Open Soil Spectral Library (OSSL): Building reproducible soil calibration models through open development and community engagement

Soil spectroscopy is a widely used method for estimating soil properties that are important to environmental and agricultural monitoring. However, a bottleneck to its more widespread adoption is the need for establishing large reference datasets for training machine learning (ML) models, which are c...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 1; p. e0296545
Main Authors Safanelli, José L., Hengl, Tomislav, Parente, Leandro L., Minarik, Robert, Bloom, Dellena E., Todd-Brown, Katherine, Gholizadeh, Asa, Mendes, Wanderson de Sousa, Sanderman, Jonathan
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 13.01.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Soil spectroscopy is a widely used method for estimating soil properties that are important to environmental and agricultural monitoring. However, a bottleneck to its more widespread adoption is the need for establishing large reference datasets for training machine learning (ML) models, which are called soil spectral libraries (SSLs). Similarly, the prediction capacity of new samples is also subject to the number and diversity of soil types and conditions represented in the SSLs. To help bridge this gap and enable hundreds of stakeholders to collect more affordable soil data by leveraging a centralized open resource, the Soil Spectroscopy for Global Good initiative has created the Open Soil Spectral Library (OSSL). In this paper, we describe the procedures for collecting and harmonizing several SSLs that are incorporated into the OSSL, followed by exploratory analysis and predictive modeling. The results of 10-fold cross-validation with refitting show that, in general, mid-infrared (MIR)-based models are significantly more accurate than visible and near-infrared (VisNIR) or near-infrared (NIR) models. From independent model evaluation, we found that Cubist comes out as the best-performing ML algorithm for the calibration and delivery of reliable outputs (prediction uncertainty and representation flag). Although many soil properties are well predicted, total sulfur, extractable sodium, and electrical conductivity performed poorly in all spectral regions, with some other extractable nutrients and physical soil properties also performing poorly in one or two spectral regions (VisNIR or NIR). Hence, the use of predictive models based solely on spectral variations has limitations. This study also presents and discusses several other open resources that were developed from the OSSL, aspects of opening data, current limitations, and future development. With this genuinely open science project, we hope that OSSL becomes a driver of the soil spectroscopy community to accelerate the pace of scientific discovery and innovation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0296545