Validating atlas-based lesion disconnectomics in multiple sclerosis: A retrospective multi-centric study

[Display omitted] •Structural disconnectomes can be modelled without diffusion using tractography atlases.•Atlas-based and DTI-derived disconnectome topological metrics correlate strongly.•MS patient disconnectomes relate to clinical scores. The translational potential of MR-based connectivity model...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage clinical Vol. 32; p. 102817
Main Authors Ravano, Veronica, Andelova, Michaela, Fartaria, Mário João, Mahdi, Mazen Fouad A-Wali, Maréchal, Bénédicte, Meuli, Reto, Uher, Tomas, Krasensky, Jan, Vaneckova, Manuela, Horakova, Dana, Kober, Tobias, Richiardi, Jonas
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.01.2021
Elsevier
Subjects
Online AccessGet full text
ISSN2213-1582
2213-1582
DOI10.1016/j.nicl.2021.102817

Cover

Loading…
Abstract [Display omitted] •Structural disconnectomes can be modelled without diffusion using tractography atlases.•Atlas-based and DTI-derived disconnectome topological metrics correlate strongly.•MS patient disconnectomes relate to clinical scores. The translational potential of MR-based connectivity modelling is limited by the need for advanced diffusion imaging, which is not part of clinical protocols for many diseases. In addition, where diffusion data is available, brain connectivity analyses rely on tractography algorithms which imply two major limitations. First, tracking algorithms are known to be sensitive to the presence of white matter lesions and therefore leading to interpretation pitfalls and poor inter-subject comparability in clinical applications such as multiple sclerosis. Second, tractography quality is highly dependent on the acquisition parameters of diffusion sequences, leading to a trade-off between acquisition time and tractography precision. Here, we propose an atlas-based approach to study the interplay between structural disconnectivity and lesions without requiring individual diffusion imaging. In a multi-centric setting involving three distinct multiple sclerosis datasets (containing both 1.5 T and 3 T data), we compare our atlas-based structural disconnectome computation pipeline to disconnectomes extracted from individual tractography and explore its clinical utility for reducing the gap between radiological findings and clinical symptoms in multiple sclerosis. Results using topological graph properties showed that overall, our atlas-based disconnectomes were suitable approximations of individual disconnectomes from diffusion imaging. Small-worldness was found to decrease for larger total lesion volumes thereby suggesting a loss of efficiency in brain connectivity of MS patients. Finally, the global efficiency of the created brain graph, combined with total lesion volume, allowed to stratify patients into subgroups with different clinical scores in all three cohorts.
AbstractList [Display omitted] •Structural disconnectomes can be modelled without diffusion using tractography atlases.•Atlas-based and DTI-derived disconnectome topological metrics correlate strongly.•MS patient disconnectomes relate to clinical scores. The translational potential of MR-based connectivity modelling is limited by the need for advanced diffusion imaging, which is not part of clinical protocols for many diseases. In addition, where diffusion data is available, brain connectivity analyses rely on tractography algorithms which imply two major limitations. First, tracking algorithms are known to be sensitive to the presence of white matter lesions and therefore leading to interpretation pitfalls and poor inter-subject comparability in clinical applications such as multiple sclerosis. Second, tractography quality is highly dependent on the acquisition parameters of diffusion sequences, leading to a trade-off between acquisition time and tractography precision. Here, we propose an atlas-based approach to study the interplay between structural disconnectivity and lesions without requiring individual diffusion imaging. In a multi-centric setting involving three distinct multiple sclerosis datasets (containing both 1.5 T and 3 T data), we compare our atlas-based structural disconnectome computation pipeline to disconnectomes extracted from individual tractography and explore its clinical utility for reducing the gap between radiological findings and clinical symptoms in multiple sclerosis. Results using topological graph properties showed that overall, our atlas-based disconnectomes were suitable approximations of individual disconnectomes from diffusion imaging. Small-worldness was found to decrease for larger total lesion volumes thereby suggesting a loss of efficiency in brain connectivity of MS patients. Finally, the global efficiency of the created brain graph, combined with total lesion volume, allowed to stratify patients into subgroups with different clinical scores in all three cohorts.
The translational potential of MR-based connectivity modelling is limited by the need for advanced diffusion imaging, which is not part of clinical protocols for many diseases. In addition, where diffusion data is available, brain connectivity analyses rely on tractography algorithms which imply two major limitations. First, tracking algorithms are known to be sensitive to the presence of white matter lesions and therefore leading to interpretation pitfalls and poor inter-subject comparability in clinical applications such as multiple sclerosis. Second, tractography quality is highly dependent on the acquisition parameters of diffusion sequences, leading to a trade-off between acquisition time and tractography precision. Here, we propose an atlas-based approach to study the interplay between structural disconnectivity and lesions without requiring individual diffusion imaging. In a multi-centric setting involving three distinct multiple sclerosis datasets (containing both 1.5 T and 3 T data), we compare our atlas-based structural disconnectome computation pipeline to disconnectomes extracted from individual tractography and explore its clinical utility for reducing the gap between radiological findings and clinical symptoms in multiple sclerosis. Results using topological graph properties showed that overall, our atlas-based disconnectomes were suitable approximations of individual disconnectomes from diffusion imaging. Small-worldness was found to decrease for larger total lesion volumes thereby suggesting a loss of efficiency in brain connectivity of MS patients. Finally, the global efficiency of the created brain graph, combined with total lesion volume, allowed to stratify patients into subgroups with different clinical scores in all three cohorts.
The translational potential of MR-based connectivity modelling is limited by the need for advanced diffusion imaging, which is not part of clinical protocols for many diseases. In addition, where diffusion data is available, brain connectivity analyses rely on tractography algorithms which imply two major limitations. First, tracking algorithms are known to be sensitive to the presence of white matter lesions and therefore leading to interpretation pitfalls and poor inter-subject comparability in clinical applications such as multiple sclerosis. Second, tractography quality is highly dependent on the acquisition parameters of diffusion sequences, leading to a trade-off between acquisition time and tractography precision. Here, we propose an atlas-based approach to study the interplay between structural disconnectivity and lesions without requiring individual diffusion imaging. In a multi-centric setting involving three distinct multiple sclerosis datasets (containing both 1.5 T and 3 T data), we compare our atlas-based structural disconnectome computation pipeline to disconnectomes extracted from individual tractography and explore its clinical utility for reducing the gap between radiological findings and clinical symptoms in multiple sclerosis. Results using topological graph properties showed that overall, our atlas-based disconnectomes were suitable approximations of individual disconnectomes from diffusion imaging. Small-worldness was found to decrease for larger total lesion volumes thereby suggesting a loss of efficiency in brain connectivity of MS patients. Finally, the global efficiency of the created brain graph, combined with total lesion volume, allowed to stratify patients into subgroups with different clinical scores in all three cohorts.The translational potential of MR-based connectivity modelling is limited by the need for advanced diffusion imaging, which is not part of clinical protocols for many diseases. In addition, where diffusion data is available, brain connectivity analyses rely on tractography algorithms which imply two major limitations. First, tracking algorithms are known to be sensitive to the presence of white matter lesions and therefore leading to interpretation pitfalls and poor inter-subject comparability in clinical applications such as multiple sclerosis. Second, tractography quality is highly dependent on the acquisition parameters of diffusion sequences, leading to a trade-off between acquisition time and tractography precision. Here, we propose an atlas-based approach to study the interplay between structural disconnectivity and lesions without requiring individual diffusion imaging. In a multi-centric setting involving three distinct multiple sclerosis datasets (containing both 1.5 T and 3 T data), we compare our atlas-based structural disconnectome computation pipeline to disconnectomes extracted from individual tractography and explore its clinical utility for reducing the gap between radiological findings and clinical symptoms in multiple sclerosis. Results using topological graph properties showed that overall, our atlas-based disconnectomes were suitable approximations of individual disconnectomes from diffusion imaging. Small-worldness was found to decrease for larger total lesion volumes thereby suggesting a loss of efficiency in brain connectivity of MS patients. Finally, the global efficiency of the created brain graph, combined with total lesion volume, allowed to stratify patients into subgroups with different clinical scores in all three cohorts.
• Structural disconnectomes can be modelled without diffusion using tractography atlases. • Atlas-based and DTI-derived disconnectome topological metrics correlate strongly. • MS patient disconnectomes relate to clinical scores. The translational potential of MR-based connectivity modelling is limited by the need for advanced diffusion imaging, which is not part of clinical protocols for many diseases. In addition, where diffusion data is available, brain connectivity analyses rely on tractography algorithms which imply two major limitations. First, tracking algorithms are known to be sensitive to the presence of white matter lesions and therefore leading to interpretation pitfalls and poor inter-subject comparability in clinical applications such as multiple sclerosis. Second, tractography quality is highly dependent on the acquisition parameters of diffusion sequences, leading to a trade-off between acquisition time and tractography precision. Here, we propose an atlas-based approach to study the interplay between structural disconnectivity and lesions without requiring individual diffusion imaging. In a multi-centric setting involving three distinct multiple sclerosis datasets (containing both 1.5 T and 3 T data), we compare our atlas-based structural disconnectome computation pipeline to disconnectomes extracted from individual tractography and explore its clinical utility for reducing the gap between radiological findings and clinical symptoms in multiple sclerosis. Results using topological graph properties showed that overall, our atlas-based disconnectomes were suitable approximations of individual disconnectomes from diffusion imaging. Small-worldness was found to decrease for larger total lesion volumes thereby suggesting a loss of efficiency in brain connectivity of MS patients. Finally, the global efficiency of the created brain graph, combined with total lesion volume, allowed to stratify patients into subgroups with different clinical scores in all three cohorts.
Graphical abstract
ArticleNumber 102817
Author Mahdi, Mazen Fouad A-Wali
Andelova, Michaela
Fartaria, Mário João
Vaneckova, Manuela
Kober, Tobias
Meuli, Reto
Maréchal, Bénédicte
Horakova, Dana
Uher, Tomas
Krasensky, Jan
Ravano, Veronica
Richiardi, Jonas
Author_xml – sequence: 1
  givenname: Veronica
  surname: Ravano
  fullname: Ravano, Veronica
  email: veronica.ravano@epfl.ch
  organization: Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
– sequence: 2
  givenname: Michaela
  surname: Andelova
  fullname: Andelova, Michaela
  organization: Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
– sequence: 3
  givenname: Mário João
  surname: Fartaria
  fullname: Fartaria, Mário João
  organization: Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
– sequence: 4
  givenname: Mazen Fouad A-Wali
  surname: Mahdi
  fullname: Mahdi, Mazen Fouad A-Wali
  organization: Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
– sequence: 5
  givenname: Bénédicte
  surname: Maréchal
  fullname: Maréchal, Bénédicte
  organization: Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
– sequence: 6
  givenname: Reto
  surname: Meuli
  fullname: Meuli, Reto
  organization: Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
– sequence: 7
  givenname: Tomas
  surname: Uher
  fullname: Uher, Tomas
  organization: Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
– sequence: 8
  givenname: Jan
  surname: Krasensky
  fullname: Krasensky, Jan
  organization: MR unit, Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
– sequence: 9
  givenname: Manuela
  surname: Vaneckova
  fullname: Vaneckova, Manuela
  organization: MR unit, Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
– sequence: 10
  givenname: Dana
  surname: Horakova
  fullname: Horakova, Dana
  organization: Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
– sequence: 11
  givenname: Tobias
  surname: Kober
  fullname: Kober, Tobias
  organization: Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
– sequence: 12
  givenname: Jonas
  surname: Richiardi
  fullname: Richiardi, Jonas
  organization: Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34500427$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v3CAUtKpUTZrmD_RQ-diLt4BtwFEVKYr6ESlSD_24IgzPG1wWtoBX2n8fHCdVEqkpF9BjZh7Mm9fFgfMOiuItRiuMMP0wrpxRdkUQwblAOGYviiNCcF3hlpODB-fD4iTGEeXFEWKUvioO66ZFqCHsqLj-Ja3RMhm3LmWyMla9jKBLC9F4V2oTlXcOVPIbo2JpXLmZbDJbC2VUFoKPJp6W52WAlM_bDDQ7WDCVApeCUWVMk96_KV4O0kY4uduPi5-fP_24-FpdfftyeXF-VSlKWKowblXTaAY1pbRvWN8OnHS460ASrXrOaS8pH3Tf6G5QDRoaygYmecuwhlYO9XFxuehqL0exDWYjw154acRtwYe1kCFl60BA3ddkACyJhAb3knd1o1oAjBlGqJ-1zhat7dRvQN_-R9pHoo9vnLkWa78TvCFdx0gWeH8nEPyfCWISm2woWCsd-CkKkp_dEcoxztB3D3v9bXI_qgzgC0Blo2OAQSiT8uD83NpYgZGYgyFGMQdDzMEQSzAylTyh3qs_S_q4kCBPa2cgiKgMOAXahDzmbKd5nn72hK6syShpf8Me4uin4HIOBBaRCCS-z3Gd00qy9YRingVO_y3wv-43l0_8Lg
CitedBy_id crossref_primary_10_1016_j_nbd_2024_106548
crossref_primary_10_1007_s00415_023_12023_3
crossref_primary_10_1212_WNL_0000000000213349
crossref_primary_10_1016_j_nic_2024_03_008
crossref_primary_10_1016_j_neuroimage_2022_119391
crossref_primary_10_1007_s11682_023_00792_4
crossref_primary_10_1093_braincomms_fcae234
Cites_doi 10.1177/1352458506070775
10.1111/j.1420-9101.2011.02297.x
10.1016/j.neuroimage.2007.07.049
10.1523/JNEUROSCI.0493-16.2016
10.1152/jn.00339.2011
10.1109/MSP.2012.2233865
10.1093/brain/aww194
10.1111/j.1750-3639.2010.00401.x
10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q
10.1002/jmri.25095
10.1109/TMI.2009.2035616
10.3389/fnins.2016.00014
10.1016/j.neuroimage.2012.02.018
10.1002/hbm.22578
10.1016/j.bspc.2016.02.006
10.1016/j.nicl.2014.11.001
10.1038/srep29383
10.1098/rstb.2013.0521
10.1007/s00429-014-0896-4
10.1177/1352458516628657
10.1093/brain/awu101
10.1016/j.neuroimage.2019.116471
10.1080/0022250X.2001.9990249
10.1038/nn1050
10.1007/BF01386390
10.1016/j.cortex.2012.07.001
10.1016/j.jns.2005.04.019
10.3174/ajnr.A4165
10.1016/j.nicl.2021.102639
10.1016/j.nicl.2018.07.012
10.1016/S1474-4422(14)70250-9
10.1007/s00415-014-7398-4
10.1016/j.nicl.2016.11.026
10.1097/00019052-200206000-00003
10.1016/j.neuroimage.2012.06.081
10.1016/j.neuroscience.2017.10.033
10.1093/cercor/bhr039
10.1148/radiol.2016152843
10.1016/j.neuroimage.2011.06.021
10.1016/S1474-4422(08)70163-7
10.1038/nn.4502
10.1093/cercor/bhq111
10.1016/j.neuroimage.2013.04.084
10.1212/WNL.47.6.1469
10.1016/j.neuroimage.2018.05.027
10.1101/gr.092759.109
10.1371/journal.pone.0053996
10.1146/annurev-clinpsy-040510-143934
10.7448/IAS.19.1.21263
10.1103/PhysRevLett.87.198701
10.1093/gigascience/giy004
10.1093/brain/awh622
10.1093/cercor/bhw157
10.1371/journal.pcbi.0010042
10.25080/TCWV9851
10.1056/NEJMra1706158
ContentType Journal Article
Copyright 2021 The Author(s)
The Author(s)
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
2021 The Author(s) 2021
Copyright_xml – notice: 2021 The Author(s)
– notice: The Author(s)
– notice: Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2021 The Author(s) 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.nicl.2021.102817
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2213-1582
EndPage 102817
ExternalDocumentID oai_doaj_org_article_e3b32fe1a2ae41ba8934c5ee117100bf
PMC8429972
34500427
10_1016_j_nicl_2021_102817
S2213158221002618
1_s2_0_S2213158221002618
Genre Research Support, Non-U.S. Gov't
Multicenter Study
Journal Article
GroupedDBID .1-
.FO
0R~
1P~
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
NCXOZ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c627t-115c44d7e3666b47b5f829199ea2dcb886ba68fdb4d9fc40f467f7a8571de5af3
IEDL.DBID M48
ISSN 2213-1582
IngestDate Wed Aug 27 01:17:39 EDT 2025
Thu Aug 21 18:22:41 EDT 2025
Fri Sep 05 13:01:41 EDT 2025
Thu Apr 03 07:07:28 EDT 2025
Tue Jul 01 01:09:49 EDT 2025
Thu Apr 24 22:52:19 EDT 2025
Tue Jul 25 20:57:36 EDT 2023
Tue Feb 25 20:08:56 EST 2025
Tue Aug 26 16:33:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Disconnectome
Diffusion imaging
Topology
Network neuroscience
Structural connectivity
Brain graphs
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c627t-115c44d7e3666b47b5f829199ea2dcb886ba68fdb4d9fc40f467f7a8571de5af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.nicl.2021.102817
PMID 34500427
PQID 2571926811
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_e3b32fe1a2ae41ba8934c5ee117100bf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8429972
proquest_miscellaneous_2571926811
pubmed_primary_34500427
crossref_citationtrail_10_1016_j_nicl_2021_102817
crossref_primary_10_1016_j_nicl_2021_102817
elsevier_sciencedirect_doi_10_1016_j_nicl_2021_102817
elsevier_clinicalkeyesjournals_1_s2_0_S2213158221002618
elsevier_clinicalkey_doi_10_1016_j_nicl_2021_102817
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle NeuroImage clinical
PublicationTitleAlternate Neuroimage Clin
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Barkhof (b0010) 2002; 15
Ciccarelli, Catani, Johansen-Berg, Clark, Thompson (b0075) 2008; 7
Fartaria, Bonnier, Roche, Kober, Meuli, Rotzinger, Frackowiak, Schluep, Du Pasquier, Thiran, Krueger, Bach Cuadra, Granziera (b0110) 2016; 43
Lin, Tench, Morgan, Niepel, Constantinescu (b0190) 2005; 237
Rocca, Valsasina, Meani, Falini, Comi, Filippi (b0250) 2016; 221
Yeh, Panesar, Fernandes, Meola, Yoshino, Fernandez-Miranda, Vettel, Verstynen (b0325) 2018; 178
Pawlitzki, Neumann, Kaufmann, Heidel, Stadler, Sweeney-Reed, Sailer, Schreiber (b0220) 2017; 4
Truyen, van Waesberghe, van Walderveen, van Oosten, Polman, Hommes, Ader, Barkhof (b0295) 1996; 47
Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Chang, Chen, Corbetta, Curtiss, Della Penna, Feinberg, Glasser, Harel, Heathj, Larson-Prior, Marcus, Michalareas, Moeller, Oostenveld, Petersen, Prior, Schlaggar, Smith, Snyder, Xu, Yacoub, Consortium (b0300) 2012; 62
Wasserman (bib339) 1994
Muthuraman, Fleischer, Kolber, Luessi, Zipp, Groppa (b0215) 2016; 10
Schmitter, Roche, Maréchal, Ribes, Abdulkadir, Bach-Cuadra, Daducci, Granziera, Klöppel, Maeder, Meuli, Krueger (b0255) 2015; 7
Brandes (bib336) 2001
Meskaldji, Fischi-Gomez, Griffa, Hagmann, Morgenthaler, Thiran (b0210) 2013; 80
Shu, Duan, Xia, Schoonheim, Huang, Ren, Sun, Ye, Dong, Shi, Barkhof, Li, Liu (b0260) 2016; 6
Tievsky, Ptak, Farkas (b0290) 1999; 20
De Vico Fallani, Richiardi, Chavez, Achard (b0085) 2014; 369
Hagberg, A.A., Schult, D.A., Swart, P.J., 2008. Exploring network structure, dynamics, and function using NetworkX. 7th Python in Science Conference (SciPy 2008) 11–15.
Llufriu, Martinez-Heras, Solana, Sola-Valls, Sepulveda, Blanco, Martinez-Lapiscina, Andorra, Villoslada, Prats-Galino, Saiz (b0200) 2017; 13
Klein, Staring, Murphy, Viergever, a., Pluim, J. (b0180) 2010; 29
Foulon, Cerliani, Kinkingnéhun, Levy, Rosso, Urbanski, Volle, de Schotten (b0125) 2018; 7
Calabrese, Badea, Coe, Lubach, Styner, Johnson (b0045) 2014; 35
Fox (b0130) 2018; 379
Jones, Knösche, Turner (b0175) 2013; 73
Catani, Dell'Acqua, Bizzi, Forkel, Williams, Simmons, Murphy, Thiebaut de Schotten (b0055) 2012; 48
Bates, Wilson, Saygin, Dick, Sereno, Knight, Dronkers (b0020) 2003; 6
Kuceyeski, Vargas, Dayan, Monohan, Blackwell, Raj, Fujimoto, Gauthier (b0185) 2015; 36
Buckner, Krienen, Castellanos, Diaz, Yeo (b0025) 2011; 106
Bullmore, Bassett (b0030) 2011; 7
Griffis, Metcalf, Corbetta, Shulman (b0140) 2021; 30
Vespignani (bib337) 2004
Shu, Liu, Li, Duan, Wang, Yu, Dong, Ye, He (b0265) 2011; 21
Dziedzic, Metz, Dallenga, König, Müller, Stadelmann, Brück (b0095) 2010; 20
Fartaria, Roche, Meuli, Granziera, Kober, Bach Cuadra (b0115) 2017; 10435
Connors, Krzywinski, Schein, Gascoyne, Horsman, Jones, Marra (b0080) 2009; 19
Dijkstra (bib341) 1959
Hayes, Ntambi (b0160) 2020
Horakova, Zivadinov, Weinstock-Guttman, Havrdova, Qu, Tamaño-Blanco, Badgett, Tyblova, Bergsland, Hussein, Willis, Krasensky, Vaneckova, Seidl, Lelkova, Dwyer, Zhang, Yu, Duan, Kalincik, Ramanathan, Fujinami (b0165) 2013; 8
Ravano, Andelova, Michaela Mahdi, Meuli, Uher, Krasensky, Vaneckova, Horakova, Kober, Richiardi (b0230) 2019; 25
Carrera, Tononi (b0050) 2014; 137
Bassett, Sporns (b0015) 2017; 20
Horn, Sherwood, Remien, Nash, Auerbach (b0170) 2016; 19
Solana, Martinez-Heras, Martinez-Lapiscina, Sepulveda, Sola-Valls, Bargalló, Berenguer, Blanco, Andorra, Pulido-Valdeolivas, Zubizarreta, Saiz, Llufriu (b0275) 2018; 20
Zaykin (b0335) 2011; 24
Butzkueven, Chapman, Cristiano, Grand’Maison, Hoffmann, Izquierdo, Jolley, Kappos, Leist, Pöhlau, Rivera, Trojano, Verheul, Malkowski (b0040) 2006; 12
Richiardi, Achard, Bunke, Ville, De (b0240) 2013; 30
Faivre, Robinet, Guye, Rousseau, Maarouf, Le Troter, Zaaraoui, Rico, Crespy, Soulier, Confort-Gouny, Pelletier, Achard, Ranjeva, Audoin (b0100) 2016; 22
Rocca, Amato, De Stefano, Enzinger, Geurts, Penner, Rovira, Sumowski, Valsasina, Filippi (b0245) 2015; 14
Latora (bib340) 2001
Simioni, Amarù, Bonnier, Kober, Rotzinger, Du Pasquier, Schluep, Meuli, Sbarbati, Thiran, Krueger, Granziera (b0270) 2014; 261
Aerts, Fias, Caeyenberghs, Marinazzo (b0005) 2016; 139
Sporns, Tononi, Kötter (b0280) 2005; 1
Fleischer, Radetz, Ciolac, Muthuraman, Gonzalez-escamilla (b0120) 2019; 403
Yan, Gong, Wang, Wang, Liu, Zhu, Chen, Evans, Zang, He (b0315) 2011; 21
Catani, Ffytche (b0060) 2005; 128
Donahue, Sotiropoulos, Jbabdi, Hernandez-Fernandez, Behrens, Dyrby, Coalson, Kennedy, Knoblauch, Van Essen, Glasser (b0090) 2016; 36
Saramäki (bib338) 2007
Yeh, Tseng (b0330) 2011; 58
Reich, Smith, Zackowski, Gordon-Lipkin, Jones, Farrell, Mori, van Zijl, Calabresi (b0235) 2007; 38
Fan, Li, Zhuo, Zhang, Wang, Chen, Yang, Chu, Xie, Laird, Fox, Eickhoff, Yu, Jiang (b0105) 2016; 26
Yaou, Hao, Yunyun, Jing, Zhuoqiong, Jing, Huiqing, Fudong, Kuncheng, Jinhui (b0320) 2017; 282
Lipp, Parker, Tallantyre, Goodall, Grama, Patitucci, Heveron, Tomassini, Jones (b0195) 2020; 209
Lucchinetti, Brück, Parisi, Scheithauer, Rodriguez, Lassmann (b0205) 2000; 47
Chow, Paramesran (b0070) 2016; 27
Ravano, V., Andelova, M., Fouad, M., Mahdi, A.-W., Meuli, R., Uher, T., Krasensky, J., Vaneckova, M., Horakova, D., Kober, T., Richiardi, J., 2020. Automated atlas-based mapping of white matter tract damage to multiple sclerosis symptoms, in: Proceedings of the International Society of Magnetic Resonance in Medicine. p. 1391.
Sporns (10.1016/j.nicl.2021.102817_b0280) 2005; 1
Dziedzic (10.1016/j.nicl.2021.102817_b0095) 2010; 20
Hayes (10.1016/j.nicl.2021.102817_b0160) 2020
Yeh (10.1016/j.nicl.2021.102817_b0330) 2011; 58
Fan (10.1016/j.nicl.2021.102817_b0105) 2016; 26
10.1016/j.nicl.2021.102817_b0225
Lipp (10.1016/j.nicl.2021.102817_b0195) 2020; 209
Ciccarelli (10.1016/j.nicl.2021.102817_b0075) 2008; 7
Butzkueven (10.1016/j.nicl.2021.102817_b0040) 2006; 12
Fartaria (10.1016/j.nicl.2021.102817_b0110) 2016; 43
Schmitter (10.1016/j.nicl.2021.102817_b0255) 2015; 7
10.1016/j.nicl.2021.102817_b0145
Vespignani (10.1016/j.nicl.2021.102817_bib337) 2004
Pawlitzki (10.1016/j.nicl.2021.102817_b0220) 2017; 4
Solana (10.1016/j.nicl.2021.102817_b0275) 2018; 20
Shu (10.1016/j.nicl.2021.102817_b0260) 2016; 6
Simioni (10.1016/j.nicl.2021.102817_b0270) 2014; 261
Faivre (10.1016/j.nicl.2021.102817_b0100) 2016; 22
Ravano (10.1016/j.nicl.2021.102817_b0230) 2019; 25
Fox (10.1016/j.nicl.2021.102817_b0130) 2018; 379
De Vico Fallani (10.1016/j.nicl.2021.102817_b0085) 2014; 369
Tievsky (10.1016/j.nicl.2021.102817_b0290) 1999; 20
Muthuraman (10.1016/j.nicl.2021.102817_b0215) 2016; 10
Kuceyeski (10.1016/j.nicl.2021.102817_b0185) 2015; 36
Shu (10.1016/j.nicl.2021.102817_b0265) 2011; 21
Connors (10.1016/j.nicl.2021.102817_b0080) 2009; 19
Yeh (10.1016/j.nicl.2021.102817_b0325) 2018; 178
Lucchinetti (10.1016/j.nicl.2021.102817_b0205) 2000; 47
Fartaria (10.1016/j.nicl.2021.102817_b0115) 2017; 10435
Saramäki (10.1016/j.nicl.2021.102817_bib338) 2007
Wasserman (10.1016/j.nicl.2021.102817_bib339) 1994
Horakova (10.1016/j.nicl.2021.102817_b0165) 2013; 8
Carrera (10.1016/j.nicl.2021.102817_b0050) 2014; 137
Llufriu (10.1016/j.nicl.2021.102817_b0200) 2017; 13
Richiardi (10.1016/j.nicl.2021.102817_b0240) 2013; 30
Calabrese (10.1016/j.nicl.2021.102817_b0045) 2014; 35
Reich (10.1016/j.nicl.2021.102817_b0235) 2007; 38
Latora (10.1016/j.nicl.2021.102817_bib340) 2001
Rocca (10.1016/j.nicl.2021.102817_b0250) 2016; 221
Aerts (10.1016/j.nicl.2021.102817_b0005) 2016; 139
Chow (10.1016/j.nicl.2021.102817_b0070) 2016; 27
Meskaldji (10.1016/j.nicl.2021.102817_b0210) 2013; 80
Lin (10.1016/j.nicl.2021.102817_b0190) 2005; 237
Yan (10.1016/j.nicl.2021.102817_b0315) 2011; 21
Klein (10.1016/j.nicl.2021.102817_b0180) 2010; 29
Barkhof (10.1016/j.nicl.2021.102817_b0010) 2002; 15
Buckner (10.1016/j.nicl.2021.102817_b0025) 2011; 106
Donahue (10.1016/j.nicl.2021.102817_b0090) 2016; 36
Rocca (10.1016/j.nicl.2021.102817_b0245) 2015; 14
Catani (10.1016/j.nicl.2021.102817_b0055) 2012; 48
Fleischer (10.1016/j.nicl.2021.102817_b0120) 2019; 403
Dijkstra (10.1016/j.nicl.2021.102817_bib341) 1959
Foulon (10.1016/j.nicl.2021.102817_b0125) 2018; 7
Zaykin (10.1016/j.nicl.2021.102817_b0335) 2011; 24
Jones (10.1016/j.nicl.2021.102817_b0175) 2013; 73
Van Essen (10.1016/j.nicl.2021.102817_b0300) 2012; 62
Catani (10.1016/j.nicl.2021.102817_b0060) 2005; 128
Bates (10.1016/j.nicl.2021.102817_b0020) 2003; 6
Yaou (10.1016/j.nicl.2021.102817_b0320) 2017; 282
Bullmore (10.1016/j.nicl.2021.102817_b0030) 2011; 7
Horn (10.1016/j.nicl.2021.102817_b0170) 2016; 19
Bassett (10.1016/j.nicl.2021.102817_b0015) 2017; 20
Brandes (10.1016/j.nicl.2021.102817_bib336) 2001
Griffis (10.1016/j.nicl.2021.102817_b0140) 2021; 30
Truyen (10.1016/j.nicl.2021.102817_b0295) 1996; 47
References_xml – volume: 62
  start-page: 2222
  year: 2012
  end-page: 2231
  ident: b0300
  article-title: The Human Connectome Project: A data acquisition perspective
  publication-title: NeuroImage
– volume: 30
  start-page: 102639
  year: 2021
  ident: b0140
  article-title: Lesion Quantification Toolkit: A MATLAB software tool for estimating grey matter damage and white matter disconnections in patients with focal brain lesions
  publication-title: NeuroImage: Clinical
– year: 2007
  ident: bib338
  article-title: Generalizations of the clustering coefficient to weighted complex networks Jari
  publication-title: Phys. Rev.
– volume: 13
  start-page: 288
  year: 2017
  end-page: 296
  ident: b0200
  article-title: Structural networks involved in attention and executive functions in multiple sclerosis
  publication-title: NeuroImage: Clinical
– volume: 35
  start-page: 5667
  year: 2014
  end-page: 5685
  ident: b0045
  article-title: Investigating the tradeoffs between spatial resolution and diffusion sampling for brain mapping with diffusion tractography: time well spent?
  publication-title: Hum. Brain Mapp.
– volume: 30
  start-page: 58
  year: 2013
  end-page: 70
  ident: b0240
  article-title: Machine Learning with Brain Graphs
  publication-title: IEEE Signal Process Mag.
– volume: 21
  start-page: 449
  year: 2011
  end-page: 458
  ident: b0315
  article-title: Sex- and brain size-related small-world structural cortical networks in young adults: A DTI tractography study
  publication-title: Cereb. Cortex
– volume: 27
  start-page: 145
  year: 2016
  end-page: 154
  ident: b0070
  article-title: Review of medical image quality assessment
  publication-title: Biomed. Signal Process. Control
– volume: 237
  start-page: 13
  year: 2005
  end-page: 19
  ident: b0190
  article-title: “Importance sampling” in MS: Use of diffusion tensor tractography to quantify pathology related to specific impairment
  publication-title: J. Neurol. Sci.
– volume: 43
  start-page: 1445
  year: 2016
  end-page: 1454
  ident: b0110
  article-title: Automated detection of white matter and cortical lesions in early stages of multiple sclerosis
  publication-title: J. Magn. Reson. Imaging
– volume: 21
  start-page: 2565
  year: 2011
  end-page: 2577
  ident: b0265
  article-title: Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis
  publication-title: Cereb. Cortex
– volume: 261
  start-page: 1606
  year: 2014
  end-page: 1613
  ident: b0270
  article-title: MP2RAGE provides new clinically-compatible correlates of mild cognitive deficits in relapsing-remitting multiple sclerosis
  publication-title: J. Neurol.
– volume: 58
  start-page: 91
  year: 2011
  end-page: 99
  ident: b0330
  article-title: NTU-90: A high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction
  publication-title: NeuroImage
– volume: 80
  start-page: 416
  year: 2013
  end-page: 425
  ident: b0210
  article-title: Comparing connectomes across subjects and populations at different scales
  publication-title: Neuroimage
– volume: 25
  start-page: 182
  year: 2019
  end-page: 183
  ident: b0230
  article-title: Atlas-based tract damage mapping improves 4-year forecast of EDSS in multiple sclerosis
  publication-title: Multiple Sclerosis Journal
– volume: 139
  start-page: 3063
  year: 2016
  end-page: 3083
  ident: b0005
  article-title: Brain networks under attack: robustness properties and the impact of lesions
  publication-title: Brain
– volume: 15
  start-page: 239
  year: 2002
  end-page: 245
  ident: b0010
  article-title: The clinico-radiological paradox in multiple sclerosis revisited
  publication-title: Curr. Opin. Neurol.
– volume: 10435
  start-page: 516
  year: 2017
  end-page: 524
  ident: b0115
  article-title: Segmentation of cortical and subcortical multiple sclerosis lesions based on constrained partial
  publication-title: MICCAI LCNS
– volume: 47
  start-page: 707
  year: 2000
  end-page: 717
  ident: b0205
  article-title: Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination
  publication-title: Ann. Neurol.
– volume: 20
  start-page: 976
  year: 2010
  end-page: 985
  ident: b0095
  article-title: Wallerian degeneration: a major component of early axonal pathology in multiple sclerosis
  publication-title: Brain Pathol.
– volume: 7
  start-page: 7
  year: 2015
  end-page: 17
  ident: b0255
  article-title: An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer’s disease
  publication-title: NeuroImage: Clinical
– volume: 19
  start-page: 21263
  year: 2016
  ident: b0170
  article-title: Towards an integrated primary and secondary HIV prevention continuum for the United States: A cyclical process model
  publication-title: J. Int. AIDS Soc.
– volume: 36
  start-page: 702
  year: 2015
  end-page: 709
  ident: b0185
  article-title: Modeling the relationship among gray matter atrophy, abnormalities in connecting white matter, and cognitive performance in early multiple sclerosis
  publication-title: Am. J. Neuroradiol.
– volume: 22
  start-page: 1695
  year: 2016
  end-page: 1708
  ident: b0100
  article-title: Depletion of brain functional connectivity enhancement leads to disability progression in multiple sclerosis: a longitudinal resting-state fMRI study
  publication-title: Multiple Sclerosis
– volume: 47
  start-page: 1469
  year: 1996
  end-page: 1476
  ident: b0295
  article-title: Accumulation of hypointense lesions ('black holes’) on T1 spin-echo MRI correlates with disease progression in multiple sclerosis
  publication-title: Neurology
– volume: 38
  start-page: 271
  year: 2007
  end-page: 279
  ident: b0235
  article-title: Multiparametric magnetic resonance imaging analysis of the corticospinal tract in multiple sclerosis
  publication-title: NeuroImage
– volume: 20
  start-page: 161
  year: 2018
  end-page: 168
  ident: b0275
  article-title: Magnetic resonance markers of tissue damage related to connectivity disruption in multiple sclerosis
  publication-title: NeuroImage: Clinical
– volume: 48
  start-page: 1262
  year: 2012
  end-page: 1287
  ident: b0055
  article-title: Beyond cortical localization in clinico-anatomical correlation
  publication-title: Cortex
– volume: 20
  start-page: 1491
  year: 1999
  end-page: 1499
  ident: b0290
  article-title: Investigation of apparent diffusion coefficient and diffusion tensor anisotropy in acute and chronic multiple sclerosis lesions
  publication-title: American Journal of Neuroradiology
– volume: 106
  start-page: 2322
  year: 2011
  end-page: 2345
  ident: b0025
  article-title: The organization of the human cerebellum estimated by intrinsic functional connectivity
  publication-title: J Neurophysiol
– volume: 26
  start-page: 3508
  year: 2016
  end-page: 3526
  ident: b0105
  article-title: The human brainnetome atlas: a new brain atlas based on connectional architecture
  publication-title: Cereb. Cortex
– volume: 14
  start-page: 302
  year: 2015
  end-page: 317
  ident: b0245
  article-title: Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis
  publication-title: The Lancet Neurology
– volume: 379
  start-page: 2237
  year: 2018
  end-page: 2245
  ident: b0130
  article-title: Mapping Symptoms to Brain Networks with the Human Connectome
  publication-title: The New England Journal of Medicine
– start-page: 1
  year: 2020
  end-page: 54
  ident: b0160
  article-title: Multiple Sclerosis: Lipids, Lymphocytes, and Vitamin D
  publication-title: Immunometabolism
– year: 2001
  ident: bib340
  article-title: Efficient behavior of small-world networks
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 1
  year: 2016
  end-page: 12
  ident: b0215
  article-title: Structural brain network characteristics can differentiate CIS from early RRMS
  publication-title: Front. Neurosci.
– reference: Ravano, V., Andelova, M., Fouad, M., Mahdi, A.-W., Meuli, R., Uher, T., Krasensky, J., Vaneckova, M., Horakova, D., Kober, T., Richiardi, J., 2020. Automated atlas-based mapping of white matter tract damage to multiple sclerosis symptoms, in: Proceedings of the International Society of Magnetic Resonance in Medicine. p. 1391.
– volume: 209
  start-page: 116471
  year: 2020
  ident: b0195
  article-title: Tractography in the presence of multiple sclerosis lesions
  publication-title: NeuroImage
– volume: 6
  start-page: 1
  year: 2016
  end-page: 11
  ident: b0260
  article-title: Disrupted topological organization of structural and functional brain connectomes in clinically isolated syndrome and multiple sclerosis
  publication-title: Sci. Rep.
– volume: 403
  start-page: 35
  year: 2019
  end-page: 53
  ident: b0120
  article-title: Graph Theoretical Framework of Brain Networks in Multiple Sclerosis: A Review of Concepts
  publication-title: Neuroscience
– volume: 178
  start-page: 57
  year: 2018
  end-page: 68
  ident: b0325
  article-title: Population-averaged atlas of the macroscale human structural connectome and its network topology
  publication-title: NeuroImage
– volume: 8
  start-page: 1
  year: 2013
  end-page: 8
  ident: b0165
  article-title: Environmental Factors Associated with Disease Progression after the First Demyelinating Event: Results from the Multi-Center SET Study
  publication-title: PLoS ONE
– volume: 7
  start-page: 715
  year: 2008
  end-page: 727
  ident: b0075
  article-title: Diffusion-based tractography in neurological disorders: concepts, applications, and future developments
  publication-title: The Lancet Neurology
– volume: 369
  start-page: 20130521
  year: 2014
  ident: b0085
  article-title: Graph analysis of functional brain networks: practical issues in translational neuroscience
  publication-title: Philos. Trans. Royal Soc. B
– volume: 4
  start-page: e399
  year: 2017
  ident: b0220
  article-title: Loss of corticospinal tract integrity in early MS disease stages
  publication-title: Neurology: Neuroimmunology and NeuroInflammation
– volume: 73
  start-page: 239
  year: 2013
  end-page: 254
  ident: b0175
  article-title: White matter integrity, fiber count, and other fallacies: The do’s and don’ts of diffusion MRI
  publication-title: NeuroImage
– volume: 128
  start-page: 2224
  year: 2005
  end-page: 2239
  ident: b0060
  article-title: The rises and falls of disconnection syndromes
  publication-title: Brain
– year: 1994
  ident: bib339
  publication-title: Social Network Analysis: Methods and Applications
– volume: 7
  start-page: 1
  year: 2018
  end-page: 17
  ident: b0125
  article-title: Advanced lesion symptom mapping analyses and implementation as BCBtoolkit
  publication-title: GigaScience
– volume: 7
  start-page: 113
  year: 2011
  end-page: 140
  ident: b0030
  article-title: Brain Graphs: Graphical Models of the Human Brain Connectome
  publication-title: Ann. Rev. Clin. Psychol.
– volume: 36
  start-page: 6758
  year: 2016
  end-page: 6770
  ident: b0090
  article-title: Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey
  publication-title: J. Neurosci.
– volume: 29
  start-page: 196
  year: 2010
  end-page: 205
  ident: b0180
  article-title: elastix: A Toolbox for Intensity-Based Medical Image Registration
  publication-title: IEEE Trans. Med. Imaging
– volume: 6
  start-page: 448
  year: 2003
  end-page: 450
  ident: b0020
  article-title: Voxel-based lesion-symptom mapping
  publication-title: Nat. Neurosci.
– volume: 12
  start-page: 769
  year: 2006
  end-page: 774
  ident: b0040
  article-title: MSBase: An international, online registry and platform for collaborative outcomes research in multiple sclerosis
  publication-title: Multiple Sclerosis
– volume: 282
  start-page: 534
  year: 2017
  end-page: 541
  ident: b0320
  article-title: Functional Brain Network Alterations in Clinically Isolated Syndrome and Multiple Sclerosis: A Graph-based Connectome Study
  publication-title: Radiology
– volume: 20
  start-page: 353
  year: 2017
  end-page: 364
  ident: b0015
  article-title: Network neuroscience
  publication-title: Nat. Neurosci.
– year: 1959
  ident: bib341
  article-title: A note on two probles in connexion with graphs
  publication-title: Numer. Math.
– volume: 24
  start-page: 1836
  year: 2011
  end-page: 1841
  ident: b0335
  article-title: Optimally weighted Z-test is a powerful method for combining probabilities in meta-analysis
  publication-title: J. Evol. Biol.
– volume: 221
  start-page: 115
  year: 2016
  end-page: 131
  ident: b0250
  article-title: Impaired functional integration in multiple sclerosis: a graph theory study
  publication-title: Brain Struct. Funct.
– reference: Hagberg, A.A., Schult, D.A., Swart, P.J., 2008. Exploring network structure, dynamics, and function using NetworkX. 7th Python in Science Conference (SciPy 2008) 11–15.
– volume: 1
  start-page: 0245
  year: 2005
  end-page: 0251
  ident: b0280
  article-title: The human connectome: A structural description of the human brain
  publication-title: PLoS Comput. Biol.
– volume: 137
  start-page: 2408
  year: 2014
  end-page: 2422
  ident: b0050
  article-title: Diaschisis: past, present, future
  publication-title: Brain
– volume: 19
  start-page: 1639
  year: 2009
  end-page: 1645
  ident: b0080
  article-title: Circos: an information aesthetic for comparative genomics
  publication-title: Genome Res.
– year: 2001
  ident: bib336
  article-title: A faster algorithm for betweenness centrality
  publication-title: J. Math. Sociol.
– year: 2004
  ident: bib337
  article-title: The architecture of complex weighted networks
  publication-title: PNAS
– volume: 12
  start-page: 769
  issue: 6
  year: 2006
  ident: 10.1016/j.nicl.2021.102817_b0040
  article-title: MSBase: An international, online registry and platform for collaborative outcomes research in multiple sclerosis
  publication-title: Multiple Sclerosis
  doi: 10.1177/1352458506070775
– volume: 4
  start-page: e399
  issue: 6
  year: 2017
  ident: 10.1016/j.nicl.2021.102817_b0220
  article-title: Loss of corticospinal tract integrity in early MS disease stages
  publication-title: Neurology: Neuroimmunology and NeuroInflammation
– volume: 24
  start-page: 1836
  year: 2011
  ident: 10.1016/j.nicl.2021.102817_b0335
  article-title: Optimally weighted Z-test is a powerful method for combining probabilities in meta-analysis
  publication-title: J. Evol. Biol.
  doi: 10.1111/j.1420-9101.2011.02297.x
– volume: 38
  start-page: 271
  issue: 2
  year: 2007
  ident: 10.1016/j.nicl.2021.102817_b0235
  article-title: Multiparametric magnetic resonance imaging analysis of the corticospinal tract in multiple sclerosis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.07.049
– volume: 36
  start-page: 6758
  issue: 25
  year: 2016
  ident: 10.1016/j.nicl.2021.102817_b0090
  article-title: Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0493-16.2016
– volume: 106
  start-page: 2322
  issue: 5
  year: 2011
  ident: 10.1016/j.nicl.2021.102817_b0025
  article-title: The organization of the human cerebellum estimated by intrinsic functional connectivity
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00339.2011
– volume: 30
  start-page: 58
  year: 2013
  ident: 10.1016/j.nicl.2021.102817_b0240
  article-title: Machine Learning with Brain Graphs
  publication-title: IEEE Signal Process Mag.
  doi: 10.1109/MSP.2012.2233865
– volume: 139
  start-page: 3063
  issue: 12
  year: 2016
  ident: 10.1016/j.nicl.2021.102817_b0005
  article-title: Brain networks under attack: robustness properties and the impact of lesions
  publication-title: Brain
  doi: 10.1093/brain/aww194
– volume: 20
  start-page: 976
  year: 2010
  ident: 10.1016/j.nicl.2021.102817_b0095
  article-title: Wallerian degeneration: a major component of early axonal pathology in multiple sclerosis
  publication-title: Brain Pathol.
  doi: 10.1111/j.1750-3639.2010.00401.x
– volume: 47
  start-page: 707
  year: 2000
  ident: 10.1016/j.nicl.2021.102817_b0205
  article-title: Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination
  publication-title: Ann. Neurol.
  doi: 10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q
– volume: 43
  start-page: 1445
  issue: 6
  year: 2016
  ident: 10.1016/j.nicl.2021.102817_b0110
  article-title: Automated detection of white matter and cortical lesions in early stages of multiple sclerosis
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.25095
– volume: 29
  start-page: 196
  year: 2010
  ident: 10.1016/j.nicl.2021.102817_b0180
  article-title: elastix: A Toolbox for Intensity-Based Medical Image Registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2035616
– volume: 10
  start-page: 1
  year: 2016
  ident: 10.1016/j.nicl.2021.102817_b0215
  article-title: Structural brain network characteristics can differentiate CIS from early RRMS
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00014
– volume: 62
  start-page: 2222
  year: 2012
  ident: 10.1016/j.nicl.2021.102817_b0300
  article-title: The Human Connectome Project: A data acquisition perspective
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.02.018
– volume: 35
  start-page: 5667
  issue: 11
  year: 2014
  ident: 10.1016/j.nicl.2021.102817_b0045
  article-title: Investigating the tradeoffs between spatial resolution and diffusion sampling for brain mapping with diffusion tractography: time well spent?
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22578
– volume: 27
  start-page: 145
  year: 2016
  ident: 10.1016/j.nicl.2021.102817_b0070
  article-title: Review of medical image quality assessment
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.02.006
– volume: 7
  start-page: 7
  year: 2015
  ident: 10.1016/j.nicl.2021.102817_b0255
  article-title: An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer’s disease
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2014.11.001
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.nicl.2021.102817_b0260
  article-title: Disrupted topological organization of structural and functional brain connectomes in clinically isolated syndrome and multiple sclerosis
  publication-title: Sci. Rep.
  doi: 10.1038/srep29383
– volume: 369
  start-page: 20130521
  issue: 1653
  year: 2014
  ident: 10.1016/j.nicl.2021.102817_b0085
  article-title: Graph analysis of functional brain networks: practical issues in translational neuroscience
  publication-title: Philos. Trans. Royal Soc. B
  doi: 10.1098/rstb.2013.0521
– volume: 221
  start-page: 115
  issue: 1
  year: 2016
  ident: 10.1016/j.nicl.2021.102817_b0250
  article-title: Impaired functional integration in multiple sclerosis: a graph theory study
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-014-0896-4
– volume: 22
  start-page: 1695
  issue: 13
  year: 2016
  ident: 10.1016/j.nicl.2021.102817_b0100
  article-title: Depletion of brain functional connectivity enhancement leads to disability progression in multiple sclerosis: a longitudinal resting-state fMRI study
  publication-title: Multiple Sclerosis
  doi: 10.1177/1352458516628657
– volume: 137
  start-page: 2408
  year: 2014
  ident: 10.1016/j.nicl.2021.102817_b0050
  article-title: Diaschisis: past, present, future
  publication-title: Brain
  doi: 10.1093/brain/awu101
– volume: 20
  start-page: 1491
  year: 1999
  ident: 10.1016/j.nicl.2021.102817_b0290
  article-title: Investigation of apparent diffusion coefficient and diffusion tensor anisotropy in acute and chronic multiple sclerosis lesions
  publication-title: American Journal of Neuroradiology
– year: 2007
  ident: 10.1016/j.nicl.2021.102817_bib338
  article-title: Generalizations of the clustering coefficient to weighted complex networks Jari
  publication-title: Phys. Rev.
– volume: 209
  start-page: 116471
  year: 2020
  ident: 10.1016/j.nicl.2021.102817_b0195
  article-title: Tractography in the presence of multiple sclerosis lesions
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.116471
– volume: 10435
  start-page: 516
  year: 2017
  ident: 10.1016/j.nicl.2021.102817_b0115
  article-title: Segmentation of cortical and subcortical multiple sclerosis lesions based on constrained partial
  publication-title: MICCAI LCNS
– year: 2001
  ident: 10.1016/j.nicl.2021.102817_bib336
  article-title: A faster algorithm for betweenness centrality
  publication-title: J. Math. Sociol.
  doi: 10.1080/0022250X.2001.9990249
– volume: 25
  start-page: 182
  year: 2019
  ident: 10.1016/j.nicl.2021.102817_b0230
  article-title: Atlas-based tract damage mapping improves 4-year forecast of EDSS in multiple sclerosis
  publication-title: Multiple Sclerosis Journal
– volume: 6
  start-page: 448
  issue: 5
  year: 2003
  ident: 10.1016/j.nicl.2021.102817_b0020
  article-title: Voxel-based lesion-symptom mapping
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1050
– year: 1959
  ident: 10.1016/j.nicl.2021.102817_bib341
  article-title: A note on two probles in connexion with graphs
  publication-title: Numer. Math.
  doi: 10.1007/BF01386390
– volume: 48
  start-page: 1262
  issue: 10
  year: 2012
  ident: 10.1016/j.nicl.2021.102817_b0055
  article-title: Beyond cortical localization in clinico-anatomical correlation
  publication-title: Cortex
  doi: 10.1016/j.cortex.2012.07.001
– volume: 237
  start-page: 13
  issue: 1-2
  year: 2005
  ident: 10.1016/j.nicl.2021.102817_b0190
  article-title: “Importance sampling” in MS: Use of diffusion tensor tractography to quantify pathology related to specific impairment
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2005.04.019
– volume: 36
  start-page: 702
  issue: 4
  year: 2015
  ident: 10.1016/j.nicl.2021.102817_b0185
  article-title: Modeling the relationship among gray matter atrophy, abnormalities in connecting white matter, and cognitive performance in early multiple sclerosis
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A4165
– volume: 30
  start-page: 102639
  year: 2021
  ident: 10.1016/j.nicl.2021.102817_b0140
  article-title: Lesion Quantification Toolkit: A MATLAB software tool for estimating grey matter damage and white matter disconnections in patients with focal brain lesions
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2021.102639
– volume: 20
  start-page: 161
  year: 2018
  ident: 10.1016/j.nicl.2021.102817_b0275
  article-title: Magnetic resonance markers of tissue damage related to connectivity disruption in multiple sclerosis
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2018.07.012
– volume: 14
  start-page: 302
  issue: 3
  year: 2015
  ident: 10.1016/j.nicl.2021.102817_b0245
  article-title: Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis
  publication-title: The Lancet Neurology
  doi: 10.1016/S1474-4422(14)70250-9
– volume: 261
  start-page: 1606
  issue: 8
  year: 2014
  ident: 10.1016/j.nicl.2021.102817_b0270
  article-title: MP2RAGE provides new clinically-compatible correlates of mild cognitive deficits in relapsing-remitting multiple sclerosis
  publication-title: J. Neurol.
  doi: 10.1007/s00415-014-7398-4
– year: 2004
  ident: 10.1016/j.nicl.2021.102817_bib337
  article-title: The architecture of complex weighted networks
  publication-title: PNAS
– volume: 13
  start-page: 288
  year: 2017
  ident: 10.1016/j.nicl.2021.102817_b0200
  article-title: Structural networks involved in attention and executive functions in multiple sclerosis
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2016.11.026
– ident: 10.1016/j.nicl.2021.102817_b0225
– volume: 15
  start-page: 239
  issue: 3
  year: 2002
  ident: 10.1016/j.nicl.2021.102817_b0010
  article-title: The clinico-radiological paradox in multiple sclerosis revisited
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/00019052-200206000-00003
– volume: 73
  start-page: 239
  year: 2013
  ident: 10.1016/j.nicl.2021.102817_b0175
  article-title: White matter integrity, fiber count, and other fallacies: The do’s and don’ts of diffusion MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.06.081
– volume: 403
  start-page: 35
  year: 2019
  ident: 10.1016/j.nicl.2021.102817_b0120
  article-title: Graph Theoretical Framework of Brain Networks in Multiple Sclerosis: A Review of Concepts
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2017.10.033
– volume: 21
  start-page: 2565
  year: 2011
  ident: 10.1016/j.nicl.2021.102817_b0265
  article-title: Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr039
– year: 1994
  ident: 10.1016/j.nicl.2021.102817_bib339
– volume: 282
  start-page: 534
  issue: 2
  year: 2017
  ident: 10.1016/j.nicl.2021.102817_b0320
  article-title: Functional Brain Network Alterations in Clinically Isolated Syndrome and Multiple Sclerosis: A Graph-based Connectome Study
  publication-title: Radiology
  doi: 10.1148/radiol.2016152843
– volume: 58
  start-page: 91
  issue: 1
  year: 2011
  ident: 10.1016/j.nicl.2021.102817_b0330
  article-title: NTU-90: A high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.06.021
– volume: 7
  start-page: 715
  issue: 8
  year: 2008
  ident: 10.1016/j.nicl.2021.102817_b0075
  article-title: Diffusion-based tractography in neurological disorders: concepts, applications, and future developments
  publication-title: The Lancet Neurology
  doi: 10.1016/S1474-4422(08)70163-7
– volume: 20
  start-page: 353
  issue: 3
  year: 2017
  ident: 10.1016/j.nicl.2021.102817_b0015
  article-title: Network neuroscience
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4502
– volume: 21
  start-page: 449
  year: 2011
  ident: 10.1016/j.nicl.2021.102817_b0315
  article-title: Sex- and brain size-related small-world structural cortical networks in young adults: A DTI tractography study
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhq111
– volume: 80
  start-page: 416
  year: 2013
  ident: 10.1016/j.nicl.2021.102817_b0210
  article-title: Comparing connectomes across subjects and populations at different scales
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.084
– volume: 47
  start-page: 1469
  issue: 6
  year: 1996
  ident: 10.1016/j.nicl.2021.102817_b0295
  article-title: Accumulation of hypointense lesions ('black holes’) on T1 spin-echo MRI correlates with disease progression in multiple sclerosis
  publication-title: Neurology
  doi: 10.1212/WNL.47.6.1469
– volume: 178
  start-page: 57
  year: 2018
  ident: 10.1016/j.nicl.2021.102817_b0325
  article-title: Population-averaged atlas of the macroscale human structural connectome and its network topology
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.05.027
– volume: 19
  start-page: 1639
  year: 2009
  ident: 10.1016/j.nicl.2021.102817_b0080
  article-title: Circos: an information aesthetic for comparative genomics
  publication-title: Genome Res.
  doi: 10.1101/gr.092759.109
– volume: 8
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.nicl.2021.102817_b0165
  article-title: Environmental Factors Associated with Disease Progression after the First Demyelinating Event: Results from the Multi-Center SET Study
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0053996
– volume: 7
  start-page: 113
  issue: 1
  year: 2011
  ident: 10.1016/j.nicl.2021.102817_b0030
  article-title: Brain Graphs: Graphical Models of the Human Brain Connectome
  publication-title: Ann. Rev. Clin. Psychol.
  doi: 10.1146/annurev-clinpsy-040510-143934
– volume: 19
  start-page: 21263
  issue: 1
  year: 2016
  ident: 10.1016/j.nicl.2021.102817_b0170
  article-title: Towards an integrated primary and secondary HIV prevention continuum for the United States: A cyclical process model
  publication-title: J. Int. AIDS Soc.
  doi: 10.7448/IAS.19.1.21263
– year: 2001
  ident: 10.1016/j.nicl.2021.102817_bib340
  article-title: Efficient behavior of small-world networks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.198701
– volume: 7
  start-page: 1
  year: 2018
  ident: 10.1016/j.nicl.2021.102817_b0125
  article-title: Advanced lesion symptom mapping analyses and implementation as BCBtoolkit
  publication-title: GigaScience
  doi: 10.1093/gigascience/giy004
– volume: 128
  start-page: 2224
  year: 2005
  ident: 10.1016/j.nicl.2021.102817_b0060
  article-title: The rises and falls of disconnection syndromes
  publication-title: Brain
  doi: 10.1093/brain/awh622
– volume: 26
  start-page: 3508
  issue: 8
  year: 2016
  ident: 10.1016/j.nicl.2021.102817_b0105
  article-title: The human brainnetome atlas: a new brain atlas based on connectional architecture
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhw157
– volume: 1
  start-page: 0245
  year: 2005
  ident: 10.1016/j.nicl.2021.102817_b0280
  article-title: The human connectome: A structural description of the human brain
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0010042
– ident: 10.1016/j.nicl.2021.102817_b0145
  doi: 10.25080/TCWV9851
– volume: 379
  start-page: 2237
  issue: 23
  year: 2018
  ident: 10.1016/j.nicl.2021.102817_b0130
  article-title: Mapping Symptoms to Brain Networks with the Human Connectome
  publication-title: The New England Journal of Medicine
  doi: 10.1056/NEJMra1706158
– start-page: 1
  year: 2020
  ident: 10.1016/j.nicl.2021.102817_b0160
  article-title: Multiple Sclerosis: Lipids, Lymphocytes, and Vitamin D
  publication-title: Immunometabolism
SSID ssj0000800766
Score 2.2594583
Snippet [Display omitted] •Structural disconnectomes can be modelled without diffusion using tractography atlases.•Atlas-based and DTI-derived disconnectome...
Graphical abstract
The translational potential of MR-based connectivity modelling is limited by the need for advanced diffusion imaging, which is not part of clinical protocols...
• Structural disconnectomes can be modelled without diffusion using tractography atlases. • Atlas-based and DTI-derived disconnectome topological metrics...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102817
SubjectTerms Algorithms
Brain - diagnostic imaging
Brain graphs
Diffusion imaging
Diffusion Tensor Imaging
Disconnectome
Humans
Multiple Sclerosis - diagnostic imaging
Network neuroscience
Radiology
Regular
Retrospective Studies
Structural connectivity
Topology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLojzDS0bihiJqx47t3gqiqpDKBYp6s2zHpqmqLNqk_58ZO1l2AbUXrhs7cWZmZz7HM98Q8ta1yjjDQ22QgVAk52qvfVMn5bCnQEgil4-dfmlPzsTnc3m-1eoLc8IKPXAR3PvY-IanyBx3UTDvIL6KIGNkDHlpfELvCzFvazN1OeMglQ8qOWdNzaTmc8VMSe5C1lnYHHKG1AU6dyv7HZUyef9OcPobfP6ZQ7kVlI4fkPszmqRH5S32yZ04PCR3T-fz8kfk4jvAbCxgGH5QNwFQrjFqdfQq4kcyiiW5mOgSJqxNHmk_0CXBkI5wQ1hrPx7SI7qO03q1FGWWMXVeUh9oJqh9TM6OP337eFLPvRXq0HI11QAEgxCdig3sX7xQXibNDTMmOt4Fr3XrXatT50VnUhAHCRwq6E9LxbooXWqekL1hNcRnhPqO-RYCYWdaKZIXrlNOOWl0cIKDX68IW2Rrw0w8jv0vruySYXZpUR8W9WGLPirybjPnZ6HduHH0B1TZZiRSZucfwJDsbEj2NkOqSLMo3C5VqeBH4Ub9jY9W_5oVx9kVjJbZkdsD-xUNEe2Qs7zv1RWRm5kz2iko5tYnvlms0YIrwPMdN8TV9WjB-wJebzVjFXlarHMjkkbI3FYF1rtjtzsy270y9BeZblwjZFH8-f8Q8gtyD1-lfMN6Sfam9XV8Bahu8q_zH_gX86hLeg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free & Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqHhAXRCkfoYCMxA1FWztO7HBrK6qqUrlA0d4s27HboCpbbdL_z4zjBEJRkThu1nZGnsnMsz3zTMgHU8na1NzlNTIQimBMbpUt8iAN3inggojlYxdfqrNLcb4u1zvkZKqFwbTK5PtHnx69dXqySrO5um3b1VfOGYwGAY7FhQQW_CJTCxbxrY_nfRZERDIeWWL7HDuk2pkxzQv5Z2GZyBmSGKh4b9mv-BRp_Bdh6j4M_TOb8rfwdPqUPEm4kh6Nou-RHd89I48u0sn5Prn-DoAbSxm6K2oGgMw5xq-G3njcLqNYnIspL27AKuWeth2dUg1pDwOCrG3_iR7RrR-2m6k8c2yTR5FaRyNV7XNyefr528lZnm5ZyF3F5ZADJHRCNNIXsJKxQtoyKF6zuvaGN84qVVlTqdBY0dTBicMArhU0qUrJGl-aULwgu92m868ItQ2zFYTEpq5KEawwjTTSlLVyRnDw8Blh09xqlyjI8SaMGz3lmv3QqA-N-tCjPjLyce5zOxJwPNj6GFU2t0Ty7Phgs73SyXq0L2zBg2eGGy-YNQDZhCu9ZwypjmzISDEpXE_1qeBRYaD2wVfLv_XyfXIKvWa65_pQ3zPcjJRzz4Xt__ON7ydr1OAU8KTHdH5z12vww4DcK8VYRl6O1jlPSSHKeMEKyLuw28WcLf_p2utIPK4QvEj--j_lPSCP8de4gfWG7A7bO_8WIN1g38Vv9ieU4Ur-
  priority: 102
  providerName: Elsevier
Title Validating atlas-based lesion disconnectomics in multiple sclerosis: A retrospective multi-centric study
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2213158221002618
https://www.clinicalkey.es/playcontent/1-s2.0-S2213158221002618
https://dx.doi.org/10.1016/j.nicl.2021.102817
https://www.ncbi.nlm.nih.gov/pubmed/34500427
https://www.proquest.com/docview/2571926811
https://pubmed.ncbi.nlm.nih.gov/PMC8429972
https://doaj.org/article/e3b32fe1a2ae41ba8934c5ee117100bf
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKkRAXxLtboDISNxRUO07sICHUIqqCtFxg0d4s27HbVKssTVIJ_j0zTrIQWJULlxw2tuOdGc98tudByAuTy8IU3CUFZiAUwZjEKpsmQRqsKeCCiOFj80_56UJ8XGbLHTKWOxoI2G7d2mE9qUWzevX98sdbWPBvfvlqYRJZ2OtxhpkIFJM3yE2wTDlK-XyA-xcDOpLx-pJzliYsU3yIo9k-zMRWxZT-E5P1NyT907PyN1N1cpfcGTAmPeqF4h7Z8fV9cms-3KI_IOdfAXxjWEN9Rk0H8DlBW1bSlcejM4qBuuj-4jqMWG5pVdPR7ZC2MCDMtWpf0yPa-K5Zj6GafZskTqlyNKatfUgWJ--_vDtNhooLicu57BKAh06IUvoUdjVWSJsFxQtWFN7w0lmlcmtyFUoryiI4cRhAzQJXVSZZ6TMT0kdkt17Xfo9QWzKbg3ksizwTwQpTSiNNVihnBAdtPyNspK12QzpyrIqx0qPf2YVGfmjkh-75MSMvN32-9ck4rm19jCzbtMRE2vGHdXOmh3WpfWpTHjwz3HjBrAH4JlzmPWOY9siGGUlHhusxVhW0KwxUXftpua2Xb0f51ky3XB_qzyiIKIecxd2wmpFs03PAQD22-ecXn4_SqEFB4K2Pqf36qtWgkwHF54qxGXncS-eGJKnIYrEVmO9Ebic0m76pq_OYhFwhkJF8_38Q-Qm5jX-lP9l6Sna75so_A6zX2YN4RgLPD8vjg7iYfwLFhVWX
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYAL4lmWp5G4oWhrx4kdbm1FtYVuL7Rob5bt2G1Qla026f9nxnlAKCoS18TjjDyTmc_2PAj5YHJZmIK7pMAKhCIYk1hl0yRIgz0FXBAxfWx5ki_OxJdVttoiB0MuDIZV9ra_s-nRWvdP5v1qzq-qav6NcwazgYNjcSOh7pC7gAZyjOs6Wu2PBy0IiWS8s0SCBCn65JkuzgsL0MI-kTOsYqBi47JfDirW8Z_4qZs49M9wyt_80-Ej8rAHlnSv4_0x2fL1E3Jv2V-dPyUX3wFxYy5DfU5NC5g5QQdW0kuP52UUs3Mx5sW1mKbc0KqmQ6whbWBC4LVqPtE9uvHtZj3kZ3ZjkshS5WisVfuMnB1-Pj1YJH2bhcTlXLYJYEInRCl9ClsZK6TNguIFKwpveOmsUrk1uQqlFWURnNgNYFtBlCqTrPSZCelzsl2va_-CUFsym4NPLIs8E8EKU0ojTVYoZwQHEz8jbFhb7foa5NgK41IPwWY_NMpDozx0J48Z-TjSXHUVOG4dvY8iG0di9ez4YL051736aJ_alAfPDDdeMGsAswmXec8Y1jqyYUbSQeB6SFAFkwoTVbd-Wv6Nyje9VWg00w3Xu_qG5s5INlJOlP-fX3w_aKMGq4BXPab26-tGgyEG6J4rxmZkp9POcUlSkcUOK8DvRG8nazZ9U1cXsfK4QvQi-cv_5Pcdub84XR7r46OTr6_IA3zTnWa9Jtvt5tq_AXzX2rfx__0JRGFOJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validating+atlas-based+lesion+disconnectomics+in+multiple+sclerosis%3A+A+retrospective+multi-centric+study&rft.jtitle=NeuroImage+clinical&rft.au=Veronica+Ravano&rft.au=Michaela+Andelova&rft.au=M%C3%A1rio+Jo%C3%A3o+Fartaria&rft.au=Mazen+Fouad+A-Wali+Mahdi&rft.date=2021-01-01&rft.pub=Elsevier&rft.issn=2213-1582&rft.eissn=2213-1582&rft.volume=32&rft.spage=102817&rft_id=info:doi/10.1016%2Fj.nicl.2021.102817&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e3b32fe1a2ae41ba8934c5ee117100bf
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2Fcov200h.gif