Peripheral Interventions Radiation Exposure Reduction Using a Sensor-Based Navigation System: A Proof-of-Concept Study

Intravascular catheter positioning is done with radiography imaging. Increasing evidence indicates excessive ionizing radiation exposure for patients and physicians during catheterization procedures, making solutions to reduce radiation exposure a priority. This study evaluated the feasibility and i...

Full description

Saved in:
Bibliographic Details
Published inCJC open (Online) Vol. 4; no. 2; pp. 223 - 229
Main Authors L’Allier, Philippe L., Richer, Louis-Philippe, McSpadden, Luke C., Dorval, Jean-François
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2022
Elsevier
Subjects
Online AccessGet full text
ISSN2589-790X
2589-790X
DOI10.1016/j.cjco.2021.10.004

Cover

Abstract Intravascular catheter positioning is done with radiography imaging. Increasing evidence indicates excessive ionizing radiation exposure for patients and physicians during catheterization procedures, making solutions to reduce radiation exposure a priority. This study evaluated the feasibility and impact of using sensor-based magnetic navigation on (i) fluoroscopy time and (ii) positioning accuracy and safety of a peripheral angioplasty balloon catheter. All patients (n = 10) underwent a balloon-positioning protocol using 2 navigation methods sequentially: (i) magnetic navigation with minimal fluoroscopy; (ii) fluoroscopic navigation. The navigation method order was randomized, and 4 consecutive placements per method were performed. A target vascular bifurcation was used as a fiduciary landmark for both methods to determine accuracy. Balloon placements were successful with both navigation methods in all subjects, and no adverse events occurred. Magnetic guidance led to significant reductions in fluoroscopy time (0.37 ± 1.5 vs 15.0 ± 8.1 seconds, P < 0.001) and dose (0.3 ± 1.2 vs 24.1 ± 23.8 μGy.m2, P < 0.01). The time duration for balloon alignment was similar for the 2 navigation methods (4.8 ± 1.4 vs 4.8 ± 2.3 seconds, P = 0.89), and the accuracy was almost identical (0.51 ± 0.41 vs 0.51 ± 0.32 mm, P = 0.97). These results demonstrate the feasibility of using sensor-based magnetic guidance during simple peripheral interventional procedures; a significant reduction in ionizing radiation was achieved, with excellent positioning accuracy and safety. The clinical applications of magnetic guidance for device navigation during more complex percutaneous procedures should be evaluated. Le positionnement d’un cathéter intravasculaire fait appel à l’imagerie radiographique. De plus en plus de données probantes indiquent que les patients et les médecins subissent une surexposition aux rayonnements ionisants pendant le cathétérisme, ce qui fait des solutions de réduction de l’irradiation une priorité. Cette étude a permis d’évaluer la faisabilité du guidage magnétique par capteur et son effet sur (i) la durée de la fluoroscopie et (ii) la précision et la sécurité du positionnement d’un cathéter d’angioplastie périphérique à ballonnet. Chez tous les patients (n = 10), le positionnement du ballonnet a été effectué en fonction d’un protocole fondé sur deux méthodes de guidage mises en œuvre séquentiellement : (i) guidage magnétique avec fluoroscopie minimale; (ii) guidage fluoroscopique. L’ordre dans lequel les méthodes de guidage ont été mises en œuvre a été randomisé, et quatre positionnements consécutifs par méthode ont été effectués. Une bifurcation vasculaire cible a servi de repère de fond de chambre afin de déterminer la précision des deux méthodes. Les deux méthodes de guidage ont permis un positionnement adéquat du ballonnet chez tous les patients, et aucun événement indésirable n’est survenu. Le guidage magnétique a entraîné des réductions significatives de la durée de la fluoroscopie (0,37 ± 1,5 vs 15,0 ± 8,1 secondes, p < 0,001) et de la dose de rayonnement (0,3 ± 1,2 vs 24,1 ± 23,8 μGy.m2, p < 0,01). La durée de l’alignement du ballonnet était similaire lors de la mise en œuvre des deux méthodes de guidage (4,8 ± 1,4 vs 4,8 ± 2,3 secondes, p = 0,89), et la précision était presque identique (0,51 ± 0,41 vs 0,51 ± 0,32 mm, p = 0,97). Ces résultats démontrent la faisabilité du guidage magnétique par capteur dans le cadre d’angioplasties périphériques simples. L’exposition aux rayonnements ionisants a été réduite de façon significative, et la précision ainsi que la sécurité du positionnement se sont avérées excellentes. Les applications cliniques du guidage magnétique dans le contexte d’interventions percutanées plus complexes représentent une avenue de recherche à explorer.
AbstractList Intravascular catheter positioning is done with radiography imaging. Increasing evidence indicates excessive ionizing radiation exposure for patients and physicians during catheterization procedures, making solutions to reduce radiation exposure a priority. This study evaluated the feasibility and impact of using sensor-based magnetic navigation on (i) fluoroscopy time and (ii) positioning accuracy and safety of a peripheral angioplasty balloon catheter. All patients (n = 10) underwent a balloon-positioning protocol using 2 navigation methods sequentially: (i) magnetic navigation with minimal fluoroscopy; (ii) fluoroscopic navigation. The navigation method order was randomized, and 4 consecutive placements per method were performed. A target vascular bifurcation was used as a fiduciary landmark for both methods to determine accuracy. Balloon placements were successful with both navigation methods in all subjects, and no adverse events occurred. Magnetic guidance led to significant reductions in fluoroscopy time (0.37 ± 1.5 vs 15.0 ± 8.1 seconds, < 0.001) and dose (0.3 ± 1.2 vs 24.1 ± 23.8 μGy.m , < 0.01). The time duration for balloon alignment was similar for the 2 navigation methods (4.8 ± 1.4 vs 4.8 ± 2.3 seconds,  = 0.89), and the accuracy was almost identical (0.51 ± 0.41 vs 0.51 ± 0.32 mm,  = 0.97). These results demonstrate the feasibility of using sensor-based magnetic guidance during simple peripheral interventional procedures; a significant reduction in ionizing radiation was achieved, with excellent positioning accuracy and safety. The clinical applications of magnetic guidance for device navigation during more complex percutaneous procedures should be evaluated.
Intravascular catheter positioning is done with radiography imaging. Increasing evidence indicates excessive ionizing radiation exposure for patients and physicians during catheterization procedures, making solutions to reduce radiation exposure a priority. This study evaluated the feasibility and impact of using sensor-based magnetic navigation on (i) fluoroscopy time and (ii) positioning accuracy and safety of a peripheral angioplasty balloon catheter.BACKGROUNDIntravascular catheter positioning is done with radiography imaging. Increasing evidence indicates excessive ionizing radiation exposure for patients and physicians during catheterization procedures, making solutions to reduce radiation exposure a priority. This study evaluated the feasibility and impact of using sensor-based magnetic navigation on (i) fluoroscopy time and (ii) positioning accuracy and safety of a peripheral angioplasty balloon catheter.All patients (n = 10) underwent a balloon-positioning protocol using 2 navigation methods sequentially: (i) magnetic navigation with minimal fluoroscopy; (ii) fluoroscopic navigation. The navigation method order was randomized, and 4 consecutive placements per method were performed. A target vascular bifurcation was used as a fiduciary landmark for both methods to determine accuracy.METHODSAll patients (n = 10) underwent a balloon-positioning protocol using 2 navigation methods sequentially: (i) magnetic navigation with minimal fluoroscopy; (ii) fluoroscopic navigation. The navigation method order was randomized, and 4 consecutive placements per method were performed. A target vascular bifurcation was used as a fiduciary landmark for both methods to determine accuracy.Balloon placements were successful with both navigation methods in all subjects, and no adverse events occurred. Magnetic guidance led to significant reductions in fluoroscopy time (0.37 ± 1.5 vs 15.0 ± 8.1 seconds, P < 0.001) and dose (0.3 ± 1.2 vs 24.1 ± 23.8 μGy.m2, P < 0.01). The time duration for balloon alignment was similar for the 2 navigation methods (4.8 ± 1.4 vs 4.8 ± 2.3 seconds, P = 0.89), and the accuracy was almost identical (0.51 ± 0.41 vs 0.51 ± 0.32 mm, P = 0.97).RESULTSBalloon placements were successful with both navigation methods in all subjects, and no adverse events occurred. Magnetic guidance led to significant reductions in fluoroscopy time (0.37 ± 1.5 vs 15.0 ± 8.1 seconds, P < 0.001) and dose (0.3 ± 1.2 vs 24.1 ± 23.8 μGy.m2, P < 0.01). The time duration for balloon alignment was similar for the 2 navigation methods (4.8 ± 1.4 vs 4.8 ± 2.3 seconds, P = 0.89), and the accuracy was almost identical (0.51 ± 0.41 vs 0.51 ± 0.32 mm, P = 0.97).These results demonstrate the feasibility of using sensor-based magnetic guidance during simple peripheral interventional procedures; a significant reduction in ionizing radiation was achieved, with excellent positioning accuracy and safety. The clinical applications of magnetic guidance for device navigation during more complex percutaneous procedures should be evaluated.CONCLUSIONSThese results demonstrate the feasibility of using sensor-based magnetic guidance during simple peripheral interventional procedures; a significant reduction in ionizing radiation was achieved, with excellent positioning accuracy and safety. The clinical applications of magnetic guidance for device navigation during more complex percutaneous procedures should be evaluated.
Intravascular catheter positioning is done with radiography imaging. Increasing evidence indicates excessive ionizing radiation exposure for patients and physicians during catheterization procedures, making solutions to reduce radiation exposure a priority. This study evaluated the feasibility and impact of using sensor-based magnetic navigation on (i) fluoroscopy time and (ii) positioning accuracy and safety of a peripheral angioplasty balloon catheter. All patients (n = 10) underwent a balloon-positioning protocol using 2 navigation methods sequentially: (i) magnetic navigation with minimal fluoroscopy; (ii) fluoroscopic navigation. The navigation method order was randomized, and 4 consecutive placements per method were performed. A target vascular bifurcation was used as a fiduciary landmark for both methods to determine accuracy. Balloon placements were successful with both navigation methods in all subjects, and no adverse events occurred. Magnetic guidance led to significant reductions in fluoroscopy time (0.37 ± 1.5 vs 15.0 ± 8.1 seconds, P < 0.001) and dose (0.3 ± 1.2 vs 24.1 ± 23.8 μGy.m2, P < 0.01). The time duration for balloon alignment was similar for the 2 navigation methods (4.8 ± 1.4 vs 4.8 ± 2.3 seconds, P = 0.89), and the accuracy was almost identical (0.51 ± 0.41 vs 0.51 ± 0.32 mm, P = 0.97). These results demonstrate the feasibility of using sensor-based magnetic guidance during simple peripheral interventional procedures; a significant reduction in ionizing radiation was achieved, with excellent positioning accuracy and safety. The clinical applications of magnetic guidance for device navigation during more complex percutaneous procedures should be evaluated. Le positionnement d’un cathéter intravasculaire fait appel à l’imagerie radiographique. De plus en plus de données probantes indiquent que les patients et les médecins subissent une surexposition aux rayonnements ionisants pendant le cathétérisme, ce qui fait des solutions de réduction de l’irradiation une priorité. Cette étude a permis d’évaluer la faisabilité du guidage magnétique par capteur et son effet sur (i) la durée de la fluoroscopie et (ii) la précision et la sécurité du positionnement d’un cathéter d’angioplastie périphérique à ballonnet. Chez tous les patients (n = 10), le positionnement du ballonnet a été effectué en fonction d’un protocole fondé sur deux méthodes de guidage mises en œuvre séquentiellement : (i) guidage magnétique avec fluoroscopie minimale; (ii) guidage fluoroscopique. L’ordre dans lequel les méthodes de guidage ont été mises en œuvre a été randomisé, et quatre positionnements consécutifs par méthode ont été effectués. Une bifurcation vasculaire cible a servi de repère de fond de chambre afin de déterminer la précision des deux méthodes. Les deux méthodes de guidage ont permis un positionnement adéquat du ballonnet chez tous les patients, et aucun événement indésirable n’est survenu. Le guidage magnétique a entraîné des réductions significatives de la durée de la fluoroscopie (0,37 ± 1,5 vs 15,0 ± 8,1 secondes, p < 0,001) et de la dose de rayonnement (0,3 ± 1,2 vs 24,1 ± 23,8 μGy.m2, p < 0,01). La durée de l’alignement du ballonnet était similaire lors de la mise en œuvre des deux méthodes de guidage (4,8 ± 1,4 vs 4,8 ± 2,3 secondes, p = 0,89), et la précision était presque identique (0,51 ± 0,41 vs 0,51 ± 0,32 mm, p = 0,97). Ces résultats démontrent la faisabilité du guidage magnétique par capteur dans le cadre d’angioplasties périphériques simples. L’exposition aux rayonnements ionisants a été réduite de façon significative, et la précision ainsi que la sécurité du positionnement se sont avérées excellentes. Les applications cliniques du guidage magnétique dans le contexte d’interventions percutanées plus complexes représentent une avenue de recherche à explorer.
AbstractBackgroundIntravascular catheter positioning is done with X-Ray imaging. Increasing evidence has reported excessive ionizing radiation exposure for patients and physicians during catheterization procedures, making solutions to reduce radiation a priority. This study evaluated the feasibility and the impact of using sensor-based magnetic navigation on (1) fluoroscopy time and (2) positioning accuracy and safety of a peripheral angioplasty balloon catheter. MethodsAll patients (n=10) underwent a balloon positioning protocol using two navigation methods sequentially: 1) magnetic with minimal fluoroscopy; 2) fluoroscopic. The navigation method order was randomized and 4 consecutive placements per method were performed. A target vascular bifurcation was used as a fiduciary landmark for both methods to determine accuracy. ResultsBalloon placements were successful with both navigation methods in all subjects and no adverse events occurred. Magnetic guidance led to significant reductions in fluoroscopy time (0.37 ± 1.5 vs 15.0 ± 8.1 sec, p < 0.001) and dose (0.3 ± 1.2 vs 24.1 ± 23.8 μGy.m 2, p < 0.01). Time duration for balloon alignment was similar for both navigation methods (4.8 ± 1.4 vs 4.8 ± 2.3 sec, p = 0.89) and accuracy was almost identical (0.51 ± 0.41 vs 0.51 ± 0.32 mm, p = 0.97). ConclusionThese results demonstrate the feasibility of sensor-based magnetic guidance during simple peripheral interventional procedures and a significant reduction in ionizing radiation with excellent positioning accuracy and safety. The clinical applications of magnetic guidance for device navigation during more complex percutaneous procedures should be evaluated.
Background: Intravascular catheter positioning is done with radiography imaging. Increasing evidence indicates excessive ionizing radiation exposure for patients and physicians during catheterization procedures, making solutions to reduce radiation exposure a priority. This study evaluated the feasibility and impact of using sensor-based magnetic navigation on (i) fluoroscopy time and (ii) positioning accuracy and safety of a peripheral angioplasty balloon catheter. Methods: All patients (n = 10) underwent a balloon-positioning protocol using 2 navigation methods sequentially: (i) magnetic navigation with minimal fluoroscopy; (ii) fluoroscopic navigation. The navigation method order was randomized, and 4 consecutive placements per method were performed. A target vascular bifurcation was used as a fiduciary landmark for both methods to determine accuracy. Results: Balloon placements were successful with both navigation methods in all subjects, and no adverse events occurred. Magnetic guidance led to significant reductions in fluoroscopy time (0.37 ± 1.5 vs 15.0 ± 8.1 seconds, P < 0.001) and dose (0.3 ± 1.2 vs 24.1 ± 23.8 μGy.m2, P < 0.01). The time duration for balloon alignment was similar for the 2 navigation methods (4.8 ± 1.4 vs 4.8 ± 2.3 seconds, P = 0.89), and the accuracy was almost identical (0.51 ± 0.41 vs 0.51 ± 0.32 mm, P = 0.97). Conclusions: These results demonstrate the feasibility of using sensor-based magnetic guidance during simple peripheral interventional procedures; a significant reduction in ionizing radiation was achieved, with excellent positioning accuracy and safety. The clinical applications of magnetic guidance for device navigation during more complex percutaneous procedures should be evaluated. Résumé: Contexte: Le positionnement d’un cathéter intravasculaire fait appel à l’imagerie radiographique. De plus en plus de données probantes indiquent que les patients et les médecins subissent une surexposition aux rayonnements ionisants pendant le cathétérisme, ce qui fait des solutions de réduction de l’irradiation une priorité. Cette étude a permis d’évaluer la faisabilité du guidage magnétique par capteur et son effet sur (i) la durée de la fluoroscopie et (ii) la précision et la sécurité du positionnement d’un cathéter d’angioplastie périphérique à ballonnet. Méthodologie: Chez tous les patients (n = 10), le positionnement du ballonnet a été effectué en fonction d’un protocole fondé sur deux méthodes de guidage mises en œuvre séquentiellement : (i) guidage magnétique avec fluoroscopie minimale; (ii) guidage fluoroscopique. L’ordre dans lequel les méthodes de guidage ont été mises en œuvre a été randomisé, et quatre positionnements consécutifs par méthode ont été effectués. Une bifurcation vasculaire cible a servi de repère de fond de chambre afin de déterminer la précision des deux méthodes. Résultats: Les deux méthodes de guidage ont permis un positionnement adéquat du ballonnet chez tous les patients, et aucun événement indésirable n’est survenu. Le guidage magnétique a entraîné des réductions significatives de la durée de la fluoroscopie (0,37 ± 1,5 vs 15,0 ± 8,1 secondes, p < 0,001) et de la dose de rayonnement (0,3 ± 1,2 vs 24,1 ± 23,8 μGy.m2, p < 0,01). La durée de l’alignement du ballonnet était similaire lors de la mise en œuvre des deux méthodes de guidage (4,8 ± 1,4 vs 4,8 ± 2,3 secondes, p = 0,89), et la précision était presque identique (0,51 ± 0,41 vs 0,51 ± 0,32 mm, p = 0,97). Conclusions: Ces résultats démontrent la faisabilité du guidage magnétique par capteur dans le cadre d’angioplasties périphériques simples. L’exposition aux rayonnements ionisants a été réduite de façon significative, et la précision ainsi que la sécurité du positionnement se sont avérées excellentes. Les applications cliniques du guidage magnétique dans le contexte d’interventions percutanées plus complexes représentent une avenue de recherche à explorer.
Author McSpadden, Luke C.
L’Allier, Philippe L.
Richer, Louis-Philippe
Dorval, Jean-François
Author_xml – sequence: 1
  givenname: Philippe L.
  surname: L’Allier
  fullname: L’Allier, Philippe L.
  organization: Department of Medicine (Interventional Cardiology), Montreal Heart Institute (Université de Montréal), Montreal, Quebec, Canada
– sequence: 2
  givenname: Louis-Philippe
  surname: Richer
  fullname: Richer, Louis-Philippe
  organization: Abbott, Sylmar, California, USA
– sequence: 3
  givenname: Luke C.
  surname: McSpadden
  fullname: McSpadden, Luke C.
  organization: Abbott, Sylmar, California, USA
– sequence: 4
  givenname: Jean-François
  orcidid: 0000-0003-2721-0457
  surname: Dorval
  fullname: Dorval, Jean-François
  email: jf.dorval@umontreal.ca
  organization: Department of Medicine (Interventional Cardiology), Montreal Heart Institute (Université de Montréal), Montreal, Quebec, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35198940$$D View this record in MEDLINE/PubMed
BookMark eNqFUtFq3DAQNCWlSdP8QB-KH_viqyTLthxKID3SNhDakGugb2ItrS-6-qSLZB-9v698l5Qk0BQEWlY7M2J2Xid71llMkreUTCih5YfFRC2UmzDCaGxMCOEvkgNWiDqravJz70G9nxyFsCCEsJzyoiCvkv28oLWoOTlI1pfozeoGPXTpue3Rr9H2xtmQXoE2MJbp2e-VC4PH9Ar1oLat62DsPIV0hjY4n32CgDr9Bmsz30Fmm9Dj8jg9TS-9c20Wz9RZhas-nfWD3rxJXrbQBTy6uw-T689nP6Zfs4vvX86npxeZKlnVZxW0UGpWxM8Cp6WgBSdFoxBqUMibnDFNqgZEhaXWJeGqLZuyBlKUBSVCVPlhcr7j1Q4WcuXNEvxGOjBy23B-LsH3RnUo80oIBZBrmiNnTVNraAXXTNWCU96yyHWy41oNzRK1ikZF1x6RPn6x5kbO3VoKwXNR55Hg_R2Bd7cDhl4uTVDYdWDRDUGyMmeC0IqNWu8eav0VuV9cHBC7AeVdCB5bqUy_9T5Km05SIseYyIUcYyLHmIy9GJMIZU-g9-zPgj7uQBi3tTboZVAG40a18aj6aKd5Hn7yBK46Y42C7hduMCzc4G3MgaQyMEnkbAzvmF1GY2wrPhpy_G-C_6n_ARRUAFw
CitedBy_id crossref_primary_10_1016_j_avsg_2023_10_001
Cites_doi 10.1111/jce.12290
10.1016/j.jvs.2012.08.124
10.1111/jce.12550
10.4244/EIJV5I5A90
10.1136/hrt.2006.098731
10.1016/j.jacc.2018.02.017
10.1016/j.avsg.2015.11.019
10.1111/jce.13048
10.1016/j.cjca.2019.01.006
10.1016/j.jcin.2015.03.027
10.1016/j.jcin.2016.07.002
10.1111/pace.12522
10.1002/ccd.24946
ContentType Journal Article
Copyright 2021 The Authors
2021 The Authors.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: 2021 The Authors.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.cjco.2021.10.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2589-790X
EndPage 229
ExternalDocumentID oai_doaj_org_article_3788caa3d13e42bb9daf84d2c98414f2
PMC8843893
35198940
10_1016_j_cjco_2021_10_004
S2589790X21002742
1_s2_0_S2589790X21002742
Genre Journal Article
GroupedDBID .1-
.FO
0R~
53G
AAEDW
AALRI
AAXUO
AAYWO
ABMAC
ACVFH
ADCNI
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AIGII
AITUG
AJUYK
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
NCXOZ
AAFTH
AFCTW
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c627t-7afa6d25989a416815405bcea9ace4b322d07ba87e6dd604cf6b69a0565108873
IEDL.DBID DOA
ISSN 2589-790X
IngestDate Wed Aug 27 01:17:44 EDT 2025
Thu Aug 21 18:11:32 EDT 2025
Thu Jul 10 17:55:47 EDT 2025
Thu Jan 02 22:53:43 EST 2025
Tue Jul 01 01:38:33 EDT 2025
Thu Apr 24 23:12:00 EDT 2025
Thu Jul 20 20:10:53 EDT 2023
Tue Feb 25 20:10:20 EST 2025
Tue Aug 26 20:17:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Ionizing Radiation
Fluoro
radiation risk
CPS
IR
radiation dosing
PRS
Patient Reference Sensor
Percutaneous Transluminal Angioplasty
Fluoroscopic navigation
Percutaneous vascular interventions
MgN
Magnetic navigation
cardiovascular imaging
PTA
Cardiac Positioning System
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c627t-7afa6d25989a416815405bcea9ace4b322d07ba87e6dd604cf6b69a0565108873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2721-0457
OpenAccessLink https://doaj.org/article/3788caa3d13e42bb9daf84d2c98414f2
PMID 35198940
PQID 2632801722
PQPubID 23479
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_3788caa3d13e42bb9daf84d2c98414f2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8843893
proquest_miscellaneous_2632801722
pubmed_primary_35198940
crossref_citationtrail_10_1016_j_cjco_2021_10_004
crossref_primary_10_1016_j_cjco_2021_10_004
elsevier_sciencedirect_doi_10_1016_j_cjco_2021_10_004
elsevier_clinicalkeyesjournals_1_s2_0_S2589790X21002742
elsevier_clinicalkey_doi_10_1016_j_cjco_2021_10_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle CJC open (Online)
PublicationTitleAlternate CJC Open
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Al Kharji, Connell, Bernier, Eisenberg (bib1) 2019; 35
Thibault, Andrade, Dubuc (bib10) 2015; 38
Thibault, Mondesert, Macle (bib11) 2016; 27
Reeves, Ang, Bahadorani (bib2) 2015; 8
Mahmud, Schmid, Kalmar (bib6) 2016; 9
Vijayalakshmi, Kelly, Chapple (bib4) 2007; 93
Jeron, Fredersdorf, Debl (bib8) 2009; 5
Sigterman, Bolt, Snoeijs (bib3) 2016; 33
Hirshfeld, Ferrari, Bengel (bib7) 2018; 71
Valderrabano, Greenberg, Razavi (bib12) 2014; 25
Weisz, Smilowitz, Moses (bib9) 2013; 82
Doring, Sommer, Rolf (bib13) 2015; 26
Bismuth, Duran, Stankovic, Gersak, Lumsden (bib5) 2013; 57
Vijayalakshmi (10.1016/j.cjco.2021.10.004_bib4) 2007; 93
Bismuth (10.1016/j.cjco.2021.10.004_bib5) 2013; 57
Mahmud (10.1016/j.cjco.2021.10.004_bib6) 2016; 9
Sigterman (10.1016/j.cjco.2021.10.004_bib3) 2016; 33
Jeron (10.1016/j.cjco.2021.10.004_bib8) 2009; 5
Doring (10.1016/j.cjco.2021.10.004_bib13) 2015; 26
Reeves (10.1016/j.cjco.2021.10.004_bib2) 2015; 8
Thibault (10.1016/j.cjco.2021.10.004_bib10) 2015; 38
Hirshfeld (10.1016/j.cjco.2021.10.004_bib7) 2018; 71
Al Kharji (10.1016/j.cjco.2021.10.004_bib1) 2019; 35
Thibault (10.1016/j.cjco.2021.10.004_bib11) 2016; 27
Valderrabano (10.1016/j.cjco.2021.10.004_bib12) 2014; 25
Weisz (10.1016/j.cjco.2021.10.004_bib9) 2013; 82
References_xml – volume: 57
  start-page: 14S
  year: 2013
  end-page: 19S
  ident: bib5
  article-title: A first-in-man study of the role of flexible robotics in overcoming navigation challenges in the iliofemoral arteries
  publication-title: J Vasc Surg
– volume: 8
  start-page: 1197
  year: 2015
  end-page: 1206
  ident: bib2
  article-title: Invasive cardiologists are exposed to greater left sided cranial radiation: the brain study (brain radiation exposure and attenuation during invasive cardiology procedures)
  publication-title: JACC Cardiovasc Interv
– volume: 93
  start-page: 370
  year: 2007
  end-page: 371
  ident: bib4
  article-title: Cardiac catheterisation: radiation doses and lifetime risk of malignancy
  publication-title: Heart
– volume: 27
  start-page: 1337
  year: 2016
  end-page: 1343
  ident: bib11
  article-title: Reducing radiation exposure during crt implant procedures: single-center experience with low-dose fluoroscopy settings and a sensor-based navigation system (mediguide)
  publication-title: J Cardiovasc Electrophysiol
– volume: 25
  start-page: 87
  year: 2014
  end-page: 93
  ident: bib12
  article-title: 3D cardiovascular navigation system: accuracy and reduction in radiation exposure in left ventricular lead implant
  publication-title: J Cardiovasc Electrophysiol
– volume: 26
  start-page: 167
  year: 2015
  end-page: 175
  ident: bib13
  article-title: Sensor-based electromagnetic navigation to facilitate implantation of left ventricular leads in cardiac resynchronization therapy
  publication-title: J Cardiovasc Electrophysiol
– volume: 5
  start-page: 552
  year: 2009
  end-page: 557
  ident: bib8
  article-title: First-in-man (fim) experience with the magnetic medical positioning system (mps) for intracoronary navigation
  publication-title: EuroIntervention
– volume: 71
  start-page: 2811
  year: 2018
  end-page: 2828
  ident: bib7
  article-title: 2018 acc/hrs/nasci/scai/scct expert consensus document on optimal use of ionizing radiation in cardiovascular imaging-best practices for safety and effectiveness, part 1: radiation physics and radiation biology: a report of the American College of Cardiology Task Force on Expert Consensus Decision Pathways
  publication-title: J Am Coll Cardiol
– volume: 38
  start-page: 63
  year: 2015
  end-page: 70
  ident: bib10
  article-title: Reducing radiation exposure during crt implant procedures: early experience with a sensor-based navigation system
  publication-title: Pacing Clin Electrophysiol
– volume: 33
  start-page: 167
  year: 2016
  end-page: 172
  ident: bib3
  article-title: Radiation exposure during percutaneous transluminal angioplasty for symptomatic peripheral arterial disease
  publication-title: Ann Vasc Surg
– volume: 9
  start-page: 2058
  year: 2016
  end-page: 2064
  ident: bib6
  article-title: Feasibility and safety of robotic peripheral vascular interventions: results of the rapid trial
  publication-title: JACC Cardiovasc Interv
– volume: 82
  start-page: 1084
  year: 2013
  end-page: 1090
  ident: bib9
  article-title: Magnetic positioning system in coronary angiography and percutaneous intervention: a feasibility and safety study
  publication-title: Catheter Cardiovasc Interv
– volume: 35
  start-page: 535
  year: 2019
  end-page: 538
  ident: bib1
  article-title: Ionizing radiation in interventional cardiology and electrophysiology
  publication-title: Can J Cardiol
– volume: 25
  start-page: 87
  year: 2014
  ident: 10.1016/j.cjco.2021.10.004_bib12
  article-title: 3D cardiovascular navigation system: accuracy and reduction in radiation exposure in left ventricular lead implant
  publication-title: J Cardiovasc Electrophysiol
  doi: 10.1111/jce.12290
– volume: 57
  start-page: 14S
  issue: 2 suppl
  year: 2013
  ident: 10.1016/j.cjco.2021.10.004_bib5
  article-title: A first-in-man study of the role of flexible robotics in overcoming navigation challenges in the iliofemoral arteries
  publication-title: J Vasc Surg
  doi: 10.1016/j.jvs.2012.08.124
– volume: 26
  start-page: 167
  year: 2015
  ident: 10.1016/j.cjco.2021.10.004_bib13
  article-title: Sensor-based electromagnetic navigation to facilitate implantation of left ventricular leads in cardiac resynchronization therapy
  publication-title: J Cardiovasc Electrophysiol
  doi: 10.1111/jce.12550
– volume: 5
  start-page: 552
  year: 2009
  ident: 10.1016/j.cjco.2021.10.004_bib8
  article-title: First-in-man (fim) experience with the magnetic medical positioning system (mps) for intracoronary navigation
  publication-title: EuroIntervention
  doi: 10.4244/EIJV5I5A90
– volume: 93
  start-page: 370
  year: 2007
  ident: 10.1016/j.cjco.2021.10.004_bib4
  article-title: Cardiac catheterisation: radiation doses and lifetime risk of malignancy
  publication-title: Heart
  doi: 10.1136/hrt.2006.098731
– volume: 71
  start-page: 2811
  year: 2018
  ident: 10.1016/j.cjco.2021.10.004_bib7
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2018.02.017
– volume: 33
  start-page: 167
  year: 2016
  ident: 10.1016/j.cjco.2021.10.004_bib3
  article-title: Radiation exposure during percutaneous transluminal angioplasty for symptomatic peripheral arterial disease
  publication-title: Ann Vasc Surg
  doi: 10.1016/j.avsg.2015.11.019
– volume: 27
  start-page: 1337
  year: 2016
  ident: 10.1016/j.cjco.2021.10.004_bib11
  article-title: Reducing radiation exposure during crt implant procedures: single-center experience with low-dose fluoroscopy settings and a sensor-based navigation system (mediguide)
  publication-title: J Cardiovasc Electrophysiol
  doi: 10.1111/jce.13048
– volume: 35
  start-page: 535
  year: 2019
  ident: 10.1016/j.cjco.2021.10.004_bib1
  article-title: Ionizing radiation in interventional cardiology and electrophysiology
  publication-title: Can J Cardiol
  doi: 10.1016/j.cjca.2019.01.006
– volume: 8
  start-page: 1197
  year: 2015
  ident: 10.1016/j.cjco.2021.10.004_bib2
  article-title: Invasive cardiologists are exposed to greater left sided cranial radiation: the brain study (brain radiation exposure and attenuation during invasive cardiology procedures)
  publication-title: JACC Cardiovasc Interv
  doi: 10.1016/j.jcin.2015.03.027
– volume: 9
  start-page: 2058
  year: 2016
  ident: 10.1016/j.cjco.2021.10.004_bib6
  article-title: Feasibility and safety of robotic peripheral vascular interventions: results of the rapid trial
  publication-title: JACC Cardiovasc Interv
  doi: 10.1016/j.jcin.2016.07.002
– volume: 38
  start-page: 63
  year: 2015
  ident: 10.1016/j.cjco.2021.10.004_bib10
  article-title: Reducing radiation exposure during crt implant procedures: early experience with a sensor-based navigation system
  publication-title: Pacing Clin Electrophysiol
  doi: 10.1111/pace.12522
– volume: 82
  start-page: 1084
  year: 2013
  ident: 10.1016/j.cjco.2021.10.004_bib9
  article-title: Magnetic positioning system in coronary angiography and percutaneous intervention: a feasibility and safety study
  publication-title: Catheter Cardiovasc Interv
  doi: 10.1002/ccd.24946
SSID ssj0002314550
Score 2.178926
Snippet Intravascular catheter positioning is done with radiography imaging. Increasing evidence indicates excessive ionizing radiation exposure for patients and...
AbstractBackgroundIntravascular catheter positioning is done with X-Ray imaging. Increasing evidence has reported excessive ionizing radiation exposure for...
Background: Intravascular catheter positioning is done with radiography imaging. Increasing evidence indicates excessive ionizing radiation exposure for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 223
SubjectTerms Cardiovascular
Original
Title Peripheral Interventions Radiation Exposure Reduction Using a Sensor-Based Navigation System: A Proof-of-Concept Study
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2589790X21002742
https://www.clinicalkey.es/playcontent/1-s2.0-S2589790X21002742
https://dx.doi.org/10.1016/j.cjco.2021.10.004
https://www.ncbi.nlm.nih.gov/pubmed/35198940
https://www.proquest.com/docview/2632801722
https://pubmed.ncbi.nlm.nih.gov/PMC8843893
https://doaj.org/article/3788caa3d13e42bb9daf84d2c98414f2
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqDqiXqqWvpQW5Um-V28RxHIcbIBCtBEJQpL1ZfkVlhbKILAj-fWfsZLVpK7hUyiFy4mR3Zjz-HM98Q8hnU-S2Cl4wIZxjwucls9JyZkVmG98EZw0uFI9P5NGF-DEtpyulvjAmLNEDJ8F9Q75zZ0zh8yIIbm3tTaOE565WIhdN9L5Zna0spmaRxCUScGNluVLVrKqzaZ8xk4K73Mxh5h_Pv8bQLjGalSJ5_2hy-ht8_hlDuTIpHb4kL3o0SXfTv3hFnoV2g6wf9_vlr8ndKRhYJA64ot9Xohs7eoacBHhKD-6v5_iZkJ4hi2tsinEE1NBzWOPOb9gezHSenpi7SMcB1xPN-Q7dpacAvBsGx35Kf6QYl_jwhlwcHvzcP2J9pQXmJK8WrDKNkR5WQqo2gNBUjjjOumBq44KwMOh9VlmjqiC9l5lwjbSyNgCeYEiDmyrekrV23ob3hFphuQSVB-QSBHRmvQErCGXprAy8UROSD5LWrqchx2oYV3qIN5tp1I5G7WAbaGdCviz7XCcSjkfv3kMFLu9EAu3YAGale7PST5nVhBSD-vWQowpeFR50-eirq3_1Cl3vGDqd647rTJ-jWaJV8jztlk9IuezZY5-EaZ5846fBNjU4BtztMW2Y33YaifgVrvDh2e-SrS5FglUZVS0y-L0jKx7JbHylvfwVyceVEohxN_-HkD-Q5xyzSWIQ_Eeytri5DVuA8RZ2Ow7n7fjx7TeUwFEP
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peripheral+Interventions+Radiation+Exposure+Reduction+Using+a+Sensor-Based+Navigation+System%3A+A+Proof-of-Concept+Study&rft.jtitle=CJC+open+%28Online%29&rft.au=Philippe+L.+L%E2%80%99Allier%2C+MD&rft.au=Louis-Philippe+Richer%2C+PhD&rft.au=Luke+C.+McSpadden%2C+PhD&rft.au=Jean-Fran%C3%A7ois+Dorval%2C+MD&rft.date=2022-02-01&rft.pub=Elsevier&rft.issn=2589-790X&rft.eissn=2589-790X&rft.volume=4&rft.issue=2&rft.spage=223&rft.epage=229&rft_id=info:doi/10.1016%2Fj.cjco.2021.10.004&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3788caa3d13e42bb9daf84d2c98414f2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-790X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-790X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-790X&client=summon