Peripheral Interventions Radiation Exposure Reduction Using a Sensor-Based Navigation System: A Proof-of-Concept Study
Intravascular catheter positioning is done with radiography imaging. Increasing evidence indicates excessive ionizing radiation exposure for patients and physicians during catheterization procedures, making solutions to reduce radiation exposure a priority. This study evaluated the feasibility and i...
Saved in:
Published in | CJC open (Online) Vol. 4; no. 2; pp. 223 - 229 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2022
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2589-790X 2589-790X |
DOI | 10.1016/j.cjco.2021.10.004 |
Cover
Abstract | Intravascular catheter positioning is done with radiography imaging. Increasing evidence indicates excessive ionizing radiation exposure for patients and physicians during catheterization procedures, making solutions to reduce radiation exposure a priority. This study evaluated the feasibility and impact of using sensor-based magnetic navigation on (i) fluoroscopy time and (ii) positioning accuracy and safety of a peripheral angioplasty balloon catheter.
All patients (n = 10) underwent a balloon-positioning protocol using 2 navigation methods sequentially: (i) magnetic navigation with minimal fluoroscopy; (ii) fluoroscopic navigation. The navigation method order was randomized, and 4 consecutive placements per method were performed. A target vascular bifurcation was used as a fiduciary landmark for both methods to determine accuracy.
Balloon placements were successful with both navigation methods in all subjects, and no adverse events occurred. Magnetic guidance led to significant reductions in fluoroscopy time (0.37 ± 1.5 vs 15.0 ± 8.1 seconds, P < 0.001) and dose (0.3 ± 1.2 vs 24.1 ± 23.8 μGy.m2, P < 0.01). The time duration for balloon alignment was similar for the 2 navigation methods (4.8 ± 1.4 vs 4.8 ± 2.3 seconds, P = 0.89), and the accuracy was almost identical (0.51 ± 0.41 vs 0.51 ± 0.32 mm, P = 0.97).
These results demonstrate the feasibility of using sensor-based magnetic guidance during simple peripheral interventional procedures; a significant reduction in ionizing radiation was achieved, with excellent positioning accuracy and safety. The clinical applications of magnetic guidance for device navigation during more complex percutaneous procedures should be evaluated.
Le positionnement d’un cathéter intravasculaire fait appel à l’imagerie radiographique. De plus en plus de données probantes indiquent que les patients et les médecins subissent une surexposition aux rayonnements ionisants pendant le cathétérisme, ce qui fait des solutions de réduction de l’irradiation une priorité. Cette étude a permis d’évaluer la faisabilité du guidage magnétique par capteur et son effet sur (i) la durée de la fluoroscopie et (ii) la précision et la sécurité du positionnement d’un cathéter d’angioplastie périphérique à ballonnet.
Chez tous les patients (n = 10), le positionnement du ballonnet a été effectué en fonction d’un protocole fondé sur deux méthodes de guidage mises en œuvre séquentiellement : (i) guidage magnétique avec fluoroscopie minimale; (ii) guidage fluoroscopique. L’ordre dans lequel les méthodes de guidage ont été mises en œuvre a été randomisé, et quatre positionnements consécutifs par méthode ont été effectués. Une bifurcation vasculaire cible a servi de repère de fond de chambre afin de déterminer la précision des deux méthodes.
Les deux méthodes de guidage ont permis un positionnement adéquat du ballonnet chez tous les patients, et aucun événement indésirable n’est survenu. Le guidage magnétique a entraîné des réductions significatives de la durée de la fluoroscopie (0,37 ± 1,5 vs 15,0 ± 8,1 secondes, p < 0,001) et de la dose de rayonnement (0,3 ± 1,2 vs 24,1 ± 23,8 μGy.m2, p < 0,01). La durée de l’alignement du ballonnet était similaire lors de la mise en œuvre des deux méthodes de guidage (4,8 ± 1,4 vs 4,8 ± 2,3 secondes, p = 0,89), et la précision était presque identique (0,51 ± 0,41 vs 0,51 ± 0,32 mm, p = 0,97).
Ces résultats démontrent la faisabilité du guidage magnétique par capteur dans le cadre d’angioplasties périphériques simples. L’exposition aux rayonnements ionisants a été réduite de façon significative, et la précision ainsi que la sécurité du positionnement se sont avérées excellentes. Les applications cliniques du guidage magnétique dans le contexte d’interventions percutanées plus complexes représentent une avenue de recherche à explorer. |
---|---|
AbstractList | Intravascular catheter positioning is done with radiography imaging. Increasing evidence indicates excessive ionizing radiation exposure for patients and physicians during catheterization procedures, making solutions to reduce radiation exposure a priority. This study evaluated the feasibility and impact of using sensor-based magnetic navigation on (i) fluoroscopy time and (ii) positioning accuracy and safety of a peripheral angioplasty balloon catheter.
All patients (n = 10) underwent a balloon-positioning protocol using 2 navigation methods sequentially: (i) magnetic navigation with minimal fluoroscopy; (ii) fluoroscopic navigation. The navigation method order was randomized, and 4 consecutive placements per method were performed. A target vascular bifurcation was used as a fiduciary landmark for both methods to determine accuracy.
Balloon placements were successful with both navigation methods in all subjects, and no adverse events occurred. Magnetic guidance led to significant reductions in fluoroscopy time (0.37 ± 1.5 vs 15.0 ± 8.1 seconds,
< 0.001) and dose (0.3 ± 1.2 vs 24.1 ± 23.8 μGy.m
,
< 0.01). The time duration for balloon alignment was similar for the 2 navigation methods (4.8 ± 1.4 vs 4.8 ± 2.3 seconds,
= 0.89), and the accuracy was almost identical (0.51 ± 0.41 vs 0.51 ± 0.32 mm,
= 0.97).
These results demonstrate the feasibility of using sensor-based magnetic guidance during simple peripheral interventional procedures; a significant reduction in ionizing radiation was achieved, with excellent positioning accuracy and safety. The clinical applications of magnetic guidance for device navigation during more complex percutaneous procedures should be evaluated. Intravascular catheter positioning is done with radiography imaging. Increasing evidence indicates excessive ionizing radiation exposure for patients and physicians during catheterization procedures, making solutions to reduce radiation exposure a priority. This study evaluated the feasibility and impact of using sensor-based magnetic navigation on (i) fluoroscopy time and (ii) positioning accuracy and safety of a peripheral angioplasty balloon catheter.BACKGROUNDIntravascular catheter positioning is done with radiography imaging. Increasing evidence indicates excessive ionizing radiation exposure for patients and physicians during catheterization procedures, making solutions to reduce radiation exposure a priority. This study evaluated the feasibility and impact of using sensor-based magnetic navigation on (i) fluoroscopy time and (ii) positioning accuracy and safety of a peripheral angioplasty balloon catheter.All patients (n = 10) underwent a balloon-positioning protocol using 2 navigation methods sequentially: (i) magnetic navigation with minimal fluoroscopy; (ii) fluoroscopic navigation. The navigation method order was randomized, and 4 consecutive placements per method were performed. A target vascular bifurcation was used as a fiduciary landmark for both methods to determine accuracy.METHODSAll patients (n = 10) underwent a balloon-positioning protocol using 2 navigation methods sequentially: (i) magnetic navigation with minimal fluoroscopy; (ii) fluoroscopic navigation. The navigation method order was randomized, and 4 consecutive placements per method were performed. A target vascular bifurcation was used as a fiduciary landmark for both methods to determine accuracy.Balloon placements were successful with both navigation methods in all subjects, and no adverse events occurred. Magnetic guidance led to significant reductions in fluoroscopy time (0.37 ± 1.5 vs 15.0 ± 8.1 seconds, P < 0.001) and dose (0.3 ± 1.2 vs 24.1 ± 23.8 μGy.m2, P < 0.01). The time duration for balloon alignment was similar for the 2 navigation methods (4.8 ± 1.4 vs 4.8 ± 2.3 seconds, P = 0.89), and the accuracy was almost identical (0.51 ± 0.41 vs 0.51 ± 0.32 mm, P = 0.97).RESULTSBalloon placements were successful with both navigation methods in all subjects, and no adverse events occurred. Magnetic guidance led to significant reductions in fluoroscopy time (0.37 ± 1.5 vs 15.0 ± 8.1 seconds, P < 0.001) and dose (0.3 ± 1.2 vs 24.1 ± 23.8 μGy.m2, P < 0.01). The time duration for balloon alignment was similar for the 2 navigation methods (4.8 ± 1.4 vs 4.8 ± 2.3 seconds, P = 0.89), and the accuracy was almost identical (0.51 ± 0.41 vs 0.51 ± 0.32 mm, P = 0.97).These results demonstrate the feasibility of using sensor-based magnetic guidance during simple peripheral interventional procedures; a significant reduction in ionizing radiation was achieved, with excellent positioning accuracy and safety. The clinical applications of magnetic guidance for device navigation during more complex percutaneous procedures should be evaluated.CONCLUSIONSThese results demonstrate the feasibility of using sensor-based magnetic guidance during simple peripheral interventional procedures; a significant reduction in ionizing radiation was achieved, with excellent positioning accuracy and safety. The clinical applications of magnetic guidance for device navigation during more complex percutaneous procedures should be evaluated. Intravascular catheter positioning is done with radiography imaging. Increasing evidence indicates excessive ionizing radiation exposure for patients and physicians during catheterization procedures, making solutions to reduce radiation exposure a priority. This study evaluated the feasibility and impact of using sensor-based magnetic navigation on (i) fluoroscopy time and (ii) positioning accuracy and safety of a peripheral angioplasty balloon catheter. All patients (n = 10) underwent a balloon-positioning protocol using 2 navigation methods sequentially: (i) magnetic navigation with minimal fluoroscopy; (ii) fluoroscopic navigation. The navigation method order was randomized, and 4 consecutive placements per method were performed. A target vascular bifurcation was used as a fiduciary landmark for both methods to determine accuracy. Balloon placements were successful with both navigation methods in all subjects, and no adverse events occurred. Magnetic guidance led to significant reductions in fluoroscopy time (0.37 ± 1.5 vs 15.0 ± 8.1 seconds, P < 0.001) and dose (0.3 ± 1.2 vs 24.1 ± 23.8 μGy.m2, P < 0.01). The time duration for balloon alignment was similar for the 2 navigation methods (4.8 ± 1.4 vs 4.8 ± 2.3 seconds, P = 0.89), and the accuracy was almost identical (0.51 ± 0.41 vs 0.51 ± 0.32 mm, P = 0.97). These results demonstrate the feasibility of using sensor-based magnetic guidance during simple peripheral interventional procedures; a significant reduction in ionizing radiation was achieved, with excellent positioning accuracy and safety. The clinical applications of magnetic guidance for device navigation during more complex percutaneous procedures should be evaluated. Le positionnement d’un cathéter intravasculaire fait appel à l’imagerie radiographique. De plus en plus de données probantes indiquent que les patients et les médecins subissent une surexposition aux rayonnements ionisants pendant le cathétérisme, ce qui fait des solutions de réduction de l’irradiation une priorité. Cette étude a permis d’évaluer la faisabilité du guidage magnétique par capteur et son effet sur (i) la durée de la fluoroscopie et (ii) la précision et la sécurité du positionnement d’un cathéter d’angioplastie périphérique à ballonnet. Chez tous les patients (n = 10), le positionnement du ballonnet a été effectué en fonction d’un protocole fondé sur deux méthodes de guidage mises en œuvre séquentiellement : (i) guidage magnétique avec fluoroscopie minimale; (ii) guidage fluoroscopique. L’ordre dans lequel les méthodes de guidage ont été mises en œuvre a été randomisé, et quatre positionnements consécutifs par méthode ont été effectués. Une bifurcation vasculaire cible a servi de repère de fond de chambre afin de déterminer la précision des deux méthodes. Les deux méthodes de guidage ont permis un positionnement adéquat du ballonnet chez tous les patients, et aucun événement indésirable n’est survenu. Le guidage magnétique a entraîné des réductions significatives de la durée de la fluoroscopie (0,37 ± 1,5 vs 15,0 ± 8,1 secondes, p < 0,001) et de la dose de rayonnement (0,3 ± 1,2 vs 24,1 ± 23,8 μGy.m2, p < 0,01). La durée de l’alignement du ballonnet était similaire lors de la mise en œuvre des deux méthodes de guidage (4,8 ± 1,4 vs 4,8 ± 2,3 secondes, p = 0,89), et la précision était presque identique (0,51 ± 0,41 vs 0,51 ± 0,32 mm, p = 0,97). Ces résultats démontrent la faisabilité du guidage magnétique par capteur dans le cadre d’angioplasties périphériques simples. L’exposition aux rayonnements ionisants a été réduite de façon significative, et la précision ainsi que la sécurité du positionnement se sont avérées excellentes. Les applications cliniques du guidage magnétique dans le contexte d’interventions percutanées plus complexes représentent une avenue de recherche à explorer. AbstractBackgroundIntravascular catheter positioning is done with X-Ray imaging. Increasing evidence has reported excessive ionizing radiation exposure for patients and physicians during catheterization procedures, making solutions to reduce radiation a priority. This study evaluated the feasibility and the impact of using sensor-based magnetic navigation on (1) fluoroscopy time and (2) positioning accuracy and safety of a peripheral angioplasty balloon catheter. MethodsAll patients (n=10) underwent a balloon positioning protocol using two navigation methods sequentially: 1) magnetic with minimal fluoroscopy; 2) fluoroscopic. The navigation method order was randomized and 4 consecutive placements per method were performed. A target vascular bifurcation was used as a fiduciary landmark for both methods to determine accuracy. ResultsBalloon placements were successful with both navigation methods in all subjects and no adverse events occurred. Magnetic guidance led to significant reductions in fluoroscopy time (0.37 ± 1.5 vs 15.0 ± 8.1 sec, p < 0.001) and dose (0.3 ± 1.2 vs 24.1 ± 23.8 μGy.m 2, p < 0.01). Time duration for balloon alignment was similar for both navigation methods (4.8 ± 1.4 vs 4.8 ± 2.3 sec, p = 0.89) and accuracy was almost identical (0.51 ± 0.41 vs 0.51 ± 0.32 mm, p = 0.97). ConclusionThese results demonstrate the feasibility of sensor-based magnetic guidance during simple peripheral interventional procedures and a significant reduction in ionizing radiation with excellent positioning accuracy and safety. The clinical applications of magnetic guidance for device navigation during more complex percutaneous procedures should be evaluated. Background: Intravascular catheter positioning is done with radiography imaging. Increasing evidence indicates excessive ionizing radiation exposure for patients and physicians during catheterization procedures, making solutions to reduce radiation exposure a priority. This study evaluated the feasibility and impact of using sensor-based magnetic navigation on (i) fluoroscopy time and (ii) positioning accuracy and safety of a peripheral angioplasty balloon catheter. Methods: All patients (n = 10) underwent a balloon-positioning protocol using 2 navigation methods sequentially: (i) magnetic navigation with minimal fluoroscopy; (ii) fluoroscopic navigation. The navigation method order was randomized, and 4 consecutive placements per method were performed. A target vascular bifurcation was used as a fiduciary landmark for both methods to determine accuracy. Results: Balloon placements were successful with both navigation methods in all subjects, and no adverse events occurred. Magnetic guidance led to significant reductions in fluoroscopy time (0.37 ± 1.5 vs 15.0 ± 8.1 seconds, P < 0.001) and dose (0.3 ± 1.2 vs 24.1 ± 23.8 μGy.m2, P < 0.01). The time duration for balloon alignment was similar for the 2 navigation methods (4.8 ± 1.4 vs 4.8 ± 2.3 seconds, P = 0.89), and the accuracy was almost identical (0.51 ± 0.41 vs 0.51 ± 0.32 mm, P = 0.97). Conclusions: These results demonstrate the feasibility of using sensor-based magnetic guidance during simple peripheral interventional procedures; a significant reduction in ionizing radiation was achieved, with excellent positioning accuracy and safety. The clinical applications of magnetic guidance for device navigation during more complex percutaneous procedures should be evaluated. Résumé: Contexte: Le positionnement d’un cathéter intravasculaire fait appel à l’imagerie radiographique. De plus en plus de données probantes indiquent que les patients et les médecins subissent une surexposition aux rayonnements ionisants pendant le cathétérisme, ce qui fait des solutions de réduction de l’irradiation une priorité. Cette étude a permis d’évaluer la faisabilité du guidage magnétique par capteur et son effet sur (i) la durée de la fluoroscopie et (ii) la précision et la sécurité du positionnement d’un cathéter d’angioplastie périphérique à ballonnet. Méthodologie: Chez tous les patients (n = 10), le positionnement du ballonnet a été effectué en fonction d’un protocole fondé sur deux méthodes de guidage mises en œuvre séquentiellement : (i) guidage magnétique avec fluoroscopie minimale; (ii) guidage fluoroscopique. L’ordre dans lequel les méthodes de guidage ont été mises en œuvre a été randomisé, et quatre positionnements consécutifs par méthode ont été effectués. Une bifurcation vasculaire cible a servi de repère de fond de chambre afin de déterminer la précision des deux méthodes. Résultats: Les deux méthodes de guidage ont permis un positionnement adéquat du ballonnet chez tous les patients, et aucun événement indésirable n’est survenu. Le guidage magnétique a entraîné des réductions significatives de la durée de la fluoroscopie (0,37 ± 1,5 vs 15,0 ± 8,1 secondes, p < 0,001) et de la dose de rayonnement (0,3 ± 1,2 vs 24,1 ± 23,8 μGy.m2, p < 0,01). La durée de l’alignement du ballonnet était similaire lors de la mise en œuvre des deux méthodes de guidage (4,8 ± 1,4 vs 4,8 ± 2,3 secondes, p = 0,89), et la précision était presque identique (0,51 ± 0,41 vs 0,51 ± 0,32 mm, p = 0,97). Conclusions: Ces résultats démontrent la faisabilité du guidage magnétique par capteur dans le cadre d’angioplasties périphériques simples. L’exposition aux rayonnements ionisants a été réduite de façon significative, et la précision ainsi que la sécurité du positionnement se sont avérées excellentes. Les applications cliniques du guidage magnétique dans le contexte d’interventions percutanées plus complexes représentent une avenue de recherche à explorer. |
Author | McSpadden, Luke C. L’Allier, Philippe L. Richer, Louis-Philippe Dorval, Jean-François |
Author_xml | – sequence: 1 givenname: Philippe L. surname: L’Allier fullname: L’Allier, Philippe L. organization: Department of Medicine (Interventional Cardiology), Montreal Heart Institute (Université de Montréal), Montreal, Quebec, Canada – sequence: 2 givenname: Louis-Philippe surname: Richer fullname: Richer, Louis-Philippe organization: Abbott, Sylmar, California, USA – sequence: 3 givenname: Luke C. surname: McSpadden fullname: McSpadden, Luke C. organization: Abbott, Sylmar, California, USA – sequence: 4 givenname: Jean-François orcidid: 0000-0003-2721-0457 surname: Dorval fullname: Dorval, Jean-François email: jf.dorval@umontreal.ca organization: Department of Medicine (Interventional Cardiology), Montreal Heart Institute (Université de Montréal), Montreal, Quebec, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35198940$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUtFq3DAQNCWlSdP8QB-KH_viqyTLthxKID3SNhDakGugb2ItrS-6-qSLZB-9v698l5Qk0BQEWlY7M2J2Xid71llMkreUTCih5YfFRC2UmzDCaGxMCOEvkgNWiDqravJz70G9nxyFsCCEsJzyoiCvkv28oLWoOTlI1pfozeoGPXTpue3Rr9H2xtmQXoE2MJbp2e-VC4PH9Ar1oLat62DsPIV0hjY4n32CgDr9Bmsz30Fmm9Dj8jg9TS-9c20Wz9RZhas-nfWD3rxJXrbQBTy6uw-T689nP6Zfs4vvX86npxeZKlnVZxW0UGpWxM8Cp6WgBSdFoxBqUMibnDFNqgZEhaXWJeGqLZuyBlKUBSVCVPlhcr7j1Q4WcuXNEvxGOjBy23B-LsH3RnUo80oIBZBrmiNnTVNraAXXTNWCU96yyHWy41oNzRK1ikZF1x6RPn6x5kbO3VoKwXNR55Hg_R2Bd7cDhl4uTVDYdWDRDUGyMmeC0IqNWu8eav0VuV9cHBC7AeVdCB5bqUy_9T5Km05SIseYyIUcYyLHmIy9GJMIZU-g9-zPgj7uQBi3tTboZVAG40a18aj6aKd5Hn7yBK46Y42C7hduMCzc4G3MgaQyMEnkbAzvmF1GY2wrPhpy_G-C_6n_ARRUAFw |
CitedBy_id | crossref_primary_10_1016_j_avsg_2023_10_001 |
Cites_doi | 10.1111/jce.12290 10.1016/j.jvs.2012.08.124 10.1111/jce.12550 10.4244/EIJV5I5A90 10.1136/hrt.2006.098731 10.1016/j.jacc.2018.02.017 10.1016/j.avsg.2015.11.019 10.1111/jce.13048 10.1016/j.cjca.2019.01.006 10.1016/j.jcin.2015.03.027 10.1016/j.jcin.2016.07.002 10.1111/pace.12522 10.1002/ccd.24946 |
ContentType | Journal Article |
Copyright | 2021 The Authors 2021 The Authors. 2021 The Authors 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: 2021 The Authors. – notice: 2021 The Authors 2021 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.cjco.2021.10.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2589-790X |
EndPage | 229 |
ExternalDocumentID | oai_doaj_org_article_3788caa3d13e42bb9daf84d2c98414f2 PMC8843893 35198940 10_1016_j_cjco_2021_10_004 S2589790X21002742 1_s2_0_S2589790X21002742 |
Genre | Journal Article |
GroupedDBID | .1- .FO 0R~ 53G AAEDW AALRI AAXUO AAYWO ABMAC ACVFH ADCNI ADVLN AEUPX AEXQZ AFJKZ AFPUW AFRHN AFTJW AIGII AITUG AJUYK AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP EBS EJD FDB GROUPED_DOAJ M41 M~E OK1 ROL RPM SSZ Z5R 0SF 6I. AACTN NCXOZ AAFTH AFCTW AAYXX CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c627t-7afa6d25989a416815405bcea9ace4b322d07ba87e6dd604cf6b69a0565108873 |
IEDL.DBID | DOA |
ISSN | 2589-790X |
IngestDate | Wed Aug 27 01:17:44 EDT 2025 Thu Aug 21 18:11:32 EDT 2025 Thu Jul 10 17:55:47 EDT 2025 Thu Jan 02 22:53:43 EST 2025 Tue Jul 01 01:38:33 EDT 2025 Thu Apr 24 23:12:00 EDT 2025 Thu Jul 20 20:10:53 EDT 2023 Tue Feb 25 20:10:20 EST 2025 Tue Aug 26 20:17:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Ionizing Radiation Fluoro radiation risk CPS IR radiation dosing PRS Patient Reference Sensor Percutaneous Transluminal Angioplasty Fluoroscopic navigation Percutaneous vascular interventions MgN Magnetic navigation cardiovascular imaging PTA Cardiac Positioning System |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2021 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c627t-7afa6d25989a416815405bcea9ace4b322d07ba87e6dd604cf6b69a0565108873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2721-0457 |
OpenAccessLink | https://doaj.org/article/3788caa3d13e42bb9daf84d2c98414f2 |
PMID | 35198940 |
PQID | 2632801722 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3788caa3d13e42bb9daf84d2c98414f2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8843893 proquest_miscellaneous_2632801722 pubmed_primary_35198940 crossref_citationtrail_10_1016_j_cjco_2021_10_004 crossref_primary_10_1016_j_cjco_2021_10_004 elsevier_sciencedirect_doi_10_1016_j_cjco_2021_10_004 elsevier_clinicalkeyesjournals_1_s2_0_S2589790X21002742 elsevier_clinicalkey_doi_10_1016_j_cjco_2021_10_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | CJC open (Online) |
PublicationTitleAlternate | CJC Open |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Al Kharji, Connell, Bernier, Eisenberg (bib1) 2019; 35 Thibault, Andrade, Dubuc (bib10) 2015; 38 Thibault, Mondesert, Macle (bib11) 2016; 27 Reeves, Ang, Bahadorani (bib2) 2015; 8 Mahmud, Schmid, Kalmar (bib6) 2016; 9 Vijayalakshmi, Kelly, Chapple (bib4) 2007; 93 Jeron, Fredersdorf, Debl (bib8) 2009; 5 Sigterman, Bolt, Snoeijs (bib3) 2016; 33 Hirshfeld, Ferrari, Bengel (bib7) 2018; 71 Valderrabano, Greenberg, Razavi (bib12) 2014; 25 Weisz, Smilowitz, Moses (bib9) 2013; 82 Doring, Sommer, Rolf (bib13) 2015; 26 Bismuth, Duran, Stankovic, Gersak, Lumsden (bib5) 2013; 57 Vijayalakshmi (10.1016/j.cjco.2021.10.004_bib4) 2007; 93 Bismuth (10.1016/j.cjco.2021.10.004_bib5) 2013; 57 Mahmud (10.1016/j.cjco.2021.10.004_bib6) 2016; 9 Sigterman (10.1016/j.cjco.2021.10.004_bib3) 2016; 33 Jeron (10.1016/j.cjco.2021.10.004_bib8) 2009; 5 Doring (10.1016/j.cjco.2021.10.004_bib13) 2015; 26 Reeves (10.1016/j.cjco.2021.10.004_bib2) 2015; 8 Thibault (10.1016/j.cjco.2021.10.004_bib10) 2015; 38 Hirshfeld (10.1016/j.cjco.2021.10.004_bib7) 2018; 71 Al Kharji (10.1016/j.cjco.2021.10.004_bib1) 2019; 35 Thibault (10.1016/j.cjco.2021.10.004_bib11) 2016; 27 Valderrabano (10.1016/j.cjco.2021.10.004_bib12) 2014; 25 Weisz (10.1016/j.cjco.2021.10.004_bib9) 2013; 82 |
References_xml | – volume: 57 start-page: 14S year: 2013 end-page: 19S ident: bib5 article-title: A first-in-man study of the role of flexible robotics in overcoming navigation challenges in the iliofemoral arteries publication-title: J Vasc Surg – volume: 8 start-page: 1197 year: 2015 end-page: 1206 ident: bib2 article-title: Invasive cardiologists are exposed to greater left sided cranial radiation: the brain study (brain radiation exposure and attenuation during invasive cardiology procedures) publication-title: JACC Cardiovasc Interv – volume: 93 start-page: 370 year: 2007 end-page: 371 ident: bib4 article-title: Cardiac catheterisation: radiation doses and lifetime risk of malignancy publication-title: Heart – volume: 27 start-page: 1337 year: 2016 end-page: 1343 ident: bib11 article-title: Reducing radiation exposure during crt implant procedures: single-center experience with low-dose fluoroscopy settings and a sensor-based navigation system (mediguide) publication-title: J Cardiovasc Electrophysiol – volume: 25 start-page: 87 year: 2014 end-page: 93 ident: bib12 article-title: 3D cardiovascular navigation system: accuracy and reduction in radiation exposure in left ventricular lead implant publication-title: J Cardiovasc Electrophysiol – volume: 26 start-page: 167 year: 2015 end-page: 175 ident: bib13 article-title: Sensor-based electromagnetic navigation to facilitate implantation of left ventricular leads in cardiac resynchronization therapy publication-title: J Cardiovasc Electrophysiol – volume: 5 start-page: 552 year: 2009 end-page: 557 ident: bib8 article-title: First-in-man (fim) experience with the magnetic medical positioning system (mps) for intracoronary navigation publication-title: EuroIntervention – volume: 71 start-page: 2811 year: 2018 end-page: 2828 ident: bib7 article-title: 2018 acc/hrs/nasci/scai/scct expert consensus document on optimal use of ionizing radiation in cardiovascular imaging-best practices for safety and effectiveness, part 1: radiation physics and radiation biology: a report of the American College of Cardiology Task Force on Expert Consensus Decision Pathways publication-title: J Am Coll Cardiol – volume: 38 start-page: 63 year: 2015 end-page: 70 ident: bib10 article-title: Reducing radiation exposure during crt implant procedures: early experience with a sensor-based navigation system publication-title: Pacing Clin Electrophysiol – volume: 33 start-page: 167 year: 2016 end-page: 172 ident: bib3 article-title: Radiation exposure during percutaneous transluminal angioplasty for symptomatic peripheral arterial disease publication-title: Ann Vasc Surg – volume: 9 start-page: 2058 year: 2016 end-page: 2064 ident: bib6 article-title: Feasibility and safety of robotic peripheral vascular interventions: results of the rapid trial publication-title: JACC Cardiovasc Interv – volume: 82 start-page: 1084 year: 2013 end-page: 1090 ident: bib9 article-title: Magnetic positioning system in coronary angiography and percutaneous intervention: a feasibility and safety study publication-title: Catheter Cardiovasc Interv – volume: 35 start-page: 535 year: 2019 end-page: 538 ident: bib1 article-title: Ionizing radiation in interventional cardiology and electrophysiology publication-title: Can J Cardiol – volume: 25 start-page: 87 year: 2014 ident: 10.1016/j.cjco.2021.10.004_bib12 article-title: 3D cardiovascular navigation system: accuracy and reduction in radiation exposure in left ventricular lead implant publication-title: J Cardiovasc Electrophysiol doi: 10.1111/jce.12290 – volume: 57 start-page: 14S issue: 2 suppl year: 2013 ident: 10.1016/j.cjco.2021.10.004_bib5 article-title: A first-in-man study of the role of flexible robotics in overcoming navigation challenges in the iliofemoral arteries publication-title: J Vasc Surg doi: 10.1016/j.jvs.2012.08.124 – volume: 26 start-page: 167 year: 2015 ident: 10.1016/j.cjco.2021.10.004_bib13 article-title: Sensor-based electromagnetic navigation to facilitate implantation of left ventricular leads in cardiac resynchronization therapy publication-title: J Cardiovasc Electrophysiol doi: 10.1111/jce.12550 – volume: 5 start-page: 552 year: 2009 ident: 10.1016/j.cjco.2021.10.004_bib8 article-title: First-in-man (fim) experience with the magnetic medical positioning system (mps) for intracoronary navigation publication-title: EuroIntervention doi: 10.4244/EIJV5I5A90 – volume: 93 start-page: 370 year: 2007 ident: 10.1016/j.cjco.2021.10.004_bib4 article-title: Cardiac catheterisation: radiation doses and lifetime risk of malignancy publication-title: Heart doi: 10.1136/hrt.2006.098731 – volume: 71 start-page: 2811 year: 2018 ident: 10.1016/j.cjco.2021.10.004_bib7 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2018.02.017 – volume: 33 start-page: 167 year: 2016 ident: 10.1016/j.cjco.2021.10.004_bib3 article-title: Radiation exposure during percutaneous transluminal angioplasty for symptomatic peripheral arterial disease publication-title: Ann Vasc Surg doi: 10.1016/j.avsg.2015.11.019 – volume: 27 start-page: 1337 year: 2016 ident: 10.1016/j.cjco.2021.10.004_bib11 article-title: Reducing radiation exposure during crt implant procedures: single-center experience with low-dose fluoroscopy settings and a sensor-based navigation system (mediguide) publication-title: J Cardiovasc Electrophysiol doi: 10.1111/jce.13048 – volume: 35 start-page: 535 year: 2019 ident: 10.1016/j.cjco.2021.10.004_bib1 article-title: Ionizing radiation in interventional cardiology and electrophysiology publication-title: Can J Cardiol doi: 10.1016/j.cjca.2019.01.006 – volume: 8 start-page: 1197 year: 2015 ident: 10.1016/j.cjco.2021.10.004_bib2 article-title: Invasive cardiologists are exposed to greater left sided cranial radiation: the brain study (brain radiation exposure and attenuation during invasive cardiology procedures) publication-title: JACC Cardiovasc Interv doi: 10.1016/j.jcin.2015.03.027 – volume: 9 start-page: 2058 year: 2016 ident: 10.1016/j.cjco.2021.10.004_bib6 article-title: Feasibility and safety of robotic peripheral vascular interventions: results of the rapid trial publication-title: JACC Cardiovasc Interv doi: 10.1016/j.jcin.2016.07.002 – volume: 38 start-page: 63 year: 2015 ident: 10.1016/j.cjco.2021.10.004_bib10 article-title: Reducing radiation exposure during crt implant procedures: early experience with a sensor-based navigation system publication-title: Pacing Clin Electrophysiol doi: 10.1111/pace.12522 – volume: 82 start-page: 1084 year: 2013 ident: 10.1016/j.cjco.2021.10.004_bib9 article-title: Magnetic positioning system in coronary angiography and percutaneous intervention: a feasibility and safety study publication-title: Catheter Cardiovasc Interv doi: 10.1002/ccd.24946 |
SSID | ssj0002314550 |
Score | 2.178926 |
Snippet | Intravascular catheter positioning is done with radiography imaging. Increasing evidence indicates excessive ionizing radiation exposure for patients and... AbstractBackgroundIntravascular catheter positioning is done with X-Ray imaging. Increasing evidence has reported excessive ionizing radiation exposure for... Background: Intravascular catheter positioning is done with radiography imaging. Increasing evidence indicates excessive ionizing radiation exposure for... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 223 |
SubjectTerms | Cardiovascular Original |
Title | Peripheral Interventions Radiation Exposure Reduction Using a Sensor-Based Navigation System: A Proof-of-Concept Study |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2589790X21002742 https://www.clinicalkey.es/playcontent/1-s2.0-S2589790X21002742 https://dx.doi.org/10.1016/j.cjco.2021.10.004 https://www.ncbi.nlm.nih.gov/pubmed/35198940 https://www.proquest.com/docview/2632801722 https://pubmed.ncbi.nlm.nih.gov/PMC8843893 https://doaj.org/article/3788caa3d13e42bb9daf84d2c98414f2 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqDqiXqqWvpQW5Um-V28RxHIcbIBCtBEJQpL1ZfkVlhbKILAj-fWfsZLVpK7hUyiFy4mR3Zjz-HM98Q8hnU-S2Cl4wIZxjwucls9JyZkVmG98EZw0uFI9P5NGF-DEtpyulvjAmLNEDJ8F9Q75zZ0zh8yIIbm3tTaOE565WIhdN9L5Zna0spmaRxCUScGNluVLVrKqzaZ8xk4K73Mxh5h_Pv8bQLjGalSJ5_2hy-ht8_hlDuTIpHb4kL3o0SXfTv3hFnoV2g6wf9_vlr8ndKRhYJA64ot9Xohs7eoacBHhKD-6v5_iZkJ4hi2tsinEE1NBzWOPOb9gezHSenpi7SMcB1xPN-Q7dpacAvBsGx35Kf6QYl_jwhlwcHvzcP2J9pQXmJK8WrDKNkR5WQqo2gNBUjjjOumBq44KwMOh9VlmjqiC9l5lwjbSyNgCeYEiDmyrekrV23ob3hFphuQSVB-QSBHRmvQErCGXprAy8UROSD5LWrqchx2oYV3qIN5tp1I5G7WAbaGdCviz7XCcSjkfv3kMFLu9EAu3YAGale7PST5nVhBSD-vWQowpeFR50-eirq3_1Cl3vGDqd647rTJ-jWaJV8jztlk9IuezZY5-EaZ5846fBNjU4BtztMW2Y33YaifgVrvDh2e-SrS5FglUZVS0y-L0jKx7JbHylvfwVyceVEohxN_-HkD-Q5xyzSWIQ_Eeytri5DVuA8RZ2Ow7n7fjx7TeUwFEP |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peripheral+Interventions+Radiation+Exposure+Reduction+Using+a+Sensor-Based+Navigation+System%3A+A+Proof-of-Concept+Study&rft.jtitle=CJC+open+%28Online%29&rft.au=Philippe+L.+L%E2%80%99Allier%2C+MD&rft.au=Louis-Philippe+Richer%2C+PhD&rft.au=Luke+C.+McSpadden%2C+PhD&rft.au=Jean-Fran%C3%A7ois+Dorval%2C+MD&rft.date=2022-02-01&rft.pub=Elsevier&rft.issn=2589-790X&rft.eissn=2589-790X&rft.volume=4&rft.issue=2&rft.spage=223&rft.epage=229&rft_id=info:doi/10.1016%2Fj.cjco.2021.10.004&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3788caa3d13e42bb9daf84d2c98414f2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-790X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-790X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-790X&client=summon |