The structural, connectomic and network covariance of the human brain
Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations betwee...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 66; pp. 489 - 499 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.02.2013
Elsevier Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2012.10.066 |
Cover
Abstract | Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N=110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing.
► Structure and connectivity modulate inter-regional brain correlations differently. ► Network-theoretic cortex properties strongly modulate region-to-region covariance. ► Findings can inform computational models of cortical information processing. |
---|---|
AbstractList | Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N = 110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing. Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N=110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing.Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N=110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing. Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N = 110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing. Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N=110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing. ► Structure and connectivity modulate inter-regional brain correlations differently. ► Network-theoretic cortex properties strongly modulate region-to-region covariance. ► Findings can inform computational models of cortical information processing. Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired fromN=110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing. |
Author | Irimia, Andrei Van Horn, John D. |
Author_xml | – sequence: 1 givenname: Andrei surname: Irimia fullname: Irimia, Andrei email: andrei.irimia@loni.ucla.edu – sequence: 2 givenname: John D. surname: Van Horn fullname: Van Horn, John D. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27110953$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23116816$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl2L1DAUhoOsuB_6F6Qgghd2zEeTpjeiLusHLHizXoc0yexktk3WJB3Zf-8pM87o3jgQaDh58ub0Pe85OgkxOIQqghcEE_FuvQhuStGP-tYtKCYUygssxBN0RnDH64639GTec1ZLQrpTdJ7zGmPckUY-Q6eUESIkEWfo6mblqlzSZMqU9PC2MjEEZ0ocval0sFVw5VdMd1Df6OR1MK6Ky6rArdU06lD1SfvwHD1d6iG7F7vvBfrx-erm8mt9_f3Lt8uP17URtC0155xYIVuBKSwqiJWYW8Fd01jZMMmp6RuNoUYb3rtGNK1g2HZWN13Le8Mu0Put7v3Uj84aFwo0re4TOJEeVNRe_XsS_Erdxo1iXIqWExB4sxNI8efkclGjz8YNgw4uTlkRQVjXcMbk_1GOcSuIxAzQV4_QdZxSACeA4hRTBiMC6uXfze-7_jMMAF7vAJ2NHpYJ3Pb5wLVkHu78nNxyJsWck1vuEYLVnA-1Vod8qDkf8wnk42Dg_qrxRRcfZ7v8cIzAp62AgzFvvEsqG-8gFdYniI2y0R8j8uGRiBl88PDPd-7hOInfbJHxLw |
CitedBy_id | crossref_primary_10_1016_j_nicl_2017_05_016 crossref_primary_10_1093_ijnp_pyv114 crossref_primary_10_1080_19490976_2022_2051999 crossref_primary_10_1093_cercor_bhx190 crossref_primary_10_1162_netn_a_00049 crossref_primary_10_1002_hbm_25090 crossref_primary_10_1089_brain_2015_0360 crossref_primary_10_1002_oby_22870 crossref_primary_10_3389_fneur_2018_00948 crossref_primary_10_3389_fnhum_2022_859538 crossref_primary_10_1152_physrev_00018_2018 crossref_primary_10_1007_s11357_020_00245_6 crossref_primary_10_1007_s00429_019_01914_9 crossref_primary_10_1007_s00429_018_1787_x crossref_primary_10_1038_s42003_024_06956_2 crossref_primary_10_1038_s41598_023_32713_2 crossref_primary_10_1093_gerona_glac209 crossref_primary_10_1177_0883073814538504 crossref_primary_10_1016_j_nicl_2021_102613 crossref_primary_10_3389_fpsyg_2020_01423 crossref_primary_10_1016_j_lfs_2020_118865 crossref_primary_10_1038_srep46401 crossref_primary_10_1002_osp4_362 crossref_primary_10_1007_s12021_020_09480_w crossref_primary_10_1002_hbm_25957 |
Cites_doi | 10.1016/j.neuroimage.2005.08.035 10.1006/nimg.1998.0396 10.1093/cercor/bhq291 10.1093/cercor/bhn003 10.1016/S0896-6273(02)00569-X 10.1371/journal.pone.0005226 10.1016/j.neurobiolaging.2006.09.013 10.1177/1073858406293182 10.1073/pnas.0701519104 10.1093/cercor/bhn059 10.1038/30918 10.1016/j.neuroimage.2009.01.055 10.1016/j.neuroimage.2011.08.017 10.1093/cercor/bhm211 10.1371/journal.pone.0013070 10.1002/hbm.21232 10.1016/j.neuroimage.2010.06.010 10.1103/PhysRevLett.94.018102 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O 10.1523/JNEUROSCI.3874-05.2006 10.1093/cercor/bhl149 10.1016/j.neuroimage.2008.04.261 10.1016/0306-4522(94)00584-R 10.1097/WCO.0b013e32833aa567 10.1111/j.1460-9568.2008.06117.x 10.1006/nimg.1998.0395 10.1016/j.neuroimage.2006.01.042 10.1016/0378-8733(78)90021-7 10.1016/j.neuroimage.2012.01.107 10.1001/archgenpsychiatry.2011.88 10.1371/journal.pbio.0060159 10.1016/j.neuroimage.2009.10.003 10.1111/j.1749-6632.2001.tb05739.x 10.1016/j.jneumeth.2010.01.014 10.1093/cercor/bhn102 10.1523/JNEUROSCI.0141-08.2008 10.1002/hbm.20887 10.1103/PhysRevLett.87.198701 10.1007/s11682-008-9034-3 10.1523/JNEUROSCI.0357-05.2005 10.1101/gr.092759.109 10.1016/j.neuroimage.2011.01.010 |
ContentType | Journal Article |
Copyright | 2012 2014 INIST-CNRS Published by Elsevier Inc. Copyright Elsevier Limited Feb 1, 2013 |
Copyright_xml | – notice: 2012 – notice: 2014 INIST-CNRS – notice: Published by Elsevier Inc. – notice: Copyright Elsevier Limited Feb 1, 2013 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7QO 7X8 5PM |
DOI | 10.1016/j.neuroimage.2012.10.066 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection (ProQuest) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts Biotechnology Research Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Biotechnology Research Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 499 |
ExternalDocumentID | PMC3586751 3396579351 23116816 27110953 10_1016_j_neuroimage_2012_10_066 S1053811912010695 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: U54 EB005149 – fundername: NIBIB NIH HHS grantid: 2U54EB005149 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT IQODW CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7QO 7X8 5PM |
ID | FETCH-LOGICAL-c627t-5551d687602602261d805d65e44d843852cb4a005d245be4647630d9da4975bc3 |
IEDL.DBID | AIKHN |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 14:39:38 EDT 2025 Fri Sep 05 08:59:38 EDT 2025 Fri Sep 05 12:57:55 EDT 2025 Sat Aug 23 12:45:16 EDT 2025 Thu Apr 03 07:09:32 EDT 2025 Wed Apr 02 07:24:31 EDT 2025 Thu Apr 24 23:07:05 EDT 2025 Tue Jul 01 02:14:49 EDT 2025 Fri Feb 23 02:36:05 EST 2024 Tue Aug 26 16:31:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | LOD Par Neuroimaging Fro Correlation MRI GM IDA Occ Ins Lim WM HIPAA DTI Connectivity FA LONI Tem Human Central nervous system Nuclear magnetic resonance imaging Encephalon |
Language | English |
License | CC BY 4.0 Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c627t-5551d687602602261d805d65e44d843852cb4a005d245be4647630d9da4975bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | http://doi.org/10.1016/j.neuroimage.2012.10.066 |
PMID | 23116816 |
PQID | 1552023012 |
PQPubID | 2031077 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3586751 proquest_miscellaneous_1613945338 proquest_miscellaneous_1500761803 proquest_journals_1552023012 pubmed_primary_23116816 pascalfrancis_primary_27110953 crossref_primary_10_1016_j_neuroimage_2012_10_066 crossref_citationtrail_10_1016_j_neuroimage_2012_10_066 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2012_10_066 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2012_10_066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-02-01 |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2013 |
Publisher | Elsevier Inc Elsevier Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Elsevier Limited |
References | Irimia, Chambers, Torgerson, Van Horn (bb0165) 2012; 60 Achard, Salvador (bb0005) 2006; 26 De Luca, Beckmann (bb0055) 2006; 29 Fischl, Salat (bb0095) 2002; 33 He, Evans (bb0135) 2010; 23 Joshi, Joshi (bb0170) 2010 Bernhardt, Chen (bb0030) 2011; 21 Guimera, Amaral (bb0120) 2005; 2005 Bassett, Bullmore (bb0015) 2006; 12 Dinov, I., Lozev, K., et al., 2010. Neuroimaging Study Designs, Computational Analyses and Data Provenance Using the LONI Pipeline. PLoS ONE Freeman (bb0100) 1978; 1 Mechelli, Friston (bb0200) 2005; 25 Evans, Lee (bb0080) 2008; 2 Bernhardt, Rozen (bb0025) 2009; 46 Greicius, Supekar (bb0115) 2009; 19 Gong, He (bb0105) 2009; 19 Hyde, Samson (bb0160) 2010; 31 Dinov, Van Horn (bb0070) 2009; 3 Gong, He (bb0110) 2012; 59 MacKenzie-Graham, Payan (bb0195) 2008 He, Chen (bb0140) 2007; 17 Eguiluz, Chialvo (bb0075) 2005; 94 Latora, Marchiori (bb0180) 2001; 87 Watts, Strogatz (bb0230) 1998; 393 Schmitt, Lenroot (bb0220) 2008; 18 Hagmann, Cammoun (bb0125) 2008; 6 Wu, Taki (bb0235) 2012; 33 Dale, Fischl (bb0050) 1999; 9 Rencher (bb0205) 2002 Fischl, Sereno (bb0090) 1999; 9 He, Wang (bb0150) 2009; 4 Basser, Pajevic (bb0010) 2000; 44 Chen, He (bb0035) 2008; 18 Lerch, Worsley (bb0185) 2006; 31 Schlaug (bb0215) 2001; 930 Cohen, Lombardo (bb0045) 2008; 27 Destrieux, Fischl (bb0060) 2010; 53 He, Chen (bb0145) 2008; 28 Rubinov, Sporns (bb0210) 2010; 52 . Lerch, Pruessner (bb0190) 2008; 29 Honey, Kotter (bb0155) 2007; 104 Hagmann, Cammoun (bb0130) 2010; 194 Krzywinski, Schein (bb0175) 2009; 19 van Haren, Schnack (bb0225) 2011; 68 Ferrer, Blanco (bb0085) 1995; 66 Bernhardt, Worsley (bb0020) 2008; 42 Chen, He (bb0040) 2011; 56 10.1016/j.neuroimage.2012.10.066_bb0065 Irimia (10.1016/j.neuroimage.2012.10.066_bb0165) 2012; 60 Basser (10.1016/j.neuroimage.2012.10.066_bb0010) 2000; 44 Greicius (10.1016/j.neuroimage.2012.10.066_bb0115) 2009; 19 Schmitt (10.1016/j.neuroimage.2012.10.066_bb0220) 2008; 18 De Luca (10.1016/j.neuroimage.2012.10.066_bb0055) 2006; 29 Destrieux (10.1016/j.neuroimage.2012.10.066_bb0060) 2010; 53 Achard (10.1016/j.neuroimage.2012.10.066_bb0005) 2006; 26 Bassett (10.1016/j.neuroimage.2012.10.066_bb0015) 2006; 12 Rubinov (10.1016/j.neuroimage.2012.10.066_bb0210) 2010; 52 Latora (10.1016/j.neuroimage.2012.10.066_bb0180) 2001; 87 Dinov (10.1016/j.neuroimage.2012.10.066_bb0070) 2009; 3 Chen (10.1016/j.neuroimage.2012.10.066_bb0035) 2008; 18 Evans (10.1016/j.neuroimage.2012.10.066_bb0080) 2008; 2 Ferrer (10.1016/j.neuroimage.2012.10.066_bb0085) 1995; 66 Dale (10.1016/j.neuroimage.2012.10.066_bb0050) 1999; 9 Freeman (10.1016/j.neuroimage.2012.10.066_bb0100) 1978; 1 Hagmann (10.1016/j.neuroimage.2012.10.066_bb0130) 2010; 194 Rencher (10.1016/j.neuroimage.2012.10.066_bb0205) 2002 van Haren (10.1016/j.neuroimage.2012.10.066_bb0225) 2011; 68 Hagmann (10.1016/j.neuroimage.2012.10.066_bb0125) 2008; 6 Chen (10.1016/j.neuroimage.2012.10.066_bb0040) 2011; 56 He (10.1016/j.neuroimage.2012.10.066_bb0140) 2007; 17 He (10.1016/j.neuroimage.2012.10.066_bb0135) 2010; 23 Hyde (10.1016/j.neuroimage.2012.10.066_bb0160) 2010; 31 Lerch (10.1016/j.neuroimage.2012.10.066_bb0190) 2008; 29 Fischl (10.1016/j.neuroimage.2012.10.066_bb0090) 1999; 9 Guimera (10.1016/j.neuroimage.2012.10.066_bb0120) 2005; 2005 He (10.1016/j.neuroimage.2012.10.066_bb0150) 2009; 4 Bernhardt (10.1016/j.neuroimage.2012.10.066_bb0030) 2011; 21 Eguiluz (10.1016/j.neuroimage.2012.10.066_bb0075) 2005; 94 Cohen (10.1016/j.neuroimage.2012.10.066_bb0045) 2008; 27 Bernhardt (10.1016/j.neuroimage.2012.10.066_bb0020) 2008; 42 Krzywinski (10.1016/j.neuroimage.2012.10.066_bb0175) 2009; 19 Schlaug (10.1016/j.neuroimage.2012.10.066_bb0215) 2001; 930 Honey (10.1016/j.neuroimage.2012.10.066_bb0155) 2007; 104 MacKenzie-Graham (10.1016/j.neuroimage.2012.10.066_bb0195) 2008 Watts (10.1016/j.neuroimage.2012.10.066_bb0230) 1998; 393 Gong (10.1016/j.neuroimage.2012.10.066_bb0110) 2012; 59 Lerch (10.1016/j.neuroimage.2012.10.066_bb0185) 2006; 31 Gong (10.1016/j.neuroimage.2012.10.066_bb0105) 2009; 19 He (10.1016/j.neuroimage.2012.10.066_bb0145) 2008; 28 Wu (10.1016/j.neuroimage.2012.10.066_bb0235) 2012; 33 Joshi (10.1016/j.neuroimage.2012.10.066_bb0170) 2010 Mechelli (10.1016/j.neuroimage.2012.10.066_bb0200) 2005; 25 Bernhardt (10.1016/j.neuroimage.2012.10.066_bb0025) 2009; 46 Fischl (10.1016/j.neuroimage.2012.10.066_bb0095) 2002; 33 16399673 - J Neurosci. 2006 Jan 4;26(1):63-72 19649168 - Front Neuroinform. 2009 Jul 20;3:22 18267952 - Cereb Cortex. 2008 Oct;18(10):2374-81 21238595 - Neuroimage. 2011 May 1;56(1):235-45 18364027 - Eur J Neurosci. 2008 Mar;27(6):1534-46 19381298 - PLoS One. 2009;4(4):e5226 22305988 - Neuroimage. 2012 Apr 2;60(2):1340-51 19385011 - Neuroimage. 2009 Jun;46(2):373-81 18448652 - J Neurosci. 2008 Apr 30;28(18):4756-66 17548818 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10240-5 20581686 - Curr Opin Neurol. 2010 Aug;23(4):341-50 18159217 - J Stat Mech. 2005 Feb 1;2005(P02001):nihpa35573 21893656 - Arch Gen Psychiatry. 2011 Sep;68(9):871-80 21884805 - Neuroimage. 2012 Jan 16;59(2):1239-48 19819337 - Neuroimage. 2010 Sep;52(3):1059-69 15698136 - Phys Rev Lett. 2005 Jan 14;94(1):018102 20547229 - Neuroimage. 2010 Oct 15;53(1):1-15 9931268 - Neuroimage. 1999 Feb;9(2):179-94 11832223 - Neuron. 2002 Jan 31;33(3):341-55 19541911 - Genome Res. 2009 Sep;19(9):1639-45 9931269 - Neuroimage. 1999 Feb;9(2):195-207 18403396 - Cereb Cortex. 2009 Jan;19(1):72-8 11025519 - Magn Reson Med. 2000 Oct;44(4):625-32 9623998 - Nature. 1998 Jun 4;393(6684):440-2 21391279 - Hum Brain Mapp. 2012 Mar;33(3):552-68 11690461 - Phys Rev Lett. 2001 Nov 5;87(19):198701 7637868 - Neuroscience. 1995 May;66(1):189-99 18554926 - Neuroimage. 2008 Aug 15;42(2):515-24 16624590 - Neuroimage. 2006 Jul 1;31(3):993-1003 16148238 - J Neurosci. 2005 Sep 7;25(36):8303-10 18567609 - Cereb Cortex. 2009 Mar;19(3):524-36 18234689 - Cereb Cortex. 2008 Aug;18(8):1737-47 16260155 - Neuroimage. 2006 Feb 15;29(4):1359-67 17204824 - Cereb Cortex. 2007 Oct;17(10):2407-19 20096730 - J Neurosci Methods. 2010 Dec 15;194(1):34-45 17097767 - Neurobiol Aging. 2008 Jan;29(1):23-30 21330467 - Cereb Cortex. 2011 Sep;21(9):2147-57 20927408 - PLoS One. 2010;5(9). pii: e13070. doi: 10.1371/journal.pone.0013070 17079517 - Neuroscientist. 2006 Dec;12(6):512-23 19790171 - Hum Brain Mapp. 2010 Apr;31(4):556-66 11458836 - Ann N Y Acad Sci. 2001 Jun;930:281-99 |
References_xml | – volume: 1 start-page: 215 year: 1978 end-page: 239 ident: bb0100 article-title: Centrality in social networks: conceptual clarification publication-title: Social Networks – volume: 52 start-page: 1059 year: 2010 end-page: 1069 ident: bb0210 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: NeuroImage – volume: 18 start-page: 1737 year: 2008 end-page: 1747 ident: bb0220 article-title: Identification of genetically mediated cortical networks: a multivariate study of pediatric twins and siblings publication-title: Cereb. Cortex – volume: 42 start-page: 515 year: 2008 end-page: 524 ident: bb0020 article-title: Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: insights on the relation between mesiotemporal connectivity and cortical atrophy publication-title: NeuroImage – volume: 2 start-page: 289 year: 2008 end-page: 299 ident: bb0080 article-title: Human cortical anatomical networks assessed by structural MRI publication-title: Brain Imaging Behav. – volume: 4 start-page: e5226 year: 2009 ident: bb0150 article-title: Uncovering intrinsic modular organization of spontaneous brain activity in humans publication-title: PLoS One – volume: 12 start-page: 512 year: 2006 end-page: 523 ident: bb0015 article-title: Small-world brain networks publication-title: Neuroscientist – volume: 18 start-page: 2374 year: 2008 end-page: 2381 ident: bb0035 article-title: Revealing modular architecture of human brain structural networks by using cortical thickness from MRI publication-title: Cereb. Cortex – volume: 68 start-page: 871 year: 2011 end-page: 880 ident: bb0225 article-title: Changes in cortical thickness during the course of illness in schizophrenia publication-title: Arch. Gen. Psychiatry – year: 2008 ident: bb0195 article-title: Neuroimaging Data Provenance Using the LONI Pipeline Workflow Environment publication-title: Provenance and Annotation of Data and Processes, LNCS – volume: 19 start-page: 1639 year: 2009 end-page: 1645 ident: bb0175 article-title: Circos: an information aesthetic for comparative genomics publication-title: Genome Res. – volume: 44 start-page: 625 year: 2000 end-page: 632 ident: bb0010 article-title: In vivo fiber tractography using DT-MRI data publication-title: Magn. Reson. Med. – volume: 9 start-page: 179 year: 1999 end-page: 194 ident: bb0050 article-title: Cortical surface-based analysis—I. Segmentation and surface reconstruction publication-title: NeuroImage – volume: 33 start-page: 341 year: 2002 end-page: 355 ident: bb0095 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron – volume: 27 start-page: 1534 year: 2008 end-page: 1546 ident: bb0045 article-title: Covariance-based subdivision of the human striatum using T1-weighted MRI publication-title: Eur. J. Neurosci. – volume: 94 start-page: 018102 year: 2005 ident: bb0075 article-title: Scale-free brain functional networks publication-title: Phys. Rev. Lett. – volume: 25 start-page: 8303 year: 2005 end-page: 8310 ident: bb0200 article-title: Structural covariance in the human cortex publication-title: J. Neurosci. – volume: 21 start-page: 2147 year: 2011 end-page: 2157 ident: bb0030 article-title: Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy publication-title: Cereb. Cortex – volume: 29 start-page: 1359 year: 2006 end-page: 1367 ident: bb0055 article-title: fMRI resting state networks define distinct modes of long-distance interactions in the human brain publication-title: NeuroImage – volume: 59 start-page: 1239 year: 2012 end-page: 1248 ident: bb0110 article-title: Convergence and divergence of thickness correlations with diffusion connections across the human cerebral cortex publication-title: NeuroImage – volume: 87 start-page: 198701 year: 2001 ident: bb0180 article-title: Efficient behavior of small-world networks publication-title: Phys. Rev. Lett. – volume: 53 start-page: 1 year: 2010 end-page: 15 ident: bb0060 article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature publication-title: NeuroImage – volume: 19 start-page: 72 year: 2009 end-page: 78 ident: bb0115 article-title: Resting-state functional connectivity reflects structural connectivity in the default mode network publication-title: Cereb. Cortex – volume: 6 start-page: 1479 year: 2008 end-page: 1493 ident: bb0125 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol. – volume: 26 start-page: 63 year: 2006 end-page: 72 ident: bb0005 article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs publication-title: J. Neurosci. – year: 2010 ident: bb0170 article-title: Anatomical structural network analysis of human brain using partial correlations of gray matter volumes publication-title: Proceedings of the Seventh IEEE International Symposium on Biomedical Imaging: From Nano To Macro – volume: 46 start-page: 373 year: 2009 end-page: 381 ident: bb0025 article-title: Thalamo-cortical network pathology in idiopathic generalized epilepsy: insights from MRI-based morphometric correlation analysis publication-title: NeuroImage – volume: 3 year: 2009 ident: bb0070 publication-title: Efficient, distributed and interactive neuroimaging data analysis using the LONI pipeline – volume: 60 start-page: 1340 year: 2012 end-page: 1351 ident: bb0165 article-title: Circular representation of human cortical networks for subject and population-level connectomic visualization publication-title: NeuroImage – year: 2002 ident: bb0205 article-title: Methods of Multivariate Analysis – volume: 194 start-page: 34 year: 2010 end-page: 45 ident: bb0130 article-title: MR connectomics: principles and challenges publication-title: J. Neurosci. Methods – volume: 31 start-page: 556 year: 2010 end-page: 566 ident: bb0160 article-title: Neuroanatomical differences in brain areas implicated in perceptual and other core features of autism revealed by cortical thickness analysis and voxel-based morphometry publication-title: Hum. Brain Mapp. – volume: 104 start-page: 10240 year: 2007 end-page: 10245 ident: bb0155 article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 393 start-page: 440 year: 1998 end-page: 442 ident: bb0230 article-title: Collective dynamics of 'small-world' networks publication-title: Nature – reference: . – volume: 19 start-page: 524 year: 2009 end-page: 536 ident: bb0105 article-title: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography publication-title: Cereb. Cortex – volume: 66 start-page: 189 year: 1995 end-page: 199 ident: bb0085 article-title: Transforming growth factor-alpha immunoreactivity in the developing and adult brain publication-title: Neuroscience – volume: 33 start-page: 552 year: 2012 end-page: 568 ident: bb0235 article-title: Age-related changes in topological organization of structural brain networks in healthy individuals publication-title: Hum. Brain Mapp. – volume: 28 start-page: 4756 year: 2008 end-page: 4766 ident: bb0145 article-title: Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease publication-title: J. Neurosci. – volume: 930 start-page: 281 year: 2001 end-page: 299 ident: bb0215 article-title: The brain of musicians. A model for functional and structural adaptation publication-title: Ann. N. Y. Acad. Sci. – volume: 23 start-page: 341 year: 2010 end-page: 350 ident: bb0135 article-title: Graph theoretical modeling of brain connectivity publication-title: Curr. Opin. Neurol. – volume: 17 start-page: 2407 year: 2007 end-page: 2419 ident: bb0140 article-title: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI publication-title: Cereb. Cortex – reference: Dinov, I., Lozev, K., et al., 2010. Neuroimaging Study Designs, Computational Analyses and Data Provenance Using the LONI Pipeline. PLoS ONE – volume: 56 start-page: 235 year: 2011 end-page: 245 ident: bb0040 article-title: Age-related alterations in the modular organization of structural cortical network by using cortical thickness from MRI publication-title: NeuroImage – volume: 9 start-page: 195 year: 1999 end-page: 207 ident: bb0090 article-title: Cortical surface-based analysis - II: Inflation, flattening, and a surface-based coordinate system publication-title: NeuroImage – volume: 31 start-page: 993 year: 2006 end-page: 1003 ident: bb0185 article-title: Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI publication-title: NeuroImage – volume: 29 start-page: 23 year: 2008 end-page: 30 ident: bb0190 article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls publication-title: Neurobiol. Aging – volume: 2005 start-page: nihpa35573 year: 2005 ident: bb0120 article-title: Cartography of complex networks: modules and universal roles publication-title: J. Stat. Mech. – volume: 29 start-page: 1359 issue: 4 year: 2006 ident: 10.1016/j.neuroimage.2012.10.066_bb0055 article-title: fMRI resting state networks define distinct modes of long-distance interactions in the human brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.08.035 – volume: 9 start-page: 195 issue: 2 year: 1999 ident: 10.1016/j.neuroimage.2012.10.066_bb0090 article-title: Cortical surface-based analysis - II: Inflation, flattening, and a surface-based coordinate system publication-title: NeuroImage doi: 10.1006/nimg.1998.0396 – volume: 21 start-page: 2147 issue: 9 year: 2011 ident: 10.1016/j.neuroimage.2012.10.066_bb0030 article-title: Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy publication-title: Cereb. Cortex doi: 10.1093/cercor/bhq291 – volume: 18 start-page: 2374 issue: 10 year: 2008 ident: 10.1016/j.neuroimage.2012.10.066_bb0035 article-title: Revealing modular architecture of human brain structural networks by using cortical thickness from MRI publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn003 – volume: 33 start-page: 341 issue: 3 year: 2002 ident: 10.1016/j.neuroimage.2012.10.066_bb0095 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – volume: 4 start-page: e5226 issue: 4 year: 2009 ident: 10.1016/j.neuroimage.2012.10.066_bb0150 article-title: Uncovering intrinsic modular organization of spontaneous brain activity in humans publication-title: PLoS One doi: 10.1371/journal.pone.0005226 – volume: 29 start-page: 23 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2012.10.066_bb0190 article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2006.09.013 – volume: 12 start-page: 512 issue: 6 year: 2006 ident: 10.1016/j.neuroimage.2012.10.066_bb0015 article-title: Small-world brain networks publication-title: Neuroscientist doi: 10.1177/1073858406293182 – volume: 104 start-page: 10240 issue: 24 year: 2007 ident: 10.1016/j.neuroimage.2012.10.066_bb0155 article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0701519104 – year: 2008 ident: 10.1016/j.neuroimage.2012.10.066_bb0195 article-title: Neuroimaging Data Provenance Using the LONI Pipeline Workflow Environment – volume: 19 start-page: 72 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2012.10.066_bb0115 article-title: Resting-state functional connectivity reflects structural connectivity in the default mode network publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn059 – volume: 393 start-page: 440 issue: 6684 year: 1998 ident: 10.1016/j.neuroimage.2012.10.066_bb0230 article-title: Collective dynamics of 'small-world' networks publication-title: Nature doi: 10.1038/30918 – volume: 46 start-page: 373 issue: 2 year: 2009 ident: 10.1016/j.neuroimage.2012.10.066_bb0025 article-title: Thalamo-cortical network pathology in idiopathic generalized epilepsy: insights from MRI-based morphometric correlation analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.01.055 – volume: 59 start-page: 1239 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2012.10.066_bb0110 article-title: Convergence and divergence of thickness correlations with diffusion connections across the human cerebral cortex publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.08.017 – volume: 18 start-page: 1737 issue: 8 year: 2008 ident: 10.1016/j.neuroimage.2012.10.066_bb0220 article-title: Identification of genetically mediated cortical networks: a multivariate study of pediatric twins and siblings publication-title: Cereb. Cortex doi: 10.1093/cercor/bhm211 – ident: 10.1016/j.neuroimage.2012.10.066_bb0065 doi: 10.1371/journal.pone.0013070 – volume: 33 start-page: 552 issue: 3 year: 2012 ident: 10.1016/j.neuroimage.2012.10.066_bb0235 article-title: Age-related changes in topological organization of structural brain networks in healthy individuals publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21232 – volume: 53 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2012.10.066_bb0060 article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.06.010 – volume: 94 start-page: 018102 issue: 1 year: 2005 ident: 10.1016/j.neuroimage.2012.10.066_bb0075 article-title: Scale-free brain functional networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.018102 – volume: 44 start-page: 625 issue: 4 year: 2000 ident: 10.1016/j.neuroimage.2012.10.066_bb0010 article-title: In vivo fiber tractography using DT-MRI data publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O – volume: 26 start-page: 63 issue: 1 year: 2006 ident: 10.1016/j.neuroimage.2012.10.066_bb0005 article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3874-05.2006 – volume: 17 start-page: 2407 issue: 10 year: 2007 ident: 10.1016/j.neuroimage.2012.10.066_bb0140 article-title: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI publication-title: Cereb. Cortex doi: 10.1093/cercor/bhl149 – volume: 42 start-page: 515 issue: 2 year: 2008 ident: 10.1016/j.neuroimage.2012.10.066_bb0020 article-title: Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: insights on the relation between mesiotemporal connectivity and cortical atrophy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.04.261 – year: 2002 ident: 10.1016/j.neuroimage.2012.10.066_bb0205 – volume: 66 start-page: 189 issue: 1 year: 1995 ident: 10.1016/j.neuroimage.2012.10.066_bb0085 article-title: Transforming growth factor-alpha immunoreactivity in the developing and adult brain publication-title: Neuroscience doi: 10.1016/0306-4522(94)00584-R – volume: 23 start-page: 341 issue: 4 year: 2010 ident: 10.1016/j.neuroimage.2012.10.066_bb0135 article-title: Graph theoretical modeling of brain connectivity publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0b013e32833aa567 – volume: 27 start-page: 1534 issue: 6 year: 2008 ident: 10.1016/j.neuroimage.2012.10.066_bb0045 article-title: Covariance-based subdivision of the human striatum using T1-weighted MRI publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2008.06117.x – volume: 9 start-page: 179 issue: 2 year: 1999 ident: 10.1016/j.neuroimage.2012.10.066_bb0050 article-title: Cortical surface-based analysis—I. Segmentation and surface reconstruction publication-title: NeuroImage doi: 10.1006/nimg.1998.0395 – volume: 31 start-page: 993 issue: 3 year: 2006 ident: 10.1016/j.neuroimage.2012.10.066_bb0185 article-title: Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.042 – volume: 1 start-page: 215 year: 1978 ident: 10.1016/j.neuroimage.2012.10.066_bb0100 article-title: Centrality in social networks: conceptual clarification publication-title: Social Networks doi: 10.1016/0378-8733(78)90021-7 – volume: 2005 start-page: nihpa35573 issue: P02001 year: 2005 ident: 10.1016/j.neuroimage.2012.10.066_bb0120 article-title: Cartography of complex networks: modules and universal roles publication-title: J. Stat. Mech. – volume: 60 start-page: 1340 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2012.10.066_bb0165 article-title: Circular representation of human cortical networks for subject and population-level connectomic visualization publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.107 – volume: 68 start-page: 871 issue: 9 year: 2011 ident: 10.1016/j.neuroimage.2012.10.066_bb0225 article-title: Changes in cortical thickness during the course of illness in schizophrenia publication-title: Arch. Gen. Psychiatry doi: 10.1001/archgenpsychiatry.2011.88 – volume: 6 start-page: 1479 issue: 7 year: 2008 ident: 10.1016/j.neuroimage.2012.10.066_bb0125 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060159 – volume: 52 start-page: 1059 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2012.10.066_bb0210 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 930 start-page: 281 year: 2001 ident: 10.1016/j.neuroimage.2012.10.066_bb0215 article-title: The brain of musicians. A model for functional and structural adaptation publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2001.tb05739.x – volume: 194 start-page: 34 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2012.10.066_bb0130 article-title: MR connectomics: principles and challenges publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.01.014 – volume: 19 start-page: 524 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2012.10.066_bb0105 article-title: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn102 – volume: 28 start-page: 4756 issue: 18 year: 2008 ident: 10.1016/j.neuroimage.2012.10.066_bb0145 article-title: Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0141-08.2008 – volume: 31 start-page: 556 issue: 4 year: 2010 ident: 10.1016/j.neuroimage.2012.10.066_bb0160 article-title: Neuroanatomical differences in brain areas implicated in perceptual and other core features of autism revealed by cortical thickness analysis and voxel-based morphometry publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20887 – volume: 87 start-page: 198701 issue: 19 year: 2001 ident: 10.1016/j.neuroimage.2012.10.066_bb0180 article-title: Efficient behavior of small-world networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.198701 – volume: 2 start-page: 289 year: 2008 ident: 10.1016/j.neuroimage.2012.10.066_bb0080 article-title: Human cortical anatomical networks assessed by structural MRI publication-title: Brain Imaging Behav. doi: 10.1007/s11682-008-9034-3 – year: 2010 ident: 10.1016/j.neuroimage.2012.10.066_bb0170 article-title: Anatomical structural network analysis of human brain using partial correlations of gray matter volumes – volume: 25 start-page: 8303 issue: 36 year: 2005 ident: 10.1016/j.neuroimage.2012.10.066_bb0200 article-title: Structural covariance in the human cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0357-05.2005 – volume: 19 start-page: 1639 issue: 9 year: 2009 ident: 10.1016/j.neuroimage.2012.10.066_bb0175 article-title: Circos: an information aesthetic for comparative genomics publication-title: Genome Res. doi: 10.1101/gr.092759.109 – volume: 56 start-page: 235 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2012.10.066_bb0040 article-title: Age-related alterations in the modular organization of structural cortical network by using cortical thickness from MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.010 – volume: 3 year: 2009 ident: 10.1016/j.neuroimage.2012.10.066_bb0070 – reference: 19385011 - Neuroimage. 2009 Jun;46(2):373-81 – reference: 21391279 - Hum Brain Mapp. 2012 Mar;33(3):552-68 – reference: 20927408 - PLoS One. 2010;5(9). pii: e13070. doi: 10.1371/journal.pone.0013070 – reference: 19819337 - Neuroimage. 2010 Sep;52(3):1059-69 – reference: 11458836 - Ann N Y Acad Sci. 2001 Jun;930:281-99 – reference: 18364027 - Eur J Neurosci. 2008 Mar;27(6):1534-46 – reference: 9623998 - Nature. 1998 Jun 4;393(6684):440-2 – reference: 21330467 - Cereb Cortex. 2011 Sep;21(9):2147-57 – reference: 18159217 - J Stat Mech. 2005 Feb 1;2005(P02001):nihpa35573 – reference: 22305988 - Neuroimage. 2012 Apr 2;60(2):1340-51 – reference: 21884805 - Neuroimage. 2012 Jan 16;59(2):1239-48 – reference: 17548818 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10240-5 – reference: 16399673 - J Neurosci. 2006 Jan 4;26(1):63-72 – reference: 11832223 - Neuron. 2002 Jan 31;33(3):341-55 – reference: 19790171 - Hum Brain Mapp. 2010 Apr;31(4):556-66 – reference: 17079517 - Neuroscientist. 2006 Dec;12(6):512-23 – reference: 7637868 - Neuroscience. 1995 May;66(1):189-99 – reference: 19541911 - Genome Res. 2009 Sep;19(9):1639-45 – reference: 18554926 - Neuroimage. 2008 Aug 15;42(2):515-24 – reference: 11690461 - Phys Rev Lett. 2001 Nov 5;87(19):198701 – reference: 16624590 - Neuroimage. 2006 Jul 1;31(3):993-1003 – reference: 17204824 - Cereb Cortex. 2007 Oct;17(10):2407-19 – reference: 18403396 - Cereb Cortex. 2009 Jan;19(1):72-8 – reference: 11025519 - Magn Reson Med. 2000 Oct;44(4):625-32 – reference: 15698136 - Phys Rev Lett. 2005 Jan 14;94(1):018102 – reference: 21893656 - Arch Gen Psychiatry. 2011 Sep;68(9):871-80 – reference: 16260155 - Neuroimage. 2006 Feb 15;29(4):1359-67 – reference: 21238595 - Neuroimage. 2011 May 1;56(1):235-45 – reference: 17097767 - Neurobiol Aging. 2008 Jan;29(1):23-30 – reference: 19649168 - Front Neuroinform. 2009 Jul 20;3:22 – reference: 19381298 - PLoS One. 2009;4(4):e5226 – reference: 9931268 - Neuroimage. 1999 Feb;9(2):179-94 – reference: 18448652 - J Neurosci. 2008 Apr 30;28(18):4756-66 – reference: 9931269 - Neuroimage. 1999 Feb;9(2):195-207 – reference: 20547229 - Neuroimage. 2010 Oct 15;53(1):1-15 – reference: 18267952 - Cereb Cortex. 2008 Oct;18(10):2374-81 – reference: 16148238 - J Neurosci. 2005 Sep 7;25(36):8303-10 – reference: 18234689 - Cereb Cortex. 2008 Aug;18(8):1737-47 – reference: 20096730 - J Neurosci Methods. 2010 Dec 15;194(1):34-45 – reference: 18567609 - Cereb Cortex. 2009 Mar;19(3):524-36 – reference: 20581686 - Curr Opin Neurol. 2010 Aug;23(4):341-50 |
SSID | ssj0009148 |
Score | 2.26492 |
Snippet | Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex,... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 489 |
SubjectTerms | Adult Age Automation Biological and medical sciences Brain - anatomy & histology Brain - physiology Brain research Computational neuroscience Connectivity Correlation Diffusion Tensor Imaging DTI Female Fundamental and applied biological sciences. Psychology Health Insurance Portability & Accountability Act 1996-US Human subjects Humans Hypotheses Image Processing, Computer-Assisted Magnetic Resonance Imaging Male Medical imaging Models, Neurological MRI Nerve Net - anatomy & histology Nerve Net - physiology Neuroimaging NMR Nuclear magnetic resonance Software Studies Vertebrates: nervous system and sense organs |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3faxQxEA5aQYQi_u5qLRF8dPXyO4sPItJSBH2ycG9LNslipe5duWv__s4k2T1PSrnXTQbC7GTyJfnyDSHvY1DOBD2re3ziI6NnddfbprZaib7Bc36fWL4_9emZ_D5X83Lgtiq0yjEnpkQdFh7PyD-hVBjiZca_LC9rrBqFt6ulhMZ98iBJl0E8m7nZiO4ymZ_CKVFb6FCYPJnflfQiz__CrEWCF_-IHK-klXjr8rS_dCtwWp-rXdwGR_9nVf6zTJ08IY8LvqRfc0A8Jffi8Iw8_FFu0J-TY4gLmkVjUXDjA_XIdPFrfJxM3RDokHnh8P0attEYE3TRU4CJNJXzox3WlHhBzk6Of307rUsphdprbta1AmAUNGQ-lBADxMWCnamgVZQyWCms4r6TDmZk4FJ1UWoJeWcWmuAk_LDOi5dkb1gM8YBQ7nxQkbGuM1I6YZ3RgDH7phd9tJGHipjRg60vOuNY7uKiHQllf9qN71v0PbaA7yvCJstl1trYwaYZf1I7viWF7NfCgrCD7efJtuCNjCN2tD7aiolpyNygiqsSFTkcg6QtiWHVbsK4Iu-mZpjSeE_jhri4wj54P8rsTNzRB2BYIwGr24q8ynG3GYBgTFsGIzRbETl1QEnx7Zbh_HeSFhfKwg6Svb576G_II56qgiCr55DsQdDGt4DN1t1RmoA3zYQ5Hw priority: 102 providerName: ProQuest |
Title | The structural, connectomic and network covariance of the human brain |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811912010695 https://dx.doi.org/10.1016/j.neuroimage.2012.10.066 https://www.ncbi.nlm.nih.gov/pubmed/23116816 https://www.proquest.com/docview/1552023012 https://www.proquest.com/docview/1500761803 https://www.proquest.com/docview/1613945338 https://pubmed.ncbi.nlm.nih.gov/PMC3586751 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEB_ueiCCiN9Gz7KCj-ba_cwGn87So36V4_SgbyHJbriKpoWrPvq3O5NsUiuHFHxpIbsD28nM7Gz3N78BeOWdzhNnxnFFJT7KlzwuKpvG1mhZpfQ_f9mgfOdmdqneL_TiACZdLQzBKkPsb2N6E63Dk1HQ5mi9XI4-Y2aA2w2eN-hC16T6EI6ETI0ewNHpuw-z-ZZ7l6u2Ik7LmAQCoKeFeTW0kcvv6LyE8xInBPVqKBNv3KXurPNr1F3VNr24KSv9G1z5x251dg_uhjSTnba_5D4c-PoB3PoULtIfwhTNg7XcscS78ZqVBHgpN1SjzPLasbqFh-Pzn3iaJtNgq4phtsiarn6soNYSj-DybPplMotDR4W4NCLZxBrzI2cwABKTGCZe3NmxdkZ7pZxV0mpRFipHx3RC6cIrozD8jF3qcoXvrSjlYxjUq9o_BSby0mnPeVEkSuXS5onBVLNKK1l564WLIOk0mJWBbpy6XnzLOlzZ12yr-4x0TyOo-wh4L7luKTf2kEm7l5R1JaUYBDPcF_aQfdPL7pjentLDHZvolywSInPVMoLjzkiyEB-uMyK-o9MfFxG87IfRs-m6Jq_96gfNoWtSbsfyH3MwG0sVpuw2giet3W0XIDk3luMKkx2L7CcQs_juSL28ahjGpbZ4kOTP_kszz-G2aHqHEPbnGAZo0_4FZnCbYgiHJ784fiaLZIjeOrn4eD4MXovfb6fz84vfOH5LEA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwED6NTgIkhHgnMIaR4BuB-i1xhBDipVPHtgqhTdq3kNiOGIK0qAXEn-I3chcnKUXT1C_7Wvsqyz6fH8fPPQfw2DtdpC4ZxhWl-ChveVxWJotNomWV0Xd-27B8J8n4SL0_1scb8KfLhSFaZRcTm0Dtppa-kT8nqTDCy1y8mn2PqWoUva52JTSCW-z537_wyjZ_ufsO1_eJEDujw7fjuK0qENtEpItYI0ZwCQYBUtNC8MGdGWqXaK-UM0oaLWypCnROJ5QuvUoUbsGhy1yhcOyllfi_F2BTUUbrADbfjCYfPi5lfrkKyXdaxobzrOUOBUZZo1B58g3jBFHKxDNilTXqjKceiFdmxRyXqQr1NU4DwP_zOP85GHeuwdUW0bLXwQWvw4avb8DFg_bN_iaM0BNZkKkliY-nzBK3xi4oHZoVtWN1YKLj7z_x4k5eyKYVQ2DKmgKCrKQqFrfg6Fym-TYM6mnt7wIThXXac16WqVKFNEWaIKqtskpW3njhIki7Gcxtq2xOBTa-5h2F7Uu-nPuc5p5acO4j4L3lLKh7rGGTdYuUd9mrGG9zPILWsH3R27YIJyCXNa23V3yiH7JISTdWywi2OifJ21A0z5cbJ4JHfTMGEXoZKmo__UF96EWWm6E8ow8Cv0zh7cBEcCf43XIAkvPEcBxhuuKRfQcSMV9tqU8-N2LmUhu8s_J7Zw_9IVwaHx7s5_u7k737cFk0NUmIU7QFA3Rg_wCR4aLcbrcjg0_nHQH-AgUpdDg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIlVICPFNoBQjwY3Q9VfsCCGEaFcthYoDlfYWEtsRRZBdtAuIv8avYyZOsiyqqr30GtuRY8-Mn-PnNwBPgtel8dkoremKjwqOp1Vt89RmWtY5_ed3Lcv3ODs4UW8nerIBf_q7MESr7GNiG6j91NE_8l2SCiO8zMVu3dEiPuyNX82-p5RBik5a-3Qa0USOwu9fuH2bvzzcw7l-KsR4_-Obg7TLMJC6TJhFqhEv-AwDAilrIRDh3o60z3RQylslrRauUiUaqhdKV0FlCt1x5HNfKvyOykl87yW4bCSiKvQlMzFLwV-u4jU8LVPLed6xiCK3rNWqPP2GEYPIZeI58ctancYzl8ars3KOE1bHTBtnQeH_GZ3_LJHj63Ctw7bsdTTGG7ARmpuw9b47vb8F-2iTLArWktjHM-aIZeMWdDGalY1nTeSk4_OfuIUne2TTmiFEZW0qQVZRPovbcHIhg3wHNptpE-4BE6XzOnBeVUapUtrSZIhv67yWdbBB-ARMP4KF6zTOKdXG16Ins30plmNf0NhTCY59AnxoOYs6H2u0yftJKvp7rBh5C1yM1mj7YmjbYZ2IYdZsvbNiE0OXhSEFWS0T2O6NpOiC0rxYulACj4diDCd0RlQ2YfqD6tDZLLcjeU4dhIC5wn2CTeButLtlByTnmeXYQ7NikUMFkjNfLWlOP7ey5lJb3L3y--d3_RFsod8X7w6Pjx7AFdEmJyFy0TZsov2GhwgRF9VO64sMPl208_8FFk12_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+structural%2C+connectomic+and+network+covariance+of+the+human+brain&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Irimia%2C+Andrei&rft.au=Van+Horn%2C+John+D.&rft.date=2013-02-01&rft.issn=1053-8119&rft.volume=66&rft.spage=489&rft.epage=499&rft_id=info:doi/10.1016%2Fj.neuroimage.2012.10.066&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2012_10_066 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |