The structural, connectomic and network covariance of the human brain

Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations betwee...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 66; pp. 489 - 499
Main Authors Irimia, Andrei, Van Horn, John D.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.02.2013
Elsevier
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2012.10.066

Cover

Abstract Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N=110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing. ► Structure and connectivity modulate inter-regional brain correlations differently. ► Network-theoretic cortex properties strongly modulate region-to-region covariance. ► Findings can inform computational models of cortical information processing.
AbstractList Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N = 110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing.
Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N=110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing.Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N=110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing.
Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N = 110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing.
Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N=110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing. ► Structure and connectivity modulate inter-regional brain correlations differently. ► Network-theoretic cortex properties strongly modulate region-to-region covariance. ► Findings can inform computational models of cortical information processing.
Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired fromN=110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing.
Author Irimia, Andrei
Van Horn, John D.
Author_xml – sequence: 1
  givenname: Andrei
  surname: Irimia
  fullname: Irimia, Andrei
  email: andrei.irimia@loni.ucla.edu
– sequence: 2
  givenname: John D.
  surname: Van Horn
  fullname: Van Horn, John D.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27110953$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23116816$$D View this record in MEDLINE/PubMed
BookMark eNqNkl2L1DAUhoOsuB_6F6Qgghd2zEeTpjeiLusHLHizXoc0yexktk3WJB3Zf-8pM87o3jgQaDh58ub0Pe85OgkxOIQqghcEE_FuvQhuStGP-tYtKCYUygssxBN0RnDH64639GTec1ZLQrpTdJ7zGmPckUY-Q6eUESIkEWfo6mblqlzSZMqU9PC2MjEEZ0ocval0sFVw5VdMd1Df6OR1MK6Ky6rArdU06lD1SfvwHD1d6iG7F7vvBfrx-erm8mt9_f3Lt8uP17URtC0155xYIVuBKSwqiJWYW8Fd01jZMMmp6RuNoUYb3rtGNK1g2HZWN13Le8Mu0Put7v3Uj84aFwo0re4TOJEeVNRe_XsS_Erdxo1iXIqWExB4sxNI8efkclGjz8YNgw4uTlkRQVjXcMbk_1GOcSuIxAzQV4_QdZxSACeA4hRTBiMC6uXfze-7_jMMAF7vAJ2NHpYJ3Pb5wLVkHu78nNxyJsWck1vuEYLVnA-1Vod8qDkf8wnk42Dg_qrxRRcfZ7v8cIzAp62AgzFvvEsqG-8gFdYniI2y0R8j8uGRiBl88PDPd-7hOInfbJHxLw
CitedBy_id crossref_primary_10_1016_j_nicl_2017_05_016
crossref_primary_10_1093_ijnp_pyv114
crossref_primary_10_1080_19490976_2022_2051999
crossref_primary_10_1093_cercor_bhx190
crossref_primary_10_1162_netn_a_00049
crossref_primary_10_1002_hbm_25090
crossref_primary_10_1089_brain_2015_0360
crossref_primary_10_1002_oby_22870
crossref_primary_10_3389_fneur_2018_00948
crossref_primary_10_3389_fnhum_2022_859538
crossref_primary_10_1152_physrev_00018_2018
crossref_primary_10_1007_s11357_020_00245_6
crossref_primary_10_1007_s00429_019_01914_9
crossref_primary_10_1007_s00429_018_1787_x
crossref_primary_10_1038_s42003_024_06956_2
crossref_primary_10_1038_s41598_023_32713_2
crossref_primary_10_1093_gerona_glac209
crossref_primary_10_1177_0883073814538504
crossref_primary_10_1016_j_nicl_2021_102613
crossref_primary_10_3389_fpsyg_2020_01423
crossref_primary_10_1016_j_lfs_2020_118865
crossref_primary_10_1038_srep46401
crossref_primary_10_1002_osp4_362
crossref_primary_10_1007_s12021_020_09480_w
crossref_primary_10_1002_hbm_25957
Cites_doi 10.1016/j.neuroimage.2005.08.035
10.1006/nimg.1998.0396
10.1093/cercor/bhq291
10.1093/cercor/bhn003
10.1016/S0896-6273(02)00569-X
10.1371/journal.pone.0005226
10.1016/j.neurobiolaging.2006.09.013
10.1177/1073858406293182
10.1073/pnas.0701519104
10.1093/cercor/bhn059
10.1038/30918
10.1016/j.neuroimage.2009.01.055
10.1016/j.neuroimage.2011.08.017
10.1093/cercor/bhm211
10.1371/journal.pone.0013070
10.1002/hbm.21232
10.1016/j.neuroimage.2010.06.010
10.1103/PhysRevLett.94.018102
10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
10.1523/JNEUROSCI.3874-05.2006
10.1093/cercor/bhl149
10.1016/j.neuroimage.2008.04.261
10.1016/0306-4522(94)00584-R
10.1097/WCO.0b013e32833aa567
10.1111/j.1460-9568.2008.06117.x
10.1006/nimg.1998.0395
10.1016/j.neuroimage.2006.01.042
10.1016/0378-8733(78)90021-7
10.1016/j.neuroimage.2012.01.107
10.1001/archgenpsychiatry.2011.88
10.1371/journal.pbio.0060159
10.1016/j.neuroimage.2009.10.003
10.1111/j.1749-6632.2001.tb05739.x
10.1016/j.jneumeth.2010.01.014
10.1093/cercor/bhn102
10.1523/JNEUROSCI.0141-08.2008
10.1002/hbm.20887
10.1103/PhysRevLett.87.198701
10.1007/s11682-008-9034-3
10.1523/JNEUROSCI.0357-05.2005
10.1101/gr.092759.109
10.1016/j.neuroimage.2011.01.010
ContentType Journal Article
Copyright 2012
2014 INIST-CNRS
Published by Elsevier Inc.
Copyright Elsevier Limited Feb 1, 2013
Copyright_xml – notice: 2012
– notice: 2014 INIST-CNRS
– notice: Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Feb 1, 2013
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7QO
7X8
5PM
DOI 10.1016/j.neuroimage.2012.10.066
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection (ProQuest)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
MEDLINE - Academic

MEDLINE


ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 499
ExternalDocumentID PMC3586751
3396579351
23116816
27110953
10_1016_j_neuroimage_2012_10_066
S1053811912010695
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: U54 EB005149
– fundername: NIBIB NIH HHS
  grantid: 2U54EB005149
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7QO
7X8
5PM
ID FETCH-LOGICAL-c627t-5551d687602602261d805d65e44d843852cb4a005d245be4647630d9da4975bc3
IEDL.DBID AIKHN
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 14:39:38 EDT 2025
Fri Sep 05 08:59:38 EDT 2025
Fri Sep 05 12:57:55 EDT 2025
Sat Aug 23 12:45:16 EDT 2025
Thu Apr 03 07:09:32 EDT 2025
Wed Apr 02 07:24:31 EDT 2025
Thu Apr 24 23:07:05 EDT 2025
Tue Jul 01 02:14:49 EDT 2025
Fri Feb 23 02:36:05 EST 2024
Tue Aug 26 16:31:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords LOD
Par
Neuroimaging
Fro
Correlation
MRI
GM
IDA
Occ
Ins
Lim
WM
HIPAA
DTI
Connectivity
FA
LONI
Tem
Human
Central nervous system
Nuclear magnetic resonance imaging
Encephalon
Language English
License CC BY 4.0
Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c627t-5551d687602602261d805d65e44d843852cb4a005d245be4647630d9da4975bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink http://doi.org/10.1016/j.neuroimage.2012.10.066
PMID 23116816
PQID 1552023012
PQPubID 2031077
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3586751
proquest_miscellaneous_1613945338
proquest_miscellaneous_1500761803
proquest_journals_1552023012
pubmed_primary_23116816
pascalfrancis_primary_27110953
crossref_primary_10_1016_j_neuroimage_2012_10_066
crossref_citationtrail_10_1016_j_neuroimage_2012_10_066
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2012_10_066
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2012_10_066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-01
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2013
Publisher Elsevier Inc
Elsevier
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier
– name: Elsevier Limited
References Irimia, Chambers, Torgerson, Van Horn (bb0165) 2012; 60
Achard, Salvador (bb0005) 2006; 26
De Luca, Beckmann (bb0055) 2006; 29
Fischl, Salat (bb0095) 2002; 33
He, Evans (bb0135) 2010; 23
Joshi, Joshi (bb0170) 2010
Bernhardt, Chen (bb0030) 2011; 21
Guimera, Amaral (bb0120) 2005; 2005
Bassett, Bullmore (bb0015) 2006; 12
Dinov, I., Lozev, K., et al., 2010. Neuroimaging Study Designs, Computational Analyses and Data Provenance Using the LONI Pipeline. PLoS ONE
Freeman (bb0100) 1978; 1
Mechelli, Friston (bb0200) 2005; 25
Evans, Lee (bb0080) 2008; 2
Bernhardt, Rozen (bb0025) 2009; 46
Greicius, Supekar (bb0115) 2009; 19
Gong, He (bb0105) 2009; 19
Hyde, Samson (bb0160) 2010; 31
Dinov, Van Horn (bb0070) 2009; 3
Gong, He (bb0110) 2012; 59
MacKenzie-Graham, Payan (bb0195) 2008
He, Chen (bb0140) 2007; 17
Eguiluz, Chialvo (bb0075) 2005; 94
Latora, Marchiori (bb0180) 2001; 87
Watts, Strogatz (bb0230) 1998; 393
Schmitt, Lenroot (bb0220) 2008; 18
Hagmann, Cammoun (bb0125) 2008; 6
Wu, Taki (bb0235) 2012; 33
Dale, Fischl (bb0050) 1999; 9
Rencher (bb0205) 2002
Fischl, Sereno (bb0090) 1999; 9
He, Wang (bb0150) 2009; 4
Basser, Pajevic (bb0010) 2000; 44
Chen, He (bb0035) 2008; 18
Lerch, Worsley (bb0185) 2006; 31
Schlaug (bb0215) 2001; 930
Cohen, Lombardo (bb0045) 2008; 27
Destrieux, Fischl (bb0060) 2010; 53
He, Chen (bb0145) 2008; 28
Rubinov, Sporns (bb0210) 2010; 52
.
Lerch, Pruessner (bb0190) 2008; 29
Honey, Kotter (bb0155) 2007; 104
Hagmann, Cammoun (bb0130) 2010; 194
Krzywinski, Schein (bb0175) 2009; 19
van Haren, Schnack (bb0225) 2011; 68
Ferrer, Blanco (bb0085) 1995; 66
Bernhardt, Worsley (bb0020) 2008; 42
Chen, He (bb0040) 2011; 56
10.1016/j.neuroimage.2012.10.066_bb0065
Irimia (10.1016/j.neuroimage.2012.10.066_bb0165) 2012; 60
Basser (10.1016/j.neuroimage.2012.10.066_bb0010) 2000; 44
Greicius (10.1016/j.neuroimage.2012.10.066_bb0115) 2009; 19
Schmitt (10.1016/j.neuroimage.2012.10.066_bb0220) 2008; 18
De Luca (10.1016/j.neuroimage.2012.10.066_bb0055) 2006; 29
Destrieux (10.1016/j.neuroimage.2012.10.066_bb0060) 2010; 53
Achard (10.1016/j.neuroimage.2012.10.066_bb0005) 2006; 26
Bassett (10.1016/j.neuroimage.2012.10.066_bb0015) 2006; 12
Rubinov (10.1016/j.neuroimage.2012.10.066_bb0210) 2010; 52
Latora (10.1016/j.neuroimage.2012.10.066_bb0180) 2001; 87
Dinov (10.1016/j.neuroimage.2012.10.066_bb0070) 2009; 3
Chen (10.1016/j.neuroimage.2012.10.066_bb0035) 2008; 18
Evans (10.1016/j.neuroimage.2012.10.066_bb0080) 2008; 2
Ferrer (10.1016/j.neuroimage.2012.10.066_bb0085) 1995; 66
Dale (10.1016/j.neuroimage.2012.10.066_bb0050) 1999; 9
Freeman (10.1016/j.neuroimage.2012.10.066_bb0100) 1978; 1
Hagmann (10.1016/j.neuroimage.2012.10.066_bb0130) 2010; 194
Rencher (10.1016/j.neuroimage.2012.10.066_bb0205) 2002
van Haren (10.1016/j.neuroimage.2012.10.066_bb0225) 2011; 68
Hagmann (10.1016/j.neuroimage.2012.10.066_bb0125) 2008; 6
Chen (10.1016/j.neuroimage.2012.10.066_bb0040) 2011; 56
He (10.1016/j.neuroimage.2012.10.066_bb0140) 2007; 17
He (10.1016/j.neuroimage.2012.10.066_bb0135) 2010; 23
Hyde (10.1016/j.neuroimage.2012.10.066_bb0160) 2010; 31
Lerch (10.1016/j.neuroimage.2012.10.066_bb0190) 2008; 29
Fischl (10.1016/j.neuroimage.2012.10.066_bb0090) 1999; 9
Guimera (10.1016/j.neuroimage.2012.10.066_bb0120) 2005; 2005
He (10.1016/j.neuroimage.2012.10.066_bb0150) 2009; 4
Bernhardt (10.1016/j.neuroimage.2012.10.066_bb0030) 2011; 21
Eguiluz (10.1016/j.neuroimage.2012.10.066_bb0075) 2005; 94
Cohen (10.1016/j.neuroimage.2012.10.066_bb0045) 2008; 27
Bernhardt (10.1016/j.neuroimage.2012.10.066_bb0020) 2008; 42
Krzywinski (10.1016/j.neuroimage.2012.10.066_bb0175) 2009; 19
Schlaug (10.1016/j.neuroimage.2012.10.066_bb0215) 2001; 930
Honey (10.1016/j.neuroimage.2012.10.066_bb0155) 2007; 104
MacKenzie-Graham (10.1016/j.neuroimage.2012.10.066_bb0195) 2008
Watts (10.1016/j.neuroimage.2012.10.066_bb0230) 1998; 393
Gong (10.1016/j.neuroimage.2012.10.066_bb0110) 2012; 59
Lerch (10.1016/j.neuroimage.2012.10.066_bb0185) 2006; 31
Gong (10.1016/j.neuroimage.2012.10.066_bb0105) 2009; 19
He (10.1016/j.neuroimage.2012.10.066_bb0145) 2008; 28
Wu (10.1016/j.neuroimage.2012.10.066_bb0235) 2012; 33
Joshi (10.1016/j.neuroimage.2012.10.066_bb0170) 2010
Mechelli (10.1016/j.neuroimage.2012.10.066_bb0200) 2005; 25
Bernhardt (10.1016/j.neuroimage.2012.10.066_bb0025) 2009; 46
Fischl (10.1016/j.neuroimage.2012.10.066_bb0095) 2002; 33
16399673 - J Neurosci. 2006 Jan 4;26(1):63-72
19649168 - Front Neuroinform. 2009 Jul 20;3:22
18267952 - Cereb Cortex. 2008 Oct;18(10):2374-81
21238595 - Neuroimage. 2011 May 1;56(1):235-45
18364027 - Eur J Neurosci. 2008 Mar;27(6):1534-46
19381298 - PLoS One. 2009;4(4):e5226
22305988 - Neuroimage. 2012 Apr 2;60(2):1340-51
19385011 - Neuroimage. 2009 Jun;46(2):373-81
18448652 - J Neurosci. 2008 Apr 30;28(18):4756-66
17548818 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10240-5
20581686 - Curr Opin Neurol. 2010 Aug;23(4):341-50
18159217 - J Stat Mech. 2005 Feb 1;2005(P02001):nihpa35573
21893656 - Arch Gen Psychiatry. 2011 Sep;68(9):871-80
21884805 - Neuroimage. 2012 Jan 16;59(2):1239-48
19819337 - Neuroimage. 2010 Sep;52(3):1059-69
15698136 - Phys Rev Lett. 2005 Jan 14;94(1):018102
20547229 - Neuroimage. 2010 Oct 15;53(1):1-15
9931268 - Neuroimage. 1999 Feb;9(2):179-94
11832223 - Neuron. 2002 Jan 31;33(3):341-55
19541911 - Genome Res. 2009 Sep;19(9):1639-45
9931269 - Neuroimage. 1999 Feb;9(2):195-207
18403396 - Cereb Cortex. 2009 Jan;19(1):72-8
11025519 - Magn Reson Med. 2000 Oct;44(4):625-32
9623998 - Nature. 1998 Jun 4;393(6684):440-2
21391279 - Hum Brain Mapp. 2012 Mar;33(3):552-68
11690461 - Phys Rev Lett. 2001 Nov 5;87(19):198701
7637868 - Neuroscience. 1995 May;66(1):189-99
18554926 - Neuroimage. 2008 Aug 15;42(2):515-24
16624590 - Neuroimage. 2006 Jul 1;31(3):993-1003
16148238 - J Neurosci. 2005 Sep 7;25(36):8303-10
18567609 - Cereb Cortex. 2009 Mar;19(3):524-36
18234689 - Cereb Cortex. 2008 Aug;18(8):1737-47
16260155 - Neuroimage. 2006 Feb 15;29(4):1359-67
17204824 - Cereb Cortex. 2007 Oct;17(10):2407-19
20096730 - J Neurosci Methods. 2010 Dec 15;194(1):34-45
17097767 - Neurobiol Aging. 2008 Jan;29(1):23-30
21330467 - Cereb Cortex. 2011 Sep;21(9):2147-57
20927408 - PLoS One. 2010;5(9). pii: e13070. doi: 10.1371/journal.pone.0013070
17079517 - Neuroscientist. 2006 Dec;12(6):512-23
19790171 - Hum Brain Mapp. 2010 Apr;31(4):556-66
11458836 - Ann N Y Acad Sci. 2001 Jun;930:281-99
References_xml – volume: 1
  start-page: 215
  year: 1978
  end-page: 239
  ident: bb0100
  article-title: Centrality in social networks: conceptual clarification
  publication-title: Social Networks
– volume: 52
  start-page: 1059
  year: 2010
  end-page: 1069
  ident: bb0210
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: NeuroImage
– volume: 18
  start-page: 1737
  year: 2008
  end-page: 1747
  ident: bb0220
  article-title: Identification of genetically mediated cortical networks: a multivariate study of pediatric twins and siblings
  publication-title: Cereb. Cortex
– volume: 42
  start-page: 515
  year: 2008
  end-page: 524
  ident: bb0020
  article-title: Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: insights on the relation between mesiotemporal connectivity and cortical atrophy
  publication-title: NeuroImage
– volume: 2
  start-page: 289
  year: 2008
  end-page: 299
  ident: bb0080
  article-title: Human cortical anatomical networks assessed by structural MRI
  publication-title: Brain Imaging Behav.
– volume: 4
  start-page: e5226
  year: 2009
  ident: bb0150
  article-title: Uncovering intrinsic modular organization of spontaneous brain activity in humans
  publication-title: PLoS One
– volume: 12
  start-page: 512
  year: 2006
  end-page: 523
  ident: bb0015
  article-title: Small-world brain networks
  publication-title: Neuroscientist
– volume: 18
  start-page: 2374
  year: 2008
  end-page: 2381
  ident: bb0035
  article-title: Revealing modular architecture of human brain structural networks by using cortical thickness from MRI
  publication-title: Cereb. Cortex
– volume: 68
  start-page: 871
  year: 2011
  end-page: 880
  ident: bb0225
  article-title: Changes in cortical thickness during the course of illness in schizophrenia
  publication-title: Arch. Gen. Psychiatry
– year: 2008
  ident: bb0195
  article-title: Neuroimaging Data Provenance Using the LONI Pipeline Workflow Environment
  publication-title: Provenance and Annotation of Data and Processes, LNCS
– volume: 19
  start-page: 1639
  year: 2009
  end-page: 1645
  ident: bb0175
  article-title: Circos: an information aesthetic for comparative genomics
  publication-title: Genome Res.
– volume: 44
  start-page: 625
  year: 2000
  end-page: 632
  ident: bb0010
  article-title: In vivo fiber tractography using DT-MRI data
  publication-title: Magn. Reson. Med.
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  ident: bb0050
  article-title: Cortical surface-based analysis—I. Segmentation and surface reconstruction
  publication-title: NeuroImage
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  ident: bb0095
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
– volume: 27
  start-page: 1534
  year: 2008
  end-page: 1546
  ident: bb0045
  article-title: Covariance-based subdivision of the human striatum using T1-weighted MRI
  publication-title: Eur. J. Neurosci.
– volume: 94
  start-page: 018102
  year: 2005
  ident: bb0075
  article-title: Scale-free brain functional networks
  publication-title: Phys. Rev. Lett.
– volume: 25
  start-page: 8303
  year: 2005
  end-page: 8310
  ident: bb0200
  article-title: Structural covariance in the human cortex
  publication-title: J. Neurosci.
– volume: 21
  start-page: 2147
  year: 2011
  end-page: 2157
  ident: bb0030
  article-title: Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy
  publication-title: Cereb. Cortex
– volume: 29
  start-page: 1359
  year: 2006
  end-page: 1367
  ident: bb0055
  article-title: fMRI resting state networks define distinct modes of long-distance interactions in the human brain
  publication-title: NeuroImage
– volume: 59
  start-page: 1239
  year: 2012
  end-page: 1248
  ident: bb0110
  article-title: Convergence and divergence of thickness correlations with diffusion connections across the human cerebral cortex
  publication-title: NeuroImage
– volume: 87
  start-page: 198701
  year: 2001
  ident: bb0180
  article-title: Efficient behavior of small-world networks
  publication-title: Phys. Rev. Lett.
– volume: 53
  start-page: 1
  year: 2010
  end-page: 15
  ident: bb0060
  article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature
  publication-title: NeuroImage
– volume: 19
  start-page: 72
  year: 2009
  end-page: 78
  ident: bb0115
  article-title: Resting-state functional connectivity reflects structural connectivity in the default mode network
  publication-title: Cereb. Cortex
– volume: 6
  start-page: 1479
  year: 2008
  end-page: 1493
  ident: bb0125
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol.
– volume: 26
  start-page: 63
  year: 2006
  end-page: 72
  ident: bb0005
  article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
  publication-title: J. Neurosci.
– year: 2010
  ident: bb0170
  article-title: Anatomical structural network analysis of human brain using partial correlations of gray matter volumes
  publication-title: Proceedings of the Seventh IEEE International Symposium on Biomedical Imaging: From Nano To Macro
– volume: 46
  start-page: 373
  year: 2009
  end-page: 381
  ident: bb0025
  article-title: Thalamo-cortical network pathology in idiopathic generalized epilepsy: insights from MRI-based morphometric correlation analysis
  publication-title: NeuroImage
– volume: 3
  year: 2009
  ident: bb0070
  publication-title: Efficient, distributed and interactive neuroimaging data analysis using the LONI pipeline
– volume: 60
  start-page: 1340
  year: 2012
  end-page: 1351
  ident: bb0165
  article-title: Circular representation of human cortical networks for subject and population-level connectomic visualization
  publication-title: NeuroImage
– year: 2002
  ident: bb0205
  article-title: Methods of Multivariate Analysis
– volume: 194
  start-page: 34
  year: 2010
  end-page: 45
  ident: bb0130
  article-title: MR connectomics: principles and challenges
  publication-title: J. Neurosci. Methods
– volume: 31
  start-page: 556
  year: 2010
  end-page: 566
  ident: bb0160
  article-title: Neuroanatomical differences in brain areas implicated in perceptual and other core features of autism revealed by cortical thickness analysis and voxel-based morphometry
  publication-title: Hum. Brain Mapp.
– volume: 104
  start-page: 10240
  year: 2007
  end-page: 10245
  ident: bb0155
  article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 393
  start-page: 440
  year: 1998
  end-page: 442
  ident: bb0230
  article-title: Collective dynamics of 'small-world' networks
  publication-title: Nature
– reference: .
– volume: 19
  start-page: 524
  year: 2009
  end-page: 536
  ident: bb0105
  article-title: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography
  publication-title: Cereb. Cortex
– volume: 66
  start-page: 189
  year: 1995
  end-page: 199
  ident: bb0085
  article-title: Transforming growth factor-alpha immunoreactivity in the developing and adult brain
  publication-title: Neuroscience
– volume: 33
  start-page: 552
  year: 2012
  end-page: 568
  ident: bb0235
  article-title: Age-related changes in topological organization of structural brain networks in healthy individuals
  publication-title: Hum. Brain Mapp.
– volume: 28
  start-page: 4756
  year: 2008
  end-page: 4766
  ident: bb0145
  article-title: Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease
  publication-title: J. Neurosci.
– volume: 930
  start-page: 281
  year: 2001
  end-page: 299
  ident: bb0215
  article-title: The brain of musicians. A model for functional and structural adaptation
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 23
  start-page: 341
  year: 2010
  end-page: 350
  ident: bb0135
  article-title: Graph theoretical modeling of brain connectivity
  publication-title: Curr. Opin. Neurol.
– volume: 17
  start-page: 2407
  year: 2007
  end-page: 2419
  ident: bb0140
  article-title: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI
  publication-title: Cereb. Cortex
– reference: Dinov, I., Lozev, K., et al., 2010. Neuroimaging Study Designs, Computational Analyses and Data Provenance Using the LONI Pipeline. PLoS ONE
– volume: 56
  start-page: 235
  year: 2011
  end-page: 245
  ident: bb0040
  article-title: Age-related alterations in the modular organization of structural cortical network by using cortical thickness from MRI
  publication-title: NeuroImage
– volume: 9
  start-page: 195
  year: 1999
  end-page: 207
  ident: bb0090
  article-title: Cortical surface-based analysis - II: Inflation, flattening, and a surface-based coordinate system
  publication-title: NeuroImage
– volume: 31
  start-page: 993
  year: 2006
  end-page: 1003
  ident: bb0185
  article-title: Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI
  publication-title: NeuroImage
– volume: 29
  start-page: 23
  year: 2008
  end-page: 30
  ident: bb0190
  article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls
  publication-title: Neurobiol. Aging
– volume: 2005
  start-page: nihpa35573
  year: 2005
  ident: bb0120
  article-title: Cartography of complex networks: modules and universal roles
  publication-title: J. Stat. Mech.
– volume: 29
  start-page: 1359
  issue: 4
  year: 2006
  ident: 10.1016/j.neuroimage.2012.10.066_bb0055
  article-title: fMRI resting state networks define distinct modes of long-distance interactions in the human brain
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.08.035
– volume: 9
  start-page: 195
  issue: 2
  year: 1999
  ident: 10.1016/j.neuroimage.2012.10.066_bb0090
  article-title: Cortical surface-based analysis - II: Inflation, flattening, and a surface-based coordinate system
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0396
– volume: 21
  start-page: 2147
  issue: 9
  year: 2011
  ident: 10.1016/j.neuroimage.2012.10.066_bb0030
  article-title: Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhq291
– volume: 18
  start-page: 2374
  issue: 10
  year: 2008
  ident: 10.1016/j.neuroimage.2012.10.066_bb0035
  article-title: Revealing modular architecture of human brain structural networks by using cortical thickness from MRI
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn003
– volume: 33
  start-page: 341
  issue: 3
  year: 2002
  ident: 10.1016/j.neuroimage.2012.10.066_bb0095
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00569-X
– volume: 4
  start-page: e5226
  issue: 4
  year: 2009
  ident: 10.1016/j.neuroimage.2012.10.066_bb0150
  article-title: Uncovering intrinsic modular organization of spontaneous brain activity in humans
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0005226
– volume: 29
  start-page: 23
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2012.10.066_bb0190
  article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2006.09.013
– volume: 12
  start-page: 512
  issue: 6
  year: 2006
  ident: 10.1016/j.neuroimage.2012.10.066_bb0015
  article-title: Small-world brain networks
  publication-title: Neuroscientist
  doi: 10.1177/1073858406293182
– volume: 104
  start-page: 10240
  issue: 24
  year: 2007
  ident: 10.1016/j.neuroimage.2012.10.066_bb0155
  article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0701519104
– year: 2008
  ident: 10.1016/j.neuroimage.2012.10.066_bb0195
  article-title: Neuroimaging Data Provenance Using the LONI Pipeline Workflow Environment
– volume: 19
  start-page: 72
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2012.10.066_bb0115
  article-title: Resting-state functional connectivity reflects structural connectivity in the default mode network
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn059
– volume: 393
  start-page: 440
  issue: 6684
  year: 1998
  ident: 10.1016/j.neuroimage.2012.10.066_bb0230
  article-title: Collective dynamics of 'small-world' networks
  publication-title: Nature
  doi: 10.1038/30918
– volume: 46
  start-page: 373
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2012.10.066_bb0025
  article-title: Thalamo-cortical network pathology in idiopathic generalized epilepsy: insights from MRI-based morphometric correlation analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.01.055
– volume: 59
  start-page: 1239
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2012.10.066_bb0110
  article-title: Convergence and divergence of thickness correlations with diffusion connections across the human cerebral cortex
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.08.017
– volume: 18
  start-page: 1737
  issue: 8
  year: 2008
  ident: 10.1016/j.neuroimage.2012.10.066_bb0220
  article-title: Identification of genetically mediated cortical networks: a multivariate study of pediatric twins and siblings
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhm211
– ident: 10.1016/j.neuroimage.2012.10.066_bb0065
  doi: 10.1371/journal.pone.0013070
– volume: 33
  start-page: 552
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2012.10.066_bb0235
  article-title: Age-related changes in topological organization of structural brain networks in healthy individuals
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21232
– volume: 53
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2012.10.066_bb0060
  article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.06.010
– volume: 94
  start-page: 018102
  issue: 1
  year: 2005
  ident: 10.1016/j.neuroimage.2012.10.066_bb0075
  article-title: Scale-free brain functional networks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.018102
– volume: 44
  start-page: 625
  issue: 4
  year: 2000
  ident: 10.1016/j.neuroimage.2012.10.066_bb0010
  article-title: In vivo fiber tractography using DT-MRI data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
– volume: 26
  start-page: 63
  issue: 1
  year: 2006
  ident: 10.1016/j.neuroimage.2012.10.066_bb0005
  article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3874-05.2006
– volume: 17
  start-page: 2407
  issue: 10
  year: 2007
  ident: 10.1016/j.neuroimage.2012.10.066_bb0140
  article-title: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhl149
– volume: 42
  start-page: 515
  issue: 2
  year: 2008
  ident: 10.1016/j.neuroimage.2012.10.066_bb0020
  article-title: Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: insights on the relation between mesiotemporal connectivity and cortical atrophy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.04.261
– year: 2002
  ident: 10.1016/j.neuroimage.2012.10.066_bb0205
– volume: 66
  start-page: 189
  issue: 1
  year: 1995
  ident: 10.1016/j.neuroimage.2012.10.066_bb0085
  article-title: Transforming growth factor-alpha immunoreactivity in the developing and adult brain
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(94)00584-R
– volume: 23
  start-page: 341
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2012.10.066_bb0135
  article-title: Graph theoretical modeling of brain connectivity
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0b013e32833aa567
– volume: 27
  start-page: 1534
  issue: 6
  year: 2008
  ident: 10.1016/j.neuroimage.2012.10.066_bb0045
  article-title: Covariance-based subdivision of the human striatum using T1-weighted MRI
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2008.06117.x
– volume: 9
  start-page: 179
  issue: 2
  year: 1999
  ident: 10.1016/j.neuroimage.2012.10.066_bb0050
  article-title: Cortical surface-based analysis—I. Segmentation and surface reconstruction
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0395
– volume: 31
  start-page: 993
  issue: 3
  year: 2006
  ident: 10.1016/j.neuroimage.2012.10.066_bb0185
  article-title: Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.042
– volume: 1
  start-page: 215
  year: 1978
  ident: 10.1016/j.neuroimage.2012.10.066_bb0100
  article-title: Centrality in social networks: conceptual clarification
  publication-title: Social Networks
  doi: 10.1016/0378-8733(78)90021-7
– volume: 2005
  start-page: nihpa35573
  issue: P02001
  year: 2005
  ident: 10.1016/j.neuroimage.2012.10.066_bb0120
  article-title: Cartography of complex networks: modules and universal roles
  publication-title: J. Stat. Mech.
– volume: 60
  start-page: 1340
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2012.10.066_bb0165
  article-title: Circular representation of human cortical networks for subject and population-level connectomic visualization
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.107
– volume: 68
  start-page: 871
  issue: 9
  year: 2011
  ident: 10.1016/j.neuroimage.2012.10.066_bb0225
  article-title: Changes in cortical thickness during the course of illness in schizophrenia
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archgenpsychiatry.2011.88
– volume: 6
  start-page: 1479
  issue: 7
  year: 2008
  ident: 10.1016/j.neuroimage.2012.10.066_bb0125
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060159
– volume: 52
  start-page: 1059
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2012.10.066_bb0210
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 930
  start-page: 281
  year: 2001
  ident: 10.1016/j.neuroimage.2012.10.066_bb0215
  article-title: The brain of musicians. A model for functional and structural adaptation
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2001.tb05739.x
– volume: 194
  start-page: 34
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2012.10.066_bb0130
  article-title: MR connectomics: principles and challenges
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.01.014
– volume: 19
  start-page: 524
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2012.10.066_bb0105
  article-title: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn102
– volume: 28
  start-page: 4756
  issue: 18
  year: 2008
  ident: 10.1016/j.neuroimage.2012.10.066_bb0145
  article-title: Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0141-08.2008
– volume: 31
  start-page: 556
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2012.10.066_bb0160
  article-title: Neuroanatomical differences in brain areas implicated in perceptual and other core features of autism revealed by cortical thickness analysis and voxel-based morphometry
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20887
– volume: 87
  start-page: 198701
  issue: 19
  year: 2001
  ident: 10.1016/j.neuroimage.2012.10.066_bb0180
  article-title: Efficient behavior of small-world networks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.198701
– volume: 2
  start-page: 289
  year: 2008
  ident: 10.1016/j.neuroimage.2012.10.066_bb0080
  article-title: Human cortical anatomical networks assessed by structural MRI
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-008-9034-3
– year: 2010
  ident: 10.1016/j.neuroimage.2012.10.066_bb0170
  article-title: Anatomical structural network analysis of human brain using partial correlations of gray matter volumes
– volume: 25
  start-page: 8303
  issue: 36
  year: 2005
  ident: 10.1016/j.neuroimage.2012.10.066_bb0200
  article-title: Structural covariance in the human cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0357-05.2005
– volume: 19
  start-page: 1639
  issue: 9
  year: 2009
  ident: 10.1016/j.neuroimage.2012.10.066_bb0175
  article-title: Circos: an information aesthetic for comparative genomics
  publication-title: Genome Res.
  doi: 10.1101/gr.092759.109
– volume: 56
  start-page: 235
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2012.10.066_bb0040
  article-title: Age-related alterations in the modular organization of structural cortical network by using cortical thickness from MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.010
– volume: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2012.10.066_bb0070
– reference: 19385011 - Neuroimage. 2009 Jun;46(2):373-81
– reference: 21391279 - Hum Brain Mapp. 2012 Mar;33(3):552-68
– reference: 20927408 - PLoS One. 2010;5(9). pii: e13070. doi: 10.1371/journal.pone.0013070
– reference: 19819337 - Neuroimage. 2010 Sep;52(3):1059-69
– reference: 11458836 - Ann N Y Acad Sci. 2001 Jun;930:281-99
– reference: 18364027 - Eur J Neurosci. 2008 Mar;27(6):1534-46
– reference: 9623998 - Nature. 1998 Jun 4;393(6684):440-2
– reference: 21330467 - Cereb Cortex. 2011 Sep;21(9):2147-57
– reference: 18159217 - J Stat Mech. 2005 Feb 1;2005(P02001):nihpa35573
– reference: 22305988 - Neuroimage. 2012 Apr 2;60(2):1340-51
– reference: 21884805 - Neuroimage. 2012 Jan 16;59(2):1239-48
– reference: 17548818 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10240-5
– reference: 16399673 - J Neurosci. 2006 Jan 4;26(1):63-72
– reference: 11832223 - Neuron. 2002 Jan 31;33(3):341-55
– reference: 19790171 - Hum Brain Mapp. 2010 Apr;31(4):556-66
– reference: 17079517 - Neuroscientist. 2006 Dec;12(6):512-23
– reference: 7637868 - Neuroscience. 1995 May;66(1):189-99
– reference: 19541911 - Genome Res. 2009 Sep;19(9):1639-45
– reference: 18554926 - Neuroimage. 2008 Aug 15;42(2):515-24
– reference: 11690461 - Phys Rev Lett. 2001 Nov 5;87(19):198701
– reference: 16624590 - Neuroimage. 2006 Jul 1;31(3):993-1003
– reference: 17204824 - Cereb Cortex. 2007 Oct;17(10):2407-19
– reference: 18403396 - Cereb Cortex. 2009 Jan;19(1):72-8
– reference: 11025519 - Magn Reson Med. 2000 Oct;44(4):625-32
– reference: 15698136 - Phys Rev Lett. 2005 Jan 14;94(1):018102
– reference: 21893656 - Arch Gen Psychiatry. 2011 Sep;68(9):871-80
– reference: 16260155 - Neuroimage. 2006 Feb 15;29(4):1359-67
– reference: 21238595 - Neuroimage. 2011 May 1;56(1):235-45
– reference: 17097767 - Neurobiol Aging. 2008 Jan;29(1):23-30
– reference: 19649168 - Front Neuroinform. 2009 Jul 20;3:22
– reference: 19381298 - PLoS One. 2009;4(4):e5226
– reference: 9931268 - Neuroimage. 1999 Feb;9(2):179-94
– reference: 18448652 - J Neurosci. 2008 Apr 30;28(18):4756-66
– reference: 9931269 - Neuroimage. 1999 Feb;9(2):195-207
– reference: 20547229 - Neuroimage. 2010 Oct 15;53(1):1-15
– reference: 18267952 - Cereb Cortex. 2008 Oct;18(10):2374-81
– reference: 16148238 - J Neurosci. 2005 Sep 7;25(36):8303-10
– reference: 18234689 - Cereb Cortex. 2008 Aug;18(8):1737-47
– reference: 20096730 - J Neurosci Methods. 2010 Dec 15;194(1):34-45
– reference: 18567609 - Cereb Cortex. 2009 Mar;19(3):524-36
– reference: 20581686 - Curr Opin Neurol. 2010 Aug;23(4):341-50
SSID ssj0009148
Score 2.26492
Snippet Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex,...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 489
SubjectTerms Adult
Age
Automation
Biological and medical sciences
Brain - anatomy & histology
Brain - physiology
Brain research
Computational neuroscience
Connectivity
Correlation
Diffusion Tensor Imaging
DTI
Female
Fundamental and applied biological sciences. Psychology
Health Insurance Portability & Accountability Act 1996-US
Human subjects
Humans
Hypotheses
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Male
Medical imaging
Models, Neurological
MRI
Nerve Net - anatomy & histology
Nerve Net - physiology
Neuroimaging
NMR
Nuclear magnetic resonance
Software
Studies
Vertebrates: nervous system and sense organs
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3faxQxEA5aQYQi_u5qLRF8dPXyO4sPItJSBH2ycG9LNslipe5duWv__s4k2T1PSrnXTQbC7GTyJfnyDSHvY1DOBD2re3ziI6NnddfbprZaib7Bc36fWL4_9emZ_D5X83Lgtiq0yjEnpkQdFh7PyD-hVBjiZca_LC9rrBqFt6ulhMZ98iBJl0E8m7nZiO4ymZ_CKVFb6FCYPJnflfQiz__CrEWCF_-IHK-klXjr8rS_dCtwWp-rXdwGR_9nVf6zTJ08IY8LvqRfc0A8Jffi8Iw8_FFu0J-TY4gLmkVjUXDjA_XIdPFrfJxM3RDokHnh8P0attEYE3TRU4CJNJXzox3WlHhBzk6Of307rUsphdprbta1AmAUNGQ-lBADxMWCnamgVZQyWCms4r6TDmZk4FJ1UWoJeWcWmuAk_LDOi5dkb1gM8YBQ7nxQkbGuM1I6YZ3RgDH7phd9tJGHipjRg60vOuNY7uKiHQllf9qN71v0PbaA7yvCJstl1trYwaYZf1I7viWF7NfCgrCD7efJtuCNjCN2tD7aiolpyNygiqsSFTkcg6QtiWHVbsK4Iu-mZpjSeE_jhri4wj54P8rsTNzRB2BYIwGr24q8ynG3GYBgTFsGIzRbETl1QEnx7Zbh_HeSFhfKwg6Svb576G_II56qgiCr55DsQdDGt4DN1t1RmoA3zYQ5Hw
  priority: 102
  providerName: ProQuest
Title The structural, connectomic and network covariance of the human brain
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811912010695
https://dx.doi.org/10.1016/j.neuroimage.2012.10.066
https://www.ncbi.nlm.nih.gov/pubmed/23116816
https://www.proquest.com/docview/1552023012
https://www.proquest.com/docview/1500761803
https://www.proquest.com/docview/1613945338
https://pubmed.ncbi.nlm.nih.gov/PMC3586751
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEB_ueiCCiN9Gz7KCj-ba_cwGn87So36V4_SgbyHJbriKpoWrPvq3O5NsUiuHFHxpIbsD28nM7Gz3N78BeOWdzhNnxnFFJT7KlzwuKpvG1mhZpfQ_f9mgfOdmdqneL_TiACZdLQzBKkPsb2N6E63Dk1HQ5mi9XI4-Y2aA2w2eN-hC16T6EI6ETI0ewNHpuw-z-ZZ7l6u2Ik7LmAQCoKeFeTW0kcvv6LyE8xInBPVqKBNv3KXurPNr1F3VNr24KSv9G1z5x251dg_uhjSTnba_5D4c-PoB3PoULtIfwhTNg7XcscS78ZqVBHgpN1SjzPLasbqFh-Pzn3iaJtNgq4phtsiarn6soNYSj-DybPplMotDR4W4NCLZxBrzI2cwABKTGCZe3NmxdkZ7pZxV0mpRFipHx3RC6cIrozD8jF3qcoXvrSjlYxjUq9o_BSby0mnPeVEkSuXS5onBVLNKK1l564WLIOk0mJWBbpy6XnzLOlzZ12yr-4x0TyOo-wh4L7luKTf2kEm7l5R1JaUYBDPcF_aQfdPL7pjentLDHZvolywSInPVMoLjzkiyEB-uMyK-o9MfFxG87IfRs-m6Jq_96gfNoWtSbsfyH3MwG0sVpuw2giet3W0XIDk3luMKkx2L7CcQs_juSL28ahjGpbZ4kOTP_kszz-G2aHqHEPbnGAZo0_4FZnCbYgiHJ784fiaLZIjeOrn4eD4MXovfb6fz84vfOH5LEA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwED6NTgIkhHgnMIaR4BuB-i1xhBDipVPHtgqhTdq3kNiOGIK0qAXEn-I3chcnKUXT1C_7Wvsqyz6fH8fPPQfw2DtdpC4ZxhWl-ChveVxWJotNomWV0Xd-27B8J8n4SL0_1scb8KfLhSFaZRcTm0Dtppa-kT8nqTDCy1y8mn2PqWoUva52JTSCW-z537_wyjZ_ufsO1_eJEDujw7fjuK0qENtEpItYI0ZwCQYBUtNC8MGdGWqXaK-UM0oaLWypCnROJ5QuvUoUbsGhy1yhcOyllfi_F2BTUUbrADbfjCYfPi5lfrkKyXdaxobzrOUOBUZZo1B58g3jBFHKxDNilTXqjKceiFdmxRyXqQr1NU4DwP_zOP85GHeuwdUW0bLXwQWvw4avb8DFg_bN_iaM0BNZkKkliY-nzBK3xi4oHZoVtWN1YKLj7z_x4k5eyKYVQ2DKmgKCrKQqFrfg6Fym-TYM6mnt7wIThXXac16WqVKFNEWaIKqtskpW3njhIki7Gcxtq2xOBTa-5h2F7Uu-nPuc5p5acO4j4L3lLKh7rGGTdYuUd9mrGG9zPILWsH3R27YIJyCXNa23V3yiH7JISTdWywi2OifJ21A0z5cbJ4JHfTMGEXoZKmo__UF96EWWm6E8ow8Cv0zh7cBEcCf43XIAkvPEcBxhuuKRfQcSMV9tqU8-N2LmUhu8s_J7Zw_9IVwaHx7s5_u7k737cFk0NUmIU7QFA3Rg_wCR4aLcbrcjg0_nHQH-AgUpdDg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIlVICPFNoBQjwY3Q9VfsCCGEaFcthYoDlfYWEtsRRZBdtAuIv8avYyZOsiyqqr30GtuRY8-Mn-PnNwBPgtel8dkoremKjwqOp1Vt89RmWtY5_ed3Lcv3ODs4UW8nerIBf_q7MESr7GNiG6j91NE_8l2SCiO8zMVu3dEiPuyNX82-p5RBik5a-3Qa0USOwu9fuH2bvzzcw7l-KsR4_-Obg7TLMJC6TJhFqhEv-AwDAilrIRDh3o60z3RQylslrRauUiUaqhdKV0FlCt1x5HNfKvyOykl87yW4bCSiKvQlMzFLwV-u4jU8LVPLed6xiCK3rNWqPP2GEYPIZeI58ctancYzl8ars3KOE1bHTBtnQeH_GZ3_LJHj63Ctw7bsdTTGG7ARmpuw9b47vb8F-2iTLArWktjHM-aIZeMWdDGalY1nTeSk4_OfuIUne2TTmiFEZW0qQVZRPovbcHIhg3wHNptpE-4BE6XzOnBeVUapUtrSZIhv67yWdbBB-ARMP4KF6zTOKdXG16Ins30plmNf0NhTCY59AnxoOYs6H2u0yftJKvp7rBh5C1yM1mj7YmjbYZ2IYdZsvbNiE0OXhSEFWS0T2O6NpOiC0rxYulACj4diDCd0RlQ2YfqD6tDZLLcjeU4dhIC5wn2CTeButLtlByTnmeXYQ7NikUMFkjNfLWlOP7ey5lJb3L3y--d3_RFsod8X7w6Pjx7AFdEmJyFy0TZsov2GhwgRF9VO64sMPl208_8FFk12_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+structural%2C+connectomic+and+network+covariance+of+the+human+brain&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Irimia%2C+Andrei&rft.au=Van+Horn%2C+John+D.&rft.date=2013-02-01&rft.issn=1053-8119&rft.volume=66&rft.spage=489&rft.epage=499&rft_id=info:doi/10.1016%2Fj.neuroimage.2012.10.066&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2012_10_066
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon