The efficacy of machine learning models in lung cancer risk prediction with explainability

Among many types of cancers, to date, lung cancer remains one of the deadliest cancers around the world. Many researchers, scientists, doctors, and people from other fields continuously contribute to this subject regarding early prediction and diagnosis. One of the significant problems in prediction...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 6; p. e0305035
Main Authors Pathan, Refat Khan, Shorna, Israt Jahan, Hossain, Md. Sayem, Khandaker, Mayeen Uddin, Almohammed, Huda I., Hamd, Zuhal Y.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 13.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Among many types of cancers, to date, lung cancer remains one of the deadliest cancers around the world. Many researchers, scientists, doctors, and people from other fields continuously contribute to this subject regarding early prediction and diagnosis. One of the significant problems in prediction is the black-box nature of machine learning models. Though the detection rate is comparatively satisfactory, people have yet to learn how a model came to that decision, causing trust issues among patients and healthcare workers. This work uses multiple machine learning models on a numerical dataset of lung cancer-relevant parameters and compares performance and accuracy. After comparison, each model has been explained using different methods. The main contribution of this research is to give logical explanations of why the model reached a particular decision to achieve trust. This research has also been compared with a previous study that worked with a similar dataset and took expert opinions regarding their proposed model. We also showed that our research achieved better results than their proposed model and specialist opinion using hyperparameter tuning, having an improved accuracy of almost 100% in all four models.
AbstractList Among many types of cancers, to date, lung cancer remains one of the deadliest cancers around the world. Many researchers, scientists, doctors, and people from other fields continuously contribute to this subject regarding early prediction and diagnosis. One of the significant problems in prediction is the black-box nature of machine learning models. Though the detection rate is comparatively satisfactory, people have yet to learn how a model came to that decision, causing trust issues among patients and healthcare workers. This work uses multiple machine learning models on a numerical dataset of lung cancer-relevant parameters and compares performance and accuracy. After comparison, each model has been explained using different methods. The main contribution of this research is to give logical explanations of why the model reached a particular decision to achieve trust. This research has also been compared with a previous study that worked with a similar dataset and took expert opinions regarding their proposed model. We also showed that our research achieved better results than their proposed model and specialist opinion using hyperparameter tuning, having an improved accuracy of almost 100% in all four models.
Among many types of cancers, to date, lung cancer remains one of the deadliest cancers around the world. Many researchers, scientists, doctors, and people from other fields continuously contribute to this subject regarding early prediction and diagnosis. One of the significant problems in prediction is the black-box nature of machine learning models. Though the detection rate is comparatively satisfactory, people have yet to learn how a model came to that decision, causing trust issues among patients and healthcare workers. This work uses multiple machine learning models on a numerical dataset of lung cancer-relevant parameters and compares performance and accuracy. After comparison, each model has been explained using different methods. The main contribution of this research is to give logical explanations of why the model reached a particular decision to achieve trust. This research has also been compared with a previous study that worked with a similar dataset and took expert opinions regarding their proposed model. We also showed that our research achieved better results than their proposed model and specialist opinion using hyperparameter tuning, having an improved accuracy of almost 100% in all four models.Among many types of cancers, to date, lung cancer remains one of the deadliest cancers around the world. Many researchers, scientists, doctors, and people from other fields continuously contribute to this subject regarding early prediction and diagnosis. One of the significant problems in prediction is the black-box nature of machine learning models. Though the detection rate is comparatively satisfactory, people have yet to learn how a model came to that decision, causing trust issues among patients and healthcare workers. This work uses multiple machine learning models on a numerical dataset of lung cancer-relevant parameters and compares performance and accuracy. After comparison, each model has been explained using different methods. The main contribution of this research is to give logical explanations of why the model reached a particular decision to achieve trust. This research has also been compared with a previous study that worked with a similar dataset and took expert opinions regarding their proposed model. We also showed that our research achieved better results than their proposed model and specialist opinion using hyperparameter tuning, having an improved accuracy of almost 100% in all four models.
Audience Academic
Author Khandaker, Mayeen Uddin
Almohammed, Huda I.
Hamd, Zuhal Y.
Hossain, Md. Sayem
Pathan, Refat Khan
Shorna, Israt Jahan
AuthorAffiliation Jordan University of Science and Technology Faculty of Computer and Information Technology, JORDAN
1 Department of Computing and Information Systems, School of Engineering and Technology, Sunway University, Selangor, Malaysia
6 Department of Radiological Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
2 Shamsun Nahar Khan Nursing College, Chattogram, Bangladesh
4 Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, Selangor, Malaysia
3 School of Computing Science, Faculty of Innovation and Technology, Taylor’s University Lakeside Campus, Selangor, Malaysia
5 Faculty of Graduate Studies, Daffodil International University, Daffodil Smart City, Savar, Dhaka, Bangladesh
AuthorAffiliation_xml – name: 2 Shamsun Nahar Khan Nursing College, Chattogram, Bangladesh
– name: 5 Faculty of Graduate Studies, Daffodil International University, Daffodil Smart City, Savar, Dhaka, Bangladesh
– name: Jordan University of Science and Technology Faculty of Computer and Information Technology, JORDAN
– name: 1 Department of Computing and Information Systems, School of Engineering and Technology, Sunway University, Selangor, Malaysia
– name: 3 School of Computing Science, Faculty of Innovation and Technology, Taylor’s University Lakeside Campus, Selangor, Malaysia
– name: 6 Department of Radiological Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
– name: 4 Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, Selangor, Malaysia
Author_xml – sequence: 1
  givenname: Refat Khan
  surname: Pathan
  fullname: Pathan, Refat Khan
– sequence: 2
  givenname: Israt Jahan
  orcidid: 0009-0002-5303-9155
  surname: Shorna
  fullname: Shorna, Israt Jahan
– sequence: 3
  givenname: Md. Sayem
  surname: Hossain
  fullname: Hossain, Md. Sayem
– sequence: 4
  givenname: Mayeen Uddin
  surname: Khandaker
  fullname: Khandaker, Mayeen Uddin
– sequence: 5
  givenname: Huda I.
  orcidid: 0000-0002-2747-608X
  surname: Almohammed
  fullname: Almohammed, Huda I.
– sequence: 6
  givenname: Zuhal Y.
  surname: Hamd
  fullname: Hamd, Zuhal Y.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38870229$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1vFCEUhiemxn7oPzBKYmL0YlcYBpjxxjSNH02aNNHqhTeEZQ47VAa2MKPdfy9rZ023aYzhAjg873vgcA6LPR88FMVTgueECvLmMozRKzdf5fAcU8wwZQ-KA9LQcsZLTPdurfeLw5QuMWa05vxRsU_rWuCybA6K7xcdIDDGaqXXKBjUK91ZD8iBit76JepDCy4h65Eb81YrryGiaNMPtIrQWj3Y4NEvO3QIrldOWa8W1tlh_bh4aJRL8GSaj4qvH95fnHyanZ1_PD05PptpXophJgSULS0pNQumcUOorjiYOq8rxheYMapKyhkHARU1rFkITMqWkVYZxQQGelQ8v_FduZDkVJYkKeZNyRnjNBPvJmJc9NBq8ENUTq6i7VVcy6Cs3D3xtpPL8FMSQgRjuMoOryaHGK5GSIPsbdLgnPIQxj_JasHKmomMvriD3n-liVoqB9J6E3JivTGVx6IRnGNc4UzN76HyaKG3On-8sTm-I3i9I8jMANfDUo0pydMvn_-fPf-2y768xXag3NCl4MbN36dd8NntUv-t8bbjMvD2BtAxpBTBSG0HtfHJT7NOEiw37b0tmty0t5zaO4urO-Kt_z9lvwF0Jv3J
CitedBy_id crossref_primary_10_1371_journal_pone_0310604
crossref_primary_10_1002_clc_24332
Cites_doi 10.1109/TMI.2016.2535865
10.1016/j.cllc.2011.03.033
10.1016/j.health.2024.100316
10.1016/j.cmpb.2023.107864
10.1038/s41586-019-1799-6
10.1093/jnci/95.6.470
10.1038/sj.bjc.6604158
10.3322/caac.21552
10.3390/bdcc6040139
10.1016/j.imavis.2024.104910
10.1109/BIBM52615.2021.9669648
10.1016/S2213-2600(16)30200-4
10.1016/j.jtho.2019.10.021
10.1136/thoraxjnl-2020-215158
10.3390/diagnostics12020237
10.1016/j.cmpb.2023.107879
10.1056/NEJMoa1211776
10.7326/M20-1868
10.1002/ijc.33578
10.3390/healthcare10122367
10.1038/s41591-019-0447-x
10.3390/diagnostics13162617
10.1016/j.heliyon.2020.e03402
10.1001/jama.2016.6255
10.1038/s41746-023-00866-z
10.1016/j.compbiomed.2023.106544
10.1158/1940-6207.CAPR-13-0206
10.3390/diagnostics13030546
10.1016/j.canlet.2019.12.007
10.1016/j.tranon.2020.100907
10.3390/app12041926
ContentType Journal Article
Copyright Copyright: © 2024 Pathan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Pathan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Pathan et al 2024 Pathan et al
2024 Pathan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Pathan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Pathan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Pathan et al 2024 Pathan et al
– notice: 2024 Pathan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOI 10.1371/journal.pone.0305035
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Agricultural Science Database

MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate The efficacy of machine learning models in lung cancer risk prediction with explainability
EISSN 1932-6203
ExternalDocumentID 3069265563
PMC11175504
A797660040
38870229
10_1371_journal_pone_0305035
Genre Journal Article
GeographicLocations United Kingdom--UK
United States--US
GeographicLocations_xml – name: United Kingdom--UK
– name: United States--US
GrantInformation_xml – fundername: ;
  grantid: PNURSP2024R49
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c627t-77e2d3233fb5c0913c46ef85c0456b0553a23656e7e43f59b7012d51dafa570e3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Aug 13 01:18:18 EDT 2025
Thu Aug 21 18:33:31 EDT 2025
Mon Jul 21 09:31:31 EDT 2025
Fri Jul 25 11:24:43 EDT 2025
Tue Jun 17 22:09:25 EDT 2025
Tue Jun 10 21:15:05 EDT 2025
Fri Jun 27 05:43:18 EDT 2025
Fri Jun 27 05:36:41 EDT 2025
Thu May 22 21:24:08 EDT 2025
Mon Jul 21 06:06:04 EDT 2025
Tue Jul 01 03:36:45 EDT 2025
Thu Apr 24 23:09:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright: © 2024 Pathan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c627t-77e2d3233fb5c0913c46ef85c0456b0553a23656e7e43f59b7012d51dafa570e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0009-0002-5303-9155
0000-0002-2747-608X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0305035
PMID 38870229
PQID 3069265563
PQPubID 1436336
PageCount e0305035
ParticipantIDs plos_journals_3069265563
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11175504
proquest_miscellaneous_3068752857
proquest_journals_3069265563
gale_infotracmisc_A797660040
gale_infotracacademiconefile_A797660040
gale_incontextgauss_ISR_A797660040
gale_incontextgauss_IOV_A797660040
gale_healthsolutions_A797660040
pubmed_primary_38870229
crossref_citationtrail_10_1371_journal_pone_0305035
crossref_primary_10_1371_journal_pone_0305035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-13
PublicationDateYYYYMMDD 2024-06-13
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Publisher_xml – name: Public Library of Science
References K. Kobylińska (pone.0305035.ref040) 2022; 12
R. M. Munshi (pone.0305035.ref036) 2024; 142
M. Pal (pone.0305035.ref037) 2023
American Cancer Society (pone.0305035.ref004) 2024
Centers for Disease Control and Prevention (pone.0305035.ref008) 2023
H. A. Katki (pone.0305035.ref010) 2016; 315
Y. Xie (pone.0305035.ref025) 2021; 14
P. Rajadurai (pone.0305035.ref007) 2020; 15
K.R Kannan (pone.0305035.ref024) 2020
Y. Zhang (pone.0305035.ref034) 2022; 12
K. ten Haaf (pone.0305035.ref003) 2021; 149
Cancer Research UK (pone.0305035.ref006) 2024
M. C. Tammemägi (pone.0305035.ref013) 2013; 368
D. Chen (pone.0305035.ref035) 2021
J. K. Field (pone.0305035.ref012) 2021; 76
MYSAR AHMAD BHAT (pone.0305035.ref043) 2020
M. Y. Shaheen (pone.0305035.ref015) 2021
F. E. McRonald (pone.0305035.ref014) 2014; 7
D. Ardila (pone.0305035.ref020) 2019; 25
C. M. van der Aalst (pone.0305035.ref002) 2016; 4
S. Huang (pone.0305035.ref017) 2020; 471
L. J. Crasta (pone.0305035.ref030) 2024; 5
K. Dwivedi (pone.0305035.ref041) 2023; 153
A. Cassidy (pone.0305035.ref011) 2008; 98
J. Zhou (pone.0305035.ref033) 2023; 6
American Cancer Society (pone.0305035.ref005) 2024
W. L. Bi (pone.0305035.ref016) 2019; 69
Y. Said (pone.0305035.ref032) 2023; 13
E. Vieira (pone.0305035.ref023) 2021
Prithivraj (pone.0305035.ref042) 2017
E. Dritsas (pone.0305035.ref021) 2022; 6
R. K. Pathan (pone.0305035.ref019) 2022; 10
M. A. Thanoon (pone.0305035.ref027) 2023; 13
M. Anthimopoulos (pone.0305035.ref029) 2016; 35
S. Yount (pone.0305035.ref001) 2012; 13
P. B. Bach (pone.0305035.ref009) 2003; 95
T. Huo (pone.0305035.ref031) 2023; 13
N. A. Wani (pone.0305035.ref039) 2024; 243
R. P.R., R. A. S Nair (pone.0305035.ref022) 2019
M. T. Lu (pone.0305035.ref028) 2020; 173
K. Dwivedi (pone.0305035.ref038) 2024; 243
S. M. McKinney (pone.0305035.ref018) 2020; 577
A. S. Ahmad (pone.0305035.ref026) 2020; 6
References_xml – volume: 35
  start-page: 1207
  issue: 5
  year: 2016
  ident: pone.0305035.ref029
  article-title: Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2535865
– volume: 13
  start-page: 14
  issue: 1
  year: 2012
  ident: pone.0305035.ref001
  article-title: A Brief Symptom Index for Advanced Lung Cancer
  publication-title: Clin Lung Cancer
  doi: 10.1016/j.cllc.2011.03.033
– volume: 5
  start-page: 100316
  year: 2024
  ident: pone.0305035.ref030
  article-title: A novel Deep Learning architecture for lung cancer detection and diagnosis from Computed Tomography image analysis
  publication-title: Healthcare Analytics
  doi: 10.1016/j.health.2024.100316
– volume: 243
  start-page: 107864
  year: 2024
  ident: pone.0305035.ref038
  article-title: Enlightening the path to NSCLC biomarkers: Utilizing the power of XAI-guided deep learning
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2023.107864
– volume: 577
  start-page: 89
  issue: 7788
  year: 2020
  ident: pone.0305035.ref018
  article-title: International evaluation of an AI system for breast cancer screening
  publication-title: Nature
  doi: 10.1038/s41586-019-1799-6
– volume: 95
  start-page: 470
  issue: 6
  year: 2003
  ident: pone.0305035.ref009
  article-title: Variations in Lung Cancer Risk Among Smokers
  publication-title: JNCI: Journal of the National Cancer Institute
  doi: 10.1093/jnci/95.6.470
– volume: 98
  start-page: 270
  issue: 2
  year: 2008
  ident: pone.0305035.ref011
  article-title: The LLP risk model: an individual risk prediction model for lung cancer
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6604158
– volume: 69
  start-page: 127
  issue: 2
  year: 2019
  ident: pone.0305035.ref016
  article-title: Artificial intelligence in cancer imaging: Clinical challenges and applications
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21552
– volume: 6
  start-page: 139
  issue: 4
  year: 2022
  ident: pone.0305035.ref021
  article-title: Lung Cancer Risk Prediction with Machine Learning Models
  publication-title: Big Data and Cognitive Computing
  doi: 10.3390/bdcc6040139
– volume: 142
  start-page: 104910
  year: 2024
  ident: pone.0305035.ref036
  article-title: A novel approach for breast cancer detection using optimized ensemble learning framework and XAI
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2024.104910
– start-page: 3341
  volume-title: in 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
  year: 2021
  ident: pone.0305035.ref035
  doi: 10.1109/BIBM52615.2021.9669648
– year: 2024
  ident: pone.0305035.ref005
  article-title: Lung Cancer Survival Rates
– volume: 4
  start-page: 749
  issue: 9
  year: 2016
  ident: pone.0305035.ref002
  article-title: Lung cancer screening: latest developments and unanswered questions
  publication-title: Lancet Respir Med
  doi: 10.1016/S2213-2600(16)30200-4
– year: 2017
  ident: pone.0305035.ref042
  article-title: Lung Cancer Data
– volume: 15
  start-page: 317
  issue: 3
  year: 2020
  ident: pone.0305035.ref007
  article-title: Lung Cancer in Malaysia
  publication-title: Journal of Thoracic Oncology
  doi: 10.1016/j.jtho.2019.10.021
– volume: 76
  start-page: 161
  issue: 2
  year: 2021
  ident: pone.0305035.ref012
  article-title: Liverpool Lung Project lung cancer risk stratification model: calibration and prospective validation
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2020-215158
– start-page: 511
  year: 2021
  ident: pone.0305035.ref023
  article-title: Data Mining Approach to Classify Cases of Lung Cancer
– volume: 12
  start-page: 237
  issue: 2
  year: 2022
  ident: pone.0305035.ref034
  article-title: Applications of Explainable Artificial Intelligence in Diagnosis and Surgery
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12020237
– volume: 243
  start-page: 107879
  year: 2024
  ident: pone.0305035.ref039
  article-title: DeepXplainer: An interpretable deep learning based approach for lung cancer detection using explainable artificial intelligence
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2023.107879
– year: 2023
  ident: pone.0305035.ref008
  article-title: What Are the Risk Factors for Lung Cancer?
– start-page: 1
  volume-title: in 2019 IEEE International Conference on ElectricalComputer and Communication Technologies (ICECCT),
  year: 2019
  ident: pone.0305035.ref022
– year: 2020
  ident: pone.0305035.ref024
  article-title: lung cancer DATASET BY STACEYINROBERT
– volume: 368
  start-page: 728
  issue: 8
  year: 2013
  ident: pone.0305035.ref013
  article-title: Selection Criteria for Lung-Cancer Screening
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMoa1211776
– volume: 173
  start-page: 704
  issue: 9
  year: 2020
  ident: pone.0305035.ref028
  article-title: Deep Learning Using Chest Radiographs to Identify High-Risk Smokers for Lung Cancer Screening Computed Tomography: Development and Validation of a Prediction Model
  publication-title: Ann Intern Med
  doi: 10.7326/M20-1868
– volume: 149
  start-page: 250
  issue: 2
  year: 2021
  ident: pone.0305035.ref003
  article-title: Personalising lung cancer screening: An overview of risk‐stratification opportunities and challenges
  publication-title: Int J Cancer
  doi: 10.1002/ijc.33578
– volume: 10
  start-page: 2367
  issue: 12
  year: 2022
  ident: pone.0305035.ref019
  article-title: Breast Cancer Classification by Using Multi-Headed Convolutional Neural Network Modeling
  publication-title: Healthcare
  doi: 10.3390/healthcare10122367
– volume: 25
  start-page: 954
  issue: 6
  year: 2019
  ident: pone.0305035.ref020
  article-title: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0447-x
– volume: 13
  start-page: 2617
  issue: 16
  year: 2023
  ident: pone.0305035.ref027
  article-title: A Review of Deep Learning Techniques for Lung Cancer Screening and Diagnosis Based on CT Images
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13162617
– volume: 13
  year: 2023
  ident: pone.0305035.ref031
  article-title: Deep learning-based algorithm improves radiologists’ performance in lung cancer bone metastases detection on computed tomography
  publication-title: Front Oncol
– year: 2024
  ident: pone.0305035.ref006
  article-title: Lung cancer statistics
– year: 2020
  ident: pone.0305035.ref043
  publication-title: Lung Cancer
– volume: 6
  start-page: e03402
  issue: 2
  year: 2020
  ident: pone.0305035.ref026
  article-title: A new tool to predict lung cancer based on risk factors
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2020.e03402
– volume: 315
  start-page: 2300
  issue: 21
  year: 2016
  ident: pone.0305035.ref010
  article-title: Development and Validation of Risk Models to Select Ever-Smokers for CT Lung Cancer Screening
  publication-title: JAMA
  doi: 10.1001/jama.2016.6255
– start-page: 277
  year: 2023
  ident: pone.0305035.ref037
  article-title: Interpretability Approaches of Explainable AI in Analyzing Features for Lung Cancer Detection
– volume: 6
  start-page: 119
  issue: 1
  year: 2023
  ident: pone.0305035.ref033
  article-title: An ensemble deep learning model for risk stratification of invasive lung adenocarcinoma using thin-slice CT
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-023-00866-z
– volume: 153
  start-page: 106544
  year: 2023
  ident: pone.0305035.ref041
  article-title: An explainable AI-driven biomarker discovery framework for Non-Small Cell Lung Cancer classification
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.106544
– volume: 7
  start-page: 362
  issue: 3
  year: 2014
  ident: pone.0305035.ref014
  article-title: The UK Lung Screen (UKLS): Demographic Profile of First 88,897 Approaches Provides Recommendations for Population Screening
  publication-title: Cancer Prevention Research,
  doi: 10.1158/1940-6207.CAPR-13-0206
– year: 2021
  ident: pone.0305035.ref015
  article-title: Applications of Artificial Intelligence (AI) in healthcare: A review
  publication-title: ScienceOpen Preprints
– volume: 13
  start-page: 546
  issue: 3
  year: 2023
  ident: pone.0305035.ref032
  article-title: Medical Images Segmentation for Lung Cancer Diagnosis Based on Deep Learning Architectures
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13030546
– year: 2024
  ident: pone.0305035.ref004
  article-title: Key Statistics for Lung Cancer
– volume: 471
  start-page: 61
  year: 2020
  ident: pone.0305035.ref017
  article-title: Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2019.12.007
– volume: 14
  start-page: 100907
  issue: 1
  year: 2021
  ident: pone.0305035.ref025
  article-title: Early lung cancer diagnostic biomarker discovery by machine learning methods
  publication-title: Transl Oncol
  doi: 10.1016/j.tranon.2020.100907
– volume: 12
  start-page: 1926
  issue: 4
  year: 2022
  ident: pone.0305035.ref040
  article-title: Explainable Machine Learning for Lung Cancer Screening Models
  publication-title: Applied Sciences
  doi: 10.3390/app12041926
SSID ssj0053866
Score 2.466306
Snippet Among many types of cancers, to date, lung cancer remains one of the deadliest cancers around the world. Many researchers, scientists, doctors, and people from...
SourceID plos
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0305035
SubjectTerms Accuracy
Algorithms
Biology and Life Sciences
Cancer
Cancer therapies
Classification
Computer and Information Sciences
Datasets
Engineering and Technology
Health risks
Humans
Learning algorithms
Literature reviews
Lung cancer
Lung diseases
Lung Neoplasms - diagnosis
Machine Learning
Medical personnel
Medical prognosis
Medical research
Medical screening
Medicine and Health Sciences
Neural networks
Oncology, Experimental
Predictions
Research and Analysis Methods
Risk assessment
Risk Assessment - methods
Risk factors
Support vector machines
Three dimensional imaging
Womens health
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELagvPCC2PixwBgGIQEP2RK7ttunaZqYBhIgAUMVL5HjXLZJJcmaVtr-e-4cNyNoAt4q-VIlvjv7s-_uO8ZeTVUCSQI6BqNyCjOq2OI2G8vcmrTUGoylauSPn_TxyfjDTM3ChVsb0irXa6JfqIva0R35HkLbqdBEZ7XfXMTUNYqiq6GFxm12h6jLKKXLzPoDF_qy1qFcTpp0L2hnt6kr2CVDT3yTt-vtKCzKo2Zetzchzj8TJ3_biY7us3sBQvKDTucb7BZUm2wjOGnL3wQm6bcP2A80Ag5EEmHdFa9L_tOnTgIPvSJOuW-E0_Lzis_R67kjG1hwyjfnzYJiOKQ3Tpe1HC6buS-1omzaq4fs5Ojdt8PjODRTiJ0WZokoGkQhhZRlrhyRgbqxhnKCvxFC5YlS0gqJ4A4MjGWpprnBratQaWFLq0wC8hEbVThxW4ynyqpSgSpKCgcjhNQimTiQuUgdaJdGTK7nNHOBaZwaXswzHz4zeOLoZiojTWRBExGL-6eajmnjH_LPSV1ZVy_aO2p2YBBhaVqcIvbSSxDNRUV5NKd21bbZ-8_f_0Po65eB0OsgVNb4Jai0rnYBX4foswaS2wNJdFY3GN4i41p_UJtdmzU-uTa4m4df9MP0p5QbV0G98jJ46BQTZSL2uLPPfgIl7iGI0qYRmwwstxcgdvHhSHV-5lnGUyJxVcn4yd_f6ym7KxDnUfZcKrfZaLlYwTPEact8xzvjLy9NPXo
  priority: 102
  providerName: ProQuest
Title The efficacy of machine learning models in lung cancer risk prediction with explainability
URI https://www.ncbi.nlm.nih.gov/pubmed/38870229
https://www.proquest.com/docview/3069265563
https://www.proquest.com/docview/3068752857
https://pubmed.ncbi.nlm.nih.gov/PMC11175504
http://dx.doi.org/10.1371/journal.pone.0305035
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPhaxigGIQEPqZI4ttMHhMbUMpA20KCo4iVKXGdMCkloWml94W_nznEigjrBi1XJ5yq5D985d_4dIc_H3NOep4WrJU8xzcjdBNysy9JE-pkQWiZ4G_nsXJzOwg9zPt8hbc9Wy8B669EO-0nNlvno-ufmDRj8a9O1QfrtolFVFnqECuwxvkv2wDdJNNWzsMsrgHULYS_Q3bSy56DsNj2o8rLeFoP-XUr5h2-a3iG3bVBJjxst2Cc7urhL9q3Z1vSlxZZ-dY98A7WgGmEjErWhZUZ_mGJKTW33iEtqWuPU9KqgOewDVKFWLClWoNNqiVkdlCTFz7dUX1e5uXyF9bWb-2Q2nXw5OXVtewVXiUCuIK7WwYIFjGUpVwgPqkKhswh-Q1CVepyzJGAQ7mmpQ5bxcSrBmS24v0iyhEtPswdkUADjDgj1ecIzrvkiwwQxBJUi8CKlWRr4SgvlO4S1PI2VxR7HFhh5bBJqEs4gDadilERsJeEQt1tVNdgb_6B_guKKmxuknenGxxJiLoHblUOeGQoEviiwsuYyWdd1_P7j1_8g-nzRI3phibIS3gSE1txmgMdBQK0e5VGPEsxX9aYPULnaF6pjOMONA4G4bbCyVbjt00-7afxTrJYrdLk2NHAMDSIuHfKw0c-OgQy8CsRtY4dEPc3tCBBvvD9TXH03uOM-wrpyLzy8-ZEfkVsBRH1YS-ezIzJYLdf6MURtq3RIduVcwhid-DhO3w3J3tvJ-aeLofkOMjSGiuOvyW8Bj0fP
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALoryaUqhBIOCQNrHX9u4BoQqodukDCVq04hISx2krLUnY7Ar2T_EbmXGclKAKuPQWyZMosccznzMz3xDyZCgCEwRG-kaJBMOMwo_Bzfo8iVWYSWlUjNXIB4dydNx_NxGTFfKzqYXBtMrGJlpDnRYa_5FvA7QdMol0Vq_Kbz52jcLoatNCo1aLPbP8Dke26uX4DazvU8Z23x69Hvmuq4CvJVNzgJOGpZxxniVCIyum7kuTDeAasEQSCMFjxgHlGGX6PBPDRIENT0WYxlksVGA4PPcKuQqON8AdpSbtAQ9sh5SuPI-rcNtpw1ZZ5GYLN1Zgm8qduz_nBHrltKguQrh_Jmr-5vl2b5IbDrLSnVrHVsmKyW-RVWcUKvrcMVe_uE0-g9JRg6QUsV7SIqNfbaqmoa43xQm1jXcqepbTKVgZqlHnZhTz22k5w5gR6gnFn8PU_CintrQLs3eXd8jxpUzzXdLLYeLWCA1FLDJhRJph-Bkgq2TBQBuesFAbqUOP8GZOI-2YzbHBxjSy4ToFJ5x6piJcicithEf89q6yZvb4h_wmLldU16e2hiHaUYDoJBpDjzy2EkirkWPezkm8qKpo_P7Tfwh9_NAReuaEsgK-BBatrpWA10G6ro7kRkcSjIPuDK-hcjUfVEXn2wjubBTu4uFH7TA-FHPxclMsrAwcctlAKI_cq_WznUAOPgtQ4dAjg47mtgLIZt4dyc9OLat5iKSxIuiv__29Nsm10dHBfrQ_Pty7T64zwJiYuRfyDdKbzxbmAWDEefLQbkxKvly2JfgFJ7N47w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGkRAviPFrgcEMAgEPWRO7ttsHhCZGtTIYCNhU8RISxxmTShKaVtB_jb-OO8fJCJqAl71F8iVK7PPnz_Hdd4Q8HInABIGRvlEiwWNG4cewzPo8iVWYSWlUjNnIbw7k3uHg1VRM18jPJhcGwyobTLRAnRYa_5H3gdqOmEQ5q37mwiLe7Y6fl998rCCFJ61NOY3aRfbN6jts36pnk10Y60eMjV9-fLHnuwoDvpZMLYBaGpZyxnmWCI0KmXogTTaEa-AVSSAEjxkHxmOUGfBMjBIFeJ6KMI2zWKjAcHjuBXJRcRHiHFPTdrMHOCKlS9XjKuw7z9gui9xs4yQLbIG506XQLQi9clZUZ7HdP4M2f1sFx1fJFUdf6U7tb-tkzeTXyLoDiIo-cSrWT6-TT-CA1KBARaxXtMjoVxu2aairU3FMbRGeip7kdAaIQzX635xirDst53h-hD5D8UcxNT_KmU3zwkje1Q1yeC7dfJP0cui4DUJDEYtMGJFmeBQN9FWyYKgNT1iojdShR3jTp5F2KudYbGMW2aM7BbuduqciHInIjYRH_Pauslb5-If9Fg5XVOeqtiAR7ShgdxKB0SMPrAVKbOTorMfxsqqiyduj_zD68L5j9NgZZQV8CQxanTcBr4PSXR3LzY4lAIXuNG-gczUfVEWnUwrubBzu7Ob7bTM-FOPyclMsrQ1seNlQKI_cqv2z7UAO6xcwxJFHhh3PbQ1Q2bzbkp98sQrnIQrIimBw--_vtUUuAQZErycH-3fIZQZ0E4P4Qr5Jeov50twFurhI7tl5Scnn8waCX9E1fSU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+efficacy+of+machine+learning+models+in+lung+cancer+risk+prediction+with+explainability&rft.jtitle=PloS+one&rft.au=Refat+Khan+Pathan&rft.au=Israt+Jahan+Shorna&rft.au=Hossain%2C+Sayem&rft.au=Mayeen+Uddin+Khandaker&rft.date=2024-06-13&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=19&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.pone.0305035&rft.externalDocID=3069265563
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon