A conserved mechanism drives partition complex assembly on bacterial chromosomes and plasmids
Chromosome and plasmid segregation in bacteria are mostly driven by ParAB S systems. These DNA partitioning machineries rely on large nucleoprotein complexes assembled on centromere sites ( parS ). However, the mechanism of how a few parS ‐bound ParB proteins nucleate the formation of highly concent...
Saved in:
Published in | Molecular systems biology Vol. 14; no. 11; pp. e8516 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.11.2018
EMBO Press John Wiley and Sons Inc Springer Nature |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chromosome and plasmid segregation in bacteria are mostly driven by ParAB
S
systems. These DNA partitioning machineries rely on large nucleoprotein complexes assembled on centromere sites (
parS
). However, the mechanism of how a few
parS
‐bound ParB proteins nucleate the formation of highly concentrated ParB clusters remains unclear despite several proposed physico‐mathematical models. We discriminated between these different models by varying some key parameters
in vivo
using the F plasmid partition system. We found that “Nucleation & caging” is the only coherent model recapitulating
in vivo
data. We also showed that the stochastic self‐assembly of partition complexes (i) is a robust mechanism, (ii) does not directly involve ParA ATPase, (iii) results in a dynamic structure of discrete size independent of ParB concentration, and (iv) is not perturbed by active transcription but is by protein complexes. We refined the “Nucleation & caging” model and successfully applied it to the chromosomally encoded Par system of
Vibrio cholerae
, indicating that this stochastic self‐assembly mechanism is widely conserved from plasmids to chromosomes.
Synopsis
High‐resolution ChIP‐seq and physico‐mathematical modeling are used to analyze the
in vivo
ParB DNA‐binding profiles. The “Nucleation and caging” self‐assembly mechanism is widespread to ensure faithful bacterial DNA segregation by ParAB
S
systems.
ParB
S
partition complexes are highly dynamic nucleoprotein complexes.
The robust ParB DNA binding profiles derived by ChIP‐seq data are well‐described by the “Nucleation and caging” model.
The size of the partition complex is invariant to intracellular variation in ParB levels.
This self‐assembly mechanism is observed on
Escherichia coli
and
V. cholerae
chromosomes and on the F plasmid.
Graphical Abstract
High‐resolution ChIP‐seq and physico‐mathematical modeling are used to analyze the
in vivo
ParB DNA‐binding profiles. The “Nucleation and caging” self‐assembly mechanism is widespread to ensure faithful bacterial DNA segregation by ParAB
S
systems. |
---|---|
AbstractList | Chromosome and plasmid segregation in bacteria are mostly driven by ParAB
S
systems. These DNA partitioning machineries rely on large nucleoprotein complexes assembled on centromere sites (
parS
). However, the mechanism of how a few
parS
‐bound ParB proteins nucleate the formation of highly concentrated ParB clusters remains unclear despite several proposed physico‐mathematical models. We discriminated between these different models by varying some key parameters
in vivo
using the F plasmid partition system. We found that “Nucleation & caging” is the only coherent model recapitulating
in vivo
data. We also showed that the stochastic self‐assembly of partition complexes (i) is a robust mechanism, (ii) does not directly involve ParA ATPase, (iii) results in a dynamic structure of discrete size independent of ParB concentration, and (iv) is not perturbed by active transcription but is by protein complexes. We refined the “Nucleation & caging” model and successfully applied it to the chromosomally encoded Par system of
Vibrio cholerae
, indicating that this stochastic self‐assembly mechanism is widely conserved from plasmids to chromosomes.
Synopsis
High‐resolution ChIP‐seq and physico‐mathematical modeling are used to analyze the
in vivo
ParB DNA‐binding profiles. The “Nucleation and caging” self‐assembly mechanism is widespread to ensure faithful bacterial DNA segregation by ParAB
S
systems.
ParB
S
partition complexes are highly dynamic nucleoprotein complexes.
The robust ParB DNA binding profiles derived by ChIP‐seq data are well‐described by the “Nucleation and caging” model.
The size of the partition complex is invariant to intracellular variation in ParB levels.
This self‐assembly mechanism is observed on
Escherichia coli
and
V. cholerae
chromosomes and on the F plasmid.
Graphical Abstract
High‐resolution ChIP‐seq and physico‐mathematical modeling are used to analyze the
in vivo
ParB DNA‐binding profiles. The “Nucleation and caging” self‐assembly mechanism is widespread to ensure faithful bacterial DNA segregation by ParAB
S
systems. Chromosome and plasmid segregation in bacteria are mostly driven by ParABS systems. These DNA partitioning machineries rely on large nucleoprotein complexes assembled on centromere sites (parS). However, the mechanism of how a few parS‐bound ParB proteins nucleate the formation of highly concentrated ParB clusters remains unclear despite several proposed physico‐mathematical models. We discriminated between these different models by varying some key parameters in vivo using the F plasmid partition system. We found that “Nucleation & caging” is the only coherent model recapitulating in vivo data. We also showed that the stochastic self‐assembly of partition complexes (i) is a robust mechanism, (ii) does not directly involve ParA ATPase, (iii) results in a dynamic structure of discrete size independent of ParB concentration, and (iv) is not perturbed by active transcription but is by protein complexes. We refined the “Nucleation & caging” model and successfully applied it to the chromosomally encoded Par system of Vibrio cholerae, indicating that this stochastic self‐assembly mechanism is widely conserved from plasmids to chromosomes. Synopsis High‐resolution ChIP‐seq and physico‐mathematical modeling are used to analyze the in vivo ParB DNA‐binding profiles. The “Nucleation and caging” self‐assembly mechanism is widespread to ensure faithful bacterial DNA segregation by ParABS systems. ParBS partition complexes are highly dynamic nucleoprotein complexes. The robust ParB DNA binding profiles derived by ChIP‐seq data are well‐described by the “Nucleation and caging” model. The size of the partition complex is invariant to intracellular variation in ParB levels. This self‐assembly mechanism is observed on Escherichia coli and V. cholerae chromosomes and on the F plasmid. High‐resolution ChIP‐seq and physico‐mathematical modeling are used to analyze the in vivo ParB DNA‐binding profiles. The “Nucleation and caging” self‐assembly mechanism is widespread to ensure faithful bacterial DNA segregation by ParABS systems. Chromosome and plasmid segregation in bacteria are mostly driven by ParABS systems. These DNA partitioning machineries rely on large nucleoprotein complexes assembled on centromere sites (parS). However, the mechanism of how a few parS-bound ParB proteins nucleate the formation of highly concentrated ParB clusters remains unclear despite several proposed physico-mathematical models. We discriminated between these different models by varying some key parameters in vivo using the plasmid F partition system. We found that ‘Nucleation & caging’ is the only coherent model recapitulating in vivo data. We also showed that the stochastic self-assembly of partition complexes (i) does not directly involve ParA, (ii) results in a dynamic structure of discrete size independent of ParB concentration, and (iii) is not perturbed by active transcription but is by protein complexes. We refined the ‘Nucleation & Caging’ model and successfully applied it to the chromosomally-encoded Par system of Vibrio cholerae, indicating that this stochastic self-assembly mechanism is widely conserved from plasmids to chromosomes. Chromosome and plasmid segregation in bacteria are mostly driven by ParABS systems. These DNA partitioning machineries rely on large nucleoprotein complexes assembled on centromere sites (parS). However, the mechanism of how a few parS-bound ParB proteins nucleate the formation of highly concentrated ParB clusters remains unclear despite several proposed physico-mathematical models. We discriminated between these different models by varying some key parameters in vivo using the F plasmid partition system. We found that "Nucleation & caging" is the only coherent model recapitulating in vivo data. We also showed that the stochastic self-assembly of partition complexes (i) is a robust mechanism, (ii) does not directly involve ParA ATPase, (iii) results in a dynamic structure of discrete size independent of ParB concentration, and (iv) is not perturbed by active transcription but is by protein complexes. We refined the "Nucleation & caging" model and successfully applied it to the chromosomally encoded Par system of Vibrio cholerae, indicating that this stochastic self-assembly mechanism is widely conserved from plasmids to chromosomes. Abstract Chromosome and plasmid segregation in bacteria are mostly driven by ParABS systems. These DNA partitioning machineries rely on large nucleoprotein complexes assembled on centromere sites (parS). However, the mechanism of how a few parS‐bound ParB proteins nucleate the formation of highly concentrated ParB clusters remains unclear despite several proposed physico‐mathematical models. We discriminated between these different models by varying some key parameters in vivo using the F plasmid partition system. We found that “Nucleation & caging” is the only coherent model recapitulating in vivo data. We also showed that the stochastic self‐assembly of partition complexes (i) is a robust mechanism, (ii) does not directly involve ParA ATPase, (iii) results in a dynamic structure of discrete size independent of ParB concentration, and (iv) is not perturbed by active transcription but is by protein complexes. We refined the “Nucleation & caging” model and successfully applied it to the chromosomally encoded Par system of Vibrio cholerae, indicating that this stochastic self‐assembly mechanism is widely conserved from plasmids to chromosomes. Chromosome and plasmid segregation in bacteria are mostly driven by ParAB systems. These DNA partitioning machineries rely on large nucleoprotein complexes assembled on centromere sites ( ). However, the mechanism of how a few -bound ParB proteins nucleate the formation of highly concentrated ParB clusters remains unclear despite several proposed physico-mathematical models. We discriminated between these different models by varying some key parameters using the F plasmid partition system. We found that "Nucleation & caging" is the only coherent model recapitulating data. We also showed that the stochastic self-assembly of partition complexes (i) is a robust mechanism, (ii) does not directly involve ParA ATPase, (iii) results in a dynamic structure of discrete size independent of ParB concentration, and (iv) is not perturbed by active transcription but is by protein complexes. We refined the "Nucleation & caging" model and successfully applied it to the chromosomally encoded Par system of , indicating that this stochastic self-assembly mechanism is widely conserved from plasmids to chromosomes. Chromosome and plasmid segregation in bacteria are mostly driven by ParAB S systems. These DNA partitioning machineries rely on large nucleoprotein complexes assembled on centromere sites ( parS ). However, the mechanism of how a few parS ‐bound ParB proteins nucleate the formation of highly concentrated ParB clusters remains unclear despite several proposed physico‐mathematical models. We discriminated between these different models by varying some key parameters in vivo using the F plasmid partition system. We found that “Nucleation & caging” is the only coherent model recapitulating in vivo data. We also showed that the stochastic self‐assembly of partition complexes (i) is a robust mechanism, (ii) does not directly involve ParA ATP ase, (iii) results in a dynamic structure of discrete size independent of ParB concentration, and (iv) is not perturbed by active transcription but is by protein complexes. We refined the “Nucleation & caging” model and successfully applied it to the chromosomally encoded Par system of Vibrio cholerae , indicating that this stochastic self‐assembly mechanism is widely conserved from plasmids to chromosomes. |
Author | Debaugny, Roxanne E Dorignac, Jérôme Labourdette, Delphine Anton Leberre, Véronique Rech, Jérôme Geniet, Frédéric Parmeggiani, Andrea Walter, Jean‐Charles Palmeri, John Sanchez, Aurore Boudsocq, François Bouet, Jean‐Yves |
AuthorAffiliation | 2 LISBP CNRS INRA INSA Université de Toulouse Toulouse France 4 Dynamique des Interactions Membranaires Normales et Pathologiques CNRS‐Université Montpellier Montpellier France 3 Laboratoire Charles Coulomb CNRS‐Université Montpellier Montpellier France 1 Laboratoire de Microbiologie et Génétique Moléculaires Centre de Biologie Intégrative (CBI) Centre National de la Recherche Scientifique (CNRS) Université de Toulouse, UPS Toulouse France 5 Present address: Institut Curie UMR 3664 CNRS‐IC Paris France |
AuthorAffiliation_xml | – name: 3 Laboratoire Charles Coulomb CNRS‐Université Montpellier Montpellier France – name: 4 Dynamique des Interactions Membranaires Normales et Pathologiques CNRS‐Université Montpellier Montpellier France – name: 1 Laboratoire de Microbiologie et Génétique Moléculaires Centre de Biologie Intégrative (CBI) Centre National de la Recherche Scientifique (CNRS) Université de Toulouse, UPS Toulouse France – name: 5 Present address: Institut Curie UMR 3664 CNRS‐IC Paris France – name: 2 LISBP CNRS INRA INSA Université de Toulouse Toulouse France |
Author_xml | – sequence: 1 givenname: Roxanne E surname: Debaugny fullname: Debaugny, Roxanne E organization: Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS – sequence: 2 givenname: Aurore surname: Sanchez fullname: Sanchez, Aurore organization: Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, Institut Curie, UMR 3664 CNRS‐IC – sequence: 3 givenname: Jérôme surname: Rech fullname: Rech, Jérôme organization: Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS – sequence: 4 givenname: Delphine surname: Labourdette fullname: Labourdette, Delphine organization: LISBP, CNRS, INRA, INSA, Université de Toulouse – sequence: 5 givenname: Jérôme surname: Dorignac fullname: Dorignac, Jérôme organization: Laboratoire Charles Coulomb, CNRS‐Université Montpellier – sequence: 6 givenname: Frédéric surname: Geniet fullname: Geniet, Frédéric organization: Laboratoire Charles Coulomb, CNRS‐Université Montpellier – sequence: 7 givenname: John surname: Palmeri fullname: Palmeri, John organization: Laboratoire Charles Coulomb, CNRS‐Université Montpellier – sequence: 8 givenname: Andrea surname: Parmeggiani fullname: Parmeggiani, Andrea organization: Laboratoire Charles Coulomb, CNRS‐Université Montpellier, Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS‐Université Montpellier – sequence: 9 givenname: François surname: Boudsocq fullname: Boudsocq, François organization: Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS – sequence: 10 givenname: Véronique surname: Anton Leberre fullname: Anton Leberre, Véronique organization: LISBP, CNRS, INRA, INSA, Université de Toulouse – sequence: 11 givenname: Jean‐Charles surname: Walter fullname: Walter, Jean‐Charles email: jean-charles.walter@umontpellier.fr organization: Laboratoire Charles Coulomb, CNRS‐Université Montpellier – sequence: 12 givenname: Jean‐Yves orcidid: 0000-0003-1488-5455 surname: Bouet fullname: Bouet, Jean‐Yves email: jean-yves.bouet@ibcg.biotoul.fr organization: Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30446599$$D View this record in MEDLINE/PubMed https://hal.science/hal-01926457$$DView record in HAL |
BookMark | eNp9ks-PEyEUgCdmjftDj17NJF7cQyswwMDFpLtRd5MaD-rREApvWpoBKrTV_vdLd3br7sZ4gjy-9_EevNPqKMQAVfUaozFmhJH3Ps_GBGEhGObPqhPcUjqiRJKjB_vj6jTnJUKNwIK8qI4bRClnUp5UPye1iSFD2oKtPZiFDi772ia3hVyvdFq7tYuhQH7Vw59a5wx-1u_qEptps4bkdF-bRYo-5uhLjg62XvU6e2fzy-p5p_sMr-7Ws-rHp4_fL69G06-fry8n05HhpOUjKxAF1NIGOMZYog5ZkKJFmhvGhG460-KWE9baUr-wknUaYTQTkmIEmpLmrLoevDbqpVol53Xaqaidug3ENFf7TkwPijAjOmGBdVjTjgqBWoOJbCjSiGPGi-vD4FptZh6sgbBOun8kfXwS3ELN41ZxUp63kUVwPggWT9KuJlO1jyEsCaes3eLCvru7LMVfG8hr5V020Pc6QNxkRXDDMCm_tde-fYIu4yaF8qx7SmJCWrSnRgNlUsw5QXeoACN1OzCqDIy6H5jCv3nY7YG-n5AC0AH47XrY_d-mvny7OHjHQ1ouGWEO6W-1_y7kBi4e2tk |
CitedBy_id | crossref_primary_10_1016_j_ceb_2021_07_001 crossref_primary_10_3389_fbioe_2022_800734 crossref_primary_10_1016_j_cell_2019_11_015 crossref_primary_10_1128_ecosalplus_esp_0008_2022 crossref_primary_10_1016_j_bpj_2021_08_022 crossref_primary_10_7554_eLife_79480 crossref_primary_10_1016_j_jmb_2021_167401 crossref_primary_10_1128_ecosalplus_esp_0003_2019 crossref_primary_10_1016_j_molcel_2020_06_034 crossref_primary_10_1093_molbev_msz308 crossref_primary_10_1016_j_molcel_2021_09_004 crossref_primary_10_1093_nar_gkac651 crossref_primary_10_1093_nar_gkad982 crossref_primary_10_1103_PhysRevResearch_2_033377 crossref_primary_10_7554_eLife_81362 crossref_primary_10_1002_syst_202400011 crossref_primary_10_7554_eLife_53515 crossref_primary_10_1073_pnas_2319205121 crossref_primary_10_1093_nar_gkad868 crossref_primary_10_1021_jacs_4c04749 crossref_primary_10_1038_s12276_024_01226_x crossref_primary_10_3389_fmicb_2021_751880 crossref_primary_10_1007_s00709_019_01442_7 crossref_primary_10_1126_sciadv_abn3299 crossref_primary_10_3390_mi13060914 crossref_primary_10_7554_eLife_43812 crossref_primary_10_1371_journal_pcbi_1008869 crossref_primary_10_1126_science_aaz8632 crossref_primary_10_1038_s41589_019_0339_x crossref_primary_10_1016_j_isci_2020_101861 crossref_primary_10_1098_rsob_200097 crossref_primary_10_1038_s41467_020_15238_4 crossref_primary_10_1371_journal_pone_0226472 crossref_primary_10_3390_microorganisms8010105 crossref_primary_10_1038_s41467_023_40320_y crossref_primary_10_1103_PhysRevLett_127_138101 crossref_primary_10_1002_adbi_201800316 crossref_primary_10_1016_j_bpj_2020_09_023 |
Cites_doi | 10.1016/B978-0-12-407678-5.00002-7 10.1111/j.1365-2958.2006.05537.x 10.1201/9781134111589 10.1128/jb.176.11.3188-3195.1994 10.1073/pnas.120163297 10.1073/pnas.92.6.1896 10.1111/j.1365-2958.2004.04396.x 10.1074/jbc.M109.044800 10.1128/JB.00250-06 10.1128/mBio.01061-14 10.1073/pnas.1402529111 10.1074/jbc.275.11.8213 10.1046/j.1365-2958.2000.02101.x 10.1093/nar/gkx271 10.1088/1367-2630/aaad39 10.1073/pnas.91.17.8027 10.1201/b16269 10.1128/jb.165.3.1043-1045.1986 10.1101/gad.242206.114 10.1093/emboj/18.5.1415 10.1016/0022-2836(86)90459-6 10.1111/mmi.12017 10.1103/PhysRevLett.119.028101 10.1038/ncomms12107 10.1093/nar/gku1295 10.1016/j.bpj.2017.02.039 10.1371/journal.pgen.1006428 10.1016/j.cell.2013.11.028 10.1016/j.cels.2015.07.013 10.1371/journal.pgen.1003956 10.1074/jbc.271.29.17469 10.1046/j.1365-2958.2000.01975.x 10.1016/j.bpj.2009.11.002 10.1126/science.aaa9046 10.1016/j.cell.2008.07.044 10.1038/emboj.2013.34 10.1128/JB.187.17.6166-6174.2005 10.1016/S0021-9258(18)53738-8 10.1111/j.1365-2958.2010.07507.x 10.1111/j.1365-2958.2008.06465.x 10.1007/978-1-4939-7098-8_6 10.3389/fmolb.2016.00044 10.1111/j.1365-2958.2006.05316.x 10.1126/science.283.5401.546 10.1074/jbc.M802752200 10.7554/eLife.02758 10.7554/eLife.28086 10.1098/rsob.150263 10.1006/jmbi.1996.0326 10.1111/j.1365-2958.2004.04322.x 10.1016/S0092-8674(00)81135-6 10.1111/j.1365-2958.2007.05690.x 10.1093/nar/gkr457 10.1073/pnas.97.26.14656 10.1016/0022-2836(73)90434-8 10.1128/microbiolspec.PLAS-0023-2014 10.1093/nar/gkt018 10.1093/emboj/20.17.4901 10.1016/j.plasmid.2015.03.007 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018 The Authors. Published under the terms of the CC BY 4.0 license 2018 The Authors. Published under the terms of the CC BY 4.0 license. 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018 The Authors. Published under the terms of the CC BY 4.0 license – notice: 2018 The Authors. Published under the terms of the CC BY 4.0 license. – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
DBID | C6C 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QL 7TM 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PADUT PIMPY PQEST PQQKQ PQUKI PRINS Q9U RC3 7X8 1XC VOOES 5PM DOA |
DOI | 10.15252/msb.20188516 |
DatabaseName | SpringerOpen Wiley Online Library (Open Access Collection) Wiley Online Library Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Research Library China Access via ProQuest (Open Access) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Research Database ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Research Library Research Library China ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 24P name: Wiley Online Library (Open Access Collection) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 4 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 5 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 6 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Physics |
DocumentTitleAlternate | Roxanne E Debaugny et al |
EISSN | 1744-4292 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_25c8f8de5f1a4f48807c129340a06156 oai_HAL_hal_01926457v1 10_15252_msb_20188516 30446599 MSB188516 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Agence Nationale de la Recherche (ANR) grantid: ANR‐14‐CE09‐0025‐01 funderid: 10.13039/501100001665 – fundername: Université de Toulouse grantid: APR14 – fundername: Labex NUMEV grantid: AAP 2013‐2‐005; 2015‐2‐055; 2016‐1‐024 – fundername: Centre National de la Recherche Scientifique (CNRS) funderid: 10.13039/501100004794 – fundername: Agence Nationale de la Recherche (ANR) funderid: ANR‐14‐CE09‐0025‐01 – fundername: Labex NUMEV funderid: AAP 2013‐2‐005; 2015‐2‐055; 2016‐1‐024 – fundername: Centre National de la Recherche Scientifique (CNRS) – fundername: Université de Toulouse funderid: APR14 – fundername: Agence Nationale de la Recherche (ANR) grantid: ANR‐14‐CE09‐0025‐01 |
GroupedDBID | --- -Q- 0R~ 123 1OC 24P 29M 2WC 39C 3V. 53G 5VS 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAHHS ABDBF ABUWG ACCFJ ACGFO ACPRK ACXQS ADBBV ADKYN ADRAZ ADZMN AEEZP AEGXH AENEX AEQDE AFKRA AFRAH AHMBA AIAGR AIWBW AJBDE ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZFZN AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CAG CCPQU CS3 DIK DU5 DWQXO E3Z EBD EBS EJD EMB EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HCIFZ HH5 HK~ HMCUK HYE HZ~ IAO IHR INH KQ8 LK8 M1P M2O M48 M7P ML0 M~E O5R O5S O9- OK1 P2P PADUT PIMPY PQQKQ PSQYO Q2X RHI RNS RNTTT RPM SV3 TR2 TUS UKHRP WIN WOQ WOW XSB ~8M 4.4 88A ACSMW COF EBLON GODZA H13 IGS M0L PROAC CGR CUY CVF ECM EIF NPM AAYXX CITATION ITC 7QL 7TM 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PQEST PQUKI PRINS Q9U RC3 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c6276-d804e0743e611190f0de9870a6c558a3fc7176257d8188d95fa010b89410ea423 |
IEDL.DBID | RPM |
ISSN | 1744-4292 |
IngestDate | Mon Nov 04 19:56:17 EST 2024 Tue Sep 17 21:03:10 EDT 2024 Thu Oct 17 06:45:12 EDT 2024 Sat Oct 26 05:47:49 EDT 2024 Thu Oct 10 20:35:36 EDT 2024 Thu Sep 26 17:04:45 EDT 2024 Sat Nov 02 12:16:40 EDT 2024 Sat Aug 24 00:45:37 EDT 2024 Fri Oct 25 01:30:25 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | DNA segregation F plasmid ParABS plasmid partition Escherichia coli |
Language | English |
License | Attribution 2018 The Authors. Published under the terms of the CC BY 4.0 license. Attribution: http://creativecommons.org/licenses/by This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6276-d804e0743e611190f0de9870a6c558a3fc7176257d8188d95fa010b89410ea423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1488-5455 0000-0002-7313-0100 0009-0000-8949-2379 0000-0002-8022-4295 0000-0002-1599-3450 0000-0002-1015-528X 0000-0001-6337-0955 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6238139/ |
PMID | 30446599 |
PQID | 2139122709 |
PQPubID | 29031 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_25c8f8de5f1a4f48807c129340a06156 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6238139 hal_primary_oai_HAL_hal_01926457v1 proquest_miscellaneous_2135120449 proquest_journals_2139122709 crossref_primary_10_15252_msb_20188516 pubmed_primary_30446599 wiley_primary_10_15252_msb_20188516_MSB188516 springer_journals_10_15252_msb_20188516 |
PublicationCentury | 2000 |
PublicationDate | November 2018 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: Hoboken |
PublicationTitle | Molecular systems biology |
PublicationTitleAbbrev | Mol Syst Biol |
PublicationTitleAlternate | Mol Syst Biol |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK EMBO Press John Wiley and Sons Inc Springer Nature |
Publisher_xml | – name: Nature Publishing Group UK – name: EMBO Press – name: John Wiley and Sons Inc – name: Springer Nature |
References | Hwang, Vecchiarelli, Han, Mizuuchi, Harada, Funnell, Mizuuchi (CR32) 2013; 32 Graham, Wang, Song, Etson, van Oijen, Rudner, Loparo (CR27) 2014; 28 Rodionov, Lobocka, Yarmolinsky (CR49) 1999; 283 Parry, Surovtsev, Cabeen, O'Hern, Dufresne, Jacobs‐Wagner (CR46) 2014; 156 Broedersz, Wang, Meir, Loparo, Rudner, Wingreen (CR12) 2014; 111 Phillips, Kondev, Theriot, Garcia (CR47) 2012 Kumar, Mommer, Sourjik (CR33) 2010; 98 Funnell, Gagnier (CR23) 1993; 268 Lin, Grossman (CR38) 1998; 92 Bouet, Funnell (CR6) 1999; 18 Meyer, Grainger (CR41) 2013; 83 Gerdes, Moller‐Jensen, Bugge Jensen (CR26) 2000; 37 Das, Chattoraj (CR16) 2004; 54 Pillet, Sanchez, Lane, Anton Leberre, Bouet (CR48) 2011; 39 Vecchiarelli, Mizuuchi, Funnell (CR57) 2012; 86 Schiessel (CR901) 2013 Sanchez, Cattoni, Walter, Rech, Parmeggiani, Nollmann, Bouet (CR52) 2015; 1 Breier, Grossman (CR11) 2007; 64 Scholefield, Whiting, Errington, Murray (CR53) 2011; 79 Song, Rodrigues, Graham, Loparo (CR55) 2017; 45 CR4 Baek, Rajagopala, Chattoraj (CR3) 2014; 5 Saint‐Dic, Frushour, Kehrl, Kahng (CR50) 2006; 188 Hu, Vecchiarelli, Mizuuchi, Neuman, Liu (CR31) 2017; 112 Le Gall, Cattoni, Guilhas, Mathieu‐Demaziere, Oudjedi, Fiche, Rech, Abrahamsson, Murray, Bouet, Nollmann (CR35) 2016; 7 Taylor, Pastrana, Butterer, Pernstich, Gwynn, Sobott, Moreno‐Herrero, Dillingham (CR56) 2015; 43 Diaz, Rech, Bouet (CR18) 2015; 80 Diaz, Sanchez, Anton Le Berre, Bouet, Espéli (CR19) 2017 Murray, Ferreira, Errington (CR44) 2006; 61 de Gennes (CR25) 1979 Bouet, Lane (CR10) 2009; 284 Walter, Walliser, David, Dorignac, Geniet, Palmeri, Parmeggiani, Wingreen, Broedersz (CR59) 2018; 20 Bouet, Rech, Egloff, Biek, Lane (CR8) 2005; 55 Herring, Raffaelle, Allen, Kanin, Landick, Ansari, Palsson (CR30) 2005; 187 Fung, Bouet, Funnell (CR22) 2001; 20 Helsberg, Eichenlaub (CR29) 1986; 165 Castaing, Bouet, Lane (CR13) 2008; 70 Murray, Errington (CR45) 2008; 135 Sanchez, Rech, Gasc, Bouet (CR51) 2013; 41 Hanai, Liu, Benedetti, Caron, Lynch, Wang (CR28) 1996; 271 Schumacher, Tonthat, Lee, Rodriguez‐Castaneda, Chinnam, Kalliomaa‐Sanford, Ng, Barge, Shaw, Barilla (CR54) 2015; 349 Datsenko, Wanner (CR17) 2000; 97 Miller (CR42) 1972 Lim, Surovtsev, Beltran, Huang, Bewersdorf, Jacobs‐Wagner (CR37) 2014; 3 Collins, Pritchard (CR14) 1973; 78 Lemonnier, Bouet, Libante, Lane (CR36) 2000; 38 Lobocka, Yarmolinsky (CR39) 1996; 259 Mori, Kondo, Ohshima, Ogura, Hiraga (CR43) 1986; 192 Bouet, Ah‐Seng, Benmeradi, Lane (CR9) 2007; 63 Yamaichi, Niki (CR60) 2000; 97 Donczew, Mackiewicz, Wrobel, Flardh, Zakrzewska‐Czerwinska, Jakimowicz (CR20) 2016; 6 Ah‐Seng, Rech, Lane, Bouet (CR2) 2013; 9 Bouet, Surtees, Funnell (CR7) 2000; 275 Ah‐Seng, Lopez, Pasta, Lane, Bouet (CR1) 2009; 284 Cornet, Mortier, Patte, Louarn (CR15) 1994; 176 Fisher, Pastrana, Higman, Koh, Taylor, Butterer, Craggs, Sobott, Murray, Crump, Moreno‐Herrero, Dillingham (CR21) 2017; 6 Lynch, Wang (CR40) 1995; 92 Biek, Shi (CR5) 1994; 91 Funnell (CR24) 2016; 3 Lagage, Boccard, Vallet‐Gely (CR34) 2016; 12 Walter, Dorignac, Lorman, Rech, Bouet, Nollmann, Palmeri, Parmeggiani, Geniet (CR58) 2017; 119 2017; 119 2017; 6 1994; 176 2010; 98 2017; 45 1999; 283 1972 2015; 80 2015; 349 2014; 28 2017; 112 2008; 70 1979 2013; 9 2014; 5 2014; 3 2006; 61 2014; 2 2005; 187 1999; 18 2000; 97 2015; 43 1986; 192 1998; 92 2009; 284 2007; 63 2007; 64 1996; 259 2015; 1 1995; 92 2012 1973; 78 2013; 83 2013; 41 2011; 79 2000; 275 1993; 268 2011; 39 2014; 111 2018; 20 2001; 20 2016; 12 2014; 156 2004; 54 2016; 6 2016; 7 2000; 38 2016; 3 1986; 165 2000; 37 2013; 32 1996; 271 2017 2008; 135 2013 1994; 91 2005; 55 2006; 188 2012; 86 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 Gennes PG (e_1_2_9_26_1) 1979 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_8_1 Miller JH (e_1_2_9_43_1) 1972 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 Funnell BE (e_1_2_9_24_1) 1993; 268 e_1_2_9_29_1 |
References_xml | – volume: 349 start-page: 1120 year: 2015 end-page: 1124 ident: CR54 article-title: Structures of archaeal DNA segregation machinery reveal bacterial and eukaryotic linkages publication-title: Science contributor: fullname: Barilla – volume: 63 start-page: 468 year: 2007 end-page: 481 ident: CR9 article-title: Polymerization of SopA partition ATPase: regulation by DNA binding and SopB publication-title: Mol Microbiol contributor: fullname: Lane – volume: 98 start-page: 552 year: 2010 end-page: 559 ident: CR33 article-title: Mobility of cytoplasmic, membrane, and DNA‐binding proteins in publication-title: Biophys J contributor: fullname: Sourjik – ident: CR4 – volume: 64 start-page: 703 year: 2007 end-page: 718 ident: CR11 article-title: Whole‐genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin‐distal sites on the chromosome publication-title: Mol Microbiol contributor: fullname: Grossman – volume: 83 start-page: 69 year: 2013 end-page: 86 ident: CR41 article-title: The nucleoid in stationary phase publication-title: Adv Appl Microbiol contributor: fullname: Grainger – volume: 61 start-page: 1352 year: 2006 end-page: 1361 ident: CR44 article-title: The bacterial chromosome segregation protein Spo0J spreads along DNA from parS nucleation sites publication-title: Mol Microbiol contributor: fullname: Errington – volume: 188 start-page: 5626 year: 2006 end-page: 5631 ident: CR50 article-title: A parA homolog selectively influences positioning of the large chromosome origin in publication-title: J Bacteriol contributor: fullname: Kahng – volume: 32 start-page: 1238 year: 2013 end-page: 1249 ident: CR32 article-title: ParA‐mediated plasmid partition driven by protein pattern self‐organization publication-title: EMBO J contributor: fullname: Mizuuchi – volume: 18 start-page: 1415 year: 1999 end-page: 1424 ident: CR6 article-title: P1 ParA interacts with the P1 partition complex at and an ATP‐ADP switch controls ParA activities publication-title: EMBO J contributor: fullname: Funnell – volume: 55 start-page: 511 year: 2005 end-page: 525 ident: CR8 article-title: Probing plasmid partition with centromere‐based incompatibility publication-title: Mol Microbiol contributor: fullname: Lane – year: 2012 ident: CR47 publication-title: Physical biology of the cell contributor: fullname: Garcia – volume: 38 start-page: 493 year: 2000 end-page: 505 ident: CR36 article-title: Disruption of the F plasmid partition complex by partition protein SopA publication-title: Mol Microbiol contributor: fullname: Lane – volume: 37 start-page: 455 year: 2000 end-page: 466 ident: CR26 article-title: Plasmid and chromosome partitioning: surprises from phylogeny publication-title: Mol Microbiol contributor: fullname: Bugge Jensen – volume: 7 start-page: 12107 year: 2016 ident: CR35 article-title: Bacterial partition complexes segregate within the volume of the nucleoid publication-title: Nat Commun contributor: fullname: Nollmann – volume: 92 start-page: 675 year: 1998 end-page: 685 ident: CR38 article-title: Identification and characterization of a bacterial chromosome partitioning site publication-title: Cell contributor: fullname: Grossman – volume: 70 start-page: 1000 year: 2008 end-page: 1011 ident: CR13 article-title: F plasmid partition depends on interaction of SopA with non‐specific DNA publication-title: Mol Microbiol contributor: fullname: Lane – volume: 97 start-page: 14656 year: 2000 end-page: 14661 ident: CR60 article-title: Active segregation by the partitioning system in publication-title: Proc Natl Acad Sci USA contributor: fullname: Niki – volume: 6 start-page: 150263 year: 2016 ident: CR20 article-title: ParA and ParB coordinate chromosome segregation with cell elongation and division during Streptomyces sporulation publication-title: Open Biol contributor: fullname: Jakimowicz – volume: 176 start-page: 3188 year: 1994 end-page: 3195 ident: CR15 article-title: Plasmid pSC101 harbors a recombination site, , which is able to resolve plasmid multimers and to substitute for the analogous chromosomal site publication-title: J Bacteriol contributor: fullname: Louarn – volume: 112 start-page: 1489 year: 2017 end-page: 1502 ident: CR31 article-title: Brownian Ratchet mechanism for faithful segregation of low‐copy‐number plasmids publication-title: Biophys J contributor: fullname: Liu – volume: 259 start-page: 366 year: 1996 end-page: 382 ident: CR39 article-title: P1 plasmid partition: a mutational analysis of ParB publication-title: J Mol Biol contributor: fullname: Yarmolinsky – volume: 41 start-page: 3094 year: 2013 end-page: 3103 ident: CR51 article-title: Insight into centromere‐binding properties of ParB proteins: a secondary binding motif is essential for bacterial genome maintenance publication-title: Nucleic Acids Res contributor: fullname: Bouet – volume: 43 start-page: 719 year: 2015 end-page: 731 ident: CR56 article-title: Specific and non‐specific interactions of ParB with DNA: implications for chromosome segregation publication-title: Nucleic Acids Res contributor: fullname: Dillingham – start-page: 61 year: 2017 end-page: 73 ident: CR19 article-title: High‐resolution chromatin immunoprecipitation: ChIP‐sequencing publication-title: The bacterial nucleoid methods in molecular biology contributor: fullname: Espéli – volume: 45 start-page: 7106 year: 2017 end-page: 7117 ident: CR55 article-title: A network of cis and trans interactions is required for ParB spreading publication-title: Nucleic Acids Res contributor: fullname: Loparo – volume: 20 start-page: 035002 year: 2018 ident: CR59 article-title: Looping and clustering model for the organization of protein‐DNA complexes on the bacterial genome publication-title: New J Phys contributor: fullname: Broedersz – volume: 1 start-page: 163 year: 2015 end-page: 173 ident: CR52 article-title: Stochastic self‐assembly of ParB proteins builds the bacterial DNA segregation apparatus publication-title: Cell Syst contributor: fullname: Bouet – volume: 119 start-page: 028101 year: 2017 ident: CR58 article-title: Surfing on protein waves: proteophoresis as a mechanism for bacterial genome partitioning publication-title: Phys Rev Lett contributor: fullname: Geniet – volume: 268 start-page: 3616 year: 1993 end-page: 3624 ident: CR23 article-title: The P1 plasmid partition complex at parS: II. Analysis of ParB protein binding activity and specificity publication-title: J Biol Chem contributor: fullname: Gagnier – volume: 12 start-page: e1006428 year: 2016 ident: CR34 article-title: Regional control of chromosome segregation in publication-title: PLoS Genet contributor: fullname: Vallet‐Gely – volume: 20 start-page: 4901 year: 2001 end-page: 4911 ident: CR22 article-title: Probing the ATP‐binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis publication-title: EMBO J contributor: fullname: Funnell – volume: 3 start-page: 44 year: 2016 ident: CR24 article-title: ParB partition proteins: complex formation and spreading at bacterial and plasmid centromeres publication-title: Front Mol Biosci contributor: fullname: Funnell – volume: 165 start-page: 1043 year: 1986 end-page: 1045 ident: CR29 article-title: Twelve 43‐base‐pair repeats map in a ‐acting region essential for partition of plasmid mini‐F publication-title: J Bacteriol contributor: fullname: Eichenlaub – volume: 78 start-page: 143 year: 1973 end-page: 155 ident: CR14 article-title: Relationship between chromosome replication and F'lac episome replication in publication-title: J Mol Biol contributor: fullname: Pritchard – volume: 54 start-page: 836 year: 2004 end-page: 849 ident: CR16 article-title: Origin pairing (‘handcuffing’) and unpairing in the control of P1 plasmid replication publication-title: Mol Microbiol contributor: fullname: Chattoraj – volume: 79 start-page: 1089 year: 2011 end-page: 1100 ident: CR53 article-title: Spo0J regulates the oligomeric state of Soj to trigger its switch from an activator to an inhibitor of DNA replication initiation publication-title: Mol Microbiol contributor: fullname: Murray – volume: 284 start-page: 165 year: 2009 end-page: 173 ident: CR10 article-title: Molecular basis of the supercoil deficit induced by the mini‐F plasmid partition complex publication-title: J Biol Chem contributor: fullname: Lane – volume: 28 start-page: 1228 year: 2014 end-page: 1238 ident: CR27 article-title: ParB spreading requires DNA bridging publication-title: Genes Dev contributor: fullname: Loparo – volume: 97 start-page: 6640 year: 2000 end-page: 6645 ident: CR17 article-title: One‐step inactivation of chromosomal genes in K‐12 using PCR products publication-title: Proc Natl Acad Sci USA contributor: fullname: Wanner – volume: 283 start-page: 546 year: 1999 end-page: 549 ident: CR49 article-title: Silencing of genes flanking the P1 plasmid centromere publication-title: Science contributor: fullname: Yarmolinsky – volume: 80 start-page: 54 year: 2015 end-page: 62 ident: CR18 article-title: Imaging centromere‐based incompatibilities: insights into the mechanism of incompatibility mediated by low‐copy number plasmids publication-title: Plasmid contributor: fullname: Bouet – volume: 39 start-page: 7477 year: 2011 end-page: 7486 ident: CR48 article-title: Centromere binding specificity in assembly of the F plasmid partition complex publication-title: Nucleic Acids Res contributor: fullname: Bouet – volume: 9 start-page: e1003956 year: 2013 ident: CR2 article-title: Defining the role of ATP hydrolysis in mitotic segregation of bacterial plasmids publication-title: PLoS Genet contributor: fullname: Bouet – volume: 135 start-page: 74 year: 2008 end-page: 84 ident: CR45 article-title: Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA publication-title: Cell contributor: fullname: Errington – volume: 91 start-page: 8027 year: 1994 end-page: 8031 ident: CR5 article-title: A single 43‐bp sopC repeat of plasmid mini‐F is sufficient to allow assembly of a functional nucleoprotein partition complex publication-title: Proc Natl Acad Sci USA contributor: fullname: Shi – year: 1979 ident: CR25 publication-title: Scaling concept in polymer physics contributor: fullname: de Gennes – volume: 156 start-page: 183 year: 2014 end-page: 194 ident: CR46 article-title: The bacterial cytoplasm has glass‐like properties and is fluidized by metabolic activity publication-title: Cell contributor: fullname: Jacobs‐Wagner – volume: 192 start-page: 1 year: 1986 end-page: 15 ident: CR43 article-title: Structure and function of the F plasmid genes essential for partitioning publication-title: J Mol Biol contributor: fullname: Hiraga – year: 2013 ident: CR901 publication-title: Biophysics for beginners: a journey through the cell nucleus contributor: fullname: Schiessel – volume: 275 start-page: 8213 year: 2000 end-page: 8219 ident: CR7 article-title: Stoichiometry of P1 plasmid partition complexes publication-title: J Biol Chem contributor: fullname: Funnell – volume: 111 start-page: 8809 year: 2014 end-page: 8814 ident: CR12 article-title: Condensation and localization of the partitioning protein ParB on the bacterial chromosome publication-title: Proc Natl Acad Sci USA contributor: fullname: Wingreen – year: 1972 ident: CR42 publication-title: Experiments in molecular genetics contributor: fullname: Miller – volume: 3 start-page: e02758 year: 2014 ident: CR37 article-title: Evidence for a DNA‐relay mechanism in ParABS‐mediated chromosome segregation publication-title: eLife contributor: fullname: Jacobs‐Wagner – volume: 284 start-page: 30067 year: 2009 end-page: 30075 ident: CR1 article-title: Dual role of DNA in regulating ATP hydrolysis by the SopA partition protein publication-title: J Biol Chem contributor: fullname: Bouet – volume: 92 start-page: 1896 year: 1995 end-page: 1900 ident: CR40 article-title: SopB protein‐meditated silencing of genes linked to the locus of F plasmid publication-title: Proc Natl Acad Sci USA contributor: fullname: Wang – volume: 271 start-page: 17469 year: 1996 end-page: 17475 ident: CR28 article-title: Molecular dissection of a protein SopB essential for F plasmid partition publication-title: J Biol Chem contributor: fullname: Wang – volume: 6 start-page: e28086 year: 2017 ident: CR21 article-title: The structural basis for dynamic DNA binding and bridging interactions which condense the bacterial centromere publication-title: eLife contributor: fullname: Dillingham – volume: 5 start-page: e01061–01014 year: 2014 ident: CR3 article-title: Chromosome segregation proteins of as transcription regulators publication-title: MBio contributor: fullname: Chattoraj – volume: 187 start-page: 6166 year: 2005 end-page: 6174 ident: CR30 article-title: Immobilization of RNA polymerase and location of binding sites by use of chromatin immunoprecipitation and microarrays publication-title: J Bacteriol contributor: fullname: Palsson – volume: 86 start-page: 513 year: 2012 end-page: 523 ident: CR57 article-title: Surfing biological surfaces: exploiting the nucleoid for partition and transport in bacteria publication-title: Mol Microbiol contributor: fullname: Funnell – volume: 176 start-page: 3188 year: 1994 end-page: 3195 article-title: Plasmid pSC101 harbors a recombination site, , which is able to resolve plasmid multimers and to substitute for the analogous chromosomal site publication-title: J Bacteriol – volume: 18 start-page: 1415 year: 1999 end-page: 1424 article-title: P1 ParA interacts with the P1 partition complex at and an ATP‐ADP switch controls ParA activities publication-title: EMBO J – volume: 45 start-page: 7106 year: 2017 end-page: 7117 article-title: A network of cis and trans interactions is required for ParB spreading publication-title: Nucleic Acids Res – volume: 112 start-page: 1489 year: 2017 end-page: 1502 article-title: Brownian Ratchet mechanism for faithful segregation of low‐copy‐number plasmids publication-title: Biophys J – volume: 259 start-page: 366 year: 1996 end-page: 382 article-title: P1 plasmid partition: a mutational analysis of ParB publication-title: J Mol Biol – volume: 37 start-page: 455 year: 2000 end-page: 466 article-title: Plasmid and chromosome partitioning: surprises from phylogeny publication-title: Mol Microbiol – volume: 283 start-page: 546 year: 1999 end-page: 549 article-title: Silencing of genes flanking the P1 plasmid centromere publication-title: Science – volume: 78 start-page: 143 year: 1973 end-page: 155 article-title: Relationship between chromosome replication and F'lac episome replication in publication-title: J Mol Biol – volume: 3 start-page: e02758 year: 2014 article-title: Evidence for a DNA‐relay mechanism in ParABS‐mediated chromosome segregation publication-title: eLife – year: 1979 – volume: 268 start-page: 3616 year: 1993 end-page: 3624 article-title: The P1 plasmid partition complex at parS: II. Analysis of ParB protein binding activity and specificity publication-title: J Biol Chem – volume: 5 start-page: e01061–01014 year: 2014 article-title: Chromosome segregation proteins of as transcription regulators publication-title: MBio – volume: 55 start-page: 511 year: 2005 end-page: 525 article-title: Probing plasmid partition with centromere‐based incompatibility publication-title: Mol Microbiol – volume: 61 start-page: 1352 year: 2006 end-page: 1361 article-title: The bacterial chromosome segregation protein Spo0J spreads along DNA from parS nucleation sites publication-title: Mol Microbiol – volume: 9 start-page: e1003956 year: 2013 article-title: Defining the role of ATP hydrolysis in mitotic segregation of bacterial plasmids publication-title: PLoS Genet – volume: 63 start-page: 468 year: 2007 end-page: 481 article-title: Polymerization of SopA partition ATPase: regulation by DNA binding and SopB publication-title: Mol Microbiol – volume: 6 start-page: e28086 year: 2017 article-title: The structural basis for dynamic DNA binding and bridging interactions which condense the bacterial centromere publication-title: eLife – volume: 38 start-page: 493 year: 2000 end-page: 505 article-title: Disruption of the F plasmid partition complex by partition protein SopA publication-title: Mol Microbiol – volume: 83 start-page: 69 year: 2013 end-page: 86 article-title: The nucleoid in stationary phase publication-title: Adv Appl Microbiol – volume: 80 start-page: 54 year: 2015 end-page: 62 article-title: Imaging centromere‐based incompatibilities: insights into the mechanism of incompatibility mediated by low‐copy number plasmids publication-title: Plasmid – volume: 32 start-page: 1238 year: 2013 end-page: 1249 article-title: ParA‐mediated plasmid partition driven by protein pattern self‐organization publication-title: EMBO J – volume: 3 start-page: 44 year: 2016 article-title: ParB partition proteins: complex formation and spreading at bacterial and plasmid centromeres publication-title: Front Mol Biosci – year: 1972 – volume: 92 start-page: 1896 year: 1995 end-page: 1900 article-title: SopB protein‐meditated silencing of genes linked to the locus of F plasmid publication-title: Proc Natl Acad Sci USA – volume: 28 start-page: 1228 year: 2014 end-page: 1238 article-title: ParB spreading requires DNA bridging publication-title: Genes Dev – volume: 43 start-page: 719 year: 2015 end-page: 731 article-title: Specific and non‐specific interactions of ParB with DNA: implications for chromosome segregation publication-title: Nucleic Acids Res – volume: 92 start-page: 675 year: 1998 end-page: 685 article-title: Identification and characterization of a bacterial chromosome partitioning site publication-title: Cell – volume: 79 start-page: 1089 year: 2011 end-page: 1100 article-title: Spo0J regulates the oligomeric state of Soj to trigger its switch from an activator to an inhibitor of DNA replication initiation publication-title: Mol Microbiol – volume: 156 start-page: 183 year: 2014 end-page: 194 article-title: The bacterial cytoplasm has glass‐like properties and is fluidized by metabolic activity publication-title: Cell – volume: 97 start-page: 14656 year: 2000 end-page: 14661 article-title: Active segregation by the partitioning system in publication-title: Proc Natl Acad Sci USA – volume: 97 start-page: 6640 year: 2000 end-page: 6645 article-title: One‐step inactivation of chromosomal genes in K‐12 using PCR products publication-title: Proc Natl Acad Sci USA – volume: 349 start-page: 1120 year: 2015 end-page: 1124 article-title: Structures of archaeal DNA segregation machinery reveal bacterial and eukaryotic linkages publication-title: Science – volume: 275 start-page: 8213 year: 2000 end-page: 8219 article-title: Stoichiometry of P1 plasmid partition complexes publication-title: J Biol Chem – volume: 119 start-page: 028101 year: 2017 article-title: Surfing on protein waves: proteophoresis as a mechanism for bacterial genome partitioning publication-title: Phys Rev Lett – volume: 2 year: 2014 article-title: Plasmid partition mechanisms publication-title: Microbiol Spectr – volume: 165 start-page: 1043 year: 1986 end-page: 1045 article-title: Twelve 43‐base‐pair repeats map in a ‐acting region essential for partition of plasmid mini‐F publication-title: J Bacteriol – start-page: 61 year: 2017 end-page: 73 – volume: 284 start-page: 30067 year: 2009 end-page: 30075 article-title: Dual role of DNA in regulating ATP hydrolysis by the SopA partition protein publication-title: J Biol Chem – volume: 188 start-page: 5626 year: 2006 end-page: 5631 article-title: A parA homolog selectively influences positioning of the large chromosome origin in publication-title: J Bacteriol – volume: 20 start-page: 4901 year: 2001 end-page: 4911 article-title: Probing the ATP‐binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis publication-title: EMBO J – year: 2012 – volume: 271 start-page: 17469 year: 1996 end-page: 17475 article-title: Molecular dissection of a protein SopB essential for F plasmid partition publication-title: J Biol Chem – volume: 284 start-page: 165 year: 2009 end-page: 173 article-title: Molecular basis of the supercoil deficit induced by the mini‐F plasmid partition complex publication-title: J Biol Chem – volume: 192 start-page: 1 year: 1986 end-page: 15 article-title: Structure and function of the F plasmid genes essential for partitioning publication-title: J Mol Biol – volume: 39 start-page: 7477 year: 2011 end-page: 7486 article-title: Centromere binding specificity in assembly of the F plasmid partition complex publication-title: Nucleic Acids Res – volume: 1 start-page: 163 year: 2015 end-page: 173 article-title: Stochastic self‐assembly of ParB proteins builds the bacterial DNA segregation apparatus publication-title: Cell Syst – volume: 91 start-page: 8027 year: 1994 end-page: 8031 article-title: A single 43‐bp sopC repeat of plasmid mini‐F is sufficient to allow assembly of a functional nucleoprotein partition complex publication-title: Proc Natl Acad Sci USA – volume: 7 start-page: 12107 year: 2016 article-title: Bacterial partition complexes segregate within the volume of the nucleoid publication-title: Nat Commun – volume: 86 start-page: 513 year: 2012 end-page: 523 article-title: Surfing biological surfaces: exploiting the nucleoid for partition and transport in bacteria publication-title: Mol Microbiol – volume: 111 start-page: 8809 year: 2014 end-page: 8814 article-title: Condensation and localization of the partitioning protein ParB on the bacterial chromosome publication-title: Proc Natl Acad Sci USA – volume: 70 start-page: 1000 year: 2008 end-page: 1011 article-title: F plasmid partition depends on interaction of SopA with non‐specific DNA publication-title: Mol Microbiol – volume: 64 start-page: 703 year: 2007 end-page: 718 article-title: Whole‐genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin‐distal sites on the chromosome publication-title: Mol Microbiol – volume: 98 start-page: 552 year: 2010 end-page: 559 article-title: Mobility of cytoplasmic, membrane, and DNA‐binding proteins in publication-title: Biophys J – volume: 12 start-page: e1006428 year: 2016 article-title: Regional control of chromosome segregation in publication-title: PLoS Genet – volume: 41 start-page: 3094 year: 2013 end-page: 3103 article-title: Insight into centromere‐binding properties of ParB proteins: a secondary binding motif is essential for bacterial genome maintenance publication-title: Nucleic Acids Res – volume: 54 start-page: 836 year: 2004 end-page: 849 article-title: Origin pairing (‘handcuffing’) and unpairing in the control of P1 plasmid replication publication-title: Mol Microbiol – volume: 135 start-page: 74 year: 2008 end-page: 84 article-title: Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA publication-title: Cell – volume: 6 start-page: 150263 year: 2016 article-title: ParA and ParB coordinate chromosome segregation with cell elongation and division during Streptomyces sporulation publication-title: Open Biol – volume: 20 start-page: 035002 year: 2018 article-title: Looping and clustering model for the organization of protein‐DNA complexes on the bacterial genome publication-title: New J Phys – volume: 187 start-page: 6166 year: 2005 end-page: 6174 article-title: Immobilization of RNA polymerase and location of binding sites by use of chromatin immunoprecipitation and microarrays publication-title: J Bacteriol – year: 2013 – ident: e_1_2_9_42_1 doi: 10.1016/B978-0-12-407678-5.00002-7 – ident: e_1_2_9_10_1 doi: 10.1111/j.1365-2958.2006.05537.x – ident: e_1_2_9_48_1 doi: 10.1201/9781134111589 – ident: e_1_2_9_16_1 doi: 10.1128/jb.176.11.3188-3195.1994 – ident: e_1_2_9_18_1 doi: 10.1073/pnas.120163297 – ident: e_1_2_9_41_1 doi: 10.1073/pnas.92.6.1896 – ident: e_1_2_9_9_1 doi: 10.1111/j.1365-2958.2004.04396.x – ident: e_1_2_9_2_1 doi: 10.1074/jbc.M109.044800 – ident: e_1_2_9_51_1 doi: 10.1128/JB.00250-06 – ident: e_1_2_9_4_1 doi: 10.1128/mBio.01061-14 – ident: e_1_2_9_13_1 doi: 10.1073/pnas.1402529111 – ident: e_1_2_9_8_1 doi: 10.1074/jbc.275.11.8213 – volume-title: Scaling concept in polymer physics year: 1979 ident: e_1_2_9_26_1 contributor: fullname: Gennes PG – ident: e_1_2_9_37_1 doi: 10.1046/j.1365-2958.2000.02101.x – ident: e_1_2_9_57_1 doi: 10.1093/nar/gkx271 – ident: e_1_2_9_61_1 doi: 10.1088/1367-2630/aaad39 – ident: e_1_2_9_6_1 doi: 10.1073/pnas.91.17.8027 – volume-title: Experiments in molecular genetics year: 1972 ident: e_1_2_9_43_1 contributor: fullname: Miller JH – ident: e_1_2_9_54_1 doi: 10.1201/b16269 – ident: e_1_2_9_30_1 doi: 10.1128/jb.165.3.1043-1045.1986 – ident: e_1_2_9_28_1 doi: 10.1101/gad.242206.114 – ident: e_1_2_9_7_1 doi: 10.1093/emboj/18.5.1415 – ident: e_1_2_9_44_1 doi: 10.1016/0022-2836(86)90459-6 – ident: e_1_2_9_59_1 doi: 10.1111/mmi.12017 – ident: e_1_2_9_60_1 doi: 10.1103/PhysRevLett.119.028101 – ident: e_1_2_9_36_1 doi: 10.1038/ncomms12107 – ident: e_1_2_9_58_1 doi: 10.1093/nar/gku1295 – ident: e_1_2_9_32_1 doi: 10.1016/j.bpj.2017.02.039 – ident: e_1_2_9_35_1 doi: 10.1371/journal.pgen.1006428 – ident: e_1_2_9_47_1 doi: 10.1016/j.cell.2013.11.028 – ident: e_1_2_9_53_1 doi: 10.1016/j.cels.2015.07.013 – ident: e_1_2_9_3_1 doi: 10.1371/journal.pgen.1003956 – ident: e_1_2_9_29_1 doi: 10.1074/jbc.271.29.17469 – ident: e_1_2_9_27_1 doi: 10.1046/j.1365-2958.2000.01975.x – ident: e_1_2_9_34_1 doi: 10.1016/j.bpj.2009.11.002 – ident: e_1_2_9_56_1 doi: 10.1126/science.aaa9046 – ident: e_1_2_9_46_1 doi: 10.1016/j.cell.2008.07.044 – ident: e_1_2_9_33_1 doi: 10.1038/emboj.2013.34 – ident: e_1_2_9_31_1 doi: 10.1128/JB.187.17.6166-6174.2005 – volume: 268 start-page: 3616 year: 1993 ident: e_1_2_9_24_1 article-title: The P1 plasmid partition complex at parS: II. Analysis of ParB protein binding activity and specificity publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)53738-8 contributor: fullname: Funnell BE – ident: e_1_2_9_55_1 doi: 10.1111/j.1365-2958.2010.07507.x – ident: e_1_2_9_14_1 doi: 10.1111/j.1365-2958.2008.06465.x – ident: e_1_2_9_20_1 doi: 10.1007/978-1-4939-7098-8_6 – ident: e_1_2_9_25_1 doi: 10.3389/fmolb.2016.00044 – ident: e_1_2_9_45_1 doi: 10.1111/j.1365-2958.2006.05316.x – ident: e_1_2_9_50_1 doi: 10.1126/science.283.5401.546 – ident: e_1_2_9_11_1 doi: 10.1074/jbc.M802752200 – ident: e_1_2_9_38_1 doi: 10.7554/eLife.02758 – ident: e_1_2_9_22_1 doi: 10.7554/eLife.28086 – ident: e_1_2_9_21_1 doi: 10.1098/rsob.150263 – ident: e_1_2_9_40_1 doi: 10.1006/jmbi.1996.0326 – ident: e_1_2_9_17_1 doi: 10.1111/j.1365-2958.2004.04322.x – ident: e_1_2_9_39_1 doi: 10.1016/S0092-8674(00)81135-6 – ident: e_1_2_9_12_1 doi: 10.1111/j.1365-2958.2007.05690.x – ident: e_1_2_9_49_1 doi: 10.1093/nar/gkr457 – ident: e_1_2_9_62_1 doi: 10.1073/pnas.97.26.14656 – ident: e_1_2_9_15_1 doi: 10.1016/0022-2836(73)90434-8 – ident: e_1_2_9_5_1 doi: 10.1128/microbiolspec.PLAS-0023-2014 – ident: e_1_2_9_52_1 doi: 10.1093/nar/gkt018 – ident: e_1_2_9_23_1 doi: 10.1093/emboj/20.17.4901 – ident: e_1_2_9_19_1 doi: 10.1016/j.plasmid.2015.03.007 |
SSID | ssj0038182 |
Score | 2.5052633 |
Snippet | Chromosome and plasmid segregation in bacteria are mostly driven by ParAB
S
systems. These DNA partitioning machineries rely on large nucleoprotein complexes... Chromosome and plasmid segregation in bacteria are mostly driven by ParABS systems. These DNA partitioning machineries rely on large nucleoprotein complexes... Chromosome and plasmid segregation in bacteria are mostly driven by ParAB systems. These DNA partitioning machineries rely on large nucleoprotein complexes... Chromosome and plasmid segregation in bacteria are mostly driven by ParAB S systems. These DNA partitioning machineries rely on large nucleoprotein complexes... Abstract Chromosome and plasmid segregation in bacteria are mostly driven by ParABS systems. These DNA partitioning machineries rely on large nucleoprotein... |
SourceID | doaj pubmedcentral hal proquest crossref pubmed wiley springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e8516 |
SubjectTerms | Adenosine triphosphatase Assembly Bacteria Bacterial Proteins - metabolism Bacteriology Binding Biochemistry, Molecular Biology Biological Physics Chromosome Segregation Chromosomes Chromosomes, Bacterial - genetics Chromosomes, Bacterial - physiology Coding Deoxyribonucleic acid DNA DNA segregation E coli EMBO13 EMBO23 EMBO33 Escherichia coli F plasmid Life Sciences Mathematical models Microbiology and Parasitology Models, Theoretical Nucleation ParABS Partitions Physics plasmid partition Plasmids Plasmids - genetics Plasmids - physiology Proteins Robustness (mathematics) Stochastic Processes Stochasticity Systems Biology - methods Transcription Vibrio cholerae - metabolism Vibrio cholerae - physiology Waterborne diseases |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcELQ8AgUZhOAU1fHaTnzcIqoVolygUi_IcvzQrkSyq01b0X_PTJwsRBX0wi3yK87MOPONPP5MyFvHo9ZBwUorIDYRPtZ5LZjPLSvrmdelKzweFD77ohbn4tOFvPjjqi_MCUv0wElwx1y6KlY-yFhYEdHcoD_4KMEseuNEts30GEylfzC6IT4wakou-XHT1ZjGVQG-UBMP1BP1g19ZYhrkbYx5O1Vyt186RbO9Ozp9SB4MOJLO0_wfkXuhPSD76WbJm0PyfU4d5klvr4OnTcDjvauuoX6LLLN0g5-NGqF9Rnn4SQFCh6b-cUOhrE4EzjC6W2KyXrduoI9tPd0A1G5WvntMzk8_fvuwyIebFHKneKlyXzERECwEBf82zSLzQcNKtcpJWdlZdBDVQSRUehBc5bWMFuK0utKiYMEC4npC9tp1G54RKrSvopNRReaEC4V2XNS2CEhlp3gIGXk3StdsEmGGwUAD1WBADWZUQ0ZOUPa7Rshz3ReA9s2gfXOX9jPyBjQ3GWMx_2ywDLGrErK8LjJyNCrWDCu0Mxygb8F5yXRGXu-qYW3hholtw_qqbwN4iAkBbZ4mO9i9aoY74VJDTTmxkMlcpjXtatnzdyuESTPo-X60pd_T-ouo8t7U_i1Qc_b1JD09_x-ifUHu48jp3OUR2bvcXoWXAMAu61f9WvsFMhwqBg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4s3SggxCcIrqeG0nPqEtolohygUq7QVZjh_sSiRZNm3V_ntm8qqiit4ivzMP-xt7PCbkveNR66BA01KwTYSPRVII5hPLsmLudeZSjxeFT76r5an4upKrfsOt6d0qhzmxnah97XCP_JADVEk5z5j-tP2b4KtReLraP6Fxl9yDrhS6dGWr0eDCxYj3cTUll_ywbAp05soBZajJOtSG64fVZY3OkDeR5k2HyfHUdIpp20Xp-BF52KNJuujY_5jcCdUTcr97X_LqKfm1oA69pXcXwdMy4CXfTVNSv8NYs3SLUoN8oa1febikAKRDWfy5opBWdGGcoXW3Rpe9pi6hjq083QLgLje-eUZOj7_8_LxM-vcUEqd4phKfMxEQMgQFM5xmkfmgQV-tclLmdh4d2HZgD2UeCJd7LaMFa63ItUhZsIC7npO9qq7CS0KF9nl0MqrInHAh1Y6LwqYBA9opHsKMfBioa7Zd2AyD5gaywQAbzMCGGTlC2o-FMNp1m1DvfpteeQyXLo-5DzKmVkScckCGAKcIZhGRQSPvgHOTNpaLbwbTEMEqIbOLdEYOBsaaXk8bcy1VM_J2zAYNw2MTW4X6vC0DqIgJAWVedHIwdjXH83CpISebSMhkLNOcarNuo3grBEtzqPlxkKXrYf2HVEkrarcT1Jz8OOq-Xt3-w_vkAdbp7lUekL2z3Xl4DQDrrHjTatE_rEUieg priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access(OpenAccess) dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9QwFA66Ivgi6310lSiiT9U0k6bNg8isuAzi-qID-yIhzcUZ2HbGdnfZ-fd7Tm9LGRXfSm4N55J8h5x8IeS15UEpL8HTYohNhAt5lAvmIsPSfOpUamOHF4WPv8n5Qnw5SU6uKYU6AdZ_DO3wPalFdfru8vf2Izj8h-71Hv6-qHNM0soAPcib5BYXEKRjFp8YDhRwX-IdxeZOl9GW1DD3w0azxLzIXdC5mzs5HKCO4W2zPx3tk7sdsKSz1hLukRu-vE9ut09Nbh-QnzNqMXG6uvCOFh7v-67qgroKaWfpBg0IVUSbFHN_SQFT-yI_3VIoy1tGZxjdLjF7r14X0MeUjm4AexcrVz8ki6PPPz7No-5phchKnsrIZUx4RA9ewmKnWGDOK3BdI22SZGYaLIR5EBqlDgSXOZUEA4FbnikRM28Agj0ie-W69E8IFcplwSZBBmaF9bGyXOQm9shtJ7n3E_Kml67etAwaGiMPVIMGNeheDRNyiLIfGiHxdVOwrn7pzo80T2wWMueTEBsRcPUBcwLIIphBcAaDvALNjcaYz75qLEMwK0WSXsQTctArVvcWpzlg4ZjzlKkJeTlUg7PhCYop_fq8aQMAiQkBbR63djD8aopH44mCmnRkIaO5jGvK1bIh9JaIm6bQ821vS9fT-ouoosbU_i1Qffz9sP16-t8jPyN38LO9bXlA9s6qc_8cYNdZ_qJxqCs6rShp priority: 102 providerName: Scholars Portal – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA9aEXwRvz1bJYro02I2l2Q3j9fDcoj1RQt9kZBP7qC7d9y2xf73ndmP0-VQfFvytWE-Mr9hJhNC3nuetI4KNC0H30SE5DInWMgsK9w06MLnAS8Kn35TizPx5Vye90k0eBfmz_i95JJ_qhqHCVglIAN1l9wD81ti5tZczYcDF20O78tn7k0ZmZu2Kj8YkSXmPO4Dyv28yF1wdAxdW9tz8og87EEjnXVcfkzuxPoJud89I3nzlPycUY9J0dvrGGgV8S7vqqlo2GJJWbpB4UDy0zZ9PP6igJdj5S5uKLS5rlozrO6XmJnXrCuYY-tAN4Crq1VonpGzk88_5ousfzYh84oXKgslExGRQVRwkGmWWIga1NIqL2Vpp8mDCwduTxGAcGXQMllwylypRc6iBXj1nBzU6zq-JFToUCYvk0rMCx9z7blwNo9Yt07xGCfkw0Bds-mqYxj0KpANBthgBjZMyDHSfjcIi1q3DcBr0-uI4dKXqQxRptyKhCcLiArAEcEsAi9Y5B1wbrTGYvbVYBsCVSVkcZ1PyNHAWNOrY2M44Nyc84LpCXm76wZFwuiIreP6qh0D4IcJAWNedHKw-9UUw95SQ08xkpDRXsY99WrZFutWiImmMPPjIEu_t_UXUmWtqP2boOb0-3H39eq_Vz4kD_Czu0l5RA4ut1fxNUCqS_emVahbYYYZ6w priority: 102 providerName: Springer Nature – databaseName: Wiley Online Library (Open Access Collection) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA9aEXwRvz1bJYro02I2l2Q3j1exHGJF0EJfJOTTO3D3jtu22P--M_ulS1HwbcnXLpmZ5JfNzG8Iee150joqsLQcziYiJJc5wUJmWeHmQRc-DxgofPxZLU_Ex1N52uc5xViYjh9i_OGGltGu12jg1jVDxh5kDa0ah65ZJWAGdZPcQtYYJM_n4suwFONuxLuISJFhXqaeZBMHePdn98mm1HL3w1azQs_I67DzuvfkeIU6BbjtDnV0j9ztoSVddLpwn9yI9QNyu0s2efmQfF9Qj67Tu4sYaBUx4nfdVDTskHiWblGFUEi0dTKPvyig6li5n5cUylzH6Qyj-xX67zWbCvrYOtAtoO9qHZpH5OTow7f3y6xPrpB5xQuVhZKJiPghKljuNEssRA3Ga5WXsrTz5OGgB4ejIsAklkHLZOHo5kotchYtgLDHZK_e1PEpoUKHMnmZVGJe-Jhrz4WzeUR2O8VjnJE3w-yabcehYfDsgWIwIAYziGFGDnHux0ZIfd0WbHY_TG9JhktfpjJEmXIrEq4_oFAAWgSzCM9gkFcguckYy8Ung2UIZ5WQxUU-IweDYE1vtI3hgIZzzgumZ-TlWA3mhncoto6b87YNQCQmBLR50unB-Ko5Xo5LDTXFREMm3zKtqderltJbIXKaQ8-3gy79_qy_TFXWqtq_J9Qcfz3snp79Z_t9cgcLu6jLA7J3tjuPzwF-nbkXrYldAYszJnI priority: 102 providerName: Wiley-Blackwell |
Title | A conserved mechanism drives partition complex assembly on bacterial chromosomes and plasmids |
URI | https://link.springer.com/article/10.15252/msb.20188516 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fmsb.20188516 https://www.ncbi.nlm.nih.gov/pubmed/30446599 https://www.proquest.com/docview/2139122709 https://search.proquest.com/docview/2135120449 https://hal.science/hal-01926457 https://pubmed.ncbi.nlm.nih.gov/PMC6238139 https://doaj.org/article/25c8f8de5f1a4f48807c129340a06156 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQ0i8IL4JjCogBE9ZE9d24se22lQhOlXApL6gKPEHrbSkVbtN7L_nzkk6VRM88BKljus6vt_5flefzwAfNXNKWYmalqBvwo0ro5LHJiritBwYlerE0Ebh6bmcXPAvczE_ANHthfFB-7pcntSX1Um9XPjYynWl-12cWH82HUuyMwPVP4RDBGjnojfTL1kg1ibTFEywfrUtKYIrQ2pB5xUNaAVT-FSvd3bIp-tH67KgYMj7TPN-wORu1XSf03qjdPYEHrdsMhw2vX4KB7Z-Bg-b8yVvn8PPYagpWnpzY01YWdrku9xWodlQrtlwTS9Lcgl9XLn9HSKRtlV5eRtiWdmkccbW9YJC9rarCr9T1CZcI-Gulmb7Ai7OTn-MJ1F7nkKkJUtlZLKYW6IMVuIMp2IXG6tQXwuphciKgdPo26E_lBocw8wo4Qr01spM8SS2BfKul3BUr2r7GkKuTOa0cNLFmmubKM14WSSWEtpJZm0An7rRzddN2oyc3A2SSI4SyTuJBDCisd9VomzXvmC1-ZW3Ms-Z0JnLjBUuKbijKQcxhDyFxwUxMmzkA0pur43J8GtOZcRgJRfpTRLAcSfYvNXTbc4QRgljaawCeL97jBpGyyZFbVfXvg6yIoQN1nnV4GD3Ux2aAkj3ELLXl_0nCGqfxbsFcQCfOyzddesvQxV5qP17QPPp91Fz9-a_-_QWHlFzzZbLYzi62lzbd8i9rsoeHDI-w2s6T3vwYHR6PvuGn8Zy3PP_ZuB1yrOe18g_SVIxhw |
link.rule.ids | 230,315,730,783,787,867,888,2109,11574,12068,21400,24330,27936,27937,31731,31732,33756,33757,41132,42201,43322,43817,46064,46488,50826,50935,51588,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEF8SxbCgSE4BTV8dpOfEJbRLXAbi-00l6Q5fjBrkSy201b0X_PTF5VVNFb5FecedjfxOMZQj5YFpTyEjQtAduEu5DHOacuNjTNx06lNnF4UXh-LKen_PtCLNofblXrVtmtifVC7dYW_5EfMIAqCWMpVZ83ZzFmjcLT1TaFxl1yD-NwYQaDdNEbXLgZsTaupmCCHRRVjs5cGaAMOdiH6nD9sLss0RnyJtK86TDZn5oOMW29KR09Jo9aNBlNGvY_IXd8-ZTcb_JLXj0jvyaRRW_p7aV3UeHxku-qKiK3xViz0QalBvkS1X7l_m8EQNoX-Z-rCMryJowzjG6X6LJXrQvoY0oXbQBwFytXPSenR19PvkzjNp9CbCVLZewyyj1CBi9hhVM0UOcV6KuRVojMjIMF2w7sodQB4TKnRDBgreWZ4gn1BnDXC7JTrkv_kkRcuSxYEWSgllufKMt4bhKPAe0k835EPnbU1ZsmbIZGcwPZoIENumPDiBwi7ftGGO26Llhvf-tWeTQTNguZ8yIkhgdcckCGAKdwahCRwSDvgXODMaaTmcYyRLCSi_QyGZH9jrG61dNKX0vViLzrq0HD8NjElH59UbcBVEQ5hza7jRz0rxrjebhQUJMOJGQwl2FNuVrWUbwlgqUx9PzUydL1tP5DqrgWtdsJquc_D5unvds_-C15MD2Zz_Ts2_GPV-Qh9m_uWO6TnfPthX8NYOs8f1Nr1D9iEyVh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1baxQxFA61ovRFvHdrq1FEn4ZmspnMBJ-21WXVtgha6IuETC7uQmd22dkW--89Zy5bhkXxbchtwrkk3-FcQshby4NSXoKmxWCbCBfyKBfMRYal-dCp1MYOE4VPz-TkXHy5SC62yIcuF6aOdu9ckk1OA1ZpKleHCxe693r4YVHlGJaVAV6Qd8hdge-lo6dWHnfHMN5EvC2quTGldwnVtfrhapliJOQmzNyMlly7TPuAtr6Rxg_JgxZK0lHD-0dky5ePyb3mccmbJ-TniFoMlV5ee0cLjxm-s6qgbomFZukCRQaZQuugcv-bAor2RX55Q6Etb2o4w-p2ivF61byAOaZ0dAFou5i56ik5H3_6cTyJ2scUIit5KiOXMeERL3gJx5tigTmvQFmNtEmSmWGwYNiBMZQ6IFzmVBIMmGp5pkTMvAHQ9Yxsl_PS7xIqlMuCTYIMzArrY2W5yE3ssZqd5N4PyLuOunrR1MzQaGsgGzSwQXdsGJAjpP16EJa6rhvmy1-61RzNE5uFzPkkxEYEPG9AgACkCGYQjsEib4BzvTUmoxONbQhfpUjS63hA9jvG6lZJK80B_cacp0wNyOt1N6gX-kxM6edX9RiAREwIGPO8kYP1r4boDE8U9KQ9Centpd9TzqZ1CW-JSGkIM993snS7rb-QKqpF7d8E1affj5qvvf9e-RW5_-3jWJ98Pvv6guxga5NquU-2V8srfwCYa5W_rHXrD7TXJRM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+conserved+mechanism+drives+partition+complex+assembly+on+bacterial+chromosomes+and+plasmids&rft.jtitle=Molecular+systems+biology&rft.au=Debaugny%2C+Roxanne+E&rft.au=Sanchez%2C+Aurore&rft.au=Rech%2C+J%C3%A9r%C3%B4me&rft.au=Labourdette%2C+Delphine&rft.date=2018-11-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=1744-4292&rft.volume=14&rft.issue=11&rft_id=info:doi/10.15252%2Fmsb.20188516&rft.externalDocID=10_15252_msb_20188516 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-4292&client=summon |