Automated tract extraction via atlas based Adaptive Clustering

Advancements in imaging protocols such as the high angular resolution diffusion-weighted imaging (HARDI) and in tractography techniques are expected to cause an increase in the tract-based analyses. Statistical analyses over white matter tracts can contribute greatly towards understanding structural...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 102; no. 2; pp. 596 - 607
Main Authors Tunç, Birkan, Parker, William A., Ingalhalikar, Madhura, Verma, Ragini
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 15.11.2014
Elsevier
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Advancements in imaging protocols such as the high angular resolution diffusion-weighted imaging (HARDI) and in tractography techniques are expected to cause an increase in the tract-based analyses. Statistical analyses over white matter tracts can contribute greatly towards understanding structural mechanisms of the brain since tracts are representative of connectivity pathways. The main challenge with tract-based studies is the extraction of the tracts of interest in a consistent and comparable manner over a large group of individuals without drawing the inclusion and exclusion regions of interest. In this work, we design a framework for automated extraction of white matter tracts. The framework introduces three main components, namely a connectivity based fiber representation, a fiber bundle atlas, and a clustering approach called Adaptive Clustering. The fiber representation relies on the connectivity signatures of fibers to establish an easy correspondence between different subjects. A group-wise clustering of these fibers that are represented by the connectivity signatures is then used to generate a fiber bundle atlas. Finally, Adaptive Clustering incorporates the previously generated clustering atlas as a prior, to cluster the fibers of a new subject automatically. Experiments on the HARDI scans of healthy individuals acquired repeatedly, demonstrate the applicability, reliability and the repeatability of our approach in extracting white matter tracts. By alleviating the seed region selection and the inclusion/exclusion ROI drawing requirements that are usually handled by trained radiologists, the proposed framework expands the range of possible clinical applications and establishes the ability to perform tract-based analyses with large samples. •Designed a framework for automated extraction of fiber tracts•Defined a fiber bundle atlas to introduce a prior model of clustering•Employed bundle atlas to cluster new subjects adaptively•Defined an automatic correspondence across tracts of large sets of subjects•Performed experiments on a HARDI dataset of healthy individuals
AbstractList Advancements in imaging protocols such as the high angular resolution diffusion-weighted imaging (HARDI) and in tractography techniques are expected to cause an increase in the tract-based analyses. Statistical analyses over white matter tracts can contribute greatly towards understanding structural mechanisms of the brain since tracts are representative of connectivity pathways. The main challenge with tract-based studies is the extraction of the tracts of interest in a consistent and comparable manner over a large group of individuals without drawing the inclusion and exclusion regions of interest. In this work, we design a framework for automated extraction of white matter tracts. The framework introduces three main components, namely a connectivity based fiber representation, a fiber bundle atlas, and a clustering approach called Adaptive Clustering. The fiber representation relies on the connectivity signatures of fibers to establish an easy correspondence between different subjects. A group-wise clustering of these fibers that are represented by the connectivity signatures is then used to generate a fiber bundle atlas. Finally, Adaptive Clustering incorporates the previously generated clustering atlas as a prior, to cluster the fibers of a new subject automatically. Experiments on the HARDI scans of healthy individuals acquired repeatedly, demonstrate the applicability, reliability and the repeatability of our approach in extracting white matter tracts. By alleviating the seed region selection and the inclusion/exclusion ROI drawing requirements that are usually handled by trained radiologists, the proposed framework expands the range of possible clinical applications and establishes the ability to perform tract-based analyses with large samples. •Designed a framework for automated extraction of fiber tracts•Defined a fiber bundle atlas to introduce a prior model of clustering•Employed bundle atlas to cluster new subjects adaptively•Defined an automatic correspondence across tracts of large sets of subjects•Performed experiments on a HARDI dataset of healthy individuals
Advancements in imaging protocols such as the high angular resolution diffusion-weighted imaging (HARDI) and in tractography techniques are expected to cause an increase in the tract-based analyses. Statistical analyses over white matter tracts can contribute greatly towards understanding structural mechanisms of the brain since tracts are representative of the connectivity pathways. The main challenge with tract-based studies is the extraction of the tracts of interest in a consistent and comparable manner over a large group of individuals without drawing the inclusion and exclusion regions of interest. In this work, we design a framework for automated extraction of white matter tracts. The framework introduces three main components, namely a connectivity based fiber representation, a fiber clustering atlas, and a clustering approach called Adaptive Clustering. The fiber representation relies on the connectivity signatures of fibers to establish an easy correspondence between different subjects. A group-wise clustering of these fibers that are represented by the connectivity signatures is then used to generate a fiber bundle atlas. Finally, Adaptive Clustering incorporates the previously generated clustering atlas as a prior, to cluster the fibers of a new subject automatically. Experiments on the HARDI scans of healthy individuals acquired repeatedly, demonstrate the applicability, the reliability and the repeatability of our approach in extracting white matter tracts. By alleviating the seed region selection or the inclusion/exclusion ROI drawing requirements that are usually handled by trained radiologists, the proposed framework expands the range of possible clinical applications and establishes the ability to perform tract-based analyses with large samples.
Advancements in imaging protocols such as the high angular resolution diffusion-weighted imaging (HARDI) and in tractography techniques are expected to cause an increase in the tract-based analyses. Statistical analyses over white matter tracts can contribute greatly towards understanding structural mechanisms of the brain since tracts are representative of connectivity pathways. The main challenge with tract-based studies is the extraction of the tracts of interest in a consistent and comparable manner over a large group of individuals without drawing the inclusion and exclusion regions of interest. In this work, we design a framework for automated extraction of white matter tracts. The framework introduces three main components, namely a connectivity based fiber representation, a fiber bundle atlas, and a clustering approach called Adaptive Clustering. The fiber representation relies on the connectivity signatures of fibers to establish an easy correspondence between different subjects. A group-wise clustering of these fibers that are represented by the connectivity signatures is then used to generate a fiber bundle atlas. Finally, Adaptive Clustering incorporates the previously generated clustering atlas as a prior, to cluster the fibers of a new subject automatically. Experiments on the HARDI scans of healthy individuals acquired repeatedly, demonstrate the applicability, reliability and the repeatability of our approach in extracting white matter tracts. By alleviating the seed region selection and the inclusion/exclusion ROI drawing requirements that are usually handled by trained radiologists, the proposed framework expands the range of possible clinical applications and establishes the ability to perform tract-based analyses with large samples.
Advancements in imaging protocols such as the high angular resolution diffusion-weighted imaging (HARDI) and in tractography techniques are expected to cause an increase in the tract-based analyses. Statistical analyses over white matter tracts can contribute greatly towards understanding structural mechanisms of the brain since tracts are representative of connectivity pathways. The main challenge with tract-based studies is the extraction of the tracts of interest in a consistent and comparable manner over a large group of individuals without drawing the inclusion and exclusion regions of interest. In this work, we design a framework for automated extraction of white matter tracts. The framework introduces three main components, namely a connectivity based fiber representation, a fiber bundle atlas, and a clustering approach called Adaptive Clustering. The fiber representation relies on the connectivity signatures of fibers to establish an easy correspondence between different subjects. A group-wise clustering of these fibers that are represented by the connectivity signatures is then used to generate a fiber bundle atlas. Finally, Adaptive Clustering incorporates the previously generated clustering atlas as a prior, to cluster the fibers of a new subject automatically. Experiments on the HARDI scans of healthy individuals acquired repeatedly, demonstrate the applicability, reliability and the repeatability of our approach in extracting white matter tracts. By alleviating the seed region selection and the inclusion/exclusion ROI drawing requirements that are usually handled by trained radiologists, the proposed framework expands the range of possible clinical applications and establishes the ability to perform tract-based analyses with large samples.Advancements in imaging protocols such as the high angular resolution diffusion-weighted imaging (HARDI) and in tractography techniques are expected to cause an increase in the tract-based analyses. Statistical analyses over white matter tracts can contribute greatly towards understanding structural mechanisms of the brain since tracts are representative of connectivity pathways. The main challenge with tract-based studies is the extraction of the tracts of interest in a consistent and comparable manner over a large group of individuals without drawing the inclusion and exclusion regions of interest. In this work, we design a framework for automated extraction of white matter tracts. The framework introduces three main components, namely a connectivity based fiber representation, a fiber bundle atlas, and a clustering approach called Adaptive Clustering. The fiber representation relies on the connectivity signatures of fibers to establish an easy correspondence between different subjects. A group-wise clustering of these fibers that are represented by the connectivity signatures is then used to generate a fiber bundle atlas. Finally, Adaptive Clustering incorporates the previously generated clustering atlas as a prior, to cluster the fibers of a new subject automatically. Experiments on the HARDI scans of healthy individuals acquired repeatedly, demonstrate the applicability, reliability and the repeatability of our approach in extracting white matter tracts. By alleviating the seed region selection and the inclusion/exclusion ROI drawing requirements that are usually handled by trained radiologists, the proposed framework expands the range of possible clinical applications and establishes the ability to perform tract-based analyses with large samples.
Author Ingalhalikar, Madhura
Verma, Ragini
Tunç, Birkan
Parker, William A.
Author_xml – sequence: 1
  givenname: Birkan
  surname: Tunç
  fullname: Tunç, Birkan
– sequence: 2
  givenname: William A.
  surname: Parker
  fullname: Parker, William A.
– sequence: 3
  givenname: Madhura
  surname: Ingalhalikar
  fullname: Ingalhalikar, Madhura
– sequence: 4
  givenname: Ragini
  surname: Verma
  fullname: Verma, Ragini
  email: Ragini.Verma@uphs.upenn.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29053797$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/25134977$$D View this record in MEDLINE/PubMed
BookMark eNqNkkuP0zAUhS00iHnAX0CREBKbBNtJ_NiMKBUvaSQ2sLYc56a4pHaxnWrm3-PQ0sKsurqR_OX4-pxzjS6cd4BQQXBFMGFv15WDKXi70SuoKCZNhUWFKXmCrgiWbSlbTi_m77YuBSHyEl3HuMYYS9KIZ-iStqRuJOdX6HYxJb_RCfoiBW1SAfd_pvWu2Fld6DTqWHQ6ZmDR622yOyiW4xQTBOtWz9HTQY8RXhzmDfr-8cO35efy7uunL8vFXWkY5ak0oheslcAHQTWVomG1YJxgDHowBvKoZdd1umdECsx6aFmrBzww3gyNxKK-Qbd73e3UbaA34PKWo9qGbEF4UF5b9f-Jsz_Uyu9UQ1sqSZ0F3hwEgv81QUxqY6OBcdQO_BQVYVRKxmlNzkEpI5gTmtFXj9C1n4LLTsxUK2vB8Xz3y3-XP279N4UMvD4AOho9DkE7Y-OJkzlHLmdO7DkTfIwBhiNCsJqLodbqVAw1F0NhoXIxTgYefzU26TnmbJcdzxF4vxeAHPPOQlDRWHAGehvAJNV7e47Iu0ciZrTO5jf_hIfzJH4DKKzwkA
CitedBy_id crossref_primary_10_1109_TMI_2019_2932681
crossref_primary_10_1016_j_neuroimage_2016_11_066
crossref_primary_10_1016_j_neuroimage_2017_05_012
crossref_primary_10_3389_fnins_2024_1376570
crossref_primary_10_1016_j_neuroimage_2020_116703
crossref_primary_10_1371_journal_pone_0233645
crossref_primary_10_1016_j_neuroimage_2020_117402
crossref_primary_10_1016_j_media_2018_02_008
crossref_primary_10_1016_j_neuroimage_2015_05_016
crossref_primary_10_1161_STROKEAHA_119_028832
crossref_primary_10_1016_j_neuroimage_2021_118870
crossref_primary_10_1371_journal_pone_0133337
crossref_primary_10_1016_j_neuroimage_2017_10_058
crossref_primary_10_1016_j_neuroimage_2023_120086
crossref_primary_10_1002_hbm_26578
crossref_primary_10_1016_j_neuroimage_2018_06_027
crossref_primary_10_1088_1361_6560_ac0d90
crossref_primary_10_1007_s12021_023_09636_4
crossref_primary_10_1097_RMR_0000000000000212
crossref_primary_10_1016_j_neuroimage_2017_07_015
crossref_primary_10_3389_fninf_2014_00087
crossref_primary_10_1227_NEU_0000000000001183
crossref_primary_10_1227_NEU_0000000000001181
crossref_primary_10_3389_fninf_2022_777853
crossref_primary_10_1007_s12650_020_00642_1
crossref_primary_10_1109_TMI_2019_2954477
crossref_primary_10_1117_1_JMI_5_1_011018
crossref_primary_10_1162_imag_a_00353
crossref_primary_10_3389_fnins_2017_00754
Cites_doi 10.1016/j.neuroimage.2006.07.021
10.1111/j.2517-6161.1977.tb01600.x
10.1016/j.neuroimage.2009.08.017
10.2463/mrms.2012-0064
10.1016/j.media.2007.10.003
10.1006/dspr.1999.0361
10.1016/j.neuroimage.2006.02.024
10.1016/j.neuroimage.2007.02.049
10.1016/S0006-3495(94)80775-1
10.1016/j.neuroimage.2010.05.049
10.1016/j.neuroimage.2010.09.035
10.1016/j.neuroimage.2010.07.038
10.1002/ima.22005
10.1006/jmrb.1994.1037
10.1002/mrm.10268
10.2307/1932409
10.1016/j.neuroimage.2011.01.032
10.1016/j.media.2013.03.009
10.1016/j.neuroimage.2010.07.050
10.1148/radiol.2212001702
10.1002/nav.3800020109
10.1016/j.neuroimage.2006.05.044
10.1002/nbm.781
10.1016/j.neuroimage.2010.01.004
10.1016/j.neuroimage.2008.12.028
10.1006/nimg.2000.0582
10.1016/j.neuroimage.2008.12.023
10.1016/0047-259X(82)90077-X
10.1016/j.neuroimage.2011.11.043
10.1016/j.neuroimage.2013.04.066
10.1016/j.neuroimage.2011.06.020
10.1016/j.neuroimage.2012.02.071
10.1016/j.neuroimage.2008.04.241
10.1016/j.neuroimage.2013.10.026
10.1109/TMI.2007.906785
ContentType Journal Article
Copyright 2014 Elsevier Inc.
2015 INIST-CNRS
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Nov 15, 2014
2014 Elsevier Inc. All rights reserved. 2014
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Nov 15, 2014
– notice: 2014 Elsevier Inc. All rights reserved. 2014
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7QO
7X8
5PM
DOI 10.1016/j.neuroimage.2014.08.021
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitleList


Engineering Research Database
MEDLINE - Academic
ProQuest One Psychology
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 607
ExternalDocumentID PMC4252913
3500425961
25134977
29053797
10_1016_j_neuroimage_2014_08_021
S105381191400682X
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01-MH092862
– fundername: NIMH NIH HHS
  grantid: R21 MH098010
– fundername: NIMH NIH HHS
  grantid: R01 MH092862
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7QO
7X8
5PM
ID FETCH-LOGICAL-c627t-c8d8659e7f82a298463867100eafcce0ea39bbbad619806de565af0f674f49083
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 17:17:09 EDT 2025
Fri Jul 11 15:20:25 EDT 2025
Fri Jul 11 03:43:12 EDT 2025
Wed Aug 13 04:46:59 EDT 2025
Thu Apr 03 07:01:21 EDT 2025
Wed Apr 02 07:13:54 EDT 2025
Tue Jul 01 02:14:54 EDT 2025
Thu Apr 24 22:55:17 EDT 2025
Fri Feb 23 02:36:04 EST 2024
Tue Aug 26 16:31:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Atlas
Fiber clustering
HARDI
Tract based analysis
Automated tract extraction
Language English
License CC BY 4.0
Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c627t-c8d8659e7f82a298463867100eafcce0ea39bbbad619806de565af0f674f49083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://doi.org/10.1016/j.neuroimage.2014.08.021
PMID 25134977
PQID 1625938703
PQPubID 2031077
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4252913
proquest_miscellaneous_1629967231
proquest_miscellaneous_1622610712
proquest_journals_1625938703
pubmed_primary_25134977
pascalfrancis_primary_29053797
crossref_primary_10_1016_j_neuroimage_2014_08_021
crossref_citationtrail_10_1016_j_neuroimage_2014_08_021
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2014_08_021
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2014_08_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-15
PublicationDateYYYYMMDD 2014-11-15
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2014
Publisher Elsevier Inc
Elsevier
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier
– name: Elsevier Limited
References Tournier, Calamante, Connelly (bb0190) 2012; 22
Mukherjee, Miller, Shimony, Conturo, Lee, Almli, McKinstry (bb0130) 2001; 221
Cook, Bai, Gilani, Seunarine, Hall, Parker, Alexander (bb0040) 2006
Dice (bb0060) 1945; 26
O'Donnell, Westin, Golby (bb0150) 2009; 45
Snook, Plewes, Beaulieu (bb0170) 2007; 34
Maddah, Grimson, Warfield, Wells (bb0115) 2008; 12
Kuhn (bb0100) 1955; 2
Guevara, Duclap, Poupon, Marrakchi-Kacem, Fillard, Le Bihan, …, Mangin (bb0085) 2012; 61
Wassermann, Bloy, Kanterakis, Verma, Deriche (bb0235) 2010; 51
Wang, Yap, Jia, Wu, Shen (bb0225) 2010
Smith, Jenkinson, Johansen-Berg, Rueckert, Nichols, Mackay, …, Behrens (bb0165) 2006; 31
Dowson, Landau (bb0065) 1982; 12
Ge, Guo, Zhang, Zhu, Li, Hu, …, Liu (bb0075) 2012; 15
Li, Xue, Guo, Liu, Hunter, Wong (bb0105) 2010; 49
Suarez, Commowick, Prabhu, Warfield (bb0185) 2012; 59
Tuch, Weisskoff, Belliveau, Wedeen (bb0195) 1999
Guevara, Duclap, Poupon, Marrakchi-Kacem, Houenou, Leboyer, Mangin (bb0080) 2011; vol. 7042
Sørensen (bb0180) 1948; 5
Reynolds, Quatieri, Dunn (bb0160) 2000; 10
Basser, Mattiello, Lebihan (bb0020) 1994; 66
Brun, Knutsson, Park, Shenton, Westin (bb0035) 2004; 3216/2004
O'Donnell, Westin (bb0140) 2007; 26
O'Donnell, Golby, Westin (bb0155) 2013; 80
O'Donnell, Kubicki, Shenton, Dreusicke, Grimson, Westin (bb0145) 2006; 27
Nazem-Zadeh, Davoodi-Bojd, Soltanian-Zadeh (bb0135) 2011; 54
Bazin, Ye, Bogovic, Shiee, Reich, Prince, Pham (bb0025) 2011; 58
Tuch, Reese, Wiegell, Makris, Belliveau, Wedeen (bb0200) 2002; 48
Bishop (bb0030) 2006
Voineskos, O'Donnell, Lobaugh, Markant, Ameis, Niethammer, …, Shenton (bb0215) 2009; 45
Fillard, Descoteaux, Goh, Gouttard, Jeurissen, Malcolm, …, Poupon (bb0070) 2011; 56
Ito, Masutani, Kamagata, Yasmin, Suzuki, Ino, …, Ohtomo (bb0095) 2013; 12
Song, Wang (bb0175) 2005; vol. 5803
Côté, Girard, Boré, Garyfallidis, Houde, Descoteaux (bb0045) 2013; 17
Wang, Grimson, Westin (bb0230) 2011; 54
Maddah, Miller, Sullivan, Pfefferbaum, Rohlfing (bb0120) 2011; 14
Mori, van Zijl (bb0125) 2002; 15
Ashburner, Friston (bb0010) 2000; 11
Dempster, Laird, Rubin (bb0050) 1977; 39
Basser, Mattiello, Lebihan (bb0015) 1994; 103
Hofer, Frahm (bb0090) 2006; 32
Tunç, Smith, Wasserman, Pennec, Wells, Verma, Pohl (bb0205) 2013
Zhang, Zhang, Oishi, Faria, Jiang, Li, …, Mori (bb0245) 2010; 52
Wakana, Caprihan, Panzenboeck, Fallon, Perry, Gollub, …, Mori (bb0220) 2007; 36
Liu, Vemuri, Deriche (bb0110) 2012; 2012
Visser, Nijhuis, Buitelaar, Zwiers (bb0210) 2011; 54
Aarnink, Vos, Leemans, Jernigan, Madsen, Baaré (bb0005) 2014; 86
Zhang, Olivi, Hertig, van Zijl, Mori (bb0240) 2008; 42
Desikan, Segonne, Fischl, Quinn, Dickerson, Blacker, …, Killiany (bb0055) 2006; 31
Liu (10.1016/j.neuroimage.2014.08.021_bb0110) 2012; 2012
O'Donnell (10.1016/j.neuroimage.2014.08.021_bb0150) 2009; 45
Desikan (10.1016/j.neuroimage.2014.08.021_bb0055) 2006; 31
Wang (10.1016/j.neuroimage.2014.08.021_bb0225) 2010
Guevara (10.1016/j.neuroimage.2014.08.021_bb0085) 2012; 61
Aarnink (10.1016/j.neuroimage.2014.08.021_bb0005) 2014; 86
Li (10.1016/j.neuroimage.2014.08.021_bb0105) 2010; 49
Tournier (10.1016/j.neuroimage.2014.08.021_bb0190) 2012; 22
Hofer (10.1016/j.neuroimage.2014.08.021_bb0090) 2006; 32
Suarez (10.1016/j.neuroimage.2014.08.021_bb0185) 2012; 59
Basser (10.1016/j.neuroimage.2014.08.021_bb0015) 1994; 103
Fillard (10.1016/j.neuroimage.2014.08.021_bb0070) 2011; 56
Cook (10.1016/j.neuroimage.2014.08.021_bb0040) 2006
Wang (10.1016/j.neuroimage.2014.08.021_bb0230) 2011; 54
Ashburner (10.1016/j.neuroimage.2014.08.021_bb0010) 2000; 11
Nazem-Zadeh (10.1016/j.neuroimage.2014.08.021_bb0135) 2011; 54
Snook (10.1016/j.neuroimage.2014.08.021_bb0170) 2007; 34
Bazin (10.1016/j.neuroimage.2014.08.021_bb0025) 2011; 58
Zhang (10.1016/j.neuroimage.2014.08.021_bb0245) 2010; 52
Mori (10.1016/j.neuroimage.2014.08.021_bb0125) 2002; 15
Mukherjee (10.1016/j.neuroimage.2014.08.021_bb0130) 2001; 221
Song (10.1016/j.neuroimage.2014.08.021_bb0175) 2005; vol. 5803
Ge (10.1016/j.neuroimage.2014.08.021_bb0075) 2012; 15
Ito (10.1016/j.neuroimage.2014.08.021_bb0095) 2013; 12
Maddah (10.1016/j.neuroimage.2014.08.021_bb0115) 2008; 12
Tuch (10.1016/j.neuroimage.2014.08.021_bb0200) 2002; 48
Tunç (10.1016/j.neuroimage.2014.08.021_bb0205) 2013
Dempster (10.1016/j.neuroimage.2014.08.021_bb0050) 1977; 39
Dice (10.1016/j.neuroimage.2014.08.021_bb0060) 1945; 26
Visser (10.1016/j.neuroimage.2014.08.021_bb0210) 2011; 54
Zhang (10.1016/j.neuroimage.2014.08.021_bb0240) 2008; 42
Voineskos (10.1016/j.neuroimage.2014.08.021_bb0215) 2009; 45
Basser (10.1016/j.neuroimage.2014.08.021_bb0020) 1994; 66
Reynolds (10.1016/j.neuroimage.2014.08.021_bb0160) 2000; 10
Dowson (10.1016/j.neuroimage.2014.08.021_bb0065) 1982; 12
O'Donnell (10.1016/j.neuroimage.2014.08.021_bb0140) 2007; 26
Côté (10.1016/j.neuroimage.2014.08.021_bb0045) 2013; 17
Guevara (10.1016/j.neuroimage.2014.08.021_bb0080) 2011; vol. 7042
Sørensen (10.1016/j.neuroimage.2014.08.021_bb0180) 1948; 5
Smith (10.1016/j.neuroimage.2014.08.021_bb0165) 2006; 31
Tuch (10.1016/j.neuroimage.2014.08.021_bb0195) 1999
Bishop (10.1016/j.neuroimage.2014.08.021_bb0030) 2006
O'Donnell (10.1016/j.neuroimage.2014.08.021_bb0145) 2006; 27
Maddah (10.1016/j.neuroimage.2014.08.021_bb0120) 2011; 14
Kuhn (10.1016/j.neuroimage.2014.08.021_bb0100) 1955; 2
Wakana (10.1016/j.neuroimage.2014.08.021_bb0220) 2007; 36
Wassermann (10.1016/j.neuroimage.2014.08.021_bb0235) 2010; 51
O'Donnell (10.1016/j.neuroimage.2014.08.021_bb0155) 2013; 80
Brun (10.1016/j.neuroimage.2014.08.021_bb0035) 2004; 3216/2004
16687538 - AJNR Am J Neuroradiol. 2006 May;27(5):1032-6
23631987 - Neuroimage. 2013 Oct 15;80:283-9
20570617 - Neuroimage. 2010 Oct 1;52(4):1289-301
20678578 - Neuroimage. 2011 Jan 1;54(1):290-302
24684013 - Inf Process Med Imaging. 2013;23:730-41
18041271 - IEEE Trans Med Imaging. 2007 Nov;26(11):1562-75
23286166 - Med Image Comput Comput Assist Interv. 2012;15(Pt 3):485-92
23285315 - Proc IEEE Int Symp Biomed Imaging. 2012 Jul 12;2012(9):522-525
16530430 - Neuroimage. 2006 Jul 1;31(3):968-80
10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21
22414992 - Neuroimage. 2012 Jul 16;61(4):1083-99
23706753 - Med Image Anal. 2013 Oct;17(7):844-57
16624579 - Neuroimage. 2006 Jul 15;31(4):1487-505
8019776 - J Magn Reson B. 1994 Mar;103(3):247-54
12353272 - Magn Reson Med. 2002 Oct;48(4):577-82
19159690 - Neuroimage. 2009 Apr 1;45(2):370-6
21995029 - Med Image Comput Comput Assist Interv. 2011;14(Pt 2):191-9
21718790 - Neuroimage. 2011 Sep 15;58(2):458-68
24157921 - Neuroimage. 2014 Feb 1;86:404-16
20209048 - Med Image Comput Comput Assist Interv. 2004 Sep 2;3216/2004(3216):368-375
8130344 - Biophys J. 1994 Jan;66(1):259-67
23857147 - Magn Reson Med Sci. 2013;12(3):201-13
20673849 - Neuroimage. 2011 Jan 1;54(1):303-12
20079439 - Neuroimage. 2010 May 15;51(1):228-41
19154790 - Neuroimage. 2009 Apr 15;45(3):832-44
17481925 - Neuroimage. 2007 Jul 1;36(3):630-44
18554930 - Neuroimage. 2008 Aug 15;42(2):771-7
18180197 - Med Image Anal. 2008 Apr;12(2):191-202
19683061 - Neuroimage. 2010 Jan 15;49(2):1249-58
11687675 - Radiology. 2001 Nov;221(2):349-58
22155046 - Neuroimage. 2012 Feb 15;59(4):3690-700
20869453 - Neuroimage. 2011 Jan;54 Suppl 1:S146-64
16854598 - Neuroimage. 2006 Sep;32(3):989-94
17070704 - Neuroimage. 2007 Jan 1;34(1):243-52
12489096 - NMR Biomed. 2002 Nov-Dec;15(7-8):468-80
21256221 - Neuroimage. 2011 May 1;56(1):220-34
References_xml – start-page: 2759
  year: 2006
  ident: bb0040
  article-title: Camino: open-source diffusion-MRI reconstruction and processing
  publication-title: Scientific Meeting of the International Society for Magnetic Resonance in Medicine
– volume: 86
  start-page: 404
  year: 2014
  end-page: 416
  ident: bb0005
  article-title: Automated longitudinal intra-subject analysis (ALISA) for diffusion MRI tractography
  publication-title: NeuroImage
– volume: 26
  start-page: 1562
  year: 2007
  end-page: 1575
  ident: bb0140
  article-title: Automatic tractography segmentation using a high-dimensional white matter atlas
  publication-title: IEEE Trans. Med. Imaging
– volume: 17
  start-page: 844
  year: 2013
  end-page: 857
  ident: bb0045
  article-title: Tractometer: towards validation of tractography pipelines
  publication-title: Med. Image Anal.
– volume: 59
  start-page: 3690
  year: 2012
  end-page: 3700
  ident: bb0185
  article-title: Automated delineation of white matter fiber tracts with a multiple region-of-interest approach
  publication-title: NeuroImage
– volume: 221
  start-page: 349
  year: 2001
  end-page: 358
  ident: bb0130
  article-title: Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging
  publication-title: Radiology
– volume: 2
  start-page: 83
  year: 1955
  end-page: 97
  ident: bb0100
  article-title: The Hungarian method for the assignment problem
  publication-title: Nav. Res. Logist. Q.
– volume: 15
  start-page: 485
  year: 2012
  end-page: 492
  ident: bb0075
  article-title: Group-wise consistent fiber clustering based on multimodal connectional and functional profiles
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– start-page: 730
  year: 2013
  end-page: 741
  ident: bb0205
  article-title: Multinomial probabilistic fiber representation for connectivity driven clustering
  publication-title: Information Processing in Medical Imaging (IPMI)
– volume: 42
  start-page: 771
  year: 2008
  end-page: 777
  ident: bb0240
  article-title: Automated fiber tracking of human brain white matter using diffusion tensor imaging
  publication-title: NeuroImage
– start-page: 448
  year: 2010
  end-page: 456
  ident: bb0225
  article-title: Hierarchical fiber clustering based on multi-scale neuroanatomical features
  publication-title: Proceedings of the International Conference on Medical Imaging and Augmented Reality
– volume: 45
  start-page: 832
  year: 2009
  end-page: 844
  ident: bb0150
  article-title: Tract-based morphometry for white matter group analysis
  publication-title: NeuroImage
– volume: 49
  start-page: 1249
  year: 2010
  end-page: 1258
  ident: bb0105
  article-title: A hybrid approach to automatic clustering of white matter fibers
  publication-title: NeuroImage
– volume: 66
  start-page: 259
  year: 1994
  end-page: 267
  ident: bb0020
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophys. J.
– volume: 36
  start-page: 630
  year: 2007
  end-page: 644
  ident: bb0220
  article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter
  publication-title: NeuroImage
– volume: 54
  start-page: 290
  year: 2011
  end-page: 302
  ident: bb0230
  article-title: Tractography segmentation using a hierarchical Dirichlet processes mixture model
  publication-title: NeuroImage
– volume: 54
  start-page: 146
  year: 2011
  end-page: 164
  ident: bb0135
  article-title: Atlas-based fiber bundle segmentation using principal diffusion directions and spherical harmonic coefficients
  publication-title: NeuroImage
– volume: 31
  year: 2006
  ident: bb0055
  article-title: An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest
  publication-title: NeuroImage
– volume: 51
  start-page: 228
  year: 2010
  end-page: 241
  ident: bb0235
  article-title: Unsupervised white matter fiber clustering and tract probability map generation: applications of a Gaussian process framework for white matter fibers
  publication-title: NeuroImage
– volume: 32
  start-page: 989
  year: 2006
  end-page: 994
  ident: bb0090
  article-title: Topography of the human corpus callosum revisited-comprehensive fiber tractography using diffusion tensor magnetic resonance imaging
  publication-title: NeuroImage
– volume: 12
  start-page: 201
  year: 2013
  end-page: 213
  ident: bb0095
  article-title: Automatic extraction of the cingulum bundle in diffusion tensor tract-specific analysis: feasibility study in Parkinson's disease with and without dementia
  publication-title: Magn. Reson. Med. Sci.
– volume: 12
  start-page: 450
  year: 1982
  end-page: 455
  ident: bb0065
  article-title: The Fréchet distance between multivariate normal distributions
  publication-title: J. Multivar. Anal.
– volume: 10
  start-page: 19
  year: 2000
  end-page: 41
  ident: bb0160
  article-title: Speaker verification using adapted gaussian mixture models
  publication-title: Digit. Signal Process.
– volume: vol. 5803
  start-page: 174
  year: 2005
  end-page: 183
  ident: bb0175
  article-title: Highly efficient incremental estimation of Gaussian mixture models for online data stream clustering
  publication-title: Intelligent Computing: Theory and Applications III
– year: 2006
  ident: bb0030
  article-title: Pattern Recognition and Machine Learning (Information Science and Statistics)
– volume: 5
  start-page: 1
  year: 1948
  end-page: 34
  ident: bb0180
  article-title: A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons
  publication-title: K. Dan. Vidensk. Selsk. Biol. Skr.
– volume: 11
  start-page: 805
  year: 2000
  end-page: 821
  ident: bb0010
  article-title: Voxel-based morphometry—the methods
  publication-title: NeuroImage
– volume: 56
  start-page: 220
  year: 2011
  end-page: 234
  ident: bb0070
  article-title: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom
  publication-title: NeuroImage
– volume: 52
  start-page: 1289
  year: 2010
  end-page: 1301
  ident: bb0245
  article-title: Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy
  publication-title: NeuroImage
– volume: 103
  start-page: 247
  year: 1994
  end-page: 254
  ident: bb0015
  article-title: Estimation of the effective self-diffusion tensor from the NMR spin echo
  publication-title: J. Magn. Reson. B
– volume: vol. 7042
  start-page: 701
  year: 2011
  end-page: 708
  ident: bb0080
  article-title: Segmentation of short association bundles in massive tractography datasets using a multi-subject bundle atlas
  publication-title: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
– year: 1999
  ident: bb0195
  article-title: High angular resolution diffusion imaging of the human brain
  publication-title: Proceedings of the Annual Meeting of ISMRM
– volume: 54
  start-page: 303
  year: 2011
  end-page: 312
  ident: bb0210
  article-title: Partition-based mass clustering of tractography streamlines
  publication-title: NeuroImage
– volume: 58
  start-page: 458
  year: 2011
  end-page: 468
  ident: bb0025
  article-title: Direct segmentation of the major white matter tracts in diffusion tensor images
  publication-title: NeuroImage
– volume: 22
  start-page: 53
  year: 2012
  end-page: 66
  ident: bb0190
  article-title: MRtrix: diffusion tractography in crossing fiber regions
  publication-title: Int. J. Imaging Syst. Technol.
– volume: 27
  start-page: 1032
  year: 2006
  end-page: 1036
  ident: bb0145
  article-title: A method for clustering white matter fiber tracts
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: bb0050
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: bb0060
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 15
  start-page: 468
  year: 2002
  end-page: 480
  ident: bb0125
  article-title: Fiber tracking: principles and strategies — a technical review
  publication-title: NMR Biomed.
– volume: 31
  start-page: 1487
  year: 2006
  end-page: 1505
  ident: bb0165
  article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data
  publication-title: NeuroImage
– volume: 61
  start-page: 1083
  year: 2012
  end-page: 1099
  ident: bb0085
  article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas
  publication-title: NeuroImage
– volume: 45
  start-page: 370
  year: 2009
  end-page: 376
  ident: bb0215
  article-title: Quantitative examination of a novel clustering method using magnetic resonance diffusion tensor tractography
  publication-title: NeuroImage
– volume: 2012
  start-page: 522
  year: 2012
  end-page: 525
  ident: bb0110
  article-title: Unsupervised automatic white matter fiber clustering using a Gaussian mixture model
  publication-title: Proceedings of IEEE International Symposium on Biomedical Imaging
– volume: 12
  start-page: 191
  year: 2008
  end-page: 202
  ident: bb0115
  article-title: A unified framework for clustering and quantitative analysis of white matter fiber tracts
  publication-title: Med. Image Anal.
– volume: 14
  start-page: 191
  year: 2011
  end-page: 199
  ident: bb0120
  article-title: Sheet-like white matter fiber tracts: representation, clustering, and quantitative analysis
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 34
  start-page: 243
  year: 2007
  end-page: 252
  ident: bb0170
  article-title: Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment
  publication-title: NeuroImage
– volume: 3216/2004
  start-page: 368
  year: 2004
  end-page: 375
  ident: bb0035
  article-title: Clustering fiber traces using normalized cuts
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 80
  start-page: 283
  year: 2013
  end-page: 289
  ident: bb0155
  article-title: Fiber clustering versus the parcellation-based connectome
  publication-title: NeuroImage
– volume: 48
  start-page: 577
  year: 2002
  end-page: 582
  ident: bb0200
  article-title: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity
  publication-title: Magn. Reson. Med.
– volume: 34
  start-page: 243
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2014.08.021_bb0170
  article-title: Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.07.021
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.neuroimage.2014.08.021_bb0050
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 49
  start-page: 1249
  issue: 2
  year: 2010
  ident: 10.1016/j.neuroimage.2014.08.021_bb0105
  article-title: A hybrid approach to automatic clustering of white matter fibers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.08.017
– volume: 12
  start-page: 201
  issue: 3
  year: 2013
  ident: 10.1016/j.neuroimage.2014.08.021_bb0095
  article-title: Automatic extraction of the cingulum bundle in diffusion tensor tract-specific analysis: feasibility study in Parkinson's disease with and without dementia
  publication-title: Magn. Reson. Med. Sci.
  doi: 10.2463/mrms.2012-0064
– start-page: 730
  year: 2013
  ident: 10.1016/j.neuroimage.2014.08.021_bb0205
  article-title: Multinomial probabilistic fiber representation for connectivity driven clustering
– volume: 14
  start-page: 191
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2014.08.021_bb0120
  article-title: Sheet-like white matter fiber tracts: representation, clustering, and quantitative analysis
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 12
  start-page: 191
  issue: 2
  year: 2008
  ident: 10.1016/j.neuroimage.2014.08.021_bb0115
  article-title: A unified framework for clustering and quantitative analysis of white matter fiber tracts
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2007.10.003
– start-page: 448
  year: 2010
  ident: 10.1016/j.neuroimage.2014.08.021_bb0225
  article-title: Hierarchical fiber clustering based on multi-scale neuroanatomical features
– volume: 10
  start-page: 19
  issue: 1
  year: 2000
  ident: 10.1016/j.neuroimage.2014.08.021_bb0160
  article-title: Speaker verification using adapted gaussian mixture models
  publication-title: Digit. Signal Process.
  doi: 10.1006/dspr.1999.0361
– volume: 31
  start-page: 1487
  issue: 4
  year: 2006
  ident: 10.1016/j.neuroimage.2014.08.021_bb0165
  article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.02.024
– volume: 36
  start-page: 630
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2014.08.021_bb0220
  article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.049
– volume: 27
  start-page: 1032
  issue: 5
  year: 2006
  ident: 10.1016/j.neuroimage.2014.08.021_bb0145
  article-title: A method for clustering white matter fiber tracts
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 66
  start-page: 259
  year: 1994
  ident: 10.1016/j.neuroimage.2014.08.021_bb0020
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(94)80775-1
– volume: 52
  start-page: 1289
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2014.08.021_bb0245
  article-title: Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.05.049
– volume: 2012
  start-page: 522
  year: 2012
  ident: 10.1016/j.neuroimage.2014.08.021_bb0110
  article-title: Unsupervised automatic white matter fiber clustering using a Gaussian mixture model
– volume: 54
  start-page: 146
  year: 2011
  ident: 10.1016/j.neuroimage.2014.08.021_bb0135
  article-title: Atlas-based fiber bundle segmentation using principal diffusion directions and spherical harmonic coefficients
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.09.035
– volume: 54
  start-page: 303
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2014.08.021_bb0210
  article-title: Partition-based mass clustering of tractography streamlines
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.07.038
– volume: 22
  start-page: 53
  issue: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2014.08.021_bb0190
  article-title: MRtrix: diffusion tractography in crossing fiber regions
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22005
– volume: 103
  start-page: 247
  issue: 3
  year: 1994
  ident: 10.1016/j.neuroimage.2014.08.021_bb0015
  article-title: Estimation of the effective self-diffusion tensor from the NMR spin echo
  publication-title: J. Magn. Reson. B
  doi: 10.1006/jmrb.1994.1037
– volume: 48
  start-page: 577
  issue: 4
  year: 2002
  ident: 10.1016/j.neuroimage.2014.08.021_bb0200
  article-title: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10268
– volume: 31
  issue: 2
  year: 2006
  ident: 10.1016/j.neuroimage.2014.08.021_bb0055
  article-title: An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest
  publication-title: NeuroImage
– volume: 26
  start-page: 297
  issue: 3
  year: 1945
  ident: 10.1016/j.neuroimage.2014.08.021_bb0060
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 56
  start-page: 220
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2014.08.021_bb0070
  article-title: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.032
– volume: 17
  start-page: 844
  issue: 7
  year: 2013
  ident: 10.1016/j.neuroimage.2014.08.021_bb0045
  article-title: Tractometer: towards validation of tractography pipelines
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2013.03.009
– volume: 54
  start-page: 290
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2014.08.021_bb0230
  article-title: Tractography segmentation using a hierarchical Dirichlet processes mixture model
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.07.050
– volume: 221
  start-page: 349
  issue: 2
  year: 2001
  ident: 10.1016/j.neuroimage.2014.08.021_bb0130
  article-title: Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging
  publication-title: Radiology
  doi: 10.1148/radiol.2212001702
– volume: 15
  start-page: 485
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2014.08.021_bb0075
  article-title: Group-wise consistent fiber clustering based on multimodal connectional and functional profiles
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: vol. 5803
  start-page: 174
  year: 2005
  ident: 10.1016/j.neuroimage.2014.08.021_bb0175
  article-title: Highly efficient incremental estimation of Gaussian mixture models for online data stream clustering
– volume: 2
  start-page: 83
  issue: 1–2
  year: 1955
  ident: 10.1016/j.neuroimage.2014.08.021_bb0100
  article-title: The Hungarian method for the assignment problem
  publication-title: Nav. Res. Logist. Q.
  doi: 10.1002/nav.3800020109
– volume: 32
  start-page: 989
  issue: 3
  year: 2006
  ident: 10.1016/j.neuroimage.2014.08.021_bb0090
  article-title: Topography of the human corpus callosum revisited-comprehensive fiber tractography using diffusion tensor magnetic resonance imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.05.044
– volume: 15
  start-page: 468
  issue: 7–8
  year: 2002
  ident: 10.1016/j.neuroimage.2014.08.021_bb0125
  article-title: Fiber tracking: principles and strategies — a technical review
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.781
– volume: 51
  start-page: 228
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2014.08.021_bb0235
  article-title: Unsupervised white matter fiber clustering and tract probability map generation: applications of a Gaussian process framework for white matter fibers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.01.004
– volume: 45
  start-page: 370
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2014.08.021_bb0215
  article-title: Quantitative examination of a novel clustering method using magnetic resonance diffusion tensor tractography
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.12.028
– volume: 11
  start-page: 805
  issue: 6 Pt 1
  year: 2000
  ident: 10.1016/j.neuroimage.2014.08.021_bb0010
  article-title: Voxel-based morphometry—the methods
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0582
– volume: 45
  start-page: 832
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2014.08.021_bb0150
  article-title: Tract-based morphometry for white matter group analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.12.023
– volume: 3216/2004
  start-page: 368
  issue: 3216
  year: 2004
  ident: 10.1016/j.neuroimage.2014.08.021_bb0035
  article-title: Clustering fiber traces using normalized cuts
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 12
  start-page: 450
  issue: 3
  year: 1982
  ident: 10.1016/j.neuroimage.2014.08.021_bb0065
  article-title: The Fréchet distance between multivariate normal distributions
  publication-title: J. Multivar. Anal.
  doi: 10.1016/0047-259X(82)90077-X
– volume: 59
  start-page: 3690
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2014.08.021_bb0185
  article-title: Automated delineation of white matter fiber tracts with a multiple region-of-interest approach
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.043
– start-page: 2759
  year: 2006
  ident: 10.1016/j.neuroimage.2014.08.021_bb0040
  article-title: Camino: open-source diffusion-MRI reconstruction and processing
– year: 2006
  ident: 10.1016/j.neuroimage.2014.08.021_bb0030
– year: 1999
  ident: 10.1016/j.neuroimage.2014.08.021_bb0195
  article-title: High angular resolution diffusion imaging of the human brain
– volume: 5
  start-page: 1
  issue: 4
  year: 1948
  ident: 10.1016/j.neuroimage.2014.08.021_bb0180
  article-title: A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons
  publication-title: K. Dan. Vidensk. Selsk. Biol. Skr.
– volume: 80
  start-page: 283
  year: 2013
  ident: 10.1016/j.neuroimage.2014.08.021_bb0155
  article-title: Fiber clustering versus the parcellation-based connectome
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.066
– volume: 58
  start-page: 458
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2014.08.021_bb0025
  article-title: Direct segmentation of the major white matter tracts in diffusion tensor images
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.06.020
– volume: 61
  start-page: 1083
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2014.08.021_bb0085
  article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.02.071
– volume: 42
  start-page: 771
  issue: 2
  year: 2008
  ident: 10.1016/j.neuroimage.2014.08.021_bb0240
  article-title: Automated fiber tracking of human brain white matter using diffusion tensor imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.04.241
– volume: 86
  start-page: 404
  year: 2014
  ident: 10.1016/j.neuroimage.2014.08.021_bb0005
  article-title: Automated longitudinal intra-subject analysis (ALISA) for diffusion MRI tractography
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.10.026
– volume: 26
  start-page: 1562
  issue: 11
  year: 2007
  ident: 10.1016/j.neuroimage.2014.08.021_bb0140
  article-title: Automatic tractography segmentation using a high-dimensional white matter atlas
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2007.906785
– volume: vol. 7042
  start-page: 701
  year: 2011
  ident: 10.1016/j.neuroimage.2014.08.021_bb0080
  article-title: Segmentation of short association bundles in massive tractography datasets using a multi-subject bundle atlas
– reference: 21256221 - Neuroimage. 2011 May 1;56(1):220-34
– reference: 11687675 - Radiology. 2001 Nov;221(2):349-58
– reference: 12353272 - Magn Reson Med. 2002 Oct;48(4):577-82
– reference: 20869453 - Neuroimage. 2011 Jan;54 Suppl 1:S146-64
– reference: 24157921 - Neuroimage. 2014 Feb 1;86:404-16
– reference: 8019776 - J Magn Reson B. 1994 Mar;103(3):247-54
– reference: 16687538 - AJNR Am J Neuroradiol. 2006 May;27(5):1032-6
– reference: 20570617 - Neuroimage. 2010 Oct 1;52(4):1289-301
– reference: 8130344 - Biophys J. 1994 Jan;66(1):259-67
– reference: 17070704 - Neuroimage. 2007 Jan 1;34(1):243-52
– reference: 22414992 - Neuroimage. 2012 Jul 16;61(4):1083-99
– reference: 20209048 - Med Image Comput Comput Assist Interv. 2004 Sep 2;3216/2004(3216):368-375
– reference: 19154790 - Neuroimage. 2009 Apr 15;45(3):832-44
– reference: 23631987 - Neuroimage. 2013 Oct 15;80:283-9
– reference: 23706753 - Med Image Anal. 2013 Oct;17(7):844-57
– reference: 18554930 - Neuroimage. 2008 Aug 15;42(2):771-7
– reference: 12489096 - NMR Biomed. 2002 Nov-Dec;15(7-8):468-80
– reference: 16530430 - Neuroimage. 2006 Jul 1;31(3):968-80
– reference: 20678578 - Neuroimage. 2011 Jan 1;54(1):290-302
– reference: 16624579 - Neuroimage. 2006 Jul 15;31(4):1487-505
– reference: 20079439 - Neuroimage. 2010 May 15;51(1):228-41
– reference: 23857147 - Magn Reson Med Sci. 2013;12(3):201-13
– reference: 10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21
– reference: 16854598 - Neuroimage. 2006 Sep;32(3):989-94
– reference: 23286166 - Med Image Comput Comput Assist Interv. 2012;15(Pt 3):485-92
– reference: 24684013 - Inf Process Med Imaging. 2013;23:730-41
– reference: 21995029 - Med Image Comput Comput Assist Interv. 2011;14(Pt 2):191-9
– reference: 18180197 - Med Image Anal. 2008 Apr;12(2):191-202
– reference: 19683061 - Neuroimage. 2010 Jan 15;49(2):1249-58
– reference: 22155046 - Neuroimage. 2012 Feb 15;59(4):3690-700
– reference: 21718790 - Neuroimage. 2011 Sep 15;58(2):458-68
– reference: 18041271 - IEEE Trans Med Imaging. 2007 Nov;26(11):1562-75
– reference: 19159690 - Neuroimage. 2009 Apr 1;45(2):370-6
– reference: 20673849 - Neuroimage. 2011 Jan 1;54(1):303-12
– reference: 23285315 - Proc IEEE Int Symp Biomed Imaging. 2012 Jul 12;2012(9):522-525
– reference: 17481925 - Neuroimage. 2007 Jul 1;36(3):630-44
SSID ssj0009148
Score 2.3157468
Snippet Advancements in imaging protocols such as the high angular resolution diffusion-weighted imaging (HARDI) and in tractography techniques are expected to cause...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 596
SubjectTerms Adult
Algorithms
Automated tract extraction
Automation
Biological and medical sciences
Brain - anatomy & histology
Brain research
Cluster Analysis
Diffusion Magnetic Resonance Imaging - methods
Fiber clustering
Fundamental and applied biological sciences. Psychology
HARDI
Humans
Image Processing, Computer-Assisted - methods
Male
Reproducibility of Results
Tract based analysis
Vertebrates: nervous system and sense organs
White Matter - anatomy & histology
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9swED5KH0qhjHZdN3ddUWGvXmzZlmwGhRBWyqB76Qp5E7IsMY_OCa3Tx_323dmy04xtBPaSkEgH8vl09x26-wTwXke5scJFoRM8DdPcmLDMpAsxEzMYngV-UKPwzRdxfZd-nmfzHZgNvTBUVul9f-_TO2_t_5l4bU6WdT25RWSA4Yb4yajPgc-pgz2VZOUffq7LPHC4b4fLkpBm-2qevsar44ysf-DOpSKvtCPz5PHfQtTBUj-i4lx_48WfIOnvlZXPQtXVIbzwGJNN-8c4gh3bvIS9G3-KfgyX01W7QKRqK9ZSkxRDB_3QNziwp1oz3SKkZhTfKjat9JI8Ipvdr4hTASPdK7i7-vR1dh36exRCI7hsQ5NXucgKK13ONS8QcSTEahdFVjtjLH4lRVmWusJkKo9EZRHkaRc5IVNH54LJCew2i8a-AeYQ3lKflrSYyRihi0gL9BKmErnFt2sCkIPqlPEk43TXxb0aqsm-q7XSFSld0TWYPA4gHiWXPdHGFjLF8HbU0EiKrk9hNNhC9uMou2FwW0qfbxjDuGReEEFOIQM4G6xDea_wqGJKNhP0kEkAF-Mw7mc6pNGNXay6OZjUIvDj_5yDaapEaB7A697g1gvIiHBS4gLkhimOE4hPfHOkqb91vOLovnkRJ6f_pZm3sE-_qF0zzs5gt31Y2XeI29ryvNuYvwAtWEOD
  priority: 102
  providerName: Elsevier
Title Automated tract extraction via atlas based Adaptive Clustering
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381191400682X
https://dx.doi.org/10.1016/j.neuroimage.2014.08.021
https://www.ncbi.nlm.nih.gov/pubmed/25134977
https://www.proquest.com/docview/1625938703
https://www.proquest.com/docview/1622610712
https://www.proquest.com/docview/1629967231
https://pubmed.ncbi.nlm.nih.gov/PMC4252913
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fi9QwEB68OxDhEH9bPZcIvkbbtE1aBGU97liVW0Q82LeSpgm3cnb3brs--rc706ZdV_TYl_ahGQjJZOabZuYbgFc6zIyVLuROioQnmTG8TJXjGIkZdM8SH1QofDaVk_Pk0yyd-R9uK59W2dvE1lBXC0P_yN9EBNRj1K74_fKKU9coul31LTT24ICoyyilS83UhnQ3SrpSuDTmGQ7wmTxdflfLFzn_gaeWErySlshTRP9zT4dLvcJFc123i3_B0b-zKv9wU6f34K7Hl2zcKcR9uGXrB3D7zN-gP4R343WzQJRqK9ZQgRRD43zdFTewn3PNdINwmpFvq9i40kuyhuz4ck18CujlHsH56cm34wn3PRS4kUI13GRVJtPcKpcJLXJEGzEx2oWh1c4Yi684L8tSVxhIZaGsLAI87UInVeLoTjB-DPv1orZPgTmEtlSjpSxGMUbqPNQSLYSpZGZxZ00Aql-6wniCcepzcVn0mWTfi82iF7ToBbXAFFEA0SC57Eg2dpDJ-90p-iJSNHsFeoIdZN8Osh5odABiR-nRljIMUxY5kePkKoCjXjsKbxFWxUZ_A3g5fMazTBc0uraLdTsGA1oEfeLGMRiiKoTlATzpFG4zgZTIJhVOQG2p4jCAuMS3v9Tzi5ZTHE23yKP42c1Tfw53aCGoFjNKj2C_uV7bFwjKmnIEe69_RaP2_I3gYPzx82SK7w8n0y9ffwNwSjwu
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTQIkhPheYAwjwWNE4iR2IgSojE0dWyuENmlvnuPYotNIy5qC-Kf4G7nLR0sRTH3ZS_sQu3LP57vfxXe_A3ihg9RY4QLfCR77cWqMnyfS-RiJGXTPAj-oUHgwFP3j-ONJcrIGv7paGEqr7GxibaiLsaF35K9CAuoRalf0bvLNp65RdLvatdBo1OLA_vyBIdv0zf4H3N-XnO_tHu30_bargG8El5Vv0iIVSWalS7nmGfrfiDjegsBqZ4zFryjL81wXGFqkgSgsQh7tAidk7OiWLMLfvQYb-D8CNAQb73eHnz4vaH7DuCm-SyI_DcOszR1qMspqhsrRV7QTlFIW19ShPPyfQ7w10VPcJtf01_gXAP47j_MPx7h3B263iJb1GhW8C2u2vAfXB-2d_X1425tVY8TFtmAVlWQxdAcXTTkF-z7STFcI4Bl504L1Cj0h-8t2zmfE4IB-9QEcX4l8H8J6OS7tJjCHYJqqwqTFuMkInQVaoE0yhUgt6pLxQHaiU6alNKfOGueqy107UwuhKxK6oqabPPQgnM-cNLQeK8zJut1RXdkqGlqFvmeFua_nc1to00CWFWdvLynDfMk8IzqeTHqw1WmHam3QVC1OjAfP54_RetCVkC7teFaPwRAaYSa_dAwGxRIDAQ8eNQq3WEBC9JYSFyCXVHE-gNjLl5-Uoy81izk6C56F0ePLl_4MbvSPBofqcH948ARuklCoEjRMtmC9upjZpwgJq3y7PYcMTq_66P8GKO12TQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIU1ICPE5CmMYCR6jxU5iJ0KAqo1qY2zigUl9M45ji6KRljUF8a_x13GXr1IEU1_2kj7Ejqzz-e539d3vAJ6bMLVO-jDwUsRBnFob5InyAUZiFt2zxAcVCp-cysOz-N04GW_Ar64WhtIqO5tYG-piauk_8j1OQD1C7Yr2fJsW8eFg9Gb2LaAOUnTT2rXTaFTk2P38geHb_NXRAe71CyFGbz_uHwZth4HASqGqwKZFKpPMKZ8KIzL0xRHxvYWhM95ahz9Rlue5KTDMSENZOIQ_xodeqtjTjVmE370G11WUcDpjaqyWhL88bsrwkihIOc_aLKImt6zmqpx8RYtByWVxTSIq-P9c482ZmeOG-abTxr-g8N8ZnX-4yNFtuNViWzZslPEObLjyLmydtLf39-D1cFFNESG7glVUnMVQuhdNYQX7PjHMVAjlGfnVgg0LMyNLzPbPF8TlgB72PpxdiXQfwGY5Ld1DYB5hNdWHKYcRlJUmC41E62QLmTrUKjsA1YlO25bcnHpsnOsui-2LXgpdk9A1td8UfAC8nzlrCD7WmJN1u6O7AlY0uRq90BpzX_ZzW5DTgJc1Z--uKEO_ZJERMU-mBrDTaYdurdFcL8_OAJ71r9GO0OWQKd10UY_BYBoBp7h0DIbHCkOCAWw3CrdcQEJElwoXoFZUsR9APOarb8rJ55rPHN2GyHj06PKlP4UtPPD6_dHp8WO4QTKhklCe7MBmdbFwTxAbVvlufQgZfLrqU_8bPft5HQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+tract+extraction+via+atlas+based+Adaptive+Clustering&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Tun%C3%A7%2C+Birkan&rft.au=Parker%2C+William+A&rft.au=Ingalhalikar%2C+Madhura&rft.au=Verma%2C+Ragini&rft.date=2014-11-15&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=102&rft.spage=596&rft_id=info:doi/10.1016%2Fj.neuroimage.2014.08.021&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3500425961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon