A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans
•We developed a deep learning system for automatic ICH detection and subtype classification.•Our method produced AUCs around 0.99 for each ICH subtype and won 1st place in the RSNA challenge.•Our method generalizes across two independent external validation datasets.•Visualization technique makes th...
Saved in:
Published in | NeuroImage clinical Vol. 32; p. 102785 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.01.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We developed a deep learning system for automatic ICH detection and subtype classification.•Our method produced AUCs around 0.99 for each ICH subtype and won 1st place in the RSNA challenge.•Our method generalizes across two independent external validation datasets.•Visualization technique makes the system more easily acceptable for clinicians.
Acute Intracranial hemorrhage (ICH) is a life-threatening disease that requires emergency medical attention, which is routinely diagnosed using non-contrast head CT imaging. The diagnostic accuracy of acute ICH on CT varies greatly among radiologists due to the difficulty of interpreting subtle findings and the time pressure associated with the ever-increasing workload. The use of artificial intelligence technology may help automate the process and assist radiologists for more prompt and better decision-making. In this work, we design a deep learning approach that mimics the interpretation process of radiologists, and combines a 2D CNN model and two sequence models to achieve accurate acute ICH detection and subtype classification. Being developed using the extensive 2019-RSNA Brain CT Hemorrhage Challenge dataset with over 25000 CT scans, our deep learning algorithm can accurately classify the acute ICH and its five subtypes with AUCs of 0.988 (ICH), 0.984 (EDH), 0.992 (IPH), 0.996 (IVH), 0.985 (SAH), and 0.983 (SDH), respectively, reaching the accuracy level of expert radiologists. Our method won 1st place among 1345 teams from 75 countries in the RSNA challenge. We have further evaluated our algorithm on two independent external validation datasets with 75 and 491 CT scans, respectively, and our method maintained high AUCs of 0.964 and 0.949 for acute ICH detection. These results have demonstrated the high performance and robust generalization ability of our proposed method, which makes it a useful second-read or triage tool that can facilitate routine clinical applications. |
---|---|
AbstractList | Acute Intracranial hemorrhage (ICH) is a life-threatening disease that requires emergency medical attention, which is routinely diagnosed using non-contrast head CT imaging. The diagnostic accuracy of acute ICH on CT varies greatly among radiologists due to the difficulty of interpreting subtle findings and the time pressure associated with the ever-increasing workload. The use of artificial intelligence technology may help automate the process and assist radiologists for more prompt and better decision-making. In this work, we design a deep learning approach that mimics the interpretation process of radiologists, and combines a 2D CNN model and two sequence models to achieve accurate acute ICH detection and subtype classification. Being developed using the extensive 2019-RSNA Brain CT Hemorrhage Challenge dataset with over 25000 CT scans, our deep learning algorithm can accurately classify the acute ICH and its five subtypes with AUCs of 0.988 (ICH), 0.984 (EDH), 0.992 (IPH), 0.996 (IVH), 0.985 (SAH), and 0.983 (SDH), respectively, reaching the accuracy level of expert radiologists. Our method won 1st place among 1345 teams from 75 countries in the RSNA challenge. We have further evaluated our algorithm on two independent external validation datasets with 75 and 491 CT scans, respectively, and our method maintained high AUCs of 0.964 and 0.949 for acute ICH detection. These results have demonstrated the high performance and robust generalization ability of our proposed method, which makes it a useful second-read or triage tool that can facilitate routine clinical applications. Highlights•We developed a deep learning system for automatic ICH detection and subtype classification. •Our method produced AUCs around 0.99 for each ICH subtype and won 1st place in the RSNA challenge. •Our method generalizes across two independent external validation datasets. •Visualization technique makes the system more easily acceptable for clinicians. Acute Intracranial hemorrhage (ICH) is a life-threatening disease that requires emergency medical attention, which is routinely diagnosed using non-contrast head CT imaging. The diagnostic accuracy of acute ICH on CT varies greatly among radiologists due to the difficulty of interpreting subtle findings and the time pressure associated with the ever-increasing workload. The use of artificial intelligence technology may help automate the process and assist radiologists for more prompt and better decision-making. In this work, we design a deep learning approach that mimics the interpretation process of radiologists, and combines a 2D CNN model and two sequence models to achieve accurate acute ICH detection and subtype classification. Being developed using the extensive 2019-RSNA Brain CT Hemorrhage Challenge dataset with over 25000 CT scans, our deep learning algorithm can accurately classify the acute ICH and its five subtypes with AUCs of 0.988 (ICH), 0.984 (EDH), 0.992 (IPH), 0.996 (IVH), 0.985 (SAH), and 0.983 (SDH), respectively, reaching the accuracy level of expert radiologists. Our method won 1st place among 1345 teams from 75 countries in the RSNA challenge. We have further evaluated our algorithm on two independent external validation datasets with 75 and 491 CT scans, respectively, and our method maintained high AUCs of 0.964 and 0.949 for acute ICH detection. These results have demonstrated the high performance and robust generalization ability of our proposed method, which makes it a useful second-read or triage tool that can facilitate routine clinical applications.Acute Intracranial hemorrhage (ICH) is a life-threatening disease that requires emergency medical attention, which is routinely diagnosed using non-contrast head CT imaging. The diagnostic accuracy of acute ICH on CT varies greatly among radiologists due to the difficulty of interpreting subtle findings and the time pressure associated with the ever-increasing workload. The use of artificial intelligence technology may help automate the process and assist radiologists for more prompt and better decision-making. In this work, we design a deep learning approach that mimics the interpretation process of radiologists, and combines a 2D CNN model and two sequence models to achieve accurate acute ICH detection and subtype classification. Being developed using the extensive 2019-RSNA Brain CT Hemorrhage Challenge dataset with over 25000 CT scans, our deep learning algorithm can accurately classify the acute ICH and its five subtypes with AUCs of 0.988 (ICH), 0.984 (EDH), 0.992 (IPH), 0.996 (IVH), 0.985 (SAH), and 0.983 (SDH), respectively, reaching the accuracy level of expert radiologists. Our method won 1st place among 1345 teams from 75 countries in the RSNA challenge. We have further evaluated our algorithm on two independent external validation datasets with 75 and 491 CT scans, respectively, and our method maintained high AUCs of 0.964 and 0.949 for acute ICH detection. These results have demonstrated the high performance and robust generalization ability of our proposed method, which makes it a useful second-read or triage tool that can facilitate routine clinical applications. • We developed a deep learning system for automatic ICH detection and subtype classification. • Our method produced AUCs around 0.99 for each ICH subtype and won 1st place in the RSNA challenge. • Our method generalizes across two independent external validation datasets. • Visualization technique makes the system more easily acceptable for clinicians. Acute Intracranial hemorrhage (ICH) is a life-threatening disease that requires emergency medical attention, which is routinely diagnosed using non-contrast head CT imaging. The diagnostic accuracy of acute ICH on CT varies greatly among radiologists due to the difficulty of interpreting subtle findings and the time pressure associated with the ever-increasing workload. The use of artificial intelligence technology may help automate the process and assist radiologists for more prompt and better decision-making. In this work, we design a deep learning approach that mimics the interpretation process of radiologists, and combines a 2D CNN model and two sequence models to achieve accurate acute ICH detection and subtype classification. Being developed using the extensive 2019-RSNA Brain CT Hemorrhage Challenge dataset with over 25000 CT scans, our deep learning algorithm can accurately classify the acute ICH and its five subtypes with AUCs of 0.988 (ICH), 0.984 (EDH), 0.992 (IPH), 0.996 (IVH), 0.985 (SAH), and 0.983 (SDH), respectively, reaching the accuracy level of expert radiologists. Our method won 1st place among 1345 teams from 75 countries in the RSNA challenge. We have further evaluated our algorithm on two independent external validation datasets with 75 and 491 CT scans, respectively, and our method maintained high AUCs of 0.964 and 0.949 for acute ICH detection. These results have demonstrated the high performance and robust generalization ability of our proposed method, which makes it a useful second-read or triage tool that can facilitate routine clinical applications. •We developed a deep learning system for automatic ICH detection and subtype classification.•Our method produced AUCs around 0.99 for each ICH subtype and won 1st place in the RSNA challenge.•Our method generalizes across two independent external validation datasets.•Visualization technique makes the system more easily acceptable for clinicians. Acute Intracranial hemorrhage (ICH) is a life-threatening disease that requires emergency medical attention, which is routinely diagnosed using non-contrast head CT imaging. The diagnostic accuracy of acute ICH on CT varies greatly among radiologists due to the difficulty of interpreting subtle findings and the time pressure associated with the ever-increasing workload. The use of artificial intelligence technology may help automate the process and assist radiologists for more prompt and better decision-making. In this work, we design a deep learning approach that mimics the interpretation process of radiologists, and combines a 2D CNN model and two sequence models to achieve accurate acute ICH detection and subtype classification. Being developed using the extensive 2019-RSNA Brain CT Hemorrhage Challenge dataset with over 25000 CT scans, our deep learning algorithm can accurately classify the acute ICH and its five subtypes with AUCs of 0.988 (ICH), 0.984 (EDH), 0.992 (IPH), 0.996 (IVH), 0.985 (SAH), and 0.983 (SDH), respectively, reaching the accuracy level of expert radiologists. Our method won 1st place among 1345 teams from 75 countries in the RSNA challenge. We have further evaluated our algorithm on two independent external validation datasets with 75 and 491 CT scans, respectively, and our method maintained high AUCs of 0.964 and 0.949 for acute ICH detection. These results have demonstrated the high performance and robust generalization ability of our proposed method, which makes it a useful second-read or triage tool that can facilitate routine clinical applications. |
ArticleNumber | 102785 |
Author | Shen, Tao Lan, Jun Zhang, Jing Xu, Yanming Wang, Xiyue Han, Xiao Wang, Minghui Yang, Sen |
Author_xml | – sequence: 1 givenname: Xiyue surname: Wang fullname: Wang, Xiyue organization: College of Computer Science, Sichuan University, Chengdu 610065, China – sequence: 2 givenname: Tao surname: Shen fullname: Shen, Tao organization: Tencent AI Lab, Shenzhen 518057, China – sequence: 3 givenname: Sen surname: Yang fullname: Yang, Sen organization: Tencent AI Lab, Shenzhen 518057, China – sequence: 4 givenname: Jun surname: Lan fullname: Lan, Jun organization: Winning Health Technology Group Co., Ltd, Shanghai, China – sequence: 5 givenname: Yanming surname: Xu fullname: Xu, Yanming organization: Department of Neurology, West China Hospital, Sichuan University, Chengdu, China – sequence: 6 givenname: Minghui surname: Wang fullname: Wang, Minghui organization: College of Computer Science, Sichuan University, Chengdu 610065, China – sequence: 7 givenname: Jing surname: Zhang fullname: Zhang, Jing email: jing_zhang@scu.edu.cn organization: College of Biomedical Engineering, Sichuan University, Chengdu, China – sequence: 8 givenname: Xiao surname: Han fullname: Han, Xiao email: haroldhan@tencent.com organization: Tencent AI Lab, Shenzhen 518057, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34411910$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v3CAQtapUTZrmD_RQcexlt3wYg6sqUrTqR6RIPTQ9I4yHXbYYUrAT5d8X76ZREqkpF2DmvTcM815XByEGqKq3BC8JJs2H7TI445cUU1ICVEj-ojqilLAF4ZIePDgfVic5b3FZEmPRNK-qQ1bXhLQEH1U3Z6gHuEIedAourJH265jcuBmQjQnpaYyDHp0pqBHM6GJAOvTIeJ2zs87oXShapM00AnJhTNokHZz2aANDTGmj15BLolx1j1aXKBsd8pvqpdU-w8ndflz9_PL5cvVtcfH96_nq7GJhGirGhWVNJ3hTW2Ogs1IaEEIAsbUVlnW1toJ3LRU955T0pOtMUzdt08necmkEB3Zcne91-6i36iq5QadbFbVTu0BMa6VT6c-DspwBGGl5odYUWim1ZZIB7TRIXPOidbrXupq6AXoDc7P-kejjTHAbtY7XSjIh6pYVgfd3Ain-niCPanDZgPc6QJyyorxhNeWE0QJ997DWfZG_kysAugeYFHNOYO8hBKvZIWqrZoeo2SFq75BCkk9Ixo27EZb3Ov889dOeCmVa1w6SysZBMNC7VIxRvtM9Tz99QjfeFZT2v-AW8jZOKRQfKKIyVVj9mN07m5cSjCltSRH4-G-B_1X_A4HmARY |
CitedBy_id | crossref_primary_10_1097_JS9_0000000000001266 crossref_primary_10_1016_j_wneu_2023_03_019 crossref_primary_10_3389_fneur_2023_1176390 crossref_primary_10_1371_journal_pone_0286485 crossref_primary_10_2478_jce_2023_0019 crossref_primary_10_1002_mp_17689 crossref_primary_10_1007_s11910_025_01405_x crossref_primary_10_1097_MD_0000000000031848 crossref_primary_10_3389_fneur_2023_1321964 crossref_primary_10_3390_diagnostics15020216 crossref_primary_10_1007_s11042_024_19318_1 crossref_primary_10_1177_19714009241269491 crossref_primary_10_1109_ACCESS_2022_3225671 crossref_primary_10_1155_2022_5416726 crossref_primary_10_1088_1361_6560_ad80f7 crossref_primary_10_1007_s10143_025_03403_6 crossref_primary_10_1016_j_jns_2024_123329 crossref_primary_10_3233_JIFS_221177 crossref_primary_10_3390_diagnostics13040652 crossref_primary_10_1109_ACCESS_2023_3301160 crossref_primary_10_3389_fneur_2023_1177723 crossref_primary_10_1148_ryai_230296 crossref_primary_10_1007_s11548_023_02965_4 crossref_primary_10_1002_cpe_7218 crossref_primary_10_1093_brain_awab453 crossref_primary_10_3390_app122110851 crossref_primary_10_3389_fnhum_2023_1254417 crossref_primary_10_1002_cpe_7167 crossref_primary_10_1080_03772063_2024_2351548 crossref_primary_10_1007_s00062_023_01291_1 crossref_primary_10_1088_2057_1976_adae14 crossref_primary_10_1016_j_compbiomed_2024_109533 crossref_primary_10_1148_ryai_230006 crossref_primary_10_3389_fneur_2022_956888 crossref_primary_10_1227_NEU_0000000000001841 crossref_primary_10_1016_j_mcpdig_2023_08_009 crossref_primary_10_1007_s00723_024_01661_z crossref_primary_10_1007_s00234_025_03560_x crossref_primary_10_1038_s41598_024_61960_0 crossref_primary_10_1186_s12880_024_01455_6 crossref_primary_10_3389_fnins_2023_1200630 crossref_primary_10_1007_s11548_024_03259_z crossref_primary_10_1016_j_diii_2024_11_002 crossref_primary_10_1177_19714009241303078 crossref_primary_10_3390_diagnostics13182987 crossref_primary_10_3390_jimaging9020037 crossref_primary_10_3390_info15100612 crossref_primary_10_1155_2022_1133819 crossref_primary_10_1186_s12938_023_01172_1 crossref_primary_10_1016_j_pbiomolbio_2023_07_001 crossref_primary_10_1016_j_imed_2024_11_002 crossref_primary_10_17116_neiro20238702185 crossref_primary_10_3390_diagnostics13162670 crossref_primary_10_3389_fneur_2023_1244672 crossref_primary_10_1155_2022_9496764 crossref_primary_10_3389_fradi_2024_1460889 crossref_primary_10_1109_ACCESS_2023_3293754 crossref_primary_10_1136_jnis_2022_019627 crossref_primary_10_1148_ryai_230275 crossref_primary_10_1109_JTEHM_2022_3199987 crossref_primary_10_1038_s41598_023_46433_0 crossref_primary_10_54370_ordubtd_1545060 |
Cites_doi | 10.1056/NEJM200105103441907 10.5853/jos.2016.00563 10.1016/j.compmedimag.2010.03.003 10.1101/2020.04.17.20070193 10.1148/rg.2019180118 10.1016/j.nicl.2017.02.007 10.1002/brb3.1113 10.1161/01.CIR.101.23.e215 10.1038/s41551-018-0195-0 10.1016/S0140-6736(18)31878-6 10.1038/s41598-019-54491-6 10.1212/01.wnl.0000172915.71933.00 10.1038/s41551-018-0324-9 10.1007/s00330-019-06163-2 10.1016/S0140-6736(09)60371-8 10.1001/jama.291.7.866 10.1161/01.STR.0000259661.05525.9a 10.1038/s41551-018-0305-z 10.1007/s13244-018-0599-0 10.1016/j.acra.2020.01.035 10.1136/jnnp.69.5.601 10.1136/jnnp-2016-313246 10.3174/ajnr.A0653 10.1016/S0140-6736(18)31645-3 10.1111/1754-9485.12450 10.1007/s10278-018-00172-1 10.1073/pnas.1908021116 10.1007/s00330-012-2721-x 10.1038/s41591-018-0177-5 10.1016/j.bbe.2015.12.001 10.3390/s19092167 10.1016/j.acra.2015.05.007 10.1016/S1474-4422(07)70107-2 10.3390/data5010014 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) The Author(s) Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. 2021 The Author(s) 2021 |
Copyright_xml | – notice: 2021 The Author(s) – notice: The Author(s) – notice: Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2021 The Author(s) 2021 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.nicl.2021.102785 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2213-1582 |
EndPage | 102785 |
ExternalDocumentID | oai_doaj_org_article_f53eec8f558c42e988af383e2bae8045 PMC8377493 34411910 10_1016_j_nicl_2021_102785 S2213158221002291 1_s2_0_S2213158221002291 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | .1- .FO 0R~ 1P~ 457 53G 5VS AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADRAZ ADVLN AEUPX AEXQZ AFJKZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB KQ8 M41 M48 M~E O-L O9- OK1 RIG ROL RPM SSZ Z5R 0SF 6I. AACTN AAFTH AFCTW NCXOZ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c627t-f36b7564fccebf88ce777e1f4f7f3b4af75b927d5521d1bbc64696b8df58c75e3 |
IEDL.DBID | M48 |
ISSN | 2213-1582 |
IngestDate | Wed Aug 27 01:22:38 EDT 2025 Thu Aug 21 14:30:52 EDT 2025 Fri Jul 11 06:52:16 EDT 2025 Thu Jan 02 22:39:40 EST 2025 Tue Jul 01 01:09:49 EDT 2025 Thu Apr 24 23:10:36 EDT 2025 Tue Jul 25 20:57:36 EDT 2023 Tue Feb 25 20:08:56 EST 2025 Tue Aug 26 16:33:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Intracranial hemorrhage (ICH) Sequence model Head CT Image classification |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c627t-f36b7564fccebf88ce777e1f4f7f3b4af75b927d5521d1bbc64696b8df58c75e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Authors contributed equally to this work. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.nicl.2021.102785 |
PMID | 34411910 |
PQID | 2563425132 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f53eec8f558c42e988af383e2bae8045 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8377493 proquest_miscellaneous_2563425132 pubmed_primary_34411910 crossref_primary_10_1016_j_nicl_2021_102785 crossref_citationtrail_10_1016_j_nicl_2021_102785 elsevier_sciencedirect_doi_10_1016_j_nicl_2021_102785 elsevier_clinicalkeyesjournals_1_s2_0_S2213158221002291 elsevier_clinicalkey_doi_10_1016_j_nicl_2021_102785 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | NeuroImage clinical |
PublicationTitleAlternate | Neuroimage Clin |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Øie (b0155) 2018; 8 García-Blázquez (b0045) 2013; 23 Chilamkurthy (b0025) 2018; 392 Nguyen, N.T., Tran, D.Q., Nguyen, N.T., Nguyen, H.Q. 2020. A CNN-LSTM architecture for detection of intracranial hemorrhage on CT scans. arXiv preprint arXiv:2005.10992. Charlotte (b0020) 2018; 392 Vermeulen, Schull (b0215) 2007; 38 Qureshi, Mendelow, Hanley (b0180) 2009; 373 Jacobson (b0085) 2012 Hssayeni (b0070) 2020; 5 Huang, Liu, Van Der Maaten, Weinberger (b0075) 2017 Kuo, Häne, Mukherjee, Malik, Yuh (b0105) 2019; 116 Ye (b0220) 2019; 29 Yu, Beam, Kohane (b0225) 2018; 2 Flanders (b0040) 2020; 2 Sprigg (b0205) 2018; 391 Cho (b0030) 2019; 32 Lee (b0115) 2019; 3 Heit, Iv, Wintermark (b0065) 2017; 19 Pow, Mello-Thoms, Brennan (b0170) 2016; 60 Labovitz, Halim, Boden-Albala, Hauser, Sacco (b0110) 2005; 65 Liao, Xiao, Wong, Chiang (b0120) 2010; 34 Muschelli (b0140) 2017; 14 Geijer, Geijer (b0050) 2018; 9 Nilsson, Lindgren, Ståhl, Brandt, Säveland (b0150) 2000; 69 Lili (b0125) 2016; 87 Poplin (b0165) 2018; 2 Ker (b0090) 2019; 19 Selvaraju (b0195) 2017 Rao (b0185) 2020; 28 Aslanian (b0005) 2013; 108 Bello (b0010) 2019; 39 Loshchilov, Hutter (b0130) 2016 Shahangian, Pourghassem (b0200) 2016; 36 Goldberger (b0055) 2000; 101 Qureshi (b0175) 2001; 344 Krizhevsky, Sutskever, Hinton (b0100) 2012; 25 Bishop, C.M., 2006. Pattern recognition and machine learning, Springer. Robert (b0190) 2015; 22 Hu, Shen, Sun (b0080) 2018 Kingma, D.P., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980. Patel (b0160) 2019; 9 Coudray (b0035) 2018; 24 Lovelock, Molyneux, Rothwell (b0135) 2007; 6 Strub, Leach, Tomsick, Vagal (b0210) 2007; 28 G, R. et al. Initial misdiagnosis and outcome after subarachnoid hemorrhage. Journal of the American Medical Association 291, 866–869 (2004). Qureshi (10.1016/j.nicl.2021.102785_b0175) 2001; 344 Sprigg (10.1016/j.nicl.2021.102785_b0205) 2018; 391 Aslanian (10.1016/j.nicl.2021.102785_b0005) 2013; 108 Lovelock (10.1016/j.nicl.2021.102785_b0135) 2007; 6 10.1016/j.nicl.2021.102785_b0060 Nilsson (10.1016/j.nicl.2021.102785_b0150) 2000; 69 Hssayeni (10.1016/j.nicl.2021.102785_b0070) 2020; 5 Ye (10.1016/j.nicl.2021.102785_b0220) 2019; 29 10.1016/j.nicl.2021.102785_b0145 Lee (10.1016/j.nicl.2021.102785_b0115) 2019; 3 Pow (10.1016/j.nicl.2021.102785_b0170) 2016; 60 Flanders (10.1016/j.nicl.2021.102785_b0040) 2020; 2 Jacobson (10.1016/j.nicl.2021.102785_b0085) 2012 García-Blázquez (10.1016/j.nicl.2021.102785_b0045) 2013; 23 Rao (10.1016/j.nicl.2021.102785_b0185) 2020; 28 Charlotte (10.1016/j.nicl.2021.102785_b0020) 2018; 392 Chilamkurthy (10.1016/j.nicl.2021.102785_b0025) 2018; 392 Øie (10.1016/j.nicl.2021.102785_b0155) 2018; 8 Poplin (10.1016/j.nicl.2021.102785_b0165) 2018; 2 Vermeulen (10.1016/j.nicl.2021.102785_b0215) 2007; 38 Hu (10.1016/j.nicl.2021.102785_b0080) 2018 Lili (10.1016/j.nicl.2021.102785_b0125) 2016; 87 Bello (10.1016/j.nicl.2021.102785_b0010) 2019; 39 Labovitz (10.1016/j.nicl.2021.102785_b0110) 2005; 65 Yu (10.1016/j.nicl.2021.102785_b0225) 2018; 2 Huang (10.1016/j.nicl.2021.102785_b0075) 2017 10.1016/j.nicl.2021.102785_b0095 Goldberger (10.1016/j.nicl.2021.102785_b0055) 2000; 101 Ker (10.1016/j.nicl.2021.102785_b0090) 2019; 19 Cho (10.1016/j.nicl.2021.102785_b0030) 2019; 32 Coudray (10.1016/j.nicl.2021.102785_b0035) 2018; 24 Muschelli (10.1016/j.nicl.2021.102785_b0140) 2017; 14 10.1016/j.nicl.2021.102785_b0015 Heit (10.1016/j.nicl.2021.102785_b0065) 2017; 19 Kuo (10.1016/j.nicl.2021.102785_b0105) 2019; 116 Liao (10.1016/j.nicl.2021.102785_b0120) 2010; 34 Loshchilov (10.1016/j.nicl.2021.102785_b0130) 2016 Geijer (10.1016/j.nicl.2021.102785_b0050) 2018; 9 Krizhevsky (10.1016/j.nicl.2021.102785_b0100) 2012; 25 Patel (10.1016/j.nicl.2021.102785_b0160) 2019; 9 Robert (10.1016/j.nicl.2021.102785_b0190) 2015; 22 Shahangian (10.1016/j.nicl.2021.102785_b0200) 2016; 36 Qureshi (10.1016/j.nicl.2021.102785_b0180) 2009; 373 Selvaraju (10.1016/j.nicl.2021.102785_b0195) 2017 Strub (10.1016/j.nicl.2021.102785_b0210) 2007; 28 |
References_xml | – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: b0100 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 29 start-page: 6191 year: 2019 end-page: 6201 ident: b0220 article-title: Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network publication-title: European Radiology – volume: 392 start-page: 1257 year: 2018 end-page: 1268 ident: b0020 article-title: Intracerebral haemorrhage: current approaches to acute management publication-title: The Lancet – start-page: 4700 year: 2017 end-page: 4708 ident: b0075 article-title: Densely connected convolutional networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2016 ident: b0130 article-title: stochastic gradient descent with warm restarts – volume: 34 start-page: 563 year: 2010 end-page: 571 ident: b0120 article-title: Computer-aided diagnosis of intracranial hematoma with brain deformation on computed tomography publication-title: Computerized Medical Imaging and Graphics – volume: 32 start-page: 450 year: 2019 end-page: 461 ident: b0030 article-title: Improving sensitivity on identification and delineation of intracranial hemorrhage lesion using cascaded deep learning models publication-title: Journal of Digital Imaging – volume: 19 start-page: 2167 year: 2019 end-page: 2169 ident: b0090 article-title: Image thresholding improves 3-dimensional convolutional neural network diagnosis of different acute brain hemorrhages on computed tomography scans publication-title: Sensors – volume: 8 start-page: 1 year: 2018 end-page: 9 ident: b0155 article-title: Functional outcome and survival following spontaneous intracerebral hemorrhage: a retrospective population-based study publication-title: Brain and Behavior – volume: 116 start-page: 22737 year: 2019 end-page: 22745 ident: b0105 article-title: Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning publication-title: Proceedings of the National Academy of Sciences – volume: 2 start-page: 158 year: 2018 end-page: 164 ident: b0165 article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning publication-title: Nature Biomedical Engineering – volume: 391 start-page: 2107 year: 2018 end-page: 2115 ident: b0205 article-title: Tranexamic acid for hyperacute primary intracerebral haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial publication-title: Journal of Emergency Medicine – volume: 5 start-page: 14 year: 2020 end-page: 32 ident: b0070 article-title: Intracranial hemorrhage segmentation using a deep convolutional model publication-title: Data – volume: 19 start-page: 11 year: 2017 ident: b0065 article-title: Imaging of intracranial hemorrhage publication-title: Journal of Stroke – volume: 23 start-page: 1181 year: 2013 end-page: 1190 ident: b0045 article-title: Accuracy of CT angiography in the diagnosis of acute gastrointestinal bleeding: systematic review and meta-analysis publication-title: European Radiology – volume: 6 start-page: 487 year: 2007 end-page: 493 ident: b0135 article-title: Change in incidence and aetiology of intracerebral haemorrhage in oxfordshire, UK, between 1981 and 2006: a population-based study publication-title: The Lancet Neurology – start-page: 7132 year: 2018 end-page: 7141 ident: b0080 article-title: Squeeze-and-excitation networks publication-title: In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 24 start-page: 1559 year: 2018 end-page: 1567 ident: b0035 article-title: Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning publication-title: Nature Medicine – year: 2012 ident: b0085 article-title: Clinical laboratory medicine for mental health professionals publication-title: (American Psychiatric Pub – volume: 69 start-page: 601 year: 2000 end-page: 607 ident: b0150 article-title: Incidence of intracerebral and subarachnoid haemorrhage in southern sweden publication-title: Journal of Neurology, Neurosurgery & Psychiatry – volume: 101 start-page: 215 year: 2000 end-page: 220 ident: b0055 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation – volume: 2 start-page: 719 year: 2018 end-page: 731 ident: b0225 article-title: Artificial intelligence in healthcare publication-title: Nature Biomedical Engineering – volume: 108 start-page: 166 year: 2013 end-page: 172 ident: b0005 article-title: Nurse observation during colonoscopy increases polyp detection: a randomized prospective study publication-title: Gastrointestinal Endoscopy – volume: 14 start-page: 379 year: 2017 end-page: 390 ident: b0140 article-title: PItcHPERFeCT: Primary intracranial hemorrhage probability estimation using random forests on CT publication-title: NeuroImage: Clinical – volume: 65 start-page: 518 year: 2005 end-page: 522 ident: b0110 article-title: The incidence of deep and lobar intracerebral hemorrhage in whites, blacks, and hispanics publication-title: Neurology – volume: 2 start-page: 1 year: 2020 end-page: 7 ident: b0040 article-title: Construction of a machine learning dataset through collaboration: the RSNA 2019 brain CT hemorrhage challenge. Radiology publication-title: Artificial Intelligence – volume: 373 start-page: 1632 year: 2009 end-page: 1644 ident: b0180 article-title: Intracerebral haemorrhage publication-title: The Lancet – start-page: 618 year: 2017 end-page: 626 ident: b0195 article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 38 start-page: 1216 year: 2007 end-page: 1221 ident: b0215 article-title: Missed diagnosis of subarachnoid hemorrhage in the emergency department publication-title: Stroke – volume: 87 start-page: 1330 year: 2016 end-page: 1335 ident: b0125 article-title: Early blood pressure lowering in patients with intracerebral haemorrhage and prior use of antithrombotic agents: pooled analysis of the interact studies publication-title: Journal of Neurology Neurosurgery and Psychiatry – volume: 9 start-page: 1 year: 2019 end-page: 11 ident: b0160 article-title: Intracerebral haemorrhage segmentation in non-contrast CT publication-title: Scientific Reports – volume: 28 start-page: 1679 year: 2007 end-page: 1682 ident: b0210 article-title: Overnight preliminary head CT interpretations provided by residents: locations of misidentified intracranial hemorrhage publication-title: American Journal of Neuroradiology – reference: Nguyen, N.T., Tran, D.Q., Nguyen, N.T., Nguyen, H.Q. 2020. A CNN-LSTM architecture for detection of intracranial hemorrhage on CT scans. arXiv preprint arXiv:2005.10992. – volume: 3 start-page: 173 year: 2019 end-page: 185 ident: b0115 article-title: An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets publication-title: Nature Biomedical Engineering – volume: 344 start-page: 1450 year: 2001 end-page: 1460 ident: b0175 article-title: Spontaneous intracerebral hemorrhage publication-title: New England Journal of Medicine – reference: Bishop, C.M., 2006. Pattern recognition and machine learning, Springer. – volume: 36 start-page: 217 year: 2016 end-page: 232 ident: b0200 article-title: Automatic brain hemorrhage segmentation and classification algorithm based on weighted grayscale histogram feature in a hierarchical classification structure publication-title: Biocybernetics and Biomedical Engineering – volume: 9 start-page: 287 year: 2018 end-page: 301 ident: b0050 article-title: Added value of double reading in diagnostic radiology, a systematic review publication-title: Insights into Imaging – volume: 60 start-page: 306 year: 2016 end-page: 314 ident: b0170 article-title: Evaluation of the effect of double reporting on test accuracy in screening and diagnostic imaging studies: a review of the evidence publication-title: Journal of Medical Imaging and Radiation Oncology – volume: 28 start-page: 85 year: 2020 end-page: 93 ident: b0185 article-title: Utility of artificial intelligence tool as a prospective radiology peer reviewer-detection of unreported intracranial hemorrhage publication-title: Academic Radiology – volume: 392 start-page: 2388 year: 2018 end-page: 2396 ident: b0025 article-title: Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study publication-title: The Lancet – reference: Kingma, D.P., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980. – reference: G, R. et al. Initial misdiagnosis and outcome after subarachnoid hemorrhage. Journal of the American Medical Association 291, 866–869 (2004). – volume: 39 start-page: 1161 year: 2019 end-page: 1182 ident: b0010 article-title: Skull base–related lesions at routine head CT from the emergency department: pearls, pitfalls, and lessons learned publication-title: RadioGraphics – volume: 22 start-page: 1191 year: 2015 end-page: 1198 ident: b0190 article-title: The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload publication-title: Academic Radiology – start-page: 4700 year: 2017 ident: 10.1016/j.nicl.2021.102785_b0075 article-title: Densely connected convolutional networks – volume: 344 start-page: 1450 year: 2001 ident: 10.1016/j.nicl.2021.102785_b0175 article-title: Spontaneous intracerebral hemorrhage publication-title: New England Journal of Medicine doi: 10.1056/NEJM200105103441907 – volume: 19 start-page: 11 year: 2017 ident: 10.1016/j.nicl.2021.102785_b0065 article-title: Imaging of intracranial hemorrhage publication-title: Journal of Stroke doi: 10.5853/jos.2016.00563 – volume: 34 start-page: 563 year: 2010 ident: 10.1016/j.nicl.2021.102785_b0120 article-title: Computer-aided diagnosis of intracranial hematoma with brain deformation on computed tomography publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2010.03.003 – ident: 10.1016/j.nicl.2021.102785_b0145 doi: 10.1101/2020.04.17.20070193 – year: 2016 ident: 10.1016/j.nicl.2021.102785_b0130 – volume: 39 start-page: 1161 year: 2019 ident: 10.1016/j.nicl.2021.102785_b0010 article-title: Skull base–related lesions at routine head CT from the emergency department: pearls, pitfalls, and lessons learned publication-title: RadioGraphics doi: 10.1148/rg.2019180118 – volume: 108 start-page: 166 year: 2013 ident: 10.1016/j.nicl.2021.102785_b0005 article-title: Nurse observation during colonoscopy increases polyp detection: a randomized prospective study publication-title: Gastrointestinal Endoscopy – volume: 14 start-page: 379 year: 2017 ident: 10.1016/j.nicl.2021.102785_b0140 article-title: PItcHPERFeCT: Primary intracranial hemorrhage probability estimation using random forests on CT publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2017.02.007 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.nicl.2021.102785_b0155 article-title: Functional outcome and survival following spontaneous intracerebral hemorrhage: a retrospective population-based study publication-title: Brain and Behavior doi: 10.1002/brb3.1113 – volume: 101 start-page: 215 year: 2000 ident: 10.1016/j.nicl.2021.102785_b0055 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 2 start-page: 158 year: 2018 ident: 10.1016/j.nicl.2021.102785_b0165 article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning publication-title: Nature Biomedical Engineering doi: 10.1038/s41551-018-0195-0 – volume: 392 start-page: 1257 year: 2018 ident: 10.1016/j.nicl.2021.102785_b0020 article-title: Intracerebral haemorrhage: current approaches to acute management publication-title: The Lancet doi: 10.1016/S0140-6736(18)31878-6 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.nicl.2021.102785_b0160 article-title: Intracerebral haemorrhage segmentation in non-contrast CT publication-title: Scientific Reports doi: 10.1038/s41598-019-54491-6 – start-page: 618 year: 2017 ident: 10.1016/j.nicl.2021.102785_b0195 article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization – volume: 65 start-page: 518 year: 2005 ident: 10.1016/j.nicl.2021.102785_b0110 article-title: The incidence of deep and lobar intracerebral hemorrhage in whites, blacks, and hispanics publication-title: Neurology doi: 10.1212/01.wnl.0000172915.71933.00 – volume: 25 start-page: 1097 year: 2012 ident: 10.1016/j.nicl.2021.102785_b0100 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 3 start-page: 173 year: 2019 ident: 10.1016/j.nicl.2021.102785_b0115 article-title: An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets publication-title: Nature Biomedical Engineering doi: 10.1038/s41551-018-0324-9 – volume: 29 start-page: 6191 year: 2019 ident: 10.1016/j.nicl.2021.102785_b0220 article-title: Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network publication-title: European Radiology doi: 10.1007/s00330-019-06163-2 – volume: 373 start-page: 1632 year: 2009 ident: 10.1016/j.nicl.2021.102785_b0180 article-title: Intracerebral haemorrhage publication-title: The Lancet doi: 10.1016/S0140-6736(09)60371-8 – ident: 10.1016/j.nicl.2021.102785_b0060 doi: 10.1001/jama.291.7.866 – year: 2012 ident: 10.1016/j.nicl.2021.102785_b0085 article-title: Clinical laboratory medicine for mental health professionals publication-title: (American Psychiatric Pub – volume: 38 start-page: 1216 year: 2007 ident: 10.1016/j.nicl.2021.102785_b0215 article-title: Missed diagnosis of subarachnoid hemorrhage in the emergency department publication-title: Stroke doi: 10.1161/01.STR.0000259661.05525.9a – volume: 2 start-page: 719 year: 2018 ident: 10.1016/j.nicl.2021.102785_b0225 article-title: Artificial intelligence in healthcare publication-title: Nature Biomedical Engineering doi: 10.1038/s41551-018-0305-z – volume: 9 start-page: 287 year: 2018 ident: 10.1016/j.nicl.2021.102785_b0050 article-title: Added value of double reading in diagnostic radiology, a systematic review publication-title: Insights into Imaging doi: 10.1007/s13244-018-0599-0 – volume: 2 start-page: 1 year: 2020 ident: 10.1016/j.nicl.2021.102785_b0040 article-title: Construction of a machine learning dataset through collaboration: the RSNA 2019 brain CT hemorrhage challenge. Radiology publication-title: Artificial Intelligence – volume: 28 start-page: 85 year: 2020 ident: 10.1016/j.nicl.2021.102785_b0185 article-title: Utility of artificial intelligence tool as a prospective radiology peer reviewer-detection of unreported intracranial hemorrhage publication-title: Academic Radiology doi: 10.1016/j.acra.2020.01.035 – volume: 69 start-page: 601 year: 2000 ident: 10.1016/j.nicl.2021.102785_b0150 article-title: Incidence of intracerebral and subarachnoid haemorrhage in southern sweden publication-title: Journal of Neurology, Neurosurgery & Psychiatry doi: 10.1136/jnnp.69.5.601 – volume: 87 start-page: 1330 year: 2016 ident: 10.1016/j.nicl.2021.102785_b0125 article-title: Early blood pressure lowering in patients with intracerebral haemorrhage and prior use of antithrombotic agents: pooled analysis of the interact studies publication-title: Journal of Neurology Neurosurgery and Psychiatry doi: 10.1136/jnnp-2016-313246 – volume: 28 start-page: 1679 year: 2007 ident: 10.1016/j.nicl.2021.102785_b0210 article-title: Overnight preliminary head CT interpretations provided by residents: locations of misidentified intracranial hemorrhage publication-title: American Journal of Neuroradiology doi: 10.3174/ajnr.A0653 – volume: 392 start-page: 2388 year: 2018 ident: 10.1016/j.nicl.2021.102785_b0025 article-title: Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study publication-title: The Lancet doi: 10.1016/S0140-6736(18)31645-3 – volume: 391 start-page: 2107 year: 2018 ident: 10.1016/j.nicl.2021.102785_b0205 article-title: Tranexamic acid for hyperacute primary intracerebral haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial publication-title: Journal of Emergency Medicine – start-page: 7132 year: 2018 ident: 10.1016/j.nicl.2021.102785_b0080 article-title: Squeeze-and-excitation networks – volume: 60 start-page: 306 year: 2016 ident: 10.1016/j.nicl.2021.102785_b0170 article-title: Evaluation of the effect of double reporting on test accuracy in screening and diagnostic imaging studies: a review of the evidence publication-title: Journal of Medical Imaging and Radiation Oncology doi: 10.1111/1754-9485.12450 – volume: 32 start-page: 450 year: 2019 ident: 10.1016/j.nicl.2021.102785_b0030 article-title: Improving sensitivity on identification and delineation of intracranial hemorrhage lesion using cascaded deep learning models publication-title: Journal of Digital Imaging doi: 10.1007/s10278-018-00172-1 – volume: 116 start-page: 22737 year: 2019 ident: 10.1016/j.nicl.2021.102785_b0105 article-title: Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1908021116 – volume: 23 start-page: 1181 year: 2013 ident: 10.1016/j.nicl.2021.102785_b0045 article-title: Accuracy of CT angiography in the diagnosis of acute gastrointestinal bleeding: systematic review and meta-analysis publication-title: European Radiology doi: 10.1007/s00330-012-2721-x – volume: 24 start-page: 1559 year: 2018 ident: 10.1016/j.nicl.2021.102785_b0035 article-title: Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning publication-title: Nature Medicine doi: 10.1038/s41591-018-0177-5 – volume: 36 start-page: 217 year: 2016 ident: 10.1016/j.nicl.2021.102785_b0200 article-title: Automatic brain hemorrhage segmentation and classification algorithm based on weighted grayscale histogram feature in a hierarchical classification structure publication-title: Biocybernetics and Biomedical Engineering doi: 10.1016/j.bbe.2015.12.001 – ident: 10.1016/j.nicl.2021.102785_b0015 – volume: 19 start-page: 2167 year: 2019 ident: 10.1016/j.nicl.2021.102785_b0090 article-title: Image thresholding improves 3-dimensional convolutional neural network diagnosis of different acute brain hemorrhages on computed tomography scans publication-title: Sensors doi: 10.3390/s19092167 – volume: 22 start-page: 1191 year: 2015 ident: 10.1016/j.nicl.2021.102785_b0190 article-title: The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload publication-title: Academic Radiology doi: 10.1016/j.acra.2015.05.007 – volume: 6 start-page: 487 year: 2007 ident: 10.1016/j.nicl.2021.102785_b0135 article-title: Change in incidence and aetiology of intracerebral haemorrhage in oxfordshire, UK, between 1981 and 2006: a population-based study publication-title: The Lancet Neurology doi: 10.1016/S1474-4422(07)70107-2 – volume: 5 start-page: 14 year: 2020 ident: 10.1016/j.nicl.2021.102785_b0070 article-title: Intracranial hemorrhage segmentation using a deep convolutional model publication-title: Data doi: 10.3390/data5010014 – ident: 10.1016/j.nicl.2021.102785_b0095 |
SSID | ssj0000800766 |
Score | 2.5634336 |
Snippet | •We developed a deep learning system for automatic ICH detection and subtype classification.•Our method produced AUCs around 0.99 for each ICH subtype and won... Highlights•We developed a deep learning system for automatic ICH detection and subtype classification. •Our method produced AUCs around 0.99 for each ICH... Acute Intracranial hemorrhage (ICH) is a life-threatening disease that requires emergency medical attention, which is routinely diagnosed using non-contrast... • We developed a deep learning system for automatic ICH detection and subtype classification. • Our method produced AUCs around 0.99 for each ICH subtype and... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102785 |
SubjectTerms | Algorithms Artificial Intelligence Deep Learning Head CT Humans Image classification Intracranial hemorrhage (ICH) Intracranial Hemorrhages - diagnostic imaging Radiology Regular Sequence model Tomography, X-Ray Computed |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4s2Wh4zEDUXEdhw7x1JRVUjlQiv1ZtnOuLtVSapNVvx9xrGz2gXUXjhuYucxMzvzTTz-hpCPafUFRFFBCUXlbFtYaavCgis902XeW3X2vT69qL5dysudVl-xJizRAyfBfQ5SAHgdpNS-4tBobQNmVcCdBbzUxF6KMW8nmbrOOEhNC5WcM1EwqXneMZOKuyLrLCaHnEXqAhUbKe9EpYm8fy84_Q0-_6yh3AlKJ0_I44wm6VF6i6fkAXTPyMOzvF7-nPw6oi3ALc29Ia6ovbnq16tx-ZMiWKV2M_YTZSuOGqearI7arqU-QupYQzSpjfaBWr8Zga7iQ3iMbmi0dBlrdNdL9EcDnsCftqXH53RAXQ0vyMXJ1_Pj0yK3Wih8zdVYBFE7JesqeA8uaO1BKQUsVEEF4SoblHQNV63EaN8y53yNaXXtdBtQLUqCeEkOur6D14TyurWg4qfVBipXMcvAOV6GtvSlQ7yzIGwWtfGZhzy2w7gxc8HZtYnqMVE9JqlnQT5t59wmFo47R3-JGtyOjAza0wG0K5PtytxnVwsiZv2beZMqulW80OrOW6t_zYIhe4bBMDNwU5of0S6jWfLIgcsbtiByOzODnwRq7r3jh9k4DXqGuNxjO-g3g0EwK9AjM8EX5FUy1q1IBKJgzNRLfN49M96T2f6ZbrWc2Me1wIyhEYf_Q8hvyKP4KumT1ltyMK438A5B3ujeT__n37oYT_g priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Open Access Journals (Elsevier) dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhh9JL6bubPlCht2LW1sPyHpOlIRTSSxPYm5DkUdYltZe1l_79jmR5yTYlhR4lS7asGc18I82MCPk0nr4AzwTkkAlr6sxIIzIDNndFlafYqstv5cW1-LqSqyOynGJhgltlkv2jTI_SOtXM02zON00z_85YwQuJCi5kEWUxgp2LKgbxrc72-ywBEal4ZBnaZ6FDip0Z3bxC_lk0E1kRkhiocKXyHf0U0_gfqKn7MPRPb8o76un8KXmScCU9HYf-jBxB-5w8ukwn5y_Ir1NaA2xouiXihprbm27bDOufFGErNbuhi8lbsdUQvbNaatqaugCugzdRJCDtPDVuNwBtwiAc6jlkX7oO3rrbNUqmHh9g0dR0eUV7pFr_klyff7laXmTp0oXMlUwNmeelVbIU3jmwvqocKKWg8MIrz60wXkm7YKqWqPfrwlpXooFd2qr2snJKAn9FjtuuhTeEsrI2oMIm6wKEFYUpwFqW-zp3uUXkMyPFNNXapYzk4WKMWz25nv3QgTw6kEeP5JmRz_s-mzEfx4OtzwIF9y1DLu1Y0W1vdGIm7SUHcJWX-AOCwaKqjEe7HZg1gMyKL-ET_fUUrooCFl_UPPhp9bde0CcZ0etC90zn-h4fz4jc9zxYCv_84seJOTXKiHDwY1rodr1GWMtRNheczcjrkVn3U8IRD6PNnuN4D9j4YM4On7TNOuYhrzjaDgt-8p_jfUseh9K4n_WOHA_bHbxHhDfYD3EJ_wZceE-A priority: 102 providerName: Elsevier |
Title | A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2213158221002291 https://www.clinicalkey.es/playcontent/1-s2.0-S2213158221002291 https://dx.doi.org/10.1016/j.nicl.2021.102785 https://www.ncbi.nlm.nih.gov/pubmed/34411910 https://www.proquest.com/docview/2563425132 https://pubmed.ncbi.nlm.nih.gov/PMC8377493 https://doaj.org/article/f53eec8f558c42e988af383e2bae8045 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGkBAviG_Kx2Qk3lBQbMdx-oDQNjENpPLCKvXNsp1z26kko0kF_PecE6dQqIbES6TEn_Gdfb-zz3eEvOpPX0AkGaSQZNaUiZEmSwzY1LEijXerJp_y82n2cSZnB2QIdxQHsNmr2oV4UtP16s33rz_e4YR_-8tWKziRRV2Ps-CJQBXyBrmJkkmFiTqJcP8yoiPVHV9yzkTCZMHjPZr91ezIqs6l_47I-huS_mlZ-ZuoOrtL7kSMSY97prhHDqC6T25N4in6A_LtmJYAVzRGjJhTs5rX62W7-EIRwlKzaevOkSvmajtLrYqaqqQuAO1gWdQRk9aeGrdpgS5DJxzKPGRlugiWu-sFrlINJuCrKenpBW2Qgs1DMj17f3F6nsQADInLuWoTL3KrZJ5558D6onCglALmM6-8sJnxStoxV6VEDFAya12OynZui9LLwikJ4hE5rOoKnhDK89KAChuuY8hsxgwDa3nqy9SlFlHQiLBhqLWL3slDkIyVHszQLnUgjw7k0T15RuT1tsxV75vj2twngYLbnMGvdvehXs91nKbaSwHgCi_xBzIO46IwHnV44NYAMi5WIgb66-HqKi62WNHy2qbVvlLQDOyumW64TvXnwJeBLXnwjMvHbETktmSERD3U-WeLLwfm1LhehEMgU0G9aTRCXIHrNBN8RB73zLodEoHYGPX3FPu7w8Y7Y7abUi0XnU_yQqAeMRZP__tPn5Hbof_97tZzctiuN_AC8V5rj7p9Enx-mJ0cdRP6J-2yVaw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemIQEviG_Kp5F4Q1FjO4nTx61i6mDdC53UN8t2zm3QSKomFf8-58SpVoaGxGNiX-L4Lne_s-_OhHzqd19ARAnEECVGF5FOdRJpMLFleRxyq-aX2ewq-bpMl0dkOuTC-LDKoPt7nd5p63BnHGZzvCnL8XfOmWApGjhfRZT7DPZ7iAakP7_hfHm6X2jxkEh2e5aeIPIUIXmmj_PyBWjRT-TMVzGQ_kzlGwaqq-N_YKdu49A_wylv2Kezx-RRAJb0pB_7E3IE1VNyfx62zp-RXye0ANjQcEzEiurrVb0t2_VPiriV6l1bd9VbsVfbhWdVVFcFtR5d-3CijoO0dlTbXQu09IOwaOhQfunah-tu16iaGmzAS13Q6YI2yLbmObk6-7KYzqJw6kJkMy7byInMyDRLnLVgXJ5bkFICc4mTTphEO5maCZdFioa_YMbYDD3szOSFS3MrUxAvyHFVV_CKUJ4VGqRfZZ1AYhKmGRjDY1fENjYIfUaEDVOtbChJ7k_GuFZD7NkP5dmjPHtUz54R-byn2fQFOe7sfeo5uO_pi2l3N-rtSgVpUi4VADZ3KX5AwmGS59qh4w7caEBpxYeIgf9qyFdFDYsPKu98tfwbFTRBSTSKqYarWN0S5BFJ95QH_8I_3_hxEE6FSsLv_OgK6l2jENcKVM5M8BF52QvrfkoEAmJ02mMc74EYH8zZYUtVrrtC5LlA52EiXv_neD-QB7PF_EJdnF9-e0Me-pZ-cestOW63O3iHcK8177vf-Tcm0lKf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+algorithm+for+automatic+detection+and+classification+of+acute+intracranial+hemorrhages+in+head+CT+scans&rft.jtitle=NeuroImage+clinical&rft.au=Wang%2C+Xiyue&rft.au=Shen%2C+Tao&rft.au=Yang%2C+Sen&rft.au=Lan%2C+Jun&rft.date=2021-01-01&rft.issn=2213-1582&rft.eissn=2213-1582&rft.volume=32&rft.spage=102785&rft.epage=102785&rft_id=info:doi/10.1016%2Fj.nicl.2021.102785&rft.externalDBID=ECK1-s2.0-S2213158221002291&rft.externalDocID=1_s2_0_S2213158221002291 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2FS2213158221X00046%2Fcov150h.gif |