
10.3174/ajnr.A0653
10.1016/S0140-6736(18)31645-3
10.1111/1754-9485.12450
10.1007/s10278-018-00172-1
10.1073/pnas.1908021116
10.1007/s00330-012-2721-x
10.1038/s41591-018-0177-5
10.1016/j.bbe.2015.12.001
10.3390/s19092167
10.1016/j.acra.2015.05.007
10.1016/S1474-4422(07)70107-2
10.3390/data5010014
ContentType Journal Article
Copyright 2021 The Author(s)
The Author(s)
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
2021 The Author(s) 2021
Copyright_xml – notice: 2021 The Author(s)
– notice: The Author(s)
– notice: Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2021 The Author(s) 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.nicl.2021.102785
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2213-1582
EndPage 102785
ExternalDocumentID oai_doaj_org_article_f53eec8f558c42e988af383e2bae8045
PMC8377493
34411910
10_1016_j_nicl_2021_102785
S2213158221002291
1_s2_0_S2213158221002291
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID .1-
.FO
0R~
1P~
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
NCXOZ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c627t-f36b7564fccebf88ce777e1f4f7f3b4af75b927d5521d1bbc64696b8df58c75e3
IEDL.DBID M48
ISSN 2213-1582
IngestDate Wed Aug 27 01:22:38 EDT 2025
Thu Aug 21 14:30:52 EDT 2025
Fri Jul 11 06:52:16 EDT 2025
Thu Jan 02 22:39:40 EST 2025
Tue Jul 01 01:09:49 EDT 2025
Thu Apr 24 23:10:36 EDT 2025
Tue Jul 25 20:57:36 EDT 2023
Tue Feb 25 20:08:56 EST 2025
Tue Aug 26 16:33:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Intracranial hemorrhage (ICH)
Sequence model
Head CT
Image classification
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c627t-f36b7564fccebf88ce777e1f4f7f3b4af75b927d5521d1bbc64696b8df58c75e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Authors contributed equally to this work.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.nicl.2021.102785
PMID 34411910
PQID 2563425132
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_f53eec8f558c42e988af383e2bae8045
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8377493
proquest_miscellaneous_2563425132
pubmed_primary_34411910
crossref_primary_10_1016_j_nicl_2021_102785
crossref_citationtrail_10_1016_j_nicl_2021_102785
elsevier_sciencedirect_doi_10_1016_j_nicl_2021_102785
elsevier_clinicalkeyesjournals_1_s2_0_S2213158221002291
elsevier_clinicalkey_doi_10_1016_j_nicl_2021_102785
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle NeuroImage clinical
PublicationTitleAlternate Neuroimage Clin
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Øie (b0155) 2018; 8
García-Blázquez (b0045) 2013; 23
Chilamkurthy (b0025) 2018; 392
Nguyen, N.T., Tran, D.Q., Nguyen, N.T., Nguyen, H.Q. 2020. A CNN-LSTM architecture for detection of intracranial hemorrhage on CT scans. arXiv preprint arXiv:2005.10992.
Charlotte (b0020) 2018; 392
Vermeulen, Schull (b0215) 2007; 38
Qureshi, Mendelow, Hanley (b0180) 2009; 373
Jacobson (b0085) 2012
Hssayeni (b0070) 2020; 5
Huang, Liu, Van Der Maaten, Weinberger (b0075) 2017
Kuo, Häne, Mukherjee, Malik, Yuh (b0105) 2019; 116
Ye (b0220) 2019; 29
Yu, Beam, Kohane (b0225) 2018; 2
Flanders (b0040) 2020; 2
Sprigg (b0205) 2018; 391
Cho (b0030) 2019; 32
Lee (b0115) 2019; 3
Heit, Iv, Wintermark (b0065) 2017; 19
Pow, Mello-Thoms, Brennan (b0170) 2016; 60
Labovitz, Halim, Boden-Albala, Hauser, Sacco (b0110) 2005; 65
Liao, Xiao, Wong, Chiang (b0120) 2010; 34
Muschelli (b0140) 2017; 14
Geijer, Geijer (b0050) 2018; 9
Nilsson, Lindgren, Ståhl, Brandt, Säveland (b0150) 2000; 69
Lili (b0125) 2016; 87
Poplin (b0165) 2018; 2
Ker (b0090) 2019; 19
Selvaraju (b0195) 2017
Rao (b0185) 2020; 28
Aslanian (b0005) 2013; 108
Bello (b0010) 2019; 39
Loshchilov, Hutter (b0130) 2016
Shahangian, Pourghassem (b0200) 2016; 36
Goldberger (b0055) 2000; 101
Qureshi (b0175) 2001; 344
Krizhevsky, Sutskever, Hinton (b0100) 2012; 25
Bishop, C.M., 2006. Pattern recognition and machine learning, Springer.
Robert (b0190) 2015; 22
Hu, Shen, Sun (b0080) 2018
Kingma, D.P., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Patel (b0160) 2019; 9
Coudray (b0035) 2018; 24
Lovelock, Molyneux, Rothwell (b0135) 2007; 6
Strub, Leach, Tomsick, Vagal (b0210) 2007; 28
G, R. et al. Initial misdiagnosis and outcome after subarachnoid hemorrhage. Journal of the American Medical Association 291, 866–869 (2004).
Qureshi (10.1016/j.nicl.2021.102785_b0175) 2001; 344
Sprigg (10.1016/j.nicl.2021.102785_b0205) 2018; 391
Aslanian (10.1016/j.nicl.2021.102785_b0005) 2013; 108
Lovelock (10.1016/j.nicl.2021.102785_b0135) 2007; 6
10.1016/j.nicl.2021.102785_b0060
Nilsson (10.1016/j.nicl.2021.102785_b0150) 2000; 69
Hssayeni (10.1016/j.nicl.2021.102785_b0070) 2020; 5
Ye (10.1016/j.nicl.2021.102785_b0220) 2019; 29
10.1016/j.nicl.2021.102785_b0145
Lee (10.1016/j.nicl.2021.102785_b0115) 2019; 3
Pow (10.1016/j.nicl.2021.102785_b0170) 2016; 60
Flanders (10.1016/j.nicl.2021.102785_b0040) 2020; 2
Jacobson (10.1016/j.nicl.2021.102785_b0085) 2012
García-Blázquez (10.1016/j.nicl.2021.102785_b0045) 2013; 23
Rao (10.1016/j.nicl.2021.102785_b0185) 2020; 28
Charlotte (10.1016/j.nicl.2021.102785_b0020) 2018; 392
Chilamkurthy (10.1016/j.nicl.2021.102785_b0025) 2018; 392
Øie (10.1016/j.nicl.2021.102785_b0155) 2018; 8
Poplin (10.1016/j.nicl.2021.102785_b0165) 2018; 2
Vermeulen (10.1016/j.nicl.2021.102785_b0215) 2007; 38
Hu (10.1016/j.nicl.2021.102785_b0080) 2018
Lili (10.1016/j.nicl.2021.102785_b0125) 2016; 87
Bello (10.1016/j.nicl.2021.102785_b0010) 2019; 39
Labovitz (10.1016/j.nicl.2021.102785_b0110) 2005; 65
Yu (10.1016/j.nicl.2021.102785_b0225) 2018; 2
Huang (10.1016/j.nicl.2021.102785_b0075) 2017
10.1016/j.nicl.2021.102785_b0095
Goldberger (10.1016/j.nicl.2021.102785_b0055) 2000; 101
Ker (10.1016/j.nicl.2021.102785_b0090) 2019; 19
Cho (10.1016/j.nicl.2021.102785_b0030) 2019; 32
Coudray (10.1016/j.nicl.2021.102785_b0035) 2018; 24
Muschelli (10.1016/j.nicl.2021.102785_b0140) 2017; 14
10.1016/j.nicl.2021.102785_b0015
Heit (10.1016/j.nicl.2021.102785_b0065) 2017; 19
Kuo (10.1016/j.nicl.2021.102785_b0105) 2019; 116
Liao (10.1016/j.nicl.2021.102785_b0120) 2010; 34
Loshchilov (10.1016/j.nicl.2021.102785_b0130) 2016
Geijer (10.1016/j.nicl.2021.102785_b0050) 2018; 9
Krizhevsky (10.1016/j.nicl.2021.102785_b0100) 2012; 25
Patel (10.1016/j.nicl.2021.102785_b0160) 2019; 9
Robert (10.1016/j.nicl.2021.102785_b0190) 2015; 22
Shahangian (10.1016/j.nicl.2021.102785_b0200) 2016; 36
Qureshi (10.1016/j.nicl.2021.102785_b0180) 2009; 373
Selvaraju (10.1016/j.nicl.2021.102785_b0195) 2017
Strub (10.1016/j.nicl.2021.102785_b0210) 2007; 28
References_xml – volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: b0100
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 29
  start-page: 6191
  year: 2019
  end-page: 6201
  ident: b0220
  article-title: Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network
  publication-title: European Radiology
– volume: 392
  start-page: 1257
  year: 2018
  end-page: 1268
  ident: b0020
  article-title: Intracerebral haemorrhage: current approaches to acute management
  publication-title: The Lancet
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: b0075
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2016
  ident: b0130
  article-title: stochastic gradient descent with warm restarts
– volume: 34
  start-page: 563
  year: 2010
  end-page: 571
  ident: b0120
  article-title: Computer-aided diagnosis of intracranial hematoma with brain deformation on computed tomography
  publication-title: Computerized Medical Imaging and Graphics
– volume: 32
  start-page: 450
  year: 2019
  end-page: 461
  ident: b0030
  article-title: Improving sensitivity on identification and delineation of intracranial hemorrhage lesion using cascaded deep learning models
  publication-title: Journal of Digital Imaging
– volume: 19
  start-page: 2167
  year: 2019
  end-page: 2169
  ident: b0090
  article-title: Image thresholding improves 3-dimensional convolutional neural network diagnosis of different acute brain hemorrhages on computed tomography scans
  publication-title: Sensors
– volume: 8
  start-page: 1
  year: 2018
  end-page: 9
  ident: b0155
  article-title: Functional outcome and survival following spontaneous intracerebral hemorrhage: a retrospective population-based study
  publication-title: Brain and Behavior
– volume: 116
  start-page: 22737
  year: 2019
  end-page: 22745
  ident: b0105
  article-title: Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning
  publication-title: Proceedings of the National Academy of Sciences
– volume: 2
  start-page: 158
  year: 2018
  end-page: 164
  ident: b0165
  article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
  publication-title: Nature Biomedical Engineering
– volume: 391
  start-page: 2107
  year: 2018
  end-page: 2115
  ident: b0205
  article-title: Tranexamic acid for hyperacute primary intracerebral haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial
  publication-title: Journal of Emergency Medicine
– volume: 5
  start-page: 14
  year: 2020
  end-page: 32
  ident: b0070
  article-title: Intracranial hemorrhage segmentation using a deep convolutional model
  publication-title: Data
– volume: 19
  start-page: 11
  year: 2017
  ident: b0065
  article-title: Imaging of intracranial hemorrhage
  publication-title: Journal of Stroke
– volume: 23
  start-page: 1181
  year: 2013
  end-page: 1190
  ident: b0045
  article-title: Accuracy of CT angiography in the diagnosis of acute gastrointestinal bleeding: systematic review and meta-analysis
  publication-title: European Radiology
– volume: 6
  start-page: 487
  year: 2007
  end-page: 493
  ident: b0135
  article-title: Change in incidence and aetiology of intracerebral haemorrhage in oxfordshire, UK, between 1981 and 2006: a population-based study
  publication-title: The Lancet Neurology
– start-page: 7132
  year: 2018
  end-page: 7141
  ident: b0080
  article-title: Squeeze-and-excitation networks
  publication-title: In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 24
  start-page: 1559
  year: 2018
  end-page: 1567
  ident: b0035
  article-title: Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning
  publication-title: Nature Medicine
– year: 2012
  ident: b0085
  article-title: Clinical laboratory medicine for mental health professionals
  publication-title: (American Psychiatric Pub
– volume: 69
  start-page: 601
  year: 2000
  end-page: 607
  ident: b0150
  article-title: Incidence of intracerebral and subarachnoid haemorrhage in southern sweden
  publication-title: Journal of Neurology, Neurosurgery & Psychiatry
– volume: 101
  start-page: 215
  year: 2000
  end-page: 220
  ident: b0055
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 2
  start-page: 719
  year: 2018
  end-page: 731
  ident: b0225
  article-title: Artificial intelligence in healthcare
  publication-title: Nature Biomedical Engineering
– volume: 108
  start-page: 166
  year: 2013
  end-page: 172
  ident: b0005
  article-title: Nurse observation during colonoscopy increases polyp detection: a randomized prospective study
  publication-title: Gastrointestinal Endoscopy
– volume: 14
  start-page: 379
  year: 2017
  end-page: 390
  ident: b0140
  article-title: PItcHPERFeCT: Primary intracranial hemorrhage probability estimation using random forests on CT
  publication-title: NeuroImage: Clinical
– volume: 65
  start-page: 518
  year: 2005
  end-page: 522
  ident: b0110
  article-title: The incidence of deep and lobar intracerebral hemorrhage in whites, blacks, and hispanics
  publication-title: Neurology
– volume: 2
  start-page: 1
  year: 2020
  end-page: 7
  ident: b0040
  article-title: Construction of a machine learning dataset through collaboration: the RSNA 2019 brain CT hemorrhage challenge. Radiology
  publication-title: Artificial Intelligence
– volume: 373
  start-page: 1632
  year: 2009
  end-page: 1644
  ident: b0180
  article-title: Intracerebral haemorrhage
  publication-title: The Lancet
– start-page: 618
  year: 2017
  end-page: 626
  ident: b0195
  article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 38
  start-page: 1216
  year: 2007
  end-page: 1221
  ident: b0215
  article-title: Missed diagnosis of subarachnoid hemorrhage in the emergency department
  publication-title: Stroke
– volume: 87
  start-page: 1330
  year: 2016
  end-page: 1335
  ident: b0125
  article-title: Early blood pressure lowering in patients with intracerebral haemorrhage and prior use of antithrombotic agents: pooled analysis of the interact studies
  publication-title: Journal of Neurology Neurosurgery and Psychiatry
– volume: 9
  start-page: 1
  year: 2019
  end-page: 11
  ident: b0160
  article-title: Intracerebral haemorrhage segmentation in non-contrast CT
  publication-title: Scientific Reports
– volume: 28
  start-page: 1679
  year: 2007
  end-page: 1682
  ident: b0210
  article-title: Overnight preliminary head CT interpretations provided by residents: locations of misidentified intracranial hemorrhage
  publication-title: American Journal of Neuroradiology
– reference: Nguyen, N.T., Tran, D.Q., Nguyen, N.T., Nguyen, H.Q. 2020. A CNN-LSTM architecture for detection of intracranial hemorrhage on CT scans. arXiv preprint arXiv:2005.10992.
– volume: 3
  start-page: 173
  year: 2019
  end-page: 185
  ident: b0115
  article-title: An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets
  publication-title: Nature Biomedical Engineering
– volume: 344
  start-page: 1450
  year: 2001
  end-page: 1460
  ident: b0175
  article-title: Spontaneous intracerebral hemorrhage
  publication-title: New England Journal of Medicine
– reference: Bishop, C.M., 2006. Pattern recognition and machine learning, Springer.
– volume: 36
  start-page: 217
  year: 2016
  end-page: 232
  ident: b0200
  article-title: Automatic brain hemorrhage segmentation and classification algorithm based on weighted grayscale histogram feature in a hierarchical classification structure
  publication-title: Biocybernetics and Biomedical Engineering
– volume: 9
  start-page: 287
  year: 2018
  end-page: 301
  ident: b0050
  article-title: Added value of double reading in diagnostic radiology, a systematic review
  publication-title: Insights into Imaging
– volume: 60
  start-page: 306
  year: 2016
  end-page: 314
  ident: b0170
  article-title: Evaluation of the effect of double reporting on test accuracy in screening and diagnostic imaging studies: a review of the evidence
  publication-title: Journal of Medical Imaging and Radiation Oncology
– volume: 28
  start-page: 85
  year: 2020
  end-page: 93
  ident: b0185
  article-title: Utility of artificial intelligence tool as a prospective radiology peer reviewer-detection of unreported intracranial hemorrhage
  publication-title: Academic Radiology
– volume: 392
  start-page: 2388
  year: 2018
  end-page: 2396
  ident: b0025
  article-title: Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study
  publication-title: The Lancet
– reference: Kingma, D.P., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980.
– reference: G, R. et al. Initial misdiagnosis and outcome after subarachnoid hemorrhage. Journal of the American Medical Association 291, 866–869 (2004).
– volume: 39
  start-page: 1161
  year: 2019
  end-page: 1182
  ident: b0010
  article-title: Skull base–related lesions at routine head CT from the emergency department: pearls, pitfalls, and lessons learned
  publication-title: RadioGraphics
– volume: 22
  start-page: 1191
  year: 2015
  end-page: 1198
  ident: b0190
  article-title: The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload
  publication-title: Academic Radiology
– start-page: 4700
  year: 2017
  ident: 10.1016/j.nicl.2021.102785_b0075
  article-title: Densely connected convolutional networks
– volume: 344
  start-page: 1450
  year: 2001
  ident: 10.1016/j.nicl.2021.102785_b0175
  article-title: Spontaneous intracerebral hemorrhage
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJM200105103441907
– volume: 19
  start-page: 11
  year: 2017
  ident: 10.1016/j.nicl.2021.102785_b0065
  article-title: Imaging of intracranial hemorrhage
  publication-title: Journal of Stroke
  doi: 10.5853/jos.2016.00563
– volume: 34
  start-page: 563
  year: 2010
  ident: 10.1016/j.nicl.2021.102785_b0120
  article-title: Computer-aided diagnosis of intracranial hematoma with brain deformation on computed tomography
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2010.03.003
– ident: 10.1016/j.nicl.2021.102785_b0145
  doi: 10.1101/2020.04.17.20070193
– year: 2016
  ident: 10.1016/j.nicl.2021.102785_b0130
– volume: 39
  start-page: 1161
  year: 2019
  ident: 10.1016/j.nicl.2021.102785_b0010
  article-title: Skull base–related lesions at routine head CT from the emergency department: pearls, pitfalls, and lessons learned
  publication-title: RadioGraphics
  doi: 10.1148/rg.2019180118
– volume: 108
  start-page: 166
  year: 2013
  ident: 10.1016/j.nicl.2021.102785_b0005
  article-title: Nurse observation during colonoscopy increases polyp detection: a randomized prospective study
  publication-title: Gastrointestinal Endoscopy
– volume: 14
  start-page: 379
  year: 2017
  ident: 10.1016/j.nicl.2021.102785_b0140
  article-title: PItcHPERFeCT: Primary intracranial hemorrhage probability estimation using random forests on CT
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2017.02.007
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.nicl.2021.102785_b0155
  article-title: Functional outcome and survival following spontaneous intracerebral hemorrhage: a retrospective population-based study
  publication-title: Brain and Behavior
  doi: 10.1002/brb3.1113
– volume: 101
  start-page: 215
  year: 2000
  ident: 10.1016/j.nicl.2021.102785_b0055
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 2
  start-page: 158
  year: 2018
  ident: 10.1016/j.nicl.2021.102785_b0165
  article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
  publication-title: Nature Biomedical Engineering
  doi: 10.1038/s41551-018-0195-0
– volume: 392
  start-page: 1257
  year: 2018
  ident: 10.1016/j.nicl.2021.102785_b0020
  article-title: Intracerebral haemorrhage: current approaches to acute management
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(18)31878-6
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.nicl.2021.102785_b0160
  article-title: Intracerebral haemorrhage segmentation in non-contrast CT
  publication-title: Scientific Reports
  doi: 10.1038/s41598-019-54491-6
– start-page: 618
  year: 2017
  ident: 10.1016/j.nicl.2021.102785_b0195
  article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization
– volume: 65
  start-page: 518
  year: 2005
  ident: 10.1016/j.nicl.2021.102785_b0110
  article-title: The incidence of deep and lobar intracerebral hemorrhage in whites, blacks, and hispanics
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000172915.71933.00
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.nicl.2021.102785_b0100
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 3
  start-page: 173
  year: 2019
  ident: 10.1016/j.nicl.2021.102785_b0115
  article-title: An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets
  publication-title: Nature Biomedical Engineering
  doi: 10.1038/s41551-018-0324-9
– volume: 29
  start-page: 6191
  year: 2019
  ident: 10.1016/j.nicl.2021.102785_b0220
  article-title: Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network
  publication-title: European Radiology
  doi: 10.1007/s00330-019-06163-2
– volume: 373
  start-page: 1632
  year: 2009
  ident: 10.1016/j.nicl.2021.102785_b0180
  article-title: Intracerebral haemorrhage
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(09)60371-8
– ident: 10.1016/j.nicl.2021.102785_b0060
  doi: 10.1001/jama.291.7.866
– year: 2012
  ident: 10.1016/j.nicl.2021.102785_b0085
  article-title: Clinical laboratory medicine for mental health professionals
  publication-title: (American Psychiatric Pub
– volume: 38
  start-page: 1216
  year: 2007
  ident: 10.1016/j.nicl.2021.102785_b0215
  article-title: Missed diagnosis of subarachnoid hemorrhage in the emergency department
  publication-title: Stroke
  doi: 10.1161/01.STR.0000259661.05525.9a
– volume: 2
  start-page: 719
  year: 2018
  ident: 10.1016/j.nicl.2021.102785_b0225
  article-title: Artificial intelligence in healthcare
  publication-title: Nature Biomedical Engineering
  doi: 10.1038/s41551-018-0305-z
– volume: 9
  start-page: 287
  year: 2018
  ident: 10.1016/j.nicl.2021.102785_b0050
  article-title: Added value of double reading in diagnostic radiology, a systematic review
  publication-title: Insights into Imaging
  doi: 10.1007/s13244-018-0599-0
– volume: 2
  start-page: 1
  year: 2020
  ident: 10.1016/j.nicl.2021.102785_b0040
  article-title: Construction of a machine learning dataset through collaboration: the RSNA 2019 brain CT hemorrhage challenge. Radiology
  publication-title: Artificial Intelligence
– volume: 28
  start-page: 85
  year: 2020
  ident: 10.1016/j.nicl.2021.102785_b0185
  article-title: Utility of artificial intelligence tool as a prospective radiology peer reviewer-detection of unreported intracranial hemorrhage
  publication-title: Academic Radiology
  doi: 10.1016/j.acra.2020.01.035
– volume: 69
  start-page: 601
  year: 2000
  ident: 10.1016/j.nicl.2021.102785_b0150
  article-title: Incidence of intracerebral and subarachnoid haemorrhage in southern sweden
  publication-title: Journal of Neurology, Neurosurgery & Psychiatry
  doi: 10.1136/jnnp.69.5.601
– volume: 87
  start-page: 1330
  year: 2016
  ident: 10.1016/j.nicl.2021.102785_b0125
  article-title: Early blood pressure lowering in patients with intracerebral haemorrhage and prior use of antithrombotic agents: pooled analysis of the interact studies
  publication-title: Journal of Neurology Neurosurgery and Psychiatry
  doi: 10.1136/jnnp-2016-313246
– volume: 28
  start-page: 1679
  year: 2007
  ident: 10.1016/j.nicl.2021.102785_b0210
  article-title: Overnight preliminary head CT interpretations provided by residents: locations of misidentified intracranial hemorrhage
  publication-title: American Journal of Neuroradiology
  doi: 10.3174/ajnr.A0653
– volume: 392
  start-page: 2388
  year: 2018
  ident: 10.1016/j.nicl.2021.102785_b0025
  article-title: Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(18)31645-3
– volume: 391
  start-page: 2107
  year: 2018
  ident: 10.1016/j.nicl.2021.102785_b0205
  article-title: Tranexamic acid for hyperacute primary intracerebral haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial
  publication-title: Journal of Emergency Medicine
– start-page: 7132
  year: 2018
  ident: 10.1016/j.nicl.2021.102785_b0080
  article-title: Squeeze-and-excitation networks
– volume: 60
  start-page: 306
  year: 2016
  ident: 10.1016/j.nicl.2021.102785_b0170
  article-title: Evaluation of the effect of double reporting on test accuracy in screening and diagnostic imaging studies: a review of the evidence
  publication-title: Journal of Medical Imaging and Radiation Oncology
  doi: 10.1111/1754-9485.12450
– volume: 32
  start-page: 450
  year: 2019
  ident: 10.1016/j.nicl.2021.102785_b0030
  article-title: Improving sensitivity on identification and delineation of intracranial hemorrhage lesion using cascaded deep learning models
  publication-title: Journal of Digital Imaging
  doi: 10.1007/s10278-018-00172-1
– volume: 116
  start-page: 22737
  year: 2019
  ident: 10.1016/j.nicl.2021.102785_b0105
  article-title: Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1908021116
– volume: 23
  start-page: 1181
  year: 2013
  ident: 10.1016/j.nicl.2021.102785_b0045
  article-title: Accuracy of CT angiography in the diagnosis of acute gastrointestinal bleeding: systematic review and meta-analysis
  publication-title: European Radiology
  doi: 10.1007/s00330-012-2721-x
– volume: 24
  start-page: 1559
  year: 2018
  ident: 10.1016/j.nicl.2021.102785_b0035
  article-title: Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning
  publication-title: Nature Medicine
  doi: 10.1038/s41591-018-0177-5
– volume: 36
  start-page: 217
  year: 2016
  ident: 10.1016/j.nicl.2021.102785_b0200
  article-title: Automatic brain hemorrhage segmentation and classification algorithm based on weighted grayscale histogram feature in a hierarchical classification structure
  publication-title: Biocybernetics and Biomedical Engineering
  doi: 10.1016/j.bbe.2015.12.001
– ident: 10.1016/j.nicl.2021.102785_b0015
– volume: 19
  start-page: 2167
  year: 2019
  ident: 10.1016/j.nicl.2021.102785_b0090
  article-title: Image thresholding improves 3-dimensional convolutional neural network diagnosis of different acute brain hemorrhages on computed tomography scans
  publication-title: Sensors
  doi: 10.3390/s19092167
– volume: 22
  start-page: 1191
  year: 2015
  ident: 10.1016/j.nicl.2021.102785_b0190
  article-title: The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload
  publication-title: Academic Radiology
  doi: 10.1016/j.acra.2015.05.007
– volume: 6
  start-page: 487
  year: 2007
  ident: 10.1016/j.nicl.2021.102785_b0135
  article-title: Change in incidence and aetiology of intracerebral haemorrhage in oxfordshire, UK, between 1981 and 2006: a population-based study
  publication-title: The Lancet Neurology
  doi: 10.1016/S1474-4422(07)70107-2
– volume: 5
  start-page: 14
  year: 2020
  ident: 10.1016/j.nicl.2021.102785_b0070
  article-title: Intracranial hemorrhage segmentation using a deep convolutional model
  publication-title: Data
  doi: 10.3390/data5010014
– ident: 10.1016/j.nicl.2021.102785_b0095
SSID ssj0000800766
Score 2.5634336
Snippet •We developed a deep learning system for automatic ICH detection and subtype classification.•Our method produced AUCs around 0.99 for each ICH subtype and won...
Highlights•We developed a deep learning system for automatic ICH detection and subtype classification. •Our method produced AUCs around 0.99 for each ICH...
Acute Intracranial hemorrhage (ICH) is a life-threatening disease that requires emergency medical attention, which is routinely diagnosed using non-contrast...
• We developed a deep learning system for automatic ICH detection and subtype classification. • Our method produced AUCs around 0.99 for each ICH subtype and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102785
SubjectTerms Algorithms
Artificial Intelligence
Deep Learning
Head CT
Humans
Image classification
Intracranial hemorrhage (ICH)
Intracranial Hemorrhages - diagnostic imaging
Radiology
Regular
Sequence model
Tomography, X-Ray Computed
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4s2Wh4zEDUXEdhw7x1JRVUjlQiv1ZtnOuLtVSapNVvx9xrGz2gXUXjhuYucxMzvzTTz-hpCPafUFRFFBCUXlbFtYaavCgis902XeW3X2vT69qL5dysudVl-xJizRAyfBfQ5SAHgdpNS-4tBobQNmVcCdBbzUxF6KMW8nmbrOOEhNC5WcM1EwqXneMZOKuyLrLCaHnEXqAhUbKe9EpYm8fy84_Q0-_6yh3AlKJ0_I44wm6VF6i6fkAXTPyMOzvF7-nPw6oi3ALc29Ia6ovbnq16tx-ZMiWKV2M_YTZSuOGqearI7arqU-QupYQzSpjfaBWr8Zga7iQ3iMbmi0dBlrdNdL9EcDnsCftqXH53RAXQ0vyMXJ1_Pj0yK3Wih8zdVYBFE7JesqeA8uaO1BKQUsVEEF4SoblHQNV63EaN8y53yNaXXtdBtQLUqCeEkOur6D14TyurWg4qfVBipXMcvAOV6GtvSlQ7yzIGwWtfGZhzy2w7gxc8HZtYnqMVE9JqlnQT5t59wmFo47R3-JGtyOjAza0wG0K5PtytxnVwsiZv2beZMqulW80OrOW6t_zYIhe4bBMDNwU5of0S6jWfLIgcsbtiByOzODnwRq7r3jh9k4DXqGuNxjO-g3g0EwK9AjM8EX5FUy1q1IBKJgzNRLfN49M96T2f6ZbrWc2Me1wIyhEYf_Q8hvyKP4KumT1ltyMK438A5B3ujeT__n37oYT_g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Open Access Journals (Elsevier)
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhh9JL6bubPlCht2LW1sPyHpOlIRTSSxPYm5DkUdYltZe1l_79jmR5yTYlhR4lS7asGc18I82MCPk0nr4AzwTkkAlr6sxIIzIDNndFlafYqstv5cW1-LqSqyOynGJhgltlkv2jTI_SOtXM02zON00z_85YwQuJCi5kEWUxgp2LKgbxrc72-ywBEal4ZBnaZ6FDip0Z3bxC_lk0E1kRkhiocKXyHf0U0_gfqKn7MPRPb8o76un8KXmScCU9HYf-jBxB-5w8ukwn5y_Ir1NaA2xouiXihprbm27bDOufFGErNbuhi8lbsdUQvbNaatqaugCugzdRJCDtPDVuNwBtwiAc6jlkX7oO3rrbNUqmHh9g0dR0eUV7pFr_klyff7laXmTp0oXMlUwNmeelVbIU3jmwvqocKKWg8MIrz60wXkm7YKqWqPfrwlpXooFd2qr2snJKAn9FjtuuhTeEsrI2oMIm6wKEFYUpwFqW-zp3uUXkMyPFNNXapYzk4WKMWz25nv3QgTw6kEeP5JmRz_s-mzEfx4OtzwIF9y1DLu1Y0W1vdGIm7SUHcJWX-AOCwaKqjEe7HZg1gMyKL-ET_fUUrooCFl_UPPhp9bde0CcZ0etC90zn-h4fz4jc9zxYCv_84seJOTXKiHDwY1rodr1GWMtRNheczcjrkVn3U8IRD6PNnuN4D9j4YM4On7TNOuYhrzjaDgt-8p_jfUseh9K4n_WOHA_bHbxHhDfYD3EJ_wZceE-A
  priority: 102
  providerName: Elsevier
Title A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2213158221002291
https://www.clinicalkey.es/playcontent/1-s2.0-S2213158221002291
https://dx.doi.org/10.1016/j.nicl.2021.102785
https://www.ncbi.nlm.nih.gov/pubmed/34411910
https://www.proquest.com/docview/2563425132
https://pubmed.ncbi.nlm.nih.gov/PMC8377493
https://doaj.org/article/f53eec8f558c42e988af383e2bae8045
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGkBAviG_Kx2Qk3lBQbMdx-oDQNjENpPLCKvXNsp1z26kko0kF_PecE6dQqIbES6TEn_Gdfb-zz3eEvOpPX0AkGaSQZNaUiZEmSwzY1LEijXerJp_y82n2cSZnB2QIdxQHsNmr2oV4UtP16s33rz_e4YR_-8tWKziRRV2Ps-CJQBXyBrmJkkmFiTqJcP8yoiPVHV9yzkTCZMHjPZr91ezIqs6l_47I-huS_mlZ-ZuoOrtL7kSMSY97prhHDqC6T25N4in6A_LtmJYAVzRGjJhTs5rX62W7-EIRwlKzaevOkSvmajtLrYqaqqQuAO1gWdQRk9aeGrdpgS5DJxzKPGRlugiWu-sFrlINJuCrKenpBW2Qgs1DMj17f3F6nsQADInLuWoTL3KrZJ5558D6onCglALmM6-8sJnxStoxV6VEDFAya12OynZui9LLwikJ4hE5rOoKnhDK89KAChuuY8hsxgwDa3nqy9SlFlHQiLBhqLWL3slDkIyVHszQLnUgjw7k0T15RuT1tsxV75vj2twngYLbnMGvdvehXs91nKbaSwHgCi_xBzIO46IwHnV44NYAMi5WIgb66-HqKi62WNHy2qbVvlLQDOyumW64TvXnwJeBLXnwjMvHbETktmSERD3U-WeLLwfm1LhehEMgU0G9aTRCXIHrNBN8RB73zLodEoHYGPX3FPu7w8Y7Y7abUi0XnU_yQqAeMRZP__tPn5Hbof_97tZzctiuN_AC8V5rj7p9Enx-mJ0cdRP6J-2yVaw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemIQEviG_Kp5F4Q1FjO4nTx61i6mDdC53UN8t2zm3QSKomFf8-58SpVoaGxGNiX-L4Lne_s-_OhHzqd19ARAnEECVGF5FOdRJpMLFleRxyq-aX2ewq-bpMl0dkOuTC-LDKoPt7nd5p63BnHGZzvCnL8XfOmWApGjhfRZT7DPZ7iAakP7_hfHm6X2jxkEh2e5aeIPIUIXmmj_PyBWjRT-TMVzGQ_kzlGwaqq-N_YKdu49A_wylv2Kezx-RRAJb0pB_7E3IE1VNyfx62zp-RXye0ANjQcEzEiurrVb0t2_VPiriV6l1bd9VbsVfbhWdVVFcFtR5d-3CijoO0dlTbXQu09IOwaOhQfunah-tu16iaGmzAS13Q6YI2yLbmObk6-7KYzqJw6kJkMy7byInMyDRLnLVgXJ5bkFICc4mTTphEO5maCZdFioa_YMbYDD3szOSFS3MrUxAvyHFVV_CKUJ4VGqRfZZ1AYhKmGRjDY1fENjYIfUaEDVOtbChJ7k_GuFZD7NkP5dmjPHtUz54R-byn2fQFOe7sfeo5uO_pi2l3N-rtSgVpUi4VADZ3KX5AwmGS59qh4w7caEBpxYeIgf9qyFdFDYsPKu98tfwbFTRBSTSKqYarWN0S5BFJ95QH_8I_3_hxEE6FSsLv_OgK6l2jENcKVM5M8BF52QvrfkoEAmJ02mMc74EYH8zZYUtVrrtC5LlA52EiXv_neD-QB7PF_EJdnF9-e0Me-pZ-cestOW63O3iHcK8177vf-Tcm0lKf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+algorithm+for+automatic+detection+and+classification+of+acute+intracranial+hemorrhages+in+head+CT+scans&rft.jtitle=NeuroImage+clinical&rft.au=Wang%2C+Xiyue&rft.au=Shen%2C+Tao&rft.au=Yang%2C+Sen&rft.au=Lan%2C+Jun&rft.date=2021-01-01&rft.issn=2213-1582&rft.eissn=2213-1582&rft.volume=32&rft.spage=102785&rft.epage=102785&rft_id=info:doi/10.1016%2Fj.nicl.2021.102785&rft.externalDBID=ECK1-s2.0-S2213158221002291&rft.externalDocID=1_s2_0_S2213158221002291
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2FS2213158221X00046%2Fcov150h.gif