Analysis of the Effect of DNA Purification on Detection of Human Papillomavirus in Oral Rinse Samples by PCR

Human papillomavirus (HPV) has recently been associated with oral cancers. To prepare for a study of the natural history of oral HPV infection, the effect of the DNA purification method on HPV genomic DNA detection in Scope mouthwash oral rinse samples and the reproducibility of HPV detection in rin...

Full description

Saved in:
Bibliographic Details
Published inJournal of Clinical Microbiology Vol. 43; no. 11; pp. 5526 - 5535
Main Authors D'Souza, Gypsyamber, Sugar, Elizabeth, Ruby, William, Gravitt, Patti, Gillison, Maura
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.11.2005
Subjects
Online AccessGet full text
ISSN0095-1137
1098-660X
1098-5530
DOI10.1128/JCM.43.11.5526-5535.2005

Cover

Abstract Human papillomavirus (HPV) has recently been associated with oral cancers. To prepare for a study of the natural history of oral HPV infection, the effect of the DNA purification method on HPV genomic DNA detection in Scope mouthwash oral rinse samples and the reproducibility of HPV detection in rinse samples collected 7 days apart were investigated. The study was conducted with a population at high risk for oral HPV infection: human immunodeficiency virus-infected men with CD4-cell counts <200. Five DNA purification methods were compared among equal aliquots of oral rinse samples collected from a subset of individuals. The purification methods included (i) proteinase K digestion (PKD) and heat inactivation; (ii) PKD and ethanol precipitation (EP); (iii) PKD, phenol-chloroform extraction, and EP; (iv) use of the Puregene DNA purification kit; and (v) use of the QIAamp DNA Blood Midi kit. HPV was detected by PCR amplification with PGMY09 and PGMY11 L1 primer pools and by use of a Roche linear array. Puregene-purified samples had higher human DNA yields and purities, and Puregene purification detected the greatest number of HPV-positive subjects and total HPV infections in comparison to the numbers detected by all other methods. The total number of HPV infections and HPV prevalence estimates were also higher for Puregene-processed oral rinse samples when a fixed volume (10 [micro]l) rather than a fixed cell number ([approximately]50,000 cells) was used for PCR amplification. A good concordance was observed for oral HPV infection status (agreement, 80%; kappa value, = 0.60) and type-specific infection (agreement, 98%; kappa value, 0.57) in matched oral rinse samples. The method of DNA purification significantly affects the detection of HPV genomic DNA from oral rinse samples and may result in exposure misclassification that could contribute to the inconsistent associations reported in the literature.
AbstractList Human papillomavirus (HPV) has recently been associated with oral cancers. To prepare for a study of the natural history of oral HPV infection, the effect of the DNA purification method on HPV genomic DNA detection in Scope mouthwash oral rinse samples and the reproducibility of HPV detection in rinse samples collected 7 days apart were investigated. The study was conducted with a population at high risk for oral HPV infection: human immunodeficiency virus-infected men with CD4-cell counts <200. Five DNA purification methods were compared among equal aliquots of oral rinse samples collected from a subset of individuals. The purification methods included (i) proteinase K digestion (PKD) and heat inactivation; (ii) PKD and ethanol precipitation (EP); (iii) PKD, phenol-chloroform extraction, and EP; (iv) use of the Puregene DNA purification kit; and (v) use of the QIAamp DNA Blood Midi kit. HPV was detected by PCR amplification with PGMY09 and PGMY11 L1 primer pools and by use of a Roche linear array. Puregene-purified samples had higher human DNA yields and purities, and Puregene purification detected the greatest number of HPV-positive subjects and total HPV infections in comparison to the numbers detected by all other methods. The total number of HPV infections and HPV prevalence estimates were also higher for Puregene-processed oral rinse samples when a fixed volume (10 μl) rather than a fixed cell number (∼50,000 cells) was used for PCR amplification. A good concordance was observed for oral HPV infection status (agreement, 80%; kappa value, = 0.60) and type-specific infection (agreement, 98%; kappa value, 0.57) in matched oral rinse samples. The method of DNA purification significantly affects the detection of HPV genomic DNA from oral rinse samples and may result in exposure misclassification that could contribute to the inconsistent associations reported in the literature.
Article Usage Stats Services JCM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JCM About JCM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JCM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0095-1137 Online ISSN: 1098-660X Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JCM .asm.org, visit: JCM       
Human papillomavirus (HPV) has recently been associated with oral cancers. To prepare for a study of the natural history of oral HPV infection, the effect of the DNA purification method on HPV genomic DNA detection in Scope mouthwash oral rinse samples and the reproducibility of HPV detection in rinse samples collected 7 days apart were investigated. The study was conducted with a population at high risk for oral HPV infection: human immunodeficiency virus-infected men with CD4-cell counts <200. Five DNA purification methods were compared among equal aliquots of oral rinse samples collected from a subset of individuals. The purification methods included (i) proteinase K digestion (PKD) and heat inactivation; (ii) PKD and ethanol precipitation (EP); (iii) PKD, phenol-chloroform extraction, and EP; (iv) use of the Puregene DNA purification kit; and (v) use of the QIAamp DNA Blood Midi kit. HPV was detected by PCR amplification with PGMY09 and PGMY11 L1 primer pools and by use of a Roche linear array. Puregene-purified samples had higher human DNA yields and purities, and Puregene purification detected the greatest number of HPV-positive subjects and total HPV infections in comparison to the numbers detected by all other methods. The total number of HPV infections and HPV prevalence estimates were also higher for Puregene-processed oral rinse samples when a fixed volume (10 mul) rather than a fixed cell number ( approximately 50,000 cells) was used for PCR amplification. A good concordance was observed for oral HPV infection status (agreement, 80%; kappa value, = 0.60) and type-specific infection (agreement, 98%; kappa value, 0.57) in matched oral rinse samples. The method of DNA purification significantly affects the detection of HPV genomic DNA from oral rinse samples and may result in exposure misclassification that could contribute to the inconsistent associations reported in the literature.Human papillomavirus (HPV) has recently been associated with oral cancers. To prepare for a study of the natural history of oral HPV infection, the effect of the DNA purification method on HPV genomic DNA detection in Scope mouthwash oral rinse samples and the reproducibility of HPV detection in rinse samples collected 7 days apart were investigated. The study was conducted with a population at high risk for oral HPV infection: human immunodeficiency virus-infected men with CD4-cell counts <200. Five DNA purification methods were compared among equal aliquots of oral rinse samples collected from a subset of individuals. The purification methods included (i) proteinase K digestion (PKD) and heat inactivation; (ii) PKD and ethanol precipitation (EP); (iii) PKD, phenol-chloroform extraction, and EP; (iv) use of the Puregene DNA purification kit; and (v) use of the QIAamp DNA Blood Midi kit. HPV was detected by PCR amplification with PGMY09 and PGMY11 L1 primer pools and by use of a Roche linear array. Puregene-purified samples had higher human DNA yields and purities, and Puregene purification detected the greatest number of HPV-positive subjects and total HPV infections in comparison to the numbers detected by all other methods. The total number of HPV infections and HPV prevalence estimates were also higher for Puregene-processed oral rinse samples when a fixed volume (10 mul) rather than a fixed cell number ( approximately 50,000 cells) was used for PCR amplification. A good concordance was observed for oral HPV infection status (agreement, 80%; kappa value, = 0.60) and type-specific infection (agreement, 98%; kappa value, 0.57) in matched oral rinse samples. The method of DNA purification significantly affects the detection of HPV genomic DNA from oral rinse samples and may result in exposure misclassification that could contribute to the inconsistent associations reported in the literature.
Human papillomavirus (HPV) has recently been associated with oral cancers. To prepare for a study of the natural history of oral HPV infection, the effect of the DNA purification method on HPV genomic DNA detection in Scope mouthwash oral rinse samples and the reproducibility of HPV detection in rinse samples collected 7 days apart were investigated. The study was conducted with a population at high risk for oral HPV infection: human immunodeficiency virus-infected men with CD4-cell counts <200. Five DNA purification methods were compared among equal aliquots of oral rinse samples collected from a subset of individuals. The purification methods included (i) proteinase K digestion (PKD) and heat inactivation; (ii) PKD and ethanol precipitation (EP); (iii) PKD, phenol-chloroform extraction, and EP; (iv) use of the Puregene DNA purification kit; and (v) use of the QIAamp DNA Blood Midi kit. HPV was detected by PCR amplification with PGMY09 and PGMY11 L1 primer pools and by use of a Roche linear array. Puregene-purified samples had higher human DNA yields and purities, and Puregene purification detected the greatest number of HPV-positive subjects and total HPV infections in comparison to the numbers detected by all other methods. The total number of HPV infections and HPV prevalence estimates were also higher for Puregene-processed oral rinse samples when a fixed volume (10 [micro]l) rather than a fixed cell number ([approximately]50,000 cells) was used for PCR amplification. A good concordance was observed for oral HPV infection status (agreement, 80%; kappa value, = 0.60) and type-specific infection (agreement, 98%; kappa value, 0.57) in matched oral rinse samples. The method of DNA purification significantly affects the detection of HPV genomic DNA from oral rinse samples and may result in exposure misclassification that could contribute to the inconsistent associations reported in the literature.
Human papillomavirus (HPV) has recently been associated with oral cancers. To prepare for a study of the natural history of oral HPV infection, the effect of the DNA purification method on HPV genomic DNA detection in Scope mouthwash oral rinse samples and the reproducibility of HPV detection in rinse samples collected 7 days apart were investigated. The study was conducted with a population at high risk for oral HPV infection: human immunodeficiency virus-infected men with CD4-cell counts <200. Five DNA purification methods were compared among equal aliquots of oral rinse samples collected from a subset of individuals. The purification methods included (i) proteinase K digestion (PKD) and heat inactivation; (ii) PKD and ethanol precipitation (EP); (iii) PKD, phenol-chloroform extraction, and EP; (iv) use of the Puregene DNA purification kit; and (v) use of the QIAamp DNA Blood Midi kit. HPV was detected by PCR amplification with PGMY09 and PGMY11 L1 primer pools and by use of a Roche linear array. Puregene-purified samples had higher human DNA yields and purities, and Puregene purification detected the greatest number of HPV-positive subjects and total HPV infections in comparison to the numbers detected by all other methods. The total number of HPV infections and HPV prevalence estimates were also higher for Puregene-processed oral rinse samples when a fixed volume (10 mul) rather than a fixed cell number ( approximately 50,000 cells) was used for PCR amplification. A good concordance was observed for oral HPV infection status (agreement, 80%; kappa value, = 0.60) and type-specific infection (agreement, 98%; kappa value, 0.57) in matched oral rinse samples. The method of DNA purification significantly affects the detection of HPV genomic DNA from oral rinse samples and may result in exposure misclassification that could contribute to the inconsistent associations reported in the literature.
Human papillomavirus (HPV) has recently been associated with oral cancers. To prepare for a study of the natural history of oral HPV infection, the effect of the DNA purification method on HPV genomic DNA detection in Scope mouthwash oral rinse samples and the reproducibility of HPV detection in rinse samples collected 7 days apart were investigated. The study was conducted with a population at high risk for oral HPV infection: human immunodeficiency virus-infected men with CD4-cell counts <200. Five DNA purification methods were compared among equal aliquots of oral rinse samples collected from a subset of individuals. The purification methods included (i) proteinase K digestion (PKD) and heat inactivation; (ii) PKD and ethanol precipitation (EP); (iii) PKD, phenol-chloroform extraction, and EP; (iv) use of the Puregene DNA purification kit; and (v) use of the QIAamp DNA Blood Midi kit. HPV was detected by PCR amplification with PGMY09 and PGMY11 L1 primer pools and by use of a Roche linear array. Puregene-purified samples had higher human DNA yields and purities, and Puregene purification detected the greatest number of HPV-positive subjects and total HPV infections in comparison to the numbers detected by all other methods. The total number of HPV infections and HPV prevalence estimates were also higher for Puregene-processed oral rinse samples when a fixed volume (10 mu l) rather than a fixed cell number ( similar to 50,000 cells) was used for PCR amplification. A good concordance was observed for oral HPV infection status (agreement, 80%; kappa value, = 0.60) and type-specific infection (agreement, 98%; kappa value, 0.57) in matched oral rinse samples. The method of DNA purification significantly affects the detection of HPV genomic DNA from oral rinse samples and may result in exposure misclassification that could contribute to the inconsistent associations reported in the literature.
Author Sugar, Elizabeth
Gravitt, Patti
Gillison, Maura
D'Souza, Gypsyamber
Ruby, William
AuthorAffiliation Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, 1 Department of Oncology, Johns Hopkins University, Baltimore, Maryland, 2 Department of Medicine, Johns Hopkins University, Baltimore, Maryland 3
AuthorAffiliation_xml – name: Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, 1 Department of Oncology, Johns Hopkins University, Baltimore, Maryland, 2 Department of Medicine, Johns Hopkins University, Baltimore, Maryland 3
Author_xml – sequence: 1
  fullname: D'Souza, Gypsyamber
– sequence: 2
  fullname: Sugar, Elizabeth
– sequence: 3
  fullname: Ruby, William
– sequence: 4
  fullname: Gravitt, Patti
– sequence: 5
  fullname: Gillison, Maura
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17256892$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16272481$$D View this record in MEDLINE/PubMed
BookMark eNqFkt1uEzEQhS1URNPCK4CFBHcb_LNee2-QorSloEKjtkjcWY5jJ6683mDvFuXt621CW7iJZMkz8jdnxvY5AgehDQYAiNEYYyI-fZt-H5c0x2PGSFUwRtmYIMRegBFGtSiqCv06ACOEalZgTPkhOErpFiFcloy9Aoe4IpyUAo-AnwTlN8kl2FrYrQw8tdbobshOfkzgrI_OOq061waY14np8ulDYuF536gAZ2rtvG8bdedin6AL8DIqD69cSAZeq2btTYLzDZxNr16Dl1b5ZN7s9mNwc3Z6Mz0vLi6_fJ1OLgqd5-oKajTHFRfckrlV1lIlKF5wa9jCzueopoZggiuGbKnrsjbWkoWiiJXaKs4ZPQaft7Lrft6YhTahyxPJdXSNihvZKif_PQluJZftncxPywURWeDjTiC2v3uTOtm4pI33Kpi2T7ISvOKElHvBsuKcErRfEdc0d8Ykg2-fz_449N8fy8CHHaCSVt5GFbRLTxwnrBI1eXoEHduUorFSu-7hH_OVnZcYycFKMltJljTHcrCSHKwkBytlAfGfwGOP_aXvt6Urt1z9cdFIlRp5q5tneIbebSGrWqmWMV_i5zVBmCKMqMgAvQeMtuJa
CODEN JCMIDW
CitedBy_id crossref_primary_10_1099_jgv_0_000727
crossref_primary_10_1042_BJ20112017
crossref_primary_10_1016_j_canep_2015_10_010
crossref_primary_10_1002_jmv_21509
crossref_primary_10_1111_j_1439_0450_2006_00956_x
crossref_primary_10_1016_j_ygyno_2013_02_015
crossref_primary_10_1136_sextrans_2014_051942
crossref_primary_10_1158_1055_9965_EPI_14_0084
crossref_primary_10_1016_j_pvr_2018_05_003
crossref_primary_10_1590_1678_775720160009
crossref_primary_10_1002_hed_24006
crossref_primary_10_1016_j_oraloncology_2018_04_005
crossref_primary_10_1016_j_cct_2021_106630
crossref_primary_10_3390_jcm11195509
crossref_primary_10_1158_1055_9965_EPI_11_0734
crossref_primary_10_1016_S0011_8524_15_30037_4
crossref_primary_10_1093_jnci_djn025
crossref_primary_10_1158_1940_6207_CAPR_11_0284
crossref_primary_10_1002_cncr_29992
crossref_primary_10_1016_j_ejogrb_2019_11_022
crossref_primary_10_1097_OLQ_0b013e3181c94a3b
crossref_primary_10_1093_infdis_jiy715
crossref_primary_10_1016_j_meegid_2020_104274
crossref_primary_10_1093_cid_ciy274
crossref_primary_10_1093_carcin_bgz051
crossref_primary_10_1016_j_oraloncology_2019_02_002
crossref_primary_10_3390_pathogens10111411
crossref_primary_10_1002_mus_21650
crossref_primary_10_1016_j_diagmicrobio_2007_05_010
crossref_primary_10_1056_NEJMoa065497
crossref_primary_10_1186_1746_6148_7_38
crossref_primary_10_1111_ans_13417
crossref_primary_10_4103_jcrt_JCRT_957_19
crossref_primary_10_1016_j_jpeds_2011_10_027
crossref_primary_10_1308_204268510X12804095837951
crossref_primary_10_1007_s00405_012_2086_4
crossref_primary_10_1007_s13669_021_00323_2
crossref_primary_10_1158_1055_9965_EPI_10_0682
crossref_primary_10_1016_j_oraloncology_2017_02_013
crossref_primary_10_1016_j_jcv_2010_12_005
crossref_primary_10_1111_eos_12538
crossref_primary_10_1016_j_oraloncology_2011_02_011
crossref_primary_10_1128_JCM_00235_10
crossref_primary_10_2334_josnusd_53_451
crossref_primary_10_1002_ijc_32570
crossref_primary_10_1038_s41598_019_53148_8
crossref_primary_10_1016_j_pvr_2019_01_002
crossref_primary_10_1016_j_oooo_2012_11_004
crossref_primary_10_1186_1758_3284_1_8
crossref_primary_10_1155_2011_931281
crossref_primary_10_1371_journal_pone_0011918
crossref_primary_10_1158_1078_0432_CCR_08_0498
crossref_primary_10_1093_aje_kwu247
crossref_primary_10_1002_jmv_70146
crossref_primary_10_1016_j_oraloncology_2012_03_002
crossref_primary_10_1093_infdis_jit170
crossref_primary_10_1097_OLQ_0b013e3181e1a14c
crossref_primary_10_1097_01_AOG_0000266984_23445_9c
crossref_primary_10_1016_j_diagmicrobio_2017_12_004
crossref_primary_10_1097_OLQ_0000000000000264
crossref_primary_10_4236_ojmm_2013_31010
crossref_primary_10_1186_1532_429X_13_39
crossref_primary_10_1016_j_jviromet_2007_02_006
crossref_primary_10_1128_JCM_01321_06
crossref_primary_10_1371_journal_pone_0157976
crossref_primary_10_1186_s12985_019_1132_x
crossref_primary_10_1002_ijc_22667
crossref_primary_10_1097_OLQ_0000000000000625
crossref_primary_10_1089_apc_2018_0276
crossref_primary_10_1097_MD_0000000000031282
Cites_doi 10.1056/NEJM200104123441503
10.1093/jnci/90.21.1626
10.1016/S0002-9378(96)70452-0
10.1016/S0166-0934(03)00186-1
10.1086/421467
10.1097/00007435-199701000-00006
10.1056/NEJMoa021641
10.1128/JCM.36.10.3020-3027.1998
10.1093/jnci/92.9.709
10.1128/JCM.38.1.357-361.2000
10.1086/339193
10.5858/2001-125-0127-UOBCCI
10.1067/moe.2001.108797
10.1093/jnci/djh074
10.1093/jnci/92.18.1500
10.1086/514194
10.1097/00005537-199807000-00027
10.1016/S0166-0934(00)00244-5
10.1016/S1386-6532(00)00142-6
10.1111/j.1600-0714.1992.tb01008.x
10.1093/oxfordjournals.aje.a116209
10.1093/jnci/djg107
10.1038/sj.bjc.6602049
10.1086/320696
10.1086/381504
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright © 2005, American Society for Microbiology 2005
Copyright_xml – notice: 2006 INIST-CNRS
– notice: Copyright © 2005, American Society for Microbiology 2005
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TM
7U9
H94
7S9
L.6
7X8
5PM
DOI 10.1128/JCM.43.11.5526-5535.2005
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Nucleic Acids Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic

MEDLINE
AIDS and Cancer Research Abstracts
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1098-660X
1098-5530
EndPage 5535
ExternalDocumentID PMC1287828
16272481
17256892
10_1128_JCM_43_11_5526_5535_2005
jcm_43_11_5526
US201301038263
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
.55
.GJ
0R~
18M
29K
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
AAYOK
ABOCM
ABPPZ
ACGFO
ADBBV
AENEX
AEQTP
AFMIJ
AGCDD
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CS3
D-I
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
HF~
HYE
HZ~
H~9
KQ8
L7B
O9-
OHT
OK1
P2P
P6G
RHF
RHI
RNS
RPM
RSF
TR2
UCJ
VH1
W8F
WHG
WOQ
X7M
ZA5
ZCA
ZGI
ZXP
~KM
AAGFI
AAYXX
AGVNZ
CITATION
H13
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
PKN
YIF
7TM
7U9
H94
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c627t-3ec716787f2bfaff3a831d7fe5dfbb093e2121650f4c949eff2da3054cfa7753
ISSN 0095-1137
IngestDate Thu Aug 21 17:59:43 EDT 2025
Fri Sep 05 00:15:25 EDT 2025
Thu Sep 04 18:16:12 EDT 2025
Thu Sep 04 18:24:58 EDT 2025
Wed Feb 19 01:43:14 EST 2025
Mon Jul 21 09:15:45 EDT 2025
Thu Apr 24 22:53:11 EDT 2025
Tue Jul 01 02:12:28 EDT 2025
Wed May 18 15:27:33 EDT 2016
Wed Dec 27 19:25:38 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Papillomavirus
Virus
Polymerase chain reaction
Human papillomavirus
Purification
Microbiology
Papovaviridae
Detection
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c627t-3ec716787f2bfaff3a831d7fe5dfbb093e2121650f4c949eff2da3054cfa7753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Corresponding author. Mailing address: Department of Oncology, Johns Hopkins University, Cancer Research Building, Room G91, 1650 Orleans St., Baltimore, MD 21231. Phone: (410) 502-7412. Fax: (410) 614-9334. E-mail: gillima@jhmi.edu.
OpenAccessLink http://doi.org/10.1128/JCM.43.11.5526-5535.2005
PMID 16272481
PQID 19378212
PQPubID 23462
PageCount 10
ParticipantIDs crossref_citationtrail_10_1128_JCM_43_11_5526_5535_2005
fao_agris_US201301038263
highwire_asm_jcm_43_11_5526
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1287828
proquest_miscellaneous_68767224
pascalfrancis_primary_17256892
crossref_primary_10_1128_JCM_43_11_5526_5535_2005
pubmed_primary_16272481
proquest_miscellaneous_19378212
proquest_miscellaneous_46773208
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-11-01
PublicationDateYYYYMMDD 2005-11-01
PublicationDate_xml – month: 11
  year: 2005
  text: 2005-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Journal of Clinical Microbiology
PublicationTitleAlternate J Clin Microbiol
PublicationYear 2005
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
(e_1_3_2_10_2) 2001; 10
(e_1_3_2_4_2) 2003; 12
(e_1_3_2_9_2) 2004
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
(e_1_3_2_6_2) 2001; 10
e_1_3_2_14_2
15195241 - J Infect Dis. 2004 Jul 1;190(1):37-45
12869403 - Cancer Epidemiol Biomarkers Prev. 2003 Jul;12(7):638-42
11343204 - J Infect Dis. 2001 Jun 1;183(11):1554-64
12571259 - N Engl J Med. 2003 Feb 6;348(6):518-27
9018780 - Sex Transm Dis. 1997 Jan;24(1):23-31
1321561 - Am J Epidemiol. 1992 May 15;135(10):1093-102
15026470 - J Natl Cancer Inst. 2004 Mar 17;96(6):449-55
10618116 - J Clin Microbiol. 2000 Jan;38(1):357-61
15292939 - Br J Cancer. 2004 Aug 31;91(5):942-53
9738060 - J Clin Microbiol. 1998 Oct;36(10):3020-7
11174573 - Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001 Jan;91(1):62-9
11920302 - J Infect Dis. 2002 Mar 15;185(6):833-6
11151066 - Arch Pathol Lab Med. 2001 Jan;125(1):127-33
12951209 - J Virol Methods. 2003 Sep;112(1-2):23-33
14767823 - J Infect Dis. 2004 Feb 15;189(4):686-98
9466522 - J Infect Dis. 1998 Feb;177(2):361-7
8623809 - Am J Obstet Gynecol. 1996 Feb;174(2):694-9
9665264 - Laryngoscope. 1998 Jul;108(7):1098-103
10995805 - J Natl Cancer Inst. 2000 Sep 20;92(18):1500-10
11401920 - Cancer Epidemiol Biomarkers Prev. 2001 Jun;10(6):687-96
11297703 - N Engl J Med. 2001 Apr 12;344(15):1125-31
14652239 - J Natl Cancer Inst. 2003 Dec 3;95(23):1772-83
9811312 - J Natl Cancer Inst. 1998 Nov 4;90(21):1626-36
11219778 - Cancer Epidemiol Biomarkers Prev. 2001 Feb;10(2):95-100
1323673 - J Oral Pathol Med. 1992 Jul;21(6):265-9
10793107 - J Natl Cancer Inst. 2000 May 3;92(9):709-20
11090755 - J Clin Virol. 2000 Dec;19(3):187-93
11164492 - J Virol Methods. 2001 Feb;91(2):109-17
References_xml – start-page: 119
  year: 2004
  ident: e_1_3_2_9_2
  publication-title: Cervical cancer from etiology to prevention
– volume: 12
  start-page: 638
  year: 2003
  ident: e_1_3_2_4_2
  publication-title: Cancer Epidemiol. Biomarkers Prev.
– ident: e_1_3_2_20_2
  doi: 10.1056/NEJM200104123441503
– ident: e_1_3_2_27_2
  doi: 10.1093/jnci/90.21.1626
– ident: e_1_3_2_26_2
  doi: 10.1016/S0002-9378(96)70452-0
– volume: 10
  start-page: 687
  year: 2001
  ident: e_1_3_2_6_2
  publication-title: Cancer Epidemiol. Biomarkers Prev.
– ident: e_1_3_2_11_2
  doi: 10.1016/S0166-0934(03)00186-1
– ident: e_1_3_2_21_2
  doi: 10.1086/421467
– ident: e_1_3_2_2_2
  doi: 10.1097/00007435-199701000-00006
– ident: e_1_3_2_22_2
  doi: 10.1056/NEJMoa021641
– ident: e_1_3_2_13_2
  doi: 10.1128/JCM.36.10.3020-3027.1998
– ident: e_1_3_2_7_2
  doi: 10.1093/jnci/92.9.709
– ident: e_1_3_2_12_2
  doi: 10.1128/JCM.38.1.357-361.2000
– ident: e_1_3_2_8_2
  doi: 10.1086/339193
– ident: e_1_3_2_14_2
  doi: 10.5858/2001-125-0127-UOBCCI
– ident: e_1_3_2_30_2
  doi: 10.1067/moe.2001.108797
– ident: e_1_3_2_29_2
  doi: 10.1093/jnci/djh074
– ident: e_1_3_2_5_2
  doi: 10.1093/jnci/92.18.1500
– ident: e_1_3_2_23_2
  doi: 10.1086/514194
– volume: 10
  start-page: 95
  year: 2001
  ident: e_1_3_2_10_2
  publication-title: Cancer Epidemiol. Biomarkers Prev.
– ident: e_1_3_2_28_2
  doi: 10.1097/00005537-199807000-00027
– ident: e_1_3_2_31_2
  doi: 10.1016/S0166-0934(00)00244-5
– ident: e_1_3_2_3_2
  doi: 10.1016/S1386-6532(00)00142-6
– ident: e_1_3_2_18_2
  doi: 10.1111/j.1600-0714.1992.tb01008.x
– ident: e_1_3_2_19_2
  doi: 10.1093/oxfordjournals.aje.a116209
– ident: e_1_3_2_15_2
  doi: 10.1093/jnci/djg107
– ident: e_1_3_2_24_2
  doi: 10.1038/sj.bjc.6602049
– ident: e_1_3_2_25_2
  doi: 10.1086/320696
– ident: e_1_3_2_16_2
– ident: e_1_3_2_17_2
  doi: 10.1086/381504
– reference: 14767823 - J Infect Dis. 2004 Feb 15;189(4):686-98
– reference: 11920302 - J Infect Dis. 2002 Mar 15;185(6):833-6
– reference: 11164492 - J Virol Methods. 2001 Feb;91(2):109-17
– reference: 11401920 - Cancer Epidemiol Biomarkers Prev. 2001 Jun;10(6):687-96
– reference: 14652239 - J Natl Cancer Inst. 2003 Dec 3;95(23):1772-83
– reference: 11090755 - J Clin Virol. 2000 Dec;19(3):187-93
– reference: 10618116 - J Clin Microbiol. 2000 Jan;38(1):357-61
– reference: 12869403 - Cancer Epidemiol Biomarkers Prev. 2003 Jul;12(7):638-42
– reference: 1321561 - Am J Epidemiol. 1992 May 15;135(10):1093-102
– reference: 12951209 - J Virol Methods. 2003 Sep;112(1-2):23-33
– reference: 15026470 - J Natl Cancer Inst. 2004 Mar 17;96(6):449-55
– reference: 11174573 - Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001 Jan;91(1):62-9
– reference: 11343204 - J Infect Dis. 2001 Jun 1;183(11):1554-64
– reference: 9811312 - J Natl Cancer Inst. 1998 Nov 4;90(21):1626-36
– reference: 9665264 - Laryngoscope. 1998 Jul;108(7):1098-103
– reference: 10793107 - J Natl Cancer Inst. 2000 May 3;92(9):709-20
– reference: 11297703 - N Engl J Med. 2001 Apr 12;344(15):1125-31
– reference: 15195241 - J Infect Dis. 2004 Jul 1;190(1):37-45
– reference: 11219778 - Cancer Epidemiol Biomarkers Prev. 2001 Feb;10(2):95-100
– reference: 1323673 - J Oral Pathol Med. 1992 Jul;21(6):265-9
– reference: 9018780 - Sex Transm Dis. 1997 Jan;24(1):23-31
– reference: 11151066 - Arch Pathol Lab Med. 2001 Jan;125(1):127-33
– reference: 8623809 - Am J Obstet Gynecol. 1996 Feb;174(2):694-9
– reference: 15292939 - Br J Cancer. 2004 Aug 31;91(5):942-53
– reference: 10995805 - J Natl Cancer Inst. 2000 Sep 20;92(18):1500-10
– reference: 9466522 - J Infect Dis. 1998 Feb;177(2):361-7
– reference: 12571259 - N Engl J Med. 2003 Feb 6;348(6):518-27
– reference: 9738060 - J Clin Microbiol. 1998 Oct;36(10):3020-7
SSID ssj0014455
ssj0014452
Score 2.1324403
Snippet Human papillomavirus (HPV) has recently been associated with oral cancers. To prepare for a study of the natural history of oral HPV infection, the effect of...
Article Usage Stats Services JCM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
highwire
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5526
SubjectTerms Adolescent
Adult
AIDS-Related Opportunistic Infections - diagnosis
AIDS-Related Opportunistic Infections - immunology
AIDS-Related Opportunistic Infections - virology
Biological and medical sciences
Chloroform
Cohort Studies
DNA Primers
DNA, Viral - analysis
DNA, Viral - isolation & purification
Endopeptidase K
Ethanol
Fundamental and applied biological sciences. Psychology
Hot Temperature
Human papillomavirus
Humans
Infectious diseases
Male
Medical sciences
Microbiology
Miscellaneous
Mouth - virology
Mouthwashes
Papillomaviridae - genetics
Papillomaviridae - isolation & purification
Papillomavirus Infections - diagnosis
Papillomavirus Infections - virology
Phenol
Polymerase Chain Reaction
Reagent Kits, Diagnostic
Species Specificity
Virology
Title Analysis of the Effect of DNA Purification on Detection of Human Papillomavirus in Oral Rinse Samples by PCR
URI http://jcm.asm.org/content/43/11/5526.abstract
https://www.ncbi.nlm.nih.gov/pubmed/16272481
https://www.proquest.com/docview/19378212
https://www.proquest.com/docview/46773208
https://www.proquest.com/docview/68767224
https://pubmed.ncbi.nlm.nih.gov/PMC1287828
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IRAvCAZsZTD8AE9VSuN8OHmcNmAa6ijrJu0tcj48gtq0ahOk7l_ln-EudtJk3aaBVEV1aieO71ffnXP-HSEffFQqgpmGGbl9w3b7oeHFHAkv_TAGY843JS4NDE7d4wv75NK53Nj404haKvKwF13fuq_kf6QK50CuuEv2HyRbXxROwHeQLxxBwnB8kIybjCJoQGoqYigdnR50h8Uc44C0TZjB1JInUWUgqsX7oZil4_F0In6n86KMjP2OG_bP0myRdEcCmYMXaKAOdXTuuhV7WO2sHKQrSqc6qGc5WywFphzpHn1kfDQtrmstUMeTwdx1JVYhwmr9p3tWhPVlhiLP0-7XOfQyz1vLFI7er1cDq3r_1AxGXeuZnqR9bK24YHqJmpeR9tR1-5fNiVvxO1UANRvTsOOobfjr-oHhnoeTw0HPtqDUw4qG41hOubrWbAKSnk1K3Jgu48xWiWXahN03FGkd3vgrmgS2Bc5VgNffJI8Y52UMwbcfq1dctu2o9Br6aaswM-Z9uqt_yHCrO9MyozalmDYIrjG-VyxA9FLlZrnNeboZA9wwqs6fk2caR_RAQfsF2UiybfJY5UddbpMnAx358ZKMK6zTqaSAdaqwjiXAOm1incKnxjpWKLFO21inaUYR67TEOtVYp-GSAtZfkfMvn88Pjw2dKcSIYDxyw0oiGGDQPZKFUkhpCc8yYy4TJ5Zh2PetBCw0E5wRaUe-7SdSsliAprMjKTg47K_JVjbNkl1CE19y1uexFMKyQ1P4DhNgw8fMTjwPlFWH8Grcg0iz6GMyl3FQetPMC0B4DeEHKDzM9ep0iFm3nCkmmQe02QXRBuIKFH5wMWIYZoAZDRh2ZK-SdyAWk6CNuQ7Zb0FgdUcOPo7nsw55X2EiAIWCbwlFlkyLRQAeHXgN5j01wLbiFut7d9dwwcbi4Bx0yI5C2er-Gr8wji381RWQ7r79S5b-LGnvYaCgY96bex98jzxdzT5vyVY-L5J34Dbk4X759_sLPgoRxA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+Effect+of+DNA+Purification+on+Detection+of+Human+Papillomavirus+in+Oral+Rinse+Samples+by+PCR&rft.jtitle=Journal+of+Clinical+Microbiology&rft.au=Gypsyamber+D%27Souza&rft.au=Elizabeth+Sugar&rft.au=William+Ruby&rft.au=Patti+Gravitt&rft.date=2005-11-01&rft.pub=American+Society+for+Microbiology&rft.issn=0095-1137&rft.eissn=1098-660X&rft.volume=43&rft.issue=11&rft.spage=5526&rft_id=info:doi/10.1128%2FJCM.43.11.5526-5535.2005&rft_id=info%3Apmid%2F16272481&rft.externalDBID=n%2Fa&rft.externalDocID=jcm_43_11_5526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0095-1137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0095-1137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0095-1137&client=summon