Iron-Induced Turnover of the Arabidopsis IRON-REGULATED TRANSPORTER1 Metal Transporter Requires Lysine Residues
Iron is an essential micronutrient but is toxic if accumulated at high levels. Thus, iron uptake and distribution in plants are controlled by precise regulatory mechanisms. IRON-REGULATED TRANSPORTER1 (IRT1) is the major high affinity iron transporter responsible for iron uptake from the soil in Ara...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 146; no. 4; pp. 1964 - 1973 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Rockville, MD
American Society of Plant Biologists
01.04.2008
American Society of Plant Physiologists |
Subjects | |
Online Access | Get full text |
ISSN | 0032-0889 1532-2548 1532-2548 |
DOI | 10.1104/pp.107.113282 |
Cover
Loading…
Abstract | Iron is an essential micronutrient but is toxic if accumulated at high levels. Thus, iron uptake and distribution in plants are controlled by precise regulatory mechanisms. IRON-REGULATED TRANSPORTER1 (IRT1) is the major high affinity iron transporter responsible for iron uptake from the soil in Arabidopsis (Arabidopsis thaliana). Previously, we showed that IRT1 is subject to posttranscriptional regulation; when expressed from the constitutive cauliflower mosaic virus 35S promoter, IRT1 protein accumulates only in iron-deficient roots. IRT1 contains an intracellular loop that may be critical for posttranslational regulation by metals. Of particular interest are a histidine (His) motif (HGHGHGH) that might bind metals and two lysine residues that could serve as attachment sites for ubiquitin. We constructed a set of mutant IRT1 alleles: IRT1H154Q, IRT1H156Q, IRT1H158Q, IRT1H160Q, IRT14HQ (quadruple His mutant), IRT1K146R, IRT1K171R, and a double mutant (IRT1K146R,K171R). Mutation of the His or lysine residues did not eliminate the ability of IRT1 to transport iron or zinc. Expression of each of the IRT1 variants and an IRT1intact construct in plants from the 35S promoter revealed that either K146 or K171 is required for iron-induced protein turnover, and 35S-IRT1K146R,K171R plants contain higher levels of iron as compared to 35S-IRT1 and wild type. Furthermore, accumulation of metals in 35S-IRT1K146R,K171R plants was not associated with an increase in ferric chelate reductase activity; this result indicates that, at least under conditions when iron is abundant, reduction of ferric iron may not be the rate-limiting step in iron uptake by strategy I plants such as Arabidopsis. |
---|---|
AbstractList | Iron is an essential micronutrient but is toxic if accumulated at high levels. Thus, iron uptake and distribution in plants are controlled by precise regulatory mechanisms. IRON-REGULATED TRANSPORTER1 (IRT1) is the major high affinity iron transporter responsible for iron uptake from the soil in Arabidopsis (Arabidopsis thaliana). Previously, we showed that IRT1 is subject to posttranscriptional regulation; when expressed from the constitutive cauliflower mosaic virus 35S promoter, IRT1 protein accumulates only in iron-deficient roots. IRT1 contains an intracellular loop that may be critical for posttranslational regulation by metals. Of particular interest are a histidine (His) motif (HGHGHGH) that might bind metals and two lysine residues that could serve as attachment sites for ubiquitin. We constructed a set of mutant IRT1 alleles: IRT1H154Q, IRT1H156Q, IRT1H158Q, IRT1H160Q, IRT14HQ (quadruple His mutant), IRT1K146R, IRT1K171R, and a double mutant (IRT1K146R,K171R). Mutation of the His or lysine residues did not eliminate the ability of IRT1 to transport iron or zinc. Expression of each of the IRT1 variants and an IRT1intact construct in plants from the 35S promoter revealed that either K146 or K171 is required for iron-induced protein turnover, and 35S-IRT1K146R,K171R plants contain higher levels of iron as compared to 35S-IRT1 and wild type. Furthermore, accumulation of metals in 35S-IRT1K146R,K171R plants was not associated with an increase in ferric chelate reductase activity; this result indicates that, at least under conditions when iron is abundant, reduction of ferric iron may not be the rate-limiting step in iron uptake by strategy I plants such as Arabidopsis. Iron is an essential micronutrient but is toxic if accumulated at high levels. Thus, iron uptake and distribution in plants are controlled by precise regulatory mechanisms. IRON-REGULATED TRANSPORTER1 (IRT1) is the major high affinity iron transporter responsible for iron uptake from the soil in Arabidopsis (Arabidopsis thaliana). Previously, we showed that IRT1 is subject to posttranscriptional regulation; when expressed from the constitutive cauliflower mosaic virus 35S promoter, IRT1 protein accumulates only in iron-deficient roots. IRT1 contains an intracellular loop that may be critical for posttranslational regulation by metals. Of particular interest are a histidine (His) motif (HGHGHGH) that might bind metals and two lysine residues that could serve as attachment sites for ubiquitin. We constructed a set of mutant IRT1 alleles: IRT1H154Q, IRT1H156Q, IRT1H158Q, IRT1H160Q, IRT14HQ (quadruple His mutant), IRT1K146R, IRT1K171R, and a double mutant (IRT1K146R,K171R). Mutation of the His or lysine residues did not eliminate the ability of IRT1 to transport iron or zinc. Expression of each of the IRT1 variants and an IRT1intact construct in plants from the 35S promoter revealed that either K146 or K171 is required for iron-induced protein turnover, and 35S-IRT1K146R,K171R plants contain higher levels of iron as compared to 35S-IRT1 and wild type. Furthermore, accumulation of metals in 35S-IRT1K146R,K171R plants was not associated with an increase in ferric chelate reductase activity; this result indicates that, at least under conditions when iron is abundant, reduction of ferric iron may not be the rate-limiting step in iron uptake by strategy I plants such as Arabidopsis.Iron is an essential micronutrient but is toxic if accumulated at high levels. Thus, iron uptake and distribution in plants are controlled by precise regulatory mechanisms. IRON-REGULATED TRANSPORTER1 (IRT1) is the major high affinity iron transporter responsible for iron uptake from the soil in Arabidopsis (Arabidopsis thaliana). Previously, we showed that IRT1 is subject to posttranscriptional regulation; when expressed from the constitutive cauliflower mosaic virus 35S promoter, IRT1 protein accumulates only in iron-deficient roots. IRT1 contains an intracellular loop that may be critical for posttranslational regulation by metals. Of particular interest are a histidine (His) motif (HGHGHGH) that might bind metals and two lysine residues that could serve as attachment sites for ubiquitin. We constructed a set of mutant IRT1 alleles: IRT1H154Q, IRT1H156Q, IRT1H158Q, IRT1H160Q, IRT14HQ (quadruple His mutant), IRT1K146R, IRT1K171R, and a double mutant (IRT1K146R,K171R). Mutation of the His or lysine residues did not eliminate the ability of IRT1 to transport iron or zinc. Expression of each of the IRT1 variants and an IRT1intact construct in plants from the 35S promoter revealed that either K146 or K171 is required for iron-induced protein turnover, and 35S-IRT1K146R,K171R plants contain higher levels of iron as compared to 35S-IRT1 and wild type. Furthermore, accumulation of metals in 35S-IRT1K146R,K171R plants was not associated with an increase in ferric chelate reductase activity; this result indicates that, at least under conditions when iron is abundant, reduction of ferric iron may not be the rate-limiting step in iron uptake by strategy I plants such as Arabidopsis. Iron is an essential micronutrient but is toxic if accumulated at high levels. Thus, iron uptake and distribution in plants are controlled by precise regulatory mechanisms. IRON-REGULATED TRANSPORTER1 (IRT1) is the major high affinity iron transporter responsible for iron uptake from the soil in Arabidopsis (Arabidopsis thaliana). Previously, we showed that IRT1 is subject to posttranscriptional regulation; when expressed from the constitutive cauliflower mosaic virus 35S promoter, IRT1 protein accumulates only in iron-deficient roots. IRT1 contains an intracellular loop that may be critical for posttranslational regulation by metals. Of particular interest are a histidine (His) motif (HGHGHGH) that might bind metals and two lysine residues that could serve as attachment sites for ubiquitin. We constructed a set of mutant IRT1 alleles: IRT1H154Q, IRT1H156Q, IRT1H158Q, IRT1H160Q, IRT14HQ (quadruple His mutant), IRT1K146R, IRT1K171R, and a double mutant (IRT1K146R,K171R). Mutation of the His or lysine residues did not eliminate the ability of IRT1 to transport iron or zinc. Expression of each of the IRT1 variants and an IRT1 intact construct in plants from the 35S promoter revealed that either K146 or K171 is required for iron-induced protein turnover, and 35S-IRT1K146R,K171R plants contain higher levels of iron as compared to 35S-IRT1 and wild type. Furthermore, accumulation of metals in 35S-IRT1K146R,K171R plants was not associated with an increase in ferric chelate reductase activity; this result indicates that, at least under conditions when iron is abundant, reduction of ferric iron may not be the rate-limiting step in iron uptake by strategy I plants such as Arabidopsis. Iron is an essential micronutrient but is toxic if accumulated at high levels. Thus, iron uptake and distribution in plants are controlled by precise regulatory mechanisms. IRON-REGULATED TRANSPORTER1 (IRT1) is the major high affinity iron transporter responsible for iron uptake from the soil in Arabidopsis ( Arabidopsis thaliana ). Previously, we showed that IRT1 is subject to posttranscriptional regulation; when expressed from the constitutive cauliflower mosaic virus 35S promoter, IRT1 protein accumulates only in iron-deficient roots. IRT1 contains an intracellular loop that may be critical for posttranslational regulation by metals. Of particular interest are a histidine (His) motif (HGHGHGH) that might bind metals and two lysine residues that could serve as attachment sites for ubiquitin. We constructed a set of mutant IRT1 alleles: IRT1H154Q, IRT1H156Q, IRT1H158Q, IRT1H160Q, IRT14HQ (quadruple His mutant), IRT1K146R, IRT1K171R, and a double mutant (IRT1K146R,K171R). Mutation of the His or lysine residues did not eliminate the ability of IRT1 to transport iron or zinc. Expression of each of the IRT1 variants and an IRT1intact construct in plants from the 35S promoter revealed that either K146 or K171 is required for iron-induced protein turnover, and 35S-IRT1K146R,K171R plants contain higher levels of iron as compared to 35S-IRT1 and wild type. Furthermore, accumulation of metals in 35S-IRT1K146R,K171R plants was not associated with an increase in ferric chelate reductase activity; this result indicates that, at least under conditions when iron is abundant, reduction of ferric iron may not be the rate-limiting step in iron uptake by strategy I plants such as Arabidopsis. |
Author | Mukherjee, Indrani Connolly, Erin L Chatterjee, Iera Salt, David E Lahner, Brett Kerkeb, Loubna |
AuthorAffiliation | Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (L.K., I.M., I.C., E.L.C.); and the Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, Indiana 47907 (B.L., D.E.S.) |
AuthorAffiliation_xml | – name: Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (L.K., I.M., I.C., E.L.C.); and the Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, Indiana 47907 (B.L., D.E.S.) |
Author_xml | – sequence: 1 fullname: Kerkeb, Loubna – sequence: 2 fullname: Mukherjee, Indrani – sequence: 3 fullname: Chatterjee, Iera – sequence: 4 fullname: Lahner, Brett – sequence: 5 fullname: Salt, David E – sequence: 6 fullname: Connolly, Erin L |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20282530$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18305211$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9v0zAUxyM0xLrBkSOQC9wynn8muSBVo4xKZUVZerYc29k8pXFmJ5P23-OqpQIktJOf9T7vq--zv2fJSe96kyRvEVwgBPTzMFwgyGNNcIFfJDPECM4wo8VJMgOINRRFeZqchXAPAIgg-io5RQUBhhGaJW7pXZ8tez0po9N68r17ND51bTremXTuZWO1G4IN6bJaX2fV4mqzmteLr2ldza9vfq6relGh9IcZZZfWXvZhcH6MApV5mKw3IV09BdubeA9WTya8Tl62sgvmzeE8TzbfFvXl92y1vlpezleZ4piPmW5ko2hR5hIzIgltUKlZQRtqWpBAGccl0Yw3uTaN1LlqtCZUQUGaHHFkKDlPvux1h6nZGq1MP3rZicHbrfRPwkkr_u709k7cukeBcZETTqLAp4OAdw_R-Ci2NijTdbI3bgoiB1qwMufPgjTnUAJ-XhFHjBJaRvD9n96Ppn__WgQ-HgAZlOza-O7KhiOHIUaBEYgc2XPKuxC8aYWyoxyt261sO4FA7DIkhiGWudhnKE5l_0wdDfyHf7fn78Po_BGmAJyVxW6dD_t-K52Qtz463dzgGEWI0QTGOfkFAWDZ2g |
CODEN | PPHYA5 |
CitedBy_id | crossref_primary_10_1007_s11356_015_4304_2 crossref_primary_10_1016_j_pbi_2017_06_014 crossref_primary_10_3390_ijms21082771 crossref_primary_10_1104_pp_112_207043 crossref_primary_10_3390_ijms222111399 crossref_primary_10_1080_10409238_2020_1742092 crossref_primary_10_3389_fpls_2018_01383 crossref_primary_10_1093_toxsci_kfv130 crossref_primary_10_1079_cabireviews202217011 crossref_primary_10_35709_ory_2020_57_3_10 crossref_primary_10_1080_07352689_2023_2243108 crossref_primary_10_1016_j_cpb_2016_02_001 crossref_primary_10_1016_j_bpj_2015_05_012 crossref_primary_10_1016_j_tplants_2009_02_006 crossref_primary_10_1016_j_xplc_2019_100017 crossref_primary_10_1093_mp_ssr065 crossref_primary_10_1007_s10265_014_0660_0 crossref_primary_10_3389_fpls_2021_665583 crossref_primary_10_1111_pce_14473 crossref_primary_10_3389_fpls_2020_00325 crossref_primary_10_1016_j_biotechadv_2013_05_003 crossref_primary_10_1111_j_1469_8137_2009_02766_x crossref_primary_10_1111_j_1469_8137_2010_03606_x crossref_primary_10_1007_s11104_016_3128_2 crossref_primary_10_1007_s11356_008_0079_z crossref_primary_10_1080_07352689_2014_885733 crossref_primary_10_1016_j_bpj_2012_09_033 crossref_primary_10_1007_s00018_012_1089_z crossref_primary_10_3389_fpls_2014_00213 crossref_primary_10_1016_j_jenvman_2012_04_002 crossref_primary_10_1111_j_1399_3054_2008_01141_x crossref_primary_10_3389_fpls_2019_00627 crossref_primary_10_1039_C5TX00424A crossref_primary_10_1104_pp_111_177816 crossref_primary_10_1007_s10725_022_00847_4 crossref_primary_10_1016_j_biotechadv_2022_107963 crossref_primary_10_1007_s10534_012_9526_x crossref_primary_10_1016_j_heliyon_2019_e01914 crossref_primary_10_1016_j_pbi_2020_05_006 crossref_primary_10_1016_j_plaphy_2024_109457 crossref_primary_10_1016_j_scitotenv_2021_152800 crossref_primary_10_1111_pce_13192 crossref_primary_10_1371_journal_pone_0147120 crossref_primary_10_1111_j_1365_313X_2009_03803_x crossref_primary_10_1016_j_bbamcr_2012_05_016 crossref_primary_10_1016_j_pbi_2008_06_013 crossref_primary_10_1111_tpj_16020 crossref_primary_10_1016_j_envexpbot_2016_06_011 crossref_primary_10_1074_jbc_M110_184929 crossref_primary_10_1111_j_1469_8137_2009_02908_x crossref_primary_10_1007_s11756_022_01099_3 crossref_primary_10_1016_j_envexpbot_2010_04_003 crossref_primary_10_1038_s41598_021_03506_2 crossref_primary_10_1111_tpj_15611 crossref_primary_10_1073_pnas_1402262111 crossref_primary_10_1016_j_plantsci_2023_111973 crossref_primary_10_1002_pmic_201400351 crossref_primary_10_1016_j_isci_2022_104029 crossref_primary_10_1111_pce_13883 crossref_primary_10_1242_jcs_263645 crossref_primary_10_1016_j_plantsci_2021_111058 crossref_primary_10_1016_j_bbrc_2014_11_017 crossref_primary_10_1016_j_jplph_2014_09_017 crossref_primary_10_1016_j_tplants_2014_11_004 crossref_primary_10_1038_nchembio_166 crossref_primary_10_1111_nph_15826 crossref_primary_10_4161_psb_6_11_17867 crossref_primary_10_1104_pp_111_183285 crossref_primary_10_3389_fpls_2019_01449 crossref_primary_10_1007_s00425_017_2703_y crossref_primary_10_1093_pcp_pcu156 crossref_primary_10_1105_tpc_110_079095 crossref_primary_10_1093_jxb_eraa441 crossref_primary_10_1093_pcp_pcr089 crossref_primary_10_1105_tpc_113_116244 crossref_primary_10_1093_jxb_erx465 crossref_primary_10_1002_yea_3075 crossref_primary_10_1016_j_molbiopara_2009_12_003 crossref_primary_10_1111_tpj_15544 crossref_primary_10_1038_s41587_018_0002_1 crossref_primary_10_1093_pcp_pcae096 crossref_primary_10_1139_er_2014_0043 crossref_primary_10_4161_psb_28787 crossref_primary_10_1111_tra_12540 crossref_primary_10_1104_pp_112_199869 crossref_primary_10_1016_j_pbi_2009_04_011 crossref_primary_10_3390_ijms151120413 crossref_primary_10_1071_FP15305 |
Cites_doi | 10.1104/pp.96.3.843 10.1074/jbc.M209455200 10.1038/35053080 10.1074/jbc.273.44.28617 10.1105/tpc.001388 10.1023/A:1026438615520 10.1021/ic0606431 10.1038/sj.cr.7290331 10.1016/0003-2697(84)90381-6 10.1016/S0005-2736(00)00138-3 10.1104/pp.110.1.329 10.1146/annurev.cellbio.19.110701.154617 10.1074/jbc.M302760200 10.1074/jbc.M401493200 10.1074/jbc.M310799200 10.1016/j.febslet.2005.02.035 10.1074/jbc.M400680200 10.1111/j.1399-3054.1987.tb06137.x 10.1046/j.1365-313X.1996.10050835.x 10.1016/S0021-9258(18)47163-3 10.1016/j.febslet.2004.10.062 10.1038/17800 10.1046/j.1365-313x.1998.00343.x 10.1105/tpc.001263 10.1038/nrm973 10.1111/j.1399-3054.1996.tb05715.x 10.1073/pnas.76.9.4350 10.1046/j.1365-313X.2002.01381.x 10.1104/pp.125.4.1679 10.1038/227680a0 10.1016/j.bbamem.2006.06.005 10.1016/S0014-5793(01)03225-2 10.1002/j.1460-2075.1996.tb00720.x 10.1074/jbc.M414663200 10.1074/jbc.M610552200 10.1074/jbc.271.38.23203 10.1073/pnas.93.11.5624 10.1016/j.plaphy.2007.03.006 10.1073/pnas.210214197 10.1074/jbc.274.8.4863 10.1023/A:1011699722052 10.1073/pnas.0502060102 10.1105/tpc.104.024315 10.1093/jxb/erl189 10.1016/S0044-328X(82)80038-X 10.1042/bj3460329 10.1104/pp.94.3.1353 10.1104/pp.102.016089 10.1023/A:1019942200164 10.1104/pp.103.025122 10.1007/s002329900442 10.1093/nar/17.6.2362 10.1007/BF00331014 10.1073/pnas.74.11.4835 10.1046/j.1365-313X.1992.t01-38-00999.x 10.1016/0014-5793(92)80911-Y |
ContentType | Journal Article |
Copyright | Copyright 2008 American Society of Plant Biologists 2008 INIST-CNRS Copyright © 2008, American Society of Plant Biologists |
Copyright_xml | – notice: Copyright 2008 American Society of Plant Biologists – notice: 2008 INIST-CNRS – notice: Copyright © 2008, American Society of Plant Biologists |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7U9 8FD FR3 H94 P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1104/pp.107.113282 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts Genetics Abstracts Virology and AIDS Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1532-2548 |
EndPage | 1973 |
ExternalDocumentID | PMC2287363 18305211 20282530 10_1104_pp_107_113282 40065989 US201300880566 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- -DZ -~X 123 29O 2AX 2WC 2~F 3V. 4.4 53G 5VS 5WD 7X2 7X7 85S 88A 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8G5 8R4 8R5 AAHKG AAPXW AAVAP AAWDT AAXTN AAYJJ ABBHK ABJNI ABPLY ABPPZ ABPTD ABPTK ABTLG ABUWG ABXZS ACBTR ACFRR ACGOD ACIPB ACNCT ACPRK ACUFI ACUTJ ADBBV ADIPN ADIYS ADULT ADVEK ADYHW ADZLD AEEJZ AENEX AESBF AEUPB AFAZZ AFDAS AFFDN AFFZL AFGWE AFKRA AFRAH AFYAG AGUYK AHMBA AICQM AIDAL AIDBO AJEEA ALMA_UNASSIGNED_HOLDINGS ALXQX ANFBD AQDSO AS~ ATCPS AZQEC BAWUL BBNVY BCRHZ BENPR BHPHI BPHCQ BTFSW BVXVI BYORX C1A CBGCD CCPQU CS3 CWIXF D1J DATOO DFEDG DIK DOOOF DU5 DWIUU DWQXO E3Z EBS ECGQY EJD F20 F5P FBQ FLUFQ FOEOM FYUFA GNUQQ GTFYD GUQSH HCIFZ HMCUK HTVGU ISR JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST KOP KQ8 KSI KSN LK8 M0K M0L M1P M2O M2P M2Q M7P MV1 MVM NOMLY OBOKY OJZSN OK1 OWPYF P0- P2P PQQKQ PROAC PSQYO Q2X QZG RHF RHI ROX RPB RPM RWL RXW S0X SA0 TAE TCN TN5 TR2 UBC UKHRP UKR VQA W8F WH7 WHG WOQ XOL XSW Y6R YBU YKV YNT YSK YZZ ZCA ZCG ZCN ~02 ~KM 0R~ AAHBH AARHZ AAUAY ABDFA ABEJV ABGNP ABMNT ABVGC ABXSQ ABXVV ACHIC ADGKP ADQBN ADXHL AEUYN AGORE AHXOZ AJBYB AJNCP ALIPV AQVQM ATGXG BEYMZ H13 IPSME JXSIZ NU- PHGZM PHGZT AAYXX CITATION ABIME ABPIB ABZEO ACVCV ACZBC AGMDO AHGBF AJDVS APJGH IQODW LU7 PJZUB PPXIY PQGLB ADYWZ CGR CUY CVF ECM EIF NPM VXZ 7U9 8FD FR3 H94 P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c626t-dbabc4897a253a34b19d584b4ef0a0456293d56b7debad7cbdd34c083b7161e43 |
ISSN | 0032-0889 1532-2548 |
IngestDate | Thu Aug 21 14:16:18 EDT 2025 Mon Jul 21 11:20:26 EDT 2025 Thu Jul 10 20:19:07 EDT 2025 Fri Jul 11 03:59:10 EDT 2025 Wed Feb 19 01:51:31 EST 2025 Mon Jul 21 09:15:26 EDT 2025 Thu Apr 24 22:56:04 EDT 2025 Tue Jul 01 02:53:54 EDT 2025 Fri Jun 20 02:19:03 EDT 2025 Wed Dec 27 19:14:39 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Spermatophyta Cruciferae Arabidopsis Dicotyledones Angiospermae |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c626t-dbabc4897a253a34b19d584b4ef0a0456293d56b7debad7cbdd34c083b7161e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Department of Biology, New York University, 100 Washington Square East, 766 Waverly Building, New York, NY 10003. www.plantphysiol.org/cgi/doi/10.1104/pp.107.113282 Present address: Bachem Inc., 3132 Kashiwa St., Torrance, CA 90505. The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Erin L. Connolly (erinc@biol.sc.edu). This work was supported by the U.S. Department of Agriculture (NRICGP grant nos. 2001–35100–10752 and 2004–35100–14934 to E.L.C.) and by the National Science Foundation (grant no. IOB–0419695 to D.E.S.). The online version of this article contains Web-only data. Open Access articles can be viewed online without a subscription. Corresponding author; e-mail erinc@biol.sc.edu. |
OpenAccessLink | https://academic.oup.com/plphys/article-pdf/146/4/1964/37073136/plphys_v146_4_1964.pdf |
PMID | 18305211 |
PQID | 20904349 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2287363 proquest_miscellaneous_70485976 proquest_miscellaneous_47609023 proquest_miscellaneous_20904349 pubmed_primary_18305211 pascalfrancis_primary_20282530 crossref_citationtrail_10_1104_pp_107_113282 crossref_primary_10_1104_pp_107_113282 jstor_primary_40065989 fao_agris_US201300880566 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-04-01 |
PublicationDateYYYYMMDD | 2008-04-01 |
PublicationDate_xml | – month: 04 year: 2008 text: 2008-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Rockville, MD |
PublicationPlace_xml | – name: Rockville, MD – name: United States |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 2008 |
Publisher | American Society of Plant Biologists American Society of Plant Physiologists |
Publisher_xml | – name: American Society of Plant Biologists – name: American Society of Plant Physiologists |
References | (2021041513475686800_b7) 2001; 409 (2021041513475686800_b47) 1996; 98 (2021041513475686800_b19) 1990; 94 (2021041513475686800_b13) 2005; 280 (2021041513475686800_b53) 2002; 14 (2021041513475686800_b2) 2007; 45 (2021041513475686800_b8) 1994; 269 (2021041513475686800_b23) 1991; 96 (2021041513475686800_b4) 2004; 16 (2021041513475686800_b28) 2002; 3 (2021041513475686800_b58) 1996; 271 (2021041513475686800_b43) 1999; 397 (2021041513475686800_b54) 1989; 17 (2021041513475686800_b38) 1977; 74 (2021041513475686800_b40) 1992; 2 (2021041513475686800_b50) 1979; 76 (2021041513475686800_b30) 1986; 204 (2021041513475686800_b18) 1996; 110 (2021041513475686800_b1) 2005 (2021041513475686800_b12) 1984; 137 (2021041513475686800_b39) 2006; 1758 (2021041513475686800_b16) 2003; 278 (2021041513475686800_b6) 2002; 14 (2021041513475686800_b52) 2003; 132 (2021041513475686800_b21) 2004; 279 (2021041513475686800_b33) 2001; 46 (2021041513475686800_b46) 2001; 125 (2021041513475686800_b27) 2005; 579 (2021041513475686800_b25) 2003; 19 (2021041513475686800_b5) 2003; 133 (2021041513475686800_b56) 1996; 10 (2021041513475686800_b57) 2005; 15 (2021041513475686800_b26) 2004; 577 (2021041513475686800_b3) 1998; 16 (2021041513475686800_b29) 2004; 279 (2021041513475686800_b32) 1970; 227 (2021041513475686800_b37) 1982; 105 (2021041513475686800_b35) 2006; 57 (2021041513475686800_b10) 1992; 13 (2021041513475686800_b22) 1992; 307 (2021041513475686800_b20) 2000; 1465 (2021041513475686800_b31) 1999; 40 (2021041513475686800_b36) 2007; 282 (2021041513475686800_b34) 1999; 274 (2021041513475686800_b15) 1998; 273 (2021041513475686800_b42) 2003; 278 (2021041513475686800_b49) 2005; 102 (2021041513475686800_b9) 1996; 93 (2021041513475686800_b14) 2000; 346 (2021041513475686800_b24) 2002; 50 (2021041513475686800_b17) 2006; 45 (2021041513475686800_b44) 2000; 97 (2021041513475686800_b48) 2002; 510 (2021041513475686800_b51) 2002; 31 (2021041513475686800_b11) 1998; 166 (2021041513475686800_b55) 2004; 279 (2021041513475686800_b45) 1987; 70 (2021041513475686800_b41) 1996; 15 11035780 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12356-60 15556641 - FEBS Lett. 2004 Nov 19;577(3):528-34 388439 - Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350-4 73185 - Proc Natl Acad Sci U S A. 1977 Nov;74(11):4835-8 14612438 - J Biol Chem. 2004 Feb 6;279(6):4523-30 14976198 - J Biol Chem. 2004 Apr 23;279(17):17428-33 12084831 - Plant Cell. 2002 Jun;14(6):1347-57 10069079 - Plant J. 1998 Dec;16(6):735-43 10067892 - Nature. 1999 Feb 25;397(6721):694-7 12226184 - Plant Physiol. 1996 Jan;110(1):329-334 16667840 - Plant Physiol. 1990 Nov;94(3):1353-7 11575724 - Plant Mol Biol. 2001 Aug;46(6):695-703 16844077 - Biochim Biophys Acta. 2006 Oct;1758(10):1696-701 5432063 - Nature. 1970 Aug 15;227(5259):680-5 11755534 - FEBS Lett. 2002 Jan 2;510(1-2):71-6 16117851 - Cell Res. 2005 Aug;15(8):613-21 9786854 - J Biol Chem. 1998 Oct 30;273(44):28617-24 16103374 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12276-81 10677350 - Biochem J. 2000 Mar 1;346 Pt 2:329-36 10394943 - Plant Mol Biol. 1999 May;40(1):37-44 1503765 - Biotechniques. 1992 Jul;13(1):18-20 12207649 - Plant J. 2002 Sep;31(5):589-99 17085755 - J Exp Bot. 2006;57(15):4145-54 15054103 - J Biol Chem. 2004 Jun 4;279(23):24631-9 9988727 - J Biol Chem. 1999 Feb 19;274(8):4863-8 12893829 - J Biol Chem. 2003 Oct 10;278(41):39558-64 17202136 - J Biol Chem. 2007 Mar 9;282(10):6992-7000 10748254 - Biochim Biophys Acta. 2000 May 1;1465(1-2):190-8 8798516 - J Biol Chem. 1996 Sep 20;271(38):23203-10 15817488 - J Biol Chem. 2005 Jun 10;280(23):22181-90 12461556 - Nat Rev Mol Cell Biol. 2002 Dec;3(12):893-905 17029360 - Inorg Chem. 2006 Oct 16;45(21):8500-8 15792797 - FEBS Lett. 2005 Mar 28;579(9):1923-9 15539473 - Plant Cell. 2004 Dec;16(12):3400-12 9784581 - J Membr Biol. 1998 Nov 1;166(1):1-7 8670854 - EMBO J. 1996 Jul 15;15(14):3515-23 8953245 - Plant J. 1996 Nov;10(5):835-44 11201743 - Nature. 2001 Jan 18;409(6818):346-9 16668263 - Plant Physiol. 1991 Jul;96(3):843-7 12374293 - Plant Mol Biol. 2002 Nov;50(4-5):587-97 6329026 - Anal Biochem. 1984 Feb;137(1):266-7 7929320 - J Biol Chem. 1994 Oct 21;269(42):26092-9 8643627 - Proc Natl Acad Sci U S A. 1996 May 28;93(11):5624-8 11299349 - Plant Physiol. 2001 Apr;125(4):1679-87 1322323 - FEBS Lett. 1992 Jul 27;307(1):108-12 1303803 - Plant J. 1992 May;2(3):417-22 14526117 - Plant Physiol. 2003 Nov;133(3):1102-10 12501239 - J Biol Chem. 2003 Mar 14;278(11):9639-46 17466530 - Plant Physiol Biochem. 2007 May;45(5):260-1 14570567 - Annu Rev Cell Dev Biol. 2003;19:141-72 12084823 - Plant Cell. 2002 Jun;14(6):1223-33 2468132 - Nucleic Acids Res. 1989 Mar 25;17(6):2362 12805609 - Plant Physiol. 2003 Jun;132(2):796-804 |
References_xml | – volume: 96 start-page: 843 year: 1991 ident: 2021041513475686800_b23 publication-title: Plant Physiol doi: 10.1104/pp.96.3.843 – volume: 278 start-page: 9639 year: 2003 ident: 2021041513475686800_b42 publication-title: J Biol Chem doi: 10.1074/jbc.M209455200 – volume: 409 start-page: 346 year: 2001 ident: 2021041513475686800_b7 publication-title: Nature doi: 10.1038/35053080 – volume: 273 start-page: 28617 year: 1998 ident: 2021041513475686800_b15 publication-title: J Biol Chem doi: 10.1074/jbc.273.44.28617 – volume: 14 start-page: 1223 year: 2002 ident: 2021041513475686800_b53 publication-title: Plant Cell doi: 10.1105/tpc.001388 – volume: 40 start-page: 37 year: 1999 ident: 2021041513475686800_b31 publication-title: Plant Mol Biol doi: 10.1023/A:1026438615520 – volume: 45 start-page: 8500 year: 2006 ident: 2021041513475686800_b17 publication-title: Inorg Chem doi: 10.1021/ic0606431 – volume: 15 start-page: 613 year: 2005 ident: 2021041513475686800_b57 publication-title: Cell Res doi: 10.1038/sj.cr.7290331 – volume: 137 start-page: 266 year: 1984 ident: 2021041513475686800_b12 publication-title: Anal Biochem doi: 10.1016/0003-2697(84)90381-6 – volume: 1465 start-page: 190 year: 2000 ident: 2021041513475686800_b20 publication-title: Biochim Biophys Acta doi: 10.1016/S0005-2736(00)00138-3 – volume: 110 start-page: 329 year: 1996 ident: 2021041513475686800_b18 publication-title: Plant Physiol doi: 10.1104/pp.110.1.329 – volume: 19 start-page: 141 year: 2003 ident: 2021041513475686800_b25 publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev.cellbio.19.110701.154617 – volume: 278 start-page: 39558 year: 2003 ident: 2021041513475686800_b16 publication-title: J Biol Chem doi: 10.1074/jbc.M302760200 – volume: 279 start-page: 17428 year: 2004 ident: 2021041513475686800_b21 publication-title: J Biol Chem doi: 10.1074/jbc.M401493200 – volume: 279 start-page: 4523 year: 2004 ident: 2021041513475686800_b29 publication-title: J Biol Chem doi: 10.1074/jbc.M310799200 – volume: 579 start-page: 1923 year: 2005 ident: 2021041513475686800_b27 publication-title: FEBS Lett doi: 10.1016/j.febslet.2005.02.035 – volume: 279 start-page: 24631 year: 2004 ident: 2021041513475686800_b55 publication-title: J Biol Chem doi: 10.1074/jbc.M400680200 – volume: 70 start-page: 231 year: 1987 ident: 2021041513475686800_b45 publication-title: Physiol Plant doi: 10.1111/j.1399-3054.1987.tb06137.x – volume: 10 start-page: 835 year: 1996 ident: 2021041513475686800_b56 publication-title: Plant J doi: 10.1046/j.1365-313X.1996.10050835.x – volume: 269 start-page: 26092 year: 1994 ident: 2021041513475686800_b8 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)47163-3 – volume: 13 start-page: 18 year: 1992 ident: 2021041513475686800_b10 publication-title: Biotechniques – volume: 577 start-page: 528 year: 2004 ident: 2021041513475686800_b26 publication-title: FEBS Lett doi: 10.1016/j.febslet.2004.10.062 – volume: 397 start-page: 694 year: 1999 ident: 2021041513475686800_b43 publication-title: Nature doi: 10.1038/17800 – volume: 16 start-page: 735 year: 1998 ident: 2021041513475686800_b3 publication-title: Plant J doi: 10.1046/j.1365-313x.1998.00343.x – volume: 14 start-page: 1347 year: 2002 ident: 2021041513475686800_b6 publication-title: Plant Cell doi: 10.1105/tpc.001263 – volume: 3 start-page: 893 year: 2002 ident: 2021041513475686800_b28 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm973 – volume: 98 start-page: 587 year: 1996 ident: 2021041513475686800_b47 publication-title: Physiol Plant doi: 10.1111/j.1399-3054.1996.tb05715.x – volume: 76 start-page: 4350 year: 1979 ident: 2021041513475686800_b50 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.76.9.4350 – volume: 31 start-page: 589 year: 2002 ident: 2021041513475686800_b51 publication-title: Plant J doi: 10.1046/j.1365-313X.2002.01381.x – volume: 125 start-page: 1679 year: 2001 ident: 2021041513475686800_b46 publication-title: Plant Physiol doi: 10.1104/pp.125.4.1679 – volume: 227 start-page: 680 year: 1970 ident: 2021041513475686800_b32 publication-title: Nature doi: 10.1038/227680a0 – year: 2005 ident: 2021041513475686800_b1 – volume: 1758 start-page: 1696 year: 2006 ident: 2021041513475686800_b39 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamem.2006.06.005 – volume: 510 start-page: 71 year: 2002 ident: 2021041513475686800_b48 publication-title: FEBS Lett doi: 10.1016/S0014-5793(01)03225-2 – volume: 15 start-page: 3515 year: 1996 ident: 2021041513475686800_b41 publication-title: EMBO J doi: 10.1002/j.1460-2075.1996.tb00720.x – volume: 280 start-page: 22181 year: 2005 ident: 2021041513475686800_b13 publication-title: J Biol Chem doi: 10.1074/jbc.M414663200 – volume: 282 start-page: 6992 year: 2007 ident: 2021041513475686800_b36 publication-title: J Biol Chem doi: 10.1074/jbc.M610552200 – volume: 271 start-page: 23203 year: 1996 ident: 2021041513475686800_b58 publication-title: J Biol Chem doi: 10.1074/jbc.271.38.23203 – volume: 93 start-page: 5624 year: 1996 ident: 2021041513475686800_b9 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.93.11.5624 – volume: 45 start-page: 260 year: 2007 ident: 2021041513475686800_b2 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2007.03.006 – volume: 97 start-page: 12356 year: 2000 ident: 2021041513475686800_b44 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.210214197 – volume: 274 start-page: 4863 year: 1999 ident: 2021041513475686800_b34 publication-title: J Biol Chem doi: 10.1074/jbc.274.8.4863 – volume: 46 start-page: 695 year: 2001 ident: 2021041513475686800_b33 publication-title: Plant Mol Biol doi: 10.1023/A:1011699722052 – volume: 102 start-page: 12276 year: 2005 ident: 2021041513475686800_b49 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0502060102 – volume: 16 start-page: 3400 year: 2004 ident: 2021041513475686800_b4 publication-title: Plant Cell doi: 10.1105/tpc.104.024315 – volume: 57 start-page: 4145 year: 2006 ident: 2021041513475686800_b35 publication-title: J Exp Bot doi: 10.1093/jxb/erl189 – volume: 105 start-page: 407 year: 1982 ident: 2021041513475686800_b37 publication-title: Z Pflanzenphysiol doi: 10.1016/S0044-328X(82)80038-X – volume: 346 start-page: 329 year: 2000 ident: 2021041513475686800_b14 publication-title: Biochem J doi: 10.1042/bj3460329 – volume: 94 start-page: 1353 year: 1990 ident: 2021041513475686800_b19 publication-title: Plant Physiol doi: 10.1104/pp.94.3.1353 – volume: 132 start-page: 796 year: 2003 ident: 2021041513475686800_b52 publication-title: Plant Physiol doi: 10.1104/pp.102.016089 – volume: 50 start-page: 587 year: 2002 ident: 2021041513475686800_b24 publication-title: Plant Mol Biol doi: 10.1023/A:1019942200164 – volume: 133 start-page: 1102 year: 2003 ident: 2021041513475686800_b5 publication-title: Plant Physiol doi: 10.1104/pp.103.025122 – volume: 166 start-page: 1 year: 1998 ident: 2021041513475686800_b11 publication-title: J Membr Biol doi: 10.1007/s002329900442 – volume: 17 start-page: 2362 year: 1989 ident: 2021041513475686800_b54 publication-title: Nucleic Acids Res doi: 10.1093/nar/17.6.2362 – volume: 204 start-page: 383 year: 1986 ident: 2021041513475686800_b30 publication-title: Mol Gen Genet doi: 10.1007/BF00331014 – volume: 74 start-page: 4835 year: 1977 ident: 2021041513475686800_b38 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.74.11.4835 – volume: 2 start-page: 417 year: 1992 ident: 2021041513475686800_b40 publication-title: Plant J doi: 10.1046/j.1365-313X.1992.t01-38-00999.x – volume: 307 start-page: 108 year: 1992 ident: 2021041513475686800_b22 publication-title: FEBS Lett doi: 10.1016/0014-5793(92)80911-Y – reference: 10394943 - Plant Mol Biol. 1999 May;40(1):37-44 – reference: 12374293 - Plant Mol Biol. 2002 Nov;50(4-5):587-97 – reference: 14612438 - J Biol Chem. 2004 Feb 6;279(6):4523-30 – reference: 1503765 - Biotechniques. 1992 Jul;13(1):18-20 – reference: 12501239 - J Biol Chem. 2003 Mar 14;278(11):9639-46 – reference: 1322323 - FEBS Lett. 1992 Jul 27;307(1):108-12 – reference: 9786854 - J Biol Chem. 1998 Oct 30;273(44):28617-24 – reference: 11035780 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12356-60 – reference: 5432063 - Nature. 1970 Aug 15;227(5259):680-5 – reference: 12207649 - Plant J. 2002 Sep;31(5):589-99 – reference: 14570567 - Annu Rev Cell Dev Biol. 2003;19:141-72 – reference: 16668263 - Plant Physiol. 1991 Jul;96(3):843-7 – reference: 14526117 - Plant Physiol. 2003 Nov;133(3):1102-10 – reference: 8798516 - J Biol Chem. 1996 Sep 20;271(38):23203-10 – reference: 2468132 - Nucleic Acids Res. 1989 Mar 25;17(6):2362 – reference: 8953245 - Plant J. 1996 Nov;10(5):835-44 – reference: 12461556 - Nat Rev Mol Cell Biol. 2002 Dec;3(12):893-905 – reference: 12226184 - Plant Physiol. 1996 Jan;110(1):329-334 – reference: 11575724 - Plant Mol Biol. 2001 Aug;46(6):695-703 – reference: 1303803 - Plant J. 1992 May;2(3):417-22 – reference: 12084823 - Plant Cell. 2002 Jun;14(6):1223-33 – reference: 10748254 - Biochim Biophys Acta. 2000 May 1;1465(1-2):190-8 – reference: 10677350 - Biochem J. 2000 Mar 1;346 Pt 2:329-36 – reference: 10067892 - Nature. 1999 Feb 25;397(6721):694-7 – reference: 12893829 - J Biol Chem. 2003 Oct 10;278(41):39558-64 – reference: 16667840 - Plant Physiol. 1990 Nov;94(3):1353-7 – reference: 11299349 - Plant Physiol. 2001 Apr;125(4):1679-87 – reference: 17202136 - J Biol Chem. 2007 Mar 9;282(10):6992-7000 – reference: 73185 - Proc Natl Acad Sci U S A. 1977 Nov;74(11):4835-8 – reference: 6329026 - Anal Biochem. 1984 Feb;137(1):266-7 – reference: 15817488 - J Biol Chem. 2005 Jun 10;280(23):22181-90 – reference: 15792797 - FEBS Lett. 2005 Mar 28;579(9):1923-9 – reference: 17466530 - Plant Physiol Biochem. 2007 May;45(5):260-1 – reference: 15539473 - Plant Cell. 2004 Dec;16(12):3400-12 – reference: 8670854 - EMBO J. 1996 Jul 15;15(14):3515-23 – reference: 12084831 - Plant Cell. 2002 Jun;14(6):1347-57 – reference: 388439 - Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350-4 – reference: 15054103 - J Biol Chem. 2004 Jun 4;279(23):24631-9 – reference: 16103374 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12276-81 – reference: 12805609 - Plant Physiol. 2003 Jun;132(2):796-804 – reference: 11755534 - FEBS Lett. 2002 Jan 2;510(1-2):71-6 – reference: 16844077 - Biochim Biophys Acta. 2006 Oct;1758(10):1696-701 – reference: 14976198 - J Biol Chem. 2004 Apr 23;279(17):17428-33 – reference: 11201743 - Nature. 2001 Jan 18;409(6818):346-9 – reference: 9784581 - J Membr Biol. 1998 Nov 1;166(1):1-7 – reference: 17029360 - Inorg Chem. 2006 Oct 16;45(21):8500-8 – reference: 7929320 - J Biol Chem. 1994 Oct 21;269(42):26092-9 – reference: 10069079 - Plant J. 1998 Dec;16(6):735-43 – reference: 17085755 - J Exp Bot. 2006;57(15):4145-54 – reference: 16117851 - Cell Res. 2005 Aug;15(8):613-21 – reference: 8643627 - Proc Natl Acad Sci U S A. 1996 May 28;93(11):5624-8 – reference: 15556641 - FEBS Lett. 2004 Nov 19;577(3):528-34 – reference: 9988727 - J Biol Chem. 1999 Feb 19;274(8):4863-8 |
SSID | ssj0001314 |
Score | 2.2648304 |
Snippet | Iron is an essential micronutrient but is toxic if accumulated at high levels. Thus, iron uptake and distribution in plants are controlled by precise... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1964 |
SubjectTerms | alleles Amino Acid Sequence Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - chemistry Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Base Sequence Biological and medical sciences Biological Transport Cation Transport Proteins - chemistry Cation Transport Proteins - genetics Cation Transport Proteins - metabolism Cauliflower mosaic virus Chelates Cloning, Molecular DNA Primers Endocytosis Environmental Stress and Adaptation to Stress Fundamental and applied biological sciences. Psychology gene expression Gene expression regulation Genes. Genome histidine Iron Iron - metabolism lysine Lysine - metabolism Molecular and cellular biology Molecular genetics Molecular Sequence Data Mutagenesis, Site-Directed mutants mutation Phenotypes Plant roots Plants protein metabolism Protein Processing, Post-Translational roots soil Transgenic plants transporters Yeasts Zinc Zinc - metabolism |
Title | Iron-Induced Turnover of the Arabidopsis IRON-REGULATED TRANSPORTER1 Metal Transporter Requires Lysine Residues |
URI | https://www.jstor.org/stable/40065989 https://www.ncbi.nlm.nih.gov/pubmed/18305211 https://www.proquest.com/docview/20904349 https://www.proquest.com/docview/47609023 https://www.proquest.com/docview/70485976 https://pubmed.ncbi.nlm.nih.gov/PMC2287363 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWy9NBL0S2Nurg8FL24SiWRFqWjXah14sR1HRvITSAlqjVQSIaXQ_pl_bzOaLOUJuhyEQSJ2jhP5MzwzQwhbyI3UhYT0lQ8kSbXjjaV1JFpO0r4Xk8p5WKA88XYHc752VXvam_vZ4O1tN2ok-jHrXEl_yNVOAZyxSjZf5BsfVM4APsgX9iChGH7VzI-XWWpicU3cBEfa9YjH7Na9e-vpFrE2RIzjpxOYcScBp_m530YqbqzaX98OfmMqqzdvdAYD7lLcr6CLkd6sF53z6-RFY8u_kW8LcmGpSKLxY42hV-kyOIEmuoAg4fXsWx4F0bBdBQMcuM_26q0ngMu5qNhMD0LSi5mDE9f1Mshw_5stjupV_VV5_3huGBuDJBf3PJYeA2iyy5IAEevkpeKZL_8pSfVSwPCm65Kizkm0rFao3bpuVw0fRL5GIwpxhrzue0XtVJ-nyssjgWOlyc2OtnAKi-qILVzct-YK2sGo5MH_TJrnxw6YKBg7YzRl12eepsVWeWrN6-zu_L3rQe2tKH9RGYVLRY5unINv2lS1Fe5zQC6yeNtKEazh-RBadHQfgHPR2RPp4_JvUEGVsf1E5I1MUorjNIsoYAV2sAobWOUNjFKc4zSBkZphVFaYJRWGH1K5h-D2YehWRb5MCOwpTdmrKSKuOcLCd0pGVe2H4NSrLhOLJnb5z6Le64SsVYyFpGKY8YjMBwUWPq25uyIHKRZqo8JxVR2rqUSh0nFpYZbJZHyIuHJiNmJkxjkXdXZYVRmwMdCLN_D3BK2eLhcwq4IC9kY5G3dfFmkfrmr4TFILpRfYVoO55cOkgFA6GBauAY5ysVZ34Cjzu97vkE6LfnWDSpgGeR1JfAQRnxcxpOpzrZraOFbnHH_7hZcuEi3Zne3EDBx98ASMcizAkK7L4ReBJXeNohogatugPno22fSxbc8L73jeIK57PmfPu0Fub8bFl6Sg81qq1-Bar9RHbIvrkSHHA6C8WTayf-pX_j1-ik |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iron-Induced+Turnover+of+the+Arabidopsis+IRON-REGULATED+TRANSPORTER1+Metal+Transporter+Requires+Lysine+Residues&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=KERKEB%2C+Loubna&rft.au=MUKHERJEE%2C+Indrani&rft.au=CHATTERJEE%2C+Iera&rft.au=LAHNER%2C+Brett&rft.date=2008-04-01&rft.pub=American+Society+of+Plant+Physiologists&rft.issn=0032-0889&rft.volume=146&rft.issue=4&rft.spage=1964&rft.epage=1973&rft_id=info:doi/10.1104%2Fpp.107.113282&rft.externalDBID=n%2Fa&rft.externalDocID=20282530 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |