Decay of Fc-dependent antibody functions after mild to moderate COVID-19
The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent a...
Saved in:
Published in | Cell reports. Medicine Vol. 2; no. 6; p. 100296 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.06.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent antibody functions against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-expressing cells in serial samples from subjects primarily with mild-moderate COVID-19 up to 149 days post-infection. We find that S-specific antibodies capable of engaging Fcγ receptors decay over time, with S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declining accordingly. Although there is significant decay in ADCC and ADP activity, they remain readily detectable in almost all subjects at the last time point studied (94%) in contrast with neutralization activity (70%). Although it remains unclear the degree to which Fc effector functions contribute to protection against SARS-CoV-2 re-infection, our results indicate that antibodies with Fc effector functions persist longer than neutralizing antibodies.
[Display omitted]
SARS-CoV-2 spike-specific Fc effector functions may contribute to COVID-19 controlSpike-specific ADCC and ADP responses decline in the 4 months post-infectionCompared to neutralization, ADCC and ADP are detectable longer post-infectionCross-reactive antibodies against human coronavirus spike increase post-infection
Lee et al. report the decline of Fc-dependent antibody functions against SARS-CoV-2 spike in COVID-19 convalescent subjects up to 149 days post-infection. Unlike neutralization activity, plasma ADCC and ADP responses are sustained in the majority of subjects at the last time point measured. |
---|---|
AbstractList | The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent antibody functions against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-expressing cells in serial samples from subjects primarily with mild-moderate COVID-19 up to 149 days post-infection. We find that S-specific antibodies capable of engaging Fcγ receptors decay over time, with S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declining accordingly. Although there is significant decay in ADCC and ADP activity, they remain readily detectable in almost all subjects at the last time point studied (94%) in contrast with neutralization activity (70%). Although it remains unclear the degree to which Fc effector functions contribute to protection against SARS-CoV-2 re-infection, our results indicate that antibodies with Fc effector functions persist longer than neutralizing antibodies. The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent antibody functions against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-expressing cells in serial samples from subjects primarily with mild-moderate COVID-19 up to 149 days post-infection. We find that S-specific antibodies capable of engaging Fcγ receptors decay over time, with S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declining accordingly. Although there is significant decay in ADCC and ADP activity, they remain readily detectable in almost all subjects at the last time point studied (94%) in contrast with neutralization activity (70%). Although it remains unclear the degree to which Fc effector functions contribute to protection against SARS-CoV-2 re-infection, our results indicate that antibodies with Fc effector functions persist longer than neutralizing antibodies.The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent antibody functions against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-expressing cells in serial samples from subjects primarily with mild-moderate COVID-19 up to 149 days post-infection. We find that S-specific antibodies capable of engaging Fcγ receptors decay over time, with S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declining accordingly. Although there is significant decay in ADCC and ADP activity, they remain readily detectable in almost all subjects at the last time point studied (94%) in contrast with neutralization activity (70%). Although it remains unclear the degree to which Fc effector functions contribute to protection against SARS-CoV-2 re-infection, our results indicate that antibodies with Fc effector functions persist longer than neutralizing antibodies. The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent antibody functions against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-expressing cells in serial samples from subjects primarily with mild-moderate COVID-19 up to 149 days post-infection. We find that S-specific antibodies capable of engaging Fcγ receptors decay over time, with S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declining accordingly. Although there is significant decay in ADCC and ADP activity, they remain readily detectable in almost all subjects at the last time point studied (94%) in contrast with neutralization activity (70%). Although it remains unclear the degree to which Fc effector functions contribute to protection against SARS-CoV-2 re-infection, our results indicate that antibodies with Fc effector functions persist longer than neutralizing antibodies. [Display omitted] SARS-CoV-2 spike-specific Fc effector functions may contribute to COVID-19 controlSpike-specific ADCC and ADP responses decline in the 4 months post-infectionCompared to neutralization, ADCC and ADP are detectable longer post-infectionCross-reactive antibodies against human coronavirus spike increase post-infection Lee et al. report the decline of Fc-dependent antibody functions against SARS-CoV-2 spike in COVID-19 convalescent subjects up to 149 days post-infection. Unlike neutralization activity, plasma ADCC and ADP responses are sustained in the majority of subjects at the last time point measured. SummaryThe capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent antibody functions against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-expressing cells in serial samples from subjects primarily with mild-moderate COVID-19 up to 149 days post-infection. We find that S-specific antibodies capable of engaging Fcγ receptors decay over time, with S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declining accordingly. Although there is significant decay in ADCC and ADP activity, they remain readily detectable in almost all subjects at the last time point studied (94%) in contrast with neutralization activity (70%). Although it remains unclear the degree to which Fc effector functions contribute to protection against SARS-CoV-2 re-infection, our results indicate that antibodies with Fc effector functions persist longer than neutralizing antibodies. The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent antibody functions against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-expressing cells in serial samples from subjects primarily with mild-moderate COVID-19 up to 149 days post-infection. We find that S-specific antibodies capable of engaging Fcγ receptors decay over time, with S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declining accordingly. Although there is significant decay in ADCC and ADP activity, they remain readily detectable in almost all subjects at the last time point studied (94%) in contrast with neutralization activity (70%). Although it remains unclear the degree to which Fc effector functions contribute to protection against SARS-CoV-2 re-infection, our results indicate that antibodies with Fc effector functions persist longer than neutralizing antibodies. SARS-CoV-2 spike-specific Fc effector functions may contribute to COVID-19 control Spike-specific ADCC and ADP responses decline in the 4 months post-infection Compared to neutralization, ADCC and ADP are detectable longer post-infection Cross-reactive antibodies against human coronavirus spike increase post-infection Lee et al. report the decline of Fc-dependent antibody functions against SARS-CoV-2 spike in COVID-19 convalescent subjects up to 149 days post-infection. Unlike neutralization activity, plasma ADCC and ADP responses are sustained in the majority of subjects at the last time point measured. |
ArticleNumber | 100296 |
Author | Kent, Stephen J. Davis, Samantha K. Selva, Kevin John Wheatley, Adam K. Tan, Hyon-Xhi Juno, Jennifer A. Kelly, Hannah G. Cromer, Deborah Hogarth, P. Mark Reynaldi, Arnold Esterbauer, Robyn Wines, Bruce D. Davenport, Miles P. Chung, Amy W. Lee, Wen Shi Haycroft, Ebene R. |
Author_xml | – sequence: 1 givenname: Wen Shi orcidid: 0000-0001-7285-4054 surname: Lee fullname: Lee, Wen Shi organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia – sequence: 2 givenname: Kevin John orcidid: 0000-0002-0780-9422 surname: Selva fullname: Selva, Kevin John organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia – sequence: 3 givenname: Samantha K. orcidid: 0000-0002-6197-4277 surname: Davis fullname: Davis, Samantha K. organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia – sequence: 4 givenname: Bruce D. surname: Wines fullname: Wines, Bruce D. organization: Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia – sequence: 5 givenname: Arnold surname: Reynaldi fullname: Reynaldi, Arnold organization: Kirby Institute, University of New South Wales, Kensington, NSW, Australia – sequence: 6 givenname: Robyn surname: Esterbauer fullname: Esterbauer, Robyn organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia – sequence: 7 givenname: Hannah G. surname: Kelly fullname: Kelly, Hannah G. organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia – sequence: 8 givenname: Ebene R. surname: Haycroft fullname: Haycroft, Ebene R. organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia – sequence: 9 givenname: Hyon-Xhi surname: Tan fullname: Tan, Hyon-Xhi organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia – sequence: 10 givenname: Jennifer A. orcidid: 0000-0002-9072-1017 surname: Juno fullname: Juno, Jennifer A. organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia – sequence: 11 givenname: Adam K. surname: Wheatley fullname: Wheatley, Adam K. organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia – sequence: 12 givenname: P. Mark surname: Hogarth fullname: Hogarth, P. Mark organization: Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia – sequence: 13 givenname: Deborah surname: Cromer fullname: Cromer, Deborah organization: Kirby Institute, University of New South Wales, Kensington, NSW, Australia – sequence: 14 givenname: Miles P. surname: Davenport fullname: Davenport, Miles P. organization: Kirby Institute, University of New South Wales, Kensington, NSW, Australia – sequence: 15 givenname: Amy W. surname: Chung fullname: Chung, Amy W. email: awchung@unimelb.edu.au organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia – sequence: 16 givenname: Stephen J. surname: Kent fullname: Kent, Stephen J. email: skent@unimelb.edu.au organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33997824$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUktv1DAQjlARfdA_wAHlyCWL7TiJg1ClatvSlSr1wONqOeNJcUjsxfZW7L_HYVvUVqKcbNnfY2a-Ocz2rLOYZW8oWVBC6_fD4hf4acEIo-mBsLZ-kR2wuq6Lsmnp3oP7fnYcwkASpqJUlORVtl-WbdsIxg-yyzMEtc1dn19AoXGNVqONubLRdE5v835jIRpnQ676iD6fzKjz6PLJafQqYr68_rY6K2j7OnvZqzHg8d15lH29OP-yvCyurj-tlqdXBdSsiQUnbYlQcy045aC0rrnSRPWgU3ltTwEF63ilqkb0DVXAG0aIVhqbDoGXZXmUrXa62qlBrr2ZlN9Kp4z88-D8jVQ-GhhRkqpKDhWrGWecIhEtS04EKO90pYhOWic7rfWmm1BD6tyr8ZHo4x9rvssbdysFJbUQbRJ4dyfg3c8NhignEwDHUVl0myBZxUQqmpEZ-vah11-T-ygSQOwA4F0IHnsJJqp59snajJISOQcvBzkHL-fg5S74RGVPqPfqz5I-7kiY0ro16GUAgxZQG48Q0zjN8_STJ3QYjTWgxh-4xTC4jbdpDySVgUkiP8_rOG8jS3zK2rnfD_8W-J_7bxwq7e8 |
CitedBy_id | crossref_primary_10_1002_JLB_5MR0821_464R crossref_primary_10_1038_s41392_024_02043_4 crossref_primary_10_3389_fimmu_2022_796481 crossref_primary_10_3390_vaccines11091404 crossref_primary_10_3389_fimmu_2022_817905 crossref_primary_10_1038_s41467_024_51427_1 crossref_primary_10_1172_jci_insight_170681 crossref_primary_10_4049_jimmunol_2200272 crossref_primary_10_1002_cti2_1424 crossref_primary_10_1002_cti2_1521 crossref_primary_10_3389_fimmu_2022_889372 crossref_primary_10_1126_sciimmunol_abo0226 crossref_primary_10_1038_s41385_022_00569_w crossref_primary_10_1093_infdis_jiad421 crossref_primary_10_3389_fimmu_2023_1264160 crossref_primary_10_1016_j_isci_2022_104766 crossref_primary_10_1080_14760584_2022_2148659 crossref_primary_10_1126_sciimmunol_abj2901 crossref_primary_10_3390_antib12030044 crossref_primary_10_1172_jci_insight_157031 crossref_primary_10_3390_vaccines12101089 crossref_primary_10_1371_journal_ppat_1012739 crossref_primary_10_1038_s41590_022_01248_5 crossref_primary_10_3389_fimmu_2024_1450114 crossref_primary_10_1080_21645515_2023_2206360 crossref_primary_10_1080_21645515_2021_1976580 crossref_primary_10_3389_fimmu_2023_1244556 crossref_primary_10_3389_fimmu_2023_1231276 crossref_primary_10_3390_vaccines13030262 crossref_primary_10_1038_s41598_023_45412_9 crossref_primary_10_1128_spectrum_01808_23 crossref_primary_10_1016_j_ebiom_2021_103699 crossref_primary_10_3389_fimmu_2022_901217 crossref_primary_10_1128_spectrum_01837_22 crossref_primary_10_1172_JCI181244 crossref_primary_10_3389_fimmu_2023_1183727 crossref_primary_10_3390_ijerph192416391 crossref_primary_10_1038_s43856_024_00686_6 crossref_primary_10_3389_fimmu_2024_1397780 crossref_primary_10_1007_s00430_023_00773_w crossref_primary_10_1038_s41598_024_59535_0 crossref_primary_10_1016_j_xcrm_2022_100510 crossref_primary_10_1126_sciadv_ads1482 crossref_primary_10_1016_j_cell_2021_12_040 crossref_primary_10_3389_fimmu_2022_993754 crossref_primary_10_1038_s41392_021_00759_1 crossref_primary_10_1038_s41467_022_32573_w |
Cites_doi | 10.1126/science.abe1107 10.1128/mBio.00765-21 10.4049/jimmunol.1502551 10.1074/jbc.M403684200 10.1038/s41564-020-00813-8 10.1038/s41467-021-22236-7 10.1016/S1473-3099(20)30764-7 10.1093/cid/ciaa344 10.1016/j.jim.2010.12.016 10.1016/j.xcrm.2021.100275 10.1038/s41591-020-0995-0 10.1126/scitranslmed.abd2223 10.1073/pnas.2004168117 10.1073/pnas.1911842116 10.1084/jem.20020781 10.1038/s41586-020-2571-7 10.1172/JCI140200 10.1038/s41467-021-21444-5 10.1001/jama.2020.4783 10.4049/jimmunol.0901570 10.1038/s41467-021-23074-3 10.1203/PDR.0b013e3180686ce0 10.1038/s41591-021-01377-8 10.1016/j.jim.2018.09.009 10.1016/j.cell.2014.08.023 10.1001/jama.2020.10044 10.1126/scitranslmed.abf8654 10.1128/JCM.02107-20 10.1016/j.cell.2020.09.037 10.4049/jimmunol.181.11.8120 10.1016/j.virol.2014.02.005 10.1126/science.abd7728 10.1084/jem.20201993 10.1038/s41586-020-03041-6 10.1126/science.abc7520 10.1126/science.abe2402 10.1172/JCI84428 10.1038/nm1592 10.1016/j.cell.2020.10.052 10.1126/scitranslmed.abf1555 10.1056/NEJMoa2031304 10.1038/s41467-020-18450-4 10.1038/s41590-020-00828-7 10.3389/fimmu.2020.618685 10.1136/bmj.m3939 10.1016/j.vaccine.2017.09.062 10.1016/j.celrep.2021.108790 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) The Author(s) 2021 The Author(s). 2021 The Author(s) 2021 |
Copyright_xml | – notice: 2021 The Author(s) – notice: The Author(s) – notice: 2021 The Author(s). – notice: 2021 The Author(s) 2021 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.xcrm.2021.100296 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2666-3791 |
EndPage | 100296 |
ExternalDocumentID | oai_doaj_org_article_055cad52624241e08920af0c14bd5a0d PMC8106889 33997824 10_1016_j_xcrm_2021_100296 S2666379121001294 1_s2_0_S2666379121001294 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: HHSN272201400008C |
GroupedDBID | .1- .FO 0R~ 53G AAEDW AALRI AAMRU AAXUO AAYWO ACVFH ADCNI ADVLN AEUPX AFPUW AFRHN AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL RPM Z5R AAHOK NCXOZ 6I. AAFTH ACHIH AFCTW AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c627t-4093ec64d8414cadd64ad0afcd0259f1ce82b45a578f71ac47200dade7bec4333 |
IEDL.DBID | DOA |
ISSN | 2666-3791 |
IngestDate | Wed Aug 27 01:25:18 EDT 2025 Thu Aug 21 18:45:57 EDT 2025 Thu Jul 10 18:47:20 EDT 2025 Wed Feb 19 02:27:05 EST 2025 Tue Jul 01 01:25:23 EDT 2025 Thu Apr 24 23:09:54 EDT 2025 Tue Jul 25 21:02:18 EDT 2023 Sun Feb 23 10:18:52 EST 2025 Tue Aug 26 19:32:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | COVID-19 trogocytosis phagocytosis SARS-CoV-2 Fc effector functions convalescence antibody decay ADCC ADP |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2021 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c627t-4093ec64d8414cadd64ad0afcd0259f1ce82b45a578f71ac47200dade7bec4333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally Lead contact |
ORCID | 0000-0002-9072-1017 0000-0002-6197-4277 0000-0001-7285-4054 0000-0002-0780-9422 |
OpenAccessLink | https://doaj.org/article/055cad52624241e08920af0c14bd5a0d |
PMID | 33997824 |
PQID | 2528433209 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_055cad52624241e08920af0c14bd5a0d pubmedcentral_primary_oai_pubmedcentral_nih_gov_8106889 proquest_miscellaneous_2528433209 pubmed_primary_33997824 crossref_citationtrail_10_1016_j_xcrm_2021_100296 crossref_primary_10_1016_j_xcrm_2021_100296 elsevier_sciencedirect_doi_10_1016_j_xcrm_2021_100296 elsevier_clinicalkeyesjournals_1_s2_0_S2666379121001294 elsevier_clinicalkey_doi_10_1016_j_xcrm_2021_100296 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-15 |
PublicationDateYYYYMMDD | 2021-06-15 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports. Medicine |
PublicationTitleAlternate | Cell Rep Med |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Aydillo, Rombauts, Stadlbauer, Aslam, Abelenda-Alonso, Escalera, Amanat, Jiang, Krammer, Carratala (bib30) 2020 Westerhuis, Aguilar-Bretones, Raadsen, de Bruin, Okba, Haagmans, Langerak, Endeman, van den Akker, Gommers (bib31) 2020 Li, Zhang, Hu, Tong, Zheng, Yang, Kong, Ren, Wei, Mei (bib43) 2020; 324 Polack, Teng, Collins, Prince, Exner, Regele, Lirman, Rabold, Hoffman, Karp (bib47) 2002; 196 DiLillo, Palese, Wilson, Ravetch (bib14) 2016; 126 Chan, Seah, Chye, Massey, Torres, Lim, Wong, Neo, Wong, Lim (bib18) 2020 Ana-Sosa-Batiz, Johnston, Hogarth, Wines, Barr, Wheatley, Kent (bib22) 2017; 35 Zhao, Yuan, Wang, Liu, Liao, Su, Wang, Yuan, Li, Li (bib38) 2020; 71 Butler, Crowley, Natarajan, Xu, Weiner, Bobak, Mattox, Lee, Wieland-Alter, Connor (bib16) 2021; 11 Addetia, Crawford, Dingens, Zhu, Roychoudhury, Huang, Jerome, Bloom, Greninger (bib7) 2020; 58 Zohar, Loos, Fischinger, Atyeo, Wang, Slein, Burke, Yu, Feldman, Hauser (bib33) 2020; 183 Wines, Trist, Monteiro, Van Kooten, Hogarth (bib51) 2004; 279 Piccoli, Park, Tortorici, Czudnochowski, Walls, Beltramello, Silacci-Fregni, Pinto, Rosen, Bowen (bib3) 2020; 183 Ackerman, Moldt, Wyatt, Dugast, McAndrew, Tsoukas, Jost, Berger, Sciaranghella, Liu (bib24) 2011; 366 Daubeuf, Lindorfer, Taylor, Joly, Hudrisier (bib26) 2010; 184 Gasser, Cloutier, Prévost, Fink, Ducas, Ding, Dussault, Landry, Tremblay, Laforce-Lavoie (bib34) 2021; 34 Polack (bib48) 2007; 62 Khoury, Cromer, Reynaldi, Schlub, Wheatley, Juno (bib32) 2021 Hoepel, Chen, Allahverdiyeva, Manz, Aman, Bonta (bib46) 2021 Wang, Lorenzi, Muecksch, Finkin, Viant, Gaebler, Cipolla, Hoffman, Oliveira, Oren (bib35) 2021; 13 Wajnberg, Amanat, Firpo, Altman, Bailey, Mansour, McMahon, Meade, Mendu, Muellers (bib2) 2020; 370 Natarajan, Crowley, Butler, Xu, Weiner, Bloch (bib19) 2021; 12 Duan, Liu, Li, Zhang, Yu, Qu, Zhou, Chen, Meng, Hu (bib39) 2020; 117 Dufloo, Grzelak, Staropoli, Madec, Tondeur, Anna, Pelleau, Wiedemann, Planchais, Buchrieser (bib20) 2021 Crawford, Dingens, Eguia, Wolf, Wilcox, Logue, Shuey, Casto, Fiala, Wrenn (bib9) 2020 Juno, Tan, Lee, Reynaldi, Kelly, Wragg, Esterbauer, Kent, Batten, Mordant (bib1) 2020; 26 Yasui, Kohara, Kitabatake, Nishiwaki, Fujii, Tateno, Yoneda, Morita, Matsushima, Koyasu, Kai (bib23) 2014; 454-455 Shen, Wang, Zhao, Yang, Li, Yuan, Wang, Li, Yang, Xing (bib41) 2020; 323 Prado-Vivar, Becerra-Wong, Guadalupe, Márquez, Gutierrez, Rojas-Silva, Grunauer, Trueba, Barragán, Cárdenas (bib50) 2020 Schäfer, Muecksch, Lorenzi, Leist, Cipolla, Bournazos, Schmidt, Maison, Gazumyan, Martinez (bib17) 2021; 218 Wyllie, Mulchandani, Jones, Taylor-Phillips, Brooks, Charlett, Ades, Makin, Oliver, Moore (bib12) 2020 Seow, Graham, Merrick, Acors, Pickering, Steel, Hemmings, O’Byrne, Kouphou, Galao (bib10) 2020; 5 Baum, Ajithdoss, Copin, Zhou, Lanza, Negron, Ni, Wei, Mohammadi, Musser (bib6) 2020; 370 Song, He, Callaghan, Anzanello, Huang, Ricketts (bib29) 2021; 12 Beum, Mack, Pawluczkowycz, Lindorfer, Taylor (bib25) 2008; 181 Chakraborty, Gonzalez, Edwards, Mallajosyula, Buzzanco, Sherwood, Buffone, Kathale, Providenza, Xie (bib45) 2021; 22 Bournazos, DiLillo, Goff, Glass, Ravetch (bib15) 2019; 116 McMahan, Yu, Mercado, Loos, Tostanoski, Chandrashekar, Liu, Peter, Atyeo, Zhu (bib37) 2021; 590 Bournazos, Klein, Pietzsch, Seaman, Nussenzweig, Ravetch (bib13) 2014; 158 Sterlin, Mathian, Miyara, Mohr, Anna, Claër, Quentric, Fadlallah, Devilliers, Ghillani (bib36) 2021; 13 Simonovich, Burgos Pratx, Scibona, Beruto, Vallone, Vázquez, Savoy, Giunta, Pérez, Sánchez (bib44) 2021; 384 Joyner, Wright, Fairweather, Senefeld, Bruno, Klassen (bib40) 2020; 130 Richardson, Crowther, Mkhize, Morris (bib27) 2018; 463 Rogers, Zhao, Huang, Beutler, Burns, He, Limbo, Smith, Song, Woehl (bib4) 2020; 369 Wheatley, Juno, Wang, Selva, Reynaldi, Tan, Lee, Wragg, Kelly, Esterbauer (bib8) 2021; 12 Darrah, Patel, De Luca, Lindsay, Davey, Flynn, Hoff, Andersen, Reed, Morris (bib53) 2007; 13 Tillett, Sevinsky, Hartley, Kerwin, Crawford, Gorzalski, Laverdure, Verma, Rossetto, Jackson (bib49) 2021; 21 Selva, van de Sandt, Lemke, Lee, Shoffner, Chua (bib52) 2021; 12 Wines, Vanderven, Esparon, Kristensen, Kent, Hogarth (bib21) 2016; 197 Liu, Wang, Nair, Yu, Rapp, Wang, Luo, Chan, Sahi, Figueroa (bib5) 2020; 584 Agarwal, Mukherjee, Kumar, Chatterjee, Bhatnagar, Malhotra (bib42) 2020; 371 Huang, Garcia-Carreras, Hitchings, Yang, Katzelnick, Rattigan, Borgert, Moreno, Solomon, Trimmer-Smith (bib11) 2020; 11 Ng, Faulkner, Cornish, Rosa, Harvey, Hussain, Ulferts, Earl, Wrobel, Benton (bib28) 2020; 370 Dufloo (10.1016/j.xcrm.2021.100296_bib20) 2021 Wheatley (10.1016/j.xcrm.2021.100296_bib8) 2021; 12 Duan (10.1016/j.xcrm.2021.100296_bib39) 2020; 117 Bournazos (10.1016/j.xcrm.2021.100296_bib15) 2019; 116 Wajnberg (10.1016/j.xcrm.2021.100296_bib2) 2020; 370 Seow (10.1016/j.xcrm.2021.100296_bib10) 2020; 5 Bournazos (10.1016/j.xcrm.2021.100296_bib13) 2014; 158 Crawford (10.1016/j.xcrm.2021.100296_bib9) 2020 Joyner (10.1016/j.xcrm.2021.100296_bib40) 2020; 130 McMahan (10.1016/j.xcrm.2021.100296_bib37) 2021; 590 Wines (10.1016/j.xcrm.2021.100296_bib51) 2004; 279 Rogers (10.1016/j.xcrm.2021.100296_bib4) 2020; 369 Juno (10.1016/j.xcrm.2021.100296_bib1) 2020; 26 Piccoli (10.1016/j.xcrm.2021.100296_bib3) 2020; 183 Hoepel (10.1016/j.xcrm.2021.100296_bib46) 2021 Butler (10.1016/j.xcrm.2021.100296_bib16) 2021; 11 Khoury (10.1016/j.xcrm.2021.100296_bib32) 2021 Ng (10.1016/j.xcrm.2021.100296_bib28) 2020; 370 Darrah (10.1016/j.xcrm.2021.100296_bib53) 2007; 13 Aydillo (10.1016/j.xcrm.2021.100296_bib30) 2020 Wyllie (10.1016/j.xcrm.2021.100296_bib12) 2020 Schäfer (10.1016/j.xcrm.2021.100296_bib17) 2021; 218 Gasser (10.1016/j.xcrm.2021.100296_bib34) 2021; 34 Huang (10.1016/j.xcrm.2021.100296_bib11) 2020; 11 Polack (10.1016/j.xcrm.2021.100296_bib48) 2007; 62 Daubeuf (10.1016/j.xcrm.2021.100296_bib26) 2010; 184 Zhao (10.1016/j.xcrm.2021.100296_bib38) 2020; 71 Chakraborty (10.1016/j.xcrm.2021.100296_bib45) 2021; 22 Tillett (10.1016/j.xcrm.2021.100296_bib49) 2021; 21 Song (10.1016/j.xcrm.2021.100296_bib29) 2021; 12 Simonovich (10.1016/j.xcrm.2021.100296_bib44) 2021; 384 Ackerman (10.1016/j.xcrm.2021.100296_bib24) 2011; 366 DiLillo (10.1016/j.xcrm.2021.100296_bib14) 2016; 126 Shen (10.1016/j.xcrm.2021.100296_bib41) 2020; 323 Wang (10.1016/j.xcrm.2021.100296_bib35) 2021; 13 Ana-Sosa-Batiz (10.1016/j.xcrm.2021.100296_bib22) 2017; 35 Addetia (10.1016/j.xcrm.2021.100296_bib7) 2020; 58 Beum (10.1016/j.xcrm.2021.100296_bib25) 2008; 181 Zohar (10.1016/j.xcrm.2021.100296_bib33) 2020; 183 Wines (10.1016/j.xcrm.2021.100296_bib21) 2016; 197 Natarajan (10.1016/j.xcrm.2021.100296_bib19) 2021; 12 Yasui (10.1016/j.xcrm.2021.100296_bib23) 2014; 454-455 Selva (10.1016/j.xcrm.2021.100296_bib52) 2021; 12 Westerhuis (10.1016/j.xcrm.2021.100296_bib31) 2020 Liu (10.1016/j.xcrm.2021.100296_bib5) 2020; 584 Polack (10.1016/j.xcrm.2021.100296_bib47) 2002; 196 Baum (10.1016/j.xcrm.2021.100296_bib6) 2020; 370 Richardson (10.1016/j.xcrm.2021.100296_bib27) 2018; 463 Sterlin (10.1016/j.xcrm.2021.100296_bib36) 2021; 13 Li (10.1016/j.xcrm.2021.100296_bib43) 2020; 324 Chan (10.1016/j.xcrm.2021.100296_bib18) 2020 Agarwal (10.1016/j.xcrm.2021.100296_bib42) 2020; 371 Prado-Vivar (10.1016/j.xcrm.2021.100296_bib50) 2020 |
References_xml | – volume: 12 start-page: 2037 year: 2021 ident: bib52 article-title: Systems serology detects functionally distinct coronavirus antibody features in children and elderly publication-title: Nat. Commun. – volume: 183 start-page: 1024 year: 2020 end-page: 1042.e21 ident: bib3 article-title: Mapping neutralizing and immunodominant sites on the SARS-CoV-2 Spike receptor-binding domain by structure-guided high-resolution serology publication-title: Cell – year: 2020 ident: bib9 article-title: Dynamics of neutralizing antibody titers in the months after SARS-CoV-2 infection publication-title: J. Infect. Dis. – year: 2021 ident: bib32 article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection publication-title: Nat. Med. – volume: 26 start-page: 1428 year: 2020 end-page: 1434 ident: bib1 article-title: Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19 publication-title: Nat. Med. – volume: 197 start-page: 1507 year: 2016 end-page: 1516 ident: bib21 article-title: Dimeric FcγR ectodomains as probes of the Fc receptor function of anti-influenza virus IgG publication-title: J. Immunol. – volume: 21 start-page: 52 year: 2021 end-page: 58 ident: bib49 article-title: Genomic evidence for reinfection with SARS-CoV-2: a case study publication-title: Lancet Infect. Dis. – volume: 12 start-page: 2938 year: 2021 ident: bib29 article-title: Cross-reactive serum and memory B cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection publication-title: Nat. Commun. – volume: 454-455 start-page: 157 year: 2014 end-page: 168 ident: bib23 article-title: Phagocytic cells contribute to the antibody-mediated elimination of pulmonary-infected SARS coronavirus publication-title: Virology – volume: 11 start-page: 618685 year: 2021 ident: bib16 article-title: Distinct features and functions of systemic and mucosal humoral immunity among SARS-CoV-2 convalescent individuals publication-title: Front. Immunol. – volume: 34 start-page: 108790 year: 2021 ident: bib34 article-title: Major role of IgM in the neutralizing activity of convalescent plasma against SARS-CoV-2 publication-title: Cell Rep. – volume: 590 start-page: 630 year: 2021 end-page: 634 ident: bib37 article-title: Correlates of protection against SARS-CoV-2 in rhesus macaques publication-title: Nature – volume: 279 start-page: 26339 year: 2004 end-page: 26345 ident: bib51 article-title: Fc receptor gamma chain residues at the interface of the cytoplasmic and transmembrane domains affect association with FcalphaRI, surface expression, and function publication-title: J. Biol. Chem. – volume: 370 start-page: 1110 year: 2020 end-page: 1115 ident: bib6 article-title: REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters publication-title: Science – volume: 5 start-page: 1598 year: 2020 end-page: 1607 ident: bib10 article-title: Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans publication-title: Nat. Microbiol. – year: 2020 ident: bib12 article-title: SARS-CoV-2 responsive T cell numbers are associated with protection from COVID-19: a prospective cohort study in keyworkers publication-title: medRxiv – volume: 323 start-page: 1582 year: 2020 end-page: 1589 ident: bib41 article-title: Treatment of 5 critically ill patients with COVID-19 with convalescent plasma publication-title: JAMA – volume: 370 start-page: 1339 year: 2020 end-page: 1343 ident: bib28 article-title: Preexisting and de novo humoral immunity to SARS-CoV-2 in humans publication-title: Science – volume: 366 start-page: 8 year: 2011 end-page: 19 ident: bib24 article-title: A robust, high-throughput assay to determine the phagocytic activity of clinical antibody samples publication-title: J. Immunol. Methods – volume: 384 start-page: 619 year: 2021 end-page: 629 ident: bib44 article-title: A randomized trial of convalescent plasma in Covid-19 severe pneumonia publication-title: N. Engl. J. Med. – volume: 117 start-page: 9490 year: 2020 end-page: 9496 ident: bib39 article-title: Effectiveness of convalescent plasma therapy in severe COVID-19 patients publication-title: Proc. Natl. Acad. Sci. USA – volume: 218 start-page: e20201993 year: 2021 ident: bib17 article-title: Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo publication-title: J. Exp. Med. – year: 2020 ident: bib31 article-title: Severe COVID-19 patients display a back boost of seasonal coronavirus-specific antibodies publication-title: medRxiv – volume: 12 start-page: 1162 year: 2021 ident: bib8 article-title: Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19 publication-title: Nat. Commun. – volume: 130 start-page: 4791 year: 2020 end-page: 4797 ident: bib40 article-title: Early safety indicators of COVID-19 convalescent plasma in 5,000 patients publication-title: J. Clin. Invest. – volume: 370 start-page: 1227 year: 2020 end-page: 1230 ident: bib2 article-title: Robust neutralizing antibodies to SARS-CoV-2 infection persist for months publication-title: Science – volume: 463 start-page: 71 year: 2018 end-page: 83 ident: bib27 article-title: Measuring the ability of HIV-specific antibodies to mediate trogocytosis publication-title: J. Immunol. Methods – volume: 369 start-page: 956 year: 2020 end-page: 963 ident: bib4 article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model publication-title: Science – year: 2020 ident: bib50 article-title: A case of SARS-CoV-2 reinfection in Ecuador publication-title: Lancet Infect. Dis. – volume: 324 start-page: 460 year: 2020 end-page: 470 ident: bib43 article-title: Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial publication-title: JAMA – volume: 71 start-page: 2027 year: 2020 end-page: 2034 ident: bib38 article-title: Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019 publication-title: Clin. Infect. Dis. – volume: 196 start-page: 859 year: 2002 end-page: 865 ident: bib47 article-title: A role for immune complexes in enhanced respiratory syncytial virus disease publication-title: J. Exp. Med. – volume: 35 start-page: 6451 year: 2017 end-page: 6458 ident: bib22 article-title: Antibody-dependent phagocytosis (ADP) responses following trivalent inactivated influenza vaccination of younger and older adults publication-title: Vaccine – volume: 62 start-page: 111 year: 2007 end-page: 115 ident: bib48 article-title: Atypical measles and enhanced respiratory syncytial virus disease (ERD) made simple publication-title: Pediatr. Res. – volume: 58 start-page: e02107-20 year: 2020 ident: bib7 article-title: Neutralizing antibodies correlate with protection from SARS-CoV-2 in humans during a fishery vessel outbreak with a high attack rate publication-title: J. Clin. Microbiol. – volume: 22 start-page: 67 year: 2021 end-page: 73 ident: bib45 article-title: Proinflammatory IgG Fc structures in patients with severe COVID-19 publication-title: Nat. Immunol. – volume: 184 start-page: 1897 year: 2010 end-page: 1908 ident: bib26 article-title: The direction of plasma membrane exchange between lymphocytes and accessory cells by trogocytosis is influenced by the nature of the accessory cell publication-title: J. Immunol. – volume: 371 start-page: m3939 year: 2020 ident: bib42 article-title: Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial) publication-title: BMJ – volume: 11 start-page: 4704 year: 2020 ident: bib11 article-title: A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity publication-title: Nat. Commun. – volume: 116 start-page: 20054 year: 2019 end-page: 20062 ident: bib15 article-title: Differential requirements for FcγR engagement by protective antibodies against Ebola virus publication-title: Proc. Natl. Acad. Sci. USA – volume: 13 start-page: 843 year: 2007 end-page: 850 ident: bib53 article-title: Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major publication-title: Nat. Med. – volume: 584 start-page: 450 year: 2020 end-page: 456 ident: bib5 article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike publication-title: Nature – volume: 181 start-page: 8120 year: 2008 end-page: 8132 ident: bib25 article-title: Binding of rituximab, trastuzumab, cetuximab, or mAb T101 to cancer cells promotes trogocytosis mediated by THP-1 cells and monocytes publication-title: J. Immunol. – year: 2020 ident: bib30 article-title: Antibody immunological imprinting on COVID-19 patients publication-title: medRxiv – volume: 13 start-page: eabf1555 year: 2021 ident: bib35 article-title: Enhanced SARS-CoV-2 neutralization by dimeric IgA publication-title: Sci. Transl. Med. – start-page: eabf8654 year: 2021 ident: bib46 article-title: Anti-SARS-CoV-2 IgG from severely ill COVID-19 patients promotes macrophage hyper-inflammatory responses publication-title: Sci. Transl. Med. – volume: 12 year: 2021 ident: bib19 article-title: Markers of Polyfunctional SARS-CoV-2 Antibodies in Convalescent Plasma publication-title: mBio – volume: 183 start-page: 1508 year: 2020 end-page: 1519.e12 ident: bib33 article-title: Compromised humoral functional evolution tracks with SARS-CoV-2 mortality publication-title: Cell – volume: 126 start-page: 605 year: 2016 end-page: 610 ident: bib14 article-title: Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection publication-title: J. Clin. Invest. – volume: 13 start-page: eabd2223 year: 2021 ident: bib36 article-title: IgA dominates the early neutralizing antibody response to SARS-CoV-2 publication-title: Sci. Transl. Med. – year: 2021 ident: bib20 article-title: Asymptomatic and symptomatic SARS-CoV-2 infections elicit polyfunctional antibodies publication-title: Cell Rep. Med – volume: 158 start-page: 1243 year: 2014 end-page: 1253 ident: bib13 article-title: Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity publication-title: Cell – year: 2020 ident: bib18 article-title: The Fc-mediated effector functions of a potent SARS-CoV-2 neutralizing antibody, SC31, isolated from an early convalescent COVID-19 patient, are essential for the optimal therapeutic efficacy of the antibody publication-title: bioRxiv – volume: 370 start-page: 1339 year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib28 article-title: Preexisting and de novo humoral immunity to SARS-CoV-2 in humans publication-title: Science doi: 10.1126/science.abe1107 – year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib9 article-title: Dynamics of neutralizing antibody titers in the months after SARS-CoV-2 infection publication-title: J. Infect. Dis. – volume: 12 year: 2021 ident: 10.1016/j.xcrm.2021.100296_bib19 article-title: Markers of Polyfunctional SARS-CoV-2 Antibodies in Convalescent Plasma publication-title: mBio doi: 10.1128/mBio.00765-21 – volume: 197 start-page: 1507 year: 2016 ident: 10.1016/j.xcrm.2021.100296_bib21 article-title: Dimeric FcγR ectodomains as probes of the Fc receptor function of anti-influenza virus IgG publication-title: J. Immunol. doi: 10.4049/jimmunol.1502551 – volume: 279 start-page: 26339 year: 2004 ident: 10.1016/j.xcrm.2021.100296_bib51 article-title: Fc receptor gamma chain residues at the interface of the cytoplasmic and transmembrane domains affect association with FcalphaRI, surface expression, and function publication-title: J. Biol. Chem. doi: 10.1074/jbc.M403684200 – volume: 5 start-page: 1598 year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib10 article-title: Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-00813-8 – year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib50 article-title: A case of SARS-CoV-2 reinfection in Ecuador publication-title: Lancet Infect. Dis. – volume: 12 start-page: 2037 year: 2021 ident: 10.1016/j.xcrm.2021.100296_bib52 article-title: Systems serology detects functionally distinct coronavirus antibody features in children and elderly publication-title: Nat. Commun. doi: 10.1038/s41467-021-22236-7 – volume: 21 start-page: 52 year: 2021 ident: 10.1016/j.xcrm.2021.100296_bib49 article-title: Genomic evidence for reinfection with SARS-CoV-2: a case study publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30764-7 – year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib18 article-title: The Fc-mediated effector functions of a potent SARS-CoV-2 neutralizing antibody, SC31, isolated from an early convalescent COVID-19 patient, are essential for the optimal therapeutic efficacy of the antibody publication-title: bioRxiv – volume: 71 start-page: 2027 year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib38 article-title: Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciaa344 – year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib12 article-title: SARS-CoV-2 responsive T cell numbers are associated with protection from COVID-19: a prospective cohort study in keyworkers publication-title: medRxiv – volume: 366 start-page: 8 year: 2011 ident: 10.1016/j.xcrm.2021.100296_bib24 article-title: A robust, high-throughput assay to determine the phagocytic activity of clinical antibody samples publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2010.12.016 – year: 2021 ident: 10.1016/j.xcrm.2021.100296_bib20 article-title: Asymptomatic and symptomatic SARS-CoV-2 infections elicit polyfunctional antibodies publication-title: Cell Rep. Med doi: 10.1016/j.xcrm.2021.100275 – volume: 26 start-page: 1428 year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib1 article-title: Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19 publication-title: Nat. Med. doi: 10.1038/s41591-020-0995-0 – volume: 13 start-page: eabd2223 year: 2021 ident: 10.1016/j.xcrm.2021.100296_bib36 article-title: IgA dominates the early neutralizing antibody response to SARS-CoV-2 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abd2223 – volume: 117 start-page: 9490 year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib39 article-title: Effectiveness of convalescent plasma therapy in severe COVID-19 patients publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2004168117 – year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib31 article-title: Severe COVID-19 patients display a back boost of seasonal coronavirus-specific antibodies publication-title: medRxiv – volume: 116 start-page: 20054 year: 2019 ident: 10.1016/j.xcrm.2021.100296_bib15 article-title: Differential requirements for FcγR engagement by protective antibodies against Ebola virus publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1911842116 – year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib30 article-title: Antibody immunological imprinting on COVID-19 patients publication-title: medRxiv – volume: 196 start-page: 859 year: 2002 ident: 10.1016/j.xcrm.2021.100296_bib47 article-title: A role for immune complexes in enhanced respiratory syncytial virus disease publication-title: J. Exp. Med. doi: 10.1084/jem.20020781 – volume: 584 start-page: 450 year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib5 article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike publication-title: Nature doi: 10.1038/s41586-020-2571-7 – volume: 130 start-page: 4791 year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib40 article-title: Early safety indicators of COVID-19 convalescent plasma in 5,000 patients publication-title: J. Clin. Invest. doi: 10.1172/JCI140200 – volume: 12 start-page: 1162 year: 2021 ident: 10.1016/j.xcrm.2021.100296_bib8 article-title: Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21444-5 – volume: 323 start-page: 1582 year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib41 article-title: Treatment of 5 critically ill patients with COVID-19 with convalescent plasma publication-title: JAMA doi: 10.1001/jama.2020.4783 – volume: 184 start-page: 1897 year: 2010 ident: 10.1016/j.xcrm.2021.100296_bib26 article-title: The direction of plasma membrane exchange between lymphocytes and accessory cells by trogocytosis is influenced by the nature of the accessory cell publication-title: J. Immunol. doi: 10.4049/jimmunol.0901570 – volume: 12 start-page: 2938 year: 2021 ident: 10.1016/j.xcrm.2021.100296_bib29 article-title: Cross-reactive serum and memory B cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection publication-title: Nat. Commun. doi: 10.1038/s41467-021-23074-3 – volume: 62 start-page: 111 year: 2007 ident: 10.1016/j.xcrm.2021.100296_bib48 article-title: Atypical measles and enhanced respiratory syncytial virus disease (ERD) made simple publication-title: Pediatr. Res. doi: 10.1203/PDR.0b013e3180686ce0 – year: 2021 ident: 10.1016/j.xcrm.2021.100296_bib32 article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection publication-title: Nat. Med. doi: 10.1038/s41591-021-01377-8 – volume: 463 start-page: 71 year: 2018 ident: 10.1016/j.xcrm.2021.100296_bib27 article-title: Measuring the ability of HIV-specific antibodies to mediate trogocytosis publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2018.09.009 – volume: 158 start-page: 1243 year: 2014 ident: 10.1016/j.xcrm.2021.100296_bib13 article-title: Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity publication-title: Cell doi: 10.1016/j.cell.2014.08.023 – volume: 324 start-page: 460 year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib43 article-title: Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial publication-title: JAMA doi: 10.1001/jama.2020.10044 – start-page: eabf8654 year: 2021 ident: 10.1016/j.xcrm.2021.100296_bib46 article-title: Anti-SARS-CoV-2 IgG from severely ill COVID-19 patients promotes macrophage hyper-inflammatory responses publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abf8654 – volume: 58 start-page: e02107-20 year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib7 article-title: Neutralizing antibodies correlate with protection from SARS-CoV-2 in humans during a fishery vessel outbreak with a high attack rate publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.02107-20 – volume: 183 start-page: 1024 year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib3 article-title: Mapping neutralizing and immunodominant sites on the SARS-CoV-2 Spike receptor-binding domain by structure-guided high-resolution serology publication-title: Cell doi: 10.1016/j.cell.2020.09.037 – volume: 181 start-page: 8120 year: 2008 ident: 10.1016/j.xcrm.2021.100296_bib25 article-title: Binding of rituximab, trastuzumab, cetuximab, or mAb T101 to cancer cells promotes trogocytosis mediated by THP-1 cells and monocytes publication-title: J. Immunol. doi: 10.4049/jimmunol.181.11.8120 – volume: 454-455 start-page: 157 year: 2014 ident: 10.1016/j.xcrm.2021.100296_bib23 article-title: Phagocytic cells contribute to the antibody-mediated elimination of pulmonary-infected SARS coronavirus publication-title: Virology doi: 10.1016/j.virol.2014.02.005 – volume: 370 start-page: 1227 year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib2 article-title: Robust neutralizing antibodies to SARS-CoV-2 infection persist for months publication-title: Science doi: 10.1126/science.abd7728 – volume: 218 start-page: e20201993 year: 2021 ident: 10.1016/j.xcrm.2021.100296_bib17 article-title: Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo publication-title: J. Exp. Med. doi: 10.1084/jem.20201993 – volume: 590 start-page: 630 year: 2021 ident: 10.1016/j.xcrm.2021.100296_bib37 article-title: Correlates of protection against SARS-CoV-2 in rhesus macaques publication-title: Nature doi: 10.1038/s41586-020-03041-6 – volume: 369 start-page: 956 year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib4 article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model publication-title: Science doi: 10.1126/science.abc7520 – volume: 370 start-page: 1110 year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib6 article-title: REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters publication-title: Science doi: 10.1126/science.abe2402 – volume: 126 start-page: 605 year: 2016 ident: 10.1016/j.xcrm.2021.100296_bib14 article-title: Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection publication-title: J. Clin. Invest. doi: 10.1172/JCI84428 – volume: 13 start-page: 843 year: 2007 ident: 10.1016/j.xcrm.2021.100296_bib53 article-title: Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major publication-title: Nat. Med. doi: 10.1038/nm1592 – volume: 183 start-page: 1508 year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib33 article-title: Compromised humoral functional evolution tracks with SARS-CoV-2 mortality publication-title: Cell doi: 10.1016/j.cell.2020.10.052 – volume: 13 start-page: eabf1555 year: 2021 ident: 10.1016/j.xcrm.2021.100296_bib35 article-title: Enhanced SARS-CoV-2 neutralization by dimeric IgA publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abf1555 – volume: 384 start-page: 619 year: 2021 ident: 10.1016/j.xcrm.2021.100296_bib44 article-title: A randomized trial of convalescent plasma in Covid-19 severe pneumonia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2031304 – volume: 11 start-page: 4704 year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib11 article-title: A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity publication-title: Nat. Commun. doi: 10.1038/s41467-020-18450-4 – volume: 22 start-page: 67 year: 2021 ident: 10.1016/j.xcrm.2021.100296_bib45 article-title: Proinflammatory IgG Fc structures in patients with severe COVID-19 publication-title: Nat. Immunol. doi: 10.1038/s41590-020-00828-7 – volume: 11 start-page: 618685 year: 2021 ident: 10.1016/j.xcrm.2021.100296_bib16 article-title: Distinct features and functions of systemic and mucosal humoral immunity among SARS-CoV-2 convalescent individuals publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.618685 – volume: 371 start-page: m3939 year: 2020 ident: 10.1016/j.xcrm.2021.100296_bib42 article-title: Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial) publication-title: BMJ doi: 10.1136/bmj.m3939 – volume: 35 start-page: 6451 year: 2017 ident: 10.1016/j.xcrm.2021.100296_bib22 article-title: Antibody-dependent phagocytosis (ADP) responses following trivalent inactivated influenza vaccination of younger and older adults publication-title: Vaccine doi: 10.1016/j.vaccine.2017.09.062 – volume: 34 start-page: 108790 year: 2021 ident: 10.1016/j.xcrm.2021.100296_bib34 article-title: Major role of IgM in the neutralizing activity of convalescent plasma against SARS-CoV-2 publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.108790 |
SSID | ssj0002511830 |
Score | 2.4039824 |
Snippet | The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of... SummaryThe capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100296 |
SubjectTerms | ADCC ADP Advanced Basic Science Antibodies, Viral - blood Antibodies, Viral - metabolism antibody Antibody-Dependent Cell Cytotoxicity - immunology Cell Line, Tumor convalescence COVID-19 COVID-19 - immunology COVID-19 - pathology COVID-19 - virology decay Dimerization Fc effector functions Humans Immunoglobulin Fc Fragments - genetics Immunoglobulin Fc Fragments - immunology Immunoglobulin Fc Fragments - metabolism Kinetics Neutralization Tests Phagocytosis SARS-CoV-2 SARS-CoV-2 - immunology SARS-CoV-2 - isolation & purification SARS-CoV-2 - metabolism Severity of Illness Index Spike Glycoprotein, Coronavirus - genetics Spike Glycoprotein, Coronavirus - immunology Spike Glycoprotein, Coronavirus - metabolism trogocytosis |
Title | Decay of Fc-dependent antibody functions after mild to moderate COVID-19 |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2666379121001294 https://www.clinicalkey.es/playcontent/1-s2.0-S2666379121001294 https://dx.doi.org/10.1016/j.xcrm.2021.100296 https://www.ncbi.nlm.nih.gov/pubmed/33997824 https://www.proquest.com/docview/2528433209 https://pubmed.ncbi.nlm.nih.gov/PMC8106889 https://doaj.org/article/055cad52624241e08920af0c14bd5a0d |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLojzDozISNxSRiR9JjtCyWpAKByjqzXL8EItKgrqp1P57ZpxktQuovXDdjWPl8zeeL_E8GHvVOAmxsjpHae9yGXAt2hAhV5EIEKOuNSUnH3_SyxP58VSdbrX6opiwsTzwCNybQilnvSpTHgOEom7KwsbCgWy9soWn3Rd93tbLFO3BSTinRiPogDRaUQNTxswY3HXpzikNvYRUgpQq9m95pVS8f8c5_S0-_4yh3HJKi3vs7qQm-dvxKfbZrdDdZ7ePp_PyB2x5FJy94n3kC5fP_W4Hjmiu2t5fcfJqiXg89QrnP1dnng89p_44VEOCH37-9uEoh-YhO1m8_3q4zKfeCbnTZTXga2EjgtPS1xIkAui1tB6Bcx6xaSK4UJetVBYNNlZgnazQXLz1ocJFlUKIR2yv67vwhHFhqwJ8XfsqKmm1t2ULdDIsRZSNBMgYzNgZNxUWp_4WZ2aOIPthCG9DeJsR74y93oz5NZbVuPbqd7QkmyupJHb6AYliJqKYm4iSMTEvqJmzTnGfxButrp26-teosJ5MfW3ArEtTmC9ENOJZCenjnsyY2oyc1MyoUm6c8eXMNoOmTuc3tgv9xdqUCrWEEEj3jD0e2beBRKDQRLGHs1Y7vNzBbPefbvU9lROvgRoPNU__B8jP2B16FIqlA_Wc7Q3nF-EFqrahPUgGepA-p_0GddA78w |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decay+of+Fc-dependent+antibody+functions+after+mild+to+moderate+COVID-19&rft.jtitle=Cell+reports.+Medicine&rft.au=Lee%2C+Wen+Shi&rft.au=Selva%2C+Kevin+John&rft.au=Davis%2C+Samantha+K.&rft.au=Wines%2C+Bruce+D.&rft.date=2021-06-15&rft.pub=Elsevier&rft.eissn=2666-3791&rft.volume=2&rft.issue=6&rft_id=info:doi/10.1016%2Fj.xcrm.2021.100296&rft_id=info%3Apmid%2F33997824&rft.externalDocID=PMC8106889 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F26663791%2FS2666379120X00164%2Fcov150h.gif |