Iron-Induced Turnover of the Arabidopsis IRON-REGULATED TRANSPORTER1 Metal Transporter Requires Lysine Residues

Iron is an essential micronutrient but is toxic if accumulated at high levels. Thus, iron uptake and distribution in plants are controlled by precise regulatory mechanisms. IRON-REGULATED TRANSPORTER1 (IRT1) is the major high affinity iron transporter responsible for iron uptake from the soil in Ara...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 146; no. 4; pp. 1964 - 1973
Main Authors Kerkeb, Loubna, Mukherjee, Indrani, Chatterjee, Iera, Lahner, Brett, Salt, David E, Connolly, Erin L
Format Journal Article
LanguageEnglish
Published Rockville, MD American Society of Plant Biologists 01.04.2008
American Society of Plant Physiologists
Subjects
Online AccessGet full text
ISSN0032-0889
1532-2548
1532-2548
DOI10.1104/pp.107.113282

Cover

Loading…
Abstract Iron is an essential micronutrient but is toxic if accumulated at high levels. Thus, iron uptake and distribution in plants are controlled by precise regulatory mechanisms. IRON-REGULATED TRANSPORTER1 (IRT1) is the major high affinity iron transporter responsible for iron uptake from the soil in Arabidopsis (Arabidopsis thaliana). Previously, we showed that IRT1 is subject to posttranscriptional regulation; when expressed from the constitutive cauliflower mosaic virus 35S promoter, IRT1 protein accumulates only in iron-deficient roots. IRT1 contains an intracellular loop that may be critical for posttranslational regulation by metals. Of particular interest are a histidine (His) motif (HGHGHGH) that might bind metals and two lysine residues that could serve as attachment sites for ubiquitin. We constructed a set of mutant IRT1 alleles: IRT1H154Q, IRT1H156Q, IRT1H158Q, IRT1H160Q, IRT14HQ (quadruple His mutant), IRT1K146R, IRT1K171R, and a double mutant (IRT1K146R,K171R). Mutation of the His or lysine residues did not eliminate the ability of IRT1 to transport iron or zinc. Expression of each of the IRT1 variants and an IRT1intact construct in plants from the 35S promoter revealed that either K146 or K171 is required for iron-induced protein turnover, and 35S-IRT1K146R,K171R plants contain higher levels of iron as compared to 35S-IRT1 and wild type. Furthermore, accumulation of metals in 35S-IRT1K146R,K171R plants was not associated with an increase in ferric chelate reductase activity; this result indicates that, at least under conditions when iron is abundant, reduction of ferric iron may not be the rate-limiting step in iron uptake by strategy I plants such as Arabidopsis.
AbstractList Iron is an essential micronutrient but is toxic if accumulated at high levels. Thus, iron uptake and distribution in plants are controlled by precise regulatory mechanisms. IRON-REGULATED TRANSPORTER1 (IRT1) is the major high affinity iron transporter responsible for iron uptake from the soil in Arabidopsis (Arabidopsis thaliana). Previously, we showed that IRT1 is subject to posttranscriptional regulation; when expressed from the constitutive cauliflower mosaic virus 35S promoter, IRT1 protein accumulates only in iron-deficient roots. IRT1 contains an intracellular loop that may be critical for posttranslational regulation by metals. Of particular interest are a histidine (His) motif (HGHGHGH) that might bind metals and two lysine residues that could serve as attachment sites for ubiquitin. We constructed a set of mutant IRT1 alleles: IRT1H154Q, IRT1H156Q, IRT1H158Q, IRT1H160Q, IRT14HQ (quadruple His mutant), IRT1K146R, IRT1K171R, and a double mutant (IRT1K146R,K171R). Mutation of the His or lysine residues did not eliminate the ability of IRT1 to transport iron or zinc. Expression of each of the IRT1 variants and an IRT1intact construct in plants from the 35S promoter revealed that either K146 or K171 is required for iron-induced protein turnover, and 35S-IRT1K146R,K171R plants contain higher levels of iron as compared to 35S-IRT1 and wild type. Furthermore, accumulation of metals in 35S-IRT1K146R,K171R plants was not associated with an increase in ferric chelate reductase activity; this result indicates that, at least under conditions when iron is abundant, reduction of ferric iron may not be the rate-limiting step in iron uptake by strategy I plants such as Arabidopsis.
Iron is an essential micronutrient but is toxic if accumulated at high levels. Thus, iron uptake and distribution in plants are controlled by precise regulatory mechanisms. IRON-REGULATED TRANSPORTER1 (IRT1) is the major high affinity iron transporter responsible for iron uptake from the soil in Arabidopsis (Arabidopsis thaliana). Previously, we showed that IRT1 is subject to posttranscriptional regulation; when expressed from the constitutive cauliflower mosaic virus 35S promoter, IRT1 protein accumulates only in iron-deficient roots. IRT1 contains an intracellular loop that may be critical for posttranslational regulation by metals. Of particular interest are a histidine (His) motif (HGHGHGH) that might bind metals and two lysine residues that could serve as attachment sites for ubiquitin. We constructed a set of mutant IRT1 alleles: IRT1H154Q, IRT1H156Q, IRT1H158Q, IRT1H160Q, IRT14HQ (quadruple His mutant), IRT1K146R, IRT1K171R, and a double mutant (IRT1K146R,K171R). Mutation of the His or lysine residues did not eliminate the ability of IRT1 to transport iron or zinc. Expression of each of the IRT1 variants and an IRT1intact construct in plants from the 35S promoter revealed that either K146 or K171 is required for iron-induced protein turnover, and 35S-IRT1K146R,K171R plants contain higher levels of iron as compared to 35S-IRT1 and wild type. Furthermore, accumulation of metals in 35S-IRT1K146R,K171R plants was not associated with an increase in ferric chelate reductase activity; this result indicates that, at least under conditions when iron is abundant, reduction of ferric iron may not be the rate-limiting step in iron uptake by strategy I plants such as Arabidopsis.Iron is an essential micronutrient but is toxic if accumulated at high levels. Thus, iron uptake and distribution in plants are controlled by precise regulatory mechanisms. IRON-REGULATED TRANSPORTER1 (IRT1) is the major high affinity iron transporter responsible for iron uptake from the soil in Arabidopsis (Arabidopsis thaliana). Previously, we showed that IRT1 is subject to posttranscriptional regulation; when expressed from the constitutive cauliflower mosaic virus 35S promoter, IRT1 protein accumulates only in iron-deficient roots. IRT1 contains an intracellular loop that may be critical for posttranslational regulation by metals. Of particular interest are a histidine (His) motif (HGHGHGH) that might bind metals and two lysine residues that could serve as attachment sites for ubiquitin. We constructed a set of mutant IRT1 alleles: IRT1H154Q, IRT1H156Q, IRT1H158Q, IRT1H160Q, IRT14HQ (quadruple His mutant), IRT1K146R, IRT1K171R, and a double mutant (IRT1K146R,K171R). Mutation of the His or lysine residues did not eliminate the ability of IRT1 to transport iron or zinc. Expression of each of the IRT1 variants and an IRT1intact construct in plants from the 35S promoter revealed that either K146 or K171 is required for iron-induced protein turnover, and 35S-IRT1K146R,K171R plants contain higher levels of iron as compared to 35S-IRT1 and wild type. Furthermore, accumulation of metals in 35S-IRT1K146R,K171R plants was not associated with an increase in ferric chelate reductase activity; this result indicates that, at least under conditions when iron is abundant, reduction of ferric iron may not be the rate-limiting step in iron uptake by strategy I plants such as Arabidopsis.
Iron is an essential micronutrient but is toxic if accumulated at high levels. Thus, iron uptake and distribution in plants are controlled by precise regulatory mechanisms. IRON-REGULATED TRANSPORTER1 (IRT1) is the major high affinity iron transporter responsible for iron uptake from the soil in Arabidopsis (Arabidopsis thaliana). Previously, we showed that IRT1 is subject to posttranscriptional regulation; when expressed from the constitutive cauliflower mosaic virus 35S promoter, IRT1 protein accumulates only in iron-deficient roots. IRT1 contains an intracellular loop that may be critical for posttranslational regulation by metals. Of particular interest are a histidine (His) motif (HGHGHGH) that might bind metals and two lysine residues that could serve as attachment sites for ubiquitin. We constructed a set of mutant IRT1 alleles: IRT1H154Q, IRT1H156Q, IRT1H158Q, IRT1H160Q, IRT14HQ (quadruple His mutant), IRT1K146R, IRT1K171R, and a double mutant (IRT1K146R,K171R). Mutation of the His or lysine residues did not eliminate the ability of IRT1 to transport iron or zinc. Expression of each of the IRT1 variants and an IRT1 intact construct in plants from the 35S promoter revealed that either K146 or K171 is required for iron-induced protein turnover, and 35S-IRT1K146R,K171R plants contain higher levels of iron as compared to 35S-IRT1 and wild type. Furthermore, accumulation of metals in 35S-IRT1K146R,K171R plants was not associated with an increase in ferric chelate reductase activity; this result indicates that, at least under conditions when iron is abundant, reduction of ferric iron may not be the rate-limiting step in iron uptake by strategy I plants such as Arabidopsis.
Iron is an essential micronutrient but is toxic if accumulated at high levels. Thus, iron uptake and distribution in plants are controlled by precise regulatory mechanisms. IRON-REGULATED TRANSPORTER1 (IRT1) is the major high affinity iron transporter responsible for iron uptake from the soil in Arabidopsis ( Arabidopsis thaliana ). Previously, we showed that IRT1 is subject to posttranscriptional regulation; when expressed from the constitutive cauliflower mosaic virus 35S promoter, IRT1 protein accumulates only in iron-deficient roots. IRT1 contains an intracellular loop that may be critical for posttranslational regulation by metals. Of particular interest are a histidine (His) motif (HGHGHGH) that might bind metals and two lysine residues that could serve as attachment sites for ubiquitin. We constructed a set of mutant IRT1 alleles: IRT1H154Q, IRT1H156Q, IRT1H158Q, IRT1H160Q, IRT14HQ (quadruple His mutant), IRT1K146R, IRT1K171R, and a double mutant (IRT1K146R,K171R). Mutation of the His or lysine residues did not eliminate the ability of IRT1 to transport iron or zinc. Expression of each of the IRT1 variants and an IRT1intact construct in plants from the 35S promoter revealed that either K146 or K171 is required for iron-induced protein turnover, and 35S-IRT1K146R,K171R plants contain higher levels of iron as compared to 35S-IRT1 and wild type. Furthermore, accumulation of metals in 35S-IRT1K146R,K171R plants was not associated with an increase in ferric chelate reductase activity; this result indicates that, at least under conditions when iron is abundant, reduction of ferric iron may not be the rate-limiting step in iron uptake by strategy I plants such as Arabidopsis.
Author Mukherjee, Indrani
Connolly, Erin L
Chatterjee, Iera
Salt, David E
Lahner, Brett
Kerkeb, Loubna
AuthorAffiliation Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (L.K., I.M., I.C., E.L.C.); and the Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, Indiana 47907 (B.L., D.E.S.)
AuthorAffiliation_xml – name: Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (L.K., I.M., I.C., E.L.C.); and the Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, Indiana 47907 (B.L., D.E.S.)
Author_xml – sequence: 1
  fullname: Kerkeb, Loubna
– sequence: 2
  fullname: Mukherjee, Indrani
– sequence: 3
  fullname: Chatterjee, Iera
– sequence: 4
  fullname: Lahner, Brett
– sequence: 5
  fullname: Salt, David E
– sequence: 6
  fullname: Connolly, Erin L
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20282530$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18305211$$D View this record in MEDLINE/PubMed
BookMark eNqFks9v0zAUxyM0xLrBkSOQC9wynn8muSBVo4xKZUVZerYc29k8pXFmJ5P23-OqpQIktJOf9T7vq--zv2fJSe96kyRvEVwgBPTzMFwgyGNNcIFfJDPECM4wo8VJMgOINRRFeZqchXAPAIgg-io5RQUBhhGaJW7pXZ8tez0po9N68r17ND51bTremXTuZWO1G4IN6bJaX2fV4mqzmteLr2ldza9vfq6relGh9IcZZZfWXvZhcH6MApV5mKw3IV09BdubeA9WTya8Tl62sgvmzeE8TzbfFvXl92y1vlpezleZ4piPmW5ko2hR5hIzIgltUKlZQRtqWpBAGccl0Yw3uTaN1LlqtCZUQUGaHHFkKDlPvux1h6nZGq1MP3rZicHbrfRPwkkr_u709k7cukeBcZETTqLAp4OAdw_R-Ci2NijTdbI3bgoiB1qwMufPgjTnUAJ-XhFHjBJaRvD9n96Ppn__WgQ-HgAZlOza-O7KhiOHIUaBEYgc2XPKuxC8aYWyoxyt261sO4FA7DIkhiGWudhnKE5l_0wdDfyHf7fn78Po_BGmAJyVxW6dD_t-K52Qtz463dzgGEWI0QTGOfkFAWDZ2g
CODEN PPHYA5
CitedBy_id crossref_primary_10_1007_s11356_015_4304_2
crossref_primary_10_1016_j_pbi_2017_06_014
crossref_primary_10_3390_ijms21082771
crossref_primary_10_1104_pp_112_207043
crossref_primary_10_3390_ijms222111399
crossref_primary_10_1080_10409238_2020_1742092
crossref_primary_10_3389_fpls_2018_01383
crossref_primary_10_1093_toxsci_kfv130
crossref_primary_10_1079_cabireviews202217011
crossref_primary_10_35709_ory_2020_57_3_10
crossref_primary_10_1080_07352689_2023_2243108
crossref_primary_10_1016_j_cpb_2016_02_001
crossref_primary_10_1016_j_bpj_2015_05_012
crossref_primary_10_1016_j_tplants_2009_02_006
crossref_primary_10_1016_j_xplc_2019_100017
crossref_primary_10_1093_mp_ssr065
crossref_primary_10_1007_s10265_014_0660_0
crossref_primary_10_3389_fpls_2021_665583
crossref_primary_10_1111_pce_14473
crossref_primary_10_3389_fpls_2020_00325
crossref_primary_10_1016_j_biotechadv_2013_05_003
crossref_primary_10_1111_j_1469_8137_2009_02766_x
crossref_primary_10_1111_j_1469_8137_2010_03606_x
crossref_primary_10_1007_s11104_016_3128_2
crossref_primary_10_1007_s11356_008_0079_z
crossref_primary_10_1080_07352689_2014_885733
crossref_primary_10_1016_j_bpj_2012_09_033
crossref_primary_10_1007_s00018_012_1089_z
crossref_primary_10_3389_fpls_2014_00213
crossref_primary_10_1016_j_jenvman_2012_04_002
crossref_primary_10_1111_j_1399_3054_2008_01141_x
crossref_primary_10_3389_fpls_2019_00627
crossref_primary_10_1039_C5TX00424A
crossref_primary_10_1104_pp_111_177816
crossref_primary_10_1007_s10725_022_00847_4
crossref_primary_10_1016_j_biotechadv_2022_107963
crossref_primary_10_1007_s10534_012_9526_x
crossref_primary_10_1016_j_heliyon_2019_e01914
crossref_primary_10_1016_j_pbi_2020_05_006
crossref_primary_10_1016_j_plaphy_2024_109457
crossref_primary_10_1016_j_scitotenv_2021_152800
crossref_primary_10_1111_pce_13192
crossref_primary_10_1371_journal_pone_0147120
crossref_primary_10_1111_j_1365_313X_2009_03803_x
crossref_primary_10_1016_j_bbamcr_2012_05_016
crossref_primary_10_1016_j_pbi_2008_06_013
crossref_primary_10_1111_tpj_16020
crossref_primary_10_1016_j_envexpbot_2016_06_011
crossref_primary_10_1074_jbc_M110_184929
crossref_primary_10_1111_j_1469_8137_2009_02908_x
crossref_primary_10_1007_s11756_022_01099_3
crossref_primary_10_1016_j_envexpbot_2010_04_003
crossref_primary_10_1038_s41598_021_03506_2
crossref_primary_10_1111_tpj_15611
crossref_primary_10_1073_pnas_1402262111
crossref_primary_10_1016_j_plantsci_2023_111973
crossref_primary_10_1002_pmic_201400351
crossref_primary_10_1016_j_isci_2022_104029
crossref_primary_10_1111_pce_13883
crossref_primary_10_1242_jcs_263645
crossref_primary_10_1016_j_plantsci_2021_111058
crossref_primary_10_1016_j_bbrc_2014_11_017
crossref_primary_10_1016_j_jplph_2014_09_017
crossref_primary_10_1016_j_tplants_2014_11_004
crossref_primary_10_1038_nchembio_166
crossref_primary_10_1111_nph_15826
crossref_primary_10_4161_psb_6_11_17867
crossref_primary_10_1104_pp_111_183285
crossref_primary_10_3389_fpls_2019_01449
crossref_primary_10_1007_s00425_017_2703_y
crossref_primary_10_1093_pcp_pcu156
crossref_primary_10_1105_tpc_110_079095
crossref_primary_10_1093_jxb_eraa441
crossref_primary_10_1093_pcp_pcr089
crossref_primary_10_1105_tpc_113_116244
crossref_primary_10_1093_jxb_erx465
crossref_primary_10_1002_yea_3075
crossref_primary_10_1016_j_molbiopara_2009_12_003
crossref_primary_10_1111_tpj_15544
crossref_primary_10_1038_s41587_018_0002_1
crossref_primary_10_1093_pcp_pcae096
crossref_primary_10_1139_er_2014_0043
crossref_primary_10_4161_psb_28787
crossref_primary_10_1111_tra_12540
crossref_primary_10_1104_pp_112_199869
crossref_primary_10_1016_j_pbi_2009_04_011
crossref_primary_10_3390_ijms151120413
crossref_primary_10_1071_FP15305
Cites_doi 10.1104/pp.96.3.843
10.1074/jbc.M209455200
10.1038/35053080
10.1074/jbc.273.44.28617
10.1105/tpc.001388
10.1023/A:1026438615520
10.1021/ic0606431
10.1038/sj.cr.7290331
10.1016/0003-2697(84)90381-6
10.1016/S0005-2736(00)00138-3
10.1104/pp.110.1.329
10.1146/annurev.cellbio.19.110701.154617
10.1074/jbc.M302760200
10.1074/jbc.M401493200
10.1074/jbc.M310799200
10.1016/j.febslet.2005.02.035
10.1074/jbc.M400680200
10.1111/j.1399-3054.1987.tb06137.x
10.1046/j.1365-313X.1996.10050835.x
10.1016/S0021-9258(18)47163-3
10.1016/j.febslet.2004.10.062
10.1038/17800
10.1046/j.1365-313x.1998.00343.x
10.1105/tpc.001263
10.1038/nrm973
10.1111/j.1399-3054.1996.tb05715.x
10.1073/pnas.76.9.4350
10.1046/j.1365-313X.2002.01381.x
10.1104/pp.125.4.1679
10.1038/227680a0
10.1016/j.bbamem.2006.06.005
10.1016/S0014-5793(01)03225-2
10.1002/j.1460-2075.1996.tb00720.x
10.1074/jbc.M414663200
10.1074/jbc.M610552200
10.1074/jbc.271.38.23203
10.1073/pnas.93.11.5624
10.1016/j.plaphy.2007.03.006
10.1073/pnas.210214197
10.1074/jbc.274.8.4863
10.1023/A:1011699722052
10.1073/pnas.0502060102
10.1105/tpc.104.024315
10.1093/jxb/erl189
10.1016/S0044-328X(82)80038-X
10.1042/bj3460329
10.1104/pp.94.3.1353
10.1104/pp.102.016089
10.1023/A:1019942200164
10.1104/pp.103.025122
10.1007/s002329900442
10.1093/nar/17.6.2362
10.1007/BF00331014
10.1073/pnas.74.11.4835
10.1046/j.1365-313X.1992.t01-38-00999.x
10.1016/0014-5793(92)80911-Y
ContentType Journal Article
Copyright Copyright 2008 American Society of Plant Biologists
2008 INIST-CNRS
Copyright © 2008, American Society of Plant Biologists
Copyright_xml – notice: Copyright 2008 American Society of Plant Biologists
– notice: 2008 INIST-CNRS
– notice: Copyright © 2008, American Society of Plant Biologists
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7U9
8FD
FR3
H94
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1104/pp.107.113282
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Genetics Abstracts
Virology and AIDS Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE
AIDS and Cancer Research Abstracts



AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1532-2548
EndPage 1973
ExternalDocumentID PMC2287363
18305211
20282530
10_1104_pp_107_113282
40065989
US201300880566
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-DZ
-~X
123
29O
2AX
2WC
2~F
3V.
4.4
53G
5VS
5WD
7X2
7X7
85S
88A
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8G5
8R4
8R5
AAHKG
AAPXW
AAVAP
AAWDT
AAXTN
AAYJJ
ABBHK
ABJNI
ABPLY
ABPPZ
ABPTD
ABPTK
ABTLG
ABUWG
ABXZS
ACBTR
ACFRR
ACGOD
ACIPB
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADIPN
ADIYS
ADULT
ADVEK
ADYHW
ADZLD
AEEJZ
AENEX
AESBF
AEUPB
AFAZZ
AFDAS
AFFDN
AFFZL
AFGWE
AFKRA
AFRAH
AFYAG
AGUYK
AHMBA
AICQM
AIDAL
AIDBO
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
AQDSO
AS~
ATCPS
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
BYORX
C1A
CBGCD
CCPQU
CS3
CWIXF
D1J
DATOO
DFEDG
DIK
DOOOF
DU5
DWIUU
DWQXO
E3Z
EBS
ECGQY
EJD
F20
F5P
FBQ
FLUFQ
FOEOM
FYUFA
GNUQQ
GTFYD
GUQSH
HCIFZ
HMCUK
HTVGU
ISR
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KOP
KQ8
KSI
KSN
LK8
M0K
M0L
M1P
M2O
M2P
M2Q
M7P
MV1
MVM
NOMLY
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PQQKQ
PROAC
PSQYO
Q2X
QZG
RHF
RHI
ROX
RPB
RPM
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TR2
UBC
UKHRP
UKR
VQA
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YKV
YNT
YSK
YZZ
ZCA
ZCG
ZCN
~02
~KM
0R~
AAHBH
AARHZ
AAUAY
ABDFA
ABEJV
ABGNP
ABMNT
ABVGC
ABXSQ
ABXVV
ACHIC
ADGKP
ADQBN
ADXHL
AEUYN
AGORE
AHXOZ
AJBYB
AJNCP
ALIPV
AQVQM
ATGXG
BEYMZ
H13
IPSME
JXSIZ
NU-
PHGZM
PHGZT
AAYXX
CITATION
ABIME
ABPIB
ABZEO
ACVCV
ACZBC
AGMDO
AHGBF
AJDVS
APJGH
IQODW
LU7
PJZUB
PPXIY
PQGLB
ADYWZ
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7U9
8FD
FR3
H94
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c626t-dbabc4897a253a34b19d584b4ef0a0456293d56b7debad7cbdd34c083b7161e43
ISSN 0032-0889
1532-2548
IngestDate Thu Aug 21 14:16:18 EDT 2025
Mon Jul 21 11:20:26 EDT 2025
Thu Jul 10 20:19:07 EDT 2025
Fri Jul 11 03:59:10 EDT 2025
Wed Feb 19 01:51:31 EST 2025
Mon Jul 21 09:15:26 EDT 2025
Thu Apr 24 22:56:04 EDT 2025
Tue Jul 01 02:53:54 EDT 2025
Fri Jun 20 02:19:03 EDT 2025
Wed Dec 27 19:14:39 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Spermatophyta
Cruciferae
Arabidopsis
Dicotyledones
Angiospermae
Language English
License https://creativecommons.org/licenses/by/4.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c626t-dbabc4897a253a34b19d584b4ef0a0456293d56b7debad7cbdd34c083b7161e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Department of Biology, New York University, 100 Washington Square East, 766 Waverly Building, New York, NY 10003.
www.plantphysiol.org/cgi/doi/10.1104/pp.107.113282
Present address: Bachem Inc., 3132 Kashiwa St., Torrance, CA 90505.
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Erin L. Connolly (erinc@biol.sc.edu).
This work was supported by the U.S. Department of Agriculture (NRICGP grant nos. 2001–35100–10752 and 2004–35100–14934 to E.L.C.) and by the National Science Foundation (grant no. IOB–0419695 to D.E.S.).
The online version of this article contains Web-only data.
Open Access articles can be viewed online without a subscription.
Corresponding author; e-mail erinc@biol.sc.edu.
OpenAccessLink https://academic.oup.com/plphys/article-pdf/146/4/1964/37073136/plphys_v146_4_1964.pdf
PMID 18305211
PQID 20904349
PQPubID 23462
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2287363
proquest_miscellaneous_70485976
proquest_miscellaneous_47609023
proquest_miscellaneous_20904349
pubmed_primary_18305211
pascalfrancis_primary_20282530
crossref_citationtrail_10_1104_pp_107_113282
crossref_primary_10_1104_pp_107_113282
jstor_primary_40065989
fao_agris_US201300880566
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-04-01
PublicationDateYYYYMMDD 2008-04-01
PublicationDate_xml – month: 04
  year: 2008
  text: 2008-04-01
  day: 01
PublicationDecade 2000
PublicationPlace Rockville, MD
PublicationPlace_xml – name: Rockville, MD
– name: United States
PublicationTitle Plant physiology (Bethesda)
PublicationTitleAlternate Plant Physiol
PublicationYear 2008
Publisher American Society of Plant Biologists
American Society of Plant Physiologists
Publisher_xml – name: American Society of Plant Biologists
– name: American Society of Plant Physiologists
References (2021041513475686800_b7) 2001; 409
(2021041513475686800_b47) 1996; 98
(2021041513475686800_b19) 1990; 94
(2021041513475686800_b13) 2005; 280
(2021041513475686800_b53) 2002; 14
(2021041513475686800_b2) 2007; 45
(2021041513475686800_b8) 1994; 269
(2021041513475686800_b23) 1991; 96
(2021041513475686800_b4) 2004; 16
(2021041513475686800_b28) 2002; 3
(2021041513475686800_b58) 1996; 271
(2021041513475686800_b43) 1999; 397
(2021041513475686800_b54) 1989; 17
(2021041513475686800_b38) 1977; 74
(2021041513475686800_b40) 1992; 2
(2021041513475686800_b50) 1979; 76
(2021041513475686800_b30) 1986; 204
(2021041513475686800_b18) 1996; 110
(2021041513475686800_b1) 2005
(2021041513475686800_b12) 1984; 137
(2021041513475686800_b39) 2006; 1758
(2021041513475686800_b16) 2003; 278
(2021041513475686800_b6) 2002; 14
(2021041513475686800_b52) 2003; 132
(2021041513475686800_b21) 2004; 279
(2021041513475686800_b33) 2001; 46
(2021041513475686800_b46) 2001; 125
(2021041513475686800_b27) 2005; 579
(2021041513475686800_b25) 2003; 19
(2021041513475686800_b5) 2003; 133
(2021041513475686800_b56) 1996; 10
(2021041513475686800_b57) 2005; 15
(2021041513475686800_b26) 2004; 577
(2021041513475686800_b3) 1998; 16
(2021041513475686800_b29) 2004; 279
(2021041513475686800_b32) 1970; 227
(2021041513475686800_b37) 1982; 105
(2021041513475686800_b35) 2006; 57
(2021041513475686800_b10) 1992; 13
(2021041513475686800_b22) 1992; 307
(2021041513475686800_b20) 2000; 1465
(2021041513475686800_b31) 1999; 40
(2021041513475686800_b36) 2007; 282
(2021041513475686800_b34) 1999; 274
(2021041513475686800_b15) 1998; 273
(2021041513475686800_b42) 2003; 278
(2021041513475686800_b49) 2005; 102
(2021041513475686800_b9) 1996; 93
(2021041513475686800_b14) 2000; 346
(2021041513475686800_b24) 2002; 50
(2021041513475686800_b17) 2006; 45
(2021041513475686800_b44) 2000; 97
(2021041513475686800_b48) 2002; 510
(2021041513475686800_b51) 2002; 31
(2021041513475686800_b11) 1998; 166
(2021041513475686800_b55) 2004; 279
(2021041513475686800_b45) 1987; 70
(2021041513475686800_b41) 1996; 15
11035780 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12356-60
15556641 - FEBS Lett. 2004 Nov 19;577(3):528-34
388439 - Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350-4
73185 - Proc Natl Acad Sci U S A. 1977 Nov;74(11):4835-8
14612438 - J Biol Chem. 2004 Feb 6;279(6):4523-30
14976198 - J Biol Chem. 2004 Apr 23;279(17):17428-33
12084831 - Plant Cell. 2002 Jun;14(6):1347-57
10069079 - Plant J. 1998 Dec;16(6):735-43
10067892 - Nature. 1999 Feb 25;397(6721):694-7
12226184 - Plant Physiol. 1996 Jan;110(1):329-334
16667840 - Plant Physiol. 1990 Nov;94(3):1353-7
11575724 - Plant Mol Biol. 2001 Aug;46(6):695-703
16844077 - Biochim Biophys Acta. 2006 Oct;1758(10):1696-701
5432063 - Nature. 1970 Aug 15;227(5259):680-5
11755534 - FEBS Lett. 2002 Jan 2;510(1-2):71-6
16117851 - Cell Res. 2005 Aug;15(8):613-21
9786854 - J Biol Chem. 1998 Oct 30;273(44):28617-24
16103374 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12276-81
10677350 - Biochem J. 2000 Mar 1;346 Pt 2:329-36
10394943 - Plant Mol Biol. 1999 May;40(1):37-44
1503765 - Biotechniques. 1992 Jul;13(1):18-20
12207649 - Plant J. 2002 Sep;31(5):589-99
17085755 - J Exp Bot. 2006;57(15):4145-54
15054103 - J Biol Chem. 2004 Jun 4;279(23):24631-9
9988727 - J Biol Chem. 1999 Feb 19;274(8):4863-8
12893829 - J Biol Chem. 2003 Oct 10;278(41):39558-64
17202136 - J Biol Chem. 2007 Mar 9;282(10):6992-7000
10748254 - Biochim Biophys Acta. 2000 May 1;1465(1-2):190-8
8798516 - J Biol Chem. 1996 Sep 20;271(38):23203-10
15817488 - J Biol Chem. 2005 Jun 10;280(23):22181-90
12461556 - Nat Rev Mol Cell Biol. 2002 Dec;3(12):893-905
17029360 - Inorg Chem. 2006 Oct 16;45(21):8500-8
15792797 - FEBS Lett. 2005 Mar 28;579(9):1923-9
15539473 - Plant Cell. 2004 Dec;16(12):3400-12
9784581 - J Membr Biol. 1998 Nov 1;166(1):1-7
8670854 - EMBO J. 1996 Jul 15;15(14):3515-23
8953245 - Plant J. 1996 Nov;10(5):835-44
11201743 - Nature. 2001 Jan 18;409(6818):346-9
16668263 - Plant Physiol. 1991 Jul;96(3):843-7
12374293 - Plant Mol Biol. 2002 Nov;50(4-5):587-97
6329026 - Anal Biochem. 1984 Feb;137(1):266-7
7929320 - J Biol Chem. 1994 Oct 21;269(42):26092-9
8643627 - Proc Natl Acad Sci U S A. 1996 May 28;93(11):5624-8
11299349 - Plant Physiol. 2001 Apr;125(4):1679-87
1322323 - FEBS Lett. 1992 Jul 27;307(1):108-12
1303803 - Plant J. 1992 May;2(3):417-22
14526117 - Plant Physiol. 2003 Nov;133(3):1102-10
12501239 - J Biol Chem. 2003 Mar 14;278(11):9639-46
17466530 - Plant Physiol Biochem. 2007 May;45(5):260-1
14570567 - Annu Rev Cell Dev Biol. 2003;19:141-72
12084823 - Plant Cell. 2002 Jun;14(6):1223-33
2468132 - Nucleic Acids Res. 1989 Mar 25;17(6):2362
12805609 - Plant Physiol. 2003 Jun;132(2):796-804
References_xml – volume: 96
  start-page: 843
  year: 1991
  ident: 2021041513475686800_b23
  publication-title: Plant Physiol
  doi: 10.1104/pp.96.3.843
– volume: 278
  start-page: 9639
  year: 2003
  ident: 2021041513475686800_b42
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M209455200
– volume: 409
  start-page: 346
  year: 2001
  ident: 2021041513475686800_b7
  publication-title: Nature
  doi: 10.1038/35053080
– volume: 273
  start-page: 28617
  year: 1998
  ident: 2021041513475686800_b15
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.44.28617
– volume: 14
  start-page: 1223
  year: 2002
  ident: 2021041513475686800_b53
  publication-title: Plant Cell
  doi: 10.1105/tpc.001388
– volume: 40
  start-page: 37
  year: 1999
  ident: 2021041513475686800_b31
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1026438615520
– volume: 45
  start-page: 8500
  year: 2006
  ident: 2021041513475686800_b17
  publication-title: Inorg Chem
  doi: 10.1021/ic0606431
– volume: 15
  start-page: 613
  year: 2005
  ident: 2021041513475686800_b57
  publication-title: Cell Res
  doi: 10.1038/sj.cr.7290331
– volume: 137
  start-page: 266
  year: 1984
  ident: 2021041513475686800_b12
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(84)90381-6
– volume: 1465
  start-page: 190
  year: 2000
  ident: 2021041513475686800_b20
  publication-title: Biochim Biophys Acta
  doi: 10.1016/S0005-2736(00)00138-3
– volume: 110
  start-page: 329
  year: 1996
  ident: 2021041513475686800_b18
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.1.329
– volume: 19
  start-page: 141
  year: 2003
  ident: 2021041513475686800_b25
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev.cellbio.19.110701.154617
– volume: 278
  start-page: 39558
  year: 2003
  ident: 2021041513475686800_b16
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M302760200
– volume: 279
  start-page: 17428
  year: 2004
  ident: 2021041513475686800_b21
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M401493200
– volume: 279
  start-page: 4523
  year: 2004
  ident: 2021041513475686800_b29
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M310799200
– volume: 579
  start-page: 1923
  year: 2005
  ident: 2021041513475686800_b27
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2005.02.035
– volume: 279
  start-page: 24631
  year: 2004
  ident: 2021041513475686800_b55
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M400680200
– volume: 70
  start-page: 231
  year: 1987
  ident: 2021041513475686800_b45
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.1987.tb06137.x
– volume: 10
  start-page: 835
  year: 1996
  ident: 2021041513475686800_b56
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1996.10050835.x
– volume: 269
  start-page: 26092
  year: 1994
  ident: 2021041513475686800_b8
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)47163-3
– volume: 13
  start-page: 18
  year: 1992
  ident: 2021041513475686800_b10
  publication-title: Biotechniques
– volume: 577
  start-page: 528
  year: 2004
  ident: 2021041513475686800_b26
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2004.10.062
– volume: 397
  start-page: 694
  year: 1999
  ident: 2021041513475686800_b43
  publication-title: Nature
  doi: 10.1038/17800
– volume: 16
  start-page: 735
  year: 1998
  ident: 2021041513475686800_b3
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.1998.00343.x
– volume: 14
  start-page: 1347
  year: 2002
  ident: 2021041513475686800_b6
  publication-title: Plant Cell
  doi: 10.1105/tpc.001263
– volume: 3
  start-page: 893
  year: 2002
  ident: 2021041513475686800_b28
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm973
– volume: 98
  start-page: 587
  year: 1996
  ident: 2021041513475686800_b47
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.1996.tb05715.x
– volume: 76
  start-page: 4350
  year: 1979
  ident: 2021041513475686800_b50
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.76.9.4350
– volume: 31
  start-page: 589
  year: 2002
  ident: 2021041513475686800_b51
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.2002.01381.x
– volume: 125
  start-page: 1679
  year: 2001
  ident: 2021041513475686800_b46
  publication-title: Plant Physiol
  doi: 10.1104/pp.125.4.1679
– volume: 227
  start-page: 680
  year: 1970
  ident: 2021041513475686800_b32
  publication-title: Nature
  doi: 10.1038/227680a0
– year: 2005
  ident: 2021041513475686800_b1
– volume: 1758
  start-page: 1696
  year: 2006
  ident: 2021041513475686800_b39
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamem.2006.06.005
– volume: 510
  start-page: 71
  year: 2002
  ident: 2021041513475686800_b48
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(01)03225-2
– volume: 15
  start-page: 3515
  year: 1996
  ident: 2021041513475686800_b41
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1996.tb00720.x
– volume: 280
  start-page: 22181
  year: 2005
  ident: 2021041513475686800_b13
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M414663200
– volume: 282
  start-page: 6992
  year: 2007
  ident: 2021041513475686800_b36
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M610552200
– volume: 271
  start-page: 23203
  year: 1996
  ident: 2021041513475686800_b58
  publication-title: J Biol Chem
  doi: 10.1074/jbc.271.38.23203
– volume: 93
  start-page: 5624
  year: 1996
  ident: 2021041513475686800_b9
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.93.11.5624
– volume: 45
  start-page: 260
  year: 2007
  ident: 2021041513475686800_b2
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2007.03.006
– volume: 97
  start-page: 12356
  year: 2000
  ident: 2021041513475686800_b44
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.210214197
– volume: 274
  start-page: 4863
  year: 1999
  ident: 2021041513475686800_b34
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.8.4863
– volume: 46
  start-page: 695
  year: 2001
  ident: 2021041513475686800_b33
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1011699722052
– volume: 102
  start-page: 12276
  year: 2005
  ident: 2021041513475686800_b49
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0502060102
– volume: 16
  start-page: 3400
  year: 2004
  ident: 2021041513475686800_b4
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.024315
– volume: 57
  start-page: 4145
  year: 2006
  ident: 2021041513475686800_b35
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erl189
– volume: 105
  start-page: 407
  year: 1982
  ident: 2021041513475686800_b37
  publication-title: Z Pflanzenphysiol
  doi: 10.1016/S0044-328X(82)80038-X
– volume: 346
  start-page: 329
  year: 2000
  ident: 2021041513475686800_b14
  publication-title: Biochem J
  doi: 10.1042/bj3460329
– volume: 94
  start-page: 1353
  year: 1990
  ident: 2021041513475686800_b19
  publication-title: Plant Physiol
  doi: 10.1104/pp.94.3.1353
– volume: 132
  start-page: 796
  year: 2003
  ident: 2021041513475686800_b52
  publication-title: Plant Physiol
  doi: 10.1104/pp.102.016089
– volume: 50
  start-page: 587
  year: 2002
  ident: 2021041513475686800_b24
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1019942200164
– volume: 133
  start-page: 1102
  year: 2003
  ident: 2021041513475686800_b5
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.025122
– volume: 166
  start-page: 1
  year: 1998
  ident: 2021041513475686800_b11
  publication-title: J Membr Biol
  doi: 10.1007/s002329900442
– volume: 17
  start-page: 2362
  year: 1989
  ident: 2021041513475686800_b54
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/17.6.2362
– volume: 204
  start-page: 383
  year: 1986
  ident: 2021041513475686800_b30
  publication-title: Mol Gen Genet
  doi: 10.1007/BF00331014
– volume: 74
  start-page: 4835
  year: 1977
  ident: 2021041513475686800_b38
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.74.11.4835
– volume: 2
  start-page: 417
  year: 1992
  ident: 2021041513475686800_b40
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1992.t01-38-00999.x
– volume: 307
  start-page: 108
  year: 1992
  ident: 2021041513475686800_b22
  publication-title: FEBS Lett
  doi: 10.1016/0014-5793(92)80911-Y
– reference: 10394943 - Plant Mol Biol. 1999 May;40(1):37-44
– reference: 12374293 - Plant Mol Biol. 2002 Nov;50(4-5):587-97
– reference: 14612438 - J Biol Chem. 2004 Feb 6;279(6):4523-30
– reference: 1503765 - Biotechniques. 1992 Jul;13(1):18-20
– reference: 12501239 - J Biol Chem. 2003 Mar 14;278(11):9639-46
– reference: 1322323 - FEBS Lett. 1992 Jul 27;307(1):108-12
– reference: 9786854 - J Biol Chem. 1998 Oct 30;273(44):28617-24
– reference: 11035780 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12356-60
– reference: 5432063 - Nature. 1970 Aug 15;227(5259):680-5
– reference: 12207649 - Plant J. 2002 Sep;31(5):589-99
– reference: 14570567 - Annu Rev Cell Dev Biol. 2003;19:141-72
– reference: 16668263 - Plant Physiol. 1991 Jul;96(3):843-7
– reference: 14526117 - Plant Physiol. 2003 Nov;133(3):1102-10
– reference: 8798516 - J Biol Chem. 1996 Sep 20;271(38):23203-10
– reference: 2468132 - Nucleic Acids Res. 1989 Mar 25;17(6):2362
– reference: 8953245 - Plant J. 1996 Nov;10(5):835-44
– reference: 12461556 - Nat Rev Mol Cell Biol. 2002 Dec;3(12):893-905
– reference: 12226184 - Plant Physiol. 1996 Jan;110(1):329-334
– reference: 11575724 - Plant Mol Biol. 2001 Aug;46(6):695-703
– reference: 1303803 - Plant J. 1992 May;2(3):417-22
– reference: 12084823 - Plant Cell. 2002 Jun;14(6):1223-33
– reference: 10748254 - Biochim Biophys Acta. 2000 May 1;1465(1-2):190-8
– reference: 10677350 - Biochem J. 2000 Mar 1;346 Pt 2:329-36
– reference: 10067892 - Nature. 1999 Feb 25;397(6721):694-7
– reference: 12893829 - J Biol Chem. 2003 Oct 10;278(41):39558-64
– reference: 16667840 - Plant Physiol. 1990 Nov;94(3):1353-7
– reference: 11299349 - Plant Physiol. 2001 Apr;125(4):1679-87
– reference: 17202136 - J Biol Chem. 2007 Mar 9;282(10):6992-7000
– reference: 73185 - Proc Natl Acad Sci U S A. 1977 Nov;74(11):4835-8
– reference: 6329026 - Anal Biochem. 1984 Feb;137(1):266-7
– reference: 15817488 - J Biol Chem. 2005 Jun 10;280(23):22181-90
– reference: 15792797 - FEBS Lett. 2005 Mar 28;579(9):1923-9
– reference: 17466530 - Plant Physiol Biochem. 2007 May;45(5):260-1
– reference: 15539473 - Plant Cell. 2004 Dec;16(12):3400-12
– reference: 8670854 - EMBO J. 1996 Jul 15;15(14):3515-23
– reference: 12084831 - Plant Cell. 2002 Jun;14(6):1347-57
– reference: 388439 - Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350-4
– reference: 15054103 - J Biol Chem. 2004 Jun 4;279(23):24631-9
– reference: 16103374 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12276-81
– reference: 12805609 - Plant Physiol. 2003 Jun;132(2):796-804
– reference: 11755534 - FEBS Lett. 2002 Jan 2;510(1-2):71-6
– reference: 16844077 - Biochim Biophys Acta. 2006 Oct;1758(10):1696-701
– reference: 14976198 - J Biol Chem. 2004 Apr 23;279(17):17428-33
– reference: 11201743 - Nature. 2001 Jan 18;409(6818):346-9
– reference: 9784581 - J Membr Biol. 1998 Nov 1;166(1):1-7
– reference: 17029360 - Inorg Chem. 2006 Oct 16;45(21):8500-8
– reference: 7929320 - J Biol Chem. 1994 Oct 21;269(42):26092-9
– reference: 10069079 - Plant J. 1998 Dec;16(6):735-43
– reference: 17085755 - J Exp Bot. 2006;57(15):4145-54
– reference: 16117851 - Cell Res. 2005 Aug;15(8):613-21
– reference: 8643627 - Proc Natl Acad Sci U S A. 1996 May 28;93(11):5624-8
– reference: 15556641 - FEBS Lett. 2004 Nov 19;577(3):528-34
– reference: 9988727 - J Biol Chem. 1999 Feb 19;274(8):4863-8
SSID ssj0001314
Score 2.2648304
Snippet Iron is an essential micronutrient but is toxic if accumulated at high levels. Thus, iron uptake and distribution in plants are controlled by precise...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1964
SubjectTerms alleles
Amino Acid Sequence
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - chemistry
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Base Sequence
Biological and medical sciences
Biological Transport
Cation Transport Proteins - chemistry
Cation Transport Proteins - genetics
Cation Transport Proteins - metabolism
Cauliflower mosaic virus
Chelates
Cloning, Molecular
DNA Primers
Endocytosis
Environmental Stress and Adaptation to Stress
Fundamental and applied biological sciences. Psychology
gene expression
Gene expression regulation
Genes. Genome
histidine
Iron
Iron - metabolism
lysine
Lysine - metabolism
Molecular and cellular biology
Molecular genetics
Molecular Sequence Data
Mutagenesis, Site-Directed
mutants
mutation
Phenotypes
Plant roots
Plants
protein metabolism
Protein Processing, Post-Translational
roots
soil
Transgenic plants
transporters
Yeasts
Zinc
Zinc - metabolism
Title Iron-Induced Turnover of the Arabidopsis IRON-REGULATED TRANSPORTER1 Metal Transporter Requires Lysine Residues
URI https://www.jstor.org/stable/40065989
https://www.ncbi.nlm.nih.gov/pubmed/18305211
https://www.proquest.com/docview/20904349
https://www.proquest.com/docview/47609023
https://www.proquest.com/docview/70485976
https://pubmed.ncbi.nlm.nih.gov/PMC2287363
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWy9NBL0S2Nurg8FL24SiWRFqWjXah14sR1HRvITSAlqjVQSIaXQ_pl_bzOaLOUJuhyEQSJ2jhP5MzwzQwhbyI3UhYT0lQ8kSbXjjaV1JFpO0r4Xk8p5WKA88XYHc752VXvam_vZ4O1tN2ok-jHrXEl_yNVOAZyxSjZf5BsfVM4APsgX9iChGH7VzI-XWWpicU3cBEfa9YjH7Na9e-vpFrE2RIzjpxOYcScBp_m530YqbqzaX98OfmMqqzdvdAYD7lLcr6CLkd6sF53z6-RFY8u_kW8LcmGpSKLxY42hV-kyOIEmuoAg4fXsWx4F0bBdBQMcuM_26q0ngMu5qNhMD0LSi5mDE9f1Mshw_5stjupV_VV5_3huGBuDJBf3PJYeA2iyy5IAEevkpeKZL_8pSfVSwPCm65Kizkm0rFao3bpuVw0fRL5GIwpxhrzue0XtVJ-nyssjgWOlyc2OtnAKi-qILVzct-YK2sGo5MH_TJrnxw6YKBg7YzRl12eepsVWeWrN6-zu_L3rQe2tKH9RGYVLRY5unINv2lS1Fe5zQC6yeNtKEazh-RBadHQfgHPR2RPp4_JvUEGVsf1E5I1MUorjNIsoYAV2sAobWOUNjFKc4zSBkZphVFaYJRWGH1K5h-D2YehWRb5MCOwpTdmrKSKuOcLCd0pGVe2H4NSrLhOLJnb5z6Le64SsVYyFpGKY8YjMBwUWPq25uyIHKRZqo8JxVR2rqUSh0nFpYZbJZHyIuHJiNmJkxjkXdXZYVRmwMdCLN_D3BK2eLhcwq4IC9kY5G3dfFmkfrmr4TFILpRfYVoO55cOkgFA6GBauAY5ysVZ34Cjzu97vkE6LfnWDSpgGeR1JfAQRnxcxpOpzrZraOFbnHH_7hZcuEi3Zne3EDBx98ASMcizAkK7L4ReBJXeNohogatugPno22fSxbc8L73jeIK57PmfPu0Fub8bFl6Sg81qq1-Bar9RHbIvrkSHHA6C8WTayf-pX_j1-ik
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iron-Induced+Turnover+of+the+Arabidopsis+IRON-REGULATED+TRANSPORTER1+Metal+Transporter+Requires+Lysine+Residues&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=KERKEB%2C+Loubna&rft.au=MUKHERJEE%2C+Indrani&rft.au=CHATTERJEE%2C+Iera&rft.au=LAHNER%2C+Brett&rft.date=2008-04-01&rft.pub=American+Society+of+Plant+Physiologists&rft.issn=0032-0889&rft.volume=146&rft.issue=4&rft.spage=1964&rft.epage=1973&rft_id=info:doi/10.1104%2Fpp.107.113282&rft.externalDBID=n%2Fa&rft.externalDocID=20282530
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon