Automated tract extraction via atlas based Adaptive Clustering
Advancements in imaging protocols such as the high angular resolution diffusion-weighted imaging (HARDI) and in tractography techniques are expected to cause an increase in the tract-based analyses. Statistical analyses over white matter tracts can contribute greatly towards understanding structural...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 102; no. 2; pp. 596 - 607 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
15.11.2014
Elsevier Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Advancements in imaging protocols such as the high angular resolution diffusion-weighted imaging (HARDI) and in tractography techniques are expected to cause an increase in the tract-based analyses. Statistical analyses over white matter tracts can contribute greatly towards understanding structural mechanisms of the brain since tracts are representative of connectivity pathways. The main challenge with tract-based studies is the extraction of the tracts of interest in a consistent and comparable manner over a large group of individuals without drawing the inclusion and exclusion regions of interest. In this work, we design a framework for automated extraction of white matter tracts. The framework introduces three main components, namely a connectivity based fiber representation, a fiber bundle atlas, and a clustering approach called Adaptive Clustering. The fiber representation relies on the connectivity signatures of fibers to establish an easy correspondence between different subjects. A group-wise clustering of these fibers that are represented by the connectivity signatures is then used to generate a fiber bundle atlas. Finally, Adaptive Clustering incorporates the previously generated clustering atlas as a prior, to cluster the fibers of a new subject automatically. Experiments on the HARDI scans of healthy individuals acquired repeatedly, demonstrate the applicability, reliability and the repeatability of our approach in extracting white matter tracts. By alleviating the seed region selection and the inclusion/exclusion ROI drawing requirements that are usually handled by trained radiologists, the proposed framework expands the range of possible clinical applications and establishes the ability to perform tract-based analyses with large samples.
•Designed a framework for automated extraction of fiber tracts•Defined a fiber bundle atlas to introduce a prior model of clustering•Employed bundle atlas to cluster new subjects adaptively•Defined an automatic correspondence across tracts of large sets of subjects•Performed experiments on a HARDI dataset of healthy individuals |
---|---|
AbstractList | Advancements in imaging protocols such as the high angular resolution diffusion-weighted imaging (HARDI) and in tractography techniques are expected to cause an increase in the tract-based analyses. Statistical analyses over white matter tracts can contribute greatly towards understanding structural mechanisms of the brain since tracts are representative of connectivity pathways. The main challenge with tract-based studies is the extraction of the tracts of interest in a consistent and comparable manner over a large group of individuals without drawing the inclusion and exclusion regions of interest. In this work, we design a framework for automated extraction of white matter tracts. The framework introduces three main components, namely a connectivity based fiber representation, a fiber bundle atlas, and a clustering approach called Adaptive Clustering. The fiber representation relies on the connectivity signatures of fibers to establish an easy correspondence between different subjects. A group-wise clustering of these fibers that are represented by the connectivity signatures is then used to generate a fiber bundle atlas. Finally, Adaptive Clustering incorporates the previously generated clustering atlas as a prior, to cluster the fibers of a new subject automatically. Experiments on the HARDI scans of healthy individuals acquired repeatedly, demonstrate the applicability, reliability and the repeatability of our approach in extracting white matter tracts. By alleviating the seed region selection and the inclusion/exclusion ROI drawing requirements that are usually handled by trained radiologists, the proposed framework expands the range of possible clinical applications and establishes the ability to perform tract-based analyses with large samples.
•Designed a framework for automated extraction of fiber tracts•Defined a fiber bundle atlas to introduce a prior model of clustering•Employed bundle atlas to cluster new subjects adaptively•Defined an automatic correspondence across tracts of large sets of subjects•Performed experiments on a HARDI dataset of healthy individuals Advancements in imaging protocols such as the high angular resolution diffusion-weighted imaging (HARDI) and in tractography techniques are expected to cause an increase in the tract-based analyses. Statistical analyses over white matter tracts can contribute greatly towards understanding structural mechanisms of the brain since tracts are representative of the connectivity pathways. The main challenge with tract-based studies is the extraction of the tracts of interest in a consistent and comparable manner over a large group of individuals without drawing the inclusion and exclusion regions of interest. In this work, we design a framework for automated extraction of white matter tracts. The framework introduces three main components, namely a connectivity based fiber representation, a fiber clustering atlas, and a clustering approach called Adaptive Clustering. The fiber representation relies on the connectivity signatures of fibers to establish an easy correspondence between different subjects. A group-wise clustering of these fibers that are represented by the connectivity signatures is then used to generate a fiber bundle atlas. Finally, Adaptive Clustering incorporates the previously generated clustering atlas as a prior, to cluster the fibers of a new subject automatically. Experiments on the HARDI scans of healthy individuals acquired repeatedly, demonstrate the applicability, the reliability and the repeatability of our approach in extracting white matter tracts. By alleviating the seed region selection or the inclusion/exclusion ROI drawing requirements that are usually handled by trained radiologists, the proposed framework expands the range of possible clinical applications and establishes the ability to perform tract-based analyses with large samples. Advancements in imaging protocols such as the high angular resolution diffusion-weighted imaging (HARDI) and in tractography techniques are expected to cause an increase in the tract-based analyses. Statistical analyses over white matter tracts can contribute greatly towards understanding structural mechanisms of the brain since tracts are representative of connectivity pathways. The main challenge with tract-based studies is the extraction of the tracts of interest in a consistent and comparable manner over a large group of individuals without drawing the inclusion and exclusion regions of interest. In this work, we design a framework for automated extraction of white matter tracts. The framework introduces three main components, namely a connectivity based fiber representation, a fiber bundle atlas, and a clustering approach called Adaptive Clustering. The fiber representation relies on the connectivity signatures of fibers to establish an easy correspondence between different subjects. A group-wise clustering of these fibers that are represented by the connectivity signatures is then used to generate a fiber bundle atlas. Finally, Adaptive Clustering incorporates the previously generated clustering atlas as a prior, to cluster the fibers of a new subject automatically. Experiments on the HARDI scans of healthy individuals acquired repeatedly, demonstrate the applicability, reliability and the repeatability of our approach in extracting white matter tracts. By alleviating the seed region selection and the inclusion/exclusion ROI drawing requirements that are usually handled by trained radiologists, the proposed framework expands the range of possible clinical applications and establishes the ability to perform tract-based analyses with large samples. Advancements in imaging protocols such as the high angular resolution diffusion-weighted imaging (HARDI) and in tractography techniques are expected to cause an increase in the tract-based analyses. Statistical analyses over white matter tracts can contribute greatly towards understanding structural mechanisms of the brain since tracts are representative of connectivity pathways. The main challenge with tract-based studies is the extraction of the tracts of interest in a consistent and comparable manner over a large group of individuals without drawing the inclusion and exclusion regions of interest. In this work, we design a framework for automated extraction of white matter tracts. The framework introduces three main components, namely a connectivity based fiber representation, a fiber bundle atlas, and a clustering approach called Adaptive Clustering. The fiber representation relies on the connectivity signatures of fibers to establish an easy correspondence between different subjects. A group-wise clustering of these fibers that are represented by the connectivity signatures is then used to generate a fiber bundle atlas. Finally, Adaptive Clustering incorporates the previously generated clustering atlas as a prior, to cluster the fibers of a new subject automatically. Experiments on the HARDI scans of healthy individuals acquired repeatedly, demonstrate the applicability, reliability and the repeatability of our approach in extracting white matter tracts. By alleviating the seed region selection and the inclusion/exclusion ROI drawing requirements that are usually handled by trained radiologists, the proposed framework expands the range of possible clinical applications and establishes the ability to perform tract-based analyses with large samples.Advancements in imaging protocols such as the high angular resolution diffusion-weighted imaging (HARDI) and in tractography techniques are expected to cause an increase in the tract-based analyses. Statistical analyses over white matter tracts can contribute greatly towards understanding structural mechanisms of the brain since tracts are representative of connectivity pathways. The main challenge with tract-based studies is the extraction of the tracts of interest in a consistent and comparable manner over a large group of individuals without drawing the inclusion and exclusion regions of interest. In this work, we design a framework for automated extraction of white matter tracts. The framework introduces three main components, namely a connectivity based fiber representation, a fiber bundle atlas, and a clustering approach called Adaptive Clustering. The fiber representation relies on the connectivity signatures of fibers to establish an easy correspondence between different subjects. A group-wise clustering of these fibers that are represented by the connectivity signatures is then used to generate a fiber bundle atlas. Finally, Adaptive Clustering incorporates the previously generated clustering atlas as a prior, to cluster the fibers of a new subject automatically. Experiments on the HARDI scans of healthy individuals acquired repeatedly, demonstrate the applicability, reliability and the repeatability of our approach in extracting white matter tracts. By alleviating the seed region selection and the inclusion/exclusion ROI drawing requirements that are usually handled by trained radiologists, the proposed framework expands the range of possible clinical applications and establishes the ability to perform tract-based analyses with large samples. |
Author | Ingalhalikar, Madhura Verma, Ragini Tunç, Birkan Parker, William A. |
Author_xml | – sequence: 1 givenname: Birkan surname: Tunç fullname: Tunç, Birkan – sequence: 2 givenname: William A. surname: Parker fullname: Parker, William A. – sequence: 3 givenname: Madhura surname: Ingalhalikar fullname: Ingalhalikar, Madhura – sequence: 4 givenname: Ragini surname: Verma fullname: Verma, Ragini email: Ragini.Verma@uphs.upenn.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29053797$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/25134977$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkuP0zAUhS00iHnAX0CREBKbBNtJ_NiMKBUvaSQ2sLYc56a4pHaxnWrm3-PQ0sKsurqR_OX4-pxzjS6cd4BQQXBFMGFv15WDKXi70SuoKCZNhUWFKXmCrgiWbSlbTi_m77YuBSHyEl3HuMYYS9KIZ-iStqRuJOdX6HYxJb_RCfoiBW1SAfd_pvWu2Fld6DTqWHQ6ZmDR622yOyiW4xQTBOtWz9HTQY8RXhzmDfr-8cO35efy7uunL8vFXWkY5ak0oheslcAHQTWVomG1YJxgDHowBvKoZdd1umdECsx6aFmrBzww3gyNxKK-Qbd73e3UbaA34PKWo9qGbEF4UF5b9f-Jsz_Uyu9UQ1sqSZ0F3hwEgv81QUxqY6OBcdQO_BQVYVRKxmlNzkEpI5gTmtFXj9C1n4LLTsxUK2vB8Xz3y3-XP279N4UMvD4AOho9DkE7Y-OJkzlHLmdO7DkTfIwBhiNCsJqLodbqVAw1F0NhoXIxTgYefzU26TnmbJcdzxF4vxeAHPPOQlDRWHAGehvAJNV7e47Iu0ciZrTO5jf_hIfzJH4DKKzwkA |
CitedBy_id | crossref_primary_10_1109_TMI_2019_2932681 crossref_primary_10_1016_j_neuroimage_2016_11_066 crossref_primary_10_1016_j_neuroimage_2017_05_012 crossref_primary_10_3389_fnins_2024_1376570 crossref_primary_10_1016_j_neuroimage_2020_116703 crossref_primary_10_1371_journal_pone_0233645 crossref_primary_10_1016_j_neuroimage_2020_117402 crossref_primary_10_1016_j_media_2018_02_008 crossref_primary_10_1016_j_neuroimage_2015_05_016 crossref_primary_10_1161_STROKEAHA_119_028832 crossref_primary_10_1016_j_neuroimage_2021_118870 crossref_primary_10_1371_journal_pone_0133337 crossref_primary_10_1016_j_neuroimage_2017_10_058 crossref_primary_10_1016_j_neuroimage_2023_120086 crossref_primary_10_1002_hbm_26578 crossref_primary_10_1016_j_neuroimage_2018_06_027 crossref_primary_10_1088_1361_6560_ac0d90 crossref_primary_10_1007_s12021_023_09636_4 crossref_primary_10_1097_RMR_0000000000000212 crossref_primary_10_1016_j_neuroimage_2017_07_015 crossref_primary_10_3389_fninf_2014_00087 crossref_primary_10_1227_NEU_0000000000001183 crossref_primary_10_1227_NEU_0000000000001181 crossref_primary_10_3389_fninf_2022_777853 crossref_primary_10_1007_s12650_020_00642_1 crossref_primary_10_1109_TMI_2019_2954477 crossref_primary_10_1117_1_JMI_5_1_011018 crossref_primary_10_1162_imag_a_00353 crossref_primary_10_3389_fnins_2017_00754 |
Cites_doi | 10.1016/j.neuroimage.2006.07.021 10.1111/j.2517-6161.1977.tb01600.x 10.1016/j.neuroimage.2009.08.017 10.2463/mrms.2012-0064 10.1016/j.media.2007.10.003 10.1006/dspr.1999.0361 10.1016/j.neuroimage.2006.02.024 10.1016/j.neuroimage.2007.02.049 10.1016/S0006-3495(94)80775-1 10.1016/j.neuroimage.2010.05.049 10.1016/j.neuroimage.2010.09.035 10.1016/j.neuroimage.2010.07.038 10.1002/ima.22005 10.1006/jmrb.1994.1037 10.1002/mrm.10268 10.2307/1932409 10.1016/j.neuroimage.2011.01.032 10.1016/j.media.2013.03.009 10.1016/j.neuroimage.2010.07.050 10.1148/radiol.2212001702 10.1002/nav.3800020109 10.1016/j.neuroimage.2006.05.044 10.1002/nbm.781 10.1016/j.neuroimage.2010.01.004 10.1016/j.neuroimage.2008.12.028 10.1006/nimg.2000.0582 10.1016/j.neuroimage.2008.12.023 10.1016/0047-259X(82)90077-X 10.1016/j.neuroimage.2011.11.043 10.1016/j.neuroimage.2013.04.066 10.1016/j.neuroimage.2011.06.020 10.1016/j.neuroimage.2012.02.071 10.1016/j.neuroimage.2008.04.241 10.1016/j.neuroimage.2013.10.026 10.1109/TMI.2007.906785 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. 2015 INIST-CNRS Copyright © 2014 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Nov 15, 2014 2014 Elsevier Inc. All rights reserved. 2014 |
Copyright_xml | – notice: 2014 Elsevier Inc. – notice: 2015 INIST-CNRS – notice: Copyright © 2014 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Nov 15, 2014 – notice: 2014 Elsevier Inc. All rights reserved. 2014 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7QO 7X8 5PM |
DOI | 10.1016/j.neuroimage.2014.08.021 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts Biotechnology Research Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Biotechnology Research Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic ProQuest One Psychology MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 607 |
ExternalDocumentID | PMC4252913 3500425961 25134977 29053797 10_1016_j_neuroimage_2014_08_021 S105381191400682X |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01-MH092862 – fundername: NIMH NIH HHS grantid: R21 MH098010 – fundername: NIMH NIH HHS grantid: R01 MH092862 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT IQODW CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7QO 7X8 5PM |
ID | FETCH-LOGICAL-c627t-c8d8659e7f82a298463867100eafcce0ea39bbbad619806de565af0f674f49083 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 17:17:09 EDT 2025 Fri Jul 11 15:20:25 EDT 2025 Fri Jul 11 03:43:12 EDT 2025 Wed Aug 13 04:46:59 EDT 2025 Thu Apr 03 07:01:21 EDT 2025 Wed Apr 02 07:13:54 EDT 2025 Tue Jul 01 02:14:54 EDT 2025 Thu Apr 24 22:55:17 EDT 2025 Fri Feb 23 02:36:04 EST 2024 Tue Aug 26 16:31:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Atlas Fiber clustering HARDI Tract based analysis Automated tract extraction |
Language | English |
License | CC BY 4.0 Copyright © 2014 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c627t-c8d8659e7f82a298463867100eafcce0ea39bbbad619806de565af0f674f49083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://doi.org/10.1016/j.neuroimage.2014.08.021 |
PMID | 25134977 |
PQID | 1625938703 |
PQPubID | 2031077 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4252913 proquest_miscellaneous_1629967231 proquest_miscellaneous_1622610712 proquest_journals_1625938703 pubmed_primary_25134977 pascalfrancis_primary_29053797 crossref_primary_10_1016_j_neuroimage_2014_08_021 crossref_citationtrail_10_1016_j_neuroimage_2014_08_021 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2014_08_021 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2014_08_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-15 |
PublicationDateYYYYMMDD | 2014-11-15 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2014 |
Publisher | Elsevier Inc Elsevier Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Elsevier Limited |
References | Tournier, Calamante, Connelly (bb0190) 2012; 22 Mukherjee, Miller, Shimony, Conturo, Lee, Almli, McKinstry (bb0130) 2001; 221 Cook, Bai, Gilani, Seunarine, Hall, Parker, Alexander (bb0040) 2006 Dice (bb0060) 1945; 26 O'Donnell, Westin, Golby (bb0150) 2009; 45 Snook, Plewes, Beaulieu (bb0170) 2007; 34 Maddah, Grimson, Warfield, Wells (bb0115) 2008; 12 Kuhn (bb0100) 1955; 2 Guevara, Duclap, Poupon, Marrakchi-Kacem, Fillard, Le Bihan, …, Mangin (bb0085) 2012; 61 Wassermann, Bloy, Kanterakis, Verma, Deriche (bb0235) 2010; 51 Wang, Yap, Jia, Wu, Shen (bb0225) 2010 Smith, Jenkinson, Johansen-Berg, Rueckert, Nichols, Mackay, …, Behrens (bb0165) 2006; 31 Dowson, Landau (bb0065) 1982; 12 Ge, Guo, Zhang, Zhu, Li, Hu, …, Liu (bb0075) 2012; 15 Li, Xue, Guo, Liu, Hunter, Wong (bb0105) 2010; 49 Suarez, Commowick, Prabhu, Warfield (bb0185) 2012; 59 Tuch, Weisskoff, Belliveau, Wedeen (bb0195) 1999 Guevara, Duclap, Poupon, Marrakchi-Kacem, Houenou, Leboyer, Mangin (bb0080) 2011; vol. 7042 Sørensen (bb0180) 1948; 5 Reynolds, Quatieri, Dunn (bb0160) 2000; 10 Basser, Mattiello, Lebihan (bb0020) 1994; 66 Brun, Knutsson, Park, Shenton, Westin (bb0035) 2004; 3216/2004 O'Donnell, Westin (bb0140) 2007; 26 O'Donnell, Golby, Westin (bb0155) 2013; 80 O'Donnell, Kubicki, Shenton, Dreusicke, Grimson, Westin (bb0145) 2006; 27 Nazem-Zadeh, Davoodi-Bojd, Soltanian-Zadeh (bb0135) 2011; 54 Bazin, Ye, Bogovic, Shiee, Reich, Prince, Pham (bb0025) 2011; 58 Tuch, Reese, Wiegell, Makris, Belliveau, Wedeen (bb0200) 2002; 48 Bishop (bb0030) 2006 Voineskos, O'Donnell, Lobaugh, Markant, Ameis, Niethammer, …, Shenton (bb0215) 2009; 45 Fillard, Descoteaux, Goh, Gouttard, Jeurissen, Malcolm, …, Poupon (bb0070) 2011; 56 Ito, Masutani, Kamagata, Yasmin, Suzuki, Ino, …, Ohtomo (bb0095) 2013; 12 Song, Wang (bb0175) 2005; vol. 5803 Côté, Girard, Boré, Garyfallidis, Houde, Descoteaux (bb0045) 2013; 17 Wang, Grimson, Westin (bb0230) 2011; 54 Maddah, Miller, Sullivan, Pfefferbaum, Rohlfing (bb0120) 2011; 14 Mori, van Zijl (bb0125) 2002; 15 Ashburner, Friston (bb0010) 2000; 11 Dempster, Laird, Rubin (bb0050) 1977; 39 Basser, Mattiello, Lebihan (bb0015) 1994; 103 Hofer, Frahm (bb0090) 2006; 32 Tunç, Smith, Wasserman, Pennec, Wells, Verma, Pohl (bb0205) 2013 Zhang, Zhang, Oishi, Faria, Jiang, Li, …, Mori (bb0245) 2010; 52 Wakana, Caprihan, Panzenboeck, Fallon, Perry, Gollub, …, Mori (bb0220) 2007; 36 Liu, Vemuri, Deriche (bb0110) 2012; 2012 Visser, Nijhuis, Buitelaar, Zwiers (bb0210) 2011; 54 Aarnink, Vos, Leemans, Jernigan, Madsen, Baaré (bb0005) 2014; 86 Zhang, Olivi, Hertig, van Zijl, Mori (bb0240) 2008; 42 Desikan, Segonne, Fischl, Quinn, Dickerson, Blacker, …, Killiany (bb0055) 2006; 31 Liu (10.1016/j.neuroimage.2014.08.021_bb0110) 2012; 2012 O'Donnell (10.1016/j.neuroimage.2014.08.021_bb0150) 2009; 45 Desikan (10.1016/j.neuroimage.2014.08.021_bb0055) 2006; 31 Wang (10.1016/j.neuroimage.2014.08.021_bb0225) 2010 Guevara (10.1016/j.neuroimage.2014.08.021_bb0085) 2012; 61 Aarnink (10.1016/j.neuroimage.2014.08.021_bb0005) 2014; 86 Li (10.1016/j.neuroimage.2014.08.021_bb0105) 2010; 49 Tournier (10.1016/j.neuroimage.2014.08.021_bb0190) 2012; 22 Hofer (10.1016/j.neuroimage.2014.08.021_bb0090) 2006; 32 Suarez (10.1016/j.neuroimage.2014.08.021_bb0185) 2012; 59 Basser (10.1016/j.neuroimage.2014.08.021_bb0015) 1994; 103 Fillard (10.1016/j.neuroimage.2014.08.021_bb0070) 2011; 56 Cook (10.1016/j.neuroimage.2014.08.021_bb0040) 2006 Wang (10.1016/j.neuroimage.2014.08.021_bb0230) 2011; 54 Ashburner (10.1016/j.neuroimage.2014.08.021_bb0010) 2000; 11 Nazem-Zadeh (10.1016/j.neuroimage.2014.08.021_bb0135) 2011; 54 Snook (10.1016/j.neuroimage.2014.08.021_bb0170) 2007; 34 Bazin (10.1016/j.neuroimage.2014.08.021_bb0025) 2011; 58 Zhang (10.1016/j.neuroimage.2014.08.021_bb0245) 2010; 52 Mori (10.1016/j.neuroimage.2014.08.021_bb0125) 2002; 15 Mukherjee (10.1016/j.neuroimage.2014.08.021_bb0130) 2001; 221 Song (10.1016/j.neuroimage.2014.08.021_bb0175) 2005; vol. 5803 Ge (10.1016/j.neuroimage.2014.08.021_bb0075) 2012; 15 Ito (10.1016/j.neuroimage.2014.08.021_bb0095) 2013; 12 Maddah (10.1016/j.neuroimage.2014.08.021_bb0115) 2008; 12 Tuch (10.1016/j.neuroimage.2014.08.021_bb0200) 2002; 48 Tunç (10.1016/j.neuroimage.2014.08.021_bb0205) 2013 Dempster (10.1016/j.neuroimage.2014.08.021_bb0050) 1977; 39 Dice (10.1016/j.neuroimage.2014.08.021_bb0060) 1945; 26 Visser (10.1016/j.neuroimage.2014.08.021_bb0210) 2011; 54 Zhang (10.1016/j.neuroimage.2014.08.021_bb0240) 2008; 42 Voineskos (10.1016/j.neuroimage.2014.08.021_bb0215) 2009; 45 Basser (10.1016/j.neuroimage.2014.08.021_bb0020) 1994; 66 Reynolds (10.1016/j.neuroimage.2014.08.021_bb0160) 2000; 10 Dowson (10.1016/j.neuroimage.2014.08.021_bb0065) 1982; 12 O'Donnell (10.1016/j.neuroimage.2014.08.021_bb0140) 2007; 26 Côté (10.1016/j.neuroimage.2014.08.021_bb0045) 2013; 17 Guevara (10.1016/j.neuroimage.2014.08.021_bb0080) 2011; vol. 7042 Sørensen (10.1016/j.neuroimage.2014.08.021_bb0180) 1948; 5 Smith (10.1016/j.neuroimage.2014.08.021_bb0165) 2006; 31 Tuch (10.1016/j.neuroimage.2014.08.021_bb0195) 1999 Bishop (10.1016/j.neuroimage.2014.08.021_bb0030) 2006 O'Donnell (10.1016/j.neuroimage.2014.08.021_bb0145) 2006; 27 Maddah (10.1016/j.neuroimage.2014.08.021_bb0120) 2011; 14 Kuhn (10.1016/j.neuroimage.2014.08.021_bb0100) 1955; 2 Wakana (10.1016/j.neuroimage.2014.08.021_bb0220) 2007; 36 Wassermann (10.1016/j.neuroimage.2014.08.021_bb0235) 2010; 51 O'Donnell (10.1016/j.neuroimage.2014.08.021_bb0155) 2013; 80 Brun (10.1016/j.neuroimage.2014.08.021_bb0035) 2004; 3216/2004 16687538 - AJNR Am J Neuroradiol. 2006 May;27(5):1032-6 23631987 - Neuroimage. 2013 Oct 15;80:283-9 20570617 - Neuroimage. 2010 Oct 1;52(4):1289-301 20678578 - Neuroimage. 2011 Jan 1;54(1):290-302 24684013 - Inf Process Med Imaging. 2013;23:730-41 18041271 - IEEE Trans Med Imaging. 2007 Nov;26(11):1562-75 23286166 - Med Image Comput Comput Assist Interv. 2012;15(Pt 3):485-92 23285315 - Proc IEEE Int Symp Biomed Imaging. 2012 Jul 12;2012(9):522-525 16530430 - Neuroimage. 2006 Jul 1;31(3):968-80 10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21 22414992 - Neuroimage. 2012 Jul 16;61(4):1083-99 23706753 - Med Image Anal. 2013 Oct;17(7):844-57 16624579 - Neuroimage. 2006 Jul 15;31(4):1487-505 8019776 - J Magn Reson B. 1994 Mar;103(3):247-54 12353272 - Magn Reson Med. 2002 Oct;48(4):577-82 19159690 - Neuroimage. 2009 Apr 1;45(2):370-6 21995029 - Med Image Comput Comput Assist Interv. 2011;14(Pt 2):191-9 21718790 - Neuroimage. 2011 Sep 15;58(2):458-68 24157921 - Neuroimage. 2014 Feb 1;86:404-16 20209048 - Med Image Comput Comput Assist Interv. 2004 Sep 2;3216/2004(3216):368-375 8130344 - Biophys J. 1994 Jan;66(1):259-67 23857147 - Magn Reson Med Sci. 2013;12(3):201-13 20673849 - Neuroimage. 2011 Jan 1;54(1):303-12 20079439 - Neuroimage. 2010 May 15;51(1):228-41 19154790 - Neuroimage. 2009 Apr 15;45(3):832-44 17481925 - Neuroimage. 2007 Jul 1;36(3):630-44 18554930 - Neuroimage. 2008 Aug 15;42(2):771-7 18180197 - Med Image Anal. 2008 Apr;12(2):191-202 19683061 - Neuroimage. 2010 Jan 15;49(2):1249-58 11687675 - Radiology. 2001 Nov;221(2):349-58 22155046 - Neuroimage. 2012 Feb 15;59(4):3690-700 20869453 - Neuroimage. 2011 Jan;54 Suppl 1:S146-64 16854598 - Neuroimage. 2006 Sep;32(3):989-94 17070704 - Neuroimage. 2007 Jan 1;34(1):243-52 12489096 - NMR Biomed. 2002 Nov-Dec;15(7-8):468-80 21256221 - Neuroimage. 2011 May 1;56(1):220-34 |
References_xml | – start-page: 2759 year: 2006 ident: bb0040 article-title: Camino: open-source diffusion-MRI reconstruction and processing publication-title: Scientific Meeting of the International Society for Magnetic Resonance in Medicine – volume: 86 start-page: 404 year: 2014 end-page: 416 ident: bb0005 article-title: Automated longitudinal intra-subject analysis (ALISA) for diffusion MRI tractography publication-title: NeuroImage – volume: 26 start-page: 1562 year: 2007 end-page: 1575 ident: bb0140 article-title: Automatic tractography segmentation using a high-dimensional white matter atlas publication-title: IEEE Trans. Med. Imaging – volume: 17 start-page: 844 year: 2013 end-page: 857 ident: bb0045 article-title: Tractometer: towards validation of tractography pipelines publication-title: Med. Image Anal. – volume: 59 start-page: 3690 year: 2012 end-page: 3700 ident: bb0185 article-title: Automated delineation of white matter fiber tracts with a multiple region-of-interest approach publication-title: NeuroImage – volume: 221 start-page: 349 year: 2001 end-page: 358 ident: bb0130 article-title: Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging publication-title: Radiology – volume: 2 start-page: 83 year: 1955 end-page: 97 ident: bb0100 article-title: The Hungarian method for the assignment problem publication-title: Nav. Res. Logist. Q. – volume: 15 start-page: 485 year: 2012 end-page: 492 ident: bb0075 article-title: Group-wise consistent fiber clustering based on multimodal connectional and functional profiles publication-title: Med. Image Comput. Comput. Assist. Interv. – start-page: 730 year: 2013 end-page: 741 ident: bb0205 article-title: Multinomial probabilistic fiber representation for connectivity driven clustering publication-title: Information Processing in Medical Imaging (IPMI) – volume: 42 start-page: 771 year: 2008 end-page: 777 ident: bb0240 article-title: Automated fiber tracking of human brain white matter using diffusion tensor imaging publication-title: NeuroImage – start-page: 448 year: 2010 end-page: 456 ident: bb0225 article-title: Hierarchical fiber clustering based on multi-scale neuroanatomical features publication-title: Proceedings of the International Conference on Medical Imaging and Augmented Reality – volume: 45 start-page: 832 year: 2009 end-page: 844 ident: bb0150 article-title: Tract-based morphometry for white matter group analysis publication-title: NeuroImage – volume: 49 start-page: 1249 year: 2010 end-page: 1258 ident: bb0105 article-title: A hybrid approach to automatic clustering of white matter fibers publication-title: NeuroImage – volume: 66 start-page: 259 year: 1994 end-page: 267 ident: bb0020 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys. J. – volume: 36 start-page: 630 year: 2007 end-page: 644 ident: bb0220 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: NeuroImage – volume: 54 start-page: 290 year: 2011 end-page: 302 ident: bb0230 article-title: Tractography segmentation using a hierarchical Dirichlet processes mixture model publication-title: NeuroImage – volume: 54 start-page: 146 year: 2011 end-page: 164 ident: bb0135 article-title: Atlas-based fiber bundle segmentation using principal diffusion directions and spherical harmonic coefficients publication-title: NeuroImage – volume: 31 year: 2006 ident: bb0055 article-title: An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest publication-title: NeuroImage – volume: 51 start-page: 228 year: 2010 end-page: 241 ident: bb0235 article-title: Unsupervised white matter fiber clustering and tract probability map generation: applications of a Gaussian process framework for white matter fibers publication-title: NeuroImage – volume: 32 start-page: 989 year: 2006 end-page: 994 ident: bb0090 article-title: Topography of the human corpus callosum revisited-comprehensive fiber tractography using diffusion tensor magnetic resonance imaging publication-title: NeuroImage – volume: 12 start-page: 201 year: 2013 end-page: 213 ident: bb0095 article-title: Automatic extraction of the cingulum bundle in diffusion tensor tract-specific analysis: feasibility study in Parkinson's disease with and without dementia publication-title: Magn. Reson. Med. Sci. – volume: 12 start-page: 450 year: 1982 end-page: 455 ident: bb0065 article-title: The Fréchet distance between multivariate normal distributions publication-title: J. Multivar. Anal. – volume: 10 start-page: 19 year: 2000 end-page: 41 ident: bb0160 article-title: Speaker verification using adapted gaussian mixture models publication-title: Digit. Signal Process. – volume: vol. 5803 start-page: 174 year: 2005 end-page: 183 ident: bb0175 article-title: Highly efficient incremental estimation of Gaussian mixture models for online data stream clustering publication-title: Intelligent Computing: Theory and Applications III – year: 2006 ident: bb0030 article-title: Pattern Recognition and Machine Learning (Information Science and Statistics) – volume: 5 start-page: 1 year: 1948 end-page: 34 ident: bb0180 article-title: A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons publication-title: K. Dan. Vidensk. Selsk. Biol. Skr. – volume: 11 start-page: 805 year: 2000 end-page: 821 ident: bb0010 article-title: Voxel-based morphometry—the methods publication-title: NeuroImage – volume: 56 start-page: 220 year: 2011 end-page: 234 ident: bb0070 article-title: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom publication-title: NeuroImage – volume: 52 start-page: 1289 year: 2010 end-page: 1301 ident: bb0245 article-title: Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy publication-title: NeuroImage – volume: 103 start-page: 247 year: 1994 end-page: 254 ident: bb0015 article-title: Estimation of the effective self-diffusion tensor from the NMR spin echo publication-title: J. Magn. Reson. B – volume: vol. 7042 start-page: 701 year: 2011 end-page: 708 ident: bb0080 article-title: Segmentation of short association bundles in massive tractography datasets using a multi-subject bundle atlas publication-title: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications – year: 1999 ident: bb0195 article-title: High angular resolution diffusion imaging of the human brain publication-title: Proceedings of the Annual Meeting of ISMRM – volume: 54 start-page: 303 year: 2011 end-page: 312 ident: bb0210 article-title: Partition-based mass clustering of tractography streamlines publication-title: NeuroImage – volume: 58 start-page: 458 year: 2011 end-page: 468 ident: bb0025 article-title: Direct segmentation of the major white matter tracts in diffusion tensor images publication-title: NeuroImage – volume: 22 start-page: 53 year: 2012 end-page: 66 ident: bb0190 article-title: MRtrix: diffusion tractography in crossing fiber regions publication-title: Int. J. Imaging Syst. Technol. – volume: 27 start-page: 1032 year: 2006 end-page: 1036 ident: bb0145 article-title: A method for clustering white matter fiber tracts publication-title: AJNR Am. J. Neuroradiol. – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: bb0050 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B – volume: 26 start-page: 297 year: 1945 end-page: 302 ident: bb0060 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – volume: 15 start-page: 468 year: 2002 end-page: 480 ident: bb0125 article-title: Fiber tracking: principles and strategies — a technical review publication-title: NMR Biomed. – volume: 31 start-page: 1487 year: 2006 end-page: 1505 ident: bb0165 article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data publication-title: NeuroImage – volume: 61 start-page: 1083 year: 2012 end-page: 1099 ident: bb0085 article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas publication-title: NeuroImage – volume: 45 start-page: 370 year: 2009 end-page: 376 ident: bb0215 article-title: Quantitative examination of a novel clustering method using magnetic resonance diffusion tensor tractography publication-title: NeuroImage – volume: 2012 start-page: 522 year: 2012 end-page: 525 ident: bb0110 article-title: Unsupervised automatic white matter fiber clustering using a Gaussian mixture model publication-title: Proceedings of IEEE International Symposium on Biomedical Imaging – volume: 12 start-page: 191 year: 2008 end-page: 202 ident: bb0115 article-title: A unified framework for clustering and quantitative analysis of white matter fiber tracts publication-title: Med. Image Anal. – volume: 14 start-page: 191 year: 2011 end-page: 199 ident: bb0120 article-title: Sheet-like white matter fiber tracts: representation, clustering, and quantitative analysis publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 34 start-page: 243 year: 2007 end-page: 252 ident: bb0170 article-title: Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment publication-title: NeuroImage – volume: 3216/2004 start-page: 368 year: 2004 end-page: 375 ident: bb0035 article-title: Clustering fiber traces using normalized cuts publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 80 start-page: 283 year: 2013 end-page: 289 ident: bb0155 article-title: Fiber clustering versus the parcellation-based connectome publication-title: NeuroImage – volume: 48 start-page: 577 year: 2002 end-page: 582 ident: bb0200 article-title: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity publication-title: Magn. Reson. Med. – volume: 34 start-page: 243 issue: 1 year: 2007 ident: 10.1016/j.neuroimage.2014.08.021_bb0170 article-title: Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.07.021 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 10.1016/j.neuroimage.2014.08.021_bb0050 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 49 start-page: 1249 issue: 2 year: 2010 ident: 10.1016/j.neuroimage.2014.08.021_bb0105 article-title: A hybrid approach to automatic clustering of white matter fibers publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.08.017 – volume: 12 start-page: 201 issue: 3 year: 2013 ident: 10.1016/j.neuroimage.2014.08.021_bb0095 article-title: Automatic extraction of the cingulum bundle in diffusion tensor tract-specific analysis: feasibility study in Parkinson's disease with and without dementia publication-title: Magn. Reson. Med. Sci. doi: 10.2463/mrms.2012-0064 – start-page: 730 year: 2013 ident: 10.1016/j.neuroimage.2014.08.021_bb0205 article-title: Multinomial probabilistic fiber representation for connectivity driven clustering – volume: 14 start-page: 191 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2014.08.021_bb0120 article-title: Sheet-like white matter fiber tracts: representation, clustering, and quantitative analysis publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 12 start-page: 191 issue: 2 year: 2008 ident: 10.1016/j.neuroimage.2014.08.021_bb0115 article-title: A unified framework for clustering and quantitative analysis of white matter fiber tracts publication-title: Med. Image Anal. doi: 10.1016/j.media.2007.10.003 – start-page: 448 year: 2010 ident: 10.1016/j.neuroimage.2014.08.021_bb0225 article-title: Hierarchical fiber clustering based on multi-scale neuroanatomical features – volume: 10 start-page: 19 issue: 1 year: 2000 ident: 10.1016/j.neuroimage.2014.08.021_bb0160 article-title: Speaker verification using adapted gaussian mixture models publication-title: Digit. Signal Process. doi: 10.1006/dspr.1999.0361 – volume: 31 start-page: 1487 issue: 4 year: 2006 ident: 10.1016/j.neuroimage.2014.08.021_bb0165 article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.02.024 – volume: 36 start-page: 630 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2014.08.021_bb0220 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.049 – volume: 27 start-page: 1032 issue: 5 year: 2006 ident: 10.1016/j.neuroimage.2014.08.021_bb0145 article-title: A method for clustering white matter fiber tracts publication-title: AJNR Am. J. Neuroradiol. – volume: 66 start-page: 259 year: 1994 ident: 10.1016/j.neuroimage.2014.08.021_bb0020 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys. J. doi: 10.1016/S0006-3495(94)80775-1 – volume: 52 start-page: 1289 issue: 4 year: 2010 ident: 10.1016/j.neuroimage.2014.08.021_bb0245 article-title: Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.05.049 – volume: 2012 start-page: 522 year: 2012 ident: 10.1016/j.neuroimage.2014.08.021_bb0110 article-title: Unsupervised automatic white matter fiber clustering using a Gaussian mixture model – volume: 54 start-page: 146 year: 2011 ident: 10.1016/j.neuroimage.2014.08.021_bb0135 article-title: Atlas-based fiber bundle segmentation using principal diffusion directions and spherical harmonic coefficients publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.035 – volume: 54 start-page: 303 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2014.08.021_bb0210 article-title: Partition-based mass clustering of tractography streamlines publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.07.038 – volume: 22 start-page: 53 issue: 1 year: 2012 ident: 10.1016/j.neuroimage.2014.08.021_bb0190 article-title: MRtrix: diffusion tractography in crossing fiber regions publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22005 – volume: 103 start-page: 247 issue: 3 year: 1994 ident: 10.1016/j.neuroimage.2014.08.021_bb0015 article-title: Estimation of the effective self-diffusion tensor from the NMR spin echo publication-title: J. Magn. Reson. B doi: 10.1006/jmrb.1994.1037 – volume: 48 start-page: 577 issue: 4 year: 2002 ident: 10.1016/j.neuroimage.2014.08.021_bb0200 article-title: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10268 – volume: 31 issue: 2 year: 2006 ident: 10.1016/j.neuroimage.2014.08.021_bb0055 article-title: An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest publication-title: NeuroImage – volume: 26 start-page: 297 issue: 3 year: 1945 ident: 10.1016/j.neuroimage.2014.08.021_bb0060 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – volume: 56 start-page: 220 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2014.08.021_bb0070 article-title: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.032 – volume: 17 start-page: 844 issue: 7 year: 2013 ident: 10.1016/j.neuroimage.2014.08.021_bb0045 article-title: Tractometer: towards validation of tractography pipelines publication-title: Med. Image Anal. doi: 10.1016/j.media.2013.03.009 – volume: 54 start-page: 290 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2014.08.021_bb0230 article-title: Tractography segmentation using a hierarchical Dirichlet processes mixture model publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.07.050 – volume: 221 start-page: 349 issue: 2 year: 2001 ident: 10.1016/j.neuroimage.2014.08.021_bb0130 article-title: Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging publication-title: Radiology doi: 10.1148/radiol.2212001702 – volume: 15 start-page: 485 issue: 3 year: 2012 ident: 10.1016/j.neuroimage.2014.08.021_bb0075 article-title: Group-wise consistent fiber clustering based on multimodal connectional and functional profiles publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: vol. 5803 start-page: 174 year: 2005 ident: 10.1016/j.neuroimage.2014.08.021_bb0175 article-title: Highly efficient incremental estimation of Gaussian mixture models for online data stream clustering – volume: 2 start-page: 83 issue: 1–2 year: 1955 ident: 10.1016/j.neuroimage.2014.08.021_bb0100 article-title: The Hungarian method for the assignment problem publication-title: Nav. Res. Logist. Q. doi: 10.1002/nav.3800020109 – volume: 32 start-page: 989 issue: 3 year: 2006 ident: 10.1016/j.neuroimage.2014.08.021_bb0090 article-title: Topography of the human corpus callosum revisited-comprehensive fiber tractography using diffusion tensor magnetic resonance imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.05.044 – volume: 15 start-page: 468 issue: 7–8 year: 2002 ident: 10.1016/j.neuroimage.2014.08.021_bb0125 article-title: Fiber tracking: principles and strategies — a technical review publication-title: NMR Biomed. doi: 10.1002/nbm.781 – volume: 51 start-page: 228 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2014.08.021_bb0235 article-title: Unsupervised white matter fiber clustering and tract probability map generation: applications of a Gaussian process framework for white matter fibers publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.01.004 – volume: 45 start-page: 370 issue: 2 year: 2009 ident: 10.1016/j.neuroimage.2014.08.021_bb0215 article-title: Quantitative examination of a novel clustering method using magnetic resonance diffusion tensor tractography publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.12.028 – volume: 11 start-page: 805 issue: 6 Pt 1 year: 2000 ident: 10.1016/j.neuroimage.2014.08.021_bb0010 article-title: Voxel-based morphometry—the methods publication-title: NeuroImage doi: 10.1006/nimg.2000.0582 – volume: 45 start-page: 832 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2014.08.021_bb0150 article-title: Tract-based morphometry for white matter group analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.12.023 – volume: 3216/2004 start-page: 368 issue: 3216 year: 2004 ident: 10.1016/j.neuroimage.2014.08.021_bb0035 article-title: Clustering fiber traces using normalized cuts publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 12 start-page: 450 issue: 3 year: 1982 ident: 10.1016/j.neuroimage.2014.08.021_bb0065 article-title: The Fréchet distance between multivariate normal distributions publication-title: J. Multivar. Anal. doi: 10.1016/0047-259X(82)90077-X – volume: 59 start-page: 3690 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2014.08.021_bb0185 article-title: Automated delineation of white matter fiber tracts with a multiple region-of-interest approach publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.11.043 – start-page: 2759 year: 2006 ident: 10.1016/j.neuroimage.2014.08.021_bb0040 article-title: Camino: open-source diffusion-MRI reconstruction and processing – year: 2006 ident: 10.1016/j.neuroimage.2014.08.021_bb0030 – year: 1999 ident: 10.1016/j.neuroimage.2014.08.021_bb0195 article-title: High angular resolution diffusion imaging of the human brain – volume: 5 start-page: 1 issue: 4 year: 1948 ident: 10.1016/j.neuroimage.2014.08.021_bb0180 article-title: A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons publication-title: K. Dan. Vidensk. Selsk. Biol. Skr. – volume: 80 start-page: 283 year: 2013 ident: 10.1016/j.neuroimage.2014.08.021_bb0155 article-title: Fiber clustering versus the parcellation-based connectome publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.066 – volume: 58 start-page: 458 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2014.08.021_bb0025 article-title: Direct segmentation of the major white matter tracts in diffusion tensor images publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.06.020 – volume: 61 start-page: 1083 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2014.08.021_bb0085 article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.02.071 – volume: 42 start-page: 771 issue: 2 year: 2008 ident: 10.1016/j.neuroimage.2014.08.021_bb0240 article-title: Automated fiber tracking of human brain white matter using diffusion tensor imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.04.241 – volume: 86 start-page: 404 year: 2014 ident: 10.1016/j.neuroimage.2014.08.021_bb0005 article-title: Automated longitudinal intra-subject analysis (ALISA) for diffusion MRI tractography publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.10.026 – volume: 26 start-page: 1562 issue: 11 year: 2007 ident: 10.1016/j.neuroimage.2014.08.021_bb0140 article-title: Automatic tractography segmentation using a high-dimensional white matter atlas publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2007.906785 – volume: vol. 7042 start-page: 701 year: 2011 ident: 10.1016/j.neuroimage.2014.08.021_bb0080 article-title: Segmentation of short association bundles in massive tractography datasets using a multi-subject bundle atlas – reference: 21256221 - Neuroimage. 2011 May 1;56(1):220-34 – reference: 11687675 - Radiology. 2001 Nov;221(2):349-58 – reference: 12353272 - Magn Reson Med. 2002 Oct;48(4):577-82 – reference: 20869453 - Neuroimage. 2011 Jan;54 Suppl 1:S146-64 – reference: 24157921 - Neuroimage. 2014 Feb 1;86:404-16 – reference: 8019776 - J Magn Reson B. 1994 Mar;103(3):247-54 – reference: 16687538 - AJNR Am J Neuroradiol. 2006 May;27(5):1032-6 – reference: 20570617 - Neuroimage. 2010 Oct 1;52(4):1289-301 – reference: 8130344 - Biophys J. 1994 Jan;66(1):259-67 – reference: 17070704 - Neuroimage. 2007 Jan 1;34(1):243-52 – reference: 22414992 - Neuroimage. 2012 Jul 16;61(4):1083-99 – reference: 20209048 - Med Image Comput Comput Assist Interv. 2004 Sep 2;3216/2004(3216):368-375 – reference: 19154790 - Neuroimage. 2009 Apr 15;45(3):832-44 – reference: 23631987 - Neuroimage. 2013 Oct 15;80:283-9 – reference: 23706753 - Med Image Anal. 2013 Oct;17(7):844-57 – reference: 18554930 - Neuroimage. 2008 Aug 15;42(2):771-7 – reference: 12489096 - NMR Biomed. 2002 Nov-Dec;15(7-8):468-80 – reference: 16530430 - Neuroimage. 2006 Jul 1;31(3):968-80 – reference: 20678578 - Neuroimage. 2011 Jan 1;54(1):290-302 – reference: 16624579 - Neuroimage. 2006 Jul 15;31(4):1487-505 – reference: 20079439 - Neuroimage. 2010 May 15;51(1):228-41 – reference: 23857147 - Magn Reson Med Sci. 2013;12(3):201-13 – reference: 10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21 – reference: 16854598 - Neuroimage. 2006 Sep;32(3):989-94 – reference: 23286166 - Med Image Comput Comput Assist Interv. 2012;15(Pt 3):485-92 – reference: 24684013 - Inf Process Med Imaging. 2013;23:730-41 – reference: 21995029 - Med Image Comput Comput Assist Interv. 2011;14(Pt 2):191-9 – reference: 18180197 - Med Image Anal. 2008 Apr;12(2):191-202 – reference: 19683061 - Neuroimage. 2010 Jan 15;49(2):1249-58 – reference: 22155046 - Neuroimage. 2012 Feb 15;59(4):3690-700 – reference: 21718790 - Neuroimage. 2011 Sep 15;58(2):458-68 – reference: 18041271 - IEEE Trans Med Imaging. 2007 Nov;26(11):1562-75 – reference: 19159690 - Neuroimage. 2009 Apr 1;45(2):370-6 – reference: 20673849 - Neuroimage. 2011 Jan 1;54(1):303-12 – reference: 23285315 - Proc IEEE Int Symp Biomed Imaging. 2012 Jul 12;2012(9):522-525 – reference: 17481925 - Neuroimage. 2007 Jul 1;36(3):630-44 |
SSID | ssj0009148 |
Score | 2.3157468 |
Snippet | Advancements in imaging protocols such as the high angular resolution diffusion-weighted imaging (HARDI) and in tractography techniques are expected to cause... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 596 |
SubjectTerms | Adult Algorithms Automated tract extraction Automation Biological and medical sciences Brain - anatomy & histology Brain research Cluster Analysis Diffusion Magnetic Resonance Imaging - methods Fiber clustering Fundamental and applied biological sciences. Psychology HARDI Humans Image Processing, Computer-Assisted - methods Male Reproducibility of Results Tract based analysis Vertebrates: nervous system and sense organs White Matter - anatomy & histology |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9swED5KH0qhjHZdN3ddUWGvXmzZlmwGhRBWyqB76Qp5E7IsMY_OCa3Tx_323dmy04xtBPaSkEgH8vl09x26-wTwXke5scJFoRM8DdPcmLDMpAsxEzMYngV-UKPwzRdxfZd-nmfzHZgNvTBUVul9f-_TO2_t_5l4bU6WdT25RWSA4Yb4yajPgc-pgz2VZOUffq7LPHC4b4fLkpBm-2qevsar44ysf-DOpSKvtCPz5PHfQtTBUj-i4lx_48WfIOnvlZXPQtXVIbzwGJNN-8c4gh3bvIS9G3-KfgyX01W7QKRqK9ZSkxRDB_3QNziwp1oz3SKkZhTfKjat9JI8Ipvdr4hTASPdK7i7-vR1dh36exRCI7hsQ5NXucgKK13ONS8QcSTEahdFVjtjLH4lRVmWusJkKo9EZRHkaRc5IVNH54LJCew2i8a-AeYQ3lKflrSYyRihi0gL9BKmErnFt2sCkIPqlPEk43TXxb0aqsm-q7XSFSld0TWYPA4gHiWXPdHGFjLF8HbU0EiKrk9hNNhC9uMou2FwW0qfbxjDuGReEEFOIQM4G6xDea_wqGJKNhP0kEkAF-Mw7mc6pNGNXay6OZjUIvDj_5yDaapEaB7A697g1gvIiHBS4gLkhimOE4hPfHOkqb91vOLovnkRJ6f_pZm3sE-_qF0zzs5gt31Y2XeI29ryvNuYvwAtWEOD priority: 102 providerName: Elsevier |
Title | Automated tract extraction via atlas based Adaptive Clustering |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381191400682X https://dx.doi.org/10.1016/j.neuroimage.2014.08.021 https://www.ncbi.nlm.nih.gov/pubmed/25134977 https://www.proquest.com/docview/1625938703 https://www.proquest.com/docview/1622610712 https://www.proquest.com/docview/1629967231 https://pubmed.ncbi.nlm.nih.gov/PMC4252913 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fi9QwEB68OxDhEH9bPZcIvkbbtE1aBGU97liVW0Q82LeSpgm3cnb3brs--rc706ZdV_TYl_ahGQjJZOabZuYbgFc6zIyVLuROioQnmTG8TJXjGIkZdM8SH1QofDaVk_Pk0yyd-R9uK59W2dvE1lBXC0P_yN9EBNRj1K74_fKKU9coul31LTT24ICoyyilS83UhnQ3SrpSuDTmGQ7wmTxdflfLFzn_gaeWErySlshTRP9zT4dLvcJFc123i3_B0b-zKv9wU6f34K7Hl2zcKcR9uGXrB3D7zN-gP4R343WzQJRqK9ZQgRRD43zdFTewn3PNdINwmpFvq9i40kuyhuz4ck18CujlHsH56cm34wn3PRS4kUI13GRVJtPcKpcJLXJEGzEx2oWh1c4Yi684L8tSVxhIZaGsLAI87UInVeLoTjB-DPv1orZPgTmEtlSjpSxGMUbqPNQSLYSpZGZxZ00Aql-6wniCcepzcVn0mWTfi82iF7ToBbXAFFEA0SC57Eg2dpDJ-90p-iJSNHsFeoIdZN8Osh5odABiR-nRljIMUxY5kePkKoCjXjsKbxFWxUZ_A3g5fMazTBc0uraLdTsGA1oEfeLGMRiiKoTlATzpFG4zgZTIJhVOQG2p4jCAuMS3v9Tzi5ZTHE23yKP42c1Tfw53aCGoFjNKj2C_uV7bFwjKmnIEe69_RaP2_I3gYPzx82SK7w8n0y9ffwNwSjwu |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTQIkhPheYAwjwWNE4iR2IgSojE0dWyuENmlvnuPYotNIy5qC-Kf4G7nLR0sRTH3ZS_sQu3LP57vfxXe_A3ihg9RY4QLfCR77cWqMnyfS-RiJGXTPAj-oUHgwFP3j-ONJcrIGv7paGEqr7GxibaiLsaF35K9CAuoRalf0bvLNp65RdLvatdBo1OLA_vyBIdv0zf4H3N-XnO_tHu30_bargG8El5Vv0iIVSWalS7nmGfrfiDjegsBqZ4zFryjL81wXGFqkgSgsQh7tAidk7OiWLMLfvQYb-D8CNAQb73eHnz4vaH7DuCm-SyI_DcOszR1qMspqhsrRV7QTlFIW19ShPPyfQ7w10VPcJtf01_gXAP47j_MPx7h3B263iJb1GhW8C2u2vAfXB-2d_X1425tVY8TFtmAVlWQxdAcXTTkF-z7STFcI4Bl504L1Cj0h-8t2zmfE4IB-9QEcX4l8H8J6OS7tJjCHYJqqwqTFuMkInQVaoE0yhUgt6pLxQHaiU6alNKfOGueqy107UwuhKxK6oqabPPQgnM-cNLQeK8zJut1RXdkqGlqFvmeFua_nc1to00CWFWdvLynDfMk8IzqeTHqw1WmHam3QVC1OjAfP54_RetCVkC7teFaPwRAaYSa_dAwGxRIDAQ8eNQq3WEBC9JYSFyCXVHE-gNjLl5-Uoy81izk6C56F0ePLl_4MbvSPBofqcH948ARuklCoEjRMtmC9upjZpwgJq3y7PYcMTq_66P8GKO12TQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIU1ICPE5CmMYCR6jxU5iJ0KAqo1qY2zigUl9M45ji6KRljUF8a_x13GXr1IEU1_2kj7Ejqzz-e539d3vAJ6bMLVO-jDwUsRBnFob5InyAUZiFt2zxAcVCp-cysOz-N04GW_Ar64WhtIqO5tYG-piauk_8j1OQD1C7Yr2fJsW8eFg9Gb2LaAOUnTT2rXTaFTk2P38geHb_NXRAe71CyFGbz_uHwZth4HASqGqwKZFKpPMKZ8KIzL0xRHxvYWhM95ahz9Rlue5KTDMSENZOIQ_xodeqtjTjVmE370G11WUcDpjaqyWhL88bsrwkihIOc_aLKImt6zmqpx8RYtByWVxTSIq-P9c482ZmeOG-abTxr-g8N8ZnX-4yNFtuNViWzZslPEObLjyLmydtLf39-D1cFFNESG7glVUnMVQuhdNYQX7PjHMVAjlGfnVgg0LMyNLzPbPF8TlgB72PpxdiXQfwGY5Ld1DYB5hNdWHKYcRlJUmC41E62QLmTrUKjsA1YlO25bcnHpsnOsui-2LXgpdk9A1td8UfAC8nzlrCD7WmJN1u6O7AlY0uRq90BpzX_ZzW5DTgJc1Z--uKEO_ZJERMU-mBrDTaYdurdFcL8_OAJ71r9GO0OWQKd10UY_BYBoBp7h0DIbHCkOCAWw3CrdcQEJElwoXoFZUsR9APOarb8rJ55rPHN2GyHj06PKlP4UtPPD6_dHp8WO4QTKhklCe7MBmdbFwTxAbVvlufQgZfLrqU_8bPft5HQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+tract+extraction+via+atlas+based+Adaptive+Clustering&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Tun%C3%A7%2C+Birkan&rft.au=Parker%2C+William+A&rft.au=Ingalhalikar%2C+Madhura&rft.au=Verma%2C+Ragini&rft.date=2014-11-15&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=102&rft.spage=596&rft_id=info:doi/10.1016%2Fj.neuroimage.2014.08.021&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3500425961 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |