Decay of Fc-dependent antibody functions after mild to moderate COVID-19

The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent a...

Full description

Saved in:
Bibliographic Details
Published inCell reports. Medicine Vol. 2; no. 6; p. 100296
Main Authors Lee, Wen Shi, Selva, Kevin John, Davis, Samantha K., Wines, Bruce D., Reynaldi, Arnold, Esterbauer, Robyn, Kelly, Hannah G., Haycroft, Ebene R., Tan, Hyon-Xhi, Juno, Jennifer A., Wheatley, Adam K., Hogarth, P. Mark, Cromer, Deborah, Davenport, Miles P., Chung, Amy W., Kent, Stephen J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.06.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent antibody functions against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-expressing cells in serial samples from subjects primarily with mild-moderate COVID-19 up to 149 days post-infection. We find that S-specific antibodies capable of engaging Fcγ receptors decay over time, with S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declining accordingly. Although there is significant decay in ADCC and ADP activity, they remain readily detectable in almost all subjects at the last time point studied (94%) in contrast with neutralization activity (70%). Although it remains unclear the degree to which Fc effector functions contribute to protection against SARS-CoV-2 re-infection, our results indicate that antibodies with Fc effector functions persist longer than neutralizing antibodies. [Display omitted] SARS-CoV-2 spike-specific Fc effector functions may contribute to COVID-19 controlSpike-specific ADCC and ADP responses decline in the 4 months post-infectionCompared to neutralization, ADCC and ADP are detectable longer post-infectionCross-reactive antibodies against human coronavirus spike increase post-infection Lee et al. report the decline of Fc-dependent antibody functions against SARS-CoV-2 spike in COVID-19 convalescent subjects up to 149 days post-infection. Unlike neutralization activity, plasma ADCC and ADP responses are sustained in the majority of subjects at the last time point measured.
AbstractList The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent antibody functions against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-expressing cells in serial samples from subjects primarily with mild-moderate COVID-19 up to 149 days post-infection. We find that S-specific antibodies capable of engaging Fcγ receptors decay over time, with S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declining accordingly. Although there is significant decay in ADCC and ADP activity, they remain readily detectable in almost all subjects at the last time point studied (94%) in contrast with neutralization activity (70%). Although it remains unclear the degree to which Fc effector functions contribute to protection against SARS-CoV-2 re-infection, our results indicate that antibodies with Fc effector functions persist longer than neutralizing antibodies.
The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent antibody functions against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-expressing cells in serial samples from subjects primarily with mild-moderate COVID-19 up to 149 days post-infection. We find that S-specific antibodies capable of engaging Fcγ receptors decay over time, with S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declining accordingly. Although there is significant decay in ADCC and ADP activity, they remain readily detectable in almost all subjects at the last time point studied (94%) in contrast with neutralization activity (70%). Although it remains unclear the degree to which Fc effector functions contribute to protection against SARS-CoV-2 re-infection, our results indicate that antibodies with Fc effector functions persist longer than neutralizing antibodies.The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent antibody functions against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-expressing cells in serial samples from subjects primarily with mild-moderate COVID-19 up to 149 days post-infection. We find that S-specific antibodies capable of engaging Fcγ receptors decay over time, with S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declining accordingly. Although there is significant decay in ADCC and ADP activity, they remain readily detectable in almost all subjects at the last time point studied (94%) in contrast with neutralization activity (70%). Although it remains unclear the degree to which Fc effector functions contribute to protection against SARS-CoV-2 re-infection, our results indicate that antibodies with Fc effector functions persist longer than neutralizing antibodies.
The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent antibody functions against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-expressing cells in serial samples from subjects primarily with mild-moderate COVID-19 up to 149 days post-infection. We find that S-specific antibodies capable of engaging Fcγ receptors decay over time, with S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declining accordingly. Although there is significant decay in ADCC and ADP activity, they remain readily detectable in almost all subjects at the last time point studied (94%) in contrast with neutralization activity (70%). Although it remains unclear the degree to which Fc effector functions contribute to protection against SARS-CoV-2 re-infection, our results indicate that antibodies with Fc effector functions persist longer than neutralizing antibodies. [Display omitted] SARS-CoV-2 spike-specific Fc effector functions may contribute to COVID-19 controlSpike-specific ADCC and ADP responses decline in the 4 months post-infectionCompared to neutralization, ADCC and ADP are detectable longer post-infectionCross-reactive antibodies against human coronavirus spike increase post-infection Lee et al. report the decline of Fc-dependent antibody functions against SARS-CoV-2 spike in COVID-19 convalescent subjects up to 149 days post-infection. Unlike neutralization activity, plasma ADCC and ADP responses are sustained in the majority of subjects at the last time point measured.
SummaryThe capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent antibody functions against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-expressing cells in serial samples from subjects primarily with mild-moderate COVID-19 up to 149 days post-infection. We find that S-specific antibodies capable of engaging Fcγ receptors decay over time, with S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declining accordingly. Although there is significant decay in ADCC and ADP activity, they remain readily detectable in almost all subjects at the last time point studied (94%) in contrast with neutralization activity (70%). Although it remains unclear the degree to which Fc effector functions contribute to protection against SARS-CoV-2 re-infection, our results indicate that antibodies with Fc effector functions persist longer than neutralizing antibodies.
The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent antibody functions against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-expressing cells in serial samples from subjects primarily with mild-moderate COVID-19 up to 149 days post-infection. We find that S-specific antibodies capable of engaging Fcγ receptors decay over time, with S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declining accordingly. Although there is significant decay in ADCC and ADP activity, they remain readily detectable in almost all subjects at the last time point studied (94%) in contrast with neutralization activity (70%). Although it remains unclear the degree to which Fc effector functions contribute to protection against SARS-CoV-2 re-infection, our results indicate that antibodies with Fc effector functions persist longer than neutralizing antibodies. SARS-CoV-2 spike-specific Fc effector functions may contribute to COVID-19 control Spike-specific ADCC and ADP responses decline in the 4 months post-infection Compared to neutralization, ADCC and ADP are detectable longer post-infection Cross-reactive antibodies against human coronavirus spike increase post-infection Lee et al. report the decline of Fc-dependent antibody functions against SARS-CoV-2 spike in COVID-19 convalescent subjects up to 149 days post-infection. Unlike neutralization activity, plasma ADCC and ADP responses are sustained in the majority of subjects at the last time point measured.
ArticleNumber 100296
Author Kent, Stephen J.
Davis, Samantha K.
Selva, Kevin John
Wheatley, Adam K.
Tan, Hyon-Xhi
Juno, Jennifer A.
Kelly, Hannah G.
Cromer, Deborah
Hogarth, P. Mark
Reynaldi, Arnold
Esterbauer, Robyn
Wines, Bruce D.
Davenport, Miles P.
Chung, Amy W.
Lee, Wen Shi
Haycroft, Ebene R.
Author_xml – sequence: 1
  givenname: Wen Shi
  orcidid: 0000-0001-7285-4054
  surname: Lee
  fullname: Lee, Wen Shi
  organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
– sequence: 2
  givenname: Kevin John
  orcidid: 0000-0002-0780-9422
  surname: Selva
  fullname: Selva, Kevin John
  organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
– sequence: 3
  givenname: Samantha K.
  orcidid: 0000-0002-6197-4277
  surname: Davis
  fullname: Davis, Samantha K.
  organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
– sequence: 4
  givenname: Bruce D.
  surname: Wines
  fullname: Wines, Bruce D.
  organization: Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
– sequence: 5
  givenname: Arnold
  surname: Reynaldi
  fullname: Reynaldi, Arnold
  organization: Kirby Institute, University of New South Wales, Kensington, NSW, Australia
– sequence: 6
  givenname: Robyn
  surname: Esterbauer
  fullname: Esterbauer, Robyn
  organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
– sequence: 7
  givenname: Hannah G.
  surname: Kelly
  fullname: Kelly, Hannah G.
  organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
– sequence: 8
  givenname: Ebene R.
  surname: Haycroft
  fullname: Haycroft, Ebene R.
  organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
– sequence: 9
  givenname: Hyon-Xhi
  surname: Tan
  fullname: Tan, Hyon-Xhi
  organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
– sequence: 10
  givenname: Jennifer A.
  orcidid: 0000-0002-9072-1017
  surname: Juno
  fullname: Juno, Jennifer A.
  organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
– sequence: 11
  givenname: Adam K.
  surname: Wheatley
  fullname: Wheatley, Adam K.
  organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
– sequence: 12
  givenname: P. Mark
  surname: Hogarth
  fullname: Hogarth, P. Mark
  organization: Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
– sequence: 13
  givenname: Deborah
  surname: Cromer
  fullname: Cromer, Deborah
  organization: Kirby Institute, University of New South Wales, Kensington, NSW, Australia
– sequence: 14
  givenname: Miles P.
  surname: Davenport
  fullname: Davenport, Miles P.
  organization: Kirby Institute, University of New South Wales, Kensington, NSW, Australia
– sequence: 15
  givenname: Amy W.
  surname: Chung
  fullname: Chung, Amy W.
  email: awchung@unimelb.edu.au
  organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
– sequence: 16
  givenname: Stephen J.
  surname: Kent
  fullname: Kent, Stephen J.
  email: skent@unimelb.edu.au
  organization: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33997824$$D View this record in MEDLINE/PubMed
BookMark eNqFUktv1DAQjlARfdA_wAHlyCWL7TiJg1ClatvSlSr1wONqOeNJcUjsxfZW7L_HYVvUVqKcbNnfY2a-Ocz2rLOYZW8oWVBC6_fD4hf4acEIo-mBsLZ-kR2wuq6Lsmnp3oP7fnYcwkASpqJUlORVtl-WbdsIxg-yyzMEtc1dn19AoXGNVqONubLRdE5v835jIRpnQ676iD6fzKjz6PLJafQqYr68_rY6K2j7OnvZqzHg8d15lH29OP-yvCyurj-tlqdXBdSsiQUnbYlQcy045aC0rrnSRPWgU3ltTwEF63ilqkb0DVXAG0aIVhqbDoGXZXmUrXa62qlBrr2ZlN9Kp4z88-D8jVQ-GhhRkqpKDhWrGWecIhEtS04EKO90pYhOWic7rfWmm1BD6tyr8ZHo4x9rvssbdysFJbUQbRJ4dyfg3c8NhignEwDHUVl0myBZxUQqmpEZ-vah11-T-ygSQOwA4F0IHnsJJqp59snajJISOQcvBzkHL-fg5S74RGVPqPfqz5I-7kiY0ro16GUAgxZQG48Q0zjN8_STJ3QYjTWgxh-4xTC4jbdpDySVgUkiP8_rOG8jS3zK2rnfD_8W-J_7bxwq7e8
CitedBy_id crossref_primary_10_1002_JLB_5MR0821_464R
crossref_primary_10_1038_s41392_024_02043_4
crossref_primary_10_3389_fimmu_2022_796481
crossref_primary_10_3390_vaccines11091404
crossref_primary_10_3389_fimmu_2022_817905
crossref_primary_10_1038_s41467_024_51427_1
crossref_primary_10_1172_jci_insight_170681
crossref_primary_10_4049_jimmunol_2200272
crossref_primary_10_1002_cti2_1424
crossref_primary_10_1002_cti2_1521
crossref_primary_10_3389_fimmu_2022_889372
crossref_primary_10_1126_sciimmunol_abo0226
crossref_primary_10_1038_s41385_022_00569_w
crossref_primary_10_1093_infdis_jiad421
crossref_primary_10_3389_fimmu_2023_1264160
crossref_primary_10_1016_j_isci_2022_104766
crossref_primary_10_1080_14760584_2022_2148659
crossref_primary_10_1126_sciimmunol_abj2901
crossref_primary_10_3390_antib12030044
crossref_primary_10_1172_jci_insight_157031
crossref_primary_10_3390_vaccines12101089
crossref_primary_10_1371_journal_ppat_1012739
crossref_primary_10_1038_s41590_022_01248_5
crossref_primary_10_3389_fimmu_2024_1450114
crossref_primary_10_1080_21645515_2023_2206360
crossref_primary_10_1080_21645515_2021_1976580
crossref_primary_10_3389_fimmu_2023_1244556
crossref_primary_10_3389_fimmu_2023_1231276
crossref_primary_10_3390_vaccines13030262
crossref_primary_10_1038_s41598_023_45412_9
crossref_primary_10_1128_spectrum_01808_23
crossref_primary_10_1016_j_ebiom_2021_103699
crossref_primary_10_3389_fimmu_2022_901217
crossref_primary_10_1128_spectrum_01837_22
crossref_primary_10_1172_JCI181244
crossref_primary_10_3389_fimmu_2023_1183727
crossref_primary_10_3390_ijerph192416391
crossref_primary_10_1038_s43856_024_00686_6
crossref_primary_10_3389_fimmu_2024_1397780
crossref_primary_10_1007_s00430_023_00773_w
crossref_primary_10_1038_s41598_024_59535_0
crossref_primary_10_1016_j_xcrm_2022_100510
crossref_primary_10_1126_sciadv_ads1482
crossref_primary_10_1016_j_cell_2021_12_040
crossref_primary_10_3389_fimmu_2022_993754
crossref_primary_10_1038_s41392_021_00759_1
crossref_primary_10_1038_s41467_022_32573_w
Cites_doi 10.1126/science.abe1107
10.1128/mBio.00765-21
10.4049/jimmunol.1502551
10.1074/jbc.M403684200
10.1038/s41564-020-00813-8
10.1038/s41467-021-22236-7
10.1016/S1473-3099(20)30764-7
10.1093/cid/ciaa344
10.1016/j.jim.2010.12.016
10.1016/j.xcrm.2021.100275
10.1038/s41591-020-0995-0
10.1126/scitranslmed.abd2223
10.1073/pnas.2004168117
10.1073/pnas.1911842116
10.1084/jem.20020781
10.1038/s41586-020-2571-7
10.1172/JCI140200
10.1038/s41467-021-21444-5
10.1001/jama.2020.4783
10.4049/jimmunol.0901570
10.1038/s41467-021-23074-3
10.1203/PDR.0b013e3180686ce0
10.1038/s41591-021-01377-8
10.1016/j.jim.2018.09.009
10.1016/j.cell.2014.08.023
10.1001/jama.2020.10044
10.1126/scitranslmed.abf8654
10.1128/JCM.02107-20
10.1016/j.cell.2020.09.037
10.4049/jimmunol.181.11.8120
10.1016/j.virol.2014.02.005
10.1126/science.abd7728
10.1084/jem.20201993
10.1038/s41586-020-03041-6
10.1126/science.abc7520
10.1126/science.abe2402
10.1172/JCI84428
10.1038/nm1592
10.1016/j.cell.2020.10.052
10.1126/scitranslmed.abf1555
10.1056/NEJMoa2031304
10.1038/s41467-020-18450-4
10.1038/s41590-020-00828-7
10.3389/fimmu.2020.618685
10.1136/bmj.m3939
10.1016/j.vaccine.2017.09.062
10.1016/j.celrep.2021.108790
ContentType Journal Article
Copyright 2021 The Author(s)
The Author(s)
2021 The Author(s).
2021 The Author(s) 2021
Copyright_xml – notice: 2021 The Author(s)
– notice: The Author(s)
– notice: 2021 The Author(s).
– notice: 2021 The Author(s) 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.xcrm.2021.100296
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2666-3791
EndPage 100296
ExternalDocumentID oai_doaj_org_article_055cad52624241e08920af0c14bd5a0d
PMC8106889
33997824
10_1016_j_xcrm_2021_100296
S2666379121001294
1_s2_0_S2666379121001294
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: HHSN272201400008C
GroupedDBID .1-
.FO
0R~
53G
AAEDW
AALRI
AAMRU
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AFRHN
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
RPM
Z5R
AAHOK
NCXOZ
6I.
AAFTH
ACHIH
AFCTW
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c627t-4093ec64d8414cadd64ad0afcd0259f1ce82b45a578f71ac47200dade7bec4333
IEDL.DBID DOA
ISSN 2666-3791
IngestDate Wed Aug 27 01:25:18 EDT 2025
Thu Aug 21 18:45:57 EDT 2025
Thu Jul 10 18:47:20 EDT 2025
Wed Feb 19 02:27:05 EST 2025
Tue Jul 01 01:25:23 EDT 2025
Thu Apr 24 23:09:54 EDT 2025
Tue Jul 25 21:02:18 EDT 2023
Sun Feb 23 10:18:52 EST 2025
Tue Aug 26 19:32:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords COVID-19
trogocytosis
phagocytosis
SARS-CoV-2
Fc effector functions
convalescence
antibody
decay
ADCC
ADP
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c627t-4093ec64d8414cadd64ad0afcd0259f1ce82b45a578f71ac47200dade7bec4333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally
Lead contact
ORCID 0000-0002-9072-1017
0000-0002-6197-4277
0000-0001-7285-4054
0000-0002-0780-9422
OpenAccessLink https://doaj.org/article/055cad52624241e08920af0c14bd5a0d
PMID 33997824
PQID 2528433209
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_055cad52624241e08920af0c14bd5a0d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8106889
proquest_miscellaneous_2528433209
pubmed_primary_33997824
crossref_citationtrail_10_1016_j_xcrm_2021_100296
crossref_primary_10_1016_j_xcrm_2021_100296
elsevier_sciencedirect_doi_10_1016_j_xcrm_2021_100296
elsevier_clinicalkeyesjournals_1_s2_0_S2666379121001294
elsevier_clinicalkey_doi_10_1016_j_xcrm_2021_100296
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-15
PublicationDateYYYYMMDD 2021-06-15
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports. Medicine
PublicationTitleAlternate Cell Rep Med
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Aydillo, Rombauts, Stadlbauer, Aslam, Abelenda-Alonso, Escalera, Amanat, Jiang, Krammer, Carratala (bib30) 2020
Westerhuis, Aguilar-Bretones, Raadsen, de Bruin, Okba, Haagmans, Langerak, Endeman, van den Akker, Gommers (bib31) 2020
Li, Zhang, Hu, Tong, Zheng, Yang, Kong, Ren, Wei, Mei (bib43) 2020; 324
Polack, Teng, Collins, Prince, Exner, Regele, Lirman, Rabold, Hoffman, Karp (bib47) 2002; 196
DiLillo, Palese, Wilson, Ravetch (bib14) 2016; 126
Chan, Seah, Chye, Massey, Torres, Lim, Wong, Neo, Wong, Lim (bib18) 2020
Ana-Sosa-Batiz, Johnston, Hogarth, Wines, Barr, Wheatley, Kent (bib22) 2017; 35
Zhao, Yuan, Wang, Liu, Liao, Su, Wang, Yuan, Li, Li (bib38) 2020; 71
Butler, Crowley, Natarajan, Xu, Weiner, Bobak, Mattox, Lee, Wieland-Alter, Connor (bib16) 2021; 11
Addetia, Crawford, Dingens, Zhu, Roychoudhury, Huang, Jerome, Bloom, Greninger (bib7) 2020; 58
Zohar, Loos, Fischinger, Atyeo, Wang, Slein, Burke, Yu, Feldman, Hauser (bib33) 2020; 183
Wines, Trist, Monteiro, Van Kooten, Hogarth (bib51) 2004; 279
Piccoli, Park, Tortorici, Czudnochowski, Walls, Beltramello, Silacci-Fregni, Pinto, Rosen, Bowen (bib3) 2020; 183
Ackerman, Moldt, Wyatt, Dugast, McAndrew, Tsoukas, Jost, Berger, Sciaranghella, Liu (bib24) 2011; 366
Daubeuf, Lindorfer, Taylor, Joly, Hudrisier (bib26) 2010; 184
Gasser, Cloutier, Prévost, Fink, Ducas, Ding, Dussault, Landry, Tremblay, Laforce-Lavoie (bib34) 2021; 34
Polack (bib48) 2007; 62
Khoury, Cromer, Reynaldi, Schlub, Wheatley, Juno (bib32) 2021
Hoepel, Chen, Allahverdiyeva, Manz, Aman, Bonta (bib46) 2021
Wang, Lorenzi, Muecksch, Finkin, Viant, Gaebler, Cipolla, Hoffman, Oliveira, Oren (bib35) 2021; 13
Wajnberg, Amanat, Firpo, Altman, Bailey, Mansour, McMahon, Meade, Mendu, Muellers (bib2) 2020; 370
Natarajan, Crowley, Butler, Xu, Weiner, Bloch (bib19) 2021; 12
Duan, Liu, Li, Zhang, Yu, Qu, Zhou, Chen, Meng, Hu (bib39) 2020; 117
Dufloo, Grzelak, Staropoli, Madec, Tondeur, Anna, Pelleau, Wiedemann, Planchais, Buchrieser (bib20) 2021
Crawford, Dingens, Eguia, Wolf, Wilcox, Logue, Shuey, Casto, Fiala, Wrenn (bib9) 2020
Juno, Tan, Lee, Reynaldi, Kelly, Wragg, Esterbauer, Kent, Batten, Mordant (bib1) 2020; 26
Yasui, Kohara, Kitabatake, Nishiwaki, Fujii, Tateno, Yoneda, Morita, Matsushima, Koyasu, Kai (bib23) 2014; 454-455
Shen, Wang, Zhao, Yang, Li, Yuan, Wang, Li, Yang, Xing (bib41) 2020; 323
Prado-Vivar, Becerra-Wong, Guadalupe, Márquez, Gutierrez, Rojas-Silva, Grunauer, Trueba, Barragán, Cárdenas (bib50) 2020
Schäfer, Muecksch, Lorenzi, Leist, Cipolla, Bournazos, Schmidt, Maison, Gazumyan, Martinez (bib17) 2021; 218
Wyllie, Mulchandani, Jones, Taylor-Phillips, Brooks, Charlett, Ades, Makin, Oliver, Moore (bib12) 2020
Seow, Graham, Merrick, Acors, Pickering, Steel, Hemmings, O’Byrne, Kouphou, Galao (bib10) 2020; 5
Baum, Ajithdoss, Copin, Zhou, Lanza, Negron, Ni, Wei, Mohammadi, Musser (bib6) 2020; 370
Song, He, Callaghan, Anzanello, Huang, Ricketts (bib29) 2021; 12
Beum, Mack, Pawluczkowycz, Lindorfer, Taylor (bib25) 2008; 181
Chakraborty, Gonzalez, Edwards, Mallajosyula, Buzzanco, Sherwood, Buffone, Kathale, Providenza, Xie (bib45) 2021; 22
Bournazos, DiLillo, Goff, Glass, Ravetch (bib15) 2019; 116
McMahan, Yu, Mercado, Loos, Tostanoski, Chandrashekar, Liu, Peter, Atyeo, Zhu (bib37) 2021; 590
Bournazos, Klein, Pietzsch, Seaman, Nussenzweig, Ravetch (bib13) 2014; 158
Sterlin, Mathian, Miyara, Mohr, Anna, Claër, Quentric, Fadlallah, Devilliers, Ghillani (bib36) 2021; 13
Simonovich, Burgos Pratx, Scibona, Beruto, Vallone, Vázquez, Savoy, Giunta, Pérez, Sánchez (bib44) 2021; 384
Joyner, Wright, Fairweather, Senefeld, Bruno, Klassen (bib40) 2020; 130
Richardson, Crowther, Mkhize, Morris (bib27) 2018; 463
Rogers, Zhao, Huang, Beutler, Burns, He, Limbo, Smith, Song, Woehl (bib4) 2020; 369
Wheatley, Juno, Wang, Selva, Reynaldi, Tan, Lee, Wragg, Kelly, Esterbauer (bib8) 2021; 12
Darrah, Patel, De Luca, Lindsay, Davey, Flynn, Hoff, Andersen, Reed, Morris (bib53) 2007; 13
Tillett, Sevinsky, Hartley, Kerwin, Crawford, Gorzalski, Laverdure, Verma, Rossetto, Jackson (bib49) 2021; 21
Selva, van de Sandt, Lemke, Lee, Shoffner, Chua (bib52) 2021; 12
Wines, Vanderven, Esparon, Kristensen, Kent, Hogarth (bib21) 2016; 197
Liu, Wang, Nair, Yu, Rapp, Wang, Luo, Chan, Sahi, Figueroa (bib5) 2020; 584
Agarwal, Mukherjee, Kumar, Chatterjee, Bhatnagar, Malhotra (bib42) 2020; 371
Huang, Garcia-Carreras, Hitchings, Yang, Katzelnick, Rattigan, Borgert, Moreno, Solomon, Trimmer-Smith (bib11) 2020; 11
Ng, Faulkner, Cornish, Rosa, Harvey, Hussain, Ulferts, Earl, Wrobel, Benton (bib28) 2020; 370
Dufloo (10.1016/j.xcrm.2021.100296_bib20) 2021
Wheatley (10.1016/j.xcrm.2021.100296_bib8) 2021; 12
Duan (10.1016/j.xcrm.2021.100296_bib39) 2020; 117
Bournazos (10.1016/j.xcrm.2021.100296_bib15) 2019; 116
Wajnberg (10.1016/j.xcrm.2021.100296_bib2) 2020; 370
Seow (10.1016/j.xcrm.2021.100296_bib10) 2020; 5
Bournazos (10.1016/j.xcrm.2021.100296_bib13) 2014; 158
Crawford (10.1016/j.xcrm.2021.100296_bib9) 2020
Joyner (10.1016/j.xcrm.2021.100296_bib40) 2020; 130
McMahan (10.1016/j.xcrm.2021.100296_bib37) 2021; 590
Wines (10.1016/j.xcrm.2021.100296_bib51) 2004; 279
Rogers (10.1016/j.xcrm.2021.100296_bib4) 2020; 369
Juno (10.1016/j.xcrm.2021.100296_bib1) 2020; 26
Piccoli (10.1016/j.xcrm.2021.100296_bib3) 2020; 183
Hoepel (10.1016/j.xcrm.2021.100296_bib46) 2021
Butler (10.1016/j.xcrm.2021.100296_bib16) 2021; 11
Khoury (10.1016/j.xcrm.2021.100296_bib32) 2021
Ng (10.1016/j.xcrm.2021.100296_bib28) 2020; 370
Darrah (10.1016/j.xcrm.2021.100296_bib53) 2007; 13
Aydillo (10.1016/j.xcrm.2021.100296_bib30) 2020
Wyllie (10.1016/j.xcrm.2021.100296_bib12) 2020
Schäfer (10.1016/j.xcrm.2021.100296_bib17) 2021; 218
Gasser (10.1016/j.xcrm.2021.100296_bib34) 2021; 34
Huang (10.1016/j.xcrm.2021.100296_bib11) 2020; 11
Polack (10.1016/j.xcrm.2021.100296_bib48) 2007; 62
Daubeuf (10.1016/j.xcrm.2021.100296_bib26) 2010; 184
Zhao (10.1016/j.xcrm.2021.100296_bib38) 2020; 71
Chakraborty (10.1016/j.xcrm.2021.100296_bib45) 2021; 22
Tillett (10.1016/j.xcrm.2021.100296_bib49) 2021; 21
Song (10.1016/j.xcrm.2021.100296_bib29) 2021; 12
Simonovich (10.1016/j.xcrm.2021.100296_bib44) 2021; 384
Ackerman (10.1016/j.xcrm.2021.100296_bib24) 2011; 366
DiLillo (10.1016/j.xcrm.2021.100296_bib14) 2016; 126
Shen (10.1016/j.xcrm.2021.100296_bib41) 2020; 323
Wang (10.1016/j.xcrm.2021.100296_bib35) 2021; 13
Ana-Sosa-Batiz (10.1016/j.xcrm.2021.100296_bib22) 2017; 35
Addetia (10.1016/j.xcrm.2021.100296_bib7) 2020; 58
Beum (10.1016/j.xcrm.2021.100296_bib25) 2008; 181
Zohar (10.1016/j.xcrm.2021.100296_bib33) 2020; 183
Wines (10.1016/j.xcrm.2021.100296_bib21) 2016; 197
Natarajan (10.1016/j.xcrm.2021.100296_bib19) 2021; 12
Yasui (10.1016/j.xcrm.2021.100296_bib23) 2014; 454-455
Selva (10.1016/j.xcrm.2021.100296_bib52) 2021; 12
Westerhuis (10.1016/j.xcrm.2021.100296_bib31) 2020
Liu (10.1016/j.xcrm.2021.100296_bib5) 2020; 584
Polack (10.1016/j.xcrm.2021.100296_bib47) 2002; 196
Baum (10.1016/j.xcrm.2021.100296_bib6) 2020; 370
Richardson (10.1016/j.xcrm.2021.100296_bib27) 2018; 463
Sterlin (10.1016/j.xcrm.2021.100296_bib36) 2021; 13
Li (10.1016/j.xcrm.2021.100296_bib43) 2020; 324
Chan (10.1016/j.xcrm.2021.100296_bib18) 2020
Agarwal (10.1016/j.xcrm.2021.100296_bib42) 2020; 371
Prado-Vivar (10.1016/j.xcrm.2021.100296_bib50) 2020
References_xml – volume: 12
  start-page: 2037
  year: 2021
  ident: bib52
  article-title: Systems serology detects functionally distinct coronavirus antibody features in children and elderly
  publication-title: Nat. Commun.
– volume: 183
  start-page: 1024
  year: 2020
  end-page: 1042.e21
  ident: bib3
  article-title: Mapping neutralizing and immunodominant sites on the SARS-CoV-2 Spike receptor-binding domain by structure-guided high-resolution serology
  publication-title: Cell
– year: 2020
  ident: bib9
  article-title: Dynamics of neutralizing antibody titers in the months after SARS-CoV-2 infection
  publication-title: J. Infect. Dis.
– year: 2021
  ident: bib32
  article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection
  publication-title: Nat. Med.
– volume: 26
  start-page: 1428
  year: 2020
  end-page: 1434
  ident: bib1
  article-title: Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19
  publication-title: Nat. Med.
– volume: 197
  start-page: 1507
  year: 2016
  end-page: 1516
  ident: bib21
  article-title: Dimeric FcγR ectodomains as probes of the Fc receptor function of anti-influenza virus IgG
  publication-title: J. Immunol.
– volume: 21
  start-page: 52
  year: 2021
  end-page: 58
  ident: bib49
  article-title: Genomic evidence for reinfection with SARS-CoV-2: a case study
  publication-title: Lancet Infect. Dis.
– volume: 12
  start-page: 2938
  year: 2021
  ident: bib29
  article-title: Cross-reactive serum and memory B cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection
  publication-title: Nat. Commun.
– volume: 454-455
  start-page: 157
  year: 2014
  end-page: 168
  ident: bib23
  article-title: Phagocytic cells contribute to the antibody-mediated elimination of pulmonary-infected SARS coronavirus
  publication-title: Virology
– volume: 11
  start-page: 618685
  year: 2021
  ident: bib16
  article-title: Distinct features and functions of systemic and mucosal humoral immunity among SARS-CoV-2 convalescent individuals
  publication-title: Front. Immunol.
– volume: 34
  start-page: 108790
  year: 2021
  ident: bib34
  article-title: Major role of IgM in the neutralizing activity of convalescent plasma against SARS-CoV-2
  publication-title: Cell Rep.
– volume: 590
  start-page: 630
  year: 2021
  end-page: 634
  ident: bib37
  article-title: Correlates of protection against SARS-CoV-2 in rhesus macaques
  publication-title: Nature
– volume: 279
  start-page: 26339
  year: 2004
  end-page: 26345
  ident: bib51
  article-title: Fc receptor gamma chain residues at the interface of the cytoplasmic and transmembrane domains affect association with FcalphaRI, surface expression, and function
  publication-title: J. Biol. Chem.
– volume: 370
  start-page: 1110
  year: 2020
  end-page: 1115
  ident: bib6
  article-title: REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters
  publication-title: Science
– volume: 5
  start-page: 1598
  year: 2020
  end-page: 1607
  ident: bib10
  article-title: Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans
  publication-title: Nat. Microbiol.
– year: 2020
  ident: bib12
  article-title: SARS-CoV-2 responsive T cell numbers are associated with protection from COVID-19: a prospective cohort study in keyworkers
  publication-title: medRxiv
– volume: 323
  start-page: 1582
  year: 2020
  end-page: 1589
  ident: bib41
  article-title: Treatment of 5 critically ill patients with COVID-19 with convalescent plasma
  publication-title: JAMA
– volume: 370
  start-page: 1339
  year: 2020
  end-page: 1343
  ident: bib28
  article-title: Preexisting and de novo humoral immunity to SARS-CoV-2 in humans
  publication-title: Science
– volume: 366
  start-page: 8
  year: 2011
  end-page: 19
  ident: bib24
  article-title: A robust, high-throughput assay to determine the phagocytic activity of clinical antibody samples
  publication-title: J. Immunol. Methods
– volume: 384
  start-page: 619
  year: 2021
  end-page: 629
  ident: bib44
  article-title: A randomized trial of convalescent plasma in Covid-19 severe pneumonia
  publication-title: N. Engl. J. Med.
– volume: 117
  start-page: 9490
  year: 2020
  end-page: 9496
  ident: bib39
  article-title: Effectiveness of convalescent plasma therapy in severe COVID-19 patients
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 218
  start-page: e20201993
  year: 2021
  ident: bib17
  article-title: Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo
  publication-title: J. Exp. Med.
– year: 2020
  ident: bib31
  article-title: Severe COVID-19 patients display a back boost of seasonal coronavirus-specific antibodies
  publication-title: medRxiv
– volume: 12
  start-page: 1162
  year: 2021
  ident: bib8
  article-title: Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19
  publication-title: Nat. Commun.
– volume: 130
  start-page: 4791
  year: 2020
  end-page: 4797
  ident: bib40
  article-title: Early safety indicators of COVID-19 convalescent plasma in 5,000 patients
  publication-title: J. Clin. Invest.
– volume: 370
  start-page: 1227
  year: 2020
  end-page: 1230
  ident: bib2
  article-title: Robust neutralizing antibodies to SARS-CoV-2 infection persist for months
  publication-title: Science
– volume: 463
  start-page: 71
  year: 2018
  end-page: 83
  ident: bib27
  article-title: Measuring the ability of HIV-specific antibodies to mediate trogocytosis
  publication-title: J. Immunol. Methods
– volume: 369
  start-page: 956
  year: 2020
  end-page: 963
  ident: bib4
  article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model
  publication-title: Science
– year: 2020
  ident: bib50
  article-title: A case of SARS-CoV-2 reinfection in Ecuador
  publication-title: Lancet Infect. Dis.
– volume: 324
  start-page: 460
  year: 2020
  end-page: 470
  ident: bib43
  article-title: Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial
  publication-title: JAMA
– volume: 71
  start-page: 2027
  year: 2020
  end-page: 2034
  ident: bib38
  article-title: Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019
  publication-title: Clin. Infect. Dis.
– volume: 196
  start-page: 859
  year: 2002
  end-page: 865
  ident: bib47
  article-title: A role for immune complexes in enhanced respiratory syncytial virus disease
  publication-title: J. Exp. Med.
– volume: 35
  start-page: 6451
  year: 2017
  end-page: 6458
  ident: bib22
  article-title: Antibody-dependent phagocytosis (ADP) responses following trivalent inactivated influenza vaccination of younger and older adults
  publication-title: Vaccine
– volume: 62
  start-page: 111
  year: 2007
  end-page: 115
  ident: bib48
  article-title: Atypical measles and enhanced respiratory syncytial virus disease (ERD) made simple
  publication-title: Pediatr. Res.
– volume: 58
  start-page: e02107-20
  year: 2020
  ident: bib7
  article-title: Neutralizing antibodies correlate with protection from SARS-CoV-2 in humans during a fishery vessel outbreak with a high attack rate
  publication-title: J. Clin. Microbiol.
– volume: 22
  start-page: 67
  year: 2021
  end-page: 73
  ident: bib45
  article-title: Proinflammatory IgG Fc structures in patients with severe COVID-19
  publication-title: Nat. Immunol.
– volume: 184
  start-page: 1897
  year: 2010
  end-page: 1908
  ident: bib26
  article-title: The direction of plasma membrane exchange between lymphocytes and accessory cells by trogocytosis is influenced by the nature of the accessory cell
  publication-title: J. Immunol.
– volume: 371
  start-page: m3939
  year: 2020
  ident: bib42
  article-title: Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial)
  publication-title: BMJ
– volume: 11
  start-page: 4704
  year: 2020
  ident: bib11
  article-title: A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity
  publication-title: Nat. Commun.
– volume: 116
  start-page: 20054
  year: 2019
  end-page: 20062
  ident: bib15
  article-title: Differential requirements for FcγR engagement by protective antibodies against Ebola virus
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 13
  start-page: 843
  year: 2007
  end-page: 850
  ident: bib53
  article-title: Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major
  publication-title: Nat. Med.
– volume: 584
  start-page: 450
  year: 2020
  end-page: 456
  ident: bib5
  article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike
  publication-title: Nature
– volume: 181
  start-page: 8120
  year: 2008
  end-page: 8132
  ident: bib25
  article-title: Binding of rituximab, trastuzumab, cetuximab, or mAb T101 to cancer cells promotes trogocytosis mediated by THP-1 cells and monocytes
  publication-title: J. Immunol.
– year: 2020
  ident: bib30
  article-title: Antibody immunological imprinting on COVID-19 patients
  publication-title: medRxiv
– volume: 13
  start-page: eabf1555
  year: 2021
  ident: bib35
  article-title: Enhanced SARS-CoV-2 neutralization by dimeric IgA
  publication-title: Sci. Transl. Med.
– start-page: eabf8654
  year: 2021
  ident: bib46
  article-title: Anti-SARS-CoV-2 IgG from severely ill COVID-19 patients promotes macrophage hyper-inflammatory responses
  publication-title: Sci. Transl. Med.
– volume: 12
  year: 2021
  ident: bib19
  article-title: Markers of Polyfunctional SARS-CoV-2 Antibodies in Convalescent Plasma
  publication-title: mBio
– volume: 183
  start-page: 1508
  year: 2020
  end-page: 1519.e12
  ident: bib33
  article-title: Compromised humoral functional evolution tracks with SARS-CoV-2 mortality
  publication-title: Cell
– volume: 126
  start-page: 605
  year: 2016
  end-page: 610
  ident: bib14
  article-title: Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection
  publication-title: J. Clin. Invest.
– volume: 13
  start-page: eabd2223
  year: 2021
  ident: bib36
  article-title: IgA dominates the early neutralizing antibody response to SARS-CoV-2
  publication-title: Sci. Transl. Med.
– year: 2021
  ident: bib20
  article-title: Asymptomatic and symptomatic SARS-CoV-2 infections elicit polyfunctional antibodies
  publication-title: Cell Rep. Med
– volume: 158
  start-page: 1243
  year: 2014
  end-page: 1253
  ident: bib13
  article-title: Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity
  publication-title: Cell
– year: 2020
  ident: bib18
  article-title: The Fc-mediated effector functions of a potent SARS-CoV-2 neutralizing antibody, SC31, isolated from an early convalescent COVID-19 patient, are essential for the optimal therapeutic efficacy of the antibody
  publication-title: bioRxiv
– volume: 370
  start-page: 1339
  year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib28
  article-title: Preexisting and de novo humoral immunity to SARS-CoV-2 in humans
  publication-title: Science
  doi: 10.1126/science.abe1107
– year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib9
  article-title: Dynamics of neutralizing antibody titers in the months after SARS-CoV-2 infection
  publication-title: J. Infect. Dis.
– volume: 12
  year: 2021
  ident: 10.1016/j.xcrm.2021.100296_bib19
  article-title: Markers of Polyfunctional SARS-CoV-2 Antibodies in Convalescent Plasma
  publication-title: mBio
  doi: 10.1128/mBio.00765-21
– volume: 197
  start-page: 1507
  year: 2016
  ident: 10.1016/j.xcrm.2021.100296_bib21
  article-title: Dimeric FcγR ectodomains as probes of the Fc receptor function of anti-influenza virus IgG
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1502551
– volume: 279
  start-page: 26339
  year: 2004
  ident: 10.1016/j.xcrm.2021.100296_bib51
  article-title: Fc receptor gamma chain residues at the interface of the cytoplasmic and transmembrane domains affect association with FcalphaRI, surface expression, and function
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M403684200
– volume: 5
  start-page: 1598
  year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib10
  article-title: Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-020-00813-8
– year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib50
  article-title: A case of SARS-CoV-2 reinfection in Ecuador
  publication-title: Lancet Infect. Dis.
– volume: 12
  start-page: 2037
  year: 2021
  ident: 10.1016/j.xcrm.2021.100296_bib52
  article-title: Systems serology detects functionally distinct coronavirus antibody features in children and elderly
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22236-7
– volume: 21
  start-page: 52
  year: 2021
  ident: 10.1016/j.xcrm.2021.100296_bib49
  article-title: Genomic evidence for reinfection with SARS-CoV-2: a case study
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(20)30764-7
– year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib18
  article-title: The Fc-mediated effector functions of a potent SARS-CoV-2 neutralizing antibody, SC31, isolated from an early convalescent COVID-19 patient, are essential for the optimal therapeutic efficacy of the antibody
  publication-title: bioRxiv
– volume: 71
  start-page: 2027
  year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib38
  article-title: Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciaa344
– year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib12
  article-title: SARS-CoV-2 responsive T cell numbers are associated with protection from COVID-19: a prospective cohort study in keyworkers
  publication-title: medRxiv
– volume: 366
  start-page: 8
  year: 2011
  ident: 10.1016/j.xcrm.2021.100296_bib24
  article-title: A robust, high-throughput assay to determine the phagocytic activity of clinical antibody samples
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2010.12.016
– year: 2021
  ident: 10.1016/j.xcrm.2021.100296_bib20
  article-title: Asymptomatic and symptomatic SARS-CoV-2 infections elicit polyfunctional antibodies
  publication-title: Cell Rep. Med
  doi: 10.1016/j.xcrm.2021.100275
– volume: 26
  start-page: 1428
  year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib1
  article-title: Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0995-0
– volume: 13
  start-page: eabd2223
  year: 2021
  ident: 10.1016/j.xcrm.2021.100296_bib36
  article-title: IgA dominates the early neutralizing antibody response to SARS-CoV-2
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abd2223
– volume: 117
  start-page: 9490
  year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib39
  article-title: Effectiveness of convalescent plasma therapy in severe COVID-19 patients
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2004168117
– year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib31
  article-title: Severe COVID-19 patients display a back boost of seasonal coronavirus-specific antibodies
  publication-title: medRxiv
– volume: 116
  start-page: 20054
  year: 2019
  ident: 10.1016/j.xcrm.2021.100296_bib15
  article-title: Differential requirements for FcγR engagement by protective antibodies against Ebola virus
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1911842116
– year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib30
  article-title: Antibody immunological imprinting on COVID-19 patients
  publication-title: medRxiv
– volume: 196
  start-page: 859
  year: 2002
  ident: 10.1016/j.xcrm.2021.100296_bib47
  article-title: A role for immune complexes in enhanced respiratory syncytial virus disease
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20020781
– volume: 584
  start-page: 450
  year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib5
  article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike
  publication-title: Nature
  doi: 10.1038/s41586-020-2571-7
– volume: 130
  start-page: 4791
  year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib40
  article-title: Early safety indicators of COVID-19 convalescent plasma in 5,000 patients
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI140200
– volume: 12
  start-page: 1162
  year: 2021
  ident: 10.1016/j.xcrm.2021.100296_bib8
  article-title: Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21444-5
– volume: 323
  start-page: 1582
  year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib41
  article-title: Treatment of 5 critically ill patients with COVID-19 with convalescent plasma
  publication-title: JAMA
  doi: 10.1001/jama.2020.4783
– volume: 184
  start-page: 1897
  year: 2010
  ident: 10.1016/j.xcrm.2021.100296_bib26
  article-title: The direction of plasma membrane exchange between lymphocytes and accessory cells by trogocytosis is influenced by the nature of the accessory cell
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0901570
– volume: 12
  start-page: 2938
  year: 2021
  ident: 10.1016/j.xcrm.2021.100296_bib29
  article-title: Cross-reactive serum and memory B cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23074-3
– volume: 62
  start-page: 111
  year: 2007
  ident: 10.1016/j.xcrm.2021.100296_bib48
  article-title: Atypical measles and enhanced respiratory syncytial virus disease (ERD) made simple
  publication-title: Pediatr. Res.
  doi: 10.1203/PDR.0b013e3180686ce0
– year: 2021
  ident: 10.1016/j.xcrm.2021.100296_bib32
  article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01377-8
– volume: 463
  start-page: 71
  year: 2018
  ident: 10.1016/j.xcrm.2021.100296_bib27
  article-title: Measuring the ability of HIV-specific antibodies to mediate trogocytosis
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2018.09.009
– volume: 158
  start-page: 1243
  year: 2014
  ident: 10.1016/j.xcrm.2021.100296_bib13
  article-title: Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity
  publication-title: Cell
  doi: 10.1016/j.cell.2014.08.023
– volume: 324
  start-page: 460
  year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib43
  article-title: Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial
  publication-title: JAMA
  doi: 10.1001/jama.2020.10044
– start-page: eabf8654
  year: 2021
  ident: 10.1016/j.xcrm.2021.100296_bib46
  article-title: Anti-SARS-CoV-2 IgG from severely ill COVID-19 patients promotes macrophage hyper-inflammatory responses
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abf8654
– volume: 58
  start-page: e02107-20
  year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib7
  article-title: Neutralizing antibodies correlate with protection from SARS-CoV-2 in humans during a fishery vessel outbreak with a high attack rate
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.02107-20
– volume: 183
  start-page: 1024
  year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib3
  article-title: Mapping neutralizing and immunodominant sites on the SARS-CoV-2 Spike receptor-binding domain by structure-guided high-resolution serology
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.037
– volume: 181
  start-page: 8120
  year: 2008
  ident: 10.1016/j.xcrm.2021.100296_bib25
  article-title: Binding of rituximab, trastuzumab, cetuximab, or mAb T101 to cancer cells promotes trogocytosis mediated by THP-1 cells and monocytes
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.181.11.8120
– volume: 454-455
  start-page: 157
  year: 2014
  ident: 10.1016/j.xcrm.2021.100296_bib23
  article-title: Phagocytic cells contribute to the antibody-mediated elimination of pulmonary-infected SARS coronavirus
  publication-title: Virology
  doi: 10.1016/j.virol.2014.02.005
– volume: 370
  start-page: 1227
  year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib2
  article-title: Robust neutralizing antibodies to SARS-CoV-2 infection persist for months
  publication-title: Science
  doi: 10.1126/science.abd7728
– volume: 218
  start-page: e20201993
  year: 2021
  ident: 10.1016/j.xcrm.2021.100296_bib17
  article-title: Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20201993
– volume: 590
  start-page: 630
  year: 2021
  ident: 10.1016/j.xcrm.2021.100296_bib37
  article-title: Correlates of protection against SARS-CoV-2 in rhesus macaques
  publication-title: Nature
  doi: 10.1038/s41586-020-03041-6
– volume: 369
  start-page: 956
  year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib4
  article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model
  publication-title: Science
  doi: 10.1126/science.abc7520
– volume: 370
  start-page: 1110
  year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib6
  article-title: REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters
  publication-title: Science
  doi: 10.1126/science.abe2402
– volume: 126
  start-page: 605
  year: 2016
  ident: 10.1016/j.xcrm.2021.100296_bib14
  article-title: Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI84428
– volume: 13
  start-page: 843
  year: 2007
  ident: 10.1016/j.xcrm.2021.100296_bib53
  article-title: Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major
  publication-title: Nat. Med.
  doi: 10.1038/nm1592
– volume: 183
  start-page: 1508
  year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib33
  article-title: Compromised humoral functional evolution tracks with SARS-CoV-2 mortality
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.052
– volume: 13
  start-page: eabf1555
  year: 2021
  ident: 10.1016/j.xcrm.2021.100296_bib35
  article-title: Enhanced SARS-CoV-2 neutralization by dimeric IgA
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abf1555
– volume: 384
  start-page: 619
  year: 2021
  ident: 10.1016/j.xcrm.2021.100296_bib44
  article-title: A randomized trial of convalescent plasma in Covid-19 severe pneumonia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2031304
– volume: 11
  start-page: 4704
  year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib11
  article-title: A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18450-4
– volume: 22
  start-page: 67
  year: 2021
  ident: 10.1016/j.xcrm.2021.100296_bib45
  article-title: Proinflammatory IgG Fc structures in patients with severe COVID-19
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-020-00828-7
– volume: 11
  start-page: 618685
  year: 2021
  ident: 10.1016/j.xcrm.2021.100296_bib16
  article-title: Distinct features and functions of systemic and mucosal humoral immunity among SARS-CoV-2 convalescent individuals
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.618685
– volume: 371
  start-page: m3939
  year: 2020
  ident: 10.1016/j.xcrm.2021.100296_bib42
  article-title: Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial)
  publication-title: BMJ
  doi: 10.1136/bmj.m3939
– volume: 35
  start-page: 6451
  year: 2017
  ident: 10.1016/j.xcrm.2021.100296_bib22
  article-title: Antibody-dependent phagocytosis (ADP) responses following trivalent inactivated influenza vaccination of younger and older adults
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2017.09.062
– volume: 34
  start-page: 108790
  year: 2021
  ident: 10.1016/j.xcrm.2021.100296_bib34
  article-title: Major role of IgM in the neutralizing activity of convalescent plasma against SARS-CoV-2
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.108790
SSID ssj0002511830
Score 2.4039824
Snippet The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of...
SummaryThe capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100296
SubjectTerms ADCC
ADP
Advanced Basic Science
Antibodies, Viral - blood
Antibodies, Viral - metabolism
antibody
Antibody-Dependent Cell Cytotoxicity - immunology
Cell Line, Tumor
convalescence
COVID-19
COVID-19 - immunology
COVID-19 - pathology
COVID-19 - virology
decay
Dimerization
Fc effector functions
Humans
Immunoglobulin Fc Fragments - genetics
Immunoglobulin Fc Fragments - immunology
Immunoglobulin Fc Fragments - metabolism
Kinetics
Neutralization Tests
Phagocytosis
SARS-CoV-2
SARS-CoV-2 - immunology
SARS-CoV-2 - isolation & purification
SARS-CoV-2 - metabolism
Severity of Illness Index
Spike Glycoprotein, Coronavirus - genetics
Spike Glycoprotein, Coronavirus - immunology
Spike Glycoprotein, Coronavirus - metabolism
trogocytosis
Title Decay of Fc-dependent antibody functions after mild to moderate COVID-19
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2666379121001294
https://www.clinicalkey.es/playcontent/1-s2.0-S2666379121001294
https://dx.doi.org/10.1016/j.xcrm.2021.100296
https://www.ncbi.nlm.nih.gov/pubmed/33997824
https://www.proquest.com/docview/2528433209
https://pubmed.ncbi.nlm.nih.gov/PMC8106889
https://doaj.org/article/055cad52624241e08920af0c14bd5a0d
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLojzDozISNxSRiR9JjtCyWpAKByjqzXL8EItKgrqp1P57ZpxktQuovXDdjWPl8zeeL_E8GHvVOAmxsjpHae9yGXAt2hAhV5EIEKOuNSUnH3_SyxP58VSdbrX6opiwsTzwCNybQilnvSpTHgOEom7KwsbCgWy9soWn3Rd93tbLFO3BSTinRiPogDRaUQNTxswY3HXpzikNvYRUgpQq9m95pVS8f8c5_S0-_4yh3HJKi3vs7qQm-dvxKfbZrdDdZ7ePp_PyB2x5FJy94n3kC5fP_W4Hjmiu2t5fcfJqiXg89QrnP1dnng89p_44VEOCH37-9uEoh-YhO1m8_3q4zKfeCbnTZTXga2EjgtPS1xIkAui1tB6Bcx6xaSK4UJetVBYNNlZgnazQXLz1ocJFlUKIR2yv67vwhHFhqwJ8XfsqKmm1t2ULdDIsRZSNBMgYzNgZNxUWp_4WZ2aOIPthCG9DeJsR74y93oz5NZbVuPbqd7QkmyupJHb6AYliJqKYm4iSMTEvqJmzTnGfxButrp26-teosJ5MfW3ArEtTmC9ENOJZCenjnsyY2oyc1MyoUm6c8eXMNoOmTuc3tgv9xdqUCrWEEEj3jD0e2beBRKDQRLGHs1Y7vNzBbPefbvU9lROvgRoPNU__B8jP2B16FIqlA_Wc7Q3nF-EFqrahPUgGepA-p_0GddA78w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decay+of+Fc-dependent+antibody+functions+after+mild+to+moderate+COVID-19&rft.jtitle=Cell+reports.+Medicine&rft.au=Lee%2C+Wen+Shi&rft.au=Selva%2C+Kevin+John&rft.au=Davis%2C+Samantha+K.&rft.au=Wines%2C+Bruce+D.&rft.date=2021-06-15&rft.pub=Elsevier&rft.eissn=2666-3791&rft.volume=2&rft.issue=6&rft_id=info:doi/10.1016%2Fj.xcrm.2021.100296&rft_id=info%3Apmid%2F33997824&rft.externalDocID=PMC8106889
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F26663791%2FS2666379120X00164%2Fcov150h.gif