Analysis of the Effect of DNA Purification on Detection of Human Papillomavirus in Oral Rinse Samples by PCR
Human papillomavirus (HPV) has recently been associated with oral cancers. To prepare for a study of the natural history of oral HPV infection, the effect of the DNA purification method on HPV genomic DNA detection in Scope mouthwash oral rinse samples and the reproducibility of HPV detection in rin...
Saved in:
Published in | Journal of Clinical Microbiology Vol. 43; no. 11; pp. 5526 - 5535 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.11.2005
|
Subjects | |
Online Access | Get full text |
ISSN | 0095-1137 1098-660X 1098-5530 |
DOI | 10.1128/JCM.43.11.5526-5535.2005 |
Cover
Abstract | Human papillomavirus (HPV) has recently been associated with oral cancers. To prepare for a study of the natural history of oral HPV infection, the effect of the DNA purification method on HPV genomic DNA detection in Scope mouthwash oral rinse samples and the reproducibility of HPV detection in rinse samples collected 7 days apart were investigated. The study was conducted with a population at high risk for oral HPV infection: human immunodeficiency virus-infected men with CD4-cell counts <200. Five DNA purification methods were compared among equal aliquots of oral rinse samples collected from a subset of individuals. The purification methods included (i) proteinase K digestion (PKD) and heat inactivation; (ii) PKD and ethanol precipitation (EP); (iii) PKD, phenol-chloroform extraction, and EP; (iv) use of the Puregene DNA purification kit; and (v) use of the QIAamp DNA Blood Midi kit. HPV was detected by PCR amplification with PGMY09 and PGMY11 L1 primer pools and by use of a Roche linear array. Puregene-purified samples had higher human DNA yields and purities, and Puregene purification detected the greatest number of HPV-positive subjects and total HPV infections in comparison to the numbers detected by all other methods. The total number of HPV infections and HPV prevalence estimates were also higher for Puregene-processed oral rinse samples when a fixed volume (10 [micro]l) rather than a fixed cell number ([approximately]50,000 cells) was used for PCR amplification. A good concordance was observed for oral HPV infection status (agreement, 80%; kappa value, = 0.60) and type-specific infection (agreement, 98%; kappa value, 0.57) in matched oral rinse samples. The method of DNA purification significantly affects the detection of HPV genomic DNA from oral rinse samples and may result in exposure misclassification that could contribute to the inconsistent associations reported in the literature. |
---|---|
AbstractList | Human papillomavirus (HPV) has recently been associated with oral cancers. To prepare for a study of the natural history of oral HPV infection, the effect of the DNA purification method on HPV genomic DNA detection in Scope mouthwash oral rinse samples and the reproducibility of HPV detection in rinse samples collected 7 days apart were investigated. The study was conducted with a population at high risk for oral HPV infection: human immunodeficiency virus-infected men with CD4-cell counts <200. Five DNA purification methods were compared among equal aliquots of oral rinse samples collected from a subset of individuals. The purification methods included (i) proteinase K digestion (PKD) and heat inactivation; (ii) PKD and ethanol precipitation (EP); (iii) PKD, phenol-chloroform extraction, and EP; (iv) use of the Puregene DNA purification kit; and (v) use of the QIAamp DNA Blood Midi kit. HPV was detected by PCR amplification with PGMY09 and PGMY11 L1 primer pools and by use of a Roche linear array. Puregene-purified samples had higher human DNA yields and purities, and Puregene purification detected the greatest number of HPV-positive subjects and total HPV infections in comparison to the numbers detected by all other methods. The total number of HPV infections and HPV prevalence estimates were also higher for Puregene-processed oral rinse samples when a fixed volume (10 μl) rather than a fixed cell number (∼50,000 cells) was used for PCR amplification. A good concordance was observed for oral HPV infection status (agreement, 80%; kappa value, = 0.60) and type-specific infection (agreement, 98%; kappa value, 0.57) in matched oral rinse samples. The method of DNA purification significantly affects the detection of HPV genomic DNA from oral rinse samples and may result in exposure misclassification that could contribute to the inconsistent associations reported in the literature. Article Usage Stats Services JCM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JCM About JCM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JCM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0095-1137 Online ISSN: 1098-660X Copyright © 2014 by the American Society for Microbiology. For an alternate route to JCM .asm.org, visit: JCM Human papillomavirus (HPV) has recently been associated with oral cancers. To prepare for a study of the natural history of oral HPV infection, the effect of the DNA purification method on HPV genomic DNA detection in Scope mouthwash oral rinse samples and the reproducibility of HPV detection in rinse samples collected 7 days apart were investigated. The study was conducted with a population at high risk for oral HPV infection: human immunodeficiency virus-infected men with CD4-cell counts <200. Five DNA purification methods were compared among equal aliquots of oral rinse samples collected from a subset of individuals. The purification methods included (i) proteinase K digestion (PKD) and heat inactivation; (ii) PKD and ethanol precipitation (EP); (iii) PKD, phenol-chloroform extraction, and EP; (iv) use of the Puregene DNA purification kit; and (v) use of the QIAamp DNA Blood Midi kit. HPV was detected by PCR amplification with PGMY09 and PGMY11 L1 primer pools and by use of a Roche linear array. Puregene-purified samples had higher human DNA yields and purities, and Puregene purification detected the greatest number of HPV-positive subjects and total HPV infections in comparison to the numbers detected by all other methods. The total number of HPV infections and HPV prevalence estimates were also higher for Puregene-processed oral rinse samples when a fixed volume (10 mul) rather than a fixed cell number ( approximately 50,000 cells) was used for PCR amplification. A good concordance was observed for oral HPV infection status (agreement, 80%; kappa value, = 0.60) and type-specific infection (agreement, 98%; kappa value, 0.57) in matched oral rinse samples. The method of DNA purification significantly affects the detection of HPV genomic DNA from oral rinse samples and may result in exposure misclassification that could contribute to the inconsistent associations reported in the literature.Human papillomavirus (HPV) has recently been associated with oral cancers. To prepare for a study of the natural history of oral HPV infection, the effect of the DNA purification method on HPV genomic DNA detection in Scope mouthwash oral rinse samples and the reproducibility of HPV detection in rinse samples collected 7 days apart were investigated. The study was conducted with a population at high risk for oral HPV infection: human immunodeficiency virus-infected men with CD4-cell counts <200. Five DNA purification methods were compared among equal aliquots of oral rinse samples collected from a subset of individuals. The purification methods included (i) proteinase K digestion (PKD) and heat inactivation; (ii) PKD and ethanol precipitation (EP); (iii) PKD, phenol-chloroform extraction, and EP; (iv) use of the Puregene DNA purification kit; and (v) use of the QIAamp DNA Blood Midi kit. HPV was detected by PCR amplification with PGMY09 and PGMY11 L1 primer pools and by use of a Roche linear array. Puregene-purified samples had higher human DNA yields and purities, and Puregene purification detected the greatest number of HPV-positive subjects and total HPV infections in comparison to the numbers detected by all other methods. The total number of HPV infections and HPV prevalence estimates were also higher for Puregene-processed oral rinse samples when a fixed volume (10 mul) rather than a fixed cell number ( approximately 50,000 cells) was used for PCR amplification. A good concordance was observed for oral HPV infection status (agreement, 80%; kappa value, = 0.60) and type-specific infection (agreement, 98%; kappa value, 0.57) in matched oral rinse samples. The method of DNA purification significantly affects the detection of HPV genomic DNA from oral rinse samples and may result in exposure misclassification that could contribute to the inconsistent associations reported in the literature. Human papillomavirus (HPV) has recently been associated with oral cancers. To prepare for a study of the natural history of oral HPV infection, the effect of the DNA purification method on HPV genomic DNA detection in Scope mouthwash oral rinse samples and the reproducibility of HPV detection in rinse samples collected 7 days apart were investigated. The study was conducted with a population at high risk for oral HPV infection: human immunodeficiency virus-infected men with CD4-cell counts <200. Five DNA purification methods were compared among equal aliquots of oral rinse samples collected from a subset of individuals. The purification methods included (i) proteinase K digestion (PKD) and heat inactivation; (ii) PKD and ethanol precipitation (EP); (iii) PKD, phenol-chloroform extraction, and EP; (iv) use of the Puregene DNA purification kit; and (v) use of the QIAamp DNA Blood Midi kit. HPV was detected by PCR amplification with PGMY09 and PGMY11 L1 primer pools and by use of a Roche linear array. Puregene-purified samples had higher human DNA yields and purities, and Puregene purification detected the greatest number of HPV-positive subjects and total HPV infections in comparison to the numbers detected by all other methods. The total number of HPV infections and HPV prevalence estimates were also higher for Puregene-processed oral rinse samples when a fixed volume (10 [micro]l) rather than a fixed cell number ([approximately]50,000 cells) was used for PCR amplification. A good concordance was observed for oral HPV infection status (agreement, 80%; kappa value, = 0.60) and type-specific infection (agreement, 98%; kappa value, 0.57) in matched oral rinse samples. The method of DNA purification significantly affects the detection of HPV genomic DNA from oral rinse samples and may result in exposure misclassification that could contribute to the inconsistent associations reported in the literature. Human papillomavirus (HPV) has recently been associated with oral cancers. To prepare for a study of the natural history of oral HPV infection, the effect of the DNA purification method on HPV genomic DNA detection in Scope mouthwash oral rinse samples and the reproducibility of HPV detection in rinse samples collected 7 days apart were investigated. The study was conducted with a population at high risk for oral HPV infection: human immunodeficiency virus-infected men with CD4-cell counts <200. Five DNA purification methods were compared among equal aliquots of oral rinse samples collected from a subset of individuals. The purification methods included (i) proteinase K digestion (PKD) and heat inactivation; (ii) PKD and ethanol precipitation (EP); (iii) PKD, phenol-chloroform extraction, and EP; (iv) use of the Puregene DNA purification kit; and (v) use of the QIAamp DNA Blood Midi kit. HPV was detected by PCR amplification with PGMY09 and PGMY11 L1 primer pools and by use of a Roche linear array. Puregene-purified samples had higher human DNA yields and purities, and Puregene purification detected the greatest number of HPV-positive subjects and total HPV infections in comparison to the numbers detected by all other methods. The total number of HPV infections and HPV prevalence estimates were also higher for Puregene-processed oral rinse samples when a fixed volume (10 mul) rather than a fixed cell number ( approximately 50,000 cells) was used for PCR amplification. A good concordance was observed for oral HPV infection status (agreement, 80%; kappa value, = 0.60) and type-specific infection (agreement, 98%; kappa value, 0.57) in matched oral rinse samples. The method of DNA purification significantly affects the detection of HPV genomic DNA from oral rinse samples and may result in exposure misclassification that could contribute to the inconsistent associations reported in the literature. Human papillomavirus (HPV) has recently been associated with oral cancers. To prepare for a study of the natural history of oral HPV infection, the effect of the DNA purification method on HPV genomic DNA detection in Scope mouthwash oral rinse samples and the reproducibility of HPV detection in rinse samples collected 7 days apart were investigated. The study was conducted with a population at high risk for oral HPV infection: human immunodeficiency virus-infected men with CD4-cell counts <200. Five DNA purification methods were compared among equal aliquots of oral rinse samples collected from a subset of individuals. The purification methods included (i) proteinase K digestion (PKD) and heat inactivation; (ii) PKD and ethanol precipitation (EP); (iii) PKD, phenol-chloroform extraction, and EP; (iv) use of the Puregene DNA purification kit; and (v) use of the QIAamp DNA Blood Midi kit. HPV was detected by PCR amplification with PGMY09 and PGMY11 L1 primer pools and by use of a Roche linear array. Puregene-purified samples had higher human DNA yields and purities, and Puregene purification detected the greatest number of HPV-positive subjects and total HPV infections in comparison to the numbers detected by all other methods. The total number of HPV infections and HPV prevalence estimates were also higher for Puregene-processed oral rinse samples when a fixed volume (10 mu l) rather than a fixed cell number ( similar to 50,000 cells) was used for PCR amplification. A good concordance was observed for oral HPV infection status (agreement, 80%; kappa value, = 0.60) and type-specific infection (agreement, 98%; kappa value, 0.57) in matched oral rinse samples. The method of DNA purification significantly affects the detection of HPV genomic DNA from oral rinse samples and may result in exposure misclassification that could contribute to the inconsistent associations reported in the literature. |
Author | Sugar, Elizabeth Gravitt, Patti Gillison, Maura D'Souza, Gypsyamber Ruby, William |
AuthorAffiliation | Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, 1 Department of Oncology, Johns Hopkins University, Baltimore, Maryland, 2 Department of Medicine, Johns Hopkins University, Baltimore, Maryland 3 |
AuthorAffiliation_xml | – name: Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, 1 Department of Oncology, Johns Hopkins University, Baltimore, Maryland, 2 Department of Medicine, Johns Hopkins University, Baltimore, Maryland 3 |
Author_xml | – sequence: 1 fullname: D'Souza, Gypsyamber – sequence: 2 fullname: Sugar, Elizabeth – sequence: 3 fullname: Ruby, William – sequence: 4 fullname: Gravitt, Patti – sequence: 5 fullname: Gillison, Maura |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17256892$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16272481$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt1uEzEQhS1URNPCK4CFBHcb_LNee2-QorSloEKjtkjcWY5jJ6683mDvFuXt621CW7iJZMkz8jdnxvY5AgehDQYAiNEYYyI-fZt-H5c0x2PGSFUwRtmYIMRegBFGtSiqCv06ACOEalZgTPkhOErpFiFcloy9Aoe4IpyUAo-AnwTlN8kl2FrYrQw8tdbobshOfkzgrI_OOq061waY14np8ulDYuF536gAZ2rtvG8bdedin6AL8DIqD69cSAZeq2btTYLzDZxNr16Dl1b5ZN7s9mNwc3Z6Mz0vLi6_fJ1OLgqd5-oKajTHFRfckrlV1lIlKF5wa9jCzueopoZggiuGbKnrsjbWkoWiiJXaKs4ZPQaft7Lrft6YhTahyxPJdXSNihvZKif_PQluJZftncxPywURWeDjTiC2v3uTOtm4pI33Kpi2T7ISvOKElHvBsuKcErRfEdc0d8Ykg2-fz_449N8fy8CHHaCSVt5GFbRLTxwnrBI1eXoEHduUorFSu-7hH_OVnZcYycFKMltJljTHcrCSHKwkBytlAfGfwGOP_aXvt6Urt1z9cdFIlRp5q5tneIbebSGrWqmWMV_i5zVBmCKMqMgAvQeMtuJa |
CODEN | JCMIDW |
CitedBy_id | crossref_primary_10_1099_jgv_0_000727 crossref_primary_10_1042_BJ20112017 crossref_primary_10_1016_j_canep_2015_10_010 crossref_primary_10_1002_jmv_21509 crossref_primary_10_1111_j_1439_0450_2006_00956_x crossref_primary_10_1016_j_ygyno_2013_02_015 crossref_primary_10_1136_sextrans_2014_051942 crossref_primary_10_1158_1055_9965_EPI_14_0084 crossref_primary_10_1016_j_pvr_2018_05_003 crossref_primary_10_1590_1678_775720160009 crossref_primary_10_1002_hed_24006 crossref_primary_10_1016_j_oraloncology_2018_04_005 crossref_primary_10_1016_j_cct_2021_106630 crossref_primary_10_3390_jcm11195509 crossref_primary_10_1158_1055_9965_EPI_11_0734 crossref_primary_10_1016_S0011_8524_15_30037_4 crossref_primary_10_1093_jnci_djn025 crossref_primary_10_1158_1940_6207_CAPR_11_0284 crossref_primary_10_1002_cncr_29992 crossref_primary_10_1016_j_ejogrb_2019_11_022 crossref_primary_10_1097_OLQ_0b013e3181c94a3b crossref_primary_10_1093_infdis_jiy715 crossref_primary_10_1016_j_meegid_2020_104274 crossref_primary_10_1093_cid_ciy274 crossref_primary_10_1093_carcin_bgz051 crossref_primary_10_1016_j_oraloncology_2019_02_002 crossref_primary_10_3390_pathogens10111411 crossref_primary_10_1002_mus_21650 crossref_primary_10_1016_j_diagmicrobio_2007_05_010 crossref_primary_10_1056_NEJMoa065497 crossref_primary_10_1186_1746_6148_7_38 crossref_primary_10_1111_ans_13417 crossref_primary_10_4103_jcrt_JCRT_957_19 crossref_primary_10_1016_j_jpeds_2011_10_027 crossref_primary_10_1308_204268510X12804095837951 crossref_primary_10_1007_s00405_012_2086_4 crossref_primary_10_1007_s13669_021_00323_2 crossref_primary_10_1158_1055_9965_EPI_10_0682 crossref_primary_10_1016_j_oraloncology_2017_02_013 crossref_primary_10_1016_j_jcv_2010_12_005 crossref_primary_10_1111_eos_12538 crossref_primary_10_1016_j_oraloncology_2011_02_011 crossref_primary_10_1128_JCM_00235_10 crossref_primary_10_2334_josnusd_53_451 crossref_primary_10_1002_ijc_32570 crossref_primary_10_1038_s41598_019_53148_8 crossref_primary_10_1016_j_pvr_2019_01_002 crossref_primary_10_1016_j_oooo_2012_11_004 crossref_primary_10_1186_1758_3284_1_8 crossref_primary_10_1155_2011_931281 crossref_primary_10_1371_journal_pone_0011918 crossref_primary_10_1158_1078_0432_CCR_08_0498 crossref_primary_10_1093_aje_kwu247 crossref_primary_10_1002_jmv_70146 crossref_primary_10_1016_j_oraloncology_2012_03_002 crossref_primary_10_1093_infdis_jit170 crossref_primary_10_1097_OLQ_0b013e3181e1a14c crossref_primary_10_1097_01_AOG_0000266984_23445_9c crossref_primary_10_1016_j_diagmicrobio_2017_12_004 crossref_primary_10_1097_OLQ_0000000000000264 crossref_primary_10_4236_ojmm_2013_31010 crossref_primary_10_1186_1532_429X_13_39 crossref_primary_10_1016_j_jviromet_2007_02_006 crossref_primary_10_1128_JCM_01321_06 crossref_primary_10_1371_journal_pone_0157976 crossref_primary_10_1186_s12985_019_1132_x crossref_primary_10_1002_ijc_22667 crossref_primary_10_1097_OLQ_0000000000000625 crossref_primary_10_1089_apc_2018_0276 crossref_primary_10_1097_MD_0000000000031282 |
Cites_doi | 10.1056/NEJM200104123441503 10.1093/jnci/90.21.1626 10.1016/S0002-9378(96)70452-0 10.1016/S0166-0934(03)00186-1 10.1086/421467 10.1097/00007435-199701000-00006 10.1056/NEJMoa021641 10.1128/JCM.36.10.3020-3027.1998 10.1093/jnci/92.9.709 10.1128/JCM.38.1.357-361.2000 10.1086/339193 10.5858/2001-125-0127-UOBCCI 10.1067/moe.2001.108797 10.1093/jnci/djh074 10.1093/jnci/92.18.1500 10.1086/514194 10.1097/00005537-199807000-00027 10.1016/S0166-0934(00)00244-5 10.1016/S1386-6532(00)00142-6 10.1111/j.1600-0714.1992.tb01008.x 10.1093/oxfordjournals.aje.a116209 10.1093/jnci/djg107 10.1038/sj.bjc.6602049 10.1086/320696 10.1086/381504 |
ContentType | Journal Article |
Copyright | 2006 INIST-CNRS Copyright © 2005, American Society for Microbiology 2005 |
Copyright_xml | – notice: 2006 INIST-CNRS – notice: Copyright © 2005, American Society for Microbiology 2005 |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TM 7U9 H94 7S9 L.6 7X8 5PM |
DOI | 10.1128/JCM.43.11.5526-5535.2005 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1098-660X 1098-5530 |
EndPage | 5535 |
ExternalDocumentID | PMC1287828 16272481 17256892 10_1128_JCM_43_11_5526_5535_2005 jcm_43_11_5526 US201301038263 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- .55 .GJ 0R~ 18M 29K 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS AAYOK ABOCM ABPPZ ACGFO ADBBV AENEX AEQTP AFMIJ AGCDD AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CS3 D-I DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 HF~ HYE HZ~ H~9 KQ8 L7B O9- OHT OK1 P2P P6G RHF RHI RNS RPM RSF TR2 UCJ VH1 W8F WHG WOQ X7M ZA5 ZCA ZGI ZXP ~KM AAGFI AAYXX AGVNZ CITATION H13 IQODW CGR CUY CVF ECM EIF NPM PKN YIF 7TM 7U9 H94 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c627t-3ec716787f2bfaff3a831d7fe5dfbb093e2121650f4c949eff2da3054cfa7753 |
ISSN | 0095-1137 |
IngestDate | Thu Aug 21 17:59:43 EDT 2025 Fri Sep 05 00:15:25 EDT 2025 Thu Sep 04 18:16:12 EDT 2025 Thu Sep 04 18:24:58 EDT 2025 Wed Feb 19 01:43:14 EST 2025 Mon Jul 21 09:15:45 EDT 2025 Thu Apr 24 22:53:11 EDT 2025 Tue Jul 01 02:12:28 EDT 2025 Wed May 18 15:27:33 EDT 2016 Wed Dec 27 19:25:38 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Papillomavirus Virus Polymerase chain reaction Human papillomavirus Purification Microbiology Papovaviridae Detection |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c627t-3ec716787f2bfaff3a831d7fe5dfbb093e2121650f4c949eff2da3054cfa7753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Corresponding author. Mailing address: Department of Oncology, Johns Hopkins University, Cancer Research Building, Room G91, 1650 Orleans St., Baltimore, MD 21231. Phone: (410) 502-7412. Fax: (410) 614-9334. E-mail: gillima@jhmi.edu. |
OpenAccessLink | http://doi.org/10.1128/JCM.43.11.5526-5535.2005 |
PMID | 16272481 |
PQID | 19378212 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1128_JCM_43_11_5526_5535_2005 fao_agris_US201301038263 highwire_asm_jcm_43_11_5526 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1287828 proquest_miscellaneous_68767224 pascalfrancis_primary_17256892 crossref_primary_10_1128_JCM_43_11_5526_5535_2005 pubmed_primary_16272481 proquest_miscellaneous_19378212 proquest_miscellaneous_46773208 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-11-01 |
PublicationDateYYYYMMDD | 2005-11-01 |
PublicationDate_xml | – month: 11 year: 2005 text: 2005-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Journal of Clinical Microbiology |
PublicationTitleAlternate | J Clin Microbiol |
PublicationYear | 2005 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 (e_1_3_2_10_2) 2001; 10 (e_1_3_2_4_2) 2003; 12 (e_1_3_2_9_2) 2004 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_12_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 (e_1_3_2_6_2) 2001; 10 e_1_3_2_14_2 15195241 - J Infect Dis. 2004 Jul 1;190(1):37-45 12869403 - Cancer Epidemiol Biomarkers Prev. 2003 Jul;12(7):638-42 11343204 - J Infect Dis. 2001 Jun 1;183(11):1554-64 12571259 - N Engl J Med. 2003 Feb 6;348(6):518-27 9018780 - Sex Transm Dis. 1997 Jan;24(1):23-31 1321561 - Am J Epidemiol. 1992 May 15;135(10):1093-102 15026470 - J Natl Cancer Inst. 2004 Mar 17;96(6):449-55 10618116 - J Clin Microbiol. 2000 Jan;38(1):357-61 15292939 - Br J Cancer. 2004 Aug 31;91(5):942-53 9738060 - J Clin Microbiol. 1998 Oct;36(10):3020-7 11174573 - Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001 Jan;91(1):62-9 11920302 - J Infect Dis. 2002 Mar 15;185(6):833-6 11151066 - Arch Pathol Lab Med. 2001 Jan;125(1):127-33 12951209 - J Virol Methods. 2003 Sep;112(1-2):23-33 14767823 - J Infect Dis. 2004 Feb 15;189(4):686-98 9466522 - J Infect Dis. 1998 Feb;177(2):361-7 8623809 - Am J Obstet Gynecol. 1996 Feb;174(2):694-9 9665264 - Laryngoscope. 1998 Jul;108(7):1098-103 10995805 - J Natl Cancer Inst. 2000 Sep 20;92(18):1500-10 11401920 - Cancer Epidemiol Biomarkers Prev. 2001 Jun;10(6):687-96 11297703 - N Engl J Med. 2001 Apr 12;344(15):1125-31 14652239 - J Natl Cancer Inst. 2003 Dec 3;95(23):1772-83 9811312 - J Natl Cancer Inst. 1998 Nov 4;90(21):1626-36 11219778 - Cancer Epidemiol Biomarkers Prev. 2001 Feb;10(2):95-100 1323673 - J Oral Pathol Med. 1992 Jul;21(6):265-9 10793107 - J Natl Cancer Inst. 2000 May 3;92(9):709-20 11090755 - J Clin Virol. 2000 Dec;19(3):187-93 11164492 - J Virol Methods. 2001 Feb;91(2):109-17 |
References_xml | – start-page: 119 year: 2004 ident: e_1_3_2_9_2 publication-title: Cervical cancer from etiology to prevention – volume: 12 start-page: 638 year: 2003 ident: e_1_3_2_4_2 publication-title: Cancer Epidemiol. Biomarkers Prev. – ident: e_1_3_2_20_2 doi: 10.1056/NEJM200104123441503 – ident: e_1_3_2_27_2 doi: 10.1093/jnci/90.21.1626 – ident: e_1_3_2_26_2 doi: 10.1016/S0002-9378(96)70452-0 – volume: 10 start-page: 687 year: 2001 ident: e_1_3_2_6_2 publication-title: Cancer Epidemiol. Biomarkers Prev. – ident: e_1_3_2_11_2 doi: 10.1016/S0166-0934(03)00186-1 – ident: e_1_3_2_21_2 doi: 10.1086/421467 – ident: e_1_3_2_2_2 doi: 10.1097/00007435-199701000-00006 – ident: e_1_3_2_22_2 doi: 10.1056/NEJMoa021641 – ident: e_1_3_2_13_2 doi: 10.1128/JCM.36.10.3020-3027.1998 – ident: e_1_3_2_7_2 doi: 10.1093/jnci/92.9.709 – ident: e_1_3_2_12_2 doi: 10.1128/JCM.38.1.357-361.2000 – ident: e_1_3_2_8_2 doi: 10.1086/339193 – ident: e_1_3_2_14_2 doi: 10.5858/2001-125-0127-UOBCCI – ident: e_1_3_2_30_2 doi: 10.1067/moe.2001.108797 – ident: e_1_3_2_29_2 doi: 10.1093/jnci/djh074 – ident: e_1_3_2_5_2 doi: 10.1093/jnci/92.18.1500 – ident: e_1_3_2_23_2 doi: 10.1086/514194 – volume: 10 start-page: 95 year: 2001 ident: e_1_3_2_10_2 publication-title: Cancer Epidemiol. Biomarkers Prev. – ident: e_1_3_2_28_2 doi: 10.1097/00005537-199807000-00027 – ident: e_1_3_2_31_2 doi: 10.1016/S0166-0934(00)00244-5 – ident: e_1_3_2_3_2 doi: 10.1016/S1386-6532(00)00142-6 – ident: e_1_3_2_18_2 doi: 10.1111/j.1600-0714.1992.tb01008.x – ident: e_1_3_2_19_2 doi: 10.1093/oxfordjournals.aje.a116209 – ident: e_1_3_2_15_2 doi: 10.1093/jnci/djg107 – ident: e_1_3_2_24_2 doi: 10.1038/sj.bjc.6602049 – ident: e_1_3_2_25_2 doi: 10.1086/320696 – ident: e_1_3_2_16_2 – ident: e_1_3_2_17_2 doi: 10.1086/381504 – reference: 14767823 - J Infect Dis. 2004 Feb 15;189(4):686-98 – reference: 11920302 - J Infect Dis. 2002 Mar 15;185(6):833-6 – reference: 11164492 - J Virol Methods. 2001 Feb;91(2):109-17 – reference: 11401920 - Cancer Epidemiol Biomarkers Prev. 2001 Jun;10(6):687-96 – reference: 14652239 - J Natl Cancer Inst. 2003 Dec 3;95(23):1772-83 – reference: 11090755 - J Clin Virol. 2000 Dec;19(3):187-93 – reference: 10618116 - J Clin Microbiol. 2000 Jan;38(1):357-61 – reference: 12869403 - Cancer Epidemiol Biomarkers Prev. 2003 Jul;12(7):638-42 – reference: 1321561 - Am J Epidemiol. 1992 May 15;135(10):1093-102 – reference: 12951209 - J Virol Methods. 2003 Sep;112(1-2):23-33 – reference: 15026470 - J Natl Cancer Inst. 2004 Mar 17;96(6):449-55 – reference: 11174573 - Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001 Jan;91(1):62-9 – reference: 11343204 - J Infect Dis. 2001 Jun 1;183(11):1554-64 – reference: 9811312 - J Natl Cancer Inst. 1998 Nov 4;90(21):1626-36 – reference: 9665264 - Laryngoscope. 1998 Jul;108(7):1098-103 – reference: 10793107 - J Natl Cancer Inst. 2000 May 3;92(9):709-20 – reference: 11297703 - N Engl J Med. 2001 Apr 12;344(15):1125-31 – reference: 15195241 - J Infect Dis. 2004 Jul 1;190(1):37-45 – reference: 11219778 - Cancer Epidemiol Biomarkers Prev. 2001 Feb;10(2):95-100 – reference: 1323673 - J Oral Pathol Med. 1992 Jul;21(6):265-9 – reference: 9018780 - Sex Transm Dis. 1997 Jan;24(1):23-31 – reference: 11151066 - Arch Pathol Lab Med. 2001 Jan;125(1):127-33 – reference: 8623809 - Am J Obstet Gynecol. 1996 Feb;174(2):694-9 – reference: 15292939 - Br J Cancer. 2004 Aug 31;91(5):942-53 – reference: 10995805 - J Natl Cancer Inst. 2000 Sep 20;92(18):1500-10 – reference: 9466522 - J Infect Dis. 1998 Feb;177(2):361-7 – reference: 12571259 - N Engl J Med. 2003 Feb 6;348(6):518-27 – reference: 9738060 - J Clin Microbiol. 1998 Oct;36(10):3020-7 |
SSID | ssj0014455 ssj0014452 |
Score | 2.1324403 |
Snippet | Human papillomavirus (HPV) has recently been associated with oral cancers. To prepare for a study of the natural history of oral HPV infection, the effect of... Article Usage Stats Services JCM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref highwire fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5526 |
SubjectTerms | Adolescent Adult AIDS-Related Opportunistic Infections - diagnosis AIDS-Related Opportunistic Infections - immunology AIDS-Related Opportunistic Infections - virology Biological and medical sciences Chloroform Cohort Studies DNA Primers DNA, Viral - analysis DNA, Viral - isolation & purification Endopeptidase K Ethanol Fundamental and applied biological sciences. Psychology Hot Temperature Human papillomavirus Humans Infectious diseases Male Medical sciences Microbiology Miscellaneous Mouth - virology Mouthwashes Papillomaviridae - genetics Papillomaviridae - isolation & purification Papillomavirus Infections - diagnosis Papillomavirus Infections - virology Phenol Polymerase Chain Reaction Reagent Kits, Diagnostic Species Specificity Virology |
Title | Analysis of the Effect of DNA Purification on Detection of Human Papillomavirus in Oral Rinse Samples by PCR |
URI | http://jcm.asm.org/content/43/11/5526.abstract https://www.ncbi.nlm.nih.gov/pubmed/16272481 https://www.proquest.com/docview/19378212 https://www.proquest.com/docview/46773208 https://www.proquest.com/docview/68767224 https://pubmed.ncbi.nlm.nih.gov/PMC1287828 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IRAvCAZsZTD8AE9VSuN8OHmcNmAa6ijrJu0tcj48gtq0ahOk7l_ln-EudtJk3aaBVEV1aieO71ffnXP-HSEffFQqgpmGGbl9w3b7oeHFHAkv_TAGY843JS4NDE7d4wv75NK53Nj404haKvKwF13fuq_kf6QK50CuuEv2HyRbXxROwHeQLxxBwnB8kIybjCJoQGoqYigdnR50h8Uc44C0TZjB1JInUWUgqsX7oZil4_F0In6n86KMjP2OG_bP0myRdEcCmYMXaKAOdXTuuhV7WO2sHKQrSqc6qGc5WywFphzpHn1kfDQtrmstUMeTwdx1JVYhwmr9p3tWhPVlhiLP0-7XOfQyz1vLFI7er1cDq3r_1AxGXeuZnqR9bK24YHqJmpeR9tR1-5fNiVvxO1UANRvTsOOobfjr-oHhnoeTw0HPtqDUw4qG41hOubrWbAKSnk1K3Jgu48xWiWXahN03FGkd3vgrmgS2Bc5VgNffJI8Y52UMwbcfq1dctu2o9Br6aaswM-Z9uqt_yHCrO9MyozalmDYIrjG-VyxA9FLlZrnNeboZA9wwqs6fk2caR_RAQfsF2UiybfJY5UddbpMnAx358ZKMK6zTqaSAdaqwjiXAOm1incKnxjpWKLFO21inaUYR67TEOtVYp-GSAtZfkfMvn88Pjw2dKcSIYDxyw0oiGGDQPZKFUkhpCc8yYy4TJ5Zh2PetBCw0E5wRaUe-7SdSsliAprMjKTg47K_JVjbNkl1CE19y1uexFMKyQ1P4DhNgw8fMTjwPlFWH8Grcg0iz6GMyl3FQetPMC0B4DeEHKDzM9ep0iFm3nCkmmQe02QXRBuIKFH5wMWIYZoAZDRh2ZK-SdyAWk6CNuQ7Zb0FgdUcOPo7nsw55X2EiAIWCbwlFlkyLRQAeHXgN5j01wLbiFut7d9dwwcbi4Bx0yI5C2er-Gr8wji381RWQ7r79S5b-LGnvYaCgY96bex98jzxdzT5vyVY-L5J34Dbk4X759_sLPgoRxA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+Effect+of+DNA+Purification+on+Detection+of+Human+Papillomavirus+in+Oral+Rinse+Samples+by+PCR&rft.jtitle=Journal+of+Clinical+Microbiology&rft.au=Gypsyamber+D%27Souza&rft.au=Elizabeth+Sugar&rft.au=William+Ruby&rft.au=Patti+Gravitt&rft.date=2005-11-01&rft.pub=American+Society+for+Microbiology&rft.issn=0095-1137&rft.eissn=1098-660X&rft.volume=43&rft.issue=11&rft.spage=5526&rft_id=info:doi/10.1128%2FJCM.43.11.5526-5535.2005&rft_id=info%3Apmid%2F16272481&rft.externalDBID=n%2Fa&rft.externalDocID=jcm_43_11_5526 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0095-1137&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0095-1137&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0095-1137&client=summon |