Layer-specific BOLD activation in awake monkey V1 revealed by ultra-high spatial resolution functional magnetic resonance imaging

The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic resonance imaging (fMRI). However, whether the spatial specificity of the blood-oxygenation-level-dependent (BOLD) fMRI is sufficiently high to rev...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 64; pp. 147 - 155
Main Authors Chen, Gang, Wang, Feng, Gore, John C., Roe, Anna W.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.01.2013
Elsevier
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2012.08.060

Cover

Loading…
Abstract The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic resonance imaging (fMRI). However, whether the spatial specificity of the blood-oxygenation-level-dependent (BOLD) fMRI is sufficiently high to reveal lamina specific organization in the cortex reliably is still unclear. In this study we demonstrate for the first time the detection of such layer-specific activation in awake monkeys at the spatial resolution of 200×200×1000μm3 in a vertical 4.7T scanner. Results collected in trained monkeys are high in contrast-to-noise ratio and low in motion artifacts. Isolation of laminar activation was aided by choosing the optimal slice orientation and thickness using a novel pial vein pattern analysis derived from optical imaging. We found that the percent change of GE-BOLD signal is the highest at a depth corresponding to layer IV. Changes in the middle layers (layer IV) were 30% greater than changes in the top layers (layers I–III), and 32% greater than the bottom layers (layers V/VI). The laminar distribution of BOLD signal correlates well with neural activity reported in the literature. Our results suggest that the high intrinsic spatial resolution of GE-BOLD signal is sufficient for mapping sub-millimeter functional structures in awake monkeys. This degree of spatial specificity will be useful for mapping both laminar activations and columnar structures in the cerebral cortex. ► High resolution fMRI in awake monkeys with in-plane resolution of 200×200μm2. ► Contaminating vein influence minimized with pial vein analysis from optical imaging. ► Sub-millimeter functional laminar specific activation is revealed by GE-BOLD signals.
AbstractList The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic resonance imaging (fMRI). However, whether the spatial specificity of the blood-oxygenation-level-dependent (BOLD) fMRI is sufficiently high to reveal lamina specific organization in the cortex reliably is still unclear. In this study we demonstrate for the first time the detection of such layer-specific activation in awake monkeys at the spatial resolution of 200x200x1000[micro]m3in a vertical 4.7T scanner. Results collected in trained monkeys are high in contrast-to-noise ratio and low in motion artifacts. Isolation of laminar activation was aided by choosing the optimal slice orientation and thickness using a novel pial vein pattern analysis derived from optical imaging. We found that the percent change of GE-BOLD signal is the highest at a depth corresponding to layer IV. Changes in the middle layers (layer IV) were 30% greater than changes in the top layers (layers I-III), and 32% greater than the bottom layers (layers V/VI). The laminar distribution of BOLD signal correlates well with neural activity reported in the literature. Our results suggest that the high intrinsic spatial resolution of GE-BOLD signal is sufficient for mapping sub-millimeter functional structures in awake monkeys. This degree of spatial specificity will be useful for mapping both laminar activations and columnar structures in the cerebral cortex.
The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic resonance imaging (fMRI). However, whether the spatial specificity of the blood-oxygenation-level-dependent (BOLD) fMRI is sufficiently high to reveal lamina specific organization in the cortex reliably is still unclear. In this study we demonstrate for the first time the detection of such layer-specific activation in awake monkeys at the spatial resolution of 200×200×1000μm3 in a vertical 4.7T scanner. Results collected in trained monkeys are high in contrast-to-noise ratio and low in motion artifacts. Isolation of laminar activation was aided by choosing the optimal slice orientation and thickness using a novel pial vein pattern analysis derived from optical imaging. We found that the percent change of GE-BOLD signal is the highest at a depth corresponding to layer IV. Changes in the middle layers (layer IV) were 30% greater than changes in the top layers (layers I–III), and 32% greater than the bottom layers (layers V/VI). The laminar distribution of BOLD signal correlates well with neural activity reported in the literature. Our results suggest that the high intrinsic spatial resolution of GE-BOLD signal is sufficient for mapping sub-millimeter functional structures in awake monkeys. This degree of spatial specificity will be useful for mapping both laminar activations and columnar structures in the cerebral cortex. ► High resolution fMRI in awake monkeys with in-plane resolution of 200×200μm2. ► Contaminating vein influence minimized with pial vein analysis from optical imaging. ► Sub-millimeter functional laminar specific activation is revealed by GE-BOLD signals.
The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic resonance imaging (fMRI). However, whether the spatial specificity of the blood-oxygenation-level-dependent (BOLD) fMRI is sufficiently high to reveal lamina specific organization in the cortex reliably is still unclear. In this study we demonstrate for the first time the detection of such layer-specific activation in awake monkeys at the spatial resolution of 200 × 200 × 1000 μm(3) in a vertical 4.7 T scanner. Results collected in trained monkeys are high in contrast-to-noise ratio and low in motion artifacts. Isolation of laminar activation was aided by choosing the optimal slice orientation and thickness using a novel pial vein pattern analysis derived from optical imaging. We found that the percent change of GE-BOLD signal is the highest at a depth corresponding to layer IV. Changes in the middle layers (layer IV) were 30% greater than changes in the top layers (layers I-III), and 32% greater than the bottom layers (layers V/VI). The laminar distribution of BOLD signal correlates well with neural activity reported in the literature. Our results suggest that the high intrinsic spatial resolution of GE-BOLD signal is sufficient for mapping sub-millimeter functional structures in awake monkeys. This degree of spatial specificity will be useful for mapping both laminar activations and columnar structures in the cerebral cortex.The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic resonance imaging (fMRI). However, whether the spatial specificity of the blood-oxygenation-level-dependent (BOLD) fMRI is sufficiently high to reveal lamina specific organization in the cortex reliably is still unclear. In this study we demonstrate for the first time the detection of such layer-specific activation in awake monkeys at the spatial resolution of 200 × 200 × 1000 μm(3) in a vertical 4.7 T scanner. Results collected in trained monkeys are high in contrast-to-noise ratio and low in motion artifacts. Isolation of laminar activation was aided by choosing the optimal slice orientation and thickness using a novel pial vein pattern analysis derived from optical imaging. We found that the percent change of GE-BOLD signal is the highest at a depth corresponding to layer IV. Changes in the middle layers (layer IV) were 30% greater than changes in the top layers (layers I-III), and 32% greater than the bottom layers (layers V/VI). The laminar distribution of BOLD signal correlates well with neural activity reported in the literature. Our results suggest that the high intrinsic spatial resolution of GE-BOLD signal is sufficient for mapping sub-millimeter functional structures in awake monkeys. This degree of spatial specificity will be useful for mapping both laminar activations and columnar structures in the cerebral cortex.
The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic resonance imaging (fMRI). However, whether the spatial specificity of the blood-oxygenation-level-dependent (BOLD) fMRI is sufficiently high to reveal lamina specific organization in the cortex reliably is still unclear. In this study we demonstrate for the first time the detection of such layer-specific activation in awake monkeys at the spatial resolution of 200 A 200 A 1000 mu m3 in a vertical 4.7 T scanner. Results collected in trained monkeys are high in contrast-to-noise ratio and low in motion artifacts. Isolation of laminar activation was aided by choosing the optimal slice orientation and thickness using a novel pial vein pattern analysis derived from optical imaging. We found that the percent change of GE-BOLD signal is the highest at a depth corresponding to layer IV. Changes in the middle layers (layer IV) were 30% greater than changes in the top layers (layers IaIII), and 32% greater than the bottom layers (layers V/VI). The laminar distribution of BOLD signal correlates well with neural activity reported in the literature. Our results suggest that the high intrinsic spatial resolution of GE-BOLD signal is sufficient for mapping sub-millimeter functional structures in awake monkeys. This degree of spatial specificity will be useful for mapping both laminar activations and columnar structures in the cerebral cortex.
The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic resonance imaging (fMRI). However, whether the spatial specificity of the blood-oxygenation-level-dependent (BOLD) fMRI is sufficiently high to reveal lamina specific organization in the cortex reliably is still unclear. In this study we demonstrate for the first time the detection of such layer-specific activation in awake monkeys at the spatial resolution of 200 × 200 × 1000 μm(3) in a vertical 4.7 T scanner. Results collected in trained monkeys are high in contrast-to-noise ratio and low in motion artifacts. Isolation of laminar activation was aided by choosing the optimal slice orientation and thickness using a novel pial vein pattern analysis derived from optical imaging. We found that the percent change of GE-BOLD signal is the highest at a depth corresponding to layer IV. Changes in the middle layers (layer IV) were 30% greater than changes in the top layers (layers I-III), and 32% greater than the bottom layers (layers V/VI). The laminar distribution of BOLD signal correlates well with neural activity reported in the literature. Our results suggest that the high intrinsic spatial resolution of GE-BOLD signal is sufficient for mapping sub-millimeter functional structures in awake monkeys. This degree of spatial specificity will be useful for mapping both laminar activations and columnar structures in the cerebral cortex.
The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic resonance imaging (fMRI). However, whether the spatial specificity of the blood-oxygenation-level-dependent (BOLD) fMRI is sufficiently high to reveal lamina specific organization in the cortex reliably is still unclear. In this study we demonstrate for the first time the detection of such layer-specific activation in awake monkeys at the spatial resolution of 200×200×1000 µm 3 in a vertical 4.7T scanner. Results collected in trained monkeys are high in contrast-to-noise ratio and low in motion artifacts. Isolation of laminar activation was aided by choosing the optimal slice orientation and thickness using a novel pial vein pattern analysis derived from optical imaging. We found the percent change of GE-BOLD signal is the highest at a depth corresponding to layer IV. Changes in the middle layers (layer IV) were 30% greater than changes in the top layers (layers I–III), and 32% greater than the bottom layers (layers V/VI). The laminar distribution of BOLD signal correlates well with neural activity reported in the literature. Our results suggest the high intrinsic spatial resolution of GE-BOLD signal is sufficient for mapping sub-millimeter functional structures in awake monkeys. This degree of spatial specificity will be useful for mapping both laminar activations and columnar structures in the cerebral cortex.
Author Gore, John C.
Roe, Anna W.
Chen, Gang
Wang, Feng
AuthorAffiliation b Institute of Imaging Science, Vanderbilt University, Nashville, TN 37235
d Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
e Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
f Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235
c Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37235
a Department of Psychology, Vanderbilt University, Nashville, TN 37203
AuthorAffiliation_xml – name: b Institute of Imaging Science, Vanderbilt University, Nashville, TN 37235
– name: d Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
– name: a Department of Psychology, Vanderbilt University, Nashville, TN 37203
– name: f Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235
– name: e Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
– name: c Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37235
Author_xml – sequence: 1
  givenname: Gang
  surname: Chen
  fullname: Chen, Gang
  email: Gang.Chen@Vanderbilt.edu
  organization: Department of Psychology, Vanderbilt University, Nashville, TN 37203, USA
– sequence: 2
  givenname: Feng
  surname: Wang
  fullname: Wang, Feng
  organization: Institute of Imaging Science, Vanderbilt University, Nashville, TN 37235, USA
– sequence: 3
  givenname: John C.
  surname: Gore
  fullname: Gore, John C.
  organization: Institute of Imaging Science, Vanderbilt University, Nashville, TN 37235, USA
– sequence: 4
  givenname: Anna W.
  surname: Roe
  fullname: Roe, Anna W.
  organization: Department of Psychology, Vanderbilt University, Nashville, TN 37203, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27110692$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22960152$$D View this record in MEDLINE/PubMed
BookMark eNqNkk2P0zAQhiO0iP2Av4AsISQuKWMnTpwLgl0-pUp7Aa6W60xad1O72ElRj_xzJvtBYS_sKVbmncevZ97T7MgHj1nGOMw48Or1euZxjMFtzBJnAriYgZpBBY-yEw6NzBtZi6PpLItccd4cZ6cprQGg4aV6kh0L0VTApTjJfs3NHmOetmhd5yw7v5y_Z8YObmcGFzxznpmf5grZJvgr3LPvnEXcoemxZYs9G_shmnzlliuWttRheiqn0I_Xzd3o7XSgv-TU40AXTGVvvEU2uXd--TR73Jk-4bPb71n27eOHrxef8_nlpy8X7-a5rUQ95HUNUBatxU5UtVESuqIpVcdLU5R1W1rgxUKWvBTKlovGtiCs6gxUvO2ooGxxlr254W7HxQYJ5Ml6r7eRfMS9DsbpfyverfQy7HQhQQmlCPDqFhDDjxHToDcuWex74zGMSXMJUFcAEv4vFQKKqhayIumLe9J1GCONbAJKAYKYklTP_zb_x_XdIknw8lZgkjV9F2nELh10NedQNeIwBRtDShE7bd1wvWp6s-s1Bz0lTK_1IWF6SpgGpSlhBFD3AHd3PKD1_KYVac07h1En65Ci0LqIdtBtcA-BvL0Hsb3zjt5M8XwY4jeGkwit
CitedBy_id crossref_primary_10_3389_fopht_2022_989002
crossref_primary_10_1002_hbm_24042
crossref_primary_10_1016_j_neuroimage_2017_03_005
crossref_primary_10_1109_TMI_2020_3019087
crossref_primary_10_1016_j_neuroimage_2016_06_019
crossref_primary_10_1109_ACCESS_2019_2938681
crossref_primary_10_1162_imag_a_00249
crossref_primary_10_1016_j_neuroimage_2017_03_060
crossref_primary_10_1016_j_neuroimage_2017_11_068
crossref_primary_10_1016_j_neuroimage_2018_05_057
crossref_primary_10_1007_s00117_012_2345_9
crossref_primary_10_1371_journal_pone_0250504
crossref_primary_10_1109_TBME_2020_3027296
crossref_primary_10_1038_nmeth_2730
crossref_primary_10_1016_j_pneurobio_2022_102263
crossref_primary_10_1016_j_pneurobio_2021_102187
crossref_primary_10_1016_j_neuroimage_2013_09_060
crossref_primary_10_1016_j_neuroimage_2016_06_030
crossref_primary_10_1016_j_neuroimage_2021_118793
crossref_primary_10_1016_j_pneurobio_2020_101936
crossref_primary_10_1109_TMI_2018_2812151
crossref_primary_10_3389_fnana_2015_00135
crossref_primary_10_1016_j_neuroimage_2016_02_073
crossref_primary_10_1016_j_neuroimage_2019_116396
crossref_primary_10_1002_hbm_70193
crossref_primary_10_1016_j_neuroimage_2023_120121
crossref_primary_10_1016_j_neuroimage_2016_06_048
crossref_primary_10_1109_TMI_2022_3186913
crossref_primary_10_1186_s40708_021_00150_4
crossref_primary_10_1002_hbm_24375
crossref_primary_10_1016_j_cub_2015_12_038
crossref_primary_10_1177_0271678X231158434
crossref_primary_10_1016_j_neuroimage_2017_05_023
crossref_primary_10_1016_j_neuroimage_2019_116209
crossref_primary_10_7554_eLife_46856
crossref_primary_10_1002_hbm_26094
crossref_primary_10_1016_j_mri_2021_03_012
crossref_primary_10_1523_JNEUROSCI_1015_15_2015
crossref_primary_10_1016_j_pneurobio_2021_102034
crossref_primary_10_1016_j_neuroimage_2020_117631
crossref_primary_10_1016_j_neuroimage_2015_10_025
crossref_primary_10_1016_j_neuroimage_2015_10_048
crossref_primary_10_1016_j_neuroimage_2017_02_063
crossref_primary_10_1016_j_neuroimage_2017_06_045
crossref_primary_10_1088_1361_6560_aaf9e4
Cites_doi 10.1002/1522-2594(200012)44:6<925::AID-MRM14>3.0.CO;2-M
10.1016/S0730-725X(01)00391-5
10.1523/JNEUROSCI.08-05-01500.1988
10.1006/nimg.2002.1082
10.1016/j.neuroimage.2011.08.001
10.1038/nature03495
10.1016/j.neuroimage.2006.09.039
10.1016/0006-8993(81)90619-3
10.1016/j.mri.2010.03.026
10.1016/0006-8993(79)90728-5
10.1016/j.neuroimage.2011.10.079
10.1038/sj.jcbfm.9600434
10.1146/annurev.neuro.21.1.47
10.1016/j.neuron.2008.02.032
10.1002/mrm.10720
10.1002/mrm.1081
10.1038/35084005
10.1126/science.2165630
10.1016/j.neuroimage.2010.05.005
10.1038/nn.2676
10.1016/j.mri.2007.02.013
10.1016/j.neuroimage.2006.08.020
10.1002/cne.901460402
10.1523/JNEUROSCI.1588-07.2007
10.1016/S0896-6273(01)00477-9
10.1016/j.neuroimage.2005.08.016
10.1016/j.neuron.2010.11.020
10.1016/j.neuroimage.2005.01.007
10.1016/j.mri.2011.09.010
10.1038/sj.jcbfm.9600564
10.1016/j.neuroimage.2005.11.013
10.1126/science.272.5261.551
10.1002/nbm.1940070108
10.1016/j.mri.2005.12.032
10.1038/9210
10.1016/j.brainres.2006.11.097
10.1098/rstb.1984.0021
10.1002/mrm.20712
10.1093/brain/103.2.221
10.1016/0361-9230(81)90007-1
10.1016/j.neuroimage.2005.08.042
10.1016/S0165-0270(01)00475-7
10.1002/mrm.1910030413
10.1073/pnas.0805417105
10.1016/j.neuroimage.2006.12.030
10.1002/hbm.20936
10.1016/j.ymeth.2005.08.004
10.1016/j.jneumeth.2004.10.003
10.1016/j.mri.2007.03.002
10.1016/S0896-6273(01)00502-5
ContentType Journal Article
Copyright 2012 Elsevier Inc.
2014 INIST-CNRS
Copyright © 2012 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jan 1, 2013
2012 Elsevier Inc. All rights reserved. 2012
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: 2014 INIST-CNRS
– notice: Copyright © 2012 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jan 1, 2013
– notice: 2012 Elsevier Inc. All rights reserved. 2012
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
5PM
DOI 10.1016/j.neuroimage.2012.08.060
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList ProQuest One Psychology

MEDLINE - Academic

Engineering Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 155
ExternalDocumentID PMC3508288
3396563121
22960152
27110692
10_1016_j_neuroimage_2012_08_060
S1053811912008683
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Vanderbilt Vision Research Center
– fundername: NIH
  grantid: NS44375; EY11744
– fundername: Vanderbilt University Institute of Imaging Science
– fundername: Vanderbilt University Center for Integrative and Cognitive Neuroscience
– fundername: NINDS NIH HHS
  grantid: R01 NS044375
– fundername: NEI NIH HHS
  grantid: EY11744
– fundername: NEI NIH HHS
  grantid: P30 EY008126
– fundername: NINDS NIH HHS
  grantid: R01 NS078680
– fundername: NIBIB NIH HHS
  grantid: EB00461
– fundername: NEI NIH HHS
  grantid: R01 EY011744
– fundername: NINDS NIH HHS
  grantid: NS44375
– fundername: NIBIB NIH HHS
  grantid: R01 EB000461
– fundername: NEI NIH HHS
  grantid: EY08126
– fundername: NINDS NIH HHS
  grantid: R56 NS044375
– fundername: National Eye Institute : NEI
  grantid: R01 EY011744 || EY
– fundername: National Institute of Neurological Disorders and Stroke : NINDS
  grantid: R01 NS044375 || NS
– fundername: National Eye Institute : NEI
  grantid: P30 EY008126 || EY
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
5PM
ID FETCH-LOGICAL-c627t-770043dcef267a850f3948f14a347d4c013b541428c4b9cd02c8fa061df3b58c3
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 18:27:47 EDT 2025
Fri Jul 11 04:17:59 EDT 2025
Mon Jul 21 11:39:45 EDT 2025
Wed Aug 13 08:55:32 EDT 2025
Thu Apr 03 07:03:32 EDT 2025
Wed Apr 02 07:23:37 EDT 2025
Tue Jul 01 02:14:48 EDT 2025
Thu Apr 24 23:02:20 EDT 2025
Fri Feb 23 02:45:59 EST 2024
Tue Aug 26 16:31:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords BOLD spatial resolution
Visual cortex
Functional MRI
Cortical layers
Non-human primate
High resolution
Organization
Central nervous system
Monkey
Activation
Encephalon
Specificity
Visual pathway
Blood vessel
Primates
Human
Medical screening
Nuclear magnetic resonance imaging
Vertebrata
Mammalia
First episode
Animal
Circulatory system
Oxygenation
Spatial resolution
Functional imaging
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c627t-770043dcef267a850f3948f14a347d4c013b541428c4b9cd02c8fa061df3b58c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3508288
PMID 22960152
PQID 1552020765
PQPubID 2031077
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3508288
proquest_miscellaneous_1500760050
proquest_miscellaneous_1220367256
proquest_journals_1552020765
pubmed_primary_22960152
pascalfrancis_primary_27110692
crossref_citationtrail_10_1016_j_neuroimage_2012_08_060
crossref_primary_10_1016_j_neuroimage_2012_08_060
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2012_08_060
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2012_08_060
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2013
Publisher Elsevier Inc
Elsevier
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier
– name: Elsevier Limited
References Zhao, Wang, Hendrich, Ugurbil, Kim (bb0250) 2006; 30
Ts'o, Frostig, Lieke, Grinvald (bb0215) 1990; 249
Gamlin, Ward, Bolding, Grossmann, Twieg (bb0070) 2006; 38
Logothetis, Pauls, Augath, Trinath, Oeltermann (bb0125) 2001; 412
Chen, Wang, Gore, Roe (bb0030) 2012; 59
Pfeuffer, Shmuel, Keliris, Steudel, Merkle, Logothetis (bb0160) 2007; 25
Frahm, Merboldt, Hanicke, Kleinschmidt, Boecker (bb0065) 1994; 7
Zhao, Wang, Kim (bb0255) 2004; 51
Pinsk, Moore, Richter, Gross, Kastner (bb0165) 2005; 143
Tanigawa, Lu, Roe (bb0200) 2010; 13
Zappe, Pfeuffer, Merkle, Logothetis, Goense (bb0245) 2008; 28
Kruger, Kastrup, Glover (bb0115) 2001; 45
Malonek, Grinvald (bb0135) 1996; 272
Goense, Zappe, Logothetis (bb0085) 2007; 25
Herculano-Houzel, Collins, Wong, Kaas, Lent (bb0095) 2008; 105
Goense, Logothetis, Merkle (bb0075) 2010; 28
Polimeni, Fischl, Greve, Wald (bb0170) 2010; 52
Smirnakis, Schmid, Weber, Tolias, Augath, Logothetis (bb0195) 2007; 27
Duong (bb0050) 2007; 1135
Smirnakis, Brewer, Schmid, Tolias, Schuz, Augath, Inhoffen, Wandell, Logothetis (bb0190) 2005; 435
Ress, Glover, Liu, Wandell (bb0175) 2007; 34
Lu, Chen, Tanigawa, Roe (bb0130) 2010; 68
Hubel, Wiesel (bb0105) 1972; 146
Shmuel, Yacoub, Chaimow, Logothetis, Ugurbil (bb0185) 2007; 35
Logothetis, Guggenberger, Peled, Pauls (bb0120) 1999; 2
Goense, Logothetis (bb0080) 2006; 24
Chen, Lu, Roe (bb0020) 2008; 58
Vanduffel, Fize, Mandeville, Nelissen, Van Hecke, Rosen, Tootell, Orban (bb0225) 2001; 32
Parkes, Schwarzbach, Bouts, Deckers, Pullens, Kerskens, Norris (bb0140) 2005; 54
Wong-Riley (bb0235) 1979; 171
Edelstein, Glover, Hardy, Redington (bb0060) 1986; 3
Cheng, Waggoner, Tanaka (bb0045) 2001; 32
Turner (bb0220) 2002; 16
Peeters, Tindemans, De Schutter, Van der Linden (bb0155) 2001; 19
Callaway (bb0015) 1998; 21
Chen, Wang, Dillenburger, Friedman, Chen, Gore, Avison, Roe (bb0025) 2012; 30
Bodurka, Ye, Petridou, Murphy, Bandettini (bb0010) 2007; 34
Triantafyllou, Hoge, Krueger, Wiggins, Potthast, Wiggins, Wald (bb0210) 2005; 26
Duvernoy, Delon, Vannson (bb0055) 1981; 7
Horton (bb0100) 1984; 304
Pawlik, Rackl, Bing (bb0150) 1980; 208
Chen, Turner, Friedman, Zhang, Gore, Roe, Avison (bb0040) 2007; 27
Harel, Lin, Moeller, Ugurbil, Yacoub (bb0090) 2006; 29
Koopmans, Barth, Norris (bb0110) 2010; 31
Parrish, Gitelman, LaBar, Mesulam (bb0145) 2000; 44
Tootell, Hamilton, Silverman, Switkes (bb0205) 1988; 8
Bellgowan, Bandettini, van Gelderen, Martin, Bodurka (bb0005) 2006; 29
Chen, Heider, Williams, Healy, Ramsden, Roe (bb0035) 2002; 113
Yu, Glen, Wang, Dodd, Hirano, Saad, Reynolds, Silva, Koretsky (bb0240) 2012; 59
Rockel, Hiorns, Powell (bb0180) 1980; 103
Wald, Fischl, Rosen (bb0230) 2006
Lu (10.1016/j.neuroimage.2012.08.060_bb0130) 2010; 68
Goense (10.1016/j.neuroimage.2012.08.060_bb0085) 2007; 25
Parkes (10.1016/j.neuroimage.2012.08.060_bb0140) 2005; 54
Zhao (10.1016/j.neuroimage.2012.08.060_bb0250) 2006; 30
Triantafyllou (10.1016/j.neuroimage.2012.08.060_bb0210) 2005; 26
Smirnakis (10.1016/j.neuroimage.2012.08.060_bb0195) 2007; 27
Chen (10.1016/j.neuroimage.2012.08.060_bb0040) 2007; 27
Rockel (10.1016/j.neuroimage.2012.08.060_bb0180) 1980; 103
Wald (10.1016/j.neuroimage.2012.08.060_bb0230) 2006
Chen (10.1016/j.neuroimage.2012.08.060_bb0020) 2008; 58
Polimeni (10.1016/j.neuroimage.2012.08.060_bb0170) 2010; 52
Pinsk (10.1016/j.neuroimage.2012.08.060_bb0165) 2005; 143
Duong (10.1016/j.neuroimage.2012.08.060_bb0050) 2007; 1135
Tootell (10.1016/j.neuroimage.2012.08.060_bb0205) 1988; 8
Yu (10.1016/j.neuroimage.2012.08.060_bb0240) 2012; 59
Ts'o (10.1016/j.neuroimage.2012.08.060_bb0215) 1990; 249
Kruger (10.1016/j.neuroimage.2012.08.060_bb0115) 2001; 45
Koopmans (10.1016/j.neuroimage.2012.08.060_bb0110) 2010; 31
Chen (10.1016/j.neuroimage.2012.08.060_bb0030) 2012; 59
Malonek (10.1016/j.neuroimage.2012.08.060_bb0135) 1996; 272
Logothetis (10.1016/j.neuroimage.2012.08.060_bb0125) 2001; 412
Smirnakis (10.1016/j.neuroimage.2012.08.060_bb0190) 2005; 435
Goense (10.1016/j.neuroimage.2012.08.060_bb0075) 2010; 28
Edelstein (10.1016/j.neuroimage.2012.08.060_bb0060) 1986; 3
Parrish (10.1016/j.neuroimage.2012.08.060_bb0145) 2000; 44
Pfeuffer (10.1016/j.neuroimage.2012.08.060_bb0160) 2007; 25
Bellgowan (10.1016/j.neuroimage.2012.08.060_bb0005) 2006; 29
Bodurka (10.1016/j.neuroimage.2012.08.060_bb0010) 2007; 34
Peeters (10.1016/j.neuroimage.2012.08.060_bb0155) 2001; 19
Horton (10.1016/j.neuroimage.2012.08.060_bb0100) 1984; 304
Turner (10.1016/j.neuroimage.2012.08.060_bb0220) 2002; 16
Goense (10.1016/j.neuroimage.2012.08.060_bb0080) 2006; 24
Ress (10.1016/j.neuroimage.2012.08.060_bb0175) 2007; 34
Wong-Riley (10.1016/j.neuroimage.2012.08.060_bb0235) 1979; 171
Harel (10.1016/j.neuroimage.2012.08.060_bb0090) 2006; 29
Gamlin (10.1016/j.neuroimage.2012.08.060_bb0070) 2006; 38
Cheng (10.1016/j.neuroimage.2012.08.060_bb0045) 2001; 32
Callaway (10.1016/j.neuroimage.2012.08.060_bb0015) 1998; 21
Chen (10.1016/j.neuroimage.2012.08.060_bb0035) 2002; 113
Frahm (10.1016/j.neuroimage.2012.08.060_bb0065) 1994; 7
Vanduffel (10.1016/j.neuroimage.2012.08.060_bb0225) 2001; 32
Shmuel (10.1016/j.neuroimage.2012.08.060_bb0185) 2007; 35
Pawlik (10.1016/j.neuroimage.2012.08.060_bb0150) 1980; 208
Zappe (10.1016/j.neuroimage.2012.08.060_bb0245) 2008; 28
Duvernoy (10.1016/j.neuroimage.2012.08.060_bb0055) 1981; 7
Hubel (10.1016/j.neuroimage.2012.08.060_bb0105) 1972; 146
Chen (10.1016/j.neuroimage.2012.08.060_bb0025) 2012; 30
Herculano-Houzel (10.1016/j.neuroimage.2012.08.060_bb0095) 2008; 105
Logothetis (10.1016/j.neuroimage.2012.08.060_bb0120) 1999; 2
Tanigawa (10.1016/j.neuroimage.2012.08.060_bb0200) 2010; 13
Zhao (10.1016/j.neuroimage.2012.08.060_bb0255) 2004; 51
11719199 - Neuron. 2001 Nov 20;32(4):565-77
3747821 - Magn Reson Med. 1986 Aug;3(4):604-18
17213863 - J Cereb Blood Flow Metab. 2007 Jun;27(6):1248-61
9530491 - Annu Rev Neurosci. 1998;21:47-74
17499466 - Magn Reson Imaging. 2007 Jul;25(6):740-7
8068525 - NMR Biomed. 1994 Mar;7(1-2):45-53
15814151 - J Neurosci Methods. 2005 Apr 30;143(2):179-95
6772266 - Brain. 1980 Jun;103(2):221-44
22055855 - Magn Reson Imaging. 2012 Jan;30(1):36-47
21145011 - Neuron. 2010 Dec 9;68(5):1002-13
11449264 - Nature. 2001 Jul 12;412(6843):150-7
17306989 - Neuroimage. 2007 Apr 1;35(2):539-52
3367209 - J Neurosci. 1988 May;8(5):1500-30
11684004 - Neuron. 2001 Oct 25;32(2):359-74
22080152 - Neuroimage. 2012 Feb 15;59(4):3441-9
18466753 - Neuron. 2008 May 8;58(3):442-50
16677944 - Magn Reson Imaging. 2006 May;24(4):381-92
15902248 - Nature. 2005 May 19;435(7040):300-7
11741720 - J Neurosci Methods. 2002 Jan 15;113(1):41-9
15004793 - Magn Reson Med. 2004 Mar;51(3):518-24
6142484 - Philos Trans R Soc Lond B Biol Sci. 1984 Jan 17;304(1119):199-253
16276507 - Magn Reson Med. 2005 Dec;54(6):1465-72
20460157 - Neuroimage. 2010 Oct 1;52(4):1334-46
16481198 - Methods. 2006 Mar;38(3):210-20
15862224 - Neuroimage. 2005 May 15;26(1):243-50
20082333 - Hum Brain Mapp. 2010 Sep;31(9):1297-304
17715354 - J Neurosci. 2007 Aug 22;27(34):9181-91
21076422 - Nat Neurosci. 2010 Dec;13(12):1542-8
17011213 - Neuroimage. 2007 Jan 1;34(1):74-84
17960143 - J Cereb Blood Flow Metab. 2008 Mar;28(3):640-52
4117368 - J Comp Neurol. 1972 Dec;146(4):421-50
17451900 - Magn Reson Imaging. 2007 Jul;25(6):869-82
7470927 - Brain Res. 1981 Mar 9;208(1):35-58
11283987 - Magn Reson Med. 2001 Apr;45(4):595-604
11551722 - Magn Reson Imaging. 2001 Jul;19(6):821-6
16242347 - Neuroimage. 2006 Feb 15;29(4):1244-51
21851857 - Neuroimage. 2012 Jan 16;59(2):1451-60
2165630 - Science. 1990 Jul 27;249(4967):417-20
17198686 - Brain Res. 2007 Mar 2;1135(1):186-94
223730 - Brain Res. 1979 Jul 27;171(1):11-28
8614805 - Science. 1996 Apr 26;272(5261):551-4
11108630 - Magn Reson Med. 2000 Dec;44(6):925-32
18689685 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12593-8
10448221 - Nat Neurosci. 1999 Jun;2(6):555-62
20456890 - Magn Reson Imaging. 2010 Oct;28(8):1183-91
7317796 - Brain Res Bull. 1981 Nov;7(5):519-79
16194614 - Neuroimage. 2006 Feb 1;29(3):879-87
12202093 - Neuroimage. 2002 Aug;16(4):1062-7
16414284 - Neuroimage. 2006 May 1;30(4):1149-60
17101280 - Neuroimage. 2007 Jan 15;34(2):542-9
References_xml – volume: 27
  start-page: 1248
  year: 2007
  end-page: 1261
  ident: bb0195
  article-title: Spatial specificity of BOLD versus cerebral blood volume fMRI for mapping cortical organization
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 44
  start-page: 925
  year: 2000
  end-page: 932
  ident: bb0145
  article-title: Impact of signal-to-noise on functional MRI
  publication-title: Magn. Reson. Med.
– volume: 26
  start-page: 243
  year: 2005
  end-page: 250
  ident: bb0210
  article-title: Comparison of physiological noise at 1.5
  publication-title: Neuroimage
– volume: 51
  start-page: 518
  year: 2004
  end-page: 524
  ident: bb0255
  article-title: Cortical depth-dependent gradient-echo and spin-echo BOLD fMRI at 9.4T
  publication-title: Magn. Reson. Med.
– volume: 103
  start-page: 221
  year: 1980
  end-page: 244
  ident: bb0180
  article-title: The basic uniformity in structure of the neocortex
  publication-title: Brain
– volume: 16
  start-page: 1062
  year: 2002
  end-page: 1067
  ident: bb0220
  article-title: How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes
  publication-title: Neuroimage
– volume: 34
  start-page: 74
  year: 2007
  end-page: 84
  ident: bb0175
  article-title: Laminar profiles of functional activity in the human brain
  publication-title: Neuroimage
– volume: 208
  start-page: 35
  year: 1980
  end-page: 38
  ident: bb0150
  article-title: Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study
  publication-title: Brain Res.
– volume: 28
  start-page: 640
  year: 2008
  end-page: 652
  ident: bb0245
  article-title: The effect of labeling parameters on perfusion-based fMRI in nonhuman primates
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 31
  start-page: 1297
  year: 2010
  end-page: 1304
  ident: bb0110
  article-title: Layer-specific BOLD activation in human V1
  publication-title: Hum. Brain Mapp.
– volume: 27
  start-page: 9181
  year: 2007
  end-page: 9191
  ident: bb0040
  article-title: High-resolution maps of real and illusory tactile activation in primary somatosensory cortex in individual monkeys with functional magnetic resonance imaging and optical imaging
  publication-title: J. Neurosci.
– volume: 32
  start-page: 565
  year: 2001
  end-page: 577
  ident: bb0225
  article-title: Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys
  publication-title: Neuron
– volume: 272
  start-page: 551
  year: 1996
  end-page: 554
  ident: bb0135
  article-title: Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping
  publication-title: Science
– volume: 30
  start-page: 36
  year: 2012
  end-page: 47
  ident: bb0025
  article-title: Functional magnetic resonance imaging of awake monkeys: some approaches for improving imaging quality
  publication-title: Magn. Reson. Imaging
– volume: 28
  start-page: 1183
  year: 2010
  end-page: 1191
  ident: bb0075
  article-title: Flexible, phase-matched, linear receive arrays for high-field MRI in monkeys
  publication-title: Magn. Reson. Imaging
– volume: 105
  start-page: 12593
  year: 2008
  end-page: 12598
  ident: bb0095
  article-title: The basic nonuniformity of the cerebral cortex
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 19
  start-page: 821
  year: 2001
  end-page: 826
  ident: bb0155
  article-title: Comparing BOLD fMRI signal changes in the awake and anesthetized rat during electrical forepaw stimulation
  publication-title: Magn. Reson. Imaging
– volume: 59
  start-page: 1451
  year: 2012
  end-page: 1460
  ident: bb0240
  article-title: Direct imaging of macrovascular and microvascular contributions to BOLD fMRI in layers IV–V of the rat whisker-barrel cortex
  publication-title: Neuroimage
– volume: 21
  start-page: 47
  year: 1998
  end-page: 74
  ident: bb0015
  article-title: Local circuits in primary visual cortex of the macaque monkey
  publication-title: Annu. Rev. Neurosci.
– volume: 29
  start-page: 879
  year: 2006
  end-page: 887
  ident: bb0090
  article-title: Combined imaging-histological study of cortical laminar specificity of fMRI signals
  publication-title: Neuroimage
– volume: 2
  start-page: 555
  year: 1999
  end-page: 562
  ident: bb0120
  article-title: Functional imaging of the monkey brain
  publication-title: Nat. Neurosci.
– volume: 24
  start-page: 381
  year: 2006
  end-page: 392
  ident: bb0080
  article-title: Laminar specificity in monkey V1 using high-resolution SE-fMRI
  publication-title: Magn. Reson. Imaging
– volume: 59
  start-page: 3441
  year: 2012
  end-page: 3449
  ident: bb0030
  article-title: Identification of cortical lamination in awake monkeys by high resolution magnetic resonance imaging
  publication-title: Neuroimage
– volume: 52
  start-page: 1334
  year: 2010
  end-page: 1346
  ident: bb0170
  article-title: Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1
  publication-title: Neuroimage
– volume: 435
  start-page: 300
  year: 2005
  end-page: 307
  ident: bb0190
  article-title: Lack of long-term cortical reorganization after macaque retinal lesions
  publication-title: Nature
– volume: 8
  start-page: 1500
  year: 1988
  end-page: 1530
  ident: bb0205
  article-title: Functional anatomy of macaque striate cortex. I. Ocular dominance, binocular interactions, and baseline conditions
  publication-title: J. Neurosci.
– volume: 54
  start-page: 1465
  year: 2005
  end-page: 1472
  ident: bb0140
  article-title: Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3
  publication-title: Magn. Reson. Med.
– volume: 143
  start-page: 179
  year: 2005
  end-page: 195
  ident: bb0165
  article-title: Methods for functional magnetic resonance imaging in normal and lesioned behaving monkeys
  publication-title: J. Neurosci. Methods
– volume: 412
  start-page: 150
  year: 2001
  end-page: 157
  ident: bb0125
  article-title: Neurophysiological investigation of the basis of the fMRI signal
  publication-title: Nature
– volume: 25
  start-page: 869
  year: 2007
  end-page: 882
  ident: bb0160
  article-title: Functional MR imaging in the awake monkey: effects of motion on dynamic off-resonance and processing strategies
  publication-title: Magn. Reson. Imaging
– start-page: 343
  year: 2006
  end-page: 371
  ident: bb0230
  article-title: High-resolution and microscopic imaging at high field
  publication-title: Ultra High Field Magnetic Resonance Imaging
– volume: 3
  start-page: 604
  year: 1986
  end-page: 618
  ident: bb0060
  article-title: The intrinsic signal-to-noise ratio in NMR imaging
  publication-title: Magn. Reson. Med.
– volume: 35
  start-page: 539
  year: 2007
  end-page: 552
  ident: bb0185
  article-title: Spatio-temporal point-spread function of fMRI signal in human gray matter at 7
  publication-title: Neuroimage
– volume: 34
  start-page: 542
  year: 2007
  end-page: 549
  ident: bb0010
  article-title: Mapping the MRI voxel volume in which thermal noise matches physiological noise—implications for fMRI
  publication-title: Neuroimage
– volume: 7
  start-page: 45
  year: 1994
  end-page: 53
  ident: bb0065
  article-title: Brain or vein—oxygenation or flow? On signal physiology in functional MRI of human brain activation
  publication-title: NMR Biomed.
– volume: 68
  start-page: 1002
  year: 2010
  end-page: 1013
  ident: bb0130
  article-title: A motion direction map in macaque V2
  publication-title: Neuron
– volume: 249
  start-page: 417
  year: 1990
  end-page: 420
  ident: bb0215
  article-title: Functional organization of primate visual cortex revealed by high resolution optical imaging
  publication-title: Science
– volume: 25
  start-page: 740
  year: 2007
  end-page: 747
  ident: bb0085
  article-title: High-resolution fMRI of macaque V1
  publication-title: Magn. Reson. Imaging
– volume: 113
  start-page: 41
  year: 2002
  end-page: 49
  ident: bb0035
  article-title: A chamber and artificial dura method for long-term optical imaging in the monkey
  publication-title: J. Neurosci. Methods
– volume: 32
  start-page: 359
  year: 2001
  end-page: 374
  ident: bb0045
  article-title: Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging
  publication-title: Neuron
– volume: 1135
  start-page: 186
  year: 2007
  end-page: 194
  ident: bb0050
  article-title: Cerebral blood flow and BOLD fMRI responses to hypoxia in awake and anesthetized rats
  publication-title: Brain Res.
– volume: 30
  start-page: 1149
  year: 2006
  end-page: 1160
  ident: bb0250
  article-title: Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation
  publication-title: Neuroimage
– volume: 7
  start-page: 519
  year: 1981
  end-page: 579
  ident: bb0055
  article-title: Cortical blood vessels of the human brain
  publication-title: Brain Res. Bull.
– volume: 58
  start-page: 442
  year: 2008
  end-page: 450
  ident: bb0020
  article-title: A map for horizontal disparity in monkey V2
  publication-title: Neuron
– volume: 171
  start-page: 11
  year: 1979
  end-page: 28
  ident: bb0235
  article-title: Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry
  publication-title: Brain Res.
– volume: 146
  start-page: 421
  year: 1972
  end-page: 450
  ident: bb0105
  article-title: Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey
  publication-title: J. Comp. Neurol.
– volume: 13
  start-page: 1542
  year: 2010
  end-page: 1548
  ident: bb0200
  article-title: Functional organization for color and orientation in macaque V4
  publication-title: Nat. Neurosci.
– volume: 38
  start-page: 210
  year: 2006
  end-page: 220
  ident: bb0070
  article-title: Developing functional magnetic resonance imaging techniques for alert macaque monkeys
  publication-title: Methods
– volume: 45
  start-page: 595
  year: 2001
  end-page: 604
  ident: bb0115
  article-title: Neuroimaging at 1.5
  publication-title: Magn. Reson. Med.
– volume: 29
  start-page: 1244
  year: 2006
  end-page: 1251
  ident: bb0005
  article-title: Improved BOLD detection in the medial temporal region using parallel imaging and voxel volume reduction
  publication-title: Neuroimage
– volume: 304
  start-page: 199
  year: 1984
  end-page: 253
  ident: bb0100
  article-title: Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 44
  start-page: 925
  year: 2000
  ident: 10.1016/j.neuroimage.2012.08.060_bb0145
  article-title: Impact of signal-to-noise on functional MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200012)44:6<925::AID-MRM14>3.0.CO;2-M
– volume: 19
  start-page: 821
  year: 2001
  ident: 10.1016/j.neuroimage.2012.08.060_bb0155
  article-title: Comparing BOLD fMRI signal changes in the awake and anesthetized rat during electrical forepaw stimulation
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(01)00391-5
– volume: 8
  start-page: 1500
  year: 1988
  ident: 10.1016/j.neuroimage.2012.08.060_bb0205
  article-title: Functional anatomy of macaque striate cortex. I. Ocular dominance, binocular interactions, and baseline conditions
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.08-05-01500.1988
– volume: 16
  start-page: 1062
  year: 2002
  ident: 10.1016/j.neuroimage.2012.08.060_bb0220
  article-title: How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1082
– volume: 59
  start-page: 1451
  year: 2012
  ident: 10.1016/j.neuroimage.2012.08.060_bb0240
  article-title: Direct imaging of macrovascular and microvascular contributions to BOLD fMRI in layers IV–V of the rat whisker-barrel cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.08.001
– volume: 435
  start-page: 300
  year: 2005
  ident: 10.1016/j.neuroimage.2012.08.060_bb0190
  article-title: Lack of long-term cortical reorganization after macaque retinal lesions
  publication-title: Nature
  doi: 10.1038/nature03495
– volume: 34
  start-page: 542
  year: 2007
  ident: 10.1016/j.neuroimage.2012.08.060_bb0010
  article-title: Mapping the MRI voxel volume in which thermal noise matches physiological noise—implications for fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.09.039
– volume: 208
  start-page: 35
  year: 1980
  ident: 10.1016/j.neuroimage.2012.08.060_bb0150
  article-title: Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(81)90619-3
– volume: 28
  start-page: 1183
  year: 2010
  ident: 10.1016/j.neuroimage.2012.08.060_bb0075
  article-title: Flexible, phase-matched, linear receive arrays for high-field MRI in monkeys
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2010.03.026
– volume: 171
  start-page: 11
  year: 1979
  ident: 10.1016/j.neuroimage.2012.08.060_bb0235
  article-title: Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(79)90728-5
– volume: 59
  start-page: 3441
  year: 2012
  ident: 10.1016/j.neuroimage.2012.08.060_bb0030
  article-title: Identification of cortical lamination in awake monkeys by high resolution magnetic resonance imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.079
– volume: 27
  start-page: 1248
  year: 2007
  ident: 10.1016/j.neuroimage.2012.08.060_bb0195
  article-title: Spatial specificity of BOLD versus cerebral blood volume fMRI for mapping cortical organization
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/sj.jcbfm.9600434
– volume: 21
  start-page: 47
  year: 1998
  ident: 10.1016/j.neuroimage.2012.08.060_bb0015
  article-title: Local circuits in primary visual cortex of the macaque monkey
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.21.1.47
– volume: 58
  start-page: 442
  year: 2008
  ident: 10.1016/j.neuroimage.2012.08.060_bb0020
  article-title: A map for horizontal disparity in monkey V2
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.02.032
– volume: 51
  start-page: 518
  year: 2004
  ident: 10.1016/j.neuroimage.2012.08.060_bb0255
  article-title: Cortical depth-dependent gradient-echo and spin-echo BOLD fMRI at 9.4T
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10720
– volume: 45
  start-page: 595
  year: 2001
  ident: 10.1016/j.neuroimage.2012.08.060_bb0115
  article-title: Neuroimaging at 1.5T and 3.0T: comparison of oxygenation-sensitive magnetic resonance imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1081
– volume: 412
  start-page: 150
  year: 2001
  ident: 10.1016/j.neuroimage.2012.08.060_bb0125
  article-title: Neurophysiological investigation of the basis of the fMRI signal
  publication-title: Nature
  doi: 10.1038/35084005
– volume: 249
  start-page: 417
  year: 1990
  ident: 10.1016/j.neuroimage.2012.08.060_bb0215
  article-title: Functional organization of primate visual cortex revealed by high resolution optical imaging
  publication-title: Science
  doi: 10.1126/science.2165630
– volume: 52
  start-page: 1334
  year: 2010
  ident: 10.1016/j.neuroimage.2012.08.060_bb0170
  article-title: Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.05.005
– volume: 13
  start-page: 1542
  year: 2010
  ident: 10.1016/j.neuroimage.2012.08.060_bb0200
  article-title: Functional organization for color and orientation in macaque V4
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2676
– volume: 25
  start-page: 740
  year: 2007
  ident: 10.1016/j.neuroimage.2012.08.060_bb0085
  article-title: High-resolution fMRI of macaque V1
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2007.02.013
– volume: 34
  start-page: 74
  year: 2007
  ident: 10.1016/j.neuroimage.2012.08.060_bb0175
  article-title: Laminar profiles of functional activity in the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.08.020
– volume: 146
  start-page: 421
  year: 1972
  ident: 10.1016/j.neuroimage.2012.08.060_bb0105
  article-title: Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.901460402
– volume: 27
  start-page: 9181
  year: 2007
  ident: 10.1016/j.neuroimage.2012.08.060_bb0040
  article-title: High-resolution maps of real and illusory tactile activation in primary somatosensory cortex in individual monkeys with functional magnetic resonance imaging and optical imaging
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1588-07.2007
– volume: 32
  start-page: 359
  year: 2001
  ident: 10.1016/j.neuroimage.2012.08.060_bb0045
  article-title: Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging
  publication-title: Neuron
  doi: 10.1016/S0896-6273(01)00477-9
– volume: 29
  start-page: 879
  year: 2006
  ident: 10.1016/j.neuroimage.2012.08.060_bb0090
  article-title: Combined imaging-histological study of cortical laminar specificity of fMRI signals
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.08.016
– volume: 68
  start-page: 1002
  year: 2010
  ident: 10.1016/j.neuroimage.2012.08.060_bb0130
  article-title: A motion direction map in macaque V2
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.11.020
– volume: 26
  start-page: 243
  year: 2005
  ident: 10.1016/j.neuroimage.2012.08.060_bb0210
  article-title: Comparison of physiological noise at 1.5T, 3T and 7T and optimization of fMRI acquisition parameters
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.01.007
– volume: 30
  start-page: 36
  year: 2012
  ident: 10.1016/j.neuroimage.2012.08.060_bb0025
  article-title: Functional magnetic resonance imaging of awake monkeys: some approaches for improving imaging quality
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2011.09.010
– volume: 28
  start-page: 640
  year: 2008
  ident: 10.1016/j.neuroimage.2012.08.060_bb0245
  article-title: The effect of labeling parameters on perfusion-based fMRI in nonhuman primates
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/sj.jcbfm.9600564
– volume: 30
  start-page: 1149
  year: 2006
  ident: 10.1016/j.neuroimage.2012.08.060_bb0250
  article-title: Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.11.013
– volume: 272
  start-page: 551
  year: 1996
  ident: 10.1016/j.neuroimage.2012.08.060_bb0135
  article-title: Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping
  publication-title: Science
  doi: 10.1126/science.272.5261.551
– volume: 7
  start-page: 45
  year: 1994
  ident: 10.1016/j.neuroimage.2012.08.060_bb0065
  article-title: Brain or vein—oxygenation or flow? On signal physiology in functional MRI of human brain activation
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1940070108
– volume: 24
  start-page: 381
  year: 2006
  ident: 10.1016/j.neuroimage.2012.08.060_bb0080
  article-title: Laminar specificity in monkey V1 using high-resolution SE-fMRI
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2005.12.032
– volume: 2
  start-page: 555
  year: 1999
  ident: 10.1016/j.neuroimage.2012.08.060_bb0120
  article-title: Functional imaging of the monkey brain
  publication-title: Nat. Neurosci.
  doi: 10.1038/9210
– volume: 1135
  start-page: 186
  year: 2007
  ident: 10.1016/j.neuroimage.2012.08.060_bb0050
  article-title: Cerebral blood flow and BOLD fMRI responses to hypoxia in awake and anesthetized rats
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2006.11.097
– volume: 304
  start-page: 199
  year: 1984
  ident: 10.1016/j.neuroimage.2012.08.060_bb0100
  article-title: Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.1984.0021
– volume: 54
  start-page: 1465
  year: 2005
  ident: 10.1016/j.neuroimage.2012.08.060_bb0140
  article-title: Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3Tesla
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20712
– volume: 103
  start-page: 221
  year: 1980
  ident: 10.1016/j.neuroimage.2012.08.060_bb0180
  article-title: The basic uniformity in structure of the neocortex
  publication-title: Brain
  doi: 10.1093/brain/103.2.221
– volume: 7
  start-page: 519
  year: 1981
  ident: 10.1016/j.neuroimage.2012.08.060_bb0055
  article-title: Cortical blood vessels of the human brain
  publication-title: Brain Res. Bull.
  doi: 10.1016/0361-9230(81)90007-1
– volume: 29
  start-page: 1244
  year: 2006
  ident: 10.1016/j.neuroimage.2012.08.060_bb0005
  article-title: Improved BOLD detection in the medial temporal region using parallel imaging and voxel volume reduction
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.08.042
– volume: 113
  start-page: 41
  year: 2002
  ident: 10.1016/j.neuroimage.2012.08.060_bb0035
  article-title: A chamber and artificial dura method for long-term optical imaging in the monkey
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(01)00475-7
– volume: 3
  start-page: 604
  year: 1986
  ident: 10.1016/j.neuroimage.2012.08.060_bb0060
  article-title: The intrinsic signal-to-noise ratio in NMR imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910030413
– volume: 105
  start-page: 12593
  year: 2008
  ident: 10.1016/j.neuroimage.2012.08.060_bb0095
  article-title: The basic nonuniformity of the cerebral cortex
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0805417105
– start-page: 343
  year: 2006
  ident: 10.1016/j.neuroimage.2012.08.060_bb0230
  article-title: High-resolution and microscopic imaging at high field
– volume: 35
  start-page: 539
  year: 2007
  ident: 10.1016/j.neuroimage.2012.08.060_bb0185
  article-title: Spatio-temporal point-spread function of fMRI signal in human gray matter at 7Tesla
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.12.030
– volume: 31
  start-page: 1297
  year: 2010
  ident: 10.1016/j.neuroimage.2012.08.060_bb0110
  article-title: Layer-specific BOLD activation in human V1
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20936
– volume: 38
  start-page: 210
  year: 2006
  ident: 10.1016/j.neuroimage.2012.08.060_bb0070
  article-title: Developing functional magnetic resonance imaging techniques for alert macaque monkeys
  publication-title: Methods
  doi: 10.1016/j.ymeth.2005.08.004
– volume: 143
  start-page: 179
  year: 2005
  ident: 10.1016/j.neuroimage.2012.08.060_bb0165
  article-title: Methods for functional magnetic resonance imaging in normal and lesioned behaving monkeys
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2004.10.003
– volume: 25
  start-page: 869
  year: 2007
  ident: 10.1016/j.neuroimage.2012.08.060_bb0160
  article-title: Functional MR imaging in the awake monkey: effects of motion on dynamic off-resonance and processing strategies
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2007.03.002
– volume: 32
  start-page: 565
  year: 2001
  ident: 10.1016/j.neuroimage.2012.08.060_bb0225
  article-title: Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys
  publication-title: Neuron
  doi: 10.1016/S0896-6273(01)00502-5
– reference: 8614805 - Science. 1996 Apr 26;272(5261):551-4
– reference: 2165630 - Science. 1990 Jul 27;249(4967):417-20
– reference: 11684004 - Neuron. 2001 Oct 25;32(2):359-74
– reference: 7470927 - Brain Res. 1981 Mar 9;208(1):35-58
– reference: 223730 - Brain Res. 1979 Jul 27;171(1):11-28
– reference: 4117368 - J Comp Neurol. 1972 Dec;146(4):421-50
– reference: 9530491 - Annu Rev Neurosci. 1998;21:47-74
– reference: 21145011 - Neuron. 2010 Dec 9;68(5):1002-13
– reference: 8068525 - NMR Biomed. 1994 Mar;7(1-2):45-53
– reference: 10448221 - Nat Neurosci. 1999 Jun;2(6):555-62
– reference: 17960143 - J Cereb Blood Flow Metab. 2008 Mar;28(3):640-52
– reference: 21851857 - Neuroimage. 2012 Jan 16;59(2):1451-60
– reference: 3367209 - J Neurosci. 1988 May;8(5):1500-30
– reference: 20082333 - Hum Brain Mapp. 2010 Sep;31(9):1297-304
– reference: 16481198 - Methods. 2006 Mar;38(3):210-20
– reference: 20456890 - Magn Reson Imaging. 2010 Oct;28(8):1183-91
– reference: 16677944 - Magn Reson Imaging. 2006 May;24(4):381-92
– reference: 3747821 - Magn Reson Med. 1986 Aug;3(4):604-18
– reference: 17451900 - Magn Reson Imaging. 2007 Jul;25(6):869-82
– reference: 7317796 - Brain Res Bull. 1981 Nov;7(5):519-79
– reference: 17101280 - Neuroimage. 2007 Jan 15;34(2):542-9
– reference: 15862224 - Neuroimage. 2005 May 15;26(1):243-50
– reference: 20460157 - Neuroimage. 2010 Oct 1;52(4):1334-46
– reference: 16276507 - Magn Reson Med. 2005 Dec;54(6):1465-72
– reference: 17715354 - J Neurosci. 2007 Aug 22;27(34):9181-91
– reference: 6142484 - Philos Trans R Soc Lond B Biol Sci. 1984 Jan 17;304(1119):199-253
– reference: 16194614 - Neuroimage. 2006 Feb 1;29(3):879-87
– reference: 16242347 - Neuroimage. 2006 Feb 15;29(4):1244-51
– reference: 18689685 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12593-8
– reference: 21076422 - Nat Neurosci. 2010 Dec;13(12):1542-8
– reference: 15004793 - Magn Reson Med. 2004 Mar;51(3):518-24
– reference: 15814151 - J Neurosci Methods. 2005 Apr 30;143(2):179-95
– reference: 18466753 - Neuron. 2008 May 8;58(3):442-50
– reference: 11741720 - J Neurosci Methods. 2002 Jan 15;113(1):41-9
– reference: 11283987 - Magn Reson Med. 2001 Apr;45(4):595-604
– reference: 17306989 - Neuroimage. 2007 Apr 1;35(2):539-52
– reference: 11108630 - Magn Reson Med. 2000 Dec;44(6):925-32
– reference: 22055855 - Magn Reson Imaging. 2012 Jan;30(1):36-47
– reference: 22080152 - Neuroimage. 2012 Feb 15;59(4):3441-9
– reference: 11449264 - Nature. 2001 Jul 12;412(6843):150-7
– reference: 15902248 - Nature. 2005 May 19;435(7040):300-7
– reference: 12202093 - Neuroimage. 2002 Aug;16(4):1062-7
– reference: 17011213 - Neuroimage. 2007 Jan 1;34(1):74-84
– reference: 17213863 - J Cereb Blood Flow Metab. 2007 Jun;27(6):1248-61
– reference: 16414284 - Neuroimage. 2006 May 1;30(4):1149-60
– reference: 11551722 - Magn Reson Imaging. 2001 Jul;19(6):821-6
– reference: 17499466 - Magn Reson Imaging. 2007 Jul;25(6):740-7
– reference: 17198686 - Brain Res. 2007 Mar 2;1135(1):186-94
– reference: 11719199 - Neuron. 2001 Nov 20;32(4):565-77
– reference: 6772266 - Brain. 1980 Jun;103(2):221-44
SSID ssj0009148
Score 2.3001165
Snippet The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 147
SubjectTerms Animals
Biological and medical sciences
BOLD spatial resolution
Brain Mapping - methods
Cortex
Cortical layers
Experiments
Eye and associated structures. Visual pathways and centers. Vision
Functional MRI
Fundamental and applied biological sciences. Psychology
Image Enhancement - methods
Macaca mulatta
Magnetic Resonance Imaging - methods
Methods
Nerve Net - physiology
Non-human primate
Optics
Oxygen Consumption - physiology
Photic Stimulation - methods
Primates
Reproducibility of Results
Sensitivity and Specificity
Studies
Veins & arteries
Vertebrates: nervous system and sense organs
Visual cortex
Visual Cortex - physiology
Wakefulness - physiology
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9QwFA66gggi3h1dlwi-Fts0bVp8EG_LIrv64sq8hTRN2NG1MzoziI_-c7_TpB1HdJnnJOR2kvMl55zvMPaUGO-8U-TV2NhECuESgKMsUcDetcqdcX32hpP35dGpfDctpvHDbRndKoc7sb-o27mlP_JnRBUGaKPK4sXiW0JZo8i6GlNoXGZXiLqMXLrUVG1IdzMZQuGKHCPI6ujJE_y7er7I2VecWnLwEoHIM_2ferq-MEssmg_ZLv4FR__2qvxDTR3eZDcivuQvg0DcYpdcd5tdPYkW9Dvs17EByE4owJKchPirD8dvOAU3hK9ZPuu4-WG-OI754nzzTxknkieokZY3P_n6HJ0mxHHMl-SLja7wXo_iy0lJhr9Fjhl3FB_ZFxOph-O0ClCUd9np4duPr4-SmIYhsaVQK-BvMhdiWl6UylRF6vNaVj6TJpeqlRYgsqFk4qKysqltmwpbeQOc0HoUVDa_x_a6eeceMO4r6VvvrfK5lMZWJnO4RFTrIBd4ztoJU8Pqaxs5yilVxrkenNE-682-ado3TVk0y3TCsrHlIvB07NCmHjZYD3GoWFkNZbJD2-dj24hVAgbZsfXBljyNQxY4I2lZiwnbHwRMx0tlqTdHYMKejMW4DsjGYzo3X6OOIMuyApC9oE4R7LEFxnE_yOxmAAJPWmA67MSWNI8ViI58u6SbnfW05HlBdIjVw4uH_ohdE31GEfrF2md7q-9r9xi4btUc9If3N5v2UAA
  priority: 102
  providerName: ProQuest
Title Layer-specific BOLD activation in awake monkey V1 revealed by ultra-high spatial resolution functional magnetic resonance imaging
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811912008683
https://dx.doi.org/10.1016/j.neuroimage.2012.08.060
https://www.ncbi.nlm.nih.gov/pubmed/22960152
https://www.proquest.com/docview/1552020765
https://www.proquest.com/docview/1220367256
https://www.proquest.com/docview/1500760050
https://pubmed.ncbi.nlm.nih.gov/PMC3508288
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISEkNPFNYVRG4jU0cZw4EU9b2VSgK9NgqG-W49gi-8gq2mraCxL_OXexk1IEqBIvjVTbimOf7372nX9HyCtkvLNGYFRjoQPOmAkAHEWBAOydi9go02RvOJqko1P-fppMt8iwvQuDYZVe9zud3mhr_8_Aj-ZgVlWDT4AMwNzAfgNd-GmGjJ-cC5Ty199XYR55xN11uCQOsLaP5nExXg1nZHUJKxeDvJgj8wz_ZqLuztQcBs66jBd_gqS_R1b-YqoO75EdjzHpnvuM-2TL1A_I7SPvRX9IfowVAO0AL1lioBDd_zh-S_GCgzuepVVN1bU6NxREFNY4_RJRJHoCU1LS4oYuL-ClAfIc0znGY8OrYM_uRZiioXTnixS-uMY7kk0xEnsYiqMAxvIROT08-DwcBT4VQ6BTJhaAwdFlCJ9lWSpUloQ2znlmI65iLkquAUgWmFCcZZoXuS5DpjOrACuUFgoyHT8m2_VVbZ4SajNuS2u1sDHnSmcqMqBIRGlANmBLq3tEtKMvtecpx3QZF7INSDuTq3mTOG8SM2mmYY9EXcuZ4-rYoE3eTrBs76LCyEowKBu0fdO1XZPZDVv31-Sp6zKDdRKmOeuR3VbApFcsc4mMeYDwRZr0yMuuGFQC-nlUba6WUIehd1kAmP1HncT5ZBPoxxMns6sOMNjWAq6DmViT5q4CUpKvl9TV14aaPE6QEjF79l8j85zcYU3SETzo2iXbi29L8wKg36LoN2sbfsVU9MmtveHJ-Bif7z6MJvDcP5gcn_wE-3phFQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgIkhPhNYQwjwWNE4jhxIoQQY5s61haENrS3zHFsURhpWVtNe-Qf4m_kLk5SimDqy54dJ47vfPfZd_4O4Dkx3lkjKasx157g3HgIjgJPIvZOZWiUqao3DIZx71C8P4qO1uBXcxeG0iobm1gZ6mKs6Yz8JVGFIbSRcfRm8sOjqlEUXW1KaDi12DfnZ7hlm77e20b5vuB8d-fgXc-rqwp4OuZyhnCSol-FNpbHUiWRb8NUJDYQKhSyEBoxUU61sXmiRZ7qwuc6sQrdXmGxIdEhvvcKrIsQtzIdWN_aGX78tKD5DYS7fBeF-M9BWucOuYyyiqFy9B3tBKWUcUcd6v_PId6YqCmKybr6Gv8CwH_ncf7hGHdvwc0a0bK3TgVvw5op78DVQR2zvws_-wphvUdXOiktiW196G8zuk7hDoPZqGTqTH0zDGcYLQr7HDCilULHVbD8nM1P8KMesSqzKWV_46dOTbNgGLlld5rJ8I9LupFZNRONiGE0C-ia78HhpYjoPnTKcWkeArOJsIW1WtpQCKUTFRg0W7IwqIm4gdZdkM3sZ7pmRafiHCdZk_72NVvILSO5ZVS3M_a7ELQ9J44ZZIU-aSPgrLn5ijOboftaoe-rtm-NjhzqWbH35pI-tUPmuCr9OOVd2GgULKvN2DRbLLouPGub0QBRVEmVZjzHZzjFsiVC5wueiVwEOMJxPHA6uxgAx000okiUxJI2tw8QAfpySzn6UhGhhxERMCaPLh76U7jWOxj0s_7ecP8xXOdVPRM6Q9uAzux0bp4gqpzlm_VSZnB82dbjN54sjTE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIU1ICPGbwhhGgsdojePEiRBCQKk21g0eGOqb5zi26DbSsraa9si_xV_HXZykFMHUlz3bThzf-e6L7_wdwAtivHNWUlZjbgLBuQ0QHIWBROydychqW1Vv2D9Idg7Fx2E8XINfzV0YSqtsbGJlqIuxoTPybaIKQ2gjk3jb1WkRn3v9N5MfAVWQokhrU07Dq8ievTjH37fp690eyvol5_0PX97vBHWFgcAkXM4QWlIkrDDW8UTqNO66KBOpC4WOhCyEQXyUU51snhqRZ6bocpM6jS6wcNiQmgifew2uyygOaY_JoVwQ_obCX8OLI_z6MKuziHxuWcVVOfqOFoOSy7gnEe3-zzXenOgpCsz5Shv_gsJ_Z3T-4SL7t-FWjW3ZW6-Md2DNlndhY7-O3t-DnwONAD-gy52UoMTefRr0GF2s8MfCbFQyfa5PLMP1RdvCvoaMCKbQhRUsv2DzU3xpQPzKbEp54PiqM9tsHUYO2p9rMvziku5mVs1EKGIZrQI66ftweCUCegDr5bi0j4C5VLjCOSNdJIQ2qQ4tGjBZWNRJ_JU2HZDN6itT86NTmY5T1STCHauF3BTJTVEFz6TbgbAdOfEcISuMyRoBq-YOLK6sQke2wthX7dgaJ3n8s-LorSV9aqfMcX92k4x3YLNRMFUbtKlabL8OPG-b0RRRfEmXdjzHPpyi2hJB9CV9Yh8LjnEeD73OLibA8Xca8SRKYkmb2w5Ehb7cUo6-VZToUUxUjOnjy6f-DDbQZqjB7sHeE7jBq8ImdJi2Ceuzs7l9ivBylm9V-5jB0VUbjt9q45AB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layer-specific+BOLD+activation+in+awake+monkey+V1+revealed+by+ultra-high+spatial+resolution+functional+magnetic+resonance+imaging&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=GANG+CHEN&rft.au=FENG+WANG&rft.au=GORE%2C+John+C&rft.au=ROE%2C+Anna+W&rft.date=2013-01-01&rft.pub=Elsevier&rft.issn=1053-8119&rft.volume=64&rft.spage=147&rft.epage=155&rft_id=info:doi/10.1016%2Fj.neuroimage.2012.08.060&rft.externalDBID=n%2Fa&rft.externalDocID=27110692
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon