CCN4/WISP-1 positively regulates chondrogenesis by controlling TGF-β3 function

The CCN family of proteins plays important roles in development and homeostasis of bone and cartilage. To understand the role of CCN4 in chondrogenesis, human bone marrow stromal cells (hBMSCs) were transduced with CCN4 adenovirus (adCCN4) or siRNA to CCN4 (siCCN4) in the presence or absence of tran...

Full description

Saved in:
Bibliographic Details
Published inBone (New York, N.Y.) Vol. 83; pp. 162 - 170
Main Authors Yoshioka, Yuya, Ono, Mitsuaki, Maeda, Azusa, Kilts, Tina M., Hara, Emilio Satoshi, Khattab, Hany, Ueda, Junji, Aoyama, Eriko, Oohashi, Toshitaka, Takigawa, Masaharu, Young, Marian F., Kuboki, Takuo
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2016
Subjects
Online AccessGet full text
ISSN8756-3282
1873-2763
1873-2763
DOI10.1016/j.bone.2015.11.007

Cover

Abstract The CCN family of proteins plays important roles in development and homeostasis of bone and cartilage. To understand the role of CCN4 in chondrogenesis, human bone marrow stromal cells (hBMSCs) were transduced with CCN4 adenovirus (adCCN4) or siRNA to CCN4 (siCCN4) in the presence or absence of transforming growth factor-β3 (TGF-β3). Overexpression of CCN4 enhanced TGF-β3-induced SMAD2/3 phosphorylation and chondrogenesis of hBMSCs in an in vitro assay using a micromass culture model. On the other hand, knockdown of CCN4 inhibited the TGF-β3-induced SMAD2/3 phosphorylation and synthesis of cartilage matrix in micromass cultures of hBMSCs. Immunoprecipitation–western blot analysis revealed that CCN4 bound to TGF-β3 and regulated the ability of TGF-β3 to bind to hBMSCs. In vivo analysis confirmed there was a significant decrease in the gene expression levels of chondrocyte markers in cartilage samples from Ccn4-knock out (KO) mice, compared to those from wild type (WT) control. In order to investigate the regenerative properties of the articular cartilage in Ccn4-KO mice, articular cartilage defects were surgically performed in the knee joints of young mice, and the results showed that the cartilage was partially repaired in WT mice, but not in Ccn4-KO mice. In conclusion, these results show, for the first time, that CCN4 has a positive influence on chondrogenic differentiation by modulating the effects of TGF-β3. •Gene expression levels of CCN4 are up-regulated during chondrogenesis.•CCN4 is a positive regulator of TGF-β3-induced chondrogenesis of hBMSCs.•CCN4 enhances binding affinity of TGF-β3 to hBMSCs.•Healing of articular cartilage in Ccn4 deficient mice is delayed.
AbstractList The CCN family of proteins plays important roles in development and homeostasis of bone and cartilage. To understand the role of CCN4 in chondrogenesis, human bone marrow stromal cells (hBMSCs) were transduced with CCN4 adenovirus (adCCN4) or siRNA to CCN4 (siCCN4) in the presence or absence of transforming growth factor-β3 (TGF-β3). Overexpression of CCN4 enhanced TGF-β3-induced SMAD2/3 phosphorylation and chondrogenesis of hBMSCs in an in vitro assay using a micromass culture model. On the other hand, knockdown of CCN4 inhibited the TGF-β3-induced SMAD2/3 phosphorylation and synthesis of cartilage matrix in micromass cultures of hBMSCs. Immunoprecipitation-western blot analysis revealed that CCN4 bound to TGF-β3 and regulated the ability of TGF-β3 to bind to hBMSCs. In vivo analysis confirmed there was a significant decrease in the gene expression levels of chondrocyte markers in cartilage samples from Ccn4-knock out (KO) mice, compared to those from wild type (WT) control. In order to investigate the regenerative properties of the articular cartilage in Ccn4-KO mice, articular cartilage defects were surgically performed in the knee joints of young mice, and the results showed that the cartilage was partially repaired in WT mice, but not in Ccn4-KO mice. In conclusion, these results show, for the first time, that CCN4 has a positive influence on chondrogenic differentiation by modulating the effects of TGF-β3.The CCN family of proteins plays important roles in development and homeostasis of bone and cartilage. To understand the role of CCN4 in chondrogenesis, human bone marrow stromal cells (hBMSCs) were transduced with CCN4 adenovirus (adCCN4) or siRNA to CCN4 (siCCN4) in the presence or absence of transforming growth factor-β3 (TGF-β3). Overexpression of CCN4 enhanced TGF-β3-induced SMAD2/3 phosphorylation and chondrogenesis of hBMSCs in an in vitro assay using a micromass culture model. On the other hand, knockdown of CCN4 inhibited the TGF-β3-induced SMAD2/3 phosphorylation and synthesis of cartilage matrix in micromass cultures of hBMSCs. Immunoprecipitation-western blot analysis revealed that CCN4 bound to TGF-β3 and regulated the ability of TGF-β3 to bind to hBMSCs. In vivo analysis confirmed there was a significant decrease in the gene expression levels of chondrocyte markers in cartilage samples from Ccn4-knock out (KO) mice, compared to those from wild type (WT) control. In order to investigate the regenerative properties of the articular cartilage in Ccn4-KO mice, articular cartilage defects were surgically performed in the knee joints of young mice, and the results showed that the cartilage was partially repaired in WT mice, but not in Ccn4-KO mice. In conclusion, these results show, for the first time, that CCN4 has a positive influence on chondrogenic differentiation by modulating the effects of TGF-β3.
The CCN family of proteins plays important roles in development and homeostasis of bone and cartilage. To understand the role of CCN4 in chondrogenesis, human bone marrow stromal cells (hBMSCs) were transduced with CCN4 adenovirus (adCCN4) or siRNA to CCN4 (siCCN4) in the presence or absence of transforming growth factor-β3 (TGF-β3). Overexpression of CCN4 enhanced TGF-β3-induced SMAD2/3 phosphorylation and chondrogenesis of hBMSCs in an in vitro assay using a micromass culture model. On the other hand, knockdown of CCN4 inhibited the TGF-β3-induced SMAD2/3 phosphorylation and synthesis of cartilage matrix in micromass cultures of hBMSCs. Immunoprecipitation-western blot analysis revealed that CCN4 bound to TGF-β3 and regulated the ability of TGF-β3 to bind to hBMSCs. In vivo analysis confirmed there was a significant decrease in the gene expression levels of chondrocyte markers in cartilage samples from Ccn4-knock out (KO) mice, compared to those from wild type (WT) control. In order to investigate the regenerative properties of the articular cartilage in Ccn4-KO mice, articular cartilage defects were surgically performed in the knee joints of young mice, and the results showed that the cartilage was partially repaired in WT mice, but not in Ccn4-KO mice. In conclusion, these results show, for the first time, that CCN4 has a positive influence on chondrogenic differentiation by modulating the effects of TGF-β3.
The CCN family of proteins plays important roles in development and homeostasis of bone and cartilage. To understand the role of CCN4 in chondrogenesis, human bone marrow stromal cells (hBMSCs) were transduced with CCN4 adenovirus (adCCN4) or siRNA to CCN4 (siCCN4) in the presence or absence of transforming growth factor-β3 (TGF-β3). Overexpression of CCN4 enhanced TGF-β3-induced SMAD2/3 phosphorylation and chondrogenesis of hBMSCs in an in vitro assay using a micromass culture model. On the other hand, knockdown of CCN4 inhibited the TGF-β3-induced SMAD2/3 phosphorylation and synthesis of cartilage matrix in micromass cultures of hBMSCs. Immunoprecipitation–western blot analysis revealed that CCN4 bound to TGF-β3 and regulated the ability of TGF-β3 to bind to hBMSCs. In vivo analysis confirmed there was a significant decrease in the gene expression levels of chondrocyte markers in cartilage samples from Ccn4-knock out (KO) mice, compared to those from wild type (WT) control. In order to investigate the regenerative properties of the articular cartilage in Ccn4-KO mice, articular cartilage defects were surgically performed in the knee joints of young mice, and the results showed that the cartilage was partially repaired in WT mice, but not in Ccn4-KO mice. In conclusion, these results show, for the first time, that CCN4 has a positive influence on chondrogenic differentiation by modulating the effects of TGF-β3. •Gene expression levels of CCN4 are up-regulated during chondrogenesis.•CCN4 is a positive regulator of TGF-β3-induced chondrogenesis of hBMSCs.•CCN4 enhances binding affinity of TGF-β3 to hBMSCs.•Healing of articular cartilage in Ccn4 deficient mice is delayed.
Abstract The CCN family of proteins plays important roles in development and homeostasis of bone and cartilage. To understand the role of CCN4 in chondrogenesis, human bone marrow stromal cells (hBMSCs) were transduced with CCN4 adenovirus (adCCN4) or siRNA to CCN4 (siCCN4) in the presence or absence of transforming growth factor-β3 (TGF-β3). Overexpression of CCN4 enhanced TGF-β3-induced SMAD2/3 phosphorylation and chondrogenesis of hBMSCs in an in vitro assay using a micromass culture model. On the other hand, knockdown of CCN4 inhibited the TGF-β3-induced SMAD2/3 phosphorylation and synthesis of cartilage matrix in micromass cultures of hBMSCs. Immunoprecipitation–western blot analysis revealed that CCN4 bound to TGF-β3 and regulated the ability of TGF-β3 to bind to hBMSCs. In vivo analysis confirmed there was a significant decrease in the gene expression levels of chondrocyte markers in cartilage samples from Ccn4 -knock out (KO) mice, compared to those from wild type (WT) control. In order to investigate the regenerative properties of the articular cartilage in Ccn4- KO mice, articular cartilage defects were surgically performed in the knee joints of young mice, and the results showed that the cartilage was partially repaired in WT mice, but not in Ccn4 -KO mice. In conclusion, these results show, for the first time, that CCN4 has a positive influence on chondrogenic differentiation by modulating the effects of TGF-β3.
The CCN family of proteins plays important roles in development and homeostasis of bone and cartilage. To understand the role of CCN4 in chondrogenesis, human bone marrow stromal cells (hBMSCs) were transduced with CCN4 adenovirus (adCCN4) or siRNA to CCN4 (siCCN4) in the presence or absence of transforming growth factor-β3 (TGF-β3). Overexpression of CCN4 enhanced TGF-β3-induced SMAD2/3 phosphorylation and chondrogenesis of hBMSCs in an in vitro assay using a micromass culture model. On the other hand, knockdown of CCN4 inhibited the TGF-β3-induced SMAD2/3 phosphorylation and synthesis of cartilage matrix in micromass cultures of hBMSCs. Immunoprecipitation–western blot analysis revealed that CCN4 bound to TGF-β3 and regulated the ability of TGF-β3 to bind to hBMSCs. In vivo analysis confirmed there was a significant decrease in the gene expression levels of chondrocyte markers in cartilage samples from Ccn4 -knock out (KO) mice, compared to those from wild type (WT) control. In order to investigate the regenerative properties of the articular cartilage in Ccn4- KO mice, articular cartilage defects were surgically performed in the knee joints of young mice, and the results showed that the cartilage was partially repaired in WT mice, but not in Ccn4 -KO mice. In conclusion, these results show, for the first time, that CCN4 has a positive influence on chondrogenic differentiation by modulating the effects of TGF-β3.
Author Khattab, Hany
Yoshioka, Yuya
Kuboki, Takuo
Ono, Mitsuaki
Aoyama, Eriko
Takigawa, Masaharu
Young, Marian F.
Kilts, Tina M.
Hara, Emilio Satoshi
Ueda, Junji
Oohashi, Toshitaka
Maeda, Azusa
AuthorAffiliation c Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
d Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
a Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
e Advanced Research Center for Oral & Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
b Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
AuthorAffiliation_xml – name: a Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
– name: b Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
– name: c Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
– name: e Advanced Research Center for Oral & Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
– name: d Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
Author_xml – sequence: 1
  givenname: Yuya
  surname: Yoshioka
  fullname: Yoshioka, Yuya
  organization: Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
– sequence: 2
  givenname: Mitsuaki
  surname: Ono
  fullname: Ono, Mitsuaki
  email: mitsuaki@md.okayama-u.ac.jp
  organization: Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
– sequence: 3
  givenname: Azusa
  surname: Maeda
  fullname: Maeda, Azusa
  organization: Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
– sequence: 4
  givenname: Tina M.
  surname: Kilts
  fullname: Kilts, Tina M.
  organization: Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
– sequence: 5
  givenname: Emilio Satoshi
  surname: Hara
  fullname: Hara, Emilio Satoshi
  organization: Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
– sequence: 6
  givenname: Hany
  surname: Khattab
  fullname: Khattab, Hany
  organization: Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
– sequence: 7
  givenname: Junji
  surname: Ueda
  fullname: Ueda, Junji
  organization: Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
– sequence: 8
  givenname: Eriko
  surname: Aoyama
  fullname: Aoyama, Eriko
  organization: Advanced Research Center for Oral & Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
– sequence: 9
  givenname: Toshitaka
  surname: Oohashi
  fullname: Oohashi, Toshitaka
  organization: Advanced Research Center for Oral & Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
– sequence: 10
  givenname: Masaharu
  surname: Takigawa
  fullname: Takigawa, Masaharu
  organization: Advanced Research Center for Oral & Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
– sequence: 11
  givenname: Marian F.
  surname: Young
  fullname: Young, Marian F.
  organization: Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
– sequence: 12
  givenname: Takuo
  surname: Kuboki
  fullname: Kuboki, Takuo
  organization: Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26555637$$D View this record in MEDLINE/PubMed
BookMark eNqFUt1qFDEUDlKx2-oLeCFz6c1sc5KZSUakIIuthWKFVrwMmcyZbdbZZJvMLOxr-SA-kxm2Fi1YrwIn38_h-84ROXDeISGvgc6BQnWymjdpMGcUyjnAnFLxjMxACp4zUfEDMpOirHLOJDskRzGuKKW8FvCCHLKqLMuKixm5Wiw-FyffLq6_5JBtfLSD3WK_ywIux14PGDNz610b_BIdRhuzZpcZ74bg-966ZXZzfpb__MGzbnRmsN69JM873Ud8df8ek69nH28Wn_LLq_OLxYfL3FRMDLlGA5qDYdLolklNuRC67GrKqqbtEExlWtl2INsCZA2FbHTdMW6aWteatYwfk9O97mZs1tgaTCvpXm2CXeuwU15b9fePs7dq6beqFEXNWJkE3t4LBH83YhzU2kaDfa8d-jEqEBWtgTHKE_TNn14PJr9TTAC2B5jgYwzYPUCAqqkqtVJTVWqqSgGoVFUiyUckYwc9ZZj2tf3T1Pd7KqaEtxaDisaiM9jagGZQrbdP008f0U3q0hrdf8cdxpUfg0vdKVCRKaqupzOarghKSgsqIQm8-7fA_9x_AaxR2RA
CitedBy_id crossref_primary_10_1089_ten_tea_2021_0051
crossref_primary_10_1002_jcp_26285
crossref_primary_10_1007_s12079_021_00629_z
crossref_primary_10_1016_j_gendis_2023_04_021
crossref_primary_10_1016_j_molimm_2025_02_004
crossref_primary_10_1172_jci_insight_135432
crossref_primary_10_1016_j_intimp_2024_113791
crossref_primary_10_1074_jbc_RA118_006122
crossref_primary_10_1080_1061186X_2023_2281861
crossref_primary_10_1007_s12079_021_00631_5
crossref_primary_10_1097_SCS_0000000000006748
crossref_primary_10_1242_dmm_044719
crossref_primary_10_1016_j_joca_2024_06_009
crossref_primary_10_1177_1759720X211006959
crossref_primary_10_1093_rheumatology_key426
crossref_primary_10_1111_cpr_13417
crossref_primary_10_1002_adbi_202101315
crossref_primary_10_1111_jcmm_18242
crossref_primary_10_1016_j_bbrc_2017_11_190
crossref_primary_10_1016_j_jdermsci_2024_08_002
crossref_primary_10_1016_j_stem_2018_12_014
crossref_primary_10_3390_ma14010208
crossref_primary_10_1080_2162402X_2019_1581545
crossref_primary_10_1016_j_bioactmat_2021_03_043
crossref_primary_10_1016_j_matbio_2018_01_004
crossref_primary_10_1007_s11010_020_03763_1
crossref_primary_10_1177_19476035231207778
crossref_primary_10_1007_s12079_022_00682_2
Cites_doi 10.1089/ten.tec.2014.0440
10.1016/j.joca.2014.12.012
10.1007/s00774-007-0757-9
10.1093/jb/mvn159
10.1038/ncb826
10.1002/1529-0131(200002)43:2<452::AID-ANR28>3.0.CO;2-C
10.1074/jbc.M114.628818
10.1359/JBMR.050818
10.1007/s00223-004-0163-4
10.1016/j.febslet.2012.10.038
10.1074/jbc.M700680200
10.1371/journal.pone.0071709
10.1002/jbmr.2502
10.1101/gad.14.5.585
10.3892/mmr.2013.1729
10.1242/dev.00505
10.1042/BJ20081991
10.1359/jbmr.080615
10.1371/journal.pone.0024546
10.1002/art.24247
10.1371/journal.pone.0071156
10.1053/joca.1999.0292
10.1002/jcb.21754
10.1016/j.joca.2010.08.016
10.1111/j.1742-4658.2007.05709.x
10.1002/jbmr.205
10.1074/jbc.M809757200
10.1359/JBMR.040322
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.bone.2015.11.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE




Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1873-2763
EndPage 170
ExternalDocumentID PMC5749225
26555637
10_1016_j_bone_2015_11_007
S8756328215004081
1_s2_0_S8756328215004081
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z01 DE000379
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABGSF
ABJNI
ABLJU
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEB
HMK
HMO
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OF0
OR.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
WUQ
X7M
Z5R
ZGI
ZMT
~02
~G-
1RT
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
DOVZS
EFLBG
LCYCR
ZA5
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c627t-aec1a31c28cad28a0377a5f9026bdfe1c6cd8df18d4189148ba9f23cb9a9a2d23
IEDL.DBID AIKHN
ISSN 8756-3282
1873-2763
IngestDate Thu Aug 21 13:41:23 EDT 2025
Thu Sep 04 14:26:50 EDT 2025
Sat May 31 02:06:02 EDT 2025
Thu Apr 24 22:53:50 EDT 2025
Tue Jul 01 03:41:32 EDT 2025
Fri Feb 23 02:22:05 EST 2024
Sun Feb 23 10:18:48 EST 2025
Tue Aug 26 16:32:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords TGF-β3
Articular cartilage
Chondrogenesis
CCN4/WISP-1
Bone marrow stromal cell (BMSC)
Language English
License Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c627t-aec1a31c28cad28a0377a5f9026bdfe1c6cd8df18d4189148ba9f23cb9a9a2d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5749225
PMID 26555637
PQID 1760912203
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5749225
proquest_miscellaneous_1760912203
pubmed_primary_26555637
crossref_primary_10_1016_j_bone_2015_11_007
crossref_citationtrail_10_1016_j_bone_2015_11_007
elsevier_sciencedirect_doi_10_1016_j_bone_2015_11_007
elsevier_clinicalkeyesjournals_1_s2_0_S8756328215004081
elsevier_clinicalkey_doi_10_1016_j_bone_2015_11_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Bone (New York, N.Y.)
PublicationTitleAlternate Bone
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Aoyama, Kubota, Takigawa (bb0030) 2012; 586
Urano, Narusawa, Shiraki, Usui, Sasaki, Hosoi, Ouchi, Nakamura, Inoue (bb0045) 2007; 25
Lafont, Jacques, Le Dreau, Calhabeu, Thibout, Dubois, Berenbaum, Laurent, Martinerie (bb0090) 2005; 20
Xue, Wang, Liu, Luo (bb0150) 2013; 8
Blom, Brockbank, van Lent, van Beuningen, Geurts, Takahashi, van der Kraan, van de Loo, Schreurs, Clements, Newham, van den Berg (bb0050) 2009; 60
Kawaki, Kubota, Suzuki, Lazar, Yamada, Matsumura, Ohgawara, Maeda, Perbal, Lyons, Takigawa (bb0100) 2008; 23
Ono, Inkson, Kilts, Young (bb0040) 2011; 26
Hara, Ono, Hai, Sonoyama, Kubota, Takigawa, Matsumoto, Young, Olsen, Kuboki (bb0060) 2015
Matsuoka, Onodera, Sasazawa, Momma, Baba, Hontani, Iwasaki (bb0085) 2015
Abreu, Ketpura, Reversade, De Robertis (bb0025) 2002; 4
Roddy, Boulter (bb0120) 2015; 23
Nishida, Kubota, Kojima, Kuboki, Nakao, Kushibiki, Tabata, Takigawa (bb0110) 2004; 19
Westacott, Barakat, Wood, Perry, Neison, Bisbinas, Armstrong, Millar, Elson (bb0135) 2000; 8
Maeda, Nishida, Aoyama, Kubota, Lyons, Kuboki, Takigawa (bb0020) 2009; 145
Lau, Ho, Luk, Kung (bb0010) 2004; 74
Lorda-Diez, Montero, Diaz-Mendoza, Garcia-Porrero, Hurle (bb0015) 2011; 6
Inkson, Ono, Kuznetsov, Fisher, Robey, Young (bb0035) 2008; 104
Ono, Inkson, Sonn, Kilts, de Castro, Maeda, Fisher, Robey, Berendsen, Li, McCartney-Francis, Brown, Crawford, Molinolo, Jain, Fedarko, Young (bb0075) 2013; 8
Itoh, Hattori, Tomita, Aoyama, Yutani, Yamashiro, Takigawa (bb0115) 2013; 8
Liu, Hou, Tsai, Huang, Hsu, Tang (bb0055) 1833; 2013
Yanagita, Kubota, Kawaki, Kawata, Kondo, Takano-Yamamoto, Tanaka, Takigawa (bb0125) 2007; 274
Stannus, Jones, Cicuttini, Parameswaran, Quinn, Burgess, Ding (bb0145) 2010; 18
Maeda, Ono, Holmbeck, Li, Kilts, Kram, Noonan, Yoshioka, McNerny, Tantillo, Kohn, Lyons, Robey, Young (bb0080) 2015; 290
Xu, Corcoran, Welsh, Pennica, Levine (bb0070) 2000; 14
Yamada, Okuizumi, Miyauchi, Takagi, Ikeda, Harada (bb0005) 2000; 43
Maeda, Ono, Holmbeck, Li, Kilts, Kram, Noonan, Yoshioka, McNerny, Tantillo, Kohn, Lyons, Robey, Young (bb0130) 2015
Woods, Wang, Dupuis, Shao, Beier (bb0065) 2007; 282
Ivkovic, Yoon, Popoff, Safadi, Libuda, Stephenson, Daluiski, Lyons (bb0095) 2003; 130
Aoyama, Hattori, Hoshijima, Araki, Nishida, Kubota, Takigawa (bb0105) 2009; 420
Venkatachalam, Venkatesan, Valente, Melby, Nandish, Reusch, Clark, Chandrasekar (bb0140) 2009; 284
Maeda (10.1016/j.bone.2015.11.007_bb0130) 2015
Urano (10.1016/j.bone.2015.11.007_bb0045) 2007; 25
Lorda-Diez (10.1016/j.bone.2015.11.007_bb0015) 2011; 6
Abreu (10.1016/j.bone.2015.11.007_bb0025) 2002; 4
Inkson (10.1016/j.bone.2015.11.007_bb0035) 2008; 104
Itoh (10.1016/j.bone.2015.11.007_bb0115) 2013; 8
Yanagita (10.1016/j.bone.2015.11.007_bb0125) 2007; 274
Ono (10.1016/j.bone.2015.11.007_bb0075) 2013; 8
Nishida (10.1016/j.bone.2015.11.007_bb0110) 2004; 19
Xue (10.1016/j.bone.2015.11.007_bb0150) 2013; 8
Xu (10.1016/j.bone.2015.11.007_bb0070) 2000; 14
Lau (10.1016/j.bone.2015.11.007_bb0010) 2004; 74
Kawaki (10.1016/j.bone.2015.11.007_bb0100) 2008; 23
Matsuoka (10.1016/j.bone.2015.11.007_bb0085) 2015
Westacott (10.1016/j.bone.2015.11.007_bb0135) 2000; 8
Ivkovic (10.1016/j.bone.2015.11.007_bb0095) 2003; 130
Aoyama (10.1016/j.bone.2015.11.007_bb0105) 2009; 420
Stannus (10.1016/j.bone.2015.11.007_bb0145) 2010; 18
Maeda (10.1016/j.bone.2015.11.007_bb0080) 2015; 290
Yamada (10.1016/j.bone.2015.11.007_bb0005) 2000; 43
Liu (10.1016/j.bone.2015.11.007_bb0055) 1833; 2013
Ono (10.1016/j.bone.2015.11.007_bb0040) 2011; 26
Woods (10.1016/j.bone.2015.11.007_bb0065) 2007; 282
Venkatachalam (10.1016/j.bone.2015.11.007_bb0140) 2009; 284
Roddy (10.1016/j.bone.2015.11.007_bb0120) 2015; 23
Aoyama (10.1016/j.bone.2015.11.007_bb0030) 2012; 586
Lafont (10.1016/j.bone.2015.11.007_bb0090) 2005; 20
Maeda (10.1016/j.bone.2015.11.007_bb0020) 2009; 145
Blom (10.1016/j.bone.2015.11.007_bb0050) 2009; 60
Hara (10.1016/j.bone.2015.11.007_bb0060) 2015
References_xml – volume: 8
  year: 2013
  ident: bb0115
  article-title: CCN family member 2/connective tissue growth factor (CCN2/CTGF) has anti-aging effects that protect articular cartilage from age-related degenerative changes
  publication-title: PLoS One
– volume: 18
  start-page: 1441
  year: 2010
  end-page: 1447
  ident: bb0145
  article-title: Circulating levels of IL-6 and TNF-alpha are associated with knee radiographic osteoarthritis and knee cartilage loss in older adults
  publication-title: Osteoarthr. Cartil.
– volume: 6
  year: 2011
  ident: bb0015
  article-title: Defining the earliest transcriptional steps of chondrogenic progenitor specification during the formation of the digits in the embryonic limb
  publication-title: PLoS One
– volume: 282
  start-page: 23500
  year: 2007
  end-page: 23508
  ident: bb0065
  article-title: Rac1 signaling stimulates N-cadherin expression, mesenchymal condensation, and chondrogenesis
  publication-title: J Biol Chem
– volume: 2013
  start-page: 966
  year: 1833
  end-page: 975
  ident: bb0055
  article-title: CCN4 induces vascular cell adhesion molecule-1 expression in human synovial fibroblasts and promotes monocyte adhesion
  publication-title: Biochim. Biophys. Acta
– year: 2015
  ident: bb0085
  article-title: An articular cartilage repair model in common C57Bl/6 mice
  publication-title: Tissue Eng. Part C Methods
– volume: 290
  start-page: 14004
  year: 2015
  end-page: 14018
  ident: bb0080
  article-title: WNT1-induced Secreted Protein-1 (WISP1), a novel regulator of bone turnover and Wnt signaling
  publication-title: J Biol Chem
– volume: 19
  start-page: 1308
  year: 2004
  end-page: 1319
  ident: bb0110
  article-title: Regeneration of defects in articular cartilage in rat knee joints by CCN2 (connective tissue growth factor)
  publication-title: J. Bone Miner. Res.
– year: 2015
  ident: bb0060
  article-title: Fluocinolone acetonide is a potent synergistic factor of TGF-beta3-associated chondrogenesis of bone marrow-derived mesenchymal stem cells for articular surface regeneration
  publication-title: J. Bone Miner. Res.
– volume: 145
  start-page: 207
  year: 2009
  end-page: 216
  ident: bb0020
  article-title: CCN family 2/connective tissue growth factor modulates BMP signalling as a signal conductor, which action regulates the proliferation and differentiation of chondrocytes
  publication-title: J. Biochem.
– volume: 8
  year: 2013
  ident: bb0075
  article-title: WISP1/CCN4: a potential target for inhibiting prostate cancer growth and spread to bone
  publication-title: PLoS One
– volume: 23
  start-page: 1751
  year: 2008
  end-page: 1764
  ident: bb0100
  article-title: Cooperative regulation of chondrocyte differentiation by CCN2 and CCN3 shown by a comprehensive analysis of the CCN family proteins in cartilage
  publication-title: J. Bone Miner. Res.
– volume: 104
  start-page: 1865
  year: 2008
  end-page: 1878
  ident: bb0035
  article-title: TGF-beta1 and WISP-1/CCN-4 can regulate each other's activity to cooperatively control osteoblast function
  publication-title: J. Cell. Biochem.
– volume: 4
  start-page: 599
  year: 2002
  end-page: 604
  ident: bb0025
  article-title: Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta
  publication-title: Nat. Cell Biol.
– volume: 25
  start-page: 253
  year: 2007
  end-page: 258
  ident: bb0045
  article-title: Association of a single nucleotide polymorphism in the WISP1 gene with spinal osteoarthritis in postmenopausal Japanese women
  publication-title: J. Bone Miner. Metab.
– volume: 8
  start-page: 1755
  year: 2013
  end-page: 1760
  ident: bb0150
  article-title: Tumor necrosis factor-alpha induces ADAMTS-4 expression in human osteoarthritis chondrocytes
  publication-title: Mol. Med. Rep.
– volume: 43
  start-page: 452
  year: 2000
  end-page: 460
  ident: bb0005
  article-title: Association of transforming growth factor beta1 genotype with spinal osteophytosis in Japanese women
  publication-title: Arthritis Rheum.
– volume: 60
  start-page: 501
  year: 2009
  end-page: 512
  ident: bb0050
  article-title: Involvement of the Wnt signaling pathway in experimental and human osteoarthritis: prominent role of Wnt-induced signaling protein 1
  publication-title: Arthritis Rheum.
– volume: 23
  start-page: 607
  year: 2015
  end-page: 615
  ident: bb0120
  article-title: Targeted mutation of NOV/CCN3 in mice disrupts joint homeostasis and causes osteoarthritis-like disease
  publication-title: Osteoarthr. Cartil.
– volume: 26
  start-page: 193
  year: 2011
  end-page: 208
  ident: bb0040
  article-title: WISP-1/CCN4 regulates osteogenesis by enhancing BMP-2 activity
  publication-title: J. Bone Miner. Res.
– volume: 74
  start-page: 516
  year: 2004
  end-page: 521
  ident: bb0010
  article-title: Transforming growth factor-beta1 gene polymorphisms and bone turnover, bone mineral density and fracture risk in southern Chinese women
  publication-title: Calcif. Tissue Int.
– volume: 274
  start-page: 1655
  year: 2007
  end-page: 1665
  ident: bb0125
  article-title: Expression and physiological role of CCN4/Wnt-induced secreted protein 1 mRNA splicing variants in chondrocytes
  publication-title: FEBS J
– volume: 284
  start-page: 14414
  year: 2009
  end-page: 14427
  ident: bb0140
  article-title: WISP1, a pro-mitogenic, pro-survival factor, mediates tumor necrosis factor-alpha (TNF-alpha)-stimulated cardiac fibroblast proliferation but inhibits TNF-alpha-induced cardiomyocyte death
  publication-title: J Biol Chem
– volume: 420
  start-page: 413
  year: 2009
  end-page: 420
  ident: bb0105
  article-title: N-terminal domains of CCN family 2/connective tissue growth factor bind to aggrecan
  publication-title: Biochem. J.
– volume: 20
  start-page: 2213
  year: 2005
  end-page: 2223
  ident: bb0090
  article-title: New target genes for NOV/CCN3 in chondrocytes: TGF-beta2 and type X collagen
  publication-title: J. Bone Miner. Res.
– volume: 130
  start-page: 2779
  year: 2003
  end-page: 2791
  ident: bb0095
  article-title: Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development
  publication-title: Development
– volume: 586
  start-page: 4270
  year: 2012
  end-page: 4275
  ident: bb0030
  article-title: CCN2/CTGF binds to fibroblast growth factor receptor 2 and modulates its signaling
  publication-title: FEBS Lett.
– volume: 14
  start-page: 585
  year: 2000
  end-page: 595
  ident: bb0070
  article-title: WISP-1 is a Wnt-1- and beta-catenin-responsive oncogene
  publication-title: Genes Dev.
– volume: 8
  start-page: 213
  year: 2000
  end-page: 221
  ident: bb0135
  article-title: Tumor necrosis factor alpha can contribute to focal loss of cartilage in osteoarthritis
  publication-title: Osteoarthr. Cartil.
– year: 2015
  ident: bb0130
  article-title: WNT1 induced secreted protein-1 (WISP1): a novel regulator of bone turnover and Wnt signaling
  publication-title: J Biol Chem
– year: 2015
  ident: 10.1016/j.bone.2015.11.007_bb0085
  article-title: An articular cartilage repair model in common C57Bl/6 mice
  publication-title: Tissue Eng. Part C Methods
  doi: 10.1089/ten.tec.2014.0440
– volume: 23
  start-page: 607
  year: 2015
  ident: 10.1016/j.bone.2015.11.007_bb0120
  article-title: Targeted mutation of NOV/CCN3 in mice disrupts joint homeostasis and causes osteoarthritis-like disease
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2014.12.012
– volume: 25
  start-page: 253
  year: 2007
  ident: 10.1016/j.bone.2015.11.007_bb0045
  article-title: Association of a single nucleotide polymorphism in the WISP1 gene with spinal osteoarthritis in postmenopausal Japanese women
  publication-title: J. Bone Miner. Metab.
  doi: 10.1007/s00774-007-0757-9
– volume: 145
  start-page: 207
  year: 2009
  ident: 10.1016/j.bone.2015.11.007_bb0020
  article-title: CCN family 2/connective tissue growth factor modulates BMP signalling as a signal conductor, which action regulates the proliferation and differentiation of chondrocytes
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvn159
– volume: 4
  start-page: 599
  year: 2002
  ident: 10.1016/j.bone.2015.11.007_bb0025
  article-title: Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb826
– volume: 43
  start-page: 452
  year: 2000
  ident: 10.1016/j.bone.2015.11.007_bb0005
  article-title: Association of transforming growth factor beta1 genotype with spinal osteophytosis in Japanese women
  publication-title: Arthritis Rheum.
  doi: 10.1002/1529-0131(200002)43:2<452::AID-ANR28>3.0.CO;2-C
– volume: 290
  start-page: 14004
  year: 2015
  ident: 10.1016/j.bone.2015.11.007_bb0080
  article-title: WNT1-induced Secreted Protein-1 (WISP1), a novel regulator of bone turnover and Wnt signaling
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M114.628818
– volume: 20
  start-page: 2213
  year: 2005
  ident: 10.1016/j.bone.2015.11.007_bb0090
  article-title: New target genes for NOV/CCN3 in chondrocytes: TGF-beta2 and type X collagen
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/JBMR.050818
– volume: 74
  start-page: 516
  year: 2004
  ident: 10.1016/j.bone.2015.11.007_bb0010
  article-title: Transforming growth factor-beta1 gene polymorphisms and bone turnover, bone mineral density and fracture risk in southern Chinese women
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/s00223-004-0163-4
– volume: 586
  start-page: 4270
  year: 2012
  ident: 10.1016/j.bone.2015.11.007_bb0030
  article-title: CCN2/CTGF binds to fibroblast growth factor receptor 2 and modulates its signaling
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2012.10.038
– volume: 282
  start-page: 23500
  year: 2007
  ident: 10.1016/j.bone.2015.11.007_bb0065
  article-title: Rac1 signaling stimulates N-cadherin expression, mesenchymal condensation, and chondrogenesis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M700680200
– volume: 8
  year: 2013
  ident: 10.1016/j.bone.2015.11.007_bb0075
  article-title: WISP1/CCN4: a potential target for inhibiting prostate cancer growth and spread to bone
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0071709
– year: 2015
  ident: 10.1016/j.bone.2015.11.007_bb0060
  article-title: Fluocinolone acetonide is a potent synergistic factor of TGF-beta3-associated chondrogenesis of bone marrow-derived mesenchymal stem cells for articular surface regeneration
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.2502
– volume: 14
  start-page: 585
  year: 2000
  ident: 10.1016/j.bone.2015.11.007_bb0070
  article-title: WISP-1 is a Wnt-1- and beta-catenin-responsive oncogene
  publication-title: Genes Dev.
  doi: 10.1101/gad.14.5.585
– volume: 8
  start-page: 1755
  year: 2013
  ident: 10.1016/j.bone.2015.11.007_bb0150
  article-title: Tumor necrosis factor-alpha induces ADAMTS-4 expression in human osteoarthritis chondrocytes
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2013.1729
– volume: 130
  start-page: 2779
  year: 2003
  ident: 10.1016/j.bone.2015.11.007_bb0095
  article-title: Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development
  publication-title: Development
  doi: 10.1242/dev.00505
– volume: 420
  start-page: 413
  year: 2009
  ident: 10.1016/j.bone.2015.11.007_bb0105
  article-title: N-terminal domains of CCN family 2/connective tissue growth factor bind to aggrecan
  publication-title: Biochem. J.
  doi: 10.1042/BJ20081991
– volume: 23
  start-page: 1751
  year: 2008
  ident: 10.1016/j.bone.2015.11.007_bb0100
  article-title: Cooperative regulation of chondrocyte differentiation by CCN2 and CCN3 shown by a comprehensive analysis of the CCN family proteins in cartilage
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.080615
– year: 2015
  ident: 10.1016/j.bone.2015.11.007_bb0130
  article-title: WNT1 induced secreted protein-1 (WISP1): a novel regulator of bone turnover and Wnt signaling
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M114.628818
– volume: 6
  year: 2011
  ident: 10.1016/j.bone.2015.11.007_bb0015
  article-title: Defining the earliest transcriptional steps of chondrogenic progenitor specification during the formation of the digits in the embryonic limb
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0024546
– volume: 60
  start-page: 501
  year: 2009
  ident: 10.1016/j.bone.2015.11.007_bb0050
  article-title: Involvement of the Wnt signaling pathway in experimental and human osteoarthritis: prominent role of Wnt-induced signaling protein 1
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.24247
– volume: 8
  year: 2013
  ident: 10.1016/j.bone.2015.11.007_bb0115
  article-title: CCN family member 2/connective tissue growth factor (CCN2/CTGF) has anti-aging effects that protect articular cartilage from age-related degenerative changes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0071156
– volume: 8
  start-page: 213
  year: 2000
  ident: 10.1016/j.bone.2015.11.007_bb0135
  article-title: Tumor necrosis factor alpha can contribute to focal loss of cartilage in osteoarthritis
  publication-title: Osteoarthr. Cartil.
  doi: 10.1053/joca.1999.0292
– volume: 104
  start-page: 1865
  year: 2008
  ident: 10.1016/j.bone.2015.11.007_bb0035
  article-title: TGF-beta1 and WISP-1/CCN-4 can regulate each other's activity to cooperatively control osteoblast function
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.21754
– volume: 18
  start-page: 1441
  year: 2010
  ident: 10.1016/j.bone.2015.11.007_bb0145
  article-title: Circulating levels of IL-6 and TNF-alpha are associated with knee radiographic osteoarthritis and knee cartilage loss in older adults
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2010.08.016
– volume: 2013
  start-page: 966
  year: 1833
  ident: 10.1016/j.bone.2015.11.007_bb0055
  article-title: CCN4 induces vascular cell adhesion molecule-1 expression in human synovial fibroblasts and promotes monocyte adhesion
  publication-title: Biochim. Biophys. Acta
– volume: 274
  start-page: 1655
  year: 2007
  ident: 10.1016/j.bone.2015.11.007_bb0125
  article-title: Expression and physiological role of CCN4/Wnt-induced secreted protein 1 mRNA splicing variants in chondrocytes
  publication-title: FEBS J
  doi: 10.1111/j.1742-4658.2007.05709.x
– volume: 26
  start-page: 193
  year: 2011
  ident: 10.1016/j.bone.2015.11.007_bb0040
  article-title: WISP-1/CCN4 regulates osteogenesis by enhancing BMP-2 activity
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.205
– volume: 284
  start-page: 14414
  year: 2009
  ident: 10.1016/j.bone.2015.11.007_bb0140
  article-title: WISP1, a pro-mitogenic, pro-survival factor, mediates tumor necrosis factor-alpha (TNF-alpha)-stimulated cardiac fibroblast proliferation but inhibits TNF-alpha-induced cardiomyocyte death
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M809757200
– volume: 19
  start-page: 1308
  year: 2004
  ident: 10.1016/j.bone.2015.11.007_bb0110
  article-title: Regeneration of defects in articular cartilage in rat knee joints by CCN2 (connective tissue growth factor)
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/JBMR.040322
SSID ssj0003971
Score 2.3283668
Snippet The CCN family of proteins plays important roles in development and homeostasis of bone and cartilage. To understand the role of CCN4 in chondrogenesis, human...
Abstract The CCN family of proteins plays important roles in development and homeostasis of bone and cartilage. To understand the role of CCN4 in...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 162
SubjectTerms Animals
Articular cartilage
Biomarkers - metabolism
Bone marrow stromal cell (BMSC)
Cartilage, Articular - pathology
CCN Intercellular Signaling Proteins - genetics
CCN Intercellular Signaling Proteins - metabolism
CCN4/WISP-1
Cell Differentiation
Cells, Cultured
Chondrogenesis
Chondrogenesis - genetics
Gene Expression Regulation
Humans
Mesenchymal Stem Cells - cytology
Mice, Knockout
Orthopedics
Phosphorylation
Protein Binding
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins - metabolism
Real-Time Polymerase Chain Reaction
Regeneration
Signal Transduction - genetics
Smad Proteins - metabolism
TGF-β3
Transforming Growth Factor beta3 - metabolism
Wound Healing
Title CCN4/WISP-1 positively regulates chondrogenesis by controlling TGF-β3 function
URI https://www.clinicalkey.com/#!/content/1-s2.0-S8756328215004081
https://www.clinicalkey.es/playcontent/1-s2.0-S8756328215004081
https://dx.doi.org/10.1016/j.bone.2015.11.007
https://www.ncbi.nlm.nih.gov/pubmed/26555637
https://www.proquest.com/docview/1760912203
https://pubmed.ncbi.nlm.nih.gov/PMC5749225
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrYS4VKXlsQUqIyEuKN21nYd9XK1YtiAWpLaiN8uxnbKopFWzRdpLf1R_SH8T48SJWFoViWMSj-x4xvOwvxkDvEEXVDJT6ChnPIti7TeabCyjVBRCS40Otq7RFrN0ehR_PE6O12Dc5sJ4WGXQ_Y1Or7V1eDMIszk4n88HB-hppxwjBnRpUBJ9-vU64zJNerA-2v80nXUKGU0ubbb50sgThNyZBuaVn5W-WiZN9nwxT3-r7N326bb_-TeM8g-7NNmEjeBQklEz5sew5sot2B6VGEz_XJK3pIZ41nvnW_DwczhJ34Yv4_EsHnzbP_gaUdIgt3650yW5aO6mdxVBveiLGZx4ZTivSL4kAdbuE9jJ4YdJdHPNibeLnrdP4Gjy_nA8jcLlCpFJWbaItDNUc2qYMNoyoYc8y3RSSIzJcls4alJjhS0oco4KiUFTrmXBuMmRgZpZxp9Cr8S5ew4kE9bFjhZCxjK2UgvmpCmyYWyLxIjE9oG2U6pMqDzuL8A4VS3E7IfybFCeDRiSKGRDH951NOdN3Y17W_OWU6rNKEUdqNAs3EuV3UXlqrCMK0VVxdRQ3RK1PiQd5Yq0_rPH160YKVzG_mxGl-7sEnvKUvTcGBvyPjxrxKr7b5YmvoybH--KwHUNfInw1S_l_HtdKjzJYokae-c_x_sCHuFTQKm_hN7i4tK9Qidske_Cg70ruhuW2m8MmjGI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgGXCloey9NIiAtKd_1IYh-rFcsW2gWpW9Gb5dgOLGrTqtki7YUfxQ_hNzGTOAtLqyJxjT2y4xnPw_5mTMhLcEE1d6VNCi7yRFo8aPJSJ5kqldUWHGzboC0m2fhQvjtKj9bIsMuFQVhl1P2tTm-0dfzSj6vZP5vN-gfgaWcCIgZwaUASMf36hkxFjri-7e-_cR5gcFl7yJcl2D1mzrQgr-K0wlqZLN3GUp74puzV1umy9_k3iPIPqzS6QzaiO0l32hnfJWuh2iRbOxWE0icL-oo2AM_m5HyT3NyP9-hb5MNwOJH9T7sHHxNGW9zWt3C8oOfty_ShpqAVsZTBZ1SFs5oWCxpB7Zi-TqdvR8nPH4KiVUTO3iOHozfT4TiJTyskLuP5PLHBMSuY48pZz5UdiDy3aakhIit8GZjLnFe-ZMA3pjSETIXVJReuAPZZ7rm4T9YrWLuHhObKBxlYqbTU0mureNCuzAfSl6lTqe8R1i2pcbHuOD5_cWw6gNlXg2wwyAYISAywoUdeL2nO2qob1_YWHadMl08KGtCAUbiWKr-KKtRxE9eGmZqbgbkkaD2SLilXZPWfI77oxMjAJsabGVuF0wsYKc_Ab-N8IHrkQStWy__mWYpF3HC-KwK37IAFwldbqtmXplB4mksN-vrRf873Obk1nu7vmb3dyfvH5Da0RLz6E7I-P78IT8EdmxfPmu32C6vKMlM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CCN4%2FWISP-1+positively+regulates+chondrogenesis+by+controlling+TGF-%CE%B23+function&rft.jtitle=Bone+%28New+York%2C+N.Y.%29&rft.au=Yoshioka%2C+Yuya&rft.au=Ono%2C+Mitsuaki&rft.au=Maeda%2C+Azusa&rft.au=Kilts%2C+Tina+M.&rft.date=2016-02-01&rft.issn=8756-3282&rft.volume=83&rft.spage=162&rft.epage=170&rft_id=info:doi/10.1016%2Fj.bone.2015.11.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bone_2015_11_007
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F87563282%2FS8756328215X00111%2Fcov150h.gif