Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers

Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop. Identification of the genetic architecture controlling salt tolerance facilitates breeders to select salt tolerant lines. However, the critical quantitativ...

Full description

Saved in:
Bibliographic Details
Published inBMC plant biology Vol. 17; no. 1; p. 140
Main Authors Luo, Meijie, Zhao, Yanxin, Zhang, Ruyang, Xing, Jinfeng, Duan, Minxiao, Li, Jingna, Wang, Naishun, Wang, Wenguang, Zhang, Shasha, Chen, Zhihui, Zhang, Huasheng, Shi, Zi, Song, Wei, Zhao, Jiuran
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 15.08.2017
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop. Identification of the genetic architecture controlling salt tolerance facilitates breeders to select salt tolerant lines. However, the critical quantitative trait loci (QTLs) responsible for the salt tolerance of field-grown maize plants are still unknown. To map the main genetic factors contributing to salt tolerance in mature maize, a double haploid population (240 individuals) and 1317 single nucleotide polymorphism (SNP) markers were employed to produce a genetic linkage map covering 1462.05 cM. Plant height of mature maize cultivated in the saline field (SPH) and plant height-based salt tolerance index (ratio of plant height between saline and control fields, PHI) were used to evaluate salt tolerance of mature maize plants. A major QTL for SPH was detected on Chromosome 1 with the LOD score of 22.4, which explained 31.2% of the phenotypic variation. In addition, the major QTL conditioning PHI was also mapped at the same position on Chromosome 1, and two candidate genes involving in ion homeostasis were identified within the confidence interval of this QTL. The detection of the major QTL in adult maize plant establishes the basis for the map-based cloning of genes associated with salt tolerance and provides a potential target for marker assisted selection in developing maize varieties with salt tolerance.
AbstractList Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop. Identification of the genetic architecture controlling salt tolerance facilitates breeders to select salt tolerant lines. However, the critical quantitative trait loci (QTLs) responsible for the salt tolerance of field-grown maize plants are still unknown. To map the main genetic factors contributing to salt tolerance in mature maize, a double haploid population (240 individuals) and 1317 single nucleotide polymorphism (SNP) markers were employed to produce a genetic linkage map covering 1462.05 cM. Plant height of mature maize cultivated in the saline field (SPH) and plant height-based salt tolerance index (ratio of plant height between saline and control fields, PHI) were used to evaluate salt tolerance of mature maize plants. A major QTL for SPH was detected on Chromosome 1 with the LOD score of 22.4, which explained 31.2% of the phenotypic variation. In addition, the major QTL conditioning PHI was also mapped at the same position on Chromosome 1, and two candidate genes involving in ion homeostasis were identified within the confidence interval of this QTL. The detection of the major QTL in adult maize plant establishes the basis for the map-based cloning of genes associated with salt tolerance and provides a potential target for marker assisted selection in developing maize varieties with salt tolerance.
Background Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop. Identification of the genetic architecture controlling salt tolerance facilitates breeders to select salt tolerant lines. However, the critical quantitative trait loci (QTLs) responsible for the salt tolerance of field-grown maize plants are still unknown. Results To map the main genetic factors contributing to salt tolerance in mature maize, a double haploid population (240 individuals) and 1317 single nucleotide polymorphism (SNP) markers were employed to produce a genetic linkage map covering 1462.05 cM. Plant height of mature maize cultivated in the saline field (SPH) and plant height-based salt tolerance index (ratio of plant height between saline and control fields, PHI) were used to evaluate salt tolerance of mature maize plants. A major QTL for SPH was detected on Chromosome 1 with the LOD score of 22.4, which explained 31.2% of the phenotypic variation. In addition, the major QTL conditioning PHI was also mapped at the same position on Chromosome 1, and two candidate genes involving in ion homeostasis were identified within the confidence interval of this QTL. Conclusions The detection of the major QTL in adult maize plant establishes the basis for the map-based cloning of genes associated with salt tolerance and provides a potential target for marker assisted selection in developing maize varieties with salt tolerance. Keywords: Salt tolerance, QTL mapping, SNP, Plant height, Maize
Abstract Background Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop. Identification of the genetic architecture controlling salt tolerance facilitates breeders to select salt tolerant lines. However, the critical quantitative trait loci (QTLs) responsible for the salt tolerance of field-grown maize plants are still unknown. Results To map the main genetic factors contributing to salt tolerance in mature maize, a double haploid population (240 individuals) and 1317 single nucleotide polymorphism (SNP) markers were employed to produce a genetic linkage map covering 1462.05 cM. Plant height of mature maize cultivated in the saline field (SPH) and plant height-based salt tolerance index (ratio of plant height between saline and control fields, PHI) were used to evaluate salt tolerance of mature maize plants. A major QTL for SPH was detected on Chromosome 1 with the LOD score of 22.4, which explained 31.2% of the phenotypic variation. In addition, the major QTL conditioning PHI was also mapped at the same position on Chromosome 1, and two candidate genes involving in ion homeostasis were identified within the confidence interval of this QTL. Conclusions The detection of the major QTL in adult maize plant establishes the basis for the map-based cloning of genes associated with salt tolerance and provides a potential target for marker assisted selection in developing maize varieties with salt tolerance.
Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop. Identification of the genetic architecture controlling salt tolerance facilitates breeders to select salt tolerant lines. However, the critical quantitative trait loci (QTLs) responsible for the salt tolerance of field-grown maize plants are still unknown.BACKGROUNDSalt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop. Identification of the genetic architecture controlling salt tolerance facilitates breeders to select salt tolerant lines. However, the critical quantitative trait loci (QTLs) responsible for the salt tolerance of field-grown maize plants are still unknown.To map the main genetic factors contributing to salt tolerance in mature maize, a double haploid population (240 individuals) and 1317 single nucleotide polymorphism (SNP) markers were employed to produce a genetic linkage map covering 1462.05 cM. Plant height of mature maize cultivated in the saline field (SPH) and plant height-based salt tolerance index (ratio of plant height between saline and control fields, PHI) were used to evaluate salt tolerance of mature maize plants. A major QTL for SPH was detected on Chromosome 1 with the LOD score of 22.4, which explained 31.2% of the phenotypic variation. In addition, the major QTL conditioning PHI was also mapped at the same position on Chromosome 1, and two candidate genes involving in ion homeostasis were identified within the confidence interval of this QTL.RESULTSTo map the main genetic factors contributing to salt tolerance in mature maize, a double haploid population (240 individuals) and 1317 single nucleotide polymorphism (SNP) markers were employed to produce a genetic linkage map covering 1462.05 cM. Plant height of mature maize cultivated in the saline field (SPH) and plant height-based salt tolerance index (ratio of plant height between saline and control fields, PHI) were used to evaluate salt tolerance of mature maize plants. A major QTL for SPH was detected on Chromosome 1 with the LOD score of 22.4, which explained 31.2% of the phenotypic variation. In addition, the major QTL conditioning PHI was also mapped at the same position on Chromosome 1, and two candidate genes involving in ion homeostasis were identified within the confidence interval of this QTL.The detection of the major QTL in adult maize plant establishes the basis for the map-based cloning of genes associated with salt tolerance and provides a potential target for marker assisted selection in developing maize varieties with salt tolerance.CONCLUSIONSThe detection of the major QTL in adult maize plant establishes the basis for the map-based cloning of genes associated with salt tolerance and provides a potential target for marker assisted selection in developing maize varieties with salt tolerance.
BACKGROUND: Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop. Identification of the genetic architecture controlling salt tolerance facilitates breeders to select salt tolerant lines. However, the critical quantitative trait loci (QTLs) responsible for the salt tolerance of field-grown maize plants are still unknown. RESULTS: To map the main genetic factors contributing to salt tolerance in mature maize, a double haploid population (240 individuals) and 1317 single nucleotide polymorphism (SNP) markers were employed to produce a genetic linkage map covering 1462.05 cM. Plant height of mature maize cultivated in the saline field (SPH) and plant height-based salt tolerance index (ratio of plant height between saline and control fields, PHI) were used to evaluate salt tolerance of mature maize plants. A major QTL for SPH was detected on Chromosome 1 with the LOD score of 22.4, which explained 31.2% of the phenotypic variation. In addition, the major QTL conditioning PHI was also mapped at the same position on Chromosome 1, and two candidate genes involving in ion homeostasis were identified within the confidence interval of this QTL. CONCLUSIONS: The detection of the major QTL in adult maize plant establishes the basis for the map-based cloning of genes associated with salt tolerance and provides a potential target for marker assisted selection in developing maize varieties with salt tolerance.
Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop. Identification of the genetic architecture controlling salt tolerance facilitates breeders to select salt tolerant lines. However, the critical quantitative trait loci (QTLs) responsible for the salt tolerance of field-grown maize plants are still unknown. To map the main genetic factors contributing to salt tolerance in mature maize, a double haploid population (240 individuals) and 1317 single nucleotide polymorphism (SNP) markers were employed to produce a genetic linkage map covering 1462.05 cM. Plant height of mature maize cultivated in the saline field (SPH) and plant height-based salt tolerance index (ratio of plant height between saline and control fields, PHI) were used to evaluate salt tolerance of mature maize plants. A major QTL for SPH was detected on Chromosome 1 with the LOD score of 22.4, which explained 31.2% of the phenotypic variation. In addition, the major QTL conditioning PHI was also mapped at the same position on Chromosome 1, and two candidate genes involving in ion homeostasis were identified within the confidence interval of this QTL. The detection of the major QTL in adult maize plant establishes the basis for the map-based cloning of genes associated with salt tolerance and provides a potential target for marker assisted selection in developing maize varieties with salt tolerance.
ArticleNumber 140
Audience Academic
Author Li, Jingna
Chen, Zhihui
Zhao, Jiuran
Zhao, Yanxin
Zhang, Ruyang
Song, Wei
Luo, Meijie
Shi, Zi
Duan, Minxiao
Xing, Jinfeng
Wang, Naishun
Zhang, Huasheng
Wang, Wenguang
Zhang, Shasha
Author_xml – sequence: 1
  givenname: Meijie
  surname: Luo
  fullname: Luo, Meijie
– sequence: 2
  givenname: Yanxin
  surname: Zhao
  fullname: Zhao, Yanxin
– sequence: 3
  givenname: Ruyang
  surname: Zhang
  fullname: Zhang, Ruyang
– sequence: 4
  givenname: Jinfeng
  surname: Xing
  fullname: Xing, Jinfeng
– sequence: 5
  givenname: Minxiao
  surname: Duan
  fullname: Duan, Minxiao
– sequence: 6
  givenname: Jingna
  surname: Li
  fullname: Li, Jingna
– sequence: 7
  givenname: Naishun
  surname: Wang
  fullname: Wang, Naishun
– sequence: 8
  givenname: Wenguang
  surname: Wang
  fullname: Wang, Wenguang
– sequence: 9
  givenname: Shasha
  surname: Zhang
  fullname: Zhang, Shasha
– sequence: 10
  givenname: Zhihui
  surname: Chen
  fullname: Chen, Zhihui
– sequence: 11
  givenname: Huasheng
  surname: Zhang
  fullname: Zhang, Huasheng
– sequence: 12
  givenname: Zi
  surname: Shi
  fullname: Shi, Zi
– sequence: 13
  givenname: Wei
  surname: Song
  fullname: Song, Wei
– sequence: 14
  givenname: Jiuran
  surname: Zhao
  fullname: Zhao, Jiuran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28806927$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhSNURB_wA9igSGxgkeJHEtsbpKriUWl4tqwtx7kePGTiwXZ4_XpumBY6FQhl4ej6Oyc3R-ew2BvDCEVxn5JjSmX7JFEmBakIFRUlilTiVnFAa0Erxpjau_a-XxymtCIIylrdKfaZlKRVTBwU5pXZbPy4LIMrTbk2qxDLdxeL0uGZzJDLHAaIZrQwE2uTpwil8zD01TKGryOO_A8oN4MZcyo7k6Avw1iev36LN_ETxHS3uO3MkODe5XlUfHj-7OL0ZbV48-Ls9GRR2ZaJXElHGifbTvKaQMt5q7q6Nozx2vCO1xQ3BgGN7Nu6YYw4w5reQKOE4dYx3vOj4mzr2wez0pvo8fvfdTBe_xqEuNQmZm8H0I206OiMAEXrvlGSdkyCcMCks4QL9Hq69dpM3Rp6C2OOZtgx3b0Z_Ue9DF900zS4u0KDR5cGMXyeIGW99snCgDFBmJJmhJCWSK7Yf1GqmKKI1hTRhzfQVZjiiKkixeuWtlQ0f6ilwX_1owu4op1N9UlDsTIMA0Tq-C8UPj2svcWeOY_zHcHjHQEyGb7lpZlS0mfn73fZB9fz-x3cVe8QEFvAxpBSBKetzyb7MMfpB02Jnhuutw3XWFw9N1zPSnpDeWX-b81PH3f4QQ
CitedBy_id crossref_primary_10_3389_fpls_2022_805247
crossref_primary_10_3389_fpls_2022_869270
crossref_primary_10_1016_j_jplph_2020_153194
crossref_primary_10_3390_biology10121255
crossref_primary_10_3389_fpls_2021_794020
crossref_primary_10_1007_s12374_018_0350_x
crossref_primary_10_1007_s00425_020_03366_6
crossref_primary_10_3390_agronomy11020376
crossref_primary_10_3390_ijms23179755
crossref_primary_10_1007_s12010_018_2738_y
crossref_primary_10_3390_ijms23094852
crossref_primary_10_32615_bp_2020_082
crossref_primary_10_1007_s10681_018_2190_7
crossref_primary_10_1071_CP20116
crossref_primary_10_1007_s10142_019_00707_x
crossref_primary_10_1016_j_molp_2023_07_005
crossref_primary_10_3390_agronomy15020379
crossref_primary_10_1016_j_sajb_2024_02_015
crossref_primary_10_1038_s41437_022_00516_2
crossref_primary_10_1111_pbr_12805
crossref_primary_10_1016_j_cj_2022_12_004
crossref_primary_10_1016_j_jia_2024_02_009
crossref_primary_10_1111_ppl_13606
crossref_primary_10_1016_j_ygeno_2021_04_032
crossref_primary_10_1007_s00122_021_03897_w
crossref_primary_10_3389_fpls_2022_878809
crossref_primary_10_1111_ppl_13166
crossref_primary_10_1186_s12864_021_07922_6
crossref_primary_10_1080_15592324_2025_2479513
crossref_primary_10_1016_j_scienta_2018_10_039
crossref_primary_10_3389_fpls_2023_1139896
crossref_primary_10_1007_s00425_021_03739_5
crossref_primary_10_3389_fpls_2023_1241736
crossref_primary_10_1007_s13258_019_00842_6
crossref_primary_10_1111_pbi_13607
crossref_primary_10_1007_s00122_018_3142_2
crossref_primary_10_1016_j_cj_2020_09_007
crossref_primary_10_1021_acs_jproteome_7b00455
crossref_primary_10_3389_fpls_2024_1361422
crossref_primary_10_3390_genes13030486
crossref_primary_10_1016_j_cj_2022_05_004
crossref_primary_10_1038_s41598_022_21737_9
crossref_primary_10_1093_jxb_erab254
crossref_primary_10_1016_j_jia_2024_03_030
crossref_primary_10_1007_s11032_019_0974_7
crossref_primary_10_31548_dopovidi2018_01_020
crossref_primary_10_3390_ijms24010006
crossref_primary_10_56093_ijas_v92i3_122539
crossref_primary_10_1186_s12870_019_2004_7
crossref_primary_10_3389_fpls_2022_855572
crossref_primary_10_1080_13102818_2022_2116356
crossref_primary_10_1111_ppl_13502
crossref_primary_10_2298_GENSR2401063A
crossref_primary_10_1111_ppl_14396
crossref_primary_10_1007_s11032_022_01294_9
Cites_doi 10.1105/tpc.010371
10.1104/pp.124.3.941
10.1111/j.1744-7348.2001.tb00138.x
10.1016/j.cell.2016.08.029
10.1146/annurev.arplant.59.032607.092911
10.1007/s11295-015-0959-6
10.1016/j.cj.2015.01.001
10.1007/s10681-009-9919-2
10.1111/j.1365-2494.2012.00869.x
10.1007/s00438-016-1206-z
10.1007/s00122-006-0494-9
10.2135/cropsci1986.0011183X002600020008x
10.1073/pnas.120170197
10.1007/s10681-014-1250-x
10.4141/S04-066
10.1016/j.cj.2014.09.001
10.1080/00103624.2014.998340
10.1016/j.fcr.2004.01.005
10.1007/s11032-015-0335-0
10.2298/GENSR0902145B
10.1186/1471-2229-10-58
10.1007/s00122-008-0900-6
10.1007/s00122-012-1873-z
10.1371/journal.pone.0153610
10.1007/s00122-003-1421-y
10.1073/pnas.97.7.3735
10.1038/nbt.2120
10.1007/s11105-014-0726-0
10.19026/ajfst.11.2360
10.1016/j.fcr.2013.06.011
10.1016/j.bcab.2015.08.009
10.1016/S1360-1385(00)01838-0
10.1007/s13593-015-0287-0
10.1111/pce.12428
10.1006/jasc.1999.0550
10.1073/pnas.97.7.3730
10.1016/j.plantsci.2007.11.016
10.1371/journal.pone.0094126
10.1038/ng1643
10.1071/FP04111
ContentType Journal Article
Copyright COPYRIGHT 2017 BioMed Central Ltd.
Copyright BioMed Central 2017
The Author(s). 2017
Copyright_xml – notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Copyright BioMed Central 2017
– notice: The Author(s). 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X2
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M1P
M7N
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s12870-017-1090-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList



MEDLINE - Academic
AGRICOLA
MEDLINE
Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1471-2229
EndPage 140
ExternalDocumentID oai_doaj_org_article_58c341fa7e914d5981b28e7fe28fc037
PMC5556339
A511282522
28806927
10_1186_s12870_017_1090_7
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: ;
  grantid: Postdoctoral Fellow Fund
– fundername: ;
  grantid: JNKYT201603
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5GY
5VS
6J9
7X2
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
APEBS
ATCPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
IGH
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M0K
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7XB
8FK
AHSBF
AZQEC
DWQXO
GNUQQ
K9.
M7N
PKEHL
PQEST
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c627t-8f05f86b8340e63369b44a2234a3b341880e7e58d645220fa25dae597a3cf23d3
IEDL.DBID M48
ISSN 1471-2229
IngestDate Wed Aug 27 01:20:05 EDT 2025
Thu Aug 21 14:13:34 EDT 2025
Fri Jul 11 17:02:54 EDT 2025
Fri Jul 11 10:47:01 EDT 2025
Fri Jul 25 10:43:25 EDT 2025
Tue Jun 17 21:49:29 EDT 2025
Tue Jun 10 20:08:42 EDT 2025
Fri Jun 27 04:45:14 EDT 2025
Mon Jul 21 05:49:11 EDT 2025
Thu Apr 24 23:09:26 EDT 2025
Tue Jul 01 03:01:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Salt tolerance
Maize
SNP
Plant height
QTL mapping
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c627t-8f05f86b8340e63369b44a2234a3b341880e7e58d645220fa25dae597a3cf23d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12870-017-1090-7
PMID 28806927
PQID 1934616175
PQPubID 44650
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_58c341fa7e914d5981b28e7fe28fc037
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5556339
proquest_miscellaneous_2000608392
proquest_miscellaneous_1929108341
proquest_journals_1934616175
gale_infotracmisc_A511282522
gale_infotracacademiconefile_A511282522
gale_incontextgauss_ISR_A511282522
pubmed_primary_28806927
crossref_citationtrail_10_1186_s12870_017_1090_7
crossref_primary_10_1186_s12870_017_1090_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-15
PublicationDateYYYYMMDD 2017-08-15
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC plant biology
PublicationTitleAlternate BMC Plant Biol
PublicationYear 2017
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References MP Lindsay (1090_CR11) 2004; 31
J Kelly (1090_CR33) 2011; 46
H Shi (1090_CR44) 2000; 97
J Liu (1090_CR23) 2000; 97
A Frary (1090_CR29) 2010; 10
S Tiwari (1090_CR8) 2016; 11
L Meng (1090_CR27) 2015; 3
I Villalta (1090_CR31) 2007; 114
U Halfter (1090_CR24) 2000; 97
EC Johnson (1090_CR37) 1986; 26
MT Estañ (1090_CR30) 2009; 118
TL Cheng (1090_CR2) 2015; 6
JK Zhu (1090_CR4) 2016; 167
JM Costa (1090_CR34) 2001; 139
D Xue (1090_CR35) 2009; 169
JK Zhu (1090_CR6) 2000; 124
M Farooq (1090_CR42) 2015; 35
MDP Moncada (1090_CR17) 2016; 12
S Ali (1090_CR40) 2013; 154
R Munns (1090_CR1) 2008; 9
J Wang (1090_CR5) 2015; 38
R Munns (1090_CR12) 2012; 30
HX Lin (1090_CR9) 2004; 108
KT Win (1090_CR41) 2015; 4
C Yang (1090_CR43) 2008; 174
D Cui (1090_CR14) 2015; 203
HL Tian (1090_CR22) 2015; 35
Z Wang (1090_CR36) 2012; 125
RAJ Wüst (1090_CR20) 2000; 27
Y Zhao (1090_CR25) 2014; 9
J Bočanski (1090_CR32) 2009; 41
RY Zhang (1090_CR15) 2013; 21
JK Zhu (1090_CR3) 2001; 6
H Shi (1090_CR7) 2002; 14
JJ Miller (1090_CR21) 2005; 85
MJ Luo (1090_CR26) 2017; 62
Y Zhai (1090_CR19) 2016; 11
H Guo (1090_CR28) 2014; 9
X Yang (1090_CR18) 2016; 291
ZH Ren (1090_CR10) 2005; 37
A Azadi (1090_CR16) 2014; 33
M Ebrahimiyan (1090_CR38) 2013; 68
R Guan (1090_CR13) 2014; 2
R Cakir (1090_CR39) 2004; 89
References_xml – volume: 14
  start-page: 465
  issue: 2
  year: 2002
  ident: 1090_CR7
  publication-title: Plant Cell
  doi: 10.1105/tpc.010371
– volume: 124
  start-page: 941
  issue: 3
  year: 2000
  ident: 1090_CR6
  publication-title: Plant Physiol
  doi: 10.1104/pp.124.3.941
– volume: 62
  start-page: 11
  issue: 2
  year: 2017
  ident: 1090_CR26
  publication-title: Maydica
– volume: 9
  issue: 9
  year: 2014
  ident: 1090_CR28
  publication-title: PLoS One
– volume: 139
  start-page: 137
  year: 2001
  ident: 1090_CR34
  publication-title: Ann Appl Biol
  doi: 10.1111/j.1744-7348.2001.tb00138.x
– volume: 167
  start-page: 313
  issue: 2
  year: 2016
  ident: 1090_CR4
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.029
– volume: 9
  start-page: 651
  issue: 1
  year: 2008
  ident: 1090_CR1
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.59.032607.092911
– volume: 12
  start-page: 1
  issue: 1
  year: 2016
  ident: 1090_CR17
  publication-title: Tree Genet Genomes
  doi: 10.1007/s11295-015-0959-6
– volume: 3
  start-page: 269
  issue: 3
  year: 2015
  ident: 1090_CR27
  publication-title: The Crop Journal
  doi: 10.1016/j.cj.2015.01.001
– volume: 169
  start-page: 187
  issue: 2
  year: 2009
  ident: 1090_CR35
  publication-title: Euphytica
  doi: 10.1007/s10681-009-9919-2
– volume: 21
  start-page: 6
  issue: 2
  year: 2013
  ident: 1090_CR15
  publication-title: Journal of Maize Sciences
– volume: 68
  start-page: 59
  issue: 1
  year: 2013
  ident: 1090_CR38
  publication-title: Grass & Forage Science
  doi: 10.1111/j.1365-2494.2012.00869.x
– volume: 291
  start-page: 1625
  issue: 4
  year: 2016
  ident: 1090_CR18
  publication-title: Mol Gen Genomics
  doi: 10.1007/s00438-016-1206-z
– volume: 114
  start-page: 1001
  issue: 6
  year: 2007
  ident: 1090_CR31
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-006-0494-9
– volume: 26
  start-page: 253
  issue: 2
  year: 1986
  ident: 1090_CR37
  publication-title: Crop Sci
  doi: 10.2135/cropsci1986.0011183X002600020008x
– volume: 97
  start-page: 6896
  issue: 12
  year: 2000
  ident: 1090_CR44
  publication-title: P Natl Acad Sci USA
  doi: 10.1073/pnas.120170197
– volume: 203
  start-page: 273
  issue: 2
  year: 2015
  ident: 1090_CR14
  publication-title: Euphytica
  doi: 10.1007/s10681-014-1250-x
– volume: 85
  start-page: 427
  issue: 3
  year: 2005
  ident: 1090_CR21
  publication-title: Can J Soil Sci
  doi: 10.4141/S04-066
– volume: 2
  start-page: 358
  issue: 6
  year: 2014
  ident: 1090_CR13
  publication-title: The Crop Journal.
  doi: 10.1016/j.cj.2014.09.001
– volume: 46
  start-page: 564
  issue: 5
  year: 2011
  ident: 1090_CR33
  publication-title: Communications in Soil Science & Plant Analysis
  doi: 10.1080/00103624.2014.998340
– volume: 89
  start-page: 1
  issue: 1
  year: 2004
  ident: 1090_CR39
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2004.01.005
– volume: 35
  start-page: 136
  issue: 6
  year: 2015
  ident: 1090_CR22
  publication-title: Mol Breeding
  doi: 10.1007/s11032-015-0335-0
– volume: 41
  start-page: 145
  issue: 2
  year: 2009
  ident: 1090_CR32
  publication-title: Genetika
  doi: 10.2298/GENSR0902145B
– volume: 10
  start-page: 1
  issue: 1
  year: 2010
  ident: 1090_CR29
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-10-58
– volume: 118
  start-page: 305
  issue: 2
  year: 2009
  ident: 1090_CR30
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-008-0900-6
– volume: 125
  start-page: 807
  issue: 4
  year: 2012
  ident: 1090_CR36
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-012-1873-z
– volume: 11
  start-page: e0153610
  issue: 4
  year: 2016
  ident: 1090_CR8
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0153610
– volume: 108
  start-page: 253
  issue: 2
  year: 2004
  ident: 1090_CR9
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-003-1421-y
– volume: 97
  start-page: 3735
  issue: 7
  year: 2000
  ident: 1090_CR24
  publication-title: P Natl Acad Sci USA.
  doi: 10.1073/pnas.97.7.3735
– volume: 30
  start-page: 360
  issue: 4
  year: 2012
  ident: 1090_CR12
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2120
– volume: 33
  start-page: 102
  issue: 1
  year: 2014
  ident: 1090_CR16
  publication-title: Plant Mol Biol Rep
  doi: 10.1007/s11105-014-0726-0
– volume: 11
  start-page: 88
  issue: 1
  year: 2016
  ident: 1090_CR19
  publication-title: Advance Journal of Food Science & Technology
  doi: 10.19026/ajfst.11.2360
– volume: 154
  start-page: 65
  issue: 3
  year: 2013
  ident: 1090_CR40
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2013.06.011
– volume: 4
  start-page: 449
  issue: 4
  year: 2015
  ident: 1090_CR41
  publication-title: Biocatalysis & Agricultural Biotechnology
  doi: 10.1016/j.bcab.2015.08.009
– volume: 6
  start-page: 66
  issue: 2
  year: 2001
  ident: 1090_CR3
  publication-title: Trends Plant Sci
  doi: 10.1016/S1360-1385(00)01838-0
– volume: 35
  start-page: 461
  issue: 2
  year: 2015
  ident: 1090_CR42
  publication-title: A review Agro Sustain Dev
  doi: 10.1007/s13593-015-0287-0
– volume: 38
  start-page: 655
  issue: 4
  year: 2015
  ident: 1090_CR5
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12428
– volume: 27
  start-page: 1161
  issue: 12
  year: 2000
  ident: 1090_CR20
  publication-title: J Archaeol Sci
  doi: 10.1006/jasc.1999.0550
– volume: 97
  start-page: 3730
  issue: 7
  year: 2000
  ident: 1090_CR23
  publication-title: P Natl Acad Sci USA.
  doi: 10.1073/pnas.97.7.3730
– volume: 174
  start-page: 290
  issue: 3
  year: 2008
  ident: 1090_CR43
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2007.11.016
– volume: 9
  start-page: e94126
  issue: 4
  year: 2014
  ident: 1090_CR25
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0094126
– volume: 37
  start-page: 1141
  issue: 10
  year: 2005
  ident: 1090_CR10
  publication-title: Nat Genet
  doi: 10.1038/ng1643
– volume: 31
  start-page: 1105
  issue: 11
  year: 2004
  ident: 1090_CR11
  publication-title: Funct Plant Biol
  doi: 10.1071/FP04111
– volume: 6
  start-page: 30
  year: 2015
  ident: 1090_CR2
  publication-title: Front Plant Sci
SSID ssj0017849
Score 2.4264307
Snippet Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop. Identification...
Background Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop....
BACKGROUND: Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop....
Abstract Background Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 140
SubjectTerms Abiotic stress
adults
Agricultural biotechnology
Agricultural production
Barley
Chromosome 1
chromosome mapping
chromosomes
Cloning
confidence interval
Confidence intervals
Corn
Crop production
doubled haploids
Experiments
Food
Food plants
Gene mapping
Gene polymorphism
Genes
Genetic aspects
Genetic factors
Genetic Markers
Germination
Homeostasis
Identification and classification
Inbreeding
Maize
marker-assisted selection
Markers
molecular cloning
phenotypic variation
Phenotypic variations
Physiological aspects
Plant growth
Plant height
Polymorphism
Polymorphism, Single Nucleotide
Population
QTL mapping
Quantitative Trait Loci
Rice
Salinity
Salt
salt stress
Salt stress (Botany)
Salt tolerance
Salt Tolerance - genetics
Signal transduction
Single nucleotide polymorphisms
Single-nucleotide polymorphism
SNP
Soil sciences
Zea mays
Zea mays - genetics
Zea mays - physiology
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEL4k2gIIOQkJCiev3OsUVUBdEKaCv1ZjmOvRS2SbXJHuDXM5NkVxsh4EKO8VhKZsaebzTjz4S8EpyVIfIiL5KIWGZkecFEmScuhfBl6a3C08jHJ_roXH64UBdbV31hT9hADzwobk_ZABtt8iYWM1mpAmAWt9GkyG0KTPTnyCHmrZOpsX5grCzGGubM6r12hvW8HHdkbETMzSQK9WT9v2_JWzFp2i-5FYAO75DbI3Kk-8MX3yU3Yn2P3DxoAN39uE_8sUemhTltEvX0yn9rlvTz2UcKmJS2ftHRrllEvEQjosRVT-dJ-_a1fI6ZOLy6_Bnp9QL7YijGtoo2NT09-QQjy-8AEh-Q88N3Z2-P8vH6hDxobrrcJqaS1aUVkkUthC5KKT3AAelFCTqFlRtNVLbC2iZnyXNV-QgJhhchcVGJh2Snbur4mFCpg-SGKyuChMd465mflYU1odI-xIywtTpdGLnF8YqLhetzDKvdYAEHFsCaN3MmI282U64HYo2_CR-gjTaCyIndvwBPcaOnuH95SkZeooUdsl7U2FYz96u2de9Pv7h9hJ2QK3OekdejUGrgD4IfTymAHpAoayK5O5GEZRmmw2tHcuO20DpAy1JjRqky8mIzjDOx1a2OzQplOEA4MNrszzL9-SqG2DYjjwbf3OiGg111weF3zcRrJ8qbjtSXX3ticYVscaJ48j-0_ZTc4rjekD1Y7ZKdbrmKzwC_deXzfqn-AmFFPh8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagcOBS8WZLQQYhISFFTfzOCbWIqiBaAW2lvVmOYy-FbbJsdg_w65nJepdGiOYYT6LY4xl_kxl_JuQVZ3nlAyuzMvKAacY8K3NeZZEJzl1VOSNxN_LxiTo6Fx_Hcpx-uHWprHLtE3tHXbce_5HvAdAQCsG4fDv7meGpUZhdTUdo3CS3kLoMS7r0eBNwFdqIMmUyC6P2ugKzehn6ZSxHzPRgLeop-_91zFdWpmHV5JVl6PAu2U74ke6vFH6P3AjNfXL7oAWM9-sBcccO-RYmtI3U0Uv3vZ3TL2efKCBT2rnpgi7aacCjNAJKXPaknrQvYssmGI_DrYvfgc6mWB1DcYWradvQ05PP0DL_AVDxITk_fH_27ihLhyhkXjG9yEzMZTSqMlzkQXGuykoIB6BAOF7BEgb2G3SQpsYMJ8ujY7J2AcIMx31kvOaPyFbTNuEJoUJ5wTSThnsBl3bG5a6oSqN9rZwPI5Kvh9P6xDCOB11MbR9pGGVXGrCgAcx851aPyJvNI7MVvcZ1wgeoo40gMmP3N9r5xCZDs9J46FV0OpSFqGUJsJyZoGNgJvqcw0teooYtcl80WFwzccuusx9Ov9p9BJ8QMTM2Iq-TUGyhB96lvQowDkiXNZDcHUiCcfph83oi2eQcOvt3Ko_Ii00zPokFb01olyjDAMiB0or_y_S7rHJEuCPyeDU3N2PDQK-qZNBdPZi1g8EbtjQX33p6cYmccbzcuf7Tn5I7DC0J2YHlLtlazJfhGeCzRfW8N8I_x8Q1yA
  priority: 102
  providerName: ProQuest
Title Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers
URI https://www.ncbi.nlm.nih.gov/pubmed/28806927
https://www.proquest.com/docview/1934616175
https://www.proquest.com/docview/1929108341
https://www.proquest.com/docview/2000608392
https://pubmed.ncbi.nlm.nih.gov/PMC5556339
https://doaj.org/article/58c341fa7e914d5981b28e7fe28fc037
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELf2wQMviO8FRmUQEhJSILUd23lAaEWbBqLV6Fap4sVyHKcMumSkrcT467lL09KIwQN96EN8rpTzXe53vcvvCHnOWZQ6z5IwybnHMmMUJhFPw5wJzm2aWh3j28j9gTweiQ_jeLxFVuOtGgXOrk3tcJ7UqJq--vH96i04_Jva4bV8PetitS7E5y22GYZqm-xCYFLop33xu6igtEiawua125AYGMxZJjhiZiNK1WT-fz6yN2JWu59yI0Ad3Sa3GmRJD5amcIds-eIuudErAf1d3SO2b5GJYULLnFp6Yb-WFf109pECZqUzO53TeTn1OGTDo8RFTfdJ6_a2cIKZOlw6_-np5RT7ZijGvoyWBT0dnMBK9Q1A5H0yOjo8e3ccNuMVQieZmoc6j-Jcy1RzEXnJuUxSISzABWF5CsENVOGVj3WGtU8W5ZbFmfWQgFjucsYz_oDsFGXh9wgV0gmmWKy5E_BRVtvIdtNEK5dJ63xAopU6jWu4x3EExtTUOYiWZnkYBg4Da-KRUQF5ud5yuSTe-JdwD89oLYic2fWFspqYxgVNrB3cVW6VT7oiixMA7Ex7lXumcxdx-JFneMIGWTEKbLuZ2MVsZt6fDs0BwlLIpRkLyItGKC_hDpxt3mIAPSCRVktyvyUJbuvayytDMiurN4CmhcSMMw7I0_Uy7sRWuMKXC5RhAPHg0Lp_l6nfv4oQ-wbk4dI217pZmXhAVMtqW8prrxTnX2ri8RjZ5Hjy6L93PiY3GfobUgrH-2RnXi38EwB187RDttVYdchu73BwMuzUf410aveF72Hv8y_laEqf
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGhwQviP8UBhgEQkKKlthO4jwgtMKmlrXV2Dppb8Zx7DLoktK0QuND8Rm5S9OyCLG35TG-RLHvfPe73PmOkFec-amxLPESxy2GGX0v8XnqOSY412mqZYinkQfDqHssPp2EJxvk9-osDKZVrnRipaizwuA_8m0AGiJCMB6-n_7wsGsURldXLTSWYrFvz3-Cy1a-630E_r5mbG939KHr1V0FPBOxeO5J54dORqnkwrcR51GSCqHBSgrNU9DpINA2tqHMMOTHfKdZmGkLuFtz4xjPOLz3GtkUHFyZFtns7A4PDtdxi1iKpI6dBjLaLgOMI3poCTAB0osb1q9qEvCvKbhgC5t5mhcM395tcqtGrHRnKWJ3yIbN75LrnQJQ5fk9ogcaKzyMaeGopmf6WzGjn0d9CliYlnoyp_NiYrF5h0WKs6qMKK3S5rwx_gGAW6e_LJ1OMB-Hok3NaJHTo-EBjMy-Azi9T46vZIEfkFZe5PYRoSIygsUslNwIuGItta-DNJGxySJtbJv4q-VUpq5pjq01JqrybWSklhxQwAGMtfsqbpO360emy4IelxF3kEdrQqzFXd0oZmNVb20VSgOzcjq2SSCyMAFHgEkbO8ukMz6Hl7xEDiustpFjOs9YL8pS9Y4O1Q7CXfDRGWuTNzWRK2AGRtenI2AdsEBXg3KrQQnqwDSHV4KkanVUqr-bp01erIfxSUyxy22xQBoG0BGYFvyfpjrX5SOmbpOHS9lcrw0DvkYJg-nGDaltLF5zJD_9WhU0D7FKHU8eX_7pz8mN7mjQV_3ecP8JuclwV2Ft4nCLtOazhX0K6HCePqu3JCVfrloL_AEA8XJR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+of+a+major+QTL+for+salt+tolerance+of+mature+field-grown+maize+plants+based+on+SNP+markers&rft.jtitle=BMC+plant+biology&rft.au=Luo%2C+Meijie&rft.au=Zhao%2C+Yanxin&rft.au=Zhang%2C+Ruyang&rft.au=Xing%2C+Jinfeng&rft.date=2017-08-15&rft.pub=BioMed+Central&rft.eissn=1471-2229&rft.volume=17&rft_id=info:doi/10.1186%2Fs12870-017-1090-7&rft_id=info%3Apmid%2F28806927&rft.externalDocID=PMC5556339
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2229&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2229&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2229&client=summon