Layer-specific BOLD activation in awake monkey V1 revealed by ultra-high spatial resolution functional magnetic resonance imaging
The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic resonance imaging (fMRI). However, whether the spatial specificity of the blood-oxygenation-level-dependent (BOLD) fMRI is sufficiently high to rev...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 64; pp. 147 - 155 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.01.2013
Elsevier Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2012.08.060 |
Cover
Loading…
Abstract | The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic resonance imaging (fMRI). However, whether the spatial specificity of the blood-oxygenation-level-dependent (BOLD) fMRI is sufficiently high to reveal lamina specific organization in the cortex reliably is still unclear. In this study we demonstrate for the first time the detection of such layer-specific activation in awake monkeys at the spatial resolution of 200×200×1000μm3 in a vertical 4.7T scanner. Results collected in trained monkeys are high in contrast-to-noise ratio and low in motion artifacts. Isolation of laminar activation was aided by choosing the optimal slice orientation and thickness using a novel pial vein pattern analysis derived from optical imaging. We found that the percent change of GE-BOLD signal is the highest at a depth corresponding to layer IV. Changes in the middle layers (layer IV) were 30% greater than changes in the top layers (layers I–III), and 32% greater than the bottom layers (layers V/VI). The laminar distribution of BOLD signal correlates well with neural activity reported in the literature. Our results suggest that the high intrinsic spatial resolution of GE-BOLD signal is sufficient for mapping sub-millimeter functional structures in awake monkeys. This degree of spatial specificity will be useful for mapping both laminar activations and columnar structures in the cerebral cortex.
► High resolution fMRI in awake monkeys with in-plane resolution of 200×200μm2. ► Contaminating vein influence minimized with pial vein analysis from optical imaging. ► Sub-millimeter functional laminar specific activation is revealed by GE-BOLD signals. |
---|---|
AbstractList | The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic resonance imaging (fMRI). However, whether the spatial specificity of the blood-oxygenation-level-dependent (BOLD) fMRI is sufficiently high to reveal lamina specific organization in the cortex reliably is still unclear. In this study we demonstrate for the first time the detection of such layer-specific activation in awake monkeys at the spatial resolution of 200x200x1000[micro]m3in a vertical 4.7T scanner. Results collected in trained monkeys are high in contrast-to-noise ratio and low in motion artifacts. Isolation of laminar activation was aided by choosing the optimal slice orientation and thickness using a novel pial vein pattern analysis derived from optical imaging. We found that the percent change of GE-BOLD signal is the highest at a depth corresponding to layer IV. Changes in the middle layers (layer IV) were 30% greater than changes in the top layers (layers I-III), and 32% greater than the bottom layers (layers V/VI). The laminar distribution of BOLD signal correlates well with neural activity reported in the literature. Our results suggest that the high intrinsic spatial resolution of GE-BOLD signal is sufficient for mapping sub-millimeter functional structures in awake monkeys. This degree of spatial specificity will be useful for mapping both laminar activations and columnar structures in the cerebral cortex. The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic resonance imaging (fMRI). However, whether the spatial specificity of the blood-oxygenation-level-dependent (BOLD) fMRI is sufficiently high to reveal lamina specific organization in the cortex reliably is still unclear. In this study we demonstrate for the first time the detection of such layer-specific activation in awake monkeys at the spatial resolution of 200×200×1000μm3 in a vertical 4.7T scanner. Results collected in trained monkeys are high in contrast-to-noise ratio and low in motion artifacts. Isolation of laminar activation was aided by choosing the optimal slice orientation and thickness using a novel pial vein pattern analysis derived from optical imaging. We found that the percent change of GE-BOLD signal is the highest at a depth corresponding to layer IV. Changes in the middle layers (layer IV) were 30% greater than changes in the top layers (layers I–III), and 32% greater than the bottom layers (layers V/VI). The laminar distribution of BOLD signal correlates well with neural activity reported in the literature. Our results suggest that the high intrinsic spatial resolution of GE-BOLD signal is sufficient for mapping sub-millimeter functional structures in awake monkeys. This degree of spatial specificity will be useful for mapping both laminar activations and columnar structures in the cerebral cortex. ► High resolution fMRI in awake monkeys with in-plane resolution of 200×200μm2. ► Contaminating vein influence minimized with pial vein analysis from optical imaging. ► Sub-millimeter functional laminar specific activation is revealed by GE-BOLD signals. The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic resonance imaging (fMRI). However, whether the spatial specificity of the blood-oxygenation-level-dependent (BOLD) fMRI is sufficiently high to reveal lamina specific organization in the cortex reliably is still unclear. In this study we demonstrate for the first time the detection of such layer-specific activation in awake monkeys at the spatial resolution of 200 × 200 × 1000 μm(3) in a vertical 4.7 T scanner. Results collected in trained monkeys are high in contrast-to-noise ratio and low in motion artifacts. Isolation of laminar activation was aided by choosing the optimal slice orientation and thickness using a novel pial vein pattern analysis derived from optical imaging. We found that the percent change of GE-BOLD signal is the highest at a depth corresponding to layer IV. Changes in the middle layers (layer IV) were 30% greater than changes in the top layers (layers I-III), and 32% greater than the bottom layers (layers V/VI). The laminar distribution of BOLD signal correlates well with neural activity reported in the literature. Our results suggest that the high intrinsic spatial resolution of GE-BOLD signal is sufficient for mapping sub-millimeter functional structures in awake monkeys. This degree of spatial specificity will be useful for mapping both laminar activations and columnar structures in the cerebral cortex.The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic resonance imaging (fMRI). However, whether the spatial specificity of the blood-oxygenation-level-dependent (BOLD) fMRI is sufficiently high to reveal lamina specific organization in the cortex reliably is still unclear. In this study we demonstrate for the first time the detection of such layer-specific activation in awake monkeys at the spatial resolution of 200 × 200 × 1000 μm(3) in a vertical 4.7 T scanner. Results collected in trained monkeys are high in contrast-to-noise ratio and low in motion artifacts. Isolation of laminar activation was aided by choosing the optimal slice orientation and thickness using a novel pial vein pattern analysis derived from optical imaging. We found that the percent change of GE-BOLD signal is the highest at a depth corresponding to layer IV. Changes in the middle layers (layer IV) were 30% greater than changes in the top layers (layers I-III), and 32% greater than the bottom layers (layers V/VI). The laminar distribution of BOLD signal correlates well with neural activity reported in the literature. Our results suggest that the high intrinsic spatial resolution of GE-BOLD signal is sufficient for mapping sub-millimeter functional structures in awake monkeys. This degree of spatial specificity will be useful for mapping both laminar activations and columnar structures in the cerebral cortex. The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic resonance imaging (fMRI). However, whether the spatial specificity of the blood-oxygenation-level-dependent (BOLD) fMRI is sufficiently high to reveal lamina specific organization in the cortex reliably is still unclear. In this study we demonstrate for the first time the detection of such layer-specific activation in awake monkeys at the spatial resolution of 200 A 200 A 1000 mu m3 in a vertical 4.7 T scanner. Results collected in trained monkeys are high in contrast-to-noise ratio and low in motion artifacts. Isolation of laminar activation was aided by choosing the optimal slice orientation and thickness using a novel pial vein pattern analysis derived from optical imaging. We found that the percent change of GE-BOLD signal is the highest at a depth corresponding to layer IV. Changes in the middle layers (layer IV) were 30% greater than changes in the top layers (layers IaIII), and 32% greater than the bottom layers (layers V/VI). The laminar distribution of BOLD signal correlates well with neural activity reported in the literature. Our results suggest that the high intrinsic spatial resolution of GE-BOLD signal is sufficient for mapping sub-millimeter functional structures in awake monkeys. This degree of spatial specificity will be useful for mapping both laminar activations and columnar structures in the cerebral cortex. The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic resonance imaging (fMRI). However, whether the spatial specificity of the blood-oxygenation-level-dependent (BOLD) fMRI is sufficiently high to reveal lamina specific organization in the cortex reliably is still unclear. In this study we demonstrate for the first time the detection of such layer-specific activation in awake monkeys at the spatial resolution of 200 × 200 × 1000 μm(3) in a vertical 4.7 T scanner. Results collected in trained monkeys are high in contrast-to-noise ratio and low in motion artifacts. Isolation of laminar activation was aided by choosing the optimal slice orientation and thickness using a novel pial vein pattern analysis derived from optical imaging. We found that the percent change of GE-BOLD signal is the highest at a depth corresponding to layer IV. Changes in the middle layers (layer IV) were 30% greater than changes in the top layers (layers I-III), and 32% greater than the bottom layers (layers V/VI). The laminar distribution of BOLD signal correlates well with neural activity reported in the literature. Our results suggest that the high intrinsic spatial resolution of GE-BOLD signal is sufficient for mapping sub-millimeter functional structures in awake monkeys. This degree of spatial specificity will be useful for mapping both laminar activations and columnar structures in the cerebral cortex. The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic resonance imaging (fMRI). However, whether the spatial specificity of the blood-oxygenation-level-dependent (BOLD) fMRI is sufficiently high to reveal lamina specific organization in the cortex reliably is still unclear. In this study we demonstrate for the first time the detection of such layer-specific activation in awake monkeys at the spatial resolution of 200×200×1000 µm 3 in a vertical 4.7T scanner. Results collected in trained monkeys are high in contrast-to-noise ratio and low in motion artifacts. Isolation of laminar activation was aided by choosing the optimal slice orientation and thickness using a novel pial vein pattern analysis derived from optical imaging. We found the percent change of GE-BOLD signal is the highest at a depth corresponding to layer IV. Changes in the middle layers (layer IV) were 30% greater than changes in the top layers (layers I–III), and 32% greater than the bottom layers (layers V/VI). The laminar distribution of BOLD signal correlates well with neural activity reported in the literature. Our results suggest the high intrinsic spatial resolution of GE-BOLD signal is sufficient for mapping sub-millimeter functional structures in awake monkeys. This degree of spatial specificity will be useful for mapping both laminar activations and columnar structures in the cerebral cortex. |
Author | Gore, John C. Roe, Anna W. Chen, Gang Wang, Feng |
AuthorAffiliation | b Institute of Imaging Science, Vanderbilt University, Nashville, TN 37235 d Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 e Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 f Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235 c Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37235 a Department of Psychology, Vanderbilt University, Nashville, TN 37203 |
AuthorAffiliation_xml | – name: b Institute of Imaging Science, Vanderbilt University, Nashville, TN 37235 – name: d Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 – name: a Department of Psychology, Vanderbilt University, Nashville, TN 37203 – name: f Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235 – name: e Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 – name: c Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37235 |
Author_xml | – sequence: 1 givenname: Gang surname: Chen fullname: Chen, Gang email: Gang.Chen@Vanderbilt.edu organization: Department of Psychology, Vanderbilt University, Nashville, TN 37203, USA – sequence: 2 givenname: Feng surname: Wang fullname: Wang, Feng organization: Institute of Imaging Science, Vanderbilt University, Nashville, TN 37235, USA – sequence: 3 givenname: John C. surname: Gore fullname: Gore, John C. organization: Institute of Imaging Science, Vanderbilt University, Nashville, TN 37235, USA – sequence: 4 givenname: Anna W. surname: Roe fullname: Roe, Anna W. organization: Department of Psychology, Vanderbilt University, Nashville, TN 37203, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27110692$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22960152$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk2P0zAQhiO0iP2Av4AsISQuKWMnTpwLgl0-pUp7Aa6W60xad1O72ElRj_xzJvtBYS_sKVbmncevZ97T7MgHj1nGOMw48Or1euZxjMFtzBJnAriYgZpBBY-yEw6NzBtZi6PpLItccd4cZ6cprQGg4aV6kh0L0VTApTjJfs3NHmOetmhd5yw7v5y_Z8YObmcGFzxznpmf5grZJvgr3LPvnEXcoemxZYs9G_shmnzlliuWttRheiqn0I_Xzd3o7XSgv-TU40AXTGVvvEU2uXd--TR73Jk-4bPb71n27eOHrxef8_nlpy8X7-a5rUQ95HUNUBatxU5UtVESuqIpVcdLU5R1W1rgxUKWvBTKlovGtiCs6gxUvO2ooGxxlr254W7HxQYJ5Ml6r7eRfMS9DsbpfyverfQy7HQhQQmlCPDqFhDDjxHToDcuWex74zGMSXMJUFcAEv4vFQKKqhayIumLe9J1GCONbAJKAYKYklTP_zb_x_XdIknw8lZgkjV9F2nELh10NedQNeIwBRtDShE7bd1wvWp6s-s1Bz0lTK_1IWF6SpgGpSlhBFD3AHd3PKD1_KYVac07h1En65Ci0LqIdtBtcA-BvL0Hsb3zjt5M8XwY4jeGkwit |
CitedBy_id | crossref_primary_10_3389_fopht_2022_989002 crossref_primary_10_1002_hbm_24042 crossref_primary_10_1016_j_neuroimage_2017_03_005 crossref_primary_10_1109_TMI_2020_3019087 crossref_primary_10_1016_j_neuroimage_2016_06_019 crossref_primary_10_1109_ACCESS_2019_2938681 crossref_primary_10_1162_imag_a_00249 crossref_primary_10_1016_j_neuroimage_2017_03_060 crossref_primary_10_1016_j_neuroimage_2017_11_068 crossref_primary_10_1016_j_neuroimage_2018_05_057 crossref_primary_10_1007_s00117_012_2345_9 crossref_primary_10_1371_journal_pone_0250504 crossref_primary_10_1109_TBME_2020_3027296 crossref_primary_10_1038_nmeth_2730 crossref_primary_10_1016_j_pneurobio_2022_102263 crossref_primary_10_1016_j_pneurobio_2021_102187 crossref_primary_10_1016_j_neuroimage_2013_09_060 crossref_primary_10_1016_j_neuroimage_2016_06_030 crossref_primary_10_1016_j_neuroimage_2021_118793 crossref_primary_10_1016_j_pneurobio_2020_101936 crossref_primary_10_1109_TMI_2018_2812151 crossref_primary_10_3389_fnana_2015_00135 crossref_primary_10_1016_j_neuroimage_2016_02_073 crossref_primary_10_1016_j_neuroimage_2019_116396 crossref_primary_10_1002_hbm_70193 crossref_primary_10_1016_j_neuroimage_2023_120121 crossref_primary_10_1016_j_neuroimage_2016_06_048 crossref_primary_10_1109_TMI_2022_3186913 crossref_primary_10_1186_s40708_021_00150_4 crossref_primary_10_1002_hbm_24375 crossref_primary_10_1016_j_cub_2015_12_038 crossref_primary_10_1177_0271678X231158434 crossref_primary_10_1016_j_neuroimage_2017_05_023 crossref_primary_10_1016_j_neuroimage_2019_116209 crossref_primary_10_7554_eLife_46856 crossref_primary_10_1002_hbm_26094 crossref_primary_10_1016_j_mri_2021_03_012 crossref_primary_10_1523_JNEUROSCI_1015_15_2015 crossref_primary_10_1016_j_pneurobio_2021_102034 crossref_primary_10_1016_j_neuroimage_2020_117631 crossref_primary_10_1016_j_neuroimage_2015_10_025 crossref_primary_10_1016_j_neuroimage_2015_10_048 crossref_primary_10_1016_j_neuroimage_2017_02_063 crossref_primary_10_1016_j_neuroimage_2017_06_045 crossref_primary_10_1088_1361_6560_aaf9e4 |
Cites_doi | 10.1002/1522-2594(200012)44:6<925::AID-MRM14>3.0.CO;2-M 10.1016/S0730-725X(01)00391-5 10.1523/JNEUROSCI.08-05-01500.1988 10.1006/nimg.2002.1082 10.1016/j.neuroimage.2011.08.001 10.1038/nature03495 10.1016/j.neuroimage.2006.09.039 10.1016/0006-8993(81)90619-3 10.1016/j.mri.2010.03.026 10.1016/0006-8993(79)90728-5 10.1016/j.neuroimage.2011.10.079 10.1038/sj.jcbfm.9600434 10.1146/annurev.neuro.21.1.47 10.1016/j.neuron.2008.02.032 10.1002/mrm.10720 10.1002/mrm.1081 10.1038/35084005 10.1126/science.2165630 10.1016/j.neuroimage.2010.05.005 10.1038/nn.2676 10.1016/j.mri.2007.02.013 10.1016/j.neuroimage.2006.08.020 10.1002/cne.901460402 10.1523/JNEUROSCI.1588-07.2007 10.1016/S0896-6273(01)00477-9 10.1016/j.neuroimage.2005.08.016 10.1016/j.neuron.2010.11.020 10.1016/j.neuroimage.2005.01.007 10.1016/j.mri.2011.09.010 10.1038/sj.jcbfm.9600564 10.1016/j.neuroimage.2005.11.013 10.1126/science.272.5261.551 10.1002/nbm.1940070108 10.1016/j.mri.2005.12.032 10.1038/9210 10.1016/j.brainres.2006.11.097 10.1098/rstb.1984.0021 10.1002/mrm.20712 10.1093/brain/103.2.221 10.1016/0361-9230(81)90007-1 10.1016/j.neuroimage.2005.08.042 10.1016/S0165-0270(01)00475-7 10.1002/mrm.1910030413 10.1073/pnas.0805417105 10.1016/j.neuroimage.2006.12.030 10.1002/hbm.20936 10.1016/j.ymeth.2005.08.004 10.1016/j.jneumeth.2004.10.003 10.1016/j.mri.2007.03.002 10.1016/S0896-6273(01)00502-5 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Inc. 2014 INIST-CNRS Copyright © 2012 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jan 1, 2013 2012 Elsevier Inc. All rights reserved. 2012 |
Copyright_xml | – notice: 2012 Elsevier Inc. – notice: 2014 INIST-CNRS – notice: Copyright © 2012 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jan 1, 2013 – notice: 2012 Elsevier Inc. All rights reserved. 2012 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 5PM |
DOI | 10.1016/j.neuroimage.2012.08.060 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 155 |
ExternalDocumentID | PMC3508288 3396563121 22960152 27110692 10_1016_j_neuroimage_2012_08_060 S1053811912008683 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Vanderbilt Vision Research Center – fundername: NIH grantid: NS44375; EY11744 – fundername: Vanderbilt University Institute of Imaging Science – fundername: Vanderbilt University Center for Integrative and Cognitive Neuroscience – fundername: NINDS NIH HHS grantid: R01 NS044375 – fundername: NEI NIH HHS grantid: EY11744 – fundername: NEI NIH HHS grantid: P30 EY008126 – fundername: NINDS NIH HHS grantid: R01 NS078680 – fundername: NIBIB NIH HHS grantid: EB00461 – fundername: NEI NIH HHS grantid: R01 EY011744 – fundername: NINDS NIH HHS grantid: NS44375 – fundername: NIBIB NIH HHS grantid: R01 EB000461 – fundername: NEI NIH HHS grantid: EY08126 – fundername: NINDS NIH HHS grantid: R56 NS044375 – fundername: National Eye Institute : NEI grantid: R01 EY011744 || EY – fundername: National Institute of Neurological Disorders and Stroke : NINDS grantid: R01 NS044375 || NS – fundername: National Eye Institute : NEI grantid: P30 EY008126 || EY |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT IQODW CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c627t-770043dcef267a850f3948f14a347d4c013b541428c4b9cd02c8fa061df3b58c3 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 18:27:47 EDT 2025 Fri Jul 11 04:17:59 EDT 2025 Mon Jul 21 11:39:45 EDT 2025 Wed Aug 13 08:55:32 EDT 2025 Thu Apr 03 07:03:32 EDT 2025 Wed Apr 02 07:23:37 EDT 2025 Tue Jul 01 02:14:48 EDT 2025 Thu Apr 24 23:02:20 EDT 2025 Fri Feb 23 02:45:59 EST 2024 Tue Aug 26 16:31:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | BOLD spatial resolution Visual cortex Functional MRI Cortical layers Non-human primate High resolution Organization Central nervous system Monkey Activation Encephalon Specificity Visual pathway Blood vessel Primates Human Medical screening Nuclear magnetic resonance imaging Vertebrata Mammalia First episode Animal Circulatory system Oxygenation Spatial resolution Functional imaging |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2012 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c627t-770043dcef267a850f3948f14a347d4c013b541428c4b9cd02c8fa061df3b58c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3508288 |
PMID | 22960152 |
PQID | 1552020765 |
PQPubID | 2031077 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3508288 proquest_miscellaneous_1500760050 proquest_miscellaneous_1220367256 proquest_journals_1552020765 pubmed_primary_22960152 pascalfrancis_primary_27110692 crossref_citationtrail_10_1016_j_neuroimage_2012_08_060 crossref_primary_10_1016_j_neuroimage_2012_08_060 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2012_08_060 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2012_08_060 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-01 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2013 |
Publisher | Elsevier Inc Elsevier Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Elsevier Limited |
References | Zhao, Wang, Hendrich, Ugurbil, Kim (bb0250) 2006; 30 Ts'o, Frostig, Lieke, Grinvald (bb0215) 1990; 249 Gamlin, Ward, Bolding, Grossmann, Twieg (bb0070) 2006; 38 Logothetis, Pauls, Augath, Trinath, Oeltermann (bb0125) 2001; 412 Chen, Wang, Gore, Roe (bb0030) 2012; 59 Pfeuffer, Shmuel, Keliris, Steudel, Merkle, Logothetis (bb0160) 2007; 25 Frahm, Merboldt, Hanicke, Kleinschmidt, Boecker (bb0065) 1994; 7 Zhao, Wang, Kim (bb0255) 2004; 51 Pinsk, Moore, Richter, Gross, Kastner (bb0165) 2005; 143 Tanigawa, Lu, Roe (bb0200) 2010; 13 Zappe, Pfeuffer, Merkle, Logothetis, Goense (bb0245) 2008; 28 Kruger, Kastrup, Glover (bb0115) 2001; 45 Malonek, Grinvald (bb0135) 1996; 272 Goense, Zappe, Logothetis (bb0085) 2007; 25 Herculano-Houzel, Collins, Wong, Kaas, Lent (bb0095) 2008; 105 Goense, Logothetis, Merkle (bb0075) 2010; 28 Polimeni, Fischl, Greve, Wald (bb0170) 2010; 52 Smirnakis, Schmid, Weber, Tolias, Augath, Logothetis (bb0195) 2007; 27 Duong (bb0050) 2007; 1135 Smirnakis, Brewer, Schmid, Tolias, Schuz, Augath, Inhoffen, Wandell, Logothetis (bb0190) 2005; 435 Ress, Glover, Liu, Wandell (bb0175) 2007; 34 Lu, Chen, Tanigawa, Roe (bb0130) 2010; 68 Hubel, Wiesel (bb0105) 1972; 146 Shmuel, Yacoub, Chaimow, Logothetis, Ugurbil (bb0185) 2007; 35 Logothetis, Guggenberger, Peled, Pauls (bb0120) 1999; 2 Goense, Logothetis (bb0080) 2006; 24 Chen, Lu, Roe (bb0020) 2008; 58 Vanduffel, Fize, Mandeville, Nelissen, Van Hecke, Rosen, Tootell, Orban (bb0225) 2001; 32 Parkes, Schwarzbach, Bouts, Deckers, Pullens, Kerskens, Norris (bb0140) 2005; 54 Wong-Riley (bb0235) 1979; 171 Edelstein, Glover, Hardy, Redington (bb0060) 1986; 3 Cheng, Waggoner, Tanaka (bb0045) 2001; 32 Turner (bb0220) 2002; 16 Peeters, Tindemans, De Schutter, Van der Linden (bb0155) 2001; 19 Callaway (bb0015) 1998; 21 Chen, Wang, Dillenburger, Friedman, Chen, Gore, Avison, Roe (bb0025) 2012; 30 Bodurka, Ye, Petridou, Murphy, Bandettini (bb0010) 2007; 34 Triantafyllou, Hoge, Krueger, Wiggins, Potthast, Wiggins, Wald (bb0210) 2005; 26 Duvernoy, Delon, Vannson (bb0055) 1981; 7 Horton (bb0100) 1984; 304 Pawlik, Rackl, Bing (bb0150) 1980; 208 Chen, Turner, Friedman, Zhang, Gore, Roe, Avison (bb0040) 2007; 27 Harel, Lin, Moeller, Ugurbil, Yacoub (bb0090) 2006; 29 Koopmans, Barth, Norris (bb0110) 2010; 31 Parrish, Gitelman, LaBar, Mesulam (bb0145) 2000; 44 Tootell, Hamilton, Silverman, Switkes (bb0205) 1988; 8 Bellgowan, Bandettini, van Gelderen, Martin, Bodurka (bb0005) 2006; 29 Chen, Heider, Williams, Healy, Ramsden, Roe (bb0035) 2002; 113 Yu, Glen, Wang, Dodd, Hirano, Saad, Reynolds, Silva, Koretsky (bb0240) 2012; 59 Rockel, Hiorns, Powell (bb0180) 1980; 103 Wald, Fischl, Rosen (bb0230) 2006 Lu (10.1016/j.neuroimage.2012.08.060_bb0130) 2010; 68 Goense (10.1016/j.neuroimage.2012.08.060_bb0085) 2007; 25 Parkes (10.1016/j.neuroimage.2012.08.060_bb0140) 2005; 54 Zhao (10.1016/j.neuroimage.2012.08.060_bb0250) 2006; 30 Triantafyllou (10.1016/j.neuroimage.2012.08.060_bb0210) 2005; 26 Smirnakis (10.1016/j.neuroimage.2012.08.060_bb0195) 2007; 27 Chen (10.1016/j.neuroimage.2012.08.060_bb0040) 2007; 27 Rockel (10.1016/j.neuroimage.2012.08.060_bb0180) 1980; 103 Wald (10.1016/j.neuroimage.2012.08.060_bb0230) 2006 Chen (10.1016/j.neuroimage.2012.08.060_bb0020) 2008; 58 Polimeni (10.1016/j.neuroimage.2012.08.060_bb0170) 2010; 52 Pinsk (10.1016/j.neuroimage.2012.08.060_bb0165) 2005; 143 Duong (10.1016/j.neuroimage.2012.08.060_bb0050) 2007; 1135 Tootell (10.1016/j.neuroimage.2012.08.060_bb0205) 1988; 8 Yu (10.1016/j.neuroimage.2012.08.060_bb0240) 2012; 59 Ts'o (10.1016/j.neuroimage.2012.08.060_bb0215) 1990; 249 Kruger (10.1016/j.neuroimage.2012.08.060_bb0115) 2001; 45 Koopmans (10.1016/j.neuroimage.2012.08.060_bb0110) 2010; 31 Chen (10.1016/j.neuroimage.2012.08.060_bb0030) 2012; 59 Malonek (10.1016/j.neuroimage.2012.08.060_bb0135) 1996; 272 Logothetis (10.1016/j.neuroimage.2012.08.060_bb0125) 2001; 412 Smirnakis (10.1016/j.neuroimage.2012.08.060_bb0190) 2005; 435 Goense (10.1016/j.neuroimage.2012.08.060_bb0075) 2010; 28 Edelstein (10.1016/j.neuroimage.2012.08.060_bb0060) 1986; 3 Parrish (10.1016/j.neuroimage.2012.08.060_bb0145) 2000; 44 Pfeuffer (10.1016/j.neuroimage.2012.08.060_bb0160) 2007; 25 Bellgowan (10.1016/j.neuroimage.2012.08.060_bb0005) 2006; 29 Bodurka (10.1016/j.neuroimage.2012.08.060_bb0010) 2007; 34 Peeters (10.1016/j.neuroimage.2012.08.060_bb0155) 2001; 19 Horton (10.1016/j.neuroimage.2012.08.060_bb0100) 1984; 304 Turner (10.1016/j.neuroimage.2012.08.060_bb0220) 2002; 16 Goense (10.1016/j.neuroimage.2012.08.060_bb0080) 2006; 24 Ress (10.1016/j.neuroimage.2012.08.060_bb0175) 2007; 34 Wong-Riley (10.1016/j.neuroimage.2012.08.060_bb0235) 1979; 171 Harel (10.1016/j.neuroimage.2012.08.060_bb0090) 2006; 29 Gamlin (10.1016/j.neuroimage.2012.08.060_bb0070) 2006; 38 Cheng (10.1016/j.neuroimage.2012.08.060_bb0045) 2001; 32 Callaway (10.1016/j.neuroimage.2012.08.060_bb0015) 1998; 21 Chen (10.1016/j.neuroimage.2012.08.060_bb0035) 2002; 113 Frahm (10.1016/j.neuroimage.2012.08.060_bb0065) 1994; 7 Vanduffel (10.1016/j.neuroimage.2012.08.060_bb0225) 2001; 32 Shmuel (10.1016/j.neuroimage.2012.08.060_bb0185) 2007; 35 Pawlik (10.1016/j.neuroimage.2012.08.060_bb0150) 1980; 208 Zappe (10.1016/j.neuroimage.2012.08.060_bb0245) 2008; 28 Duvernoy (10.1016/j.neuroimage.2012.08.060_bb0055) 1981; 7 Hubel (10.1016/j.neuroimage.2012.08.060_bb0105) 1972; 146 Chen (10.1016/j.neuroimage.2012.08.060_bb0025) 2012; 30 Herculano-Houzel (10.1016/j.neuroimage.2012.08.060_bb0095) 2008; 105 Logothetis (10.1016/j.neuroimage.2012.08.060_bb0120) 1999; 2 Tanigawa (10.1016/j.neuroimage.2012.08.060_bb0200) 2010; 13 Zhao (10.1016/j.neuroimage.2012.08.060_bb0255) 2004; 51 11719199 - Neuron. 2001 Nov 20;32(4):565-77 3747821 - Magn Reson Med. 1986 Aug;3(4):604-18 17213863 - J Cereb Blood Flow Metab. 2007 Jun;27(6):1248-61 9530491 - Annu Rev Neurosci. 1998;21:47-74 17499466 - Magn Reson Imaging. 2007 Jul;25(6):740-7 8068525 - NMR Biomed. 1994 Mar;7(1-2):45-53 15814151 - J Neurosci Methods. 2005 Apr 30;143(2):179-95 6772266 - Brain. 1980 Jun;103(2):221-44 22055855 - Magn Reson Imaging. 2012 Jan;30(1):36-47 21145011 - Neuron. 2010 Dec 9;68(5):1002-13 11449264 - Nature. 2001 Jul 12;412(6843):150-7 17306989 - Neuroimage. 2007 Apr 1;35(2):539-52 3367209 - J Neurosci. 1988 May;8(5):1500-30 11684004 - Neuron. 2001 Oct 25;32(2):359-74 22080152 - Neuroimage. 2012 Feb 15;59(4):3441-9 18466753 - Neuron. 2008 May 8;58(3):442-50 16677944 - Magn Reson Imaging. 2006 May;24(4):381-92 15902248 - Nature. 2005 May 19;435(7040):300-7 11741720 - J Neurosci Methods. 2002 Jan 15;113(1):41-9 15004793 - Magn Reson Med. 2004 Mar;51(3):518-24 6142484 - Philos Trans R Soc Lond B Biol Sci. 1984 Jan 17;304(1119):199-253 16276507 - Magn Reson Med. 2005 Dec;54(6):1465-72 20460157 - Neuroimage. 2010 Oct 1;52(4):1334-46 16481198 - Methods. 2006 Mar;38(3):210-20 15862224 - Neuroimage. 2005 May 15;26(1):243-50 20082333 - Hum Brain Mapp. 2010 Sep;31(9):1297-304 17715354 - J Neurosci. 2007 Aug 22;27(34):9181-91 21076422 - Nat Neurosci. 2010 Dec;13(12):1542-8 17011213 - Neuroimage. 2007 Jan 1;34(1):74-84 17960143 - J Cereb Blood Flow Metab. 2008 Mar;28(3):640-52 4117368 - J Comp Neurol. 1972 Dec;146(4):421-50 17451900 - Magn Reson Imaging. 2007 Jul;25(6):869-82 7470927 - Brain Res. 1981 Mar 9;208(1):35-58 11283987 - Magn Reson Med. 2001 Apr;45(4):595-604 11551722 - Magn Reson Imaging. 2001 Jul;19(6):821-6 16242347 - Neuroimage. 2006 Feb 15;29(4):1244-51 21851857 - Neuroimage. 2012 Jan 16;59(2):1451-60 2165630 - Science. 1990 Jul 27;249(4967):417-20 17198686 - Brain Res. 2007 Mar 2;1135(1):186-94 223730 - Brain Res. 1979 Jul 27;171(1):11-28 8614805 - Science. 1996 Apr 26;272(5261):551-4 11108630 - Magn Reson Med. 2000 Dec;44(6):925-32 18689685 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12593-8 10448221 - Nat Neurosci. 1999 Jun;2(6):555-62 20456890 - Magn Reson Imaging. 2010 Oct;28(8):1183-91 7317796 - Brain Res Bull. 1981 Nov;7(5):519-79 16194614 - Neuroimage. 2006 Feb 1;29(3):879-87 12202093 - Neuroimage. 2002 Aug;16(4):1062-7 16414284 - Neuroimage. 2006 May 1;30(4):1149-60 17101280 - Neuroimage. 2007 Jan 15;34(2):542-9 |
References_xml | – volume: 27 start-page: 1248 year: 2007 end-page: 1261 ident: bb0195 article-title: Spatial specificity of BOLD versus cerebral blood volume fMRI for mapping cortical organization publication-title: J. Cereb. Blood Flow Metab. – volume: 44 start-page: 925 year: 2000 end-page: 932 ident: bb0145 article-title: Impact of signal-to-noise on functional MRI publication-title: Magn. Reson. Med. – volume: 26 start-page: 243 year: 2005 end-page: 250 ident: bb0210 article-title: Comparison of physiological noise at 1.5 publication-title: Neuroimage – volume: 51 start-page: 518 year: 2004 end-page: 524 ident: bb0255 article-title: Cortical depth-dependent gradient-echo and spin-echo BOLD fMRI at 9.4T publication-title: Magn. Reson. Med. – volume: 103 start-page: 221 year: 1980 end-page: 244 ident: bb0180 article-title: The basic uniformity in structure of the neocortex publication-title: Brain – volume: 16 start-page: 1062 year: 2002 end-page: 1067 ident: bb0220 article-title: How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes publication-title: Neuroimage – volume: 34 start-page: 74 year: 2007 end-page: 84 ident: bb0175 article-title: Laminar profiles of functional activity in the human brain publication-title: Neuroimage – volume: 208 start-page: 35 year: 1980 end-page: 38 ident: bb0150 article-title: Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study publication-title: Brain Res. – volume: 28 start-page: 640 year: 2008 end-page: 652 ident: bb0245 article-title: The effect of labeling parameters on perfusion-based fMRI in nonhuman primates publication-title: J. Cereb. Blood Flow Metab. – volume: 31 start-page: 1297 year: 2010 end-page: 1304 ident: bb0110 article-title: Layer-specific BOLD activation in human V1 publication-title: Hum. Brain Mapp. – volume: 27 start-page: 9181 year: 2007 end-page: 9191 ident: bb0040 article-title: High-resolution maps of real and illusory tactile activation in primary somatosensory cortex in individual monkeys with functional magnetic resonance imaging and optical imaging publication-title: J. Neurosci. – volume: 32 start-page: 565 year: 2001 end-page: 577 ident: bb0225 article-title: Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys publication-title: Neuron – volume: 272 start-page: 551 year: 1996 end-page: 554 ident: bb0135 article-title: Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping publication-title: Science – volume: 30 start-page: 36 year: 2012 end-page: 47 ident: bb0025 article-title: Functional magnetic resonance imaging of awake monkeys: some approaches for improving imaging quality publication-title: Magn. Reson. Imaging – volume: 28 start-page: 1183 year: 2010 end-page: 1191 ident: bb0075 article-title: Flexible, phase-matched, linear receive arrays for high-field MRI in monkeys publication-title: Magn. Reson. Imaging – volume: 105 start-page: 12593 year: 2008 end-page: 12598 ident: bb0095 article-title: The basic nonuniformity of the cerebral cortex publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 19 start-page: 821 year: 2001 end-page: 826 ident: bb0155 article-title: Comparing BOLD fMRI signal changes in the awake and anesthetized rat during electrical forepaw stimulation publication-title: Magn. Reson. Imaging – volume: 59 start-page: 1451 year: 2012 end-page: 1460 ident: bb0240 article-title: Direct imaging of macrovascular and microvascular contributions to BOLD fMRI in layers IV–V of the rat whisker-barrel cortex publication-title: Neuroimage – volume: 21 start-page: 47 year: 1998 end-page: 74 ident: bb0015 article-title: Local circuits in primary visual cortex of the macaque monkey publication-title: Annu. Rev. Neurosci. – volume: 29 start-page: 879 year: 2006 end-page: 887 ident: bb0090 article-title: Combined imaging-histological study of cortical laminar specificity of fMRI signals publication-title: Neuroimage – volume: 2 start-page: 555 year: 1999 end-page: 562 ident: bb0120 article-title: Functional imaging of the monkey brain publication-title: Nat. Neurosci. – volume: 24 start-page: 381 year: 2006 end-page: 392 ident: bb0080 article-title: Laminar specificity in monkey V1 using high-resolution SE-fMRI publication-title: Magn. Reson. Imaging – volume: 59 start-page: 3441 year: 2012 end-page: 3449 ident: bb0030 article-title: Identification of cortical lamination in awake monkeys by high resolution magnetic resonance imaging publication-title: Neuroimage – volume: 52 start-page: 1334 year: 2010 end-page: 1346 ident: bb0170 article-title: Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1 publication-title: Neuroimage – volume: 435 start-page: 300 year: 2005 end-page: 307 ident: bb0190 article-title: Lack of long-term cortical reorganization after macaque retinal lesions publication-title: Nature – volume: 8 start-page: 1500 year: 1988 end-page: 1530 ident: bb0205 article-title: Functional anatomy of macaque striate cortex. I. Ocular dominance, binocular interactions, and baseline conditions publication-title: J. Neurosci. – volume: 54 start-page: 1465 year: 2005 end-page: 1472 ident: bb0140 article-title: Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 publication-title: Magn. Reson. Med. – volume: 143 start-page: 179 year: 2005 end-page: 195 ident: bb0165 article-title: Methods for functional magnetic resonance imaging in normal and lesioned behaving monkeys publication-title: J. Neurosci. Methods – volume: 412 start-page: 150 year: 2001 end-page: 157 ident: bb0125 article-title: Neurophysiological investigation of the basis of the fMRI signal publication-title: Nature – volume: 25 start-page: 869 year: 2007 end-page: 882 ident: bb0160 article-title: Functional MR imaging in the awake monkey: effects of motion on dynamic off-resonance and processing strategies publication-title: Magn. Reson. Imaging – start-page: 343 year: 2006 end-page: 371 ident: bb0230 article-title: High-resolution and microscopic imaging at high field publication-title: Ultra High Field Magnetic Resonance Imaging – volume: 3 start-page: 604 year: 1986 end-page: 618 ident: bb0060 article-title: The intrinsic signal-to-noise ratio in NMR imaging publication-title: Magn. Reson. Med. – volume: 35 start-page: 539 year: 2007 end-page: 552 ident: bb0185 article-title: Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 publication-title: Neuroimage – volume: 34 start-page: 542 year: 2007 end-page: 549 ident: bb0010 article-title: Mapping the MRI voxel volume in which thermal noise matches physiological noise—implications for fMRI publication-title: Neuroimage – volume: 7 start-page: 45 year: 1994 end-page: 53 ident: bb0065 article-title: Brain or vein—oxygenation or flow? On signal physiology in functional MRI of human brain activation publication-title: NMR Biomed. – volume: 68 start-page: 1002 year: 2010 end-page: 1013 ident: bb0130 article-title: A motion direction map in macaque V2 publication-title: Neuron – volume: 249 start-page: 417 year: 1990 end-page: 420 ident: bb0215 article-title: Functional organization of primate visual cortex revealed by high resolution optical imaging publication-title: Science – volume: 25 start-page: 740 year: 2007 end-page: 747 ident: bb0085 article-title: High-resolution fMRI of macaque V1 publication-title: Magn. Reson. Imaging – volume: 113 start-page: 41 year: 2002 end-page: 49 ident: bb0035 article-title: A chamber and artificial dura method for long-term optical imaging in the monkey publication-title: J. Neurosci. Methods – volume: 32 start-page: 359 year: 2001 end-page: 374 ident: bb0045 article-title: Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging publication-title: Neuron – volume: 1135 start-page: 186 year: 2007 end-page: 194 ident: bb0050 article-title: Cerebral blood flow and BOLD fMRI responses to hypoxia in awake and anesthetized rats publication-title: Brain Res. – volume: 30 start-page: 1149 year: 2006 end-page: 1160 ident: bb0250 article-title: Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation publication-title: Neuroimage – volume: 7 start-page: 519 year: 1981 end-page: 579 ident: bb0055 article-title: Cortical blood vessels of the human brain publication-title: Brain Res. Bull. – volume: 58 start-page: 442 year: 2008 end-page: 450 ident: bb0020 article-title: A map for horizontal disparity in monkey V2 publication-title: Neuron – volume: 171 start-page: 11 year: 1979 end-page: 28 ident: bb0235 article-title: Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry publication-title: Brain Res. – volume: 146 start-page: 421 year: 1972 end-page: 450 ident: bb0105 article-title: Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey publication-title: J. Comp. Neurol. – volume: 13 start-page: 1542 year: 2010 end-page: 1548 ident: bb0200 article-title: Functional organization for color and orientation in macaque V4 publication-title: Nat. Neurosci. – volume: 38 start-page: 210 year: 2006 end-page: 220 ident: bb0070 article-title: Developing functional magnetic resonance imaging techniques for alert macaque monkeys publication-title: Methods – volume: 45 start-page: 595 year: 2001 end-page: 604 ident: bb0115 article-title: Neuroimaging at 1.5 publication-title: Magn. Reson. Med. – volume: 29 start-page: 1244 year: 2006 end-page: 1251 ident: bb0005 article-title: Improved BOLD detection in the medial temporal region using parallel imaging and voxel volume reduction publication-title: Neuroimage – volume: 304 start-page: 199 year: 1984 end-page: 253 ident: bb0100 article-title: Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 44 start-page: 925 year: 2000 ident: 10.1016/j.neuroimage.2012.08.060_bb0145 article-title: Impact of signal-to-noise on functional MRI publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200012)44:6<925::AID-MRM14>3.0.CO;2-M – volume: 19 start-page: 821 year: 2001 ident: 10.1016/j.neuroimage.2012.08.060_bb0155 article-title: Comparing BOLD fMRI signal changes in the awake and anesthetized rat during electrical forepaw stimulation publication-title: Magn. Reson. Imaging doi: 10.1016/S0730-725X(01)00391-5 – volume: 8 start-page: 1500 year: 1988 ident: 10.1016/j.neuroimage.2012.08.060_bb0205 article-title: Functional anatomy of macaque striate cortex. I. Ocular dominance, binocular interactions, and baseline conditions publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.08-05-01500.1988 – volume: 16 start-page: 1062 year: 2002 ident: 10.1016/j.neuroimage.2012.08.060_bb0220 article-title: How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes publication-title: Neuroimage doi: 10.1006/nimg.2002.1082 – volume: 59 start-page: 1451 year: 2012 ident: 10.1016/j.neuroimage.2012.08.060_bb0240 article-title: Direct imaging of macrovascular and microvascular contributions to BOLD fMRI in layers IV–V of the rat whisker-barrel cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.08.001 – volume: 435 start-page: 300 year: 2005 ident: 10.1016/j.neuroimage.2012.08.060_bb0190 article-title: Lack of long-term cortical reorganization after macaque retinal lesions publication-title: Nature doi: 10.1038/nature03495 – volume: 34 start-page: 542 year: 2007 ident: 10.1016/j.neuroimage.2012.08.060_bb0010 article-title: Mapping the MRI voxel volume in which thermal noise matches physiological noise—implications for fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.09.039 – volume: 208 start-page: 35 year: 1980 ident: 10.1016/j.neuroimage.2012.08.060_bb0150 article-title: Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study publication-title: Brain Res. doi: 10.1016/0006-8993(81)90619-3 – volume: 28 start-page: 1183 year: 2010 ident: 10.1016/j.neuroimage.2012.08.060_bb0075 article-title: Flexible, phase-matched, linear receive arrays for high-field MRI in monkeys publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2010.03.026 – volume: 171 start-page: 11 year: 1979 ident: 10.1016/j.neuroimage.2012.08.060_bb0235 article-title: Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry publication-title: Brain Res. doi: 10.1016/0006-8993(79)90728-5 – volume: 59 start-page: 3441 year: 2012 ident: 10.1016/j.neuroimage.2012.08.060_bb0030 article-title: Identification of cortical lamination in awake monkeys by high resolution magnetic resonance imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.079 – volume: 27 start-page: 1248 year: 2007 ident: 10.1016/j.neuroimage.2012.08.060_bb0195 article-title: Spatial specificity of BOLD versus cerebral blood volume fMRI for mapping cortical organization publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/sj.jcbfm.9600434 – volume: 21 start-page: 47 year: 1998 ident: 10.1016/j.neuroimage.2012.08.060_bb0015 article-title: Local circuits in primary visual cortex of the macaque monkey publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.21.1.47 – volume: 58 start-page: 442 year: 2008 ident: 10.1016/j.neuroimage.2012.08.060_bb0020 article-title: A map for horizontal disparity in monkey V2 publication-title: Neuron doi: 10.1016/j.neuron.2008.02.032 – volume: 51 start-page: 518 year: 2004 ident: 10.1016/j.neuroimage.2012.08.060_bb0255 article-title: Cortical depth-dependent gradient-echo and spin-echo BOLD fMRI at 9.4T publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10720 – volume: 45 start-page: 595 year: 2001 ident: 10.1016/j.neuroimage.2012.08.060_bb0115 article-title: Neuroimaging at 1.5T and 3.0T: comparison of oxygenation-sensitive magnetic resonance imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1081 – volume: 412 start-page: 150 year: 2001 ident: 10.1016/j.neuroimage.2012.08.060_bb0125 article-title: Neurophysiological investigation of the basis of the fMRI signal publication-title: Nature doi: 10.1038/35084005 – volume: 249 start-page: 417 year: 1990 ident: 10.1016/j.neuroimage.2012.08.060_bb0215 article-title: Functional organization of primate visual cortex revealed by high resolution optical imaging publication-title: Science doi: 10.1126/science.2165630 – volume: 52 start-page: 1334 year: 2010 ident: 10.1016/j.neuroimage.2012.08.060_bb0170 article-title: Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.05.005 – volume: 13 start-page: 1542 year: 2010 ident: 10.1016/j.neuroimage.2012.08.060_bb0200 article-title: Functional organization for color and orientation in macaque V4 publication-title: Nat. Neurosci. doi: 10.1038/nn.2676 – volume: 25 start-page: 740 year: 2007 ident: 10.1016/j.neuroimage.2012.08.060_bb0085 article-title: High-resolution fMRI of macaque V1 publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2007.02.013 – volume: 34 start-page: 74 year: 2007 ident: 10.1016/j.neuroimage.2012.08.060_bb0175 article-title: Laminar profiles of functional activity in the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.08.020 – volume: 146 start-page: 421 year: 1972 ident: 10.1016/j.neuroimage.2012.08.060_bb0105 article-title: Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey publication-title: J. Comp. Neurol. doi: 10.1002/cne.901460402 – volume: 27 start-page: 9181 year: 2007 ident: 10.1016/j.neuroimage.2012.08.060_bb0040 article-title: High-resolution maps of real and illusory tactile activation in primary somatosensory cortex in individual monkeys with functional magnetic resonance imaging and optical imaging publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1588-07.2007 – volume: 32 start-page: 359 year: 2001 ident: 10.1016/j.neuroimage.2012.08.060_bb0045 article-title: Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging publication-title: Neuron doi: 10.1016/S0896-6273(01)00477-9 – volume: 29 start-page: 879 year: 2006 ident: 10.1016/j.neuroimage.2012.08.060_bb0090 article-title: Combined imaging-histological study of cortical laminar specificity of fMRI signals publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.08.016 – volume: 68 start-page: 1002 year: 2010 ident: 10.1016/j.neuroimage.2012.08.060_bb0130 article-title: A motion direction map in macaque V2 publication-title: Neuron doi: 10.1016/j.neuron.2010.11.020 – volume: 26 start-page: 243 year: 2005 ident: 10.1016/j.neuroimage.2012.08.060_bb0210 article-title: Comparison of physiological noise at 1.5T, 3T and 7T and optimization of fMRI acquisition parameters publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.01.007 – volume: 30 start-page: 36 year: 2012 ident: 10.1016/j.neuroimage.2012.08.060_bb0025 article-title: Functional magnetic resonance imaging of awake monkeys: some approaches for improving imaging quality publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2011.09.010 – volume: 28 start-page: 640 year: 2008 ident: 10.1016/j.neuroimage.2012.08.060_bb0245 article-title: The effect of labeling parameters on perfusion-based fMRI in nonhuman primates publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/sj.jcbfm.9600564 – volume: 30 start-page: 1149 year: 2006 ident: 10.1016/j.neuroimage.2012.08.060_bb0250 article-title: Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.11.013 – volume: 272 start-page: 551 year: 1996 ident: 10.1016/j.neuroimage.2012.08.060_bb0135 article-title: Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping publication-title: Science doi: 10.1126/science.272.5261.551 – volume: 7 start-page: 45 year: 1994 ident: 10.1016/j.neuroimage.2012.08.060_bb0065 article-title: Brain or vein—oxygenation or flow? On signal physiology in functional MRI of human brain activation publication-title: NMR Biomed. doi: 10.1002/nbm.1940070108 – volume: 24 start-page: 381 year: 2006 ident: 10.1016/j.neuroimage.2012.08.060_bb0080 article-title: Laminar specificity in monkey V1 using high-resolution SE-fMRI publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2005.12.032 – volume: 2 start-page: 555 year: 1999 ident: 10.1016/j.neuroimage.2012.08.060_bb0120 article-title: Functional imaging of the monkey brain publication-title: Nat. Neurosci. doi: 10.1038/9210 – volume: 1135 start-page: 186 year: 2007 ident: 10.1016/j.neuroimage.2012.08.060_bb0050 article-title: Cerebral blood flow and BOLD fMRI responses to hypoxia in awake and anesthetized rats publication-title: Brain Res. doi: 10.1016/j.brainres.2006.11.097 – volume: 304 start-page: 199 year: 1984 ident: 10.1016/j.neuroimage.2012.08.060_bb0100 article-title: Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.1984.0021 – volume: 54 start-page: 1465 year: 2005 ident: 10.1016/j.neuroimage.2012.08.060_bb0140 article-title: Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3Tesla publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20712 – volume: 103 start-page: 221 year: 1980 ident: 10.1016/j.neuroimage.2012.08.060_bb0180 article-title: The basic uniformity in structure of the neocortex publication-title: Brain doi: 10.1093/brain/103.2.221 – volume: 7 start-page: 519 year: 1981 ident: 10.1016/j.neuroimage.2012.08.060_bb0055 article-title: Cortical blood vessels of the human brain publication-title: Brain Res. Bull. doi: 10.1016/0361-9230(81)90007-1 – volume: 29 start-page: 1244 year: 2006 ident: 10.1016/j.neuroimage.2012.08.060_bb0005 article-title: Improved BOLD detection in the medial temporal region using parallel imaging and voxel volume reduction publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.08.042 – volume: 113 start-page: 41 year: 2002 ident: 10.1016/j.neuroimage.2012.08.060_bb0035 article-title: A chamber and artificial dura method for long-term optical imaging in the monkey publication-title: J. Neurosci. Methods doi: 10.1016/S0165-0270(01)00475-7 – volume: 3 start-page: 604 year: 1986 ident: 10.1016/j.neuroimage.2012.08.060_bb0060 article-title: The intrinsic signal-to-noise ratio in NMR imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910030413 – volume: 105 start-page: 12593 year: 2008 ident: 10.1016/j.neuroimage.2012.08.060_bb0095 article-title: The basic nonuniformity of the cerebral cortex publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0805417105 – start-page: 343 year: 2006 ident: 10.1016/j.neuroimage.2012.08.060_bb0230 article-title: High-resolution and microscopic imaging at high field – volume: 35 start-page: 539 year: 2007 ident: 10.1016/j.neuroimage.2012.08.060_bb0185 article-title: Spatio-temporal point-spread function of fMRI signal in human gray matter at 7Tesla publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.12.030 – volume: 31 start-page: 1297 year: 2010 ident: 10.1016/j.neuroimage.2012.08.060_bb0110 article-title: Layer-specific BOLD activation in human V1 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20936 – volume: 38 start-page: 210 year: 2006 ident: 10.1016/j.neuroimage.2012.08.060_bb0070 article-title: Developing functional magnetic resonance imaging techniques for alert macaque monkeys publication-title: Methods doi: 10.1016/j.ymeth.2005.08.004 – volume: 143 start-page: 179 year: 2005 ident: 10.1016/j.neuroimage.2012.08.060_bb0165 article-title: Methods for functional magnetic resonance imaging in normal and lesioned behaving monkeys publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2004.10.003 – volume: 25 start-page: 869 year: 2007 ident: 10.1016/j.neuroimage.2012.08.060_bb0160 article-title: Functional MR imaging in the awake monkey: effects of motion on dynamic off-resonance and processing strategies publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2007.03.002 – volume: 32 start-page: 565 year: 2001 ident: 10.1016/j.neuroimage.2012.08.060_bb0225 article-title: Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys publication-title: Neuron doi: 10.1016/S0896-6273(01)00502-5 – reference: 8614805 - Science. 1996 Apr 26;272(5261):551-4 – reference: 2165630 - Science. 1990 Jul 27;249(4967):417-20 – reference: 11684004 - Neuron. 2001 Oct 25;32(2):359-74 – reference: 7470927 - Brain Res. 1981 Mar 9;208(1):35-58 – reference: 223730 - Brain Res. 1979 Jul 27;171(1):11-28 – reference: 4117368 - J Comp Neurol. 1972 Dec;146(4):421-50 – reference: 9530491 - Annu Rev Neurosci. 1998;21:47-74 – reference: 21145011 - Neuron. 2010 Dec 9;68(5):1002-13 – reference: 8068525 - NMR Biomed. 1994 Mar;7(1-2):45-53 – reference: 10448221 - Nat Neurosci. 1999 Jun;2(6):555-62 – reference: 17960143 - J Cereb Blood Flow Metab. 2008 Mar;28(3):640-52 – reference: 21851857 - Neuroimage. 2012 Jan 16;59(2):1451-60 – reference: 3367209 - J Neurosci. 1988 May;8(5):1500-30 – reference: 20082333 - Hum Brain Mapp. 2010 Sep;31(9):1297-304 – reference: 16481198 - Methods. 2006 Mar;38(3):210-20 – reference: 20456890 - Magn Reson Imaging. 2010 Oct;28(8):1183-91 – reference: 16677944 - Magn Reson Imaging. 2006 May;24(4):381-92 – reference: 3747821 - Magn Reson Med. 1986 Aug;3(4):604-18 – reference: 17451900 - Magn Reson Imaging. 2007 Jul;25(6):869-82 – reference: 7317796 - Brain Res Bull. 1981 Nov;7(5):519-79 – reference: 17101280 - Neuroimage. 2007 Jan 15;34(2):542-9 – reference: 15862224 - Neuroimage. 2005 May 15;26(1):243-50 – reference: 20460157 - Neuroimage. 2010 Oct 1;52(4):1334-46 – reference: 16276507 - Magn Reson Med. 2005 Dec;54(6):1465-72 – reference: 17715354 - J Neurosci. 2007 Aug 22;27(34):9181-91 – reference: 6142484 - Philos Trans R Soc Lond B Biol Sci. 1984 Jan 17;304(1119):199-253 – reference: 16194614 - Neuroimage. 2006 Feb 1;29(3):879-87 – reference: 16242347 - Neuroimage. 2006 Feb 15;29(4):1244-51 – reference: 18689685 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12593-8 – reference: 21076422 - Nat Neurosci. 2010 Dec;13(12):1542-8 – reference: 15004793 - Magn Reson Med. 2004 Mar;51(3):518-24 – reference: 15814151 - J Neurosci Methods. 2005 Apr 30;143(2):179-95 – reference: 18466753 - Neuron. 2008 May 8;58(3):442-50 – reference: 11741720 - J Neurosci Methods. 2002 Jan 15;113(1):41-9 – reference: 11283987 - Magn Reson Med. 2001 Apr;45(4):595-604 – reference: 17306989 - Neuroimage. 2007 Apr 1;35(2):539-52 – reference: 11108630 - Magn Reson Med. 2000 Dec;44(6):925-32 – reference: 22055855 - Magn Reson Imaging. 2012 Jan;30(1):36-47 – reference: 22080152 - Neuroimage. 2012 Feb 15;59(4):3441-9 – reference: 11449264 - Nature. 2001 Jul 12;412(6843):150-7 – reference: 15902248 - Nature. 2005 May 19;435(7040):300-7 – reference: 12202093 - Neuroimage. 2002 Aug;16(4):1062-7 – reference: 17011213 - Neuroimage. 2007 Jan 1;34(1):74-84 – reference: 17213863 - J Cereb Blood Flow Metab. 2007 Jun;27(6):1248-61 – reference: 16414284 - Neuroimage. 2006 May 1;30(4):1149-60 – reference: 11551722 - Magn Reson Imaging. 2001 Jul;19(6):821-6 – reference: 17499466 - Magn Reson Imaging. 2007 Jul;25(6):740-7 – reference: 17198686 - Brain Res. 2007 Mar 2;1135(1):186-94 – reference: 11719199 - Neuron. 2001 Nov 20;32(4):565-77 – reference: 6772266 - Brain. 1980 Jun;103(2):221-44 |
SSID | ssj0009148 |
Score | 2.3001165 |
Snippet | The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 147 |
SubjectTerms | Animals Biological and medical sciences BOLD spatial resolution Brain Mapping - methods Cortex Cortical layers Experiments Eye and associated structures. Visual pathways and centers. Vision Functional MRI Fundamental and applied biological sciences. Psychology Image Enhancement - methods Macaca mulatta Magnetic Resonance Imaging - methods Methods Nerve Net - physiology Non-human primate Optics Oxygen Consumption - physiology Photic Stimulation - methods Primates Reproducibility of Results Sensitivity and Specificity Studies Veins & arteries Vertebrates: nervous system and sense organs Visual cortex Visual Cortex - physiology Wakefulness - physiology |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9QwFA66gggi3h1dlwi-Fts0bVp8EG_LIrv64sq8hTRN2NG1MzoziI_-c7_TpB1HdJnnJOR2kvMl55zvMPaUGO-8U-TV2NhECuESgKMsUcDetcqdcX32hpP35dGpfDctpvHDbRndKoc7sb-o27mlP_JnRBUGaKPK4sXiW0JZo8i6GlNoXGZXiLqMXLrUVG1IdzMZQuGKHCPI6ujJE_y7er7I2VecWnLwEoHIM_2ferq-MEssmg_ZLv4FR__2qvxDTR3eZDcivuQvg0DcYpdcd5tdPYkW9Dvs17EByE4owJKchPirD8dvOAU3hK9ZPuu4-WG-OI754nzzTxknkieokZY3P_n6HJ0mxHHMl-SLja7wXo_iy0lJhr9Fjhl3FB_ZFxOph-O0ClCUd9np4duPr4-SmIYhsaVQK-BvMhdiWl6UylRF6vNaVj6TJpeqlRYgsqFk4qKysqltmwpbeQOc0HoUVDa_x_a6eeceMO4r6VvvrfK5lMZWJnO4RFTrIBd4ztoJU8Pqaxs5yilVxrkenNE-682-ado3TVk0y3TCsrHlIvB07NCmHjZYD3GoWFkNZbJD2-dj24hVAgbZsfXBljyNQxY4I2lZiwnbHwRMx0tlqTdHYMKejMW4DsjGYzo3X6OOIMuyApC9oE4R7LEFxnE_yOxmAAJPWmA67MSWNI8ViI58u6SbnfW05HlBdIjVw4uH_ohdE31GEfrF2md7q-9r9xi4btUc9If3N5v2UAA priority: 102 providerName: ProQuest |
Title | Layer-specific BOLD activation in awake monkey V1 revealed by ultra-high spatial resolution functional magnetic resonance imaging |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811912008683 https://dx.doi.org/10.1016/j.neuroimage.2012.08.060 https://www.ncbi.nlm.nih.gov/pubmed/22960152 https://www.proquest.com/docview/1552020765 https://www.proquest.com/docview/1220367256 https://www.proquest.com/docview/1500760050 https://pubmed.ncbi.nlm.nih.gov/PMC3508288 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISEkNPFNYVRG4jU0cZw4EU9b2VSgK9NgqG-W49gi-8gq2mraCxL_OXexk1IEqBIvjVTbimOf7372nX9HyCtkvLNGYFRjoQPOmAkAHEWBAOydi9go02RvOJqko1P-fppMt8iwvQuDYZVe9zud3mhr_8_Aj-ZgVlWDT4AMwNzAfgNd-GmGjJ-cC5Ty199XYR55xN11uCQOsLaP5nExXg1nZHUJKxeDvJgj8wz_ZqLuztQcBs66jBd_gqS_R1b-YqoO75EdjzHpnvuM-2TL1A_I7SPvRX9IfowVAO0AL1lioBDd_zh-S_GCgzuepVVN1bU6NxREFNY4_RJRJHoCU1LS4oYuL-ClAfIc0znGY8OrYM_uRZiioXTnixS-uMY7kk0xEnsYiqMAxvIROT08-DwcBT4VQ6BTJhaAwdFlCJ9lWSpUloQ2znlmI65iLkquAUgWmFCcZZoXuS5DpjOrACuUFgoyHT8m2_VVbZ4SajNuS2u1sDHnSmcqMqBIRGlANmBLq3tEtKMvtecpx3QZF7INSDuTq3mTOG8SM2mmYY9EXcuZ4-rYoE3eTrBs76LCyEowKBu0fdO1XZPZDVv31-Sp6zKDdRKmOeuR3VbApFcsc4mMeYDwRZr0yMuuGFQC-nlUba6WUIehd1kAmP1HncT5ZBPoxxMns6sOMNjWAq6DmViT5q4CUpKvl9TV14aaPE6QEjF79l8j85zcYU3SETzo2iXbi29L8wKg36LoN2sbfsVU9MmtveHJ-Bif7z6MJvDcP5gcn_wE-3phFQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgIkhPhNYQwjwWNE4jhxIoQQY5s61haENrS3zHFsURhpWVtNe-Qf4m_kLk5SimDqy54dJ47vfPfZd_4O4Dkx3lkjKasx157g3HgIjgJPIvZOZWiUqao3DIZx71C8P4qO1uBXcxeG0iobm1gZ6mKs6Yz8JVGFIbSRcfRm8sOjqlEUXW1KaDi12DfnZ7hlm77e20b5vuB8d-fgXc-rqwp4OuZyhnCSol-FNpbHUiWRb8NUJDYQKhSyEBoxUU61sXmiRZ7qwuc6sQrdXmGxIdEhvvcKrIsQtzIdWN_aGX78tKD5DYS7fBeF-M9BWucOuYyyiqFy9B3tBKWUcUcd6v_PId6YqCmKybr6Gv8CwH_ncf7hGHdvwc0a0bK3TgVvw5op78DVQR2zvws_-wphvUdXOiktiW196G8zuk7hDoPZqGTqTH0zDGcYLQr7HDCilULHVbD8nM1P8KMesSqzKWV_46dOTbNgGLlld5rJ8I9LupFZNRONiGE0C-ia78HhpYjoPnTKcWkeArOJsIW1WtpQCKUTFRg0W7IwqIm4gdZdkM3sZ7pmRafiHCdZk_72NVvILSO5ZVS3M_a7ELQ9J44ZZIU-aSPgrLn5ijOboftaoe-rtm-NjhzqWbH35pI-tUPmuCr9OOVd2GgULKvN2DRbLLouPGub0QBRVEmVZjzHZzjFsiVC5wueiVwEOMJxPHA6uxgAx000okiUxJI2tw8QAfpySzn6UhGhhxERMCaPLh76U7jWOxj0s_7ecP8xXOdVPRM6Q9uAzux0bp4gqpzlm_VSZnB82dbjN54sjTE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIU1ICPGbwhhGgsdojePEiRBCQKk21g0eGOqb5zi26DbSsraa9si_xV_HXZykFMHUlz3bThzf-e6L7_wdwAtivHNWUlZjbgLBuQ0QHIWBROydychqW1Vv2D9Idg7Fx2E8XINfzV0YSqtsbGJlqIuxoTPybaIKQ2gjk3jb1WkRn3v9N5MfAVWQokhrU07Dq8ievTjH37fp690eyvol5_0PX97vBHWFgcAkXM4QWlIkrDDW8UTqNO66KBOpC4WOhCyEQXyUU51snhqRZ6bocpM6jS6wcNiQmgifew2uyygOaY_JoVwQ_obCX8OLI_z6MKuziHxuWcVVOfqOFoOSy7gnEe3-zzXenOgpCsz5Shv_gsJ_Z3T-4SL7t-FWjW3ZW6-Md2DNlndhY7-O3t-DnwONAD-gy52UoMTefRr0GF2s8MfCbFQyfa5PLMP1RdvCvoaMCKbQhRUsv2DzU3xpQPzKbEp54PiqM9tsHUYO2p9rMvziku5mVs1EKGIZrQI66ftweCUCegDr5bi0j4C5VLjCOSNdJIQ2qQ4tGjBZWNRJ_JU2HZDN6itT86NTmY5T1STCHauF3BTJTVEFz6TbgbAdOfEcISuMyRoBq-YOLK6sQke2wthX7dgaJ3n8s-LorSV9aqfMcX92k4x3YLNRMFUbtKlabL8OPG-b0RRRfEmXdjzHPpyi2hJB9CV9Yh8LjnEeD73OLibA8Xca8SRKYkmb2w5Ehb7cUo6-VZToUUxUjOnjy6f-DDbQZqjB7sHeE7jBq8ImdJi2Ceuzs7l9ivBylm9V-5jB0VUbjt9q45AB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layer-specific+BOLD+activation+in+awake+monkey+V1+revealed+by+ultra-high+spatial+resolution+functional+magnetic+resonance+imaging&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=GANG+CHEN&rft.au=FENG+WANG&rft.au=GORE%2C+John+C&rft.au=ROE%2C+Anna+W&rft.date=2013-01-01&rft.pub=Elsevier&rft.issn=1053-8119&rft.volume=64&rft.spage=147&rft.epage=155&rft_id=info:doi/10.1016%2Fj.neuroimage.2012.08.060&rft.externalDBID=n%2Fa&rft.externalDocID=27110692 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |